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CHAPTER I

Introduction

1.1 Why 3D Textile Composites?

Polymer composite materials are synthetic man-made materials that contain

two or more materials to make a third material, specifically tailored to achieve

some function that is (hopefully) better than that which could be performed by the

individual constituents. There are many types of composite material in use today.

Composite materials have been in existence in nature for a long time. After

second World War II, as technology advanced, fiber reinforced polymer composites

emerged as a substitute for traditional materials, such as aluminum and steel. For

the past four decades, composites have been widely used in the aerospace and au-

tomobile industry for various reasons, such as ease of production, reduced-weight,

high-strength, high resistance to fatigue and so on. Pre-preg based continuous fiber

composites were first widely used as structural components in the aerospace indus-

try. A serious disadvantage of using pre-preg composites is that the manufacturing

process is expensive. The manufacturing processes, such as wet hand lay-up and

autoclave curing require high skilled labor for production. In manufacturing some

components of aircraft structures, more than 50 plies of carbon/epoxy pre-peg tape

must be processed individually. Amongst the many types of composites, polymer

1
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matrix based textile fiber composites (TFC) prove to be the most attractive and

cost effective due to ease of manufacturing as compared to pre-preg based contin-

uous fiber tape composites or laminates. A detailed introduction to TFCs can be

found in [14]. Even though the cost is reduced by use of TFCs, 2D textile compos-

ites still suffer from disadvantages that pre-peg composites have, such as sensitivity

to impact loads which can lower the performance of composite structures due to

lack of through-the-thickness strength. The low through-the-thickness strength is

dictated by the interfacial strength between the polymer matrix and the fiber tows.

One effective way to improve through-the-thickness strength is to use special resins,

such as rubber toughened resins. However, the manufacturing process of these resin

may be expensive. Another way to improve through-the-thickness properties is by

inserting reinforcement in the through-the-thickness direction, such as by stitching,

Z-pin insertion, or by using 3D textile composites. Previous investigations have

showed that stitched joint performance is superior to traditional joints such as by

adhesive bonding and co-curing in [55] and [60].

The commonly used TFCs are woven composites, knitted composites, stitched

composites, and braided composites depending upon the application. These textile

composites can be used as a structural unit (2D) to assemble a large structure or

they can be manufactured directly as a 3D structure by changing the equipment for

manufacturing 2D structural units. For example, woven composites can be produced

as one lamina and then stacked together as a composite laminate as show in Figure

1.1 and Figure 1.3.

Whether composite units are assembled to a large structure or used as a stack of

composite laminates, lack of strength of the interface between the different laminae

is always an issue and challenge that affects the performance of the entire structure.
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Adhesives are used to assemble different parts of a composite structure, unlike

welding which is used to assemble different parts of a metal. There have been many

researchers [57], [33], and [3] that have discussed the performance of structures that

have been bonded using different adhesives. Even though improving the adhesives

can increase the strength of the interface, interface failure is still a dominant failure

mode that limits the performance of a structure. Thus, 3D composites are produced

in order to improve through-the-thickness properties to provide more toughness and

strength against impact and fracture.

3D composites were originally developed in 1970s, but it has only been in the

last 15-20 years that major progress has been made to develop these materials to a

commercial level. The factors propelling mankind to develop advanced “3D mate-

rials” include lower manufacturing costs, improved material quality, high through-

thickness properties, superior delamination resistance, better impact damage re-

sistance, and better post-impact mechanical properties compared to conventional

laminated composites. Almost all engineering load bearing applications require high

stiffness, high strength, and improved fatigue resistance.

3D woven composites, 3D knitted composites, 3D braided composites, 3D stitched

composites, and 3D Z-pin composites are the commonly seen composites. Among

these 3D composites, stitched composites have been developed for almost two decades

and Z-pin composite are a relatively new type of 3D composite. The potential of

3D Z-pinned composites is still being evaluated. A comprehensive overview of 3D

composites is provided in [56]

Z-pinning technology was developed by Aztex Inc. in 1990s. The technology

involves embedding small pins, known as Z-fibers, into composites to produce re-

inforcement to a 3D stack of lamina, as schematically shown in Figure 1.2. The
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pins are inserted with a method known as Ultrasonically Assisted Z-fiber process.

Undoubtedly, some damage might arise during the Z-pinning process. Whether the

damage due to Z-pinning would affect the performance of the structural unit is of

great concerns. Researches in [21] indicated that the Young’s modulus decreases

7% to 10% by adding 2% density of Z-pins. In other work described in [19], [18],

and [17], it is shown that the Young’s modulus has a trend to degrade with the

increase of Z-pin density and the value of Young’s modulus doesn’t change appre-

ciably when the density of Z-pins is less than 1.5%. However, the Young’s modulus

can degrade by as much as 30% when the density of Z-pins is up to 10%, [53].

In [39], pure compression and combination of compression with shear deformation

is considered. It is concluded that adding the shear dramatically decreases the

strength of the Z-pin composites. The flexural properties of Z-pin carbon/epoxy

laminates are investigated in [9]. It is pointed out that flexural strength decreases

as Z-pin density increases but flexural stiffness doesn’t change when Z-pin density

changes. Both fiber distortion and damage are found in the specimens used in the

tests. A beam model for dynamic delamination of through-the-thickness reinforced

laminates is proposed in [52], the through-the-thickness reinforcement considerably

enhances the delamination resistance for small crack velocities. At higher velocities,

the kinetic energy term dominates the overall response and the effect of the rein-

forcement on the delamination resistance is insignificant. A one dimensional model

is derived in [15] to account the bridging friction effect for through-the-thickness

composites
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1.2 Motivation for the Thesis Research

This research project is concerned with in-plane response and failure of Z-pin

plain weave textile fiber composite panels. The motivation for this research stems

from the recent increase in the use of cost efficient, injection molded textile compos-

ites in a wide range of industrial and military applications. In particular, the goal

of the light weight armor program of the US army is to develop appropriate textile

composites for the armor body. Z-pin composites have resulted in an increase in

the interlaminar fracture toughness and impact resistance, and are regarded as po-

tential structural materials for the armor body. However, a question remains as to

whether Z-pinning can be detrimental to the in-plane properties of the composites.

The primary objective of this thesis is to systematically investigate the Z-pin

effect on the in-plane stiffness and strength of woven composites in compression,

tension, and transverse loading. While mode I interlaminar fracture of Z-pin com-

posites have been studied extensively before [8], [64], and [16], the mode II inter-

laminar fracture of Z-pin laminates has only been explored by a few researchers.

Therefore, the effect of Z-pins on both the static and dynamic mode II fracture

toughness will also be investigated. This mode of failure is triggered by transverse

loading.

Several aspects of Z-pinning will be studied. For a fixed diameter, the effect of

Z-pin density on two types of laminates will be investigated. Table1.1 shows the

types of laminates, the Z-pin size, and the Z-pin densities that are studied in this

thesis, while Figure 1.3 provides an overview of the different length scales in the

laminates that are investigated. This figures shows that a laminated, woven textile

composite has many length scales, starting from the fiber/matrix scale within tows
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to the lamina scale and finally to the laminate as a collection of stacked laminae.

In order to apply composites to load bearing situations, reliable design methods

and models have to be used during the initial and final design stages. Classical

composite laminated theory treats composite structures as two-dimensional homo-

geneous and anisotropic laminates. In a laminated structure level, this is an effective

way to predict the performance before failure occurs. Failure criteria, such as the

Tsai-Wu failure criteria [29], are used to predict the onset of failure of pre-peg lam-

inates. However, traditional design methods are not suitable for textile composites

because fibers are clustered as tows and these tows undulate in the plane of the

laminate. Thus, it is not valid to assume that the lamina is homogeneous unless

the geometry is indirectly accounted for. It has been shown that many experimen-

tal results on simple coupon tests reveal that material failure mechanisms at the

microstructural level, such as tow buckling, matrix cracking and matrix inelasticity

are the initiating mechanisms of failure of textile composites [41]. Since the textile

architecture is repeating, one can identify a representative unit cell, based on the

repeating geometry to represent the composite structure. A necessity exists to de-

velop a means of measuring the strength of textile structures at the representative

unit cell (RUC) level. The first step for designing textile composites for structural

application is to identify the stiffness of the structure. Two commonly used ap-

proaches are simplified analytical method [28], [36], [37], and [24] and the finite

element method [59]. The microstructure in a textile composite can be idealized

as consisting of fiber tows and matrix. When geometry and volume fraction of the

fiber tows are identified, the effective stiffness provided by the fiber tows can be

obtained.

In the literature, most of the researchers used one unit cell and periodic boundary
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conditions to perform simulations. This is an efficient way to do simulations if the

mechanical behavior in each unit cell repeats itself. As shown in the scanning

electron micrograph (SEM) images within a fiber tow, Figure 1.4 shows numerous

similar RUC in a fiber tow. The RUC of a fiber tow is indicated in Figure 1.3.

Therefore, it is reasonable to assume that each representative unit cell behaves

similarly. However, this assumption is only valid to extract stiffness. When failure

starts to occur, periodic boundary conditions at RUC boundaries will be violated,

thus other means are needed to study failure mechanism and predict strength. It

is therefore the goal of this thesis to investigate the difference between one RUC

and multi RUC representations of the entire composite for studying stiffness and

predicting strength.

Microstructures of one layer lamina are used extensively to perform simulations.

Mosaic methods are used to homogenize the microstructure and the homogenized

parameter are used to represent the whole layer of the lamina. In mosaic method,

each lamina in woven composites is simplified as an asymmetric cross-ply laminate

[27]. Mosaic method is good for predicting stiffness but is not good for predicting

the strength and especially the post-peak behavior of the composites. Therefore, it

is the goal of this thesis to develop an appropriate numerical model to predict the

strength of a multi-layer woven, Z-pinned composite. As indicated in Figure 1.1

and Figure 1.3, when woven lamina are stacked together to create a multilayer

laminate, consolidation of the layers within the mold leads to a shift in the position

of the laminae with respect to each other. Thus, this leads to a phase shift in the

undulation of the stacked layers. Therefore, the difference of phase angle between

laminae when stacked together as laminates can also be investigated by use of multi-

layer models.
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Digital image correlation is an optical method that has received a lot of attention

because of ease in application and its ability to extract inhomogeneous deformation

which is commonly found in composites. By use of strain gages, only the defor-

mation of some points at which the strain gages are attached can be measured. In

the literature, there are many ways to process the data from the digital images.

The first method is to process the data in the spatial domain and the second is to

process the data in the frequency domain. An algorithm in the frequency domain

of digital image correlation is developed to monitor the inhomogeneous deforma-

tion during loading. Results from this work showed that Z-pins can introduce local

inhomogeneity in the deformation field. This aspect is discussed in Appendix A of

the thesis.

1.3 Outline of Thesis

In chapter 2, the results obtained from numerous compression loading experi-

ments are reported. Coupon level compressive tests based upon different Z-pin den-

sity and different Z-pin diameter were performed. Specimens used in this thesis are

categorized into 6 groups. Group A, group C, and group E have a [45/−45/0/90]2s

lay-up, with Z-pin diameters of 0.5080 mm (0.02 in.), 0.2794 mm (0.011 in.), and

no Z-pin, respectively. Group B, group D, and group F are [0]16 lay-ups with Z-pin

diameter of 0.5080 mm (0.02 in.), 0.2794 mm (0.011 in.), and no Z-pin, respectively.

It is to be noted that group A, group C, and group E are quasi-isotropic composites

while group B, group D, and group F are cross-ply composites. From group A to

group D, each group is further sub-divided into three subgroups based on the Z-pin

density (1%, 2%, or 3%). Detailed descriptions of these 6 groups are summarized

in Table 1.1. Before tests, the microstructural geometry of a RUC in a lamina is
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identified. From the geometry, the volume fraction of matrix and fiber tows can be

captured, respectively. The SEM image of fiber tows similar to the one shown in

Figure 1.4 can be observed to consist of numerous fibers and matrix. Therefore, vol-

ume fraction of matrix and fiber within fiber tow can be obtained. The information

of volume fraction of matrix and fiber is used as input to a transversely isotropic

representation of a fiber tow, as will be discussed in chapter 3. The failed specimens

were examined under a SEM to identify corresponding failure mechanisms. Based

on geometry and material properties, an analytical method is developed to predict

the stiffness of Z-pin composites. In the analytical model, the fiber tow is assumed

to undulate like a sinusoidal curve. Experimental results in chapter 2 show that

initial cracks between the Z-pin and its surrounding matrix may have an effect on

in-plane strength and stiffness.

In chapter 3, in-plane 2D models based upon Z-pin density and Z-pin diameter

are established to perform a thorough investigation of the effect of a Z-pin on re-

ducing the strength of tows. The effect of initial imperfections on the compressive

strength will be studied first. These are followed by simulations based upon differ-

ent Z-pin density and Z-pin diameter. These models successfully capture the failure

mechanisms of Z-pin composites close to the Z-pin as observed in experiments.

In chapter 4, a 2D multi-layer model is presented to study the effect of phase

difference on the response of the composites subjected to compression. This 16

layer model is proposed based on the experimental finding that the failure plane

is independent of the transverse direction. This 16 layer numerical model is based

upon a typical cross section as observed under a Nikon D2 Camera. The other ideal

16 layer numerical models with no phase difference are also studied.

A detailed study of a fully 3D, multi-layer and multi-unit cell representation of a
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3D Z-pinned composite is presented in chapter 5. Multi-RUC models consisting of

4, 9, 16, and 25 cell representations are used to simulate compression response. In

each of the cases, multi-layer representation of the composites are studied in order

to determine the smallest number of layers that are needed to adequately capture

the response observed in experiments. The results from these simulations suggest

that a 3 layer representation of the Z-pinned composite, with 16 RUC, is capable

of resolving all the important features of the compression response.

Results from mode II static and dynamic fracture experiments and associated

numerical simulations are presented in chapter 6. A discrete cohesive zone element is

used to simulate results from the experiments. A triangular cohesive law is adopted

to account for the interlaminar traction-separation relation for the no Z-pin compos-

ites and a trapezoidal cohesive law is used to simulate Z-pin composites. The higher

density of Z-pin composite greatly increases the fracture toughness compared to the

unpinned composites. It is also concluded that the strength of [45/ − 45/0/90]2s

composites and [0]16 composites are similar, provided the Z-pin density and Z-pin

diameter are fixed. Additionally, a novel crack advance gage (CAG) is introduced

in order to detect the onset of fracture when the crack starts to propagate. In the

dynamic fracture test, conductive silver paint is placed near the path of the crack

and a strain gage is used to connect the silver paint line in series with the strain gage

to a Wheatstone bridge circuit. Before the crack starts, the voltage of the crack

advance gage (CAG) is zero. Upon cracking, the silver paint line gets torn apart

suddenly and leads to an abrupt increase in the output voltage. When the line is

completely broken, the voltages reaches a maximum of 12V. This sudden change in

the output signal is used to trigger a high-speed camera at the initiation of crack

advance. By placing crack advance gages (CAG) at different locations, the speed
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of the crack can be detected. The experiments show that the crack propagation

speed scales with the Z-pin density, leading to slower speeds with increase in Z-pin

density.

Chapter 7 summarizes the major contributions of the thesis and directions for

future research.

Appendix A introduces the digital image correlation technique developed and

used in the experiments primarily to investigate the post failure behavior. This

technique is based on concepts of speckle photography. The intensity of the images

taken are transformed by use of the discrete Fourier transform. The derived algo-

rithm is then verified by use of numerical examples, including stretch, rigid body

translation, and rigid body rotation. Results from strain gages are used to capture

the predictions of the speckle method.

Appendix B includes experimental results from tensile tests. The results show a

similar trend to that obtained in compressive tests. That is, the strength of Z-pin

composites decreases as Z-pin density increases when the Z-pin diameter is fixed.

In addition, the strength of Z-pin composites decreases as Z-pin diameter decreases

for fixed Z-pin density.

1.4 Original Contribution of this Thesis

(1) A set of in-plane compression response experiments that examine the effect

of Z-pin density and Z-pin size on compression strength and stiffness is an original

contribution in this work.

(2) The development of a new model for kink band initiation and growth, which

links the axial compression strength of fiber tows in Z-pin textile composites is

novel.
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(3) The effect of stacking and the resulting phase difference among layers and

its effect on compression strength of Z-pin composites investigated through the

implementation of 2D and 3D numerical simulations is a novel contribution.

(4) The increase in static and dynamic mode II fracture toughness, as a function

of Z-pin density and Z-pin size of Z-pin composites obtained experimentally and ex-

plained through the use of a cohesive zone model (static) is an original contribution.
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Table 1.1: Details of the 6 Groups of Composites Investigated

Type Description Size Quantity
A UAZ-T6B-0.02-1% 15”by15” 1
A UAZ-T6B-0.02-2% 15”by15” 1
A UAZ-T6B-0.02-3% 15”by15” 1
B UAZ-T6B-0.02-1% 15”by15” 1
B UAZ-T6B-0.02-2% 15”by15” 1
B UAZ-T6B-0.02-3% 15”by15” 1
C UAZ-T3B-0.011-1% 15”by15” 1
C UAZ-T3B-0.011-2% 15”by15” 1
C UAZ-T3B-0.011-3% 15”by15” 1
D UAZ-T3B-0.011-1% 15”by15” 1
D UAZ-T3B-0.011-2% 15”by15” 1
D UAZ-T3B-0.011-3% 15”by15” 1
E No-Zpins 15”by15” 1
F No-Zpins 15”by15” 1

Type A:[45/− 45/0/90]2s

Type B:[0]16

Type C:[45/− 45/0/90]2s

Type D:[0]16

Type E:[45/− 45/0/90]2s

Type F:[0]16
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Figure 1.1: The Side View of a Representative Unit Cell of a Laminated Multi-layer
Woven Composite
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Figure 1.2: Schematic of the Z-pin Process (2D Side View)
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Figure 1.4: Scanning Electron Microscope (SEM) Image of a Fiber Tow Cross Sec-
tion



CHAPTER II

Compressive Response and Failure of Z-pin

Composites

In this chapter, experimental results pertaining to the compressive response

and failure of Z-pin S-Glass fiber plain weave composites are presented. These

experiments are motivated by a need to know the effect of Z-pinning on the strength

and stiffness of these composites. A series of experiments are performed based

upon density of the Z-pins and the diameter of the Z-pins. It is concluded that the

fiber distortion and the damage zone around a Z-pin may play an important role

in influencing the strength of the Z-pin composites. Before the experiments were

performed, the geometry of the composite microstructure was probed using images

from a scanning electron microscope (SEM). A representative unit cell (RUC) for

these composites is also identified. This cell consists of matrix and fiber tows. The

fiber tows are composed of fiber and matrix. The volume fraction of fiber and

matrix in a fiber tow is obtained from SEM images of the fiber tow cross section.

These data are then used for subsequent numerical simulations that are presented

in later chapters. The failed specimens are also investigated under a SEM in order

to accurately identify failure mechanisms.

18
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2.1 Introduction

Delamination resistance of layered textile composites can be improved by Z-

pinning. Evidence of such improvements are discussed in [46], [8], and [16]. While

improvement in out of plane strength is desired, a simultaneous degradation (or

improvement) in in-plane response remains to be systematically explored. In this

chapter, results for the in-plane compression response of Z-pin S2-Glass fiber plain

weave composites are presented. For a fixed Z-pin diameter, the effect of Z-pin

density is examined for two different Z-pin diameters. Two types of stacking are

examined. One is a quasi-isotropic lay-up, while the other is a cross-ply lay-up,

from the terminology for laminated straight fiber reinforced composites. The failure

mechanism in all cases is found to be kink banding within the axial tows, which

can be found in all of the failed specimens. Initially, the composites shows a linear

load-load point displacement response (P-∆). The linear region is culminated at a

maximum load that is associated with the loss of load carrying capacity of the axial

fiber tows. When the specimens fail, the failure region appears as a localized band

that runs across the specimens.

2.2 Details of Z-pin Composite Materials

Plain weave S2 Glass fabrics are sized, Z-pinned and infused with epoxy resin to

make two types of laminated textile composites (see Figure 1.2 and Figure 1.3 for

an overview). The glass fiber tows contain 9k fibers with a nominal fiber volume

fraction of 52%. Measurements indicate a mean major tow diameter of (a)4.4 mm

and a mean minor tow diameter of (b) 0.4 mm in the cured state. That is, the

fiber tows are very close to being elliptical in shape. The standard deviation in

(a) is 0.214 mm and in (b) is 0.0135 mm (based on 40 SEM images). The Z-pins
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are two types. The larger diameter Z-pin is a T650 carbon fiber in a BMI matrix,

while the smaller diameter Z-pin is a T300 carbon fiber in a BMI matrix . The

height of the stacked 16 layer laminates is from 11 mm to 13 mm thick. Specimens

are categorized into 6 groups. Group A, group C, and group E are [45/-45/0/90]2s

lay-ups, with Z-pin diameters of 0.5080 mm (0.02 in.), 0.2794 mm (0.011 in.), and

no Z-pin, respectively. Group B, group D, and group F are [0]16 lay-ups with Z-pin

diameter of 0.5080 mm (0.02 in.), 0.2794 mm (0.011 in.), and no Z-pin, respectively.

It is to be noted that group A, group C, and group E are quasi-isotropic composites

while group B, group D, and group F are cross-ply composites. From group A to

group D, each group is further sub-divided into three subgroups based on the Z-pin

density (1%, 2%, or 3%). Detailed descriptions of these 6 groups were given in Table

1.1.

2.2.1 Compressive Loading Apparatus

Compressive tests were performed on a servo-hydraulic MTS machine. An

image of the experimental setup is shown in Figure 2.1. The specimen support

fixture is shown in Figure 2.2. In order to obtain the compressive strength of

the material, the specimen is prevented from global buckling by using anti-buckling

guides (knife edge supports that allow in-plane sliding and out-of-plane rotation, but

constraints out-of-plane deflection) as indicated in a top-view image of the support

fixture. The front view and back view of a typical specimen is as shown in Figure

2.3 and Figure 2.4. The width of the specimen is 63.5 mm (2.5 in.) and the height

of the specimen is 50.8 mm (2 in.). The thickness of the specimens ranges from 11.0

mm (0.436 in.) to 13.0 mm (0.512 in.). For each experiment, two strain gages were

attached to the specimen (back to back) aligned with the loading direction and one
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in the transverse direction on one side. The purpose of using two strain gages in

the loading direction is to monitor any unwanted bending that may occur during

the compression loading. In addition to these deformation diagnostics, one surface

of the specimen was illuminated with a He-Ne laser red light with wavelength 632.9

nm that generated a speckle image. The speckle images were collected through a

Nikon D2X digital camera for later analysis using a speckle photography method.

Speckle maps were used to calculate incremental strain fields as a function of load

and they were also used (averaging over a suitable area) to compare against the

strain gage results.

2.2.2 Experimental Procedure

In a compressive test, the specimen is placed within the grip as shown in

Figure 2.2. A small pre-load 1336 N (300 lbf.) is imposed on the specimen and all

strain gages are zeroed at this state. A high resolution digital camera is positioned

to capture speckle images from a pre-defined area on the specimen at a rate of

one frame per four seconds. The strain gage readings and the load cell readings are

acquired at 4Hz, while the axial cross-head movement rate imposed on the specimen

is 0.010 mm/sec.

2.2.3 Compressive Stiffness

Figure 2.5 shows a typical load-strain curve obtained from a compression

test. Here, the horizontal axis corresponds to average axial strain (the average of

the back to back strain gages). Notice that the response is fairly linear up to the

maximum load point (‘B’ in Figure 2.5), after which the load suddenly drops due

to the “band of cells” that fail leading to a localization of the deformation. Here,

note that at A, the response deviates from being strictly linear. This aspect will be
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discussed in the context of numerical results to be presented later.

Figure 2.6 shows a comparison of the slope of the axial stress (defined as load

divided by nominal cross-sectional area) - axial strain (averaged between the two

back to back axial strain gages) curves, between group A and group E. This measure

corresponds to the axial Young’s modulus of the specimen. Figure 2.7 shows a

comparison of the Young’s moduli between group B and group F. The horizontal axis

represents density of the Z-pins and the vertical axis represents the corresponding

Young’s modulus. Figure 2.8 and Figure 2.9 show the comparison of group C and

group D with the corresponding no Z-pin composites group. For group A and C,

the Young’s modulus decreases as the density of the Z-pins increases. However,

the decrease of the Young’s modulus is not significant. This is consistent with the

conclusion in [21] that the Young’s modulus decreases 7% to 10% by adding 2%

density of Z-pins. In other work described in [19], [18], and [17], it is shown that

the Young’s modulus has a trend to degrade with the increase of Z-pin density

and the value of Young’s modulus doesn’t change appreciably when the density

of Z-pins is less than 1.5%. However, the Young’s modulus can degrade by as

much as 30% when the density of Z-pins is up to 10% [53]. Comparing Figure

2.6 with Figure 2.8 for the subgroup of the same density of Z-pins, say 1%, we

can observe that the Young’s modulus in group A is slightly higher than that in

group C. This can be understood as follows: After insertion of the Z-pins, the

Z-pins in subgroup C have a larger contacting area with the surrounding glass

fiber tows in the composite than the corresponding contacting area in subgroup

A. A larger contacting area leads to a larger probability of the presence of initial

interfacial cracks as well as a larger probability of unintended tow undulations, thus

inducing stress and strain concentration and resulting lowering of the axial stiffness.
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Furthermore, the undulations lead to lowering of the compression strength caused by

fiber tow kinking. A further explanation is as follows: for composites with the same

Z-pin density, each Z-pin of diameter 0.508 mm (0.02 in.) inserted in the composites

can be“replaced” by four Z-pins of diameter 0.254 mm (0.01 in.) Z-pins as shown

in Figure 2.10. Suppose that the height of the composite is h. Then, the contacting

area in the through-the thickness direction around one Z-pin of diameter d=0.508

mm (0.02 in.) is 0.508 πd. The contacting area around the four d=0.2540 mm

(0.01 in.) in Z-pins is 0.2540πd×4=1.016πd. This shows that the smaller diameter

Z-pin has a larger “contacting area” than a Z-pin with d=0.5080 mm (0.02 in.)

provided that the density of the Z-pins is the same. Under this circumstance, it is

likely that, in the composites of d=0.254 mm (0.01 in.), more damage is probable

during the insertion of the Z-pins. Figure 2.11 shows scanning electron microscope

(SEM) images of a d=0.508 mm (0.02 in.) Z-pin composite and a d=0.2794 mm

(0.011 in.) Z-pin composite, respectively. Both of these images were taken from as

manufactured plaques prior to conducting compression experiments. The monitored

image plane (xy) is cut at the center of the thickness as shown in Figure 2.11. These

images show that Z-pin insertion and subsequent cure leads to interfacial damage

and an interfacial crack can be seen at the circumferential boundary of the Z-pin,

although such damage is not observed at every Z-pin location. Therefore, in a given

area, as the number of Z-pins increases, the resulting “initial damage” is also larger.

This can explain why a 3% Z-pin composite has slightly lower Young’s modulus

than the 1% or 2% Z-pin composite.

Similar trends for the variation of the Young’s modulus in group B and group

D are found (similar to group A and group C except that, initially, the Young’s

modulus of the 1% composites is slightly larger than the composites without Z-
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pins). The Young’s modulus in subgroup 2% and 3% degrades slightly for both

group B and group D. Comparing Figure 2.7 corresponding to group B with Figure

2.9 corresponding to group D for the same density of Z-pins, we can observe that

the Young’s modulus in subgroup B is slightly higher than that in group D. This is

true for the 1%, 2%, and 3% Z-pin composites. It is to be noted that the Young’s

modulus for group B and group D is higher than that corresponding to group A and

group C. This is because group A and group C, belonging to the [45/− 45/0/90]2s,

have a smaller percentage of “0 degree tows” in comparison to group B and D which

have a [0]16 lay-up.

2.2.4 Compressive Strength

Figure 2.12 shows the comparison of the compressive strength between group

A and group E. The horizontal axis represents the density of the Z-pins and vertical

axis represents the compressive strength. Figure 2.13 shows the comparison of

the compressive strength between group B and group F. Figure 2.14 shows the

comparison of the compressive strength between group C and group E. Finally,

Figure 2.15 shows the comparison of the compressive strength between group D

and group F. From Figure 2.12 to Figure 2.15, it is observed that the compressive

strength for group A to group D decreases as the density of Z-pins increase. For

the [45/ − 45/0/90]2s composites of group A and group C, the subgroups of the

composites with the same Z-pin density are compared. It is found that the strength

of the subgroup in group A is higher than that of the subgroup in group C. The

same trend is also observed for the comparison of group B and group D, which shows

that subgroups in group B are higher in compression strength than those in group

D. The reason which the strength in group A is lager than that in group C and that
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the strength in group B is higher than that in group D is as follows: The Z-pins

in subgroups C and D have more contacting area with the glass fiber tows than

that in subgroups A and B. Therefore, these subgroups contain a larger population

of initial “defects” leading to a lowering of the compression strength. Exactly how

defects contribute to the observed lowering of strength is explained next.

2.2.5 Compression Failure Mechanisms

Figure 2.16 and Figure 2.17 show an image of the failure pattern that is

typical for most of the Z-pin composites under compression. It is noticed that all

failed specimens exhibit the same pattern. That is, an out of plane macroscopic kink

band can be found in the axial load bearing tows. Further examination under SEM

shows that individual fiber tow kinks due to unintended initial fiber misalignment

caused by Z-pin insertion. Figure 2.19 shows the kink band passing through the area

around Z-pins. In these images, the direction of loading is indicated with “arrows”.

These sites are location of stress (strain) concentration. It is also observed, in Figure

2.20, that a kink band formed between the two Z-pins within one specimen of group

C1. In this figure, notice that one of the kink bands has been initiated from a

Z-pin/fiber tow boundary. Figure 2.21 shows existence of kind bands and cracks

around the Z-pins of the specimen in group A2 and group A3, respectively. These

failure mechanisms are repeatedly found in all of the specimens.

The typical failure pattern for composites without Z-pins is shown in Figure

2.18. As shown before with the Z-pin composites, an out of plane macroscopic kink

band can also be found. This finding presents an important clue to the observed

experimental trends. While it is true that insertion of Z-pin introduces unintended

defects into the composites, all specimens (including the ones that have no Z-pins)
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show kink banding in the axial tows, signalling that the compressive strength of

these composites is controlled by the compression failure mechanics of the axial

tows. The initial defects around the Z-pins are sites where the kink band initiates.

If we examine the side view of a failed specimens in Figure 2.18, slight lateral

expansion is noticed as opposed to the side view in Figure 2.16. This is because

the Z-pins provide constraint in the through the thickness direction. Previous work

has found that this through the thickness constraint is responsible for an increase

in the interlaminar fracture toughness. Table 2.3 and Table 2.4 provides the kink

band angle observed for the specimens of quasi-isotropic composites and cross-ply

composites under compression. As can be seen from the two tables, most of the

angles of kink band range from 30 degree to 45 degree.

2.3. Speckle photography Analysis

2.3.1 Comparison of Strain Gages and Speckle Method

A newly developed speckle method that is outlined in details in Appendix A

was used to extract strain fields within the imaged surface are of the specimens dur-

ing compression loading. Further details of the speckle method are given appendix

A or in [25]. Figure 2.22 shows a comparison of the stress-strain response deduced

from strain gage measurements and speckle photography for specimen C1-3 (the

third experiment performed in the subgroup C1). The horizontal axis represents

the strain and the vertical axis represents the stress. Two approaches are adopted

to obtain the average strain, which are line average method and the area average

method, respectively. Line average method first gets relative displacement between

the two lines AA and BB shown in Figure 2.23. The relative strain is thus obtained

from dividing the relative displacement by the distance between AA and BB. The
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area average method computes the strain within each sub-element. The average

strain of the monitored area is the average strain obtained from the different sub-

elements within the area. It is observed that the curves obtained from both methods

match quite well with curve obtained from the strain gage. However, the speckle

method can further resolve the strain within the monitored area.

2.3.2 Analysis near the Z-pins

Figure 2.25 and Figure 2.26 show the speckle patterns of the 2% Z-pin

composites and 3% Z-pin composites in group B, respectively, near Z-pin locations.

For the two tests, four speckle images corresponding to similar load are chosen, thus

three incremental strain fields are obtained.

Figure 2.27, Figure 2.29, and Figure 2.31 show the surface strain of 2 %

composites at three different load stages. Figure 2.28, Figure 2.30, and Figure 2.32

show the surface strain of 3 % composites at three different load stage. The surface

strain field is more uniform in the 2% composites than the 3% composites if we

compare Figure 2.27 and Figure 2.28. This phenomenon can also be observed if

we compare Figure 2.29 and Figure 2.30 as well as Figure 2.31 and Figure 2.32.

The higher density of Z-pins have influence in causing a non-uniform surface strain

field of the composites than the lower density one. A better illustration of this non-

uniform field is shown in Figure 2.25 where a quiver plot of the displacement field is

shown. Clearly, the deformation field is influenced by the presence of the Z-pins as

indicated here. This shows that the Z-pins act as sites where strain non-uniformity

(at the Z-pin diameter scale) is introduced, whereas when one uses a strain gage, it

is the average strain over some representative area that is needed.
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2.4 A Simplified Analytical Model for Z-pin Composites

Prior to undertaking a numerical model development of the Z-pin composites,

a simplified analytical model was developed to quickly extract the stiffness of the

composites. The Z-pin composites are assumed to consist of Z-pin, matrix, and

undulating fiber tows as shown in Figure 2.33. 40 similar images are used to evaluate

the volume fraction of each constituent and the geometry of the fiber tows (assumed

as elliptical cross-section sinusoidally undulating solids). A typical image is shown

in Figure 2.34. It is noted that fiber tows are composed of fibers and matrix.

Consequently, the volume fractions of the fibers and matrix in a fiber tow are

estimated by use of these images.

2.4.1 Computation of Stiffness for Fiber Tows

Locally, fiber tows and Z-pin fibers are regarded as transversely isotropic

materials. The stiffness for a transversely isotropic material with respect to material

coordinate axe x-y can be written as




σ11

σ22

σ33

σ23

σ13

σ12




=




Q11 Q12 Q12 0 0 0

Q12 Q22 Q23 0 0 0

Q12 Q23 Q22 0 0 0

0 0 0 1
2
(Q22 −Q23) 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q55
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ε22

ε33

ε23

ε13

ε12




(2.1)

The stress-strain curve for an isotropic matrix with respect to material coor-

dinate x-y can be expressed in terms of Young’s modulus Ematrix and its poission’s

ratio νmatrix. It is to be noted that, in the global lamina coordinate, the stiffness of
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the fiber tow is not the same if moving along the fiber tow as shown in Figure 2.35.

Transforming the local stiffness from the local coordinate x’-y’ to the global lamina

coordinate x-y is necessary. The detailed derivation is presented in [44].

After we obtain stiffness for fiber tows, we are ready to establish the stiffness

for the whole laminate. The stiffness of the laminate is expressed in terms of a 6×6

matrix. The fiber direction of the Z-pins is along the global Z direction. Transfor-

mation matrices are used to convert the local stiffness of Z-pin fibers to the global

direction. It is to be noted that the stiffness of fiber tows, Z-pins, and matrix are all

expressed as three dimensional entities, ie 6×6 matrix. Therefore, the contribution

of the stiffness of each constituent after converting to global coordinate can be put

into one 6×6 matrix. For quasi-isotropic composites [45/ − 45/0/90]2s, transfor-

mation matrices are also imposed to transform the local stiffness of the lamina to

the corresponding global laminate coordinate. Finally, the stiffness of the laminate,

provided that the volume fraction for matrix, Z-pins, and fiber tows are known, is

obtained as,

[
QLamite

]
=

[
Qfibertows

]
Vfibertows +

[
QZ−pins

]
VZ−pins +

[
Qmatrix

]
Vmatrix

(2.2)

where Vfibertows, VZ−pins, and Vmatrix represents the volume fraction of fiber tows,

Z-pins, and matrix, respectively within a representative unit of the composites.

Furthermore, Vfibertows + VZ−pins + Vmatrix=1.

The details of the calculation are as follows: For the non z-pin woven laminates,

it is assumed that the undulation z(x) in the through-the-thickness direction of the

fiber tows undulating along x axis (loading direction) and along y axis are given by

z(x) = a sin(
2πx + φ

λ
) (2.3)
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z(y) = a sin(
2πy + φ

λ
) (2.4)

where λ = 0.5cm, a=3.6 cm, and φ is equal to 0 and π for two fiber tows undu-

lating either in x-axis or y-axis. The tows are transversely isotropic S-2 glass/epoxy

with a fiber volume fraction of 52%. The expression of the stiffness matrix for a

fiber tows is the following:

QFibertow =




65 2.75 2.75 0 0 0

2.75 8.8 2.5 0 0 0

2.75 2.5 8.8 0 0 0

0 0 0 3.15 0 0

0 0 0 0 4 0

0 0 0 0 0 4




109Pa

(2.5)

Within a unit cell of the woven RVE, the volume fraction of the fiber tow is

Vfibertows = 56%. The Z-pins are transversely isotropic materials composed of the

carbon fiber and BMI matrix. The stiffness of the Z-pin is the following

QZ−pin =




51.7 2.07 2.07 0 0 0

2.07 6.6 2.6 0 0 0

2.07 2.6 6.6 0 0 0

0 0 0 2.46 0 0

0 0 0 0 2.26 0

0 0 0 0 0 2.26




109Pa

(2.6)
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The stiffness of the matrix is expressed as follows

Qmatrix =




37.2 2.29 2.29 0 0 0

22.9 37.2 22.9 0 0 0

22.9 22.9 37.2 0 0 0

0 0 0 7.15 0 0

0 0 0 0 7.15 0

0 0 0 0 0 7.15




108Pa

(2.7)

If the Z-pin density is %1 (ie VZ−pins = 1%), the volume fraction of the matrix is

computed by use Vmatrix = 1 − Vfibertows − 1% = 43%. These numbers are used to

calculated the stiffness summarized in Table 2.1

2.4.2 Comparison of Predicted Stiffness against Experiments

Table 2.1 shows the comparison of the Young’s Modulus between experiments

and analysis for the non-Z-pin [0]16 composites. It is seen that the Young’s modulus

obtained from the analytical model is close to that obtained from experiments.

However, for Z-pin composites the predictions are lower. This is because part of

the volume of the fiber tows is replaced by the through-the-thickness Z-pins. These

replaced Z-pins provide additional stiffness in the through-the-thickness direction

but they don’t contribute much to the in-plane stiffness. This trend is also observed

from the experiments. However, as opposed to the slight decrease of the Young’s

modulus predicted from analysis as the density of the Z-pins increases, the Young’s

modulus obtained from the experiments show a larger decrease with increase in

Z-pin density. It is believed that the initial damage induced during the insertion of
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the Z-pins causes this additional decrease which is unaccounted for in the analytical

model at present.

A comparison of experimental results against analysis for Quasi-isotropic

composites [45/−45/0/90]2s is shown Table 2.2. For the composites with no Z-pins,

the analysis provides a reasonable prediction. The analytical results show that the

Young’s modulus exhibits a decreasing trend with increasing Z-pin density. Overall,

the analytical method provides a quick tool for predicting the Young’s modulus of

composites with no Z-pins but further refinement is necessary for providing good

results for composites with Z-pins.

2.4.3 Conclusion

Important aspects of the compression response have been identified in section

2.3.1. The influence of Z-pin diameter, Z-pin density, and lay-up were all examined.

Initial defects between the Z-pin and the surrounding area and unintended fiber

waviness caused by Z-pin insertion have been identified as causes responsible for

lowering the compression strength which is limited by fiber tow kinking, leading

to macroscopic kink banding. When the Z-pin diameter is set to be the same,

the higher density Z-pin composites have lower strength than the lower density Z-

pin composite. When the density is set to be the same, the small diameter Z-pin

composites have lower strength than the larger diameter Z-pin composites. Since

all the composite specimens exhibited a similar macroscopic failure mechanism, the

kink band angle (defined as θ in Figure 2.18 )

A simplified analytical method proves to be reliable in predicting the initial

stiffness of the no Z-pin composite. The experimental finding are further examined

by developing models for the compression strength of a fiber tow (chapter 3), and
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the compression strength of the entire composite (chapter 4 and chapter 5).
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Table 2.1: Comparison of the Young’s Modulus between Experiments and Analysis
for Group A, Group C, and Group E

Group Young’s Modulus(GPa) Young’s Modulus(GPa)
(Experiment) (Analysis)

A1-1 15.27
A1-2 15.78 18.19
A1-3 14.35
A2-1 16.38
A2-2 13.67 18.06
A2-3 14.65
A3-1 13.78
A3-2 13.89 17.93
A3-3 13.02
C1-1 13.57
C1-2 13.46 18.19
C1-3 12.11
C2-1 11.73
C2-2 12.72 18.06
C2-3 11.14
C3-1 12.82
C3-2 13.22 17.93
C3-3 10.53
E-1 17.02
E-2 17.85 18.32
E-3 16.5
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Table 2.2: Comparison of the Young’s Modulus between Experiments and Analysis
for Group B, Group D, and Group F

Group Young’s Modulus(GPa) Young’s Modulus(GPa)
(Experiment) (Analysis)

B1-1 22.24
B1-2 28.15 21.70
B1-3 24.10
B2-1 28.45
B2-2 27.5 21.53
B2-3 26.53
B3-1 22.51
B3-2 25.75 21.37
B3-3 22.89
D1-1 27.14
D1-2 25.66 21.70
D1-3 25.51
D2-1 23.19
D2-2 24.23 21.53
D2-3 22.00
D3-1 19.98
D3-2 21.82 21.37
D3-3 19.51
F-1 19.05
F-2 21.2 21.86
F-3 22.37
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Table 2.3: Comparison of Kink Band Angle for Group A, Group C, and Group E

Group Kink Band Angle(degree)
A1-1 39.61
A1-2 29.57
A1-3 *
A2-1 37.05
A2-2 *
A2-3 *
A3-1 35.08
A3-2 35.25
A3-3 *
C1-1 35.72
C1-2 42.65
C1-3 *
C2-1 43.56
C2-2 29.80
C2-3 *
C3-1 44.15
C3-2 *
C3-3 *
E-1 29.49
E-2 *
E-3 *

The specimen with “*” indicates that the specimen has been investigate under
SEM before the angle of kink band is computed.
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Table 2.4: Comparison of Kink Band Angle for Group B Group D, and Group F

Group Kink Band Angle(degree)
B1-1 44.53
B1-2 36.29
B1-3 *
B2-1 44.26
B2-2 31.86
B2-3 *
B3-1 43.61
B3-2 44.75
B3-3 *
D1-1 31.22
D1-2 23.92
D1-3 36.48
D2-1 37.22
D2-2 26.04
D2-3 *
D3-1 35.38
D3-2 *
D3-3 *
F-1 43.74
F-2 34.26
F-3 42.49

The specimen with “*” indicates that the specimen has been investigate under
SEM before the angle of kink band is computed.
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Figure 2.2: Fixture Used in the Compressive Tests
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Figure 2.6: Comparison of Young’s Modulus in Group A
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Figure 2.7: Comparison of Young’s Modulus in group B
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Figure 2.8: Comparison of Young’s Modulus in Group C
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Figure 2.9: Comparison of Young’s Modulus in Group D
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Figure 2.10: Illustration of d=0.5080 mm (0.02 in.) Z-pin and d=0.2794 mm (0.011
in.) Z-pins
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Figure 2.11: (a) SEM Image of d=0.5080 mm (0.02 in.) Z-pin (b)SEM Image of
d=0.2794 mm (0.011 in.) Z-pin
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Figure 2.12: Comparison of the Strength in Group A
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Figure 2.13: Comparison of the Strength in Group B
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Figure 2.14: Comparison of the Strength in Group C
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Figure 2.15: Comparison of the Strength in Group D
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Figure 2.16: Macroscopic Compression Failure Mechanism for Group A and B
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Figure 2.17: Macroscopic Compression Failure Mechanism for Group C and D
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Figure 2.18: Macroscopic Compression Failure Mechanism for Group E
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Figure 2.20: Kink Band in Fiber Tow at the Fiber/Matrix Scale in Group C1
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Figure 2.21: (a) Crack near the Z-pin of Specimen in Group A2 (b) Crack near the
Z-pin of Specimen in Group A3
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Figure 2.22: Comparison of the Young’s Modulus
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Figure 2.23: Illustration of Line Average
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3mm 

Figure 2.25: Speckle Pattern in 2% Z-pin Composites
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2.5 mm 

Figure 2.26: Speckle Pattern in 3% Z-pin Composites
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Figure 2.27: εyy when Load=1824.58N
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Figure 2.28: εyy when Load=1576.17N
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Figure 2.29: εyy when Load=3897.60N
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Figure 2.30: εyy when Load=3400.75N
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Figure 2.31: εyy when Load=5988.04N
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Figure 2.32: εyy when Load=5105.36N
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Figure 2.33: SEM Image of the Composites
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Figure 2.34: SEM Image of Fiber Tow
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Figure 2.35: The Movement of the Monitored Window in this Algorithm



CHAPTER III

Compression Strength Limiting Mechanism in

Woven Fiber Z-pinned Composites

In chapter 2, it was shown that, during the Z-pinning process, fiber distortion

exists within the fiber tows and damage occurs at the boundary of the Z-pin and fiber

tow. However, whether distortion of original straight fiber or damage between Z-pin

and its surrounding matrix affecting the performance of Z-pin composites remains

unclear. Therefore, it is the goal of this chapter to establish a finite element based

model to capture the failure mechanism of an axial fiber tow when it is subjected

to compression load. A 2D model is adopted for ease of computation and to clearly

distinguish the parameters that influence compression strength. The 2D model

shows that stress concentration starts from where distortion in the fiber tow has

the maximum curvature. This region of stress concentration acts as the seed to

initiate kink banding as seen in the post-experiment SEM images in chapter 2.

Simulations with different Z-pin density and Z-pin diameter are also investigated.

Damage at the Z-pin boundary induced from Z-pinning is regarded as imperfect

bonding between Z-pin and surrounding matrix. An extreme case assuming no

bonding between Z- pin and matrix is proposed to compare against the case of

perfect bonding. Multiple Z-pin models are compared against a single Z-pin model

68
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to estimate the Z-pin interaction effect.

3.1. Introduction

Delamination is a common failure mode frequently encountered in traditional

2D composite structures. It has been shown that inserting Z-pins can increase the

interlaminar fracture toughness and thus prevent delamination. However, many

experiments, [19], [18], and [54] show that increasing the Z-pin density can decrease

the in-plane properties. The finite element model in [21] shows that adding 2% of

Z-pins decreases the in plain modulus by 7% to 10%. In [39], pure compression and

combination of compression with shear deformation are studied. It concludes that

adding the shear dramatically decreases the strength of the Z-pin composites. It

is also pointed out that 4%, Z-pin composites have less strength than the 2% one.

This observation is consistent with what is found in the chapter 2 and [54].

Two imperfections are induced during the Z-pinning process. The first one is dis-

tortion of the fiber tows caused by Z-pinning. The second one is imperfect bonding

between Z-pin and its surrounding matrix shown in Figure 2.11. Here, the imperfect

bonding is referred to as damage. These two imperfections are two concerns that can

affect the performance of the entire structure. Previous studies have identified kink

banding as a commonly observed mode of failure under compression of continuous

fiber reinforced composites. A method is proposed in [7] to identify the initiation of

the kink band. In [4], the concept proposed in [7] and Schapery’s theory are used

to identify the failure load under multi-axial loading. The methods proposed in [7]

and [4] assume that there is misaligned fiber locally in a unidirectional composite in

which most of the fibers are assumed aligned in the same direction. In the literature

on textile composites, very few studies have addressed the effect of Z-pins in wo-
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ven composites under compression. In this chapter, an orthotropic plastic potential

for the fiber tow is derived from numerical analysis of the stress-strain curves of

a representative unit cell of an axial fiber tow. This plastic potential for the fiber

tow together with the plastic potential of the matrix is subsequently implemented

in the finite element package ABAQUS. The matrix is modeled as a J2 isotropic

hardening elastic-plastic solid. During the nonlinear compression response analysis,

the arc-length method (RIKS method) in ABAQUS is used to ensure that the post

failure path could be captured, including unstable equilibrium branches that occur

in the post-peak regime.

3.2 Inputs to the Finite Element Models

3.2.1 In-Situ Matrix

An overview of the Z-pin composites was presented earlier in chapter 1 (see Fig-

ure 1.3). It was recognized that the layered composites consist of certain repeating

units (RUCs). It is known that a single fiber is linear elastic while the matrix ma-

terial used (SC-15) can be modeled as an isotropic elastic-plastic solid. However,

previous studies have shown that the matrix material within the composites can dis-

play behavior that is different than the virgin resin material due to residual stresses,

non-uniform curing due to fiber tows and due to non-uniform temperature field dur-

ing the process of manufacturing. Thus, in this work, we will derive a method to

extract the in-situ stress-strain properties as outlined below. The approach used is

similar to that described in [2].

In [32], a similar approach is also adopted to characterize the in-situ matrix

property. The obtained in-situ matrix effective stress-effective strain curve is sub-

sequently used as the first trial response curve of the matrix for the numerical
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simulation of the [45/-45] single layer representation of the composites. The numer-

ical model is shown in Figure 3.1, which consists of a 3×3 collection of RUCs of a

single woven lamina. A single RUC of the lamina consists of fiber tows and matrix

as shown in Figure 3.2 and Figure 3.4 . The fiber tows contain fibers and matrix, as

was shown in Figure 1.3. The starting point in obtaining the in-situ matrix curve

is the assumption that the in-situ matrix is an elastic-plastic solid obeying the J-

2-isotropic hardening plastic theory with an associated flow rule. Then following

the method discussed in [2], a compression test of a [45/-45]8s rectangular specimen

was conducted with axial and transverse strain gages located as indicated in Fig-

ure 3.3. By analyzing the strain gage readings and assuming (as a first trial) that

the specimen is a straight fiber [45/-45]8s compression specimen, a plot of σy/2 (σy

is load divided by cross section area) vs (εy- εx)/2 provides a first estimate of the

composite shear response. Next, by knowing that the fiber is elastic, the curve then

provides the shear response of the in-situ matrix through the approximate formula

that relates the composite shear modulus to the matrix shear modulus as shown in

equation (3.1)

Gm = G12(
1 + η2νf

1− η2νf

)−1

η2 = (
G12f −Gm

G12f + Gm

)−1 (3.1)

where G12 is the shear modulus obtained from experiments, G12f is the shear

modulus of the fiber, νf is the volume fraction of the fiber in a unit cell, and Gm is

the shear modulus for in-situ matrix. This response curve is still approximate since

it was obtained analytically and by assuming that the tows are straight. Next, we

use this first trial curve as the input to a finite element simulation of a [45/-45]
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textile lamina under compression. The FE model is shown in Figure 3.1. It consists

of transversely isotropic elastic-plastic fiber tows and elastic-plastic matrix. In both

these entities, the unknown that is sought is the elastic-plastic response of the in-situ

matrix that will provide a match between the experiment and the simulation. Thus,

prior to performing the simulation of the [45/-45] composites, it is first necessary

to obtain the elastic-plastic response of the tows.

3.2.2 Elastic-Plastic Response of the Tows

The experimental result from the [45/-45]8s composite provides the first “trial”

of the assumed elastic-plastic response curve of the in-situ matrix. It was shown

earlier that the fiber tow consists of matrix and fiber as shown in Figure 1.4. There-

fore, the matrix will influence the constitutive model of the fiber tow. From several

SEM images, it was found that in a fiber tow, the average fiber volume fraction

is Vf= 52% (Vm= 48%). Using this information, a hexagonal RUC of the fiber

tow was meshed as shown in Figure 3.7. It is pointed out in [26], that a hexagonal

representative unit cell is the correct representative unit cell to produce transverse

isotropy. In the following, the finite element analysis is performed to obtain the

orthotropic plastic potential for the fiber tow. The matrix is assumed to be repre-

sented as an elastic-plastic solid obeying J2 flow theory of plasticity with an isotropic

hardening law.

For the fiber tow, a simplified orthotropic plastic potential proposed in [13] is

used

f =
1

2
[(σ22 − σ33)

2 + 2a44σ
2
23 + 2a55σ

2
21 + 2a66σ

2
31] (3.2)

As shown in Figure 3.7, the direction 1 is the longitudinal direction of the fiber tow.

Direction 2 and direction 3 are the transverse directions of the fiber tow. Note that
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equation (3.2) assumes that there is no plastic deformation in the longitudinal fiber

tow. This is because the ‘1’ direction response is dominated by the fibers which

remain elastic up to failure In equation (3.2), only three parameters a44, a55, and

a66 need to be identified.

The constants in the yield potential in equation (3.2) can be obtained from

performing a transverse compressive simulation in direction 2 (or direction 3). From

these simulations, the yield stress σ22 or σ33 can be identified. The plastic potential

corresponding to yielding for a transverse compression in the ‘2’ direction can be

obtained by identifying the yield stress

fyield =
1

2
(σ22)

2 (3.3)

Subsequently, a shear simulation in the 1-2 plane is performed. From the stress-

strain curve, the yield stress σ21 can be identified. Then, the coefficient a55 can be

obtained by use of the fact that the equation (3.3) and equation (3.4) should be

equivalent.

fyield = a55σ
2
21 (3.4)

Due to symmetry of the representative unit cell, parameter a66 is equal to a55.

Similar to the transverse compression simulation, parameter a44 can be extracted

by performing a shear test in the 2-3 plane.

After the coefficients a44, a55, and a66 are obtained, the plastic potential for

the fiber tow is subsequently implemented in ABAQUS for futher simulation. The

implementation in ABAQUS is through the use of the options of *PLASTIC and

*POTENTIAL. The RIKS option is an arc-length method used in the non-linear

finite element analysis to ensure that the post failure path can be captured, including

unstable equilibrium paths as will be discussed later.
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3.2.3 Obtaining the In-Situ Matrix Stress-Strain Curve

Using the fiber tow plastic potential, a full simulation of the [45/-45] composite

test was performed using the commercial package ABAQUS. The FE mesh used

(only the twos are shown for clarity) is shown in Figure 3.1. As in the experiments,

compressive displacement control load was used to obtain the stress-strain response,

the applied stress was defined as the reaction load in the ‘1’ direction divided by

the cross-sectional area. The average strain was defined as the overall shortening

in the direction of load divided by the length in the ‘1’ direction. This provides the

“first trial” of the composite axial stress-strain response. This is then compared

against the experimental results. Then, by “trial and error”, the matrix stress-

strain response is changed so that a near perfect match between the experiment

and the simulation for the entire composite is obtained. The final trial obtained

axial stress-axial strain response for the in-situ matrix is shown in Figure 3.5

3.3 2D Finite Element Model for Tow Kinking

3.3.1 2D Finite Element Model in 1-3 Plane

A 2D model of a Z-pin composite based on Figure 3.9 consisting of fiber tows,

a Z-pin and the matrix surrounding it is shown in Figure 3.10. Direction X is the

longitudinal direction where the compression is imposed, direction Z is the through-

the-thickness direction, and direction Y is the transverse direction. It can be seen

that the Z-pin is surrounded by the matrix and fiber tows. The matrix is simulated

as an isotropic material for which the stress-strain curve is taken as the in-situ

curve obtained in the previous section. The fiber tow is simulated as an orthotropic

composite material whose material properties are obtained from imposing plane

strain condition on the 3D elastic-plastic constitutive law. Therefore, parameters,
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E11 , E33, ν13, and G13, are used to represent elastic properties of the orthotropic

fiber tow as shown in equation (3.5).




ε11

ε33

γ13




=




1
E1

−υ13

E1
0

−υ13

E1

1
E3

0

0 0 1
G13




(3.5)

The 2D plastic potential is obtained from simplifying equation (3.2) by retaining

terms that are independent of direction 2. That is,

f =
1

2
[(σ33)

2 + 2a66σ
2
31] (3.6)

Although a Z-pin is transversely isotropic, the longitudinal direction of Z-pin is

parallel to the through-thickness direction of the composite. Therefore, the Z-pin

is isotropic in the loading plane, and was assumed so.

In this 2D model, the Z-pins are assumed to be inserted and distributed uni-

formly within the composite. The size of the representative unit cell shown in

Figure 3.10 can thus be determined provided that the density of the Z-pins is as-

signed. The dimensions of the model are based upon the SEM images shown in

Figure 3.9. This 2D model is also similar to the model used in [21]. The size of the

representative unit cell is L= 4.5mm for a Z-pin diameter of 0.508 mm (0.02 in) and

1% Z-pin density. For the same diameter and 1% , L= 3.18mm. For a diameter of

2.80 mm (0.011 in), L is 2.25mm for 1% density.

With reference to Figure 3.10, the boundary AB is fixed along global X direction.

The center point K of boundary AB is fixed along global Y direction. Boundary CD

is used to impose uniform displacement along the X-direction during the simulation.
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Boundary CD is free to move in the Y-direction during the compression loading.

For the FE studies, the CPE4 element is used in the commercial package ABAQUS.

Each CPE4 element has four nodes and each node has 2 displacement degrees of

freedom, in the x and y directions, respectively.

3.3.2 Study of Imperfection on the Strength of the Composites

A linear buckling analysis is performed first with the same boundary condition to

be used later. From this analysis, a buckling mode is selected as an initial geometric

shape imperfection to be used subsequently in a response analysis. Figure 3.11 is the

buckling mode that is used as an imperfection in the nonlinear analysis (magnified).

The ratio, h
L
, expressed as a percentage can be used to express the magnitude of the

initial geometric imperfection. The results obtained from a simulation of the 1%

Z-pin composite with a Z-pin diameter of 0.508 mm (0.02 in) is discussed first. A

series of simulations for different amounts of initial imperfection was conducted by

varying the amplitude of the initial imperfection. The results obtained are shown

in Figure 3.12. A typical response curve is explained as follows, as shown in Fig-

ure 3.23. Initially, the response is linear. As the loading proceeds, the area where

there is fiber misalignment (such as around the Z-pin) undergo shear deformation.

As the shear deformation increases, because the matrix is a nonlinear softening

solid, the stiffness continuously decreases. As a result, the area within the com-

posite subjected to softening will increase in shear response, while other will do so

with less magnitude. At some point in the loading history (Figure 3.23, marked as

C), the propensity for rotation is greater than the ability for restoration (due to the

softening shear response of the tow) leading to a limit load point. Immediately after

this, the deformation starts to localize into a band (kink band) and in the unstable
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“snap back” portion of the curve (CD in Figure 3.23), the band starts to develop and

takes on the final shape shown at E in Figure 3.23. The result, Figure 3.12, shows

that from the case of no initial imperfection to 10% of imperfection magnitude (

the imperfection magnitude is specified in terms of percentage. Here 1% correspond

to h
L
=0.01), the maximum compression strength decreases. Note that beyond the

maximum load, there is a “snap-back”. That is, both the macroscopic stress and

macroscopic strain decrease, signifying an unstable equilibrium path. These path

cannot be computed with standard non-linear procedures that either use displace-

ment control or load control. For unstable equilibrium path, one has to use an

arc-length solution method. In this thesis, all unstable equilibrium path are studied

by using the Riks arc length solver, developed by Riks, [45]. The solver is available

in ABAQUS and was used in conjunction with the non-linear geometry option to

complete the stress-strain response repeated throughout the thesis

The decrease is plotted in Figure 3.13 and shows the effect of geometric imper-

fection on compression strength. Just as a global buckling mode in Figure 3.11 can

be used as an initial imperfection, a local buckling mode shape can also be used

as an imperfect shape. Such a local buckling mode shape is shown in Figure 3.14.

Using this as the initial imperfection resulted in very similar response results as

compared to the case presented in Figure 3.13. A comparison of the results for a

2% global and local initial imperfection is shown in Figure 3.15. The initial stiff-

ness, the maximum strength, and plateau strength are all unaffected by the type of

imperfection. The final deformed shape in these simulations are also similar with

kind band observed.
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3.3.3 Comparison of Different Diameter and Different Density on Strength
of Composites

Figure 3.22 shows a comparison of the response for different diameters of the

composites for the case of 1% density of Z-pins. It is seen that the d=0.508 mm (0.02

in) composites have lower compression strength than the d=0.2794 mm (0.011 in)

Z-pin composites. Figure 3.21 shows a comparison of different density(1% and 2% )

of d=0.508 mm (0.02 in) Z-pins. From this figure, it is seen that the 2% composites

have lower strength than 1% composites. The composites behave linearly until the

fiber tows localize due to the plasticity in the transverse direction. In the discussion

related Figure 3.23 earlier, it must be added that initially, the stress contour display

a symmetric pattern, and this symmetry disappears, due to kink band formation

which leads to deformation localization and a break up of symmetry.

So far, the 2D model used is based upon no damage between the Z-pin and

surrounding matrix. However, it was mentioned in chapter 2, that such damage can

exist due to the insertion of Z-pins. When damage occurs as shown in Figure 3.9, it

is not realistic to assume that perfect bonding exists between the matrix and Z-pins.

Here, one extreme example is considered. This extreme case assumes no bonding

between the matrix and Z-pin fiber. That is, the Z-pin fiber is replaced by a hole in

the finite element analysis as shown in Figure 3.16. Figure 3.17 shows a comparison

of the stress-strain response for the damaged case and the no damage case for a

Z-pin composite with a Z-pin diameter of d=0.508 mm (0.02 in) and density of 1%.

The strength for both cases are almost the same. However, the load after failure in

the damage case drops to a much lower value. The result of Figure 3.17 tells that the

damage at the Z-pin and surrounding matrix has a minimal effect on the strength

of the composite but has an approximate effect on the plateau stress. Furthermore,
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it is seen that the insertion of the Z-pin which causes the fibers within the tow to

have local curvature is the predominant effect that leads to the mechanism of kink

banding which spreads the damage.

3.3.4 The Strength of Composites in Multi Cells

So far, the simulations have been based upon one unit cell. It is of interest to

compare the results from multi cell simulations with those of single cell simulation

to understand interaction between Z-pins. The finite element meshes corresponding

to the 9 unit cell and 16 cell representations of the 2D geometries are as shown in

Figure 3.18 . Again, as before, for the one unit cell simulations, the boundary AB is

held fixed in the x-direction, but free to move in the y-direction, while boundary CD,

which is free to move in the y-direction is subjected to an increasing displacement

control loading in the negative x-direction. The point K in AB is fixed in both x

and y direction

Figure 3.19 and Figure 3.20 show the comparison of stress-strain responses of

one unit cell with 9 unit cells and 16 unit cells. For this comparison, the meshes used

didn’t contain any initial geometric imperfection. As can be seen in Figure 3.19,

the strength of 1 unit cell model and the strength of 9 unit cell model are very

similar. Note that between the maximum load (A) and unstable unloading path

(B), the kink band formation can be observed. At point C, the kind band has

formed completely. Figure 3.19 is the comparison of the strength between the 1

unit cell model and the 16 unit cell model. Between the highest strength (point A)

and the end of the unstable path (point B), the kind band started to form, which is

similar to the results in Figure 3.19. It is also noted that the strength of 1 unit cell

model and the strength of 16 unit cell model are almost the same. This establishes
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that the onset of the kink band which is the strength limiting mechanism observed

in experiments have been captured quite adequately by 1,9, and 16 RUC models

presented in this chapter

3.3.5 The Strength of Composites in Multi Cells

In previous simulations, Z-pins are assumed to be encompassed in the matrix.

From the results of section 3.3.3, the shape of the matrix is regarded as the dominant

factor influencing the response of Z-pin textile tile composites. In fact, the shape of

the matrix is also the shape of the fiber distortion. Therefore, it is concluded that

the fiber distortion is the dominant factor influencing the response of the composites.

However, some of the Z-pins in the composites directly contact with the fiber tows as

shown in Figure 3.25. Here, in this subsection, models of Z-pins directly contacting

with fiber tows are established. Firstly, models of 1% Z-pin composites (d=0.0508

cm or 0.02 in) with 9 Z-pins and models of 1% Z-pin composites (d=0.0279 cm or

0.011 in) with 36 Z-pins are established, as shown in Figure 3.26 and Figure 3.27,

respectively, in order to study the interactions between different Z-pins when Z-pins

are directly contacting with fiber tows. The comparison of the simulations is shown

in Figure 3.28. Note that one larger diameter Z-pin (d=0.02 in) is almost equivalent

four small diameter Z-pin (d=0.011). That is why 9 Z-pins are in composites of

d=0.02 in and 36 Z-pins are in composites of d=0.011 in. The result in Figure 3.28

shows that the interactions between the Z-pins have influences on the response of

the composites. As stated in section 3.3.3, the fiber distortion is the dominant factor

in influencing the compressive response of the composites. Theoretically, the large

diameter composites might have lower strength because of the large curvature of the

fiber distortion due to Z-pinning. However, as we can remember, one large Z-pin
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can be divided into four small Z-pins. Because of this, when the Z-pin density is

the same, the stress concentration starting from small Z-pin can propagate to the

neighboring Z-pin shortly. This propagation of the stress concentration is so called

the formation of kind band, resulting in the loss of loading capacity. The kind band

during the failure state of point A and B in Figure 3.28 can be seen in Figure 3.29

and Figure 3.30.

Two models of the 1% Z-pin diameter composites with different matrix area are

established and shown in Figure 3.31 and Figure 3.32, respectively. The stress versus

strain response for the two models are shown in Figure 3.33. As can be seen from

the results, the maximum strength of these two cases are close, indicating the shape

of the matrix has no effect on the maximum strength of the composites. This is

because the place where the Z-pin directly contacting to the fiber tow has the highest

curvature. For both of the two numerical simulations, the curvature of contact area

of the Z-pin with the fiber tow is the same. It is seen that curvature of the contact

area of the Z-pin with the fiber tow is the dominant factor for the determination

of the strength. The area where the matrix connects the fiber tows has smaller

curvature than the contact area of the Z-pin with the fiber tows. Therefore, although

the curvature of the contact area of matrix and fiber tow for two cases is not the

same, the maximum strength is the same.

3.4 Conclusion

In this chapter, a 2D (1-3 loading plane ) model is presented to investigate the

effect of local imperfection near the Z-pin within a woven composite. It is observed

that damage around the Z-pin doesn’t influence the local strength of the composites

but affect the post response after failure. The higher density of Z-pin composites
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have less strength and stiffness provided that the diameter is the same. The small

diameter of the Z-pin composites have less strength and stiffness when the density

is the same. The distortion of the fibers within a fiber tow induced due to Z-

pinning is responsible for initiating kink banding. This kink band subsequently

propagates until loss of compressive load carry capacity. On the other hand, the

imperfect bonding between the Z-pin and matrix has little effect on the strength of

the composites near the Z-pin. The computed results are independent of the number

of RUC’s used in the 2D simulations. The 1, 9, and 16 RUC, 2D representations of

this problem reveal very similar values for the compressive strength. Furthermore,

the numerical models have shown that small Z-pin diameter composites have a lesser

compression strength than the corresponding larger Z-pin diameter composites for

the same Z-pin density. The finding reinforces the experimental trend repeated in

chapter 2.
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Figure 3.1: Model of a [45/-45] Lamina
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Figure 3.2: Longitudinal and Transverse Fiber Tows
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Figure 3.3: Schematics of Compression Test of [± 45] Composite Specimen
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Figure 3.4: Matrix Mesh (FE)
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Figure 3.6: SEM Image of a Typical Fiber Tow
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Figure 3.8: Failure Pattern of 1 RUC



91

 

Figure 3.9: Damage Zone near the Z-pin
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Figure 3.11: 2D Buckling Mode Used as the Initial Geometric Imperfection
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Figure 3.14: Local Buckling Mode
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Figure 3.16: Finite Element Model of a Damaged Composite, where the Z-pin is
Replaced by a Hole
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Figure 3.18: Finite Element Models of the 9 Unit Cell and 16 Unit Cell Represen-
tation of the 2D Problem Studied
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Figure 3.20: Stress-Strain Response of a 16 Unit Cell Simulation
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Figure 3.25: Z-pin Touches Fiber Tow Directly



108

 

Figure 3.26: Models of Composites with d=0.0508 cm (0.02 in), 9 Z-pins, , and 1%
Density
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Figure 3.27: Models of Composites with d=0.0279 cm (0.011 in), 36 Z-pins, and 1%
Density
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ing to point A



112

Kink
Band

Figure 3.30: Kink Band of the Composite with d=0.0508 cm (0.02 in)corresponding
to point B



113

X

Y

Z
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Surrounding Matrix. Note the Z-pin is touching the Fiber Tow
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CHAPTER IV

Prediction of Compressive Strength in

Multilayered Woven Z-pin Textile Composites

In chapter 2, experimental results for the compressive response and failure mech-

anisms of Z-pinned composites were presented. One unifying observation of the re-

sults was a similar failure mode sustained by all the specimens. Even though each

type of the specimens (the different types and categories are listed in Table 1.1), has

a different lay-up, different Z-pin diameter, or different Z-pin density, all of them

failed by a local buckling instability that propagated across the specimens, in the

process confining the failure to a narrow band. The planar view of a failed specimen

and the side view of a failed specimen are schematically shown in Figure 4.2, while

Figure 4.3 is the actual image of a failed specimen. In view of this observation, it

is prudent to examine an approach in which the multi-layered aspect of the com-

posite microstructure can be captured and at the same time providing a means to

model all 16 layers of the laminate and the phase shifts associated with the stacking

process. Since the failure occurs rather abruptly and spans the entire width of the

specimens, in this chapter, a plane strain (2D) model of a 16 layer laminate will

be developed as a means to predict the compressive strength of the laminates that

have been examined experimentally.
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4.1. Introduction

Many studies in the literature have assumed periodicity to choose a single RUC

model of a textile composite for analyzing the stiffness of such structures ([42] and

[20]).

In order to obtain the stiffness of the composites, the microstructural geometry

has to be identified first. Analytical methods and finite element methods are quite

successfully used to extract the stiffness and thermal properties of textile compos-

ites [44] and [31]. However, during the fabrication of a layered textile composite

laminate, each ply of a laminate is not placed exactly on top of each other. Because

of this, and because the dry textile fabric materials are infused with resin during

the manufacturing, the layers of a cured solid laminate show a phase shift. The

effect of phase shift on the compression stiffness and strength of a textile composite

has not been studied before. In view of the experimental observations in chapter

2, a 2D plane-strain finite element (FE) model of a Z-pinned textile composite is

developed in this chapter, using the plastic potential developed for the fiber tows

in chapter 3, and using the in-situ matrix response that has also been presented in

Figure 3.5 in chapter 3.

4.2. 2D Finite Element Model

4.2.1 2D Finite Element Model in 1-2 Plane

In this subsection, a 2D finite element model is proposed for the reasons described

earlier, namely, that the failure mode is approximately invariant in the “width”

direction of the laminate ( the width direction is the ‘3’ direction). Consequently,

as a first step, we can assume plane strain condition in the 1-2 plane. Furthermore, a

2D model is less expensive than the more detailed 3D models that will be described
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in chapter 5, which are computationally more intensive.

In the literature, one layer based numerical models are widely used to predict

the strength of textile composites. The shortcoming of this one layer based model

is that the effect of phase difference between different layers are not taken into

consideration. In 3D FE simulations, parameters, E11 , E22, ν12, G12, and G23 are

used to represent the elastic properties of a 3D transversely isotropic fiber tow. In

a 2D setting, only four of these, E11 , E22, ν12, and G12, are needed. The two

dimensional plastic potential is obtained from simplifying equation (3.1) to the 2D

case by retaining terms that are independent of the ‘3’ direction. That is,

f = [(σ22)
2 + 2a55σ

2
21] (4.1)

In this subsection, three 2D models are first built first in order to explain how to

properly establish the 2D model from a 3D model. Subsequently, two of these models

are used to study the influence of phase difference on the compressive response of

the woven composites.

The fiber tow architecture in a 3D model (cross-ply composite) is shown Fig-

ure 4.4. Note that numerical models built and based upon the cross-ply composites

are used to perform simulations in this chapter. When a 3D model is replaced

by a 2D, 1-2 plane model, different microstructures in the 1 -2 plane are obtained

depending upon which cross sections are chosen in the simulations. For example,

the 1-2 plane cross sections cut from plane AA and plane BB in Figure 4.4 are

different. The difference between the models from cutting plane AA and cutting

plane BB is the following: The 2D model cut from plane AA in Figure 4.5 contains

only matrix and fiber tows undulating in the unloading direction. However, the 2D
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model cut from plane BB in Figure 4.9 contains matrix, fiber tows undulating in

the unloading direction, and fiber tows in the loading direction. The addition of

the axial (longitudinal) fiber tows makes a significant difference as will be evident

shortly.

4.2.2 Details of the Models and Finite Element Implementation

The model AA, as was explained earlier, has no axial fiber tows, while the model

BB contains 16 axial fiber tows. However, an examination of the cross-section of

an actual specimen in Figure 4.1 shows that there are only 13 axial fiber tows in a

cross section. This is because not every layer of a laminate is stacked exactly with

the same phase as each other. During the molding and consolidation process, there

is movement of lamina, resulting in a phase difference among the stacked layers. To

account for this, a third model, similar to the model BB, but with 13 axial fiber

tows was meshed and is referred to as model CC as shown in Figure 4.6. The CPE4

Plane strain element was used in the ABAQUS simulations. These plane strain,

isoparametric finite elements, have 2 displacement degrees of freedom at each node

and linear interpolation shape functions are used as described in [5]

4.3 Results and Discussion

4.3.1 Influence of Phase Difference on the Strength of the Woven Com-
posites

Displacement control loading in conjunction with the Riks arc-length solver op-

tion available in ABAQUS was used to subject models AA, BB, and CC to uniaxial

compression in the x-direction. As shown in Figure 4.7, the boundaries PQ and

SR are left free, while the boundary QR is free to move in the y-direction and

is constrained in the x-direction. The boundary PS is subject to a uniform com-
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pression (displacement control) in the x-direction, while being free to move in the

y-direction. Initially, all these models display a linear response between macro-

scopic applied stress (the resultant total reaction force in the boundary QR, in the

x-direction, divided by the cross section area of the loading face ; the thickness

in the z-direction is uniform and assumed to be one unit in dimension), and the

macroscopic average strain (total specimen shortening divided by the length of the

specimen in the x-direction), as indicated in Figure 4.8.

The linear stiffness obtained from the model AA is relatively small compared to

that from the model BB and the model CC. This is as expected because the model

AA doesn’t contain any axial fiber tows. These tows are the most important part in

sustaining compression in the axial direction. The Young’s modulus of the model BB

is slightly higher than that obtained from experiments. This is because the model

BB contains 16 axial fiber tows, thus having a higher Young’s modulus than that

from experiments. The Young’s modulus of the model CC matches the experiments

very closely because the model CC is established based upon the observation of 13

axial fiber tows in Figure 4.1.

From the discussion above, it is concluded that cross sections such as the one

shown in Figure 4.1 should be used in order to establish the 1-2 plane model pro-

posed in this chapter. Otherwise, the results of the simulation will not be meaning-

ful, when compared against the experimental observation.

Two other “ideal” models are established from cutting plane BB. The first model

has no phase difference among its 16 layers of laminae as shown in Figure 4.9. In the

second model, shown in Figure 4.10, the phase difference between two neighboring

laminae is π
2
. Note that the fiber tow assumes a sinusoidal shape in the x-direction.

Therefore, the same phase of laminae can be seen after a depth of 4 layers. That
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is, the first lamina and the fifth lamina have the same phase while being packed

as a laminate in this model. The results of the compression response simulations

for these two models are shown in Figure 4.11. It can be seen that the model with

phase difference has a higher strength than the model that has no phase difference.

For the model with no phase difference, each layer tends to have similar deformed

shape. Therefore, the deformed shape of the entire laminate in different laminae

looks uniform. For the model with phase difference, different layers of the laminate

tend to have different deformed shape. The combination of different deformation in

different laminae result in uniform deformation for the whole laminate. The kink

band angles as defined in Figure 2.18 for the model with phase difference and the

model with no phase difference are approximately 21◦ degrees and 24◦ degrees. Since

the models are established from cross-ply composites without Z-pins, these two kink

band angles are compared with the kind band angles of group F from experiments

as shown in Table 2.4. The kink band angles from simulations are smaller than the

kink band angels from experiments. This is because, in the experiments, the fiber

tows are broken at the kink band boundary, thus releasing additional energy and

settling at larger angle.

4.3.2 Influence of Z-pin on the Strength of the Woven Composites

In this subsection, two models are established based upon the cross section of

a real cross-ply laminate. One model contains Z-pins and another model contains

no Z-pins. The 1-2 plane 2D model shown in Figure 4.12 is based on the packing

as shown in Figure 4.1. Another model includes the through-the-thickness Z-pin as

shown in Figure 4.13.

Figure 4.14 shows the macroscopic stress-strain curves of the composites with
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no Z-pin and 1% Z-pin composites with diameter of 0.02 in. It can be seen that the

result of the simulation is close to the observed experimental results. The composite

with Z-pins has less strength than the composites with no Z-pins. The deformed

shape of d=0.02 in composites at different deformed stages “A”, “B”, and “C” are

shown in Figure 4.15 , Figure 4.16, and Figure 4.17. Figure 4.15 is the deformed

shape at the highest strength A. At point B, it is observed that there is slight kink

band in the structure. At the same time, the load decreases and the strain increases

gradually. The fully developed kind band in the deformed shape can be seen in

Figure 4.17. The kink band angle (in Figure 4.17) as defined in Figure 2.18, is 32◦

degrees. This kink band angle is within the range of kink band angles (between 30

to 45 degree) from Table 2.3 and Table 2.4.

4.4. Conclusion

In this chapter, a plane strain 2D model condensed from a 3D model is presented

for predicting and capturing the local compressive failure mode observed in exper-

iments. This 2D model is presented in order to simulate multi layer composites.

The cross section used in this 2D model can’t be chosen arbitrarily. The “correct”

cross section should include axial fiber tows such as the real model shown in Fig-

ure 4.1. The results indicate that it might not be a good design if each lamina in

a laminate has the same phase. It is found that composites with phase difference

has higher strength than composites with no phase difference. “In-plane” compos-

ites promote kink banding failure at a lower peak compression strength compared

against laminates that have have no uniformity in the phase of stacking.
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Figure 4.2: Schematic of a Failed Specimen Viewed in the 1-2 Plane and the 1-3
Plane (Commonly Observed for All Types of Specimens Studied in this
Thesis)
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Figure 4.3: Images of a Failed Z-pin Specimen ([45/− 45/0/90]2s, 1% Z-pin) under
Uniaxial Compression in the “1” Direction
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Figure 4.4: 3D Model with 9 Unit Cells in One Lamina
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Figure 4.5: Model without Axial Fiber Tows, Cross-Section AA in Figure 4.4
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Figure 4.6: Idealized Model with 13 Axial Fiber Tows
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Figure 4.9: Idealized Model with No Phase Difference
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Figure 4.10: Idealized Model with Phase Difference π
2

between Neighboring Laminae
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Figure 4.12: Model without Z-Pins
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Figure 4.13: Model with Z-Pins
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Figure 4.15: Deformed Shape Corresponding to Point A, Marked in Figure 4.14 for
the 1% Z-pin Composite
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Figure 4.16: Deformed Shape Corresponding to Point B, Marked in Figure 4.14 for
the 1% Z-pin Composite
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Figure 4.17: Deformed Shape Corresponding to Point C, Marked in Figure 4.14 for
the 1% Z-pin Composite



CHAPTER V

Compressive Response and Failure of Z-Pin

Textile Composites: 3D Numerical Simulation

In this chapter, 3D multi-layer and multi-RUC models are presented in order

to accurately capture the failure mechanisms of textile composites. Simulations

of 1, 9, 16, and 25-RUC models are compared first. Then, simulations of multi-

layer models are compared. From the results of these simulations, the 3-layer and

16-RUC model is chosen as the best representation of the 3D multi-layer and multi-

RUC model. Simulations of models with phase difference and no phase difference

are also presented to show the influences on these laminates.

5.1 Introduction

A single RUC model is used extensively in the literature to simulate the response

of textile composites, [42] and [20] . In order to obtain the linear stiffness of the

composites, the microstructural geometry is identified first. Analytical methods

and finite element methods are quite successfully used to extract the stiffness and

thermal properties of different types of textile composites as shown in [44] and [31].

However, during the fabrication of the composites, each ply of the lamina in a

laminate doesn’t end up being stacked exactly as intended. This leads to a phase

140
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difference between laminae as was discussed in chapter 4.

In this chapter, an orthotropic plastic potential for the fiber tow that was derived

from numerical analysis of the stress-strain response of a representative unit cell as

discussed in chapter 3 is used together with the in-situ stress-strain response of the

matrix to examine the compression response of the Z-pin multi-cell 3D model in

conjunction with the finite element method. The commercial software ABAQUS is

used for the simulations presented here. The matrix is modeled as a J2 isotropic

hardening elastic plastic solids. During the nonlinear response analyses, the arc-

length method (RIKS method) in ABAQUS is used to ensure that the post failure

path, including unstable response could be captured accurately.

5.2 Creation of finite element (FE) models

In order to build 3D FE models to perform analyses, the microstructural geom-

etry has to be identified first. Textile composites in this research are composed of

the fiber tows and matrix as shown in Figure 5.1. For the Z-pin textile composites,

Z-pins are inserted through the thickness in the composites. As shown in Figure 5.2,

a fiber tow is a space undulating solid that closely approximates a sinusoidal shape.

Therefore, the sinusoidal shape of the fiber tow is used in this 3D model. The cross

section of the fiber tow is assumed to be the elliptic shape. This was motivated by

SEM images of the tow cross-section. The geometry of the sinusoidal tow and the

cross section of the tow used in the simulation are evaluated by taking 40 images

similar to Figure 5.3 under a SEM and then the average geometrical properties are

obtained. The average amplitude of the sinusoidal tow, the major axis, and minor

axis are shown in Figure 5.4. The standard deviation for major axis is 0.214 mm

and the standard deviation for minor axis is 0.0135 mm (based on 40 SEM images).
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In one representative unit cell (RUC), two longitudinal and two transverse si-

nusoidal fiber tows are established as shown in Figure 5.5. Two fiber tows in each

direction (longitudinal or transverse ) have the same geometry but have different

phase angles. In real models, these longitudinal and transverse fiber tows are em-

bedded in the matrix as shown in Figure 5.6. The Z-pin fibers are also embedded

in the matrix and fiber tows, in the case of Z-pin laminates.

After the geometry is identified, the constitutive law (response curve) of each

constituent (fiber tow and matrix) is needed to implement into the finite element

model to perform the nonlinear analysis. This aspect was addressed in chapter 3,

as discussed earlier.

During the non-linear analysis of the RUCs, global direction 1 is the longitudinal

direction, direction 3 is the transverse direction, and direction 2 is the through-the-

thickness direction as shown in Figure 5.7. The face EFGH in direction 1 is fixed

during the simulation and the face ABCD in direction 1 is imposed a controlled

displacement. The degree of freedom in direction 2 on face ABEF and CDGH is

fixed in order to simulate anti-buckling guides that are used in the experiment to

prevent global buckling. As will be discussed later, this stipulation approaches the

conditions in the laboratory, especially for the 16 RUC 3D model which is of the

same size as the specimens discussed in chapter 2.

5.3 3D finite element model

5.3.1 Simulation of Multi RUC

In the literature, one RUC with periodic boundary condition is often used to

represent and simulate the mechanical behavior of a laminate, under compression

or tension loading [42] and [20]. However, for strength prediction, if one RUC is
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used, then the failure mechanism of one RUC as shown in Figure 5.8 is assumed to

be found repeatedly in all other unit cells of specimens because of the assumption of

periodicity. Of course, the failure pattern in one cell as shown in Figure 5.8 cannot

represent the failure mode observed in real experiments because the failure occurs

only locally within a handful of cells of the tested specimen instead of occurring pe-

riodically in each RUC. Therefore, the number of RUCs needed to model the actual

specimen more realistically for strength prediction is investigated in the following.

Here, the finite element representations of 1 RUC, 9 RUCs, 16 RUCs, 25 RUCs as

shown in Figure 5.9, Figure 5.10, Figure 5.11,and Figure 5.12, respectively, are used

in this study. The macroscopic stress-strain responses of the compressive simula-

tions for different RUCs are shown in Figure 5.13. As before (chapter 4), initially,

a linear response OA, OA
′
, and OA

′′
is obtained, until a limit load is reached at

which stage, the deformation starts to localize in a few cells, which results in a drop

in the load and eventually plateau off (B, B
′
, and B

′′
) as shown in Figure 5.13.

The localized deformation shapes, corresponding to B, B
′
, B

′′
are shown in Fig-

ure 5.14, Figure 5.15, and Figure 5.16 . The maximum stress, which corresponds

to the compressive strength, decreases dramatically when 1 RUC is replaced by 9

RUCs. However, the trend of this decrease is not so much between the 9 RUC and

16 RUC prediction. When the model of 25 RUCs is used, the compressive strength

is almost the same as that predicted with 16 RUCs. This implies that using 16

RUCs is sufficient for predicting the compressive strength. Note that the size of the

tested specimen is 62.5 mm by 55.9 mm. After the grips and anti-buckling guides

are imposed, the size of the specimen that is exposed is 55 mm by 45 mm. Given

that one RUC is 10 mm by 10 mm, there are approximately 25 RUCs in the tested

specimen. That shows that, by using 16 RUCs, the size of simulation model is close
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to the exposed area of the real specimen.

5.3.2 Simulation by Use of Multi Layers

In the literature, a single lamina model is frequently used. The experimental

results reported in chapter 2 corresponded to multi-layered laminates. The assump-

tion based on using only a single layer to represent the laminate needs verification.

Furthermore, a single lamina model is not effective to investigate the effect of phase

difference observed in the multi-layered laminates. In the following, the simulations

with multi-layer representations of the composites will be discussed. Figure 5.17

shows the comparison of the compressive simulations among models with different

numbers of laminae. In each case, only one RUC is used. It is found that 3-layer lam-

inae have a higher compressive strength than a single layer lamina model. However,

the strength of a 4-layer model is close to that of a 3-layer model. From these results,

it is concluded that a 3-layer representation of the laminate is sufficient to simulate

the compressive response. Note that the results shown in Figure 5.17 are from the

models in which phase difference is not considered (there are no phase difference

between the 3-layer model and 4-layer model). However, when the composites are

molded, a phase difference between different layers of the laminate usually is in-

troduced due to consolidation effects. Therefore, a model with phase difference is

a more realistic representation of the laminate. Figure 5.18 shows the comparison

of the macroscopic stress-strain response between models with phase difference and

models without phase difference. The predicted strength for the model with phase

difference is higher than that for the model without phase difference. Figure 5.19

and Figure 5.20 show the failure modes for the composites without a phase differ-

ence and with a phase difference. Note that the strength and failure mode, both
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change when phase difference is introduced.

5.3.3 Simulation by Use of Multi-layer and Multi-RUC Composites

Based upon the findings of the previous sections, a 3-layer model with 16 RUCs

is established to simulate the experiments that were presented in the compressive

tests.

Figure 5.21 and Figure 5.22 show the 3-layer 16 RUC models with phase differ-

ence and with no phase difference. Note that no Z-pins are inserted in both models

shown in Figure 5.21 and Figure 5.22. The comparison of the simulation of these

two models and the results obtained from experiments are shown in Figure 5.23.

The deformed shapes of the simulation of the composites without a phase differ-

ence at different stages A, B, and C are shown in Figure 5.24, Figure 5.25, and

Figure 5.26. After point A, kinking is initiated and can be observed near the center

of the specimen as shown in Figure 5.25. At point C (Figure 5.26), the kinking is

well formed and contained in a band. Figure 5.27 shows the kind band viewed from

the x-y plane at deformed state C in Figure 5.26 and from kink band of the speci-

men. Figure 5.28 shows the comparison among the simulation of 1% cross-ply Z-pin

(d=0.02 in) composites, the simulation of a cross-ply non-Z-pin composite and re-

sults of cross-ply non Z-pin experiments. It shows that Z-pin composites have lower

strength than the composites without Z-pins. It is seen that the predicted results

compare well with the experimental results.

5.4 Conclusions

In this chapter, a 3-layer and 3D numerical model with each layer containing 16

representative unit cells is presented. The results from experiments and predictions

of the 3D model agree well . The effect of phase difference can be simulated if a
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multi layer model is used. It is concluded that the strength of the composites would

change if the position of lamina in each layer is changed. The results show that the

higher density Z-pin composites have less strength, as also seen in the experimental

results of chapter 2.
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Figure 5.1: Schematics of Fiber Tow and Matrix



148

10mm

Unit Cell

11.3mm

Figure 5.2: Image of Cross Section
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Figure 5.3: SEM Image of Fiber Tow and Matrix
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Figure 5.4: Fiber Parameters for RUC
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Figure 5.5: Longitudinal and Transverse Fiber Tows
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Figure 5.6: Matrix
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Figure 5.7: Schematic of RUC that is Used to Explain the Boundary Condition
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Figure 5.8: Failure Pattern of 1 RUC
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Figure 5.9: Numerical Model of 1 RUC
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Figure 5.10: Numerical Model of 9 RUCs
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Figure 5.11: Numerical Model of 16 RUCs
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Figure 5.12: Numerical Model of 25 RUCs
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Figure 5.13: Stress-Strain Curve for Different Number of RUCs
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Figure 5.14: 1 RUC Model at B
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Figure 5.15: 9 RUC Model at B
′
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Figure 5.16: 16 RUC Model at B
′′
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Figure 5.17: Stress-Strain Curve for Different Layers of Composites
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Figure 5.19: Failure Mode of Composites without Phase Difference
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Figure 5.20: Failure Mode of Composites with Phase Difference
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Figure 5.21: Models with Phase Difference



168

Figure 5.22: Models without Phase Difference
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Figure 5.24: Deformed Shape at A
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Figure 5.25: Deformed Shape at B
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Figure 5.26: Deformed Shape at C



173

Figure 5.27: Kind Band Viewed from X-Y Plane. Note that the Comparison be-
tween the Experimentally Observed Kink Band Failure and that of the
3D Numerical Prediction
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CHAPTER VI

Static and Dynamic Fracture Mode II Tests

Mode II ENF (end notch flexural) fracture tests for woven composites were per-

formed. Influences of Z-pin density and Z-pin diameter on Mode II fracture tough-

ness in dynamic and static loading were investigated. The experiments showed that

the 2% Z-pin composite and the 3% Z-pin composite have a larger fracture tough-

ness than the 1% Z-pin composite and composite with no Z-pin. Crack propagation

changes from unstable propagation to stable propagation (crack arrest) as the Z-pin

density increases. In static tests, the additional fracture toughness provided by Z-

pins prevents the primary crack to further propagate, enabling the secondary crack

or even tertiary crack to consume additional energy. While the primary crack is

held from propagating by the friction forces provided by Z-pins, the matrix in the

composite is driven into the plastic state and enables the composite to absorb more

energy. For numerical simulations, a discrete cohesive zone model (DCZM) is used

to perform simulations. The results of simulations agree well with results obtained

from experiments. In dynamic tests, a crack advanced gage (CAG) is implemented

in order to capture the initiation of the crack. “Crack arrest” can also be found in

higher Z-pin density composites in dynamic tests. Similar to results in static tests,

fracture toughness increases as Z-pin density increases. Also, for fixed Z-pin density,

175
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composites with smaller Z-pin diameter have higher fracture toughness than those

with larger Z-pin diameter.

6.1 Introduction

The problem of delamination can be improved by inserting Z-pins into textile

composites. In [22], it is indicated that inserting Z-pins increases the load capacity

and leads to stable crack propagation at failure. In [46], an analytical expression

to predict Mode I response of the Z-pin composites agrees well with experimental

results. In [8], a ‘T’ joint is designed where the flanges are reinforced with insertion

of Z-pins. The Z-pins increased the load at which the entire joint failed. In [64], a

finite element for predicting Z-pin composite is proposed. The Z-pin pullout process

is simulated by use of nonlinear springs. In [16], experiments are used to deduce pull-

out law of Z-pins. Most of the literature about Z-pin composites investigates Mode

I fracture toughness. There is few literature studying mode II fracture toughness

of Z-pin composites. In those limited studies, different Z-pin diameter has not been

discussed with respect to mode II fracture. Consequently, the primary goal of this

chapter is to investigate the effect of Z-pin density and Z-pin diameter on the mode

II fracture response of woven textile laminates.

6.2 Mode II Static Tests

6.2.1 Specimens and Experimental Set-up

Experimental results related to static mode II fracture response are presented

in this section. Specimens are categorized into 6 groups. Group A, C, and E are

[45/− 45/0/90]2s lay-ups, with Z-pin diameters of 0.5080 mm (0.02 in), 0.2794 mm

( 0.011 in), and no Z-pin, respectively. Group C is Group B, D, and F are [0]16
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lay-ups composites with Z-pin diameter of 0.5080 mm (0.02 in), 0.2794 mm (0.011

in), and no Z-pin, respectively. It is to be noted that group A, group C, and group

E are quasi-isotropic composites while group B, group D, and group F are cross-ply

composites. From group A to group D, each group is further sub-divided into three

subgroups based on the Z-pin density (1%, 2%, or 3%). Detailed descriptions of

these 6 groups were summarized in Table 1.1. For each subgroup in A, B, C, D, E,

and F, two tests were conducted.

A three point bending configuration is used to perform Mode II fracture tests

on a servo-hydraulic MTS machine. Spacers were placed near the crack tip of

the specimen (as shown in Figure 6.1) to prevent friction that might be induced

when the top and bottom parts of the crack mouth touch. A higher resolution of

digital cameras was placed on one side of the MTS machine in order to detect the

propagation of the crack. The setup is shown in Figure 6.2.

A schematic of a tested specimen is shown in Figure 6.3. The length and width of

the tested specimen is 160 mm and 25.4 mm, respectively. The height of specimens

in each subgroup varies from 11 mm to 13 mm. A crack of length 40 mm and

height 1 mm is initially machined as shown in Figure 6.3. In order to assist in

crack initiation, a pre-crack was imposed by a sharp razor blade. At the center of

the upper face and at the support points, steel pads were placed to prevent local

damage to the composite. Images of the crack propagation event were recorded at

0.5 Hz, while the axial cross-head movement rate imposed on the specimen was 0.010

mm/sec (rate at which the transverse displacement control loading was imposed).
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6.2.2 Experimental Results

The results of load-deflection curves for group A, group B, group C, and group

D are shown from Figure 6.4 to Figure 6.7, respectively. Only one test for each

subgroup is presented for clarity. The x-axis is the imposed deflection of mid-point

and the y-axis is the reaction load at the mid-point. From these four figures, the

maximum load for the 2% and 3% Z-pin composites increases greatly compared to

the 1% Z-pin composites and no Z-pin composites.

The experimental results show that the 1% Z-pin composites don’t increase

the resistance for delamination compared to no Z-pin composites. As shown in

Figure 6.4 and Figure 6.5, when the Z-pin density is the same, the maximum load for

different laminates of quasi-isotropic family [45/−45/0/90]2s and of the orthotropic

family [0]16 is very similar. It is concluded that failure starts from the interface

between laminae since the maximum load for both laminate groups is similar. In

Figure 6.4 and Figure 6.6, when Z-pin density is fixed, the maximum load indicated

in Figure 6.6 is higher than the maximum load shown in Figure 6.4. That is, a small

diameter Z-pin composite has a higher fracture resistance than a large diameter Z-

pin composite. This trend can also be found when the maximum loads in Figure 6.5

and Figure 6.7 are compared. This conclusion is counter to the conclusion arrived

in chapter 2, which indicated that small diameter Z-pin composite has slightly lower

“strength” and “stiffness” compared to larger diameter Z-pin composite. The higher

fracture resistance in the small diameter Z-pin composites is due to more contact

area between the Z-pin and fiber tows, thus providing more friction for pull-out

resistance to prevent delamination and a higher resistance to crack propagation.

From Figure 6.4 to Figure 6.7, it is also noted that additional fracture resistance

provided by the Z-pin drives the composite into the plastic state (the matrix is driven
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to dissipate energy through matrix microcracking which is effectively “plastic like

behavior”). The plastic phenomenon becomes obvious as the Z-pin density increases.

Figure 6.8 is one of the tested specimens after the experiments corresponding to the

1% Z-pin composite in group C. Only the primary crack can be seen near the center

of the specimen and the shape of the tested specimen doesn’t change much after

unloading, indicating substantial elastic energy recovery. This explains that energy

being dissipated is only used for the propagation of the crack. As the Z-pin density

increases, the additional fracture toughness for resisting delamination provided by

the Z-pin enables the matrix in fiber tows , and between the tows in the composite

to go into a plastic state before failure. Plastic deformation can be found in the 2%

and 3% Z-pin composites after unloading as shown in Figure 6.9 and Figure 6.10.

The plastic deformation is obvious in the 3% Z-pin composites, since the residual

deformation is large.

The onset of crack propagation and subsequent crack propagation of each spec-

imen were investigated by identifying the formation of crack in the images taken

during the tests. For specimens in group E and group F , the crack propagates fast

once the critical fracture toughness is reached (unstable propagation). For com-

posites with Z-pin, crack propagation becomes more stable, meaning that there is

“crack arrest” between the onset of crack propagation and the point at which the

composite loses its loading capacity completely. This “crack arrest” period becomes

longer as the Z-pin density increases. The images shown in Figure 6.11 was taken

when load point deflection is 3.27 mm for the tested specimen F in Figure 6.7. At

that instant, no crack was found. After 4 seconds when load point deflection is 3.31

mm as shown in Figure 6.12, unstable crack growth resulted in a crack that ran all

the way to the mid point of the specimen. For the specimen D3 shown in Figure 6.7,
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when the load point deflection is 4.14 mm, the primary crack has already formed

as shown in Figure 6.13. The primary crack propagated slowly (stable) unlike the

(unstable) crack found in the non Z-pin composites. When the load point deflection

is 5.12 mm, not only did the primary crack propagate, but another visible secondary

crack could be found as shown in Figure 6.14. This shows that other energy dis-

sipation events (secondary cracks) occurred while the primary crack is held from

propagation due to the Z-pins.

Figure 6.15 and Figure 6.16 show load point deflection versus crack length for

group B and group D. It is noted that, for Z-pin density less than 2%, an additional

small load imposed on the specimens at the peak load results in that crack propa-

gation after critical fracture toughness has been reached. For 3% Z-pin composites,

the crack growth is more stable. It is also observed that crack propagation switches

from unstable to stable as the Z-pin density increases.

6.2.3 Numerical Simulations

Cohesive zone elements have been used extensively and successfully to simulate

crack propagation problems [62]. The introduction of different types of cohesive

models are described in [63]. The cohesive zone element used in this paper belongs

to the category of Discrete Cohesive Zone Element (DCZE). The DCZE consists

of 4 nodes as shown in Figure 6.17 and the traction-separation laws are directly

applied on opposing node pairs of the crack face. Details of the discrete cohesive

zone method (DCZM) methodology and its implementation are described in [63].

A mixed mode fracture criterion as shown in equation (6.1) is adopted to determine

crack propagation.
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GI

GIc

+
GII

GIIc

≥ 1 (6.1)

where, the definition of critical fracture toughness, GIc and GIIc, for a triangular

cohesive law, is as follows (see Figure 6.18):

GIc =
1

2
σcδm (6.2)

GIIc =
1

2
τcγm (6.3)

A sensitivity study of the parameters for the end notch flexure simulations in

[23] shows that mode II is dominant in ENF tests. Consequently, GIIc, τc, and γm

are the required parameters to implement a triangular cohesive law for the ENF

test. Since a camera is placed on one side of the specimen, the timing at which the

crack starts to propagate is known. Then, the corresponding load imposed on the

specimen can be identified. The critical shear stress, τc, near the crack tip can be

computed by simply using the formula in strength of materials. That is,

τc =
V Q

Iz

(6.4)

where Iz =
∫ ∫

z2dA is the moment of inertia about the z-axis , Q =
∫ ∫

zdA, V

is the shear force of the cross section at the crack tip, and A is the cross section. Tri-

angular shape and trapezoidal shape traction-separation laws shown in Figure 6.18

are used to simulate the no Z-pin composite and Z-pin composite. For the triangular

shape law, the maximum cohesive stress τc, initial slope Kx, and critical fracture
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toughness GIIc are used as input. The critical displacement, γc, can be obtained by

use of initial slope Kx and the maximum cohesive stress τc since the area under the

traction-separation law is the critical fracture energy, GIIc . The maximum γm is

obtained by use of the expression GIIc=
1
2
τc γm. For the trapezoidal cohesive law,

the maximum cohesive stress τc, initial slope Kx, the displacement that stress starts

to drop γc2, and critical fracture toughness, GIIc, are specified. The corresponding

γc1 and γm can be computed, accordingly. It was found that the triangular shape

cohesive law is good for simulating unstable crack propagation (such as, propaga-

tion in composites without Z-pins). The trapezoidal shape cohesive law simulates

the behavior of composites with Z-pins well.

The composite is assumed to be an orthotropic material and follows an or-

thotropic hardening plastic potential. The detailed derivation of the plastic po-

tential can be found in chapter 3. With respect to Figure 6.3, the elastic prop-

erties of the specimens are as follows: E11=21.7GPa, E33=9.8GPa, ν13=0.38, and

G13=5.9GPa. The plastic potential used here is derived from chapter 3.

The fracture toughness and cohesive strength were extracted as described in

the following. As mentioned earlier, the approximate τc can be computed by use

of equation ( 6.4) when a crack starts to propagate. The initial guess of GIIc =2

N/mm is a reasonable guess of mode II fracture toughness for glass fiber composites

from the existing published literature [61]. The converged value of GIIc for a test

is obtained when the load-deflection response from that test and the corresponding

response from simulations match as shown in Figure 6.20

The model used for the numerical simulation is shown in Figure 6.19. The CPS4

element is used to simulate Z-pin composites and the user defined UEL subroutine

is implemented in ABAQUS to simulate cohesive zone elements.
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Figure 6.20 shows the comparison of numerical simulations with experimental

results (Figure 6.7). The computed critical fracture toughness for [45/− 45/0/90]2s

composite and [0]16 composites are shown in Figure 6.21 and Figure 6.22 . It is

noted that the fracture toughness increases greatly when the Z-pin density is 2%

or 3%. In each figure, (Figure 6.21 and Figure 6.22), when density is the same, the

fracture toughness of d=0.02in Z-pin composites is lower than the fracture tough-

ness of d=0.011in Z-pin composites. Although the volume fraction of Z-pins in the

d=0.011in composites and the d=0.02in composites is the same (provided density

is fixed), the contact area between a Z-pin and fiber tow for d=0.011in composite

is almost twice that of the contact area for d=0.02in composite. It is believed that

the friction forces provided by the additional contact area are the reason for the

the increase of fracture toughness, which provides additional resistance to delam-

ination. A detailed micromechanics based model for the Z-pin based traction law

can be attempted by considering “pull-out” mechanics as described in [34]. In [34],

a triangular law can also be used (instead of the trapezoidal law used here) for

simulating Z-pin resistance as density increases.

6.3 Dynamic Mode II Test

In a static mode II test, the event time ( The time between when load is applied

and when the crack propagates to the center of the specimen) is more than several

minutes. Under such conditions, it is easy to detect the onset of crack growth

and the crack propagation afterwards by use of ordinary cameras that are used in

everyday life. However, in dynamic tests, the event time is on the order of 10−3

second. Therefore, a high speed camera able to capture 12 pictures is used. The

interval (greater than 10−6 sec) between each picture can be specified by the user.
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The other problem crucial in a dynamic test is to be able to capture the onset of

the crack growth. Accurately measuring the location of the crack during the impact

event is of great concern in order to extract the change of fracture toughness during

crack propagation.

In static tests, images of the crack path, and crack length taken using a high

resolution camera, can be conveniently related to the load and specimen deforma-

tion, without complications with respect to the frequency of data recording. In a

dynamic event, where the total duration is of the order of 1 ms, there is a need to

accurately establish the initiation of the crack growth event. Thus, a novel method

is employed in which conductive silver paint is deposited in the form of a thin

column on the side surface of the specimen and is used as a crack advance gage

(CAG). The CAG, which acts as a conductor with known resistance, is connected

to a Wheatstone bridge circuit in series with a 120 Ω strain gage. The output volt-

age from this arrangement is used to trigger the camera at the initiation of crack

advance, establishing the time corresponding to the origin of crack advance. The

CAG is initially calibrated against a static test in order to determine the output

signature as the crack severs the CAG. In the early stages of impact loading, the

output from the CAG remains low due to the relatively small shear deformation. As

load increases, the CAG output rises rapidly and approaches around 10 volts when

the crack has completely severed the CAG. Several CAGs can be used as indicators

of crack location during the impact event and also as a measure to corroborate the

images that are captured through the high speed camera.
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6.3.1 Setup of Experiment

Similar to the static test, a three point bending setup is used to perform dynamic

mode II tests by use of an existing drop tower facility shown in Figure 6.23. Two

specimens in different subgroups listed in Table 1.1 are used for the dynamic tests.

Figure 6.24 shows that three crack advance gages are placed at different locations

from the crack tip. The first CAG is 3 mm from the crack tip. The second CAG

and the third CAG are 18 mm and 33 mm from the crack tip. In every 3 mm one

line is drawn in order to observe the propagation of the crack in the images taken

from the high speed camera. The oscilloscope is triggered when the crack passes

the first CAG. At the same time, the pulse generator received the signal from the

output voltage of the first CAG and subsequently (after 10−5 sec) sent a signal to

trigger the high speed camera. Twelve pictures are taken at different time from the

high speed camera. The exposure time for each picture is 10−6 sec. Therefore, a

special flash light is used to provide enough intensity of light during the 10−6 sec in

which an picture is grabbed.

6.3.2 Results

Figure 6.25 shows a typical load-time response of a mode II dynamic test. The

x-axis represents the time and the y axis is the load recorded from a dynamic load

cell. After the dropping weight hit the specimen, the load increases with a linear

trend until the initiation of the crack. The signal of strain gage can be observed

to stay around zero and jumps suddenly because of the crack passing through the

silver paint and severing the connection of the first gage. This sudden jump occurs

immediately before or after the occurrence of the peak load. Nearly linear load

signal with slight oscillation can be observed in a typical load-time curve as shown
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in Figure 6.25. Further investigation shows that this oscillation is due to the load

cell. Figure 6.26 shows the load versus time curve of the transient response output

of the load cell (by hitting the load cell gently with a hammer). The dynamic load

cell is produce by Kistler Inc with the type number of 9091A. The frequency of

the oscillatory signal in Figure 6.25 and the frequency of the oscillatory signal in

Figure 6.26 are close. Such oscillations in the load-time response can be found in

all of the tests. Thus, a discrete Fast Fourier Transform (FFT) is used to filter the

signal recorded by load cell. Figure 6.27 shows the load-time response before and

after filtering using the FFT.

An analytical expression for critical mode II fracture toughness is proposed in

[38], as

GII = 9/16(P 2
m/B2h3E11)(a + χh)2 (6.5)

where

χ = [(E11/11E33)(3− 2(τ/(1 + τ))2)]0.5 (6.6)

τ = 1.18
√

E11E33/G13 (6.7)

In these expressions, Pm is the maximum transverse applied load, a is the crack

length, B is the width of the specimens, h is height of the specimen, E11 is the

longitudinal young’s modulus, E33 is the transverse young’s modulus, and G13 is the

shear modulus in the 1-3 plane. The axes are shown in Figure 6.3. By identifying

the maximum load, the fracture toughness can be computed. Figure 6.28 and

Figure 6.29 show the fracture toughness for [0]16 composites and [45/− 45/0/90]2s

composites. In [0]16 composites shown in Figure 6.28, as Z-pin density increases,
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the critical fracture toughness increases. It is noted that equation ( 6.5) is an

approximate expression for dynamic fracture toughness and is used here for purpose

of comparison. One would need to perform a full dynamic simulations in order to

obtain the dynamic fracture toughness.

When the Z-pin density is the same, the specimens with smaller Z-pin diameter

have higher critical fracture toughness than specimens with higher Z-pin diameter.

This trend can be also observed in Figure 6.29 for [45/ − 45/0/90]2s composites.

The critical fracture toughness in Figure 6.28 and Figure 6.29 are smaller than that

in static fracture test shown in Figure 6.21 and Figure 6.22

6.3.3 Why Use CAG Instead of High Speed Camera

Figure 6.30 shows the information of the load cell and three CAG near the time

when the crack starts to propagates for a B3-1 specimen. The vertical axis is the

load and the horizontal axis represents the time. From Figure 6.30, crack arrest

occurs after the break of the first gage. This crack arrest lasts for around 750µ sec

and then the crack propagates suddenly all the way through 2nd and 3rd CAG.

Given that the distance between 2nd CAG and 3rd CAG is 15 mm and the smallest

interval between neighboring data points recorded from the oscilloscope is 1 µ sec,

the propagation speed is greater than 1500 m/sec in this specimen. Figure 6.31

shows the image taken before the test. Figure 6.32 is the one taken after 100 µ sec

that the 1st CAG has already been broken. A microcrack already passed through

the 1st CAG. However, the crack arrested and didn’t continue to proceed. When

time is 100 µ sec after the 1st CAG is broken, additional microcrack can be observed

near the crack mouth. Figure 6.33, taken when time is 550 µ sec after breakage of

the 1st CAG, shows the multicrack phenomenon as shown in Figure 6.32. Finally,
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the major crack can be found in Figure 6.34 which is taken at 1050 µ sec after

breakage of the 1st CAG. Obviously, using CAG has more advantages than using

the high speedcamera. First of all, from the sudden change of signal in the CAG, it

is easy to identify the exact time when the crack starts to propagate. For the high

speed camera, we could only capture the “INTERVAL” when the crack starts to

propagate. Secondly, since these gages (CAGs) are lines of conductive silver paint,

they are inexpensive.

In Figure 6.30, the 1st CAG is broken before the peak load. Increases in loading

can be observed after the breakage of the 1st gage. Figure 6.35, another test for

specimen B3-2, shows the same trend. When crack occurred, the composite didn’t

lose its loading capacity immediately because of crack arrest. Figure 6.36 is the

load response and three CAG curves near the peak load for the specimen B2-1.

Loading starts to drop after the crack passes through the 3rd CAG. The duration

between the breakage of the 1st CAG and the 3rd CAG is only 60 µ sec. However,

for specimen B3-2, there is 250µ sec duration between the breakage of the 1st CAG

and the 3rd CAG in Figure 6.35. This also shows 3 % Z-pin composites could

absorb more energy than 2 % Z-pin composites during fracture process because the

duration of “crack arrest” is longer.

Table 6.1 shows the propagation speed between different gages for different spec-

imens. The crack arrest can be observed as Z-pin density increases. For groups E

and F, crack propagates all the way to 3rd CAG. No arrest between different CAGs

can be found. For composites with Z-pins, crack propagation speed decreases as Z-

pin density increases. This trend is more obvious between 1st CAG and 2nd CAG.

Crack propagation speed from 2nd gage to 3rd gage is faster than crack propagation

speed from 1st gage to 2nd. Actually, crack propagation speed between 1st and 2nd
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CAG should be regard as average propagation speed. By the help of high speed

camera, it is observed the crack doesn’t propagate immediately after breakage of

1st CAG. The initial crack remains arrested and then suddenly propagates all the

way past the 2nd and 3rd CAGs without arrest.

6.4 Conclusion

The mode II fracture behavior of Z-pin composites was presented. Two types

of composites, [45/ − 45/0/90]2s and [0]16 lay-ups, were used in the tests. In each

type of the composite, the response of three different kinds of Z-pin density and two

different kinds of Z-pin diameter are investigated. The Z-pins greatly increase the

fracture toughness than the unpinned composites. The Z-pins successfully prevent

the primary crack from growing unstably while cracks on other weak planes are

formed, thus dissipating more energy. The additional friction provided by Z-pins

also lets the composites enter plastic state so more energy is dissipated. When

Z-pin density is the same, the contact area between Z-pin and fiber tows in small-

diameter Z-pin composites provides more fracture toughness than large-diameter

Z-pin composites. The proposed cohesive zone model for the static test, appears to

capture the trend observed in the experiments, and predicts the load- load point

displacement response curves statistically.
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Table 6.1: Crack Speed of the Composite

Type Crack Speed m/sec (1st to 2nd) Crack Speed m/sec (2nd to 3rd)
A1 500 375
A2 88.2 250
A3 14.6 375
B1 516 258
B2 500.2 750
B3 62.5 1500
C1 55.6 150
C2 22.7 750
C3 22.1 107
D1 214 750
D2 214 250
D3 53.6 250
E 500 750
F 750 750
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Figure 6.4: Load Deflection Plot for Group A. ‘E’ Denotes the Case with no Z-pins.
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Figure 6.5: Load Deflection Plot for Group B. ‘F’ Denotes the Case with no Z-pins.
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Figure 6.6: Load Deflection Plot for Group C. ‘E’ Denotes the Case with no Z-pins.
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Figure 6.7: Load Deflection Plot for Group D. ‘F’ Denotes the Case with no Z-pins.
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Figure 6.8: Tested Specimen of C1 after Experiments
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Figure 6.9: Tested Specimen of C2 after Experiments
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Figure 6.10: Tested Specimen of C3 after Experiments
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Figure 6.11: F1 Specimen Deflection=3.27 mm
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Figure 6.12: F1 Specimen Deflection =3.29 mm
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Figure 6.15: Crack Length vs Deflection for Group B
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Figure 6.16: Crack Length vs Deflection for Group D
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Figure 6.19: Numerical Model for Mode II Simulation



210

Load Point Displacement (mm)

L
oa

d
(N

)

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

F Experiment
F Numerical Simulation
D1 Experiemnt
D1 Numerical Simulation
D2 Experiment
D2 Numerical Simulation
D3 Experiment
D3 Numerical Simulation

Figure 6.20: Comparison of Numerical Simulation and Experiment



211

Z-pin Density

F
ra

ct
ur

e
T

ou
gh

ne
ss

(
N

/m
m

)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

No Z-Pin
1% d=0.01 in
1% d=0.02 in
2% d=0.01 in
2% d=0.02 in
3% d=0.01 in
3% d=0.02 in

Figure 6.21: Fracture Toughness of [45/− 45/0/90]2s Composites



212

Z-Pin Density

F
ra

ct
ur

e
T

ou
gh

ne
ss

(N
/m

m
)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

No Z-pin
1% d=0.01 in
1% d=0.02 in
2% d=0.01 in
2% d=0.02 in
3% d=0.01 in
3% d=0.02 in
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Figure 6.23: Set-up of Drop Tower



214

 

Figure 6.24: Crack Advanced Gage
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Figure 6.30: Crack Propagation Information of B3-1 Specimen
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Figure 6.31: Image Taken When Time is 0 Second
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Figure 6.32: Image Taken When Time is 100 µ Second
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Figure 6.34: Image Taken When Time is 1050 µ Second
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CHAPTER VII

Conclusions and Recommendations for Future

Research

This thesis reports experimental results and numerical simulations of Z-pinned

textile composites under in-plane compression loading. Three different numerical

models were built in order to account for observation found in compression exper-

iments. Also, experiments in static and dynamic mode II fracture were conducted

to investigate the performance under transverse loads. This thesis investigated the

effect of Z-pin density and Z-pin diameter on the performance of the woven com-

posites in compression and in Mode II static and dynamic fracture. The important

conclusions are summarized in the following:

7.1. Conclusions

7.1.1 Compressive Tests and Failure Mechanism of Z-pin Composites

The influence of Z-pin diameter, Z-pin density, and lay-up were all examined.

Initial defects between the Z-pin and the surrounding area and unintended fiber

waviness caused by Z-pin insertion have been identified as causes responsible for

lowering the compression strength which is limited by fiber tow kinking leading

to macroscopic kink banding. When the Z-pin diameter is set to be the same,

the higher density Z-pin composites have lower strength than the lower density Z-
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pin composite. When the density is set to be the same, the small diameter Z-pin

composites have lower strength than the larger diameter Z-pin composites. Finally,

a simplified analytical method proves to be reliable in predicting the initial stiffness

of the no Z-pin composite.

7.1.2 Compression Strength Prediction Using a 2D model

A 2D 1-3 plane (loading plane) model is presented to investigate the effect of local

imperfection near the Z-pin within a woven composite. It is observed that damage

around the Z-pin doesn’t influence the local strength of the composites but does

affect the post response after failure. The higher density of Z-pin composites have

less strength and stiffness provided that the diameter is the same. The distortion

induced due to Z-pinning is the location where the kink band starts to form. This

kink band subsequently propagates until loss of load capacity. On the other hand,

the imperfect bonding between the Z-pin and matrix has little effect on the strength

of the composites near the Z-pin.

7.1.3 Prediction of Compressive Strength in multilayered Woven Z-pin
Textile Composites- 2D Model to Account for Phase Difference

A 1-2 plane 2D model condensed from the 3D model is presented. This 2D model

is presented in order to simulate multi layer composites. The cross section used in

this 2D model can not be chosen arbitrarily. The ideal cross section should include

longitudinal (axial) fiber tows. It is found that composites with phase difference

has higher strength than composites with no phase difference.
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7.1.4 Compressive Response and Failure of Z-Pin Textile Composites:
3D Numerical Simulation

A 3 layer 3D numerical model with each layer of lamina containing 16 repre-

sentative unit cells is presented. The results from experiments and prediction of

the 3D model agree well . The effect of phase difference can be simulated if a

multi layer model is used. It is concluded that the strength of the composites would

change if the position of lamina in each layer is changed. Also, the Z-pin composites

will have less strength and stiffness than the unpinned composites, as predicted by

the model and in agreement with experimental observations. However, the phase

difference doesn’t influence initial stiffness of the composite because the size of a

representative unit cell in each lamina is the same.

7.1.5 Static and Dynamic Fracture Mode II Tests

The mode II fracture behavior of Z-pin composites was presented. Two types of

composites, [45/−45/0/90]2s and [0]16 lay-ups, were used in the tests. In each type

of the composites, the response of three different kinds of Z-pin density and two

different kinds of Z-pin diameter were investigated. The Z-pinning greatly increases

the fracture toughness than the unpinned composites. The Z-pin successfully pre-

vents the primary crack to propagate while cracks on the other weak places are

formed, thus dissipating more energy. The additional friction provided by Z-pins

also lets the composites to be loaded into plastic state, so that more energy is dissi-

pated. When density is the same, the contact area between a Z-pin and fiber tows

in small-diameter Z-pin composites provides more fracture toughness than large-

diameter Z-pin composites. The proposed cohesive zone model prediction for static

tests agrees well with results from experiments.
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7.2 Recommendations for future research

Models to study phase difference for 2D and 3D have been proposed in this

thesis. However, perfect bonding is assumed between different laminae. This is not

realistic because the interface between different layers of laminae is the weakest part

under impact or transverse load. Therefore, a special layer to simulate the interface

is required.

Since the thickness of the interface is relatively small compared to one layer

of lamina, a very fine mesh might be needed to fully simulate the response of the

interface. This might be too expensive and won’t be very popular for industrial use.

Therefore, a multi scale method might be a feasible alternative to study the effect

of the interface on the performance of the whole composite.

A comprehensive study of the combination of phase difference in the laminae

of the laminated composite is recommended. In this way, the optimal permutation

of phase difference can be identified and used as a design parameter. Also, it is

desirable to carry out more simulations with different densities and different size of

Z-pin in order to arrive at an “optimal” Z-pin density and Z-pin size for enhancing

mechanical performance in compression and mode II fracture.
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APPENDIX A

Improved Speckle Method for Measuring

In-Plane Displacement and Strain Fields

An improved method to compute the displacement field and strain field from

the speckle recorded from a CCD camera is proposed. Previous studies have shown

that the displacement field can be determined from two neighboring speckle images

by use of the fast Fourier transform. Moreover, the accuracy of determining the

displacement field in this manner relies on the ability to determine the peak position

of the Fourier spectrum precisely. We present an improved method which can

measure the displacements to an accuracy of 2µm is presented, provided that the

distance between two pixels corresponds to 0.1 mm. The algorithm developed to

obtain the displacement field uses the assumption that the displacements within

each sub-element of the image are constant and evaluated at the center of the

sub-element. However, instead of moving the entire sub-element in each loop in

the algorithm, a fraction of the sub-element size is adopted to generate a family

of overlapping sub-elements, resulting in an enhanced resolution of the resulting

displacement field.
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A.1. Introduction

Digital speckle methods are robust and well studied for measuring in-plane

displacement and strain fields. Of these, speckle correlation photography has several

advantages, including full-field and non-destructive measurement, and ease of set

up to acquire data from a test specimen [12] and [48]. Typically, there are two ways

to extract information regarding the displacement field from the speckle patterns

recorded from CCD camera. Both methods divide the entire image into many sub-

elements to perform point-wise filtering. The first way is based on calculating the

cross correlation coefficient. Such a method deals with data in the spatial domain.

Depending on the type of cross correlation coefficient that is chosen (the absolute

difference coefficient [65], the least-square coefficient [58], the cross-correlation [6]),

the displacement field and strain field can be obtained from the expression of the

extreme correlation coefficient.

The second way is based on the fast Fourier transform (FFT) which treats

the speckle information in the frequency domain. The accuracy of this method

hinges on locating the position of the peak of the Fourier spectrum precisely and

accurately [11]. Because the FFT is a discrete Fourier transform, the peak in the

frequency domain does not correspond to the real peak. Here, real peak refers to

the location of the analog Fourier transform. Indeed, the accuracy of the calculated

displacement field depends on how accurately the peak position is determined. More

comprehensive studies that deal with speckle images in the frequency domain can

be found in [51], [50], and [49]

In [11], a bi-parabolic fitting is used to locate the position of the discrete

peak with an assumption of axis-symmetry of the spectrum. In the present paper,
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a technique is presented that does not rely on assuming that the FFT spectrum is

axi-symmetric. The spatial details of the spectrum is known to be dependent on

the movement of the speckles in the images to be analyzed. Thus, without making

any assumptions regarding the nature of the FFT spectrum, the present technique

employs a higher order bi-cubic spline interpolation method to extract the position

of the discrete FFT peak. In addition, a family of overlapping sub-element windows

is used in analyzing the speckle images to compute the displacement field. These

improvements result in an increased accuracy and resolution with which the point-

wise displacement field can be obtained.

A.2. Experiment Setup

The instruments used to generate and capture the speckle image are shown

in Fig A.1. The schematic drawing is shown in Fig A.2. The area in which

the displacement field is to be measured is illuminated by a laser beam so that a

speckle pattern is generated on the surface of the specimen. The speckle images

are captured by a CCD camera and simultaneously stored in a memory card in the

camera. The size of the images taken from CCD is 4288 by 2848. Each pixel can

store a gray scale value ranging from 0 to 65535(16 bit). Also, the timer in the

camera and the timer in the data acquisition system are synchronized so that the

corresponding ”load” on the specimen is also known. A series of images at pre-

determined time intervals are collected during a typical experiment. Thus, a series

of speckle images at known time states and corresponding to known external load

states are available at the end of an experiment. Suppose an image is captured at

time t = t1,corresponding to a displacement field ũ(x̃, t), then by comparing the

image capture at t = t1 + ∆t, corresponding to ũ(x̃, t + ∆t) = ũ(x̃, t) + ∆ũ(x̃, ∆t),
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to the image captured at t = t1 , the incremental displacement field is computed,

as described in the next section.

A.3. Theory of digital image correlation in the frequency
domain

Each speckle pattern image stored in the computer is a matrix of size NxM,

containing numerical entries that range from 0 to 65535. The size NxM depends

on the CCD recording device used. The value of the entries is dependent on the

intensity of light with 0 representing pure white and 65535 representing pure black.

Suppose that the image intensity at t = t1 is defined as h1(x̃) and the image

intensity at t = t1 + ∆t is defined as h2(x̃) where

h1(x̃) = h(x, y) (A.1)

h2(x̃) = h1(x̃− ũ) + n(x, y) (A.2)

where n(x, y)represents noise in the signal

Denote the complex Fourier transform of h1(x̃) as H1(ωx, ωy), the complex Fourier

transform of h2(x̃) as H2(ωx, ωy) and the complex Fourier transform of n(x, y) as

N(ωx, ωy) where, by definition

H1(ωx, ωy) =
∫ ∫

h(x, y) exp[−j2π(xωx + yωy)]

= |H(ωx, ωy)| exp[jφ(ωx, ωy)] (A.3)

H2(ωx, ωy) =
∫ ∫

(h(x− u, y − v) + n(x, y)) exp[−j2π(xωx + yωy)]

= |H(ωx, ωy)| exp[jφ(ωx, ωy)− 2π(uωx + vωy)] + N(ωx, ωy)(A.4)

The multiplication of H1(ωx, ωy) and the complex conjugate of H2(ωx, ωy) is defined
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as F (ωx, ωy) where

F (ωx, ωy) = |H(ωx, ωy)|exp[jφ(ωx, ωy)] ∗ |H(ωx, ωy)|exp[jφ(ωx, ωy)− 2π(uωx + vωy)]

+ N(ωx, ωy)

≈ |H(ωx, ωy)|2exp[j2π(uωx + vωy)] (A.5)

Define the Fourier transform of F (ωx, ωy) as G(ζ, η) , then

G(ζ, η) =
∫ ∫

F (ωx, ωy)exp[j2π(ζωx + ηωy)]dωxωy

=
∫ ∫

|H(ωx, ωy)|2exp[j2π((ζ − u)ωx + (η − v)ωy)] = Ḡ(ζ − u, η − v)

(A.6)

In practice, Ḡ(ζ−u, η−v) is a peak from which the displacement components

u and v can be identified. That is, u and v are the distances away from the center

of the frequency spectrum. Repeating the above two-step discrete FFT for each

sub-element and spanning the entire image enables determining the complete dis-

placement field. If two identical images are used in the analysis, the displacement

vector u and v should be identically zero. However, in practice, two identical images

can produce a shift which depends on the numerical accuracy of the procedure.

A.4. Increased sensitivity by increasing the number of data
points

In the technique that has been presented here, a single image is dived into

many sub-elements during the subsequent analysis. Therefore, each loop in the

program is used to extract the displacement for the corresponding sub-element. This

also implies that the monitored window shifts the location of the sub-element in a

subsequent step. In order to increase the resolution of the computed displacement

field, instead of shifting the sub-element in each subsequent loop, only a fraction (1/4
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size) of the sub-element is shifted. This is schematically shown in Figure A.3. In

doing so, one has over-lapping sub-elements and thus a larger number of data points

are generated which can subsequently be used to describe the surface displacement

field. This is somewhat analogous to the idea of mesh refinement in numerical

techniques such as the finite element method in classical mechanics [5]. It is to be

noted that the choice of size in shifting 1/4Hh or 1/4Hv as in Figure A.3) is entirely

at the discretion of the user. In theory, one can generate a large number of points

to increase the accuracy of the displacement field by changing the amount of the

shift.

A.5. Increased accuracy by interpolation of the area near
the peak

The accuracy of the method as presented here in the frequency domain depends

upon the precision with which the location of the peak of the Fourier spectrum

is identified. Since this is done numerically, the peak of the spectrum does not

correspond to the real (analog) peak. Usually, there is a small distance between the

real peak and the peak as extracted by a digital technique. Therefore, it is necessary

to enhance the accuracy of the methods of peak extraction, so that the digital peak

is computed as close as possible to the ”actual” peak. One way to improve this is to

use a continuous Fourier transform (CFT) [47], [40], and [35]. However, it is pointed

out that this is computationally inefficient. It is recommended to obtain the Fourier

spectrum using the FFT first. Then, by searching in the neighborhood of points of

the pseudo- peak, the real peak can be identified by use of interpolation [30]. In, [11],

it is assumed that the FFT spectrum is axi-symmetric. By use of this assumption,

an algorithm to interpolate the data near the peak and extract the displacement
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vector from the interpolated spectrum, is derived. In this paper, the assumption of

axi-symmetry is relaxed. Furthermore, bi-cubic spline functions are used to fit the

data points near the peak. After this, via interpolation, an approximation to the

real peak is obtained. Note that there are no assumptions regarding the shape of

the spectrum near the peak because the shape is dependent on the details of the

displacement field that is being interrogated. The introduction of bi-cubic spline

interpolation is described in [10]. Figure A.4 and Figure A.5 show the peak of the

spectrum before interpolation and after interpolation. The peak and its neighboring

24 points are extracted from the original spectrum shown in Figure A.4. After the

interpolation, the interpolated spectrum used for extracting the real peak is shown

in Figure A.5. Obviously, the location of the peaks in Figure A.4 and Figure A.5

are slightly different. Here, two images from a real experiment are used to show

why it is necessary to interpolate the data near the peak and locate the position

of the real peak. The original peak (obtained without bi-cubic interpolation) is 1

pixel away from the center, both in the vertical and the horizontal directions. That

is, (u,v)=(1,1) as shown in Figure A.4. However, after the bi-cubic interpolation,

the real peak can be captured with an improved accuracy. That is, (u,v)=(0.9611,

0.8833). It is worth mentioning the extent of the accuracy that the present method

can incorporate. Originally, the accuracy in capturing the location of the peak in

Figure A.4 is limited to integer pixel values only. After interpolation, the 5x5

matrix of points are transformed to a size of 257x257. Noting that previously 25

points (5x5) are selected to extract the real peak in the frequency domain, the

present use of spline interpolation extends this ”grid” of points to 9x9, because one

point is inserted between two neighboring points of the original 5x5 square. This

interpolation is repeated 6 times and leading to a grid of 257 x 257. Therefore, the
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accuracy in determining the position of the peak is now 5/257 pixel.

A.6. Numerical Experiemnts

Example 6.1 to example 6.4 are used to demonstrate the reliability of the pro-

posed method. Example 6.5 and Example 6.6 show analyses of actual experimental

data.

A.6.1 NUMERICAL TENSILE TEST

Figure A.6 is a speckle pattern image, say IMAGE A, from an instant of time

at which a composite material sample was under load. The size of this image is 400 x

400 pixels. IMAGE A is fixed in the left boundary AB and in its right boundary CD

is stretched by 5 pixels by use of well-known software Photoshop [1]. The horizontal

displacement field after analysis is shown in Figure A.7. The x-axis represents the

position along the boundary AC and the y-axis represents the position along the

boundary AB. The z-axis represents the displacement field for the corresponding

position in Figure A.6. It is seen that the displacement varies linearly from the left

boundary AB to the right boundary CD. Also, the horizontal displacement along

boundary AB is zero and finally the horizontal displacement is calculated to be 5

pixels along the boundary CD. It is notes that, in the proposed method, the entire

image is divided into many sub-elements. During the analysis, the displacement

within each sub-element(assumed constant)is obtained. These discrete displacement

data are centered at each subelement. When these data are used with the plotting

software in Matlab to generate the 2 dimensional displacement plot as shown in

Figure A.7, Matlab uses a high order polynomial to interpolate the discrete data and

subsequently plot it. That is the reason why there are ”waves” in the displacement

field which is strictly ”linear” to within 0.02 pixels.
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A.6.2 Compressive test

In this example, image A shown in Fig A.6 is fixed along the boundary AB

and is compressed 5 pixels along the boundary CD. Figure A.8 shows the horizontal

displacement field of this deformation. The x-axis represents the position along the

boundary AC and the y-axis represents the position along the boundary AC. The

z-axis represents the displacement field for the corresponding position. Similar to

the previous example, the horizontal displacement varies linearly. It also shows that

the displacement is zero along AB and becomes -5 pixles along the boundary CD.

The ”waviness” in the figure is due to reasons explained earlier.

A.6.3 Rigid body translation test

A rigid body translation to the left of 5 pixels is imposed on the Image shown

in Fig A.6. The displacement field after analysis is shown in Figure A.9. The

definitions of the x-axis, y-axis, and z-axis are the same as those in example 6.1 and

6.2. As can be seen in Figure A.9, after point-wise analysis, the displacements of

the speckles throughout the specimen are approximately uniform at 5 pixels.

A.6.4 Rigid body rotation

Figure A.10 and Figure A.11 represent the speckle pattern before and after

rotation. All the speckles in the Figure A.10 are rotated clockwise about the center

of the image. Figure 11 shows the displacement field in quiver form from Figure

A.10 to Figure A.11. It is evident that the displacement is small for points located

near the center of the specimen and the displacement is larger for points away from

the center. In between, the displacements vary linearly as expected. These trends

are captured in Figure A.12.
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A.6.5 Tension test

As shown in Figure A.13, an ASTM standard D638 dog-bone tension specimen

was subjected to tensile load using a MTS servo-hydraulic Machine. One side of the

specimen was illuminated by a He-Ne laser and images were recorded for subsequent

analysis. A strain gage was attached on the other side of the specimen. A typical

speckle pattern of the monitored area is shown in Figure A.14. Different images at

different times and the corresponding loads on the specimen are recorded. In each

incremental analysis, the relative average displacement between line AA and line

BB is computed. The average strain can thus be obtained by dividing the relative

displacement by the height of the undeformed monitored area. The difference of

the applied load between the initial image and final image are used to obtain the

stress increment by dividing the load increment by the specimen undeformed area.

Figure A.15 shows the comparison of the stress-strain curves obtained from the

speckle method and strain gage, respectively.

A.6.6 Bi-axial test

An in plane bi-axial test of a 2D triaxially braided composite was performed

and results are reported in [43]. During the tests, an area that is equal in size to

the repeating unit cell of the composite was monitored as shown in Figure A.16.

The speckle images at seven different states were recorded and saved in the data

acquisition system. Here, we demonstrate the versatility of the developed method

by analyzing these images. In order to obtain the strain fields, the first image is

subsequently used as the reference state. By use of any two images, the strain field

between these two images can be computed. Figure A.17 ∼ Figure A.22 shows the

incremental strain field εxx. Figure A.23 ∼ Figure A.28 shows the incremental strain
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field εyy. Figure A.29 Figure A.34 shows the incremental strain field γxy . The

strain concentration is observed at the left side of the monitored area. Subsequent

post-experiment inspection showed that this area corresponded to large amounts

of damage as reported in [43]. The evolution of the strain field in relation to the

development of surface damage is also evident in the speckle strain fields. Now, when

one relates these observations to the actual textile architecture of the specimen, it

is immediately seen that the regions of highest strain correspond to the location of

the bias-braid and the crossing of two bias-braids.

A.7. Accuracy of the current method

As shown in Figure A.35, the length of the monitored area is 2000 pixels. The

size of the sub-element is assumed to be 200 pixels. Suppose that the load P is im-

posed so that a uniform strain of 0.0001 is enforced throughout the entire monitored

area. Image 1 is taken at the start of the experiment and image 2 is taken when a

strain of 0.0001 is imposed. Line DD is assumed to be the fixed end. Consequently,

it is expected that sub-element ]1 will displace 0.2 pixel and sub-element ]2 will

displace 0.18. Since the accuracy of this current method is limited to 0.02 pixel, the

present technique can still provide a ”good” result for analyzing these two images.

However, suppose that there are intermediate images between image ]1 and image

]2. Then it is possible that these intermediate images when analyzed yields no

information that is resolvable within the accuracy of the technique presented. The

proposed method does require that two neighboring speckle images are always used

to extract the displacement field, in order to ensure that the images are correlated.

This will not happen if the two images correspond to displacement fields that are

large (several pixels). In these instances, the peak in the FFT spectrum is not very
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sharp, since the images are uncorrelated. Furthermore, the technique described and

the experiments reported in this paper are under in-plane deformation. Therefore,

out of plane deformation is not discussed in this paper.

A.8. Conclusion

An improved method to compute the displacement field and strain field from

the speckle recorded from a CCD camera has been presented. The method has been

validated through the use of several examples. The proposed method can be used to

measure non-homogenous surface strain fields in heterogenous materials. The pro-

posed method can measure the displacements to an accuracy of 2µm, provided that

the distance between two pixels corresponds to 0.1mm. The algorithm developed

to obtain the displacement field uses the usual assumption that the displacements

within each sub-element of the image are constant and evaluated at the center of

the sub-element.
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Figure A.1: Experimental Setup
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Figure A.2: Schematic Drawing of the Experimental Setup
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Figure A.3: The Movement of the Monitored Window in this Algorithm
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Figure A.4: Peak before Bi-Cubic Interpolation

Figure A.5: Peak after Bi-Cubic Spline Interpolation
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Figure A.6: Speckle Pattern
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Figure A.7: Horizontal Displacement Field after Stretching
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Figure A.8: Horizontal Displacement Field after Compression
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Figure A.9: Horizontal Displacement Field after Rigid Body Translation
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Figure A.10: Speckle before Rotation Figure A.11: Speckle after Rotation
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Figure A.12: Displacement Field of Rigid Body Rotation
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Figure A.13: Aluminum Specimen Figure A.14: Speckle Image of the
Monitored Area
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Figure A.16: Illustration of Monitored Area
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Figure A.18: εxx from State 1 to State
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Figure A.19: εxxfrom State 1 to State
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Figure A.20: εxxfrom State 1 to State
5

X − Space cordinates, mm

Y
 −

 S
pa

ce
 c

or
di

na
te

s,
 m

m

Incremental Strain, Delta du/dx 

 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure A.21: εxx from State 1 to State
6
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Figure A.22: εxx from State 1 to State
7
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Figure A.24: εyy from State 1 to State
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Figure A.25: εyy from State 1 to State
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Figure A.26: εyy from State 1 to State
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Figure A.27: εyy from State 1 to State
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Figure A.28: εyy from State 1 to State
7
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Figure A.29: γxy from State 1 to State
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Figure A.30: γxy from State 1 to State
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Figure A.35: Schematic Drawing of the Specimen
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APPENDIX B

In-Plane Tensile Properties of Z-pin Composites

B.1. Tension Test Results

A limited number of tension tests were conducted by use of quasi-isotropic com-

posites with Z-pin diameters of 0.5080 mm (0.02 in.), 0.2794 mm (0.011 in.), and

no Z-pin, respectively. The classification of these composite laminates is given in

Table 1.1. In each subgroup, two specimens cut in “dog-bone” shape were used to

perform experiments. A typical specimen and its dimension is shown in FigureB.1.

Figure B.2 and Figure B.3 show the comparison of the axial stress- axial strain

response in group A and group C. Only one test in each subgroup is presented

for clarity. The stress-strain curve is linear initially and becomes “soft” as load

increases. Nonlinearity sets in early at about 0.5% macroscopic strain.

In both of the groups, there is a trend that the strength decreases as Z-pin density

increases. The difference is more obvious than the tests conducted in compression

(chapter 2). The comparison of strength and stiffness in group A is summarized

in Figure B.4 and Figure B.6. Similar to strength, the stiffness decreases as Z-

pin density increases. Comparison of strength (Figure B.5) and stiffness (Figure
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B.7) in group C has this trend. Observing the failure surface of group A specimen

in Figure B.8 shows that the failure length becomes “shorter” as Z-pin density

increases. That is, the region of intense damage (referred to “ failure length”) is

influenced by Z-pin density. Similar phenomenon can be observed from the failure

length of group C specimens in Figure B.9. Matrix cracking (distributed) leads to

the softening behavior observed in the axial stress- axial strain response. As loading

proceeds, this distributed damage accumulation increases, finally leading to poor

load transfer between the tows. At a critical state of damage, the axial fiber-tow

strength is exceeded loading to failure. Delamination due to matrix damage can be

observed between different laminae as shown in Figure B.10 Failure surface can be

observed to pass near the Z-pin as shown in Figure B.11.

B.1. Summary

Results from tension tests of quasi isotropic laminated textile composites are

reported in this appendix. Degradation of the matrix leading to fiber tow rupture

is the main failure mechanism by which the structure loses its load carrying capacity.

Similar to the compression response (chapter 2), the failure surface intersecting the

Z-pin boundary can always be observed. The fiber undulation and distortion are

the “seeds” to initiate matrix cracking. When the accumulated damage reaches a

critical level, catastrophic failure occurs, leading to loss of load bearing capacity
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Figure B.1: “Dog Bone” Shape Specimen for Tension Test
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Figure B.2: Stress-Strain Response for Group A and Group E
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Figure B.3: Stress-Strain Response for Group C and Group E
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Figure B.4: Comparison of Strength between Group A and Group E
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Figure B.5: Comparison of Strength between Group C and Group E
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Figure B.6: Comparison of Stiffness between Group A and Group E
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Figure B.7: Comparison of Stiffness between Group C and Group E
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Figure B.8: Failure Pattern in Group A and Group E (A1 is 1% Z-pin Density, A2
is 2% Z-pin Density, A3 is 3% Z-pin Density). Notice How the Smaller
Spacing between Z-pins (Larger Density) Leads to a Small Zone of
Intense Damage
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Figure B.9: Failure Pattern in Group C and Group E (C1 is 1% Z-pin Density,
C2 is 2% Z-pin Density, C3 is 3% Z-pin Density). Notice How the
Smaller Spacing between Z-pins (Larger Density) Leads to a Small One
of Intense Damage
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Fiber Tow

Matrix between fiber tow

Figure B.10: Delamination between Fiber Tows,as Seen in a Failed A Specimen,
after Tension Load
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Broken fibers in the fiber tow

Z-pin

Z-pin / fiber tow boundary

Figure B.11: Fiber Tow Breakage near Z-pin Imaged through a SEM
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