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Chapter 1 

Introduction 

 

Orogenic plateaus contain a significant amount of the high elevation topography 

on Earth.  Today, the Tibetan and Andean Plateaus are the two most prominent 

orogenic plateaus and are characterized by exceptionally large (≥500,000 km2) and flat 

(<~0.5 km in relief) regions at high mean elevation (≥3 km) flanked by steep margins 

[e.g. Isacks, 1988; Tapponnier et al., 2001; Sobel et al., 2003].  Evidence also suggests 

orogenic plateaus existed in the geologic past in regions currently occupied by the 

Western Cordillera of North America (the Nevadaplano) [DeCelles, 2004], southern 

Europe (the Hercynian Tibetan Plateau) [Menard and Molnar, 1988], and the southern 

portion of the modern Tibetan Plateau (the Lhasaplano) [Kapp et al., 2007].  The Tibetan 

Plateau is the largest of the two modern plateaus and the result of continental collision 

between India and Eurasia over the last ~50 Myrs [e.g. Molnar et al., 1993].  The 

Andean Plateau is the core of the central Andes and the result of Nazca Plate 

subduction below South America throughout the Cenozoic [e.g. Isacks, 1988].  These 

plateaus possess such significant gravitational potential energy that eventually they 

reach their limit and collapse as one of the penultimate results of orogenesis [Dewey, 

1988; Willett and Pope, 2004].  Current motivating questions about plateau evolution 

include:  (1) What is the deformation history associated with plateau development?  (2) 

What is the erosional response to plateau growth?  (3) What is the history of elevation 

gain?  (4) Why are they so broad and low in relief?  (5) What processes are important in 
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their evolution?  I specifically quantify the first two questions applied to the Andean 

Plateau (Fig. 1.1) and use the results to comment on the remaining questions. 

The basic form, width, and evolution of mountain belts and orogenic plateaus are 

thought to be the result of the interactions between tectonics and erosion [e.g. Hoffman 

and Grotzinger, 1993; Masek et al., 1994].  Plateau deformation and uplift is governed 

by shortening and thickening of the lithosphere driven by tectonic plate interactions.  

Models of plateau evolution range from broad, uniform uplift as the result of a pre-

weakened lithosphere to outward spreading from an initially strong lithosphere capable 

of supporting a narrow mountain belt [Isacks, 1988; Wdowinski and Bock, 1994; Royden, 

1996; Willett and Pope, 2004].  Unfortunately, testing these models is hindered by a 

significant lack of knowledge of the kinematic and deformation history specific to plateau 

formation.  A principal goal of this dissertation is to constrain the kinematic and 

deformation history of the Andean Plateau. 

Numerical models of orogen growth have demonstrated how the distribution of 

precipitation and erosion can influence mountain architecture and focus deformation and 

uplift [e.g. Beaumont et al., 1992; Avouac and Burov, 1996; Willett, 1999; Beaumont et 

al., 2001; Stolar et al., 2006].  Numerous studies have tried to document this tectonic-

erosion coupling at regional scales using predominantly spatial correlations between 

climate, sediment flux, exhumation, and metamorphic grade [Zeitler and Meltzer, 2001; 

Finlayson et al., 2002; Dadson et al., 2003; Molnar, 2003; Reiners et al., 2003; Wobus et 

al., 2003; Thiede et al., 2005].  However, significant questions remain about tectonic-

erosion coupling at a regional scale.  For example, observations of tectonic-climate 

decoupling exist [e.g. Burbank et al., 2003] and debate continues about the relative 

importance of tectonics and climate in forcing erosion over million-year timescales [e.g. 

Molnar, 2003].  The second main goal of this dissertation is to constrain the regional  
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Figure 1.1.  The Andes of South America with particular focus on the central Andean 
fold-thrust belt (FTB) and Andean Plateau (AP).  Boxes and labels outline the specific 
study locations for chapters (ch.) 2-5.  Elev = elevation. (A) Topography of the Andes 
from the GTOPO30 1 km dataset. (B) Topography of the Andean Plateau region from 
the SRTM 90 m dataset.  Extent of the plateau is defined by the 3 km contour (solid 
irregular black line) after Isacks [1988].  Location is in part A. 
 

 3



exhumation and erosion history associated with Andean Plateau growth and integrate it 

with the kinematic and deformation history. 

The central Andean fold-thrust belt and plateau is an ideal location to focus on 

the deformation and erosion history associated with plateau growth at a regional scale.  

First, recent studies have linked the growth of the Andean Plateau with large basement 

structures that are significant components of the central Andean fold-thrust belt in Bolivia 

(Fig. 1.1) [Kley, 1996; McQuarrie and DeCelles, 2001; McQuarrie, 2002].  This 

correlation of thrust belt kinematics with plateau growth allows an unprecedented 

opportunity to infer the record of plateau development by chronicling thrust belt 

evolution.  Second, along-strike correlations in deformation width, morphology, and 

climate as well as analogue models suggest erosion has played a fundamental role in 

the evolution of the central Andean fold-thrust belt in Bolivia [Masek et al., 1994; Mugnier 

et al., 1997; Horton, 1999; Leturmy et al., 2000; Montgomery et al., 2001].  Despite this 

importance of erosion, observational constraints on the long-term (>10 Myr) erosion 

history and its along-strike variations across the entire thrust belt were lacking when this 

project began [e.g. Barnes and Pelletier, 2006].  The hypotheses that regionally link 

orogenic plateau growth to thrust belt evolution and that variable erosion has been 

important in the evolution of the eastern fold-thrust belt margin of the Andean Plateau in 

Bolivia are what determined the geographic focus of this dissertation.  This dissertation 

demonstrates that questions related to plateau formation and erosion in orogenesis are 

better addressed by integrating the regional chronology of deformation, kinematics, 

exhumation, erosion, and sedimentation. 

This dissertation constrains the deformation and history across and along strike 

of the central Andean fold-thrust belt and plateau (Fig. 1.1).  Deformation and 

exhumation are quantified with apatite and zircon fission-track and (U-Th)/He 

thermochronology combined with inverse thermal modeling [e.g. Reiners and Ehlers, 
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2005].  Sample cooling histories are then interpreted within their regional stratigraphic, 

structural, and kinematic contexts [McQuarrie, 2002; McQuarrie et al., 2005; McQuarrie 

et al., 2008].  The regional-scale exhumation and deformation patterns are also 

integrated with the documented foreland basin sedimentation history [Horton et al., 

2001; Horton et al., 2002; DeCelles and Horton, 2003; Horton, 2005].  Digital 

topography, erosion surface reconstructions, erosion-rate estimates, and foreland 

sediment isopachs are used to calculate sediment volumes and production/delivery rates 

in order to perform a sediment budget analysis in southern Bolivia.  Finally, a synoptic 

view of the evolution of the entire Andean Plateau is developed by synthesizing an even 

wider variety of geologic observations. 

 

Dissertation outline 

This dissertation is composed of 4 main chapters (2-5) proceeded by this 

introductory chapter 1 and followed by the summary and conclusions chapter 6.  Chapter 

2 documents the exhumation history along a transect across the entire central Andean 

fold-thrust belt and eastern plateau margin in northern Bolivia at 15-17°S (ch. 2 box in 

Fig. 1.1B).  An associated paper presents the structural and kinematic history along the 

same transect and integrates it with the exhumation history outlined in chapter 2 

[McQuarrie et al., 2008].  Chapter 3 quantifies the exhumation history along another 

transect across the central Andean fold-thrust belt where the plateau is at its widest 

extent in southern Bolivia at ~19.5°S (ch. 3 box in Fig. 1.1B).  An associated paper 

provides an observational test of theoretical calculations that predict erosion is limiting 

the orogen width by relating the spatial and temporal variations in tectonic shortening 

(results of chapters 2 and 3) and the modern climate across the central Andean fold-

thrust belt in Bolivia [McQuarrie et al., in review].  Chapter 4 quantifies the Plio-

Quaternary (~3-0 Ma) sediment budget between central Andean fold-thrust belt erosion 
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and the record of sedimentation in the adjacent foreland throughout southern Bolivia at 

~18-22°S (ch. 4 box in Fig. 1.1B).  Chapter 5 is an up-to-date synthesis of studies that 

use observational constraints to determine the lithospheric structure and history of 

deformation, sedimentation, uplift, elevation, and fluvial incision across the entire 

Andean Plateau from southern Peru to northern Argentina (ch. 5 box in Fig. 1.1A). 
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Chapter 2 

Eocene to recent variations in erosion across the central Andean fold-thrust belt, 
northern Bolivia: Implications for plateau evolution1 

 

Abstract 

Quantifying the erosional and kinematic evolution of orogenic plateaus has been 

limited by insufficient age constraints on their deformation and erosion histories.  

Palinspastic restorations suggest the central Andean fold-thrust belt and plateau evolved 

concurrently in Bolivia.  We present an analysis that synthesizes 19 new and 32 

previous apatite and zircon fission-track and (U-Th)/He mineral cooling ages along a 200 

km traverse across the plateau margin and entire thrust belt in northern Bolivia.  The 

new apatite fission-track data are interpreted using a grain-age deconvolution algorithm 

with inverse thermal modeling of track lengths, grain ages, and mineral composition 

proxy data.  Results suggest: (1) Eo-Oligocene (~40-25 Ma) initial rapid erosion of the 

plateau margin, (2) accelerated, distributed erosion across the entire thrust belt since the 

early to mid-Miocene (~15 Ma), and (3) the magnitude of erosion decreases eastward 

from ~10-4 km.  We compare these results with two end-member models of the central 

Andes that contrast in duration and magnitude of deformation.  The rapid Eo-Oligocene 
                                                 
1Official citation: 
 
Barnes, J. B., T. A. Ehlers, N. McQuarrie, P. B. O’Sullivan, and J. D. Pelletier (2006), 

Eocene to recent variations in erosion across the central Andean fold-thrust belt, 
northern Bolivia: Implications for plateau evolution, Earth and Planetary Science 
Letters, v. 248, 118-133. 
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(~40-25 Ma) erosion is only consistent with the end-member that emphasizes the long 

duration and large magnitude deformation controlled by the sequential stacking of 

basement thrust sheets.  However, the distributed Miocene (~15 Ma) to recent erosion is 

consistent with both end-members because the recorded cooling could have resulted 

from active deformation, protracted erosion, or both.  If the long duration model is 

correct, the time between the two phases of accelerated cooling brackets the cessation 

of the first basement thrust sheet and implies the early development of the Andean 

plateau analogous to its modern width, but unknown elevation by the early Miocene (~20 

Ma). 

 

Introduction 

Many active mountain ranges are characterized by fold-thrust belts that exhibit 

significant relief, deformation, and erosion.  In the central Andes and the Himalayas, the 

hinterland portions of the thrust belts are occupied by high elevated plateaus 

characterized by unusually low relief and internal drainage [Isacks, 1988; Tapponnier et 

al., 2001; Sobel et al., 2003].  The Andean and Tibetan plateaus are invoked to force 

global climate, Cenozoic climate change, terrestrial sediment flux, and even ocean 

chemistry [Richter et al., 1992; Royden, 1996; Ruddiman et al., 1997].  Despite their 

significance, observational constraints on plateau formation mechanisms across the 

entire width of their marginal thrust belts are lacking.  Nevertheless, proposed 

mechanisms for plateau formation prescribe a wide range of kinematic predictions from 

uniform plateau uplift to outward growth from a narrow orogenic belt [Wdowinski and 

Bock, 1994; Royden, 1996]. 

The timing of formation of these large plateaus also remains unresolved [e.g. 

Murphy et al., 1997; McQuarrie et al., 2005].  In particular, estimates on timing and rate 

of Andean plateau (AP) formation are based on a wide variety of proxies for plateau 
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formation and elevation.  These estimates are highly varied and range from ~40-5 Ma 

[Benjamin et al., 1987; Isacks, 1988; Sempere et al., 1990; Gubbels et al., 1993; 

Allmendinger et al., 1997; Kennan et al., 1997; Lamb and Hoke, 1997; Gregory-

Wodzicki, 2000; DeCelles and Horton, 2003; Horton, 2005; McQuarrie et al., 2005; 

Garzione et al., 2006].  Thus, quantifying the timing and mechanisms of plateau 

development necessitates detailed regional knowledge of their deformation and erosion 

histories. 

Erosion is the primary mechanism of exhumation in fold-thrust belts.  In active 

tectonic settings such as the central Andes, the initial stages of accelerated erosion can 

also be a signature of deformation.  For example, the relief generated by deformation is 

often what begins to drive the erosion process [Coughlin et al., 1998; Willett, 1999; 

Willett and Brandon, 2002; Sobel and Strecker, 2003; Carrapa et al., 2005; Clark et al., 

2005].  Low-temperature thermochronometers quantify rock exhumation in the shallow 

(upper 2-10 km) crust [e.g. Ehlers and Farley, 2003].  In this study, we (1) quantify the 

spatial and temporal patterns of erosion across a 200 km transect through the entire 

northern Bolivian thrust belt by integrating new apatite fission-track (AFT) and zircon (U-

Th)/He (ZHe) data with previous AFT and zircon fission-track (ZFT) data (Fig. 2.1), and 

(2) evaluate how these erosion patterns correlate with two models for the timing and 

kinematics of AP formation. 

 

Geologic setting 

The central Andean fold-thrust belt is divided into four physiographic regions (Fig. 

2.1).  These regions [after Kley, 1999] are: The Altiplano, Eastern Cordillera, 

Interandean zone, and Subandes (Fig. 2.1A).  The AP occupies the hinterland portion of 

the thrust belt and is defined as the broad region of low relief above 3 km elevation that 

encompasses both the Altiplano and the westernmost Eastern Cordillera [e.g. Isacks, 
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1988].  The physiographic regions are defined by large structural steps that correlate 

with an eastward down-stepping in average topographic elevation (Fig. 2.1A) 

[McQuarrie, 2002].  The structural steps are basement highs that define the regional 

boundaries and play fundamental roles in the thrust belt structure [Kley, 1996; Kley, 

1999; McQuarrie, 2002].  The exposed rocks involved in the deformation range from 

Paleozoic marine siliciclastics to Mesozoic non-marine clastics and Tertiary synorogenic 

deposits (Fig. 2.1B) [Guarachi et al., 2001; e.g. McQuarrie, 2002].  Although the regional 

structure is important, correlations between along-strike variations in topography, 

climate, and thrust belt geometry have been used to propose that the latitudinal erosion 

gradient also exerts a first-order control on the evolution of the plateau margin [Horton, 

1999; Montgomery et al., 2001; Lamb and Davis, 2003]. 

 

 

Figure 2.1.  The central Andean fold-thrust belt and plateau in Bolivia.  (A) Major zones: 
AL = Altiplano, EC = Eastern Cordillera, IA = Interandean zone, SA = Subandes.  
Zone-bounding faults from McQuarrie (2002).  (B) Regional geologic map [from 
Guarachi et al., 2001] with thermochronometer sample locations.  Age of rock 
units are D = Devonian, O = Ordovician, S = Silurian, C = Carboniferous, Tr = 
Triassic, K = Cretaceous, Pg = Paleogene, Ng = Neogene, Q = Quaternary.  X-X’ 
is transect line in Figures 2.2, 2.4, and 2.5.  Dashed rectangle is the extent of the 
swath-averaged topography plotted in Figures 2.2 & 2.4A. 
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Previous work 

In northern Bolivia, previous fission-track studies targeted predominantly Triassic 

plutons of the Eastern Cordillera which are limited to a narrow region of the plateau 

margin (Figs. 2.1 & 2.2) [Crough, 1983; Benjamin et al., 1987; Safran, 1998; Guarachi et 

al., 2001].  More recently, combined U-Pb, 40Ar/39Ar, AFT and ZFT data of some of the 

same and adjacent plutons shows erosion-related exhumation with two rapid phases in 

the Eo-Oligocene and late Miocene to present totaling ~10 km in magnitude [Gillis et al., 

2006].  These aforementioned cooling histories have been used to indicate that 

shortening began ~40 Ma in the northern Eastern Cordillera [McQuarrie, 2002; 

McQuarrie et al., 2005].  Northern Subandes deformation is inferred to be Neogene from 

limited ages constraints on the foreland basin chronostratigraphy and structure [Roeder, 

1988; Sempere et al., 1990; Roeder and Chamberlain, 1995].  Unfortunately, no 

constraints exist on the timing and amount of long-term exhumation for most of the 

northern thrust belt that extends ~150 km eastward from the plateau margin [Barnes and 

Pelletier, 2006].  This study presents new thermochronometer data from across the 

entire northern Bolivian thrust belt at 15-16°S (Fig. 2.1). 

 

Methods 

Apatite and zircon fission-track thermochronology utilizes the thermally-sensitive 

retention of 238U fission-generated damage trails in those minerals to constrain sample 

thermal histories [Donelick et al., 2005; Tagami, 2005; Tagami and O'Sullivan, 2005].  

Zircon (U-Th)/He thermochronology uses the accumulation of 4He from the alpha decay 

of 238U, 235U, and 232Th in zircon crystals [Farley, 2002].  Although cooling rate and 

composition dependant, fission tracks in apatite generally become stable and record 

time since cooling through ~110ºC [Gallagher et al., 1998] which is commonly referred to 

as the closure temperature [Dobson, 1973].  The closure temperature for ZHe is ~180ºC 
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[Reiners et al., 2004] and ~240ºC for ZFT [Brandon et al., 1998].  Additionally, fission 

tracks experience length reduction (annealing), and 4He can be lost by diffusion through 

temperatures significantly lower than their closure temperature (i.e. ~110-50ºC for AFT).  

This temperature region where the tracks are annealed or 4He is lost is known as the 

partial annealing/retention zone [Hodges, 2003 and references therein]. 

AFT analytical results from sedimentary rock samples can exhibit significant 

variance because individual apatite grains possess non-uniform sources and cooling 

histories (see further discussion in Appendix 2.2).  We interpret the AFT data using the 

chi-square (χ2) test [Galbraith, 1981; Green, 1981], a statistical deconvolution of sample 

grain-age distributions [Brandon, 1992, 2002; Ehlers et al., 2005], and inverse thermal 

modeling of the age, track lengths, and mineral composition proxy data [Ketcham et al., 

2000].  In brief, we (1) use the χ2 test and grain-age distribution analysis results to 

identify the significant pooled or component age(s) in each sample grain-age distribution, 

and (2) use the results to guide placement of thermal constraints on the inverse 

modeling of each samples AFT data (see Appendix 2.2).  These two tools are combined 

to constrain the full range of possible onset times for the most recent rapid cooling 

history of each sample. 

We use the following terminology to discuss sample AFT grain-age distribution 

analysis and interpretation.  The χ2 test classifies a grain-age distribution as either 

concordant (P(χ2) > 5%) or discordant (P(χ2) < 5%) [Galbraith, 1981; Green, 1981].  

Concordant samples have one significant component age that is geologically relevant 

and equivalent to the pooled age.  Discordant samples have more than one significant 

component age and the pooled age is considered geologically meaningless [Brandon et 

al., 1998].  In the discordant case, one must use the central age [Galbraith and Laslett, 
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1993] or better yet identify (1) the minimum component age which not only constrains 

the most recent cooling, but is also the most easily resolved [Brandon et al., 1998], and  

 

Figure 2.2.  Topography, structure, and new apatite fission-track cooling ages across 
the fold-thrust belt.  (A) 70-km wide swath-averaged minimum, mean, and 
maximum topography profiles with projected sample locations.  Topography from 
90m SRTM data.  Profile location in Figure 2.1B.  Enlargements of the Eastern 
Cordillera (B), Interandean zone (C), and Subandes (D) show sample locations, 
IDs, and AFT pooled age or Min (Max) component ages in Ma relative to mapped 
structures. 
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(2) the older component age(s) as it (or they) may signify cooling associated with either 

a more thermally resistant apatite composition end-member (i.e. Cl-apatite) and/or the 

source region [Brandon et al., 1998; Carlson et al., 1999].  Once component age(s) have 

been identified, their age(s) relative to the sample depositional age allows the sample to 

be categorized [after Brandon et al., 1998] as follows: Reset samples contain one age 

component that is younger than the depositional age, and hence the grains have been 

reset to a younger age.  Mixed reset samples contain multiple age components younger 

than the depositional age that have all been reset since deposition.  Partially reset 

samples contain age components that are both younger and older than the depositional 

age such that only some of the grain ages were reset.  Detrital samples have component 

ages older than deposition and hence have ages inherited from the source region. 

ZHe analytical results can similarly exhibit significant variance because individual 

zircon grains can possess non-uniform sources and cooling histories as well as variable 

U & Th zonation, degrees of radiation damage, and abrasion during transport [Reiners, 

2005 and references therein].  Regardless, in general, ZHe grain ages similarly 

represent either the age of rock cooling if it is younger than the depositional age, or the 

age of source region cooling if the age is older than the depositional age. 

 

Results and interpretations 

We present 19 new AFT samples paired with 4 ZHe results from samples across 

the central Andean fold-thrust belt in northern Bolivia (Fig. 2.1).  Samples were collected 

from a wide range in elevation from Precambrian to Tertiary quartzites and sandstones 

(Fig. 2.2).  Table 2.1 lists essential sample information, Table 2.2 the AFT results, Table 

2.3 the ZHe results, and Appendix 2.1 details the analytical procedures. 

Interpretations of sample grain-age distributions assume the central or minimum 

age (or pooled age if only one component) represents the youngest apparent cooling 
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age or event [following Brandon et al., 1998].  Furthermore, we bracket the onset time of 

the most recent accelerated cooling by (1) quantifying the range of acceptable or better 

fits of thermal histories resolved with modeling, and (2) identifying the portion of resolved 

cooling histories where the particular sample cooled below AFT-sensitive temperatures 

(detailed in Appendix 2.2).  Figure 2.3 shows representative examples of the component 

age analysis and thermal modeling results.  Figure 2.4 illustrates the distribution of all 

reliable cooling ages along the thrust belt transect.  We group observations and 

interpretations by physiographic region, moving eastward from the Altiplano. 
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Altiplano 

Two AFT samples (AL1-2) were collected in the Altiplano ~85 km west of La Paz, 

Bolivia (Fig. 2.1B).  The pooled AFT ages are 9.87 Ma and 37.2 Ma with mean track 

lengths (MTLs) of 14.09 and 11.82 μm, respectively.  Sample AL1 from Precambrian 

sandstone is interpreted as mixed reset with AFT component ages of 11.4 and 4.2 Ma 

(Table 2.2).  Sample AL2 from Tertiary sandstone is interpreted as partially reset with 

AFT component ages of 58.6 and 8.7 Ma.  Collectively, these two samples show 

accelerated cooling from ~18-2 Ma which includes the 2σ error of the component ages 

from sample AL1. 

 

Eastern Cordillera 

We report four new AFT samples (EC1-4) from the Eastern Cordillera.  Pooled 

AFT ages range from 101-2.6 Ma with MTLs of 11.81-8.95 μm.  Component and central 

ages range from 143.3 to 2.0 Ma.  The AFT samples are interpreted as partially reset, 

mixed reset, and reset (Table 2.2). 

Two samples were collected to the southeast of La Paz significantly separated 

from the main transect in Devonian and Silurian sandstones exposed within the La Paz 

river basin (Fig. 2.1B).  Sample EC1 is reset with irresolvable component ages, so we 

report the central age (2.8 Ma) which is nearly identical to the pooled age (2.6 Ma) 

(Table 2.2).  Sample EC2 is mixed reset with component ages of 40.0 and 2.0 Ma with 

the majority of the grains contributing to the minimum age component. 

Along the main transect, sample EC3 (km 40.8, Fig. 2.2B) is consistent with 

protracted cooling from as early as ~40 Ma (Fig. 2.3A & 2.4C), though a minimum 

component age of 12 Ma implies more rapid cooling since <25 Ma.  Sample EC4 (km 

80.0, Fig. 2.2A) has a pooled age of 101 Ma, but <10 measured grain ages and track 
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lengths.  This precludes proper resolving of any component age populations (see 

Appendix 2.2) and provides very limited modeling constraint on its recent cooling history 

(Fig. 2.3B).  In summary, most of the reset AFT component ages record accelerated 

cooling from ~20-5 Ma.  Additionally, previous work reported twenty-five AFT samples 

from the Eastern Cordillera (Figs. 2.1, 2.2A,B & 2.4C) [Benjamin et al., 1987; Safran, 

1998].  The AFT ages range from 20-4.9 Ma (Fig. 2.4C).  Unfortunately, neither χ2 test 

results nor track length measurements were reported for these samples [Benjamin, 

1986; Safran, 1998].  In summary, AFT ages from the Eastern Cordillera are 25-2 Ma 

indicating accelerating cooling at this time (Fig. 2.4C) and are consistent with new AFT 

ages reported by [Gillis et al., 2006].  At 1σ uncertainty, the Eastern Cordillera samples 

indicate accelerated cooling from ~21-3 Ma (Fig. 2.5).  One ZHe sample, EC3 (km 40.8, 

Fig. 2.4B), has relatively young (33-16 Ma) grain ages that we consider reset and 

roughly Oligo-Miocene or younger (Table 2.3).  The large age range in the zircons 

insinuates they were either zoned or experienced partial 4He loss.  The same sample 

AFT component ages show a dominant young component at 12 Ma and a minor old 

component at 143 Ma (Table 2.2).  A strong correlation between grain age (but not track 

length) and Dpar (2.9-2.7 μm for the old peak grains vs. <1.7 μm for the young peak 

grains) implies resetting of the only the less resistant apatites [Burtner et al., 1994] and 

thus time spent in the partial annealing zone, consistent with a short MTL of 8.95 μm. 

We conclude that the 33-16 Ma ZHe grain ages either (1) must be circumspect 

since they have a higher closure temperature, but have younger ages than the older 

component AFT age, or perhaps (2) the measured apatites were of the mixed F/OH 

Tiago variety [Reiners and Brandon, 2006] that overlaps in partial annealing/retention 

zone temperatures with ZHe [Reiners et al., 2004].  A more detailed interpretation of the 

ZHe ages is not possible without additional analyses to characterize the grain-age 

variability. 
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Additionally, previous work reported seven ZFT ages ranging from 101-24.8 Ma 

with rapid exhumation interpreted to start ~40 Ma (Fig. 2.4B) [Benjamin, 1986; Benjamin 

et al., 1987].  The ZFT ages are older than the ZHe ages in the Eastern Cordillera, as 

would be expected due to its sensitivity to higher temperatures (Fig. 2.4B).  The three 

oldest (101-68 Ma) ZFT ages were interpreted to result from significant time spent in the 

zircon partial annealing zone before rapid cooling began at ~40 Ma as recorded by the 

younger (~50-29 Ma) ZFT ages (Fig. 2.4B) [Benjamin et al., 1987]. 

 

Interandean zone 

Eight samples (IA1-8) were collected from four different thrust sheets in the 

Interandean zone (Fig. 2.2C).  Pooled AFT ages range from 42.2-10.5 Ma and MTLs 

from 14.27-11.23 μm.  Minimum and old component ages range from 11.3-8.7 Ma and 

160.3-12.5 Ma, respectively.  All samples are designated as reset and mixed reset 

(Table 2.2). 

Low grain yields from samples IA1 and IA2 (km 110.8 and 112.6, Fig. 2.2C) have 

limited model-constrained recent cooling from between 31-10 Ma and 52-3 Ma, 

respectively.  Sample IA3 (km 115.8, Fig. 2.4C) shows constrained accelerated cooling 
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from >~100ºC temperatures from as early as ~20 Ma (Fig. 2.4C) consistent with its 

pooled age of 14 Ma and its component ages of 12 and 9 Ma (Fig. 2.3C).  Samples IA4 

(km 118.1), IA5 (km 119.9), and IA8 (km 123.7) all passed the χ2 test and show 

constrained cooling associated with their pooled ages ranging from 12.3-10.5 Ma (Figs. 

2.3D & 2.4C).  Sample IA6 has two component ages of 160.3 and 11.3 Ma, but the 

minimum age is nearly identical to the pooled age of 11.5 ± 2.0 Ma.  Modeling shows the 

acceptable cooling histories within the error associated with the minimum component 

age estimate (Fig. 2.4C).  Sample IA7 (km 121.8, Fig. 2.2C) possesses a low number of 

grain ages and track lengths measured and modeling does not further constrain its 

recent cooling history beyond its pooled age of 18.7 ± 9.6 Ma.  In summary, the good 

quality data have young component ages from ~18-3 Ma, and indicate rapid cooling 

starting from ~15-5 Ma at the 1σ uncertainty (Figs. 2.4C & 2.5). 

 

Subandes 

Five samples (SA1-5) were collected from four different thrust sheets in the 

Subandes (Fig. 2.2A & C).  Pooled AFT ages range from 116-6.6 Ma with MTLs of 

13.02-10.69 μm.  Minimum component ages range from 39.5-5 Ma, and old component 

ages range from 181-45.2 Ma.  These samples are designated as reset, mixed reset, 

partially reset, and detrital (Table 2.2). 

We interpret sample SA1 (km 136.5, Fig. 2.2A) as either detrital or partially reset 

because it is from Tertiary sandstone and has component ages of 181 and 30.9 Ma.  

Without further depositional age control, we can’t discern if the young age component is 

older or younger than the depositional age.  However, the larger grain contribution to the 

Mesozoic age component shows that there is a significant detrital cooling signal in this 

sample (Table 2.2).  Note the acceptably-fit recent cooling from ~100ºC since ~41-11 Ma 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3.  Representative grain-age distributions and modeled thermal 

histories from the thrust belt transect apatite fission-track data.  (I) 
BinomFit [Brandon, 2002] results showing grain-age histogram (bars), 
probability density function fit to the grain-age distribution (line), and 
binomially best-fit component age(s) (thick lines labeled with age).  
Abbreviations are the same as in Figure 2.1 and Table 2.2.  AFTSolve 
[Ketcham et al., 2000] results showing permissible thermal histories (II) 
and measured versus modeled track length distributions (III).  Thermal 
histories shown are acceptable (light gray), good (dark gray), and the best 
(black line), with imposed model constraints (vertical bars).  Numbers are 
the pooled ages (Age) and mean track lengths (MTL) with 1σ, number of 
grain ages or track lengths measured (N), and goodness of fit (G.O.F) 
between the model results and the data for both the age and MTL data 
[Ketcham and Donelick, 2001].  Histograms in (III) show measured (in 
binned bars) and best-fit model (solid line) track length distributions. 
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as recorded by the minimum component age and modeling (Fig. 2.3E).  This recent 

cooling follows significant time in the apatite partial annealing zone from ~140-40 Ma 

(Fig. 2.3E) as corroborated by a short MTL of 11.93 μm.  Sample SA2 (km 153.3, Fig. 

2.2D) has a pooled age of 75.5 Ma and poorly constrained model results with cooling 

commencing as early as ~110 Ma.  This may reflect a lower magnitude of cooling on this 

structure compared to others, or a poorly resolved cooling history due to the low number 

of grains (<10 grains) analyzed.  Samples SA3 and SA4 (km 171.9, 176.0, Fig. 2.2D) are 

mixed reset with minimum component ages and modeling indicating recent rapid cooling 

from ~19-4 Ma (Fig. 2.4C). 

Sample SA5 (km 186.9, Fig. 2.4C) is Jurassic sandstone and considered partially 

reset because it has component ages of 163.9 and 39.5 Ma.  The minimum component 

age, though reset, is unusually old considering that it is from the easternmost structure 

of the Subandes which is believed to have been active for only the last ~10 Ma [e.g. 

Gubbels et al., 1993].  Unfortunately, no acceptable modeled cooling histories fit the 

data when either both component ages or only the minimum age are used as a 

constraint for the cooling history and no correlation exists between Dpar and grain age.  

Furthermore, there are no acceptable cooling histories when the grains are grouped into 

generic fluorapatite (2-1 μm Dpar) and chlorapatite (3-2 μm Dpar) kinetic apatite 

populations with their respective track length distributions [Burtner et al., 1994; Ketcham 

and Donelick, 2001].  The only way to achieve any acceptable thermal histories is to 

model only the most thermally sensitive population of fluorapatite (2-1 μm Dpar, MTL 

12.6 μm) grains using a thermal event at 40 Ma, as constrained by the minimum 

component age [Brandon et al., 1998; Ketcham and Donelick, 2001].  This result 

suggests accelerated cooling from apatite partial annealing zone temperatures of ~80ºC 

or more from between ~19-4 Ma (Figs. 2.3F & 2.4C).  The protracted time this sample 

spent in the partial annealing zone prior to rapid cooling is corroborated by a short MTL 
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of 10.69 μm (Table 2.2).  In summary, most of the Subandes samples have young 

component ages from 30-5 Ma that record accelerated cooling starting from ~19-4 Ma 

(Fig. 2.4C).  At 1σ uncertainty level, it appears rapid cooling began ~12-5 Ma (Fig. 2.5). 

 

 

Figure 2.4.  Mean topography and robust thermochronometer cooling ages across the 
fold-thrust belt.  See Figure 2.1B for location.  (A) 70-km wide swath-averaged 
mean elevation. (B) ZFT and ZHe ages.  Error bars are 2σ for the ZFT.  ZHe 
symbols are plotted on the sample average age (bars show range of grain ages).  
Note the semi-log scale.  (C) AFT pooled or minimum component ages for 
samples with >10 measured grains and/or track lengths.  Error bars are 2σ.  Gray 
bars are the age range for the onset of the most recent cooling constrained by 
modeling. 
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From west to east, three Subandes samples with ZHe analyses have ages of 

368-275 Ma, 660-220 Ma, and 333-297 Ma, respectively (Fig. 2.4B).  We simply interpret 

these ZHe ages as partially reset for sample SA3 from Upper Devonian rocks and 

detrital for samples SA4 and SA5 from Jurassic units (Table 2.3).  A more detailed 

interpretation of these sample ZHe ages is not possible without additional analyses to 

characterize the nature of the range in the ages. 

 

 

Figure 2.5.  Spatial and temporal variations in erosion recorded by thermochronometer 
ages across the fold-thrust belt.  Boxes and labels are the robust cooling age 
ranges (2σ) further constrained by modeling after Figure 2.4.  ZFT = zircon 
fission track, AFT = apatite fission track.  Sample EC3 95%Cl range for the 
young age component excluded due to extremely large error.  Gray regions show 
1σ range in ages. 

 

 

Discussion and implications 

Thermochronometer ages represent the time since cooling below closure.  

Combined with additional information, such as track length distributions and kinetic 

parameters in apatite, cooling histories can be constrained with modeling.  

Thermochronometer cooling can result from either igneous activity, tectonic exhumation 

(i.e. normal faulting) or erosion [Ring et al., 1999; Hodges, 2003].  According to the latest 

mapping, lack of evidence for proximal (<~50 km) Tertiary intrusions/volcanism near the 

samples in northern Bolivia, as well as significant normal faulting allows the inference 
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that recorded cooling was the result of erosional exhumation [Sergiomin, 1997; Gillis et 

al., 2006].  Similar to other studies (see, for example [Coughlin et al., 1998; Willett, 1999; 

Willett and Brandon, 2002; Sobel and Strecker, 2003; Carrapa et al., 2005; Clark et al., 

2005]), we assume that the early stages of erosion-driven exhumation are the result of 

deformation because thrust faulting facilitates erosion by generating topography and 

relief.  This assumption still recognizes that erosion-related cooling can continue long 

after deformation has ceased.  Thus, thermochronometer data from thrust belts can be 

sensitive to the onset time of deformation, but poorly constrain when deformation 

terminates due to protracted erosional exhumation.  This highlights the need for future 

work to address how erosion rates and magnitudes change across structures during and 

after deformation. 

We first highlight the spatial and temporal variations in cooling due to erosion 

across the thrust belt and compare them with two end-member deformation models.  We 

next estimate the spatial and temporal distribution of erosion magnitudes using 

constraints on the subsurface thermal field from borehole data.  Finally, we briefly 

compare thermochronologic results from across the entire AP from Peru to Argentina. 

 

Erosion and plateau development 

The observed erosion patterns tend to be broad and most easily defined by the 

various physiographic zones.  Figure 2.5 summarizes the regional spatial and temporal 

trends in cooling ages and the onset of accelerated ZFT-and-AFT-recorded cooling 

across the thrust belt.  The Altiplano and Eastern Cordillera has ZFT ages from 50-29 

Ma and AFT ages from 25-2 Ma that record accelerated erosion from ~40-25 Ma and 

from ~15 Ma (or younger) to the present [Benjamin et al., 1987; Gillis et al., 2006].  The 

Interandean zone has AFT ages from 18-3 Ma that record accelerated erosion since ~15 

Ma.  The westernmost Subandes have AFT ages that record erosion from 41-11 Ma 
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related to the Eastern Cordillera to the west, whereas most of the Subandes 

experienced accelerated erosion from ~19-4 Ma that could be as recent as ~5 Ma.  The 

distribution of erosion documented by the thermochronometer data across the thrust belt 

highlights two major trends: (1) initial onset of accelerated erosion ~40 Ma in the Eastern 

Cordillera, followed by (2) synchronous rapid erosion across the entire plateau and 

thrust belt since ~15 Ma. 

As outlined in McQuarrie et al. [2005], there are two end-member deformation 

models for the evolution of the central Andes.  A short duration and low-magnitude 

shortening characterizes one end-member that describes predominately Neogene 

deformation occurring in two stages [Isacks, 1988; Sempere et al., 1990; Gubbels et al., 

1993; Allmendinger et al., 1997; Jordan et al., 1997]: (1) distributed deformation in the 

Altiplano and Eastern Cordillera began at ~27 Ma, followed by (2) deformation 

concentrated exclusively in the Subandes since ~10 Ma.  A long duration and large-

magnitude shortening characterizes the other end-member that emphasizes higher 

magnitudes of shortening and the role of basement-involved deformation [McQuarrie 

and DeCelles, 2001; McQuarrie, 2002; Horton, 2005; McQuarrie et al., 2005].  Although 

the exact geometry of the basement deformation is unknown [compare McQuarrie, 2002; 

and Müller et al., 2002], the deformation chronologies are similar [see also Elger et al., 

2005].  This model describes Eocene deformation in the Eastern Cordillera propagated 

by bi-vergent deformation moving west towards the Altiplano and eastward to the 

Subandes where it has been concentrated since the early to late Miocene. 

If the first end-member model is applicable, we would expect erosion from ~27-

10 Ma or less in the Altiplano and Eastern Cordillera (which includes the Interandean 

zone in this model) followed by erosion from ≤~10 Ma in the Subandes.  The ZFT 

cooling in the Eastern Cordillera from ~40-25 Ma reveals earlier Eocene pre-27 Ma 

deformation, uplift, and erosion.  Furthermore, the model-constrained AFT-cooling from 
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as early as 19 Ma in the Subandes suggests deformation and erosion began in the 

region before 10 Ma (Fig. 2.5).  However, the fact that accelerated cooling in the 

Subandes could be as recent as ~12-5 Ma is consistent with this model. 

If the second end-member model is applicable, we would expect erosion 

beginning in the Eastern Cordillera in the Eocene followed by more recent erosion both 

westwards and eastwards to the present.  The Eocene erosion ~40-25 Ma is consistent 

with the eastward propagation of an upper-basement thrust over a ramp beneath the 

Eastern Cordillera [Kley, 1996; McQuarrie, 2002].  Additional evidence corroborates this 

model by limiting deformation in this region from post mid-Paleocene to pre late-

Oligocene [Lamb and Hoke, 1997; Horton, 2005; Gillis et al., 2006].  The distributed 

erosion since ~15 Ma is consistent with the emplacement of a second, lower-basement 

thrust that began ≤~20 Ma [Kley, 1996; see also Allmendinger and Zapata, 2000; 

McQuarrie, 2002].  This lower-basement thrusting is responsible for uplifting the 

Interandean zone with respect to the foreland, transferring slip eastward into the 

Subandes, and possibly deforming the Altiplano through basement duplexing.  In other 

words, the young accelerated erosion (<~15 Ma) in the Eastern Cordillera was not 

contemporaneous with deformation on surface structures in this region [Gillis et al., 

2006].  Instead, the ~15-2 Ma accelerated cooling must be erosionally-driven while early 

to late Miocene deformation in the Altiplano [Lamb and Hoke, 1997] and Subandes 

initially drove the ~15 Ma erosion in those regions.  We note that the ~15-5 Ma cooling in 

the Interandean zone is equally consistent with both end-member models signifying 

deformation and erosion began in this region at this time. 

Shortening associated with the upper-basement thrust is recognized to be 

responsible for most of the present crustal thickness and presumably some of the AP 

elevation [McQuarrie, 2002].  The accelerated erosion ~40-25 Ma in the Eastern 

Cordillera probably records movement of the upper-basement thrust sheet.  If the 
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distributed erosion since ~15 Ma records motion of the lower basement shortening, then 

it follows that the upper-basement thrust sheet must have ceased between 25 and 15 

Ma.  Therefore, we infer the early development of the AP analogous to its modern width 

and near present day crustal thickness at ~20 Ma.  However, evidence from leaf 

physiognomy and paleoerosion surface remnants imply that much of the modern 

elevation of the AP came later in the late Miocene [Gubbels et al., 1993; Gregory-

Wodzicki, 2000].  The protracted cooling since ~15 Ma in the Altiplano and Eastern 

Cordillera is also consistent with late Miocene rapid surface uplift [Garzione et al., 2006]. 

In summary, the two regional cooling events suggested by the 

thermochronometer data have the following implications for the contending deformation 

models of the central Andes: (1) The onset of erosion from ~40-25 Ma in the Eastern 

Cordillera is consistent with the longer duration model [McQuarrie, 2002], (2) 

Synchronous erosion across the entire plateau and thrust belt since ~15 Ma is consistent 

with both models [Isacks, 1988; Gubbels et al., 1993; McQuarrie, 2002]. 

 

Spatial distribution of erosion magnitude 

We estimated erosion magnitudes across the thrust belt using measured thermal 

gradients and effective closure temperatures [Reiners and Brandon, 2006] for each 

thermochronometer system to calculate the depth to closure.  This effectively allows 

quantification of the amount of material removed since the samples cooled below their 

closure temperatures (Fig. 2.6).  We assume average closure temperatures of 110ºC for 

AFT, 180ºC for ZHe, and 240ºC for ZFT, and average surface temperatures of 10ºC for 

the Altiplano and Eastern Cordillera, 15ºC for the Interandean zone, and 23ºC for the 

Subandes [Brandon et al., 1998; Gallagher et al., 1998; Springer and Forster, 1998; 

Instituto Geografico Militar, 2000; Reiners et al., 2004].  Proximal borehole-measured 

geothermal gradients and estimates of mean surface temperatures combine to represent 
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the best-available proxy for the thermal field through which the samples cooled.  Our 

selection criteria for borehole-estimated thermal gradients include: (1) measurement 

reliability, (2) location within the same physiographic province as the samples, (3) 

application of a topographic correction, and (4) location within one crustal thickness 

distance (~55-45 km [Beck et al., 1996]) of sample locations to minimize regional 

variations in basal heat flux that might alter near surface thermal gradients.  However, in 

some cases the measurements we use are not as proximal because the borehole data 

are sparse and sometimes unreliable. 

In the Altiplano, we use a thermal gradient of 27ºC/km ± 20% error.  This value 

comes from the only reliable measurement located at Chacarilla, ~115 km from our two 

samples [Henry and Pollack, 1988].  We estimate ~3.7 km of erosion in the Altiplano 

since ~18-2 Ma from the AFT component ages (Fig. 2.6).  In the Eastern Cordillera, we 

use a gradient of 22ºC ± 10% at Chojilla.  Chojilla is at most ~50 km from our samples 

and ~75 km from all previously reported Eastern Cordillera samples [Henry and Pollack, 

1988].  The Eastern Cordillera thermal gradient could be less than that observed in the 

Altiplano due to the large topographic effect from the high relief (> 2 km) (Fig. 2.2A).  We 

estimate ~10.6 km erosion since ~40-25 Ma from the ZFT data and ~4.6 km since ~15-5 

Ma from the AFT data (Fig. 2.6).  These estimates are a refinement of previous work that 

assumed a generic thermal gradient of 30ºC/km [Benjamin et al., 1987; Masek et al., 

1994; Gillis et al., 2006].  We assume the same gradient for the Interandean zone.  The 

Chojilla station is at most ~90 km from all Interandean samples.  We estimate ~4.6 km of 

erosion since ~15-5 Ma from the AFT data (Fig. 2.6).  No proximal thermal gradient 

measurements exist for our samples in the northern Subandes.  However, a large 

compilation of over 1500 measurements from the southern Subandes and adjacent 

Chaco basin yields a mean gradient of 22.4 ºC ± ~35% with a mean surface temperature 

of 23ºC ± 10% from robust linear regression [Springer and Forster, 1998].  Assuming 
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these values for the northern Subandes, the erosion magnitude is limited to ≤~7.0 km 

from the mostly detrital ZHe ages since at least ~220 Ma, and estimated to be ~3.9 km 

since ~15-5 Ma from the AFT data (Fig. 2.6). 

 

 

Figure 2.6.  Estimated erosion magnitudes across the fold-thrust belt.  Symbols are 
located at the median cooling age for each region and horizontal error bars 
represent the range in regional cooling ages after Figure 2.5.  Vertical bars 
represent the range in erosion magnitude due to the percent error in the heat 
flow measured thermal gradients.  See Figures 2.1 and 2.4 for abbreviations. 

 

 

Estimated erosion magnitudes decrease eastward across the thrust belt (Fig. 

2.6).  The Eastern Cordillera ZFT and ZHe ages are young in contrast to the ZHe ages 

of the Subandes.  The Subandes ZHe ages consist of a dominantly detrital signal 

inherited from Paleozoic to early Mesozoic times and are presumably not associated 

with Andean orogenesis.  The detrital to partially reset Subandes ZHe ages combined 

with the reset AFT components from the same samples bracket the magnitude of 

erosion in the Subandes.  The Subandes structures have been eroded from AFT-

 36



 

sensitive temperatures (~110ºC), but not from ZHe-sensitive temperatures (~180ºC).  

The mostly detrital Tertiary foreland basin sample from the western Subandes (km 

136.5, Fig. 2.4C) suggests the local amount of erosion since deposition and burial has 

been limited to less than AFT-sensitive temperatures.  The modeling constrained cooling 

from 41-11 Ma (Fig. 2.5) is therefore presumably associated with deformation and 

erosion of the hinterland structures in the Eastern Cordillera. 

One additional observation is the extremely young AFT central and component 

ages (2.8-2.0 Ma) collected from low elevations within the high relief La Paz basin just 

south of our transect (Fig. 2.1B).  The late Pliocene ages suggests that the basin has 

experienced rapid recent fluvial incision by the La Paz River in conjunction with its 

headward erosion into the Altiplano. 

 

Along-strike variation in Andean plateau erosion 

Along-strike exhumation of the Andean plateau suggests non-uniform 

deformation and erosion from as early as the late Eocene to as recent as the late 

Miocene.  North of this study, K-Ar and 40Ar/39Ar AFT ages record late Eocene 

exhumation with continued Oligo-Miocene exhumation recorded by AFT ages in Peru 

[Kontak et al., 1990].  As summarized in this paper, AFT ages in northern Bolivia show 

Eocene to late Oligocene accelerated erosion in the Eastern Cordillera followed by 

widespread Miocene (~15 Ma) to recent accelerated erosion.  In southern Bolivia, AFT 

ages in the AP are Oligocene (~30 Ma), mid-Miocene (17-9 Ma) in the Interandean zone, 

and late Mio-Pliocene in the Subandes [Ege et al., 2003].  Farther south in Argentina, 

AFT-recorded exhumation of the Puna plateau is Oligo-Miocene [Coughlin et al., 1998; 

Carrapa et al., 2005]. 

 

Conclusions 
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Low-temperature thermochronology across the central Andean fold-thrust belt in 

northern Bolivia reveal a two-phased erosion history.  Accelerated erosion began in the 

Eastern Cordillera in the Eo-Oligocene (~40-25 Ma), followed by distributed, accelerated 

erosion since the early-mid Miocene (~15 Ma).  The magnitude of erosion decreases 

eastward from ~10.6 km in the Eastern Cordillera, to ~4.6 km in the Interandean zone 

and to between ~3.9 and ~7.0 km in the Subandes.  Models for the kinematic evolution 

of the central Andean plateau must be consistent with these spatial and temporal trends 

in erosion, their magnitudes, and associated and inferred deformation.  Assessment of 

two end-member models for central Andean deformation show the following; the earlier 

Eo-Oligocene phase of erosion is consistent with one model that highlights earlier 

deformation controlled by the sequential stacking of basement thrusts.  However, the 

distributed erosion since ~15 Ma is equally consistent with both end-member models of 

deformation that predict deformation and erosion in the Interandean zone and Subandes 

in the early to late Miocene.  If the basement-involved deformation model is correct, the 

time between the two phases of accelerated cooling brackets the cessation of the first 

basement thrust and implies establishment of the AP analogous to its modern width, but 

unknown elevation by the early Miocene (~20 Ma). 
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Appendix 2.1.  AFT and ZHe analytical procedures  

 

AFT data 

Apatite grains were separated using conventional heavy-liquid and magnetic 

separation techniques, etched and irradiated by Apatite to Zircon, Inc. using the external 

detector method and irradiation facilities at the Nuclear Radiation Center, Washington 

State University.  For standardization, a mica sheet was attached to a 235U-doped CN-1 

glass and the reactor operated at 1 MW power output yielding a thermal-neutron fluence 

of approximately 1016 neutrons/cm2.  Apatite grain mounts were polished following 

immersion in epoxy resin cured at 90°C for 1 hour.  Apatite mounts were immersed in 

5.5N HNO3 at 21°C (± 1°C) for 20.0 seconds (± 0.5 seconds), whereas the mica sheets 

were immersed in 48% HF for 15 minutes (± 15 seconds) at 20°C (± 1°C).  Additional 

apatite mounts were irradiated by a 252Cf source in a vacuum to enhance the 

measurability of natural fission tracks [Donelick and Miller, 1991].  Only natural, 

horizontal, and confined tracks were measured for both length (±0.2 μm) and the angle 

to the c-axis (±2°).  The FT analyses were performed at 2000x magnification under un-

polarized light.  We conducted age calculations for samples JB01-04, JB01-06, JB01-09, 

and 725-13 (Table 2.1) from apatite standards of the Fish Canyon Tuff, U.S.A, and Cerro 

de Mercado, Durango, Mexico with a personal zeta calibration factor of 104.5 ± 2.6 (1σ) 

(for PBO). For all other samples, a zeta calibration factor of 113.8 ± 2.9 (1σ) (for RAD) 

was used from the same apatite standards.  Table 2.2 details the AFT analytical results. 

 Age and track-length measured apatite grains were classified for annealing 

kinetics with the parameter Dpar.  Dpar is defined as the fission-track etch pit diameter 

parallel to the c-axis of the apatite crystal at the polished and etched surface of the 
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analyzed grain [Burtner et al., 1994]. For each grain measured for age or track length, 

we recorded between 1 and 4 Dpar values and determined a mean Dpar. 

 

ZHe data 

 Zircon separates from some of the samples were sieved to 100-150 μm minimum 

dimensions.  Grains were hand-picked under a 120x binocular microscope, measured to 

determine the �emission correction [Farley et al., 1996] for the crystallographic a and b 

axes, loaded into Pt capsules, and out gassed under a Nd-YAG laser at ~1350°C for 15 

minutes.  Evolved helium was spiked with 3He, cryogenically concentrated and purified, 

and the 4He/3He ratio measured on a quadrupole mass spectrometer.  Laser re-extracts 

of grains yielded no measureable 4He.  After outgassing, grains were retrieved, digested, 

spiked with 235U and 230Th, and the U and Th isotope ratios analyzed by ICP-MS.  The 

propagated 1σ analytical uncertainty on these He ages is ~2% [Farley, 2000].  Table 2.3 

details the ZHe data. 

 

Appendix 2.2.  AFT data interpretation methodology 

In this Appendix, we summarize the relevant principals to sedimentary sample 

AFT grain-age distribution analysis, and detail our thermal modeling methodology. 

 

Sedimentary AFT grain-age distribution analysis 

AFT analytical results from sedimentary units often exhibit significant variance 

because individual apatites are more likely to have experienced different thermal 

histories before being incorporated into the sampled depositional unit.  In other words, if 

the sedimentary unit has not been completely reset since deposition, the inherited, 

variable thermal histories of the individual apatite grains may contribute to a large range 

in measured AFT cooling ages and track lengths [e.g. Burtner et al., 1994].  
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Furthermore, individual apatite grains are likely to have different sources and hence 

different compositions.  Composition influences the annealing behavior of apatite [e.g. 

Carlson et al., 1999].  Therefore, the post-depositional, shared cooling history 

experienced by all grains in a sample will result in different measured grain ages and 

track lengths among the grains. 

The chi-square (χ2) test evaluates the variance of a sample grain-age distribution 

[Galbraith, 1981; Green, 1981].  Unfortunately, statistical reliability of the χ2 test breaks 

down with a low number of measured spontaneous and induced fission tracks (Ns, Ni < 

5) [Brandon et al., 1998].  Therefore, if a particular sample has very few tracks 

measured, it could have an inflated chi-square value and pass the P(χ2) test appearing 

to be concordant when, in fact, it is discordant. 

The AFT grain-age distributions can be analyzed using a deconvolution algorithm 

that identifies the statistically significant populations and their component ages within 

each sample [Brandon, 1992].  If only one component age is identified, it is equivalent to 

the pooled age.  We used BinomFit [Brandon, 1992, 2002; Ehlers et al., 2005] to identify 

the significant component ages in our samples.  BinomFit calculates the individual grain 

ages and their uncertainties, and combines a binomial peak-fitting scheme with an 

iterative search to optimize the number of significant component ages in a sample 

[Brandon, 2002]. 

 

Thermal modeling of AFT data 

The grain-age distribution and component ages, track length distribution, and 

grain composition proxy data all combine to provide valuable information that can be 

used to constrain a samples thermal history with inverse modeling.  We modeled the 

fission-track data with AFTSolve [Ketcham et al., 2000] which incorporates track length, 
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grain age, and composition proxy data.  Fundamentally, AFTSolve uses various search 

methods to quantify the range of statistically acceptable and better thermal histories for a 

single sample that (1) adheres to user-defined constraints, and (2) matches the 

measured data. 

Overall, our modeling strategy started with an open-ended model with minimal 

constraints.  We incrementally imposed restrictions directed by the successive modeling 

results and relevant geologic data, such as depositional age of the sampled formation 

and the sample pooled or component AFT age(s) [Ketcham et al., 2000].  We used a 

multi-kinetic annealing model which allows for modeling of multiple kinetic apatite 

populations with Dpar [Ketcham et al., 1999]. 

For the initial general model, we ran 15,000 simulations with a controlled random 

search (CRS) technique for each sample.  All age and track length data were modeled 

as one kinetic population projected to the c-axis in order to effectively remove the 

problems of anisotropic track-length reduction [Donelick et al., 1999].  We imposed two 

main constraints [Ketcham and Donelick, 2001]: (1) a starting temperature of 200ºC at 

an age equal to 1.5 times the pooled or maximum component age of the sample, and (2) 

20ºC at the present time.  Both non-monotonic and monotonic heating/cooling was 

explored with a rate not allowed to exceed 20-40ºC/My [Ketcham and Donelick, 2001].  

Any insights gained on the more recent portion of the sample cooling history were 

successively explored using a Monte Carlo search technique with additional constraints 

imposed on the recent portion of the sample cooling history as directed from the 

previous results.  Only the monotonic cooling results are reported in this paper because 

in most cases the onset of recent cooling was not significantly different from the non-

monotonic cases. 

 Refined modeling involved imposing additional constraints from the sample 

formation age and the component grain-age analysis results.  15 000 simulations were 
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first run with all age and length data as one kinetic population using a Monte Carlo 

search.  The constraints on each sample thermal history included:  (1) the starting 

temperature was set to 20ºC at the approximate deposition age of the sample, (2) a 

temperature of 20ºC at the present time, as well as (3) a 60-250ºC temperature 

constraint at the pooled or youngest component age (this is a conservative temperature 

range that AFT data might be sensitive to at a potentially high rate of cooling during 

thrust sheet emplacement and hanging wall erosion).  This setup was explored for the 

range of 1σ uncertainties in the pooled age or 68% CI (confidence interval) values (very 

similar to 1σ) in the youngest component age calculated by BinomFit.  If the sample had 

a second age component, then that age was subsequently set as an additional 60-250ºC 

temperature constraint and similarly explored. 

Even though many samples have discordant grain-age distributions, very few 

samples exhibited even moderate correlations between Dpar and grain age or track 

length.  However, in all samples with two component ages, the kinetic populations were 

delineated and modeled together to identify the acceptable cooling histories for the 

sample.  Additionally, the lower Dpar population (< 2 μm) was modeled independently 

since it represents the most thermally sensitive group of grains [Brandon et al., 1998].  

These component age modeling efforts followed the methodology above.  See [Ketcham 

and Donelick, 2001] for additional discussion of the methodology for separating kinetic 

populations. 
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Chapter 3 

Thermochronometer record of central Andean Plateau growth,  
Bolivia (19.5°S)1 

 

Abstract 

Quantifying the timing, magnitude, and rates of exhumation and deformation 

across the central Andes is a prerequisite for understanding the history of plateau rise.  

We present 23 new apatite and zircon fission-track thermochronometer samples to 

chronicle the exhumation and deformation across the entire (~500 km) Andean fold-

thrust belt at ~19.5ºS in Bolivia.  Exhumation and deformation are constrained with 

inverse thermal modeling of the thermochronometer data, regional stratigraphy, 

geothermal gradients, and mass deficits inferred from a balanced section.  Results 

suggest: (1) initial exhumation of the Eastern Cordillera (EC) fore-thrust and back-thrust 

belts began in the late Eocene to early Oligocene (27-36 Ma) and continued in a 

distributed manner in the late Oligocene to early Miocene (19-25 Ma).  Interandean zone 

(IA) exhumation began 19-22 Ma, followed by a third pulse of exhumation (11-16 Ma) in 

the EC back-thrust belt and initial cooling in the westernmost Subandes (SA) 8-20 Ma.  

Finally, exhumation propagated eastward across the SA during the late Mio-Pliocene (2-

8 Ma).  (2) Exhumation magnitudes are spatially variable and range from maximums of 
                                                 
1Official citation: 
 
Barnes, J. B., T. A. Ehlers, N. McQuarrie, P. B. O'Sullivan, and S. Tawackoli (2008), 

Thermochronometer record of central Andean Plateau growth, Bolivia (19.5ºS), 
Tectonics, doi:10.1029/2007TC002174, in press. 
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<8 km in the EC fore-thrust belt to average values of ~4-7 km across the EC, ~2.5-3 km 

in the Altiplano, ~4-6 km in the IA, and ~3 km in the SA. (3) Exhumation rates range from 

~0.1-0.2 mm/yr in the EC, from ~0.1-0.6 mm/yr in the IA, and from ~0.1-0.4 mm/yr to 

locally 1.4 mm/yr or more in the eastern SA.  We synthesize similar constraints with 

sediments throughout Bolivia and characterize plateau development by (A) distributed 

deformation throughout the Altiplano and EC regions from ~20-40 Ma with minor 

deformation continuing until ~10 Ma, (B) contemporaneous cessation of most EC 

deformation and exhumation of the IA ~20 Ma implying establishment of the modern 

plateau width with significant, but unknown crustal thickness and elevation shortly 

thereafter by ~15-20 Ma, and (C) dominantly eastward propagation of deformation from 

the IA since ~20 Ma with minor out-of-sequence deformation in the central-to-eastern 

SA. 

 

Introduction 

Orogenic plateaus are important because of their influence on mantle dynamics, 

orographic precipitation, physical weathering rates, and their ability to trap large 

sediment volumes in their protected interiors [e.g. Isacks, 1988; Molnar et al., 1993; 

Masek et al., 1994; Ruddiman et al., 1997; Beaumont et al., 2001; Sobel et al., 2003].  

Although models can simulate plateau growth by temperature-dependent viscosity 

variations in a shortening and thickening crust, they are limited by incomplete knowledge 

of the kinematic histories of plateau formation [Wdowinski and Bock, 1994; Royden, 

1996; Willett and Pope, 2004].  Constraining the kinematics, timing, and rates of plateau 

erosion and deformation is necessary to understand both the processes involved in 

plateau formation as well as the conditions under which they develop [e.g. Oncken et al., 

2006].  It is also important to quantify the along-strike variations in the kinematic and 

erosion history of the central Andean plateau to evaluate the mechanisms that determine 
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plateau width.  In this study, we present new data and interpretations that chronicle the 

exhumation and deformation across the eastern flank of the central Andean plateau at 

its widest extent. 

The central Andean plateau occupies the core of the Andes, rests ~3 km in 

average elevation, encompasses over 350,000 km², and straddles humid to semi-arid 

latitudes from southern Peru to northern Argentina (Fig. 3.1) [e.g. Isacks, 1988].  

Numerous processes have been proposed to influence Andean plateau evolution such 

as; crustal shortening/thickening [e.g. Lamb and Hoke, 1997; Kley and Monaldi, 1998; 

Elger et al., 2005], plate kinematics [e.g. Pardo-Casas and Molnar, 1987; Oncken et al., 

2006], topography and subduction geometry [Gephart, 1994; Iaffaldano et al., 2006], 

inherited structure and stratigraphy [Allmendinger and Gubbels, 1996; Kley et al., 1999], 

thermal weakening [Isacks, 1988; Wdowinski and Bock, 1994; Allmendinger et al., 1997; 

Lamb and Hoke, 1997], and variable erosion resulting from latitudinal precipitation 

gradients [Masek et al., 1994; Horton, 1999; Montgomery et al., 2001; Lamb and Davis, 

2003; Sobel et al., 2003; Gillis et al., 2006]. 

Observations of the lithospheric structure, sedimentary record, and various proxies 

have been used to deduce the chronology and mode of Andean plateau uplift.  

Deformation was initially assumed to begin in the late Oligocene (~27 Ma) [Isacks, 1988; 

Sempere et al., 1990] and characterized by distributed shortening (pure shear) until ~10 

Ma when it shifted to simple shear focused in the easternmost thin-skinned thrust belt of 

the Subandes where it continues today [Gubbels et al., 1993; Allmendinger and 

Gubbels, 1996].  However, earlier Eo-Oligocene (~30-40 Ma) deformation has now been 

well-documented with mapping and seismic profiles [e.g. Elger et al., 2005], Cenozoic 

basin sediments [e.g. DeCelles and Horton, 2003; Horton, 2005] and 

thermochronometer-derived exhumation [e.g. Benjamin et al., 1987; Gillis et al., 2006; 

Ege et al., 2007].  These studies have argued that the Eocene to recent deformation has 
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accumulated both broadly within the plateau region and propagated eastward towards 

the foreland.  Perhaps most interestingly, mounting evidence inferred from erosion 

surface remnants [Kennan et al., 1997; Barke and Lamb, 2006], valley incision 

[Schildgen et al., 2007], and soil carbonate isotopes [Garzione et al., 2006; Ghosh et al., 

2006] has lead to the postulation that 2-3+ km of rapid plateau surface uplift occurred 

~6-10 Ma by lithospheric mantle delamination or lower crustal flow. 

 

 

Figure 3.1.  The central Andean fold-thrust belt and plateau in Bolivia.  Topography is 
from the SRTM 90 m data set.  Elev = elevation.  Zone-bounding faults modified 
from McQuarrie [2002].  Major zones: WC = Western Cordillera, AL = Altiplano, 
EC = Eastern Cordillera, IA = Interandean zone, SA = Subandes.  Inset shows 
location in western-central South America and box outlines the study area in 
Figure 3.2.  Solid lines are locations of two major additional thermochronometer 
data transects in the south (A; Scheuber et al. [2006]; Ege et al. [2007]) and 
north (B; e.g. Barnes et al. [2006]) discussed in the text. 

 

In the Bolivian Andes (~15-20°S), plateau development is coupled to the central 

Andean fold-thrust belt where the kinematic history has been documented by sequential 
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kinematic restorations of balanced cross sections [McQuarrie, 2002].  This kinematic 

linkage provides an opportunity to correlate the kinematics and timing of plateau 

deformation with its eastern flanking thrust belt.  Unfortunately, imprecise age and 

exhumation constraints still exist on many of the structures in the thrust belt making it 

difficult to (a) detail a deformation chronology in order to test the sequential 

reconstructions, (b) estimate the variations in the associated erosional response to the 

deformation, and (c) use these constraints to improve our understanding of plateau 

growth.  To address these shortcomings, we present a transect of new 

thermochronometer data at ~19.5ºS in southern Bolivia where both a kinematic 

reconstruction and a preliminary chronology of the deformation has already been 

proposed [McQuarrie et al., 2005].  This paper is a companion to McQuarrie et al. [2008] 

which integrates similar datasets across the central Andean fold-thrust belt ~500 km to 

the north at 15-17ºS (transect B in Figure 1). 

At ~19.5°S, the central Andean fold-thrust belt and plateau are broad, the climate 

is semi-arid, and the topographic relief is subdued relative to northern Bolivia (Fig. 3.1) 

[Isacks, 1988; Masek et al., 1994; Horton, 1999].  In this paper, we (1) present apatite 

and zircon fission-track (AFT & ZFT) thermochronology results from 23 samples to 

quantify the long-term deformation and exhumation history across the entire thrust belt 

at ~19.5ºS (Figs. 3.1 & 3.2), (2) quantify sample cooling histories with inverse thermal 

modeling of the AFT data, (3) incorporate the results within the regional stratigraphy and 

structure, (4) refine the timing of deformation inferred from the cooling histories, and (5) 

estimate the spatial variability of exhumation magnitudes with multiple methods.  Finally, 

we compare our results to those in southern Bolivia-northernmost Argentina (19-23ºS) 

and then throughout Bolivia (15-21.5ºS).  The combination of new and previous 

thermochronometer, sedimentary, and geomorphic records allows an analysis of spatial 
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and temporal variations in deformation in southern Bolivia, and finally a more complete 

and generalized history of central Andean plateau growth throughout Bolivia. 

 

Geologic setting 

Central Andean fold-thrust belt and plateau 

The Andes reach their greatest west-east width of 500 km in southern Bolivia 

(Fig. 3.1).  The central Andean fold-thrust belt is commonly divided into the Western 

Cordillera, the Altiplano, the Eastern Cordillera (EC), the Interandean zone (IA), and the 

Subandes (SA).  The Western Cordillera is the modern volcanic arc that marks the 

Pacific-Altiplano drainage divide.  The Altiplano is a low-relief, internally-drained basin 

filled with Tertiary sediments and volcanics.  The EC is the highest relief region 

consisting of deformed, predominantly Paleozoic sedimentary rocks with overlying 

Tertiary volcanism that mark the eastern drainage divide of the Altiplano.  The IA and SA 

zones step progressively downwards in topographic elevation and upwards in structural 

depth eastward exposing mostly Devonian and Carboniferous through Mesozoic and 

Tertiary rocks, respectively (Fig. 3.2) [McQuarrie, 2002].  Large basement structures are 

thought to be a principal cause for these various structural levels of exposure that 

differentiate the Altiplano through SA (Fig. 3.2B) [Kley, 1996; Kley, 1999; McQuarrie, 

2002; Müller et al., 2002].  The Andean plateau is the high elevation landmass 

commonly defined by >3 km average elevation that includes the entire Altiplano and a 

significant portion of the EC (Fig. 3.2C) [after Isacks, 1988]. 

The central Andean fold-thrust belt encompasses the eastern Altiplano to SA and 

is an east-vergent, thick to thin-skinned retroarc fold belt that is the result of strain 

accumulation from the South American plate overriding the Nazca plate (Fig. 3.1) [e.g. 

Isacks, 1988; Allmendinger et al., 1997; Jordan et al., 1997].  The EC is somewhat 

unique because it has accommodated the strain with both a west-vergent back-thrust 
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belt and an east-vergent fore-thrust belt [e.g. Roeder, 1988; McQuarrie and DeCelles, 

2001].  In the central Andes (~14-24ºS), structural and stratigraphic data have 

constrained the deformation in the EC from late Eo-Oligocene (~25-40 Ma) to early-late 

Miocene (~8-20 Ma) at which point it migrated eastward into the SA [e.g. Sempere et al., 

1990; Kley, 1996; Kennan et al., 1997; Kley et al., 1997; Lamb and Hoke, 1997; Elger et 

al., 2005; Horton, 2005].  To date, two major transects of thermochronometer data exist 

across the thrust belt in Bolivia; in the far north near Peru at 15-17°S and in the far south 

near Argentina at ~21.5ºS (Fig. 3.1; lines A & B).  In the north, initial late Eo-Oligocene 

(~25-40 Ma) rapid exhumation began in the EC followed by wide-spread middle to late 

Miocene to present (~0-15 Ma) exhumation across the entire thrust belt from the eastern 

Altiplano to SA [Benjamin et al., 1987; Barnes et al., 2006; Gillis et al., 2006; McQuarrie 

et al., 2008].  In the south, initial late Eocene (36-40 Ma) exhumation began in the 

central EC, more distributed early Oligocene (27-33 Ma) exhumation throughout the EC 

and Altiplano continued until ~20 Ma, IA exhumation occurred during the early-to-late 

Miocene (~9-18 Ma), and finally exhumation in the SA began in the late Miocene (~8 

Ma) [Ege et al., 2003; Scheuber et al., 2006; Ege et al., 2007]. 

 

Thrust belt stratigraphy 

The Paleozoic to Tertiary stratigraphy of the thrust belt including local thickness 

variations has been well documented throughout southern Bolivia and is synthesized in 

Figure 3.3.  The Paleozoic section is locally thick in the EC and tapers towards the 

foreland [Sempere, 1995; Welsink et al., 1995].  A continuous succession of Ordovician 

through Devonian marine siliciclastic rocks is overlain by a discontinuous succession of 

nonmarine Carboniferous to Cretaceous rocks [Sempere, 1995; McQuarrie, 2002].  

Compared to central and northern Bolivia, much greater pre-Jurassic erosion and much 

less Andean-age erosion in this region has resulted in large exposures of Mesozoic 
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rocks in the EC that rest directly and unconformably on the Silurian units (Fig. 3.2) 

[McQuarrie and DeCelles, 2001].  Tertiary synorogenic sedimentary rocks reach local 

thicknesses of ~12 km in the Altiplano, ~2.5-5+ km in the EC, and ~3-4 km in the SA 

[Sempere et al., 1990; Dunn et al., 1995; Kennan et al., 1995; Lamb and Hoke, 1997; 

McQuarrie and DeCelles, 2001; Horton, 2005; Uba et al., 2006]. 

 

Thrust belt structure and shortening 

McQuarrie [2002] used field and geophysical observations to construct a 

balanced section across the fold-thrust belt at ~19.5ºS (Fig. 3.2).  Dominant structures 

exposed at the surface are ~1-10 km thick thrust sheets deforming the cover rocks.  

Individual thrust sheets in both the EC and IA are tightly folded and have minor offsets 

(~1-5 km).  The SA has multiple levels of detachments allowing for thrust sheets with 

larger (~5-15 km) offsets that are less folded and hence more widely spaced.  The 

balanced section indicates a total shortening of 326 km or 37% [McQuarrie, 2002].  More 

specifically, the EC has the highest magnitude of shortening of 122 km or 37%, followed 

by the IA with 96 km or 63%, and the SA with 67 km or 33%. 

Although the geometry of the subsurface basement deformation is contentious, 

there is general agreement that large basement thrusts underlie the entire thrust belt 

except the SA which feed deformation into the overlying cover rocks [Kley, 1999; 

McQuarrie, 2002; Müller et al., 2002].  These large basement features, combined with 

small (1-5 km) offsets along individual surface faults, may provide a structural 

mechanism for potentially broad and uniform uplift and exhumation in the Altiplano, EC, 

and IA.  In contrast, the SA have more widely-spaced thrust sheets with larger individual 

offsets that are confined to the cover rocks thereby precluding such a structural 

mechanism for broad uplift. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.  Geology, balanced cross section, topography, and thermochronology data 

across the central Andean fold-thrust belt at ~19.5ºS.  The geology and cross 
section is simplified from [McQuarrie, 2002] and location is in Figure 3.1. BTB = 
back-thrust belt, FTB = fore-thrust belt. (A) Regional geology and sample 
locations. (B) Balanced cross section (location in A) with samples projected onto 
the appropriate structures. (C) Transect profile of 80-km-wide swath-averaged 
mean topography with apatite (black dots) fission track pooled ages.  Note the 
log scale for the ages.  Error bars are 2σ.  Zircon fission track ages (stars) are off 
the scale (shown by arrows) with actual values adjacent to the symbol. 
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Figure 3.3.  Regional stratigraphy and thickness variations of the central Andean fold-
thrust belt in southern Bolivia (modified from Figure 2 of McQuarrie [2002]).  
Slashes delimit formation name changes from east to west and arrows indicate 
major detachment horizons.  Mz = Mesozoic, C = Carboniferous, Ord = 
Ordovician, Huam. = Huamampampa, ss = sandstone, congl = conglomerate, 
siltst = siltstone, sh = shale, gyp = gypsum, ls = limestone, diam = diamictite, 
qtzite = quartzite, msiltst = metasiltstone, phyl = phyllite.  Thickness constraints 
span from ~18-23ºS; 0 = [Kley and Reinhardt, 1994], 1 = [Dunn et al., 1995], 2 = 
[Sempere, 1995], 3 = [Moretti et al., 1996], 4 = [Kley, 1996], 5 = [Kley et al., 
1997], 6 = [McQuarrie and DeCelles, 2001], 7 = [McQuarrie and Davis, 2002], 8 = 
balanced/restored section from [McQuarrie, 2002], 9 = [Müller et al., 2002], 10 = 
[Echavarria et al., 2003], 11 = [Uba et al., 2006], 12 = [Coudert et al., 1995], 13 = 
[Horton, 2005], 14 = [Sempere et al., 1997]. Asterisk indicates the average 
thickness used in Figure 3.4 (see Appendix 3.1 for details). 
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Methods 

In this study, we integrate new apatite fission-track samples from across the 

eastern Andean plateau flank at ~19.5ºS with the regional stratigraphy and a balanced 

cross section.  Methods used in the regional stratigraphic compilations and fission-track 

analyses are outlined below and detailed in the Appendices. 

 

Regional stratigraphy 

We compiled regional stratigraphic sections across southern Bolivia (~18-23ºS) 

to independently estimate the magnitude of exhumation by restoring the 

thermochronometer samples to original stratigraphic depth (Fig. 3.3) (see details in 

Appendix 3.1).  Specifically, we constructed representative, regional sections measured 

from the range of thicknesses used in the balanced and restored section of McQuarrie 

[2002] because (1) it is the most proximal estimate that spans the entire study area, (2) 

its regional scale is most appropriate, and (3) the thickness variations themselves are 

derived from local field observations and supported by some of the compiled sections 

themselves [Dunn et al., 1995; Sempere, 1995; Gagnier et al., 1996; Kley, 1996; Kley et 

al., 1997; Sempere et al., 1997; Horton et al., 2001; McQuarrie and DeCelles, 2001].  

Our calculated average thicknesses are almost always within the compiled bounds (Fig. 

3.3).  Figure 3.4 schematically shows these representative sections along with 

approximate sample locations. 

Stratigraphic thickness variations in the central Andean fold-thrust belt are large, 

but systematic (Fig. 3.3).  For example, the Ordovician thickens significantly southward 

along strike [McQuarrie and DeCelles, 2001; McQuarrie and Davis, 2002; Müller et al., 

2002] and the Paleozoic section generally thins eastward from a local maximum in the 

central EC [Roeder and Chamberlain, 1995; Sempere, 1995; Welsink et al., 1995].  

Despite these variations, it is useful to generalize the regional stratigraphy so that 
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samples collected on numerous structures in a region can be interpreted together by 

evaluating them in the context of stratigraphic depth as a proxy for original depth prior to 

exhumation. 

 

 

 

Figure 3.4.  Apatite fission-track (AFT) ages integrated within representative stratigraphy 
across the central Andean fold-thrust belt at ~19.5ºS.  Error associated with 
stratigraphic thickness and sample location is estimated to be ~0.5 km.  Asterisk 
indicates that the Tertiary is assumed to have been there after [DeCelles and 
Horton, 2003].  Dv = Devonian, Sil = Silurian, additional abbreviations after 
Figures 3.1-3.3.  Discordant samples in italics. Gray regions are estimated depth 
to full resetting of AFT samples as defined by the shallowest concordant AFT 
pooled age.  Question-marked gray region is the inferred depth to fully reset and 
concordant AFT samples in the Subandes (see text for discussion).  Dashed 
lines bracket the range of stratigraphic depths sampled in each zone.  Lithologic 
thicknesses are schematic only after Figure 3.3. 

 

 

 62



 

Fission-track thermochronology 

General background 

Fission-track thermochronology uses the accumulation of damage trails (fission 

tracks) that form from the spontaneous fission of 238U in minerals to constrain sample 

thermal histories [e.g. Gallagher et al., 1998; Tagami and O'Sullivan, 2005].  Fission-

track ages are determined by measuring the parent (238U)/daughter (tracks) ratios and 

determining the age from the rate of 238U fission decay.  Measured ages are cooling 

ages because the tracks are only quantitatively preserved above a particular closure 

temperature [Dobson, 1973], which is a function of mineral type, composition, and 

cooling rate.  Fission tracks subsequently shorten (anneal) over a range of temperatures 

below the closure temperature.  This temperature range is called the partial annealing 

zone (PAZ) [e.g. Hodges, 2003].  For common apatite, the closure temperature is 

~110±10ºC and the PAZ spans from ~60-110ºC [e.g. Gallagher et al., 1998].  For 

common zircon, the closure temperature is ~240±10ºC and the PAZ spans from ~180-

240ºC [Brandon et al., 1998]. 

Cooling ages are commonly determined on ~20-40 individual grains resulting in a 

sample grain-age distribution.  The sample pooled age is determined by the 

daughter/parent ratio of all the grains summed (“pooled”) together [e.g. Brandon, 1992].  

A conventional χ2 test is applied to the sample grain-age distribution to determine its 

degree of variance.  Concordant (P(χ2)>5%) samples have low age variance and their 

pooled age is considered geologically relevant [Galbraith, 1981; Green, 1981; Brandon 

et al., 1998].  Conversely, discordant (P(χ2)<5%) samples, common for sedimentary 

rocks, have significant age variance suggesting that (a) other mechanisms such as 

inhomogeneous uranium concentration and variable grain-etching sensitivity are at work, 

and/or (b) multiple component ages and variable thermal annealing from compositionally 
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diverse grains exist that render the pooled age less meaningful [Green, 1981; Tagami 

and O'Sullivan, 2005].  Regardless of the age variance, measured ages and track length 

distributions are inverted for using empirically-derived annealing algorithms [Ketcham, 

2005 and references therein] to constrain permissible thermal histories. 

Analytical procedures 

The mineral separations and fission-track analysis were performed using 

standard techniques (see Appendix 3.2 for details).  In this study, most fission track ages 

reported were determined by the new laser ablation method (LA-ICPMS; [Hasebe et al., 

2004; Donelick et al., 2005]) with only a few ages determined by the more common 

external detector method [e.g. Gallagher et al., 1998].  Following age analysis, the 

apatites were classified for annealing kinetics using the parameter Dpar [e.g. Burtner et 

al., 1994]. 

Data analysis and thermal modeling 

Methods for determining fission track component age populations within a 

discordant sample have been developed for data collected with the external detector 

method.  BinomFit uses a deconvolution algorithm to identify statistically significant 

populations ages from a population of grain ages measured from a sample [Brandon, 

2002]. 

Inverse thermal modeling of the AFT data was performed with HeFTy [Ehlers et 

al., 2005; Ketcham, 2005] using the multi-kinetic annealing model of [Ketcham et al., 

1999] with c-axis projected track lengths [Ketcham, 2003] (see details in Appendix 3.3).  

We report the commonly used probability of a worse fit designations good (0.5) and 

acceptable (0.05) for the thermal history envelopes calculated with a Kuiper’s statistical 

test [Press et al., 1992; Ketcham et al., 2000; Ketcham, 2005]. 

 

Results 
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Overview 

Twenty-three samples were analyzed from Cretaceous through Ordovician 

sandstones and quartzites exposed over ~4 km in mean topographic relief from the 

eastern Altiplano through the Subandes at ~19.5°S (Fig. 3.2).  Sample grain age and 

track length yields ranged from the maximum (40 ages & 200 track lengths/sample) to 

poor (<10 ages and/or track lengths/sample) with most (17 of 23) samples yielding 

robust results (>10 ages & track lengths/sample) (Table 3.1).  The robust AFT pooled 

ages are Oligo-Miocene (14-30 Ma) in the EC, mostly early Miocene (18-20 Ma) in the 

IA, and mid Eocene to Mesozoic (42-265 Ma) in the SA (Fig. 3.2C & Table 3.1).  Cooling 

histories inverted from this data are consistent with Eocene to recent cooling from 

temperatures of ~65ºC or greater.  Consistently old, Paleozoic (385-471 Ma) ZFT pooled 

ages from the EC and IA indicate that the Tertiary cooling experienced by both regions 

has been limited to temperatures significantly <240ºC (Table 3.2).  Representative 

stratigraphic sections independently suggest all samples were exhumed from variable 

depths of ~3-8 km across the study region (Fig. 3.4). 

All of the AFT pooled ages are younger than the sample depositional age and 

considered reset whereas the ZFT pooled ages range from reset to mostly detrital [after 

Brandon et al., 1998].  In detail, 100% of the individual AFT grain ages in the EC and IA 

samples are reset and 53-100% of the grain ages in the SA samples are reset.  Mean 

track lengths are short to long (9.97-14.89 μm) with uni-model, bimodal, and/or skewed 

length distributions suggesting a wide range of cooling histories.  AFT grain age and 

fission-track Dpar values span 0.96-2.96 μm.  However, the majority of grains analyzed 

have Dpar values of 1-1.75 μm suggesting dominantly fast-annealing calcian-fluorapatite 

compositions [Donelick et al., 2005].  Despite the majority of grains lacking significant 

compositional variation, only 10 of the 23 sample pooled ages are concordant.  The 
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over-dispersion of grain ages in the discordant samples is not conventionally attributable 

to composition [Carlson et al., 1999] because none of the samples exhibit correlations 

between Dpar and grain age or track length. 

Below, we detail (a) the modeling results of the AFT data from west to east 

across each zone mostly highlighting the good-fit cooling histories with representative 

cooling envelopes shown in Figures 3.5-3.8, and (b) the ZFT pooled ages with ± 2σ 

errors and associated interpretations. 

 

 

 

 

 

Altiplano 

Our Altiplano sample (AL1) is from the Cretaceous El Molino formation west of 

Rio Mulato in the east-vergent Rio Mulato fold belt (Fig. 3.2 & Table 3.1) [McQuarrie and 

DeCelles, 2001].  Local age control for the El Molino is Maastrichtian to Danian (60-~73 

Ma) based on marine fossils and tuffs near the base [Sempere et al., 1997; Horton et al., 

2001].  Given this, we assumed a depositional age of 60-80 Ma for the thermal history 

modeling.  Sample AL1 acceptable fits suggest post-depositional burial to ≥80ºC 40-60 

Ma, followed by >10 Myrs at PAZ temperatures of ~70-85ºC prior to rapid exhumation to 

the surface broadly constrained to start between 3-30 Ma and end 0-15 Ma. 
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Eastern Cordillera (EC) back-thrust belt 

We report seven samples (EC1-7) of Ordovician to Jurassic rocks exhumed from 

4-7 km stratigraphic depths across four different thrust sheets in the EC back-thrust belt 

(Fig. 3.5).  Concordant sample EC1 modeling constrains good-fit cooling from ≥~100ºC 

32-35 Ma, followed by slow cooling through the PAZ until ~15 Ma, and ultimately more 

rapid cooling until ~0-10 Ma (Fig. 3.5C).  Discordant sample EC2 has two deconvolved 

component ages of 10.8 and 33.6 Ma (Table 3.1).  Good-fit model results show EC3 

cooling began most recently ~13 Ma from ≥~105ºC (Fig. 3.5C).  We note these results 

are nearly identical to those obtained with only a fixed 50-180ºC constraint equal in age 

to between deposition and 1 Ma as most discordant samples are reported in this study.  

Model results of concordant sample EC3 demarcate acceptable cooling beginning 10-15 

Ma from ≥~90ºC with good fits refining initial cooling to ~15 Ma from ≥~105ºC. 

Samples EC4-EC6 project onto the same structure implying their cooling 

histories should be related (Fig. 3.5).  However, they overlie a blind thrust that may have 

imparted different kinematic histories and thus we report their cooling histories 

independently.  Sample EC4 has poor data quality with acceptable rapid cooling from 

≥90ºC at >5 Ma with good fits constraining rapid cooling from ≥105ºC 11-16 Ma.  Good-

fit modeling results for discordant sample EC5 suggests rapid cooling started from 

≥105ºC at 20-25 Ma (Fig. 3.5C).  For sample EC6, model results define acceptable rapid 

cooling from ≥100ºC 29-39 Ma with good fits constraining initial cooling from ≥105ºC 34-

36 Ma.  Finally, concordant sample EC7 modeling delimits rapid cooling from ≥105ºC 10-

20 Ma.  

We also report two ZFT results from samples EC4 and EC7 (Fig. 3.5A & Table 

3.2).  EC4 was exhumed from the greatest stratigraphic depths in the EC of >7 km and 

has a discordant ZFT pooled age of 455±42 Ma which is equivalent to the Devonian 

depositional age (Fig. 3.5A).  We consider this ZFT sample unreset and probably 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.5.  Eastern Cordillera (EC) back-thrust belt thermochronology data integrated 

with the regional structure and stratigraphy at ~19.5ºS. (A) Cross section from 
[McQuarrie, 2002] with samples projected onto the appropriate structures.  AFT = 
apatite fission track, ZFT = zircon fission-track pooled age and 2σ (Ma) where 
available.  V.E. = vertical exaggeration.  Discordant samples in italics.  Summary 
table of selected AFT data is directly below (see Table 3.1 for all data & 
abbreviations). (B) AFT pooled age (Ma) and track-length data in their regional 
stratigraphic context from Figure 3.4.  Track-length distribution histograms 
uncorrected to c-axis parallel; F = frequency, N = number of tracks measured, 
and mean track length (dashed line). (C) Selected thermal modeling results 
showing acceptable (light gray), good (dark), and best (thick line) fit cooling 
histories inverted from the AFT data.  Boxes are modeling constraints.  Old Cmpt 
= old age component, Yg Cmpt = young component age.  Track length (TL) 
distribution (c-axis parallel) shown for the data (bars) and best-fit (line) model. 
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detrital.  EC7 has a discordant ZFT pooled age of 471±42 Ma which is older than the 

Silurian depositional age and considered detrital. 

Collectively, the EC back-thrust belt samples were exhumed from 4-7 km 

stratigraphic depths and record three phases of rapid AFT cooling that started in the; (1) 

late Eocene (32-36 Ma; EC1 & EC6), (2) late-Oligocene to early Miocene (20-25 Ma; 

EC5), and (3) mid-late Miocene (~11-16 Ma; EC2-4 & EC7).  Two detrital Paleozoic ZFT 

pooled ages indicate regional Tertiary cooling has been limited to temperatures 

significantly <240ºC. 

 

Eastern Cordillera (EC) fore-thrust belt  

We report five samples (EC8-12) of Ordovician to Jurassic rocks exhumed from 

4-8 km stratigraphic depths across four different thrust sheets in the EC fore-thrust belt 

(Fig. 3.6).  Acceptable modeling results for discordant sample EC8 suggest recent 

cooling began >14 Ma from ≥~100ºC with good fits constraining initial cooling from 21-25 

Ma.  Concordant sample EC9 good-fit modeling results define cooling from PAZ 

temperatures of 65-80ºC 4-40 Ma.  The most likely cooling history for samples EC8 and 

EC9 must be defined by where the sample cooling envelopes overlap because they are 

structurally linked.  In this case, EC9 probably cooled rapidly from ~21-25 Ma as did 

EC8.  Discordant sample EC10 good-fit modeling results constrain recent cooling from 

≥100ºC 19-22 Ma (Fig. 3.6C).  Acceptable modeling fits for sample EC11 constrain rapid 

cooling at 27-30 Ma from ≥75ºC with good fits refining cooling from ≥125ºC 27-30 Ma 

(Fig. 3.6C).  Sample EC12 acceptable modeling fits suggest recent cooling by >20 Ma 

from ≥85ºC with good fits refining cooling from ≥95ºC more than 22 Ma. 

Collectively, the EC fore-thrust belt samples were exhumed from the greatest 

stratigraphic depths of mostly ≥7 km and record two phases of rapid AFT cooling that 
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started in the; (1) early Oligocene (27-30 Ma; EC11; maybe EC12) and (2) early 

Miocene (19-25 Ma; EC8-10, maybe EC12). 

 

 

Figure 3.6.  Eastern Cordillera (EC) fore-thrust belt thermochronology data integrated 
with the regional structure and stratigraphy at ~19.5ºS.  See Figure 3.5 caption 
for details. 

 

Interandean zone (IA) 

We report four samples (IA1-4) from Ordovician to Devonian rocks exhumed 

from 5-7 km stratigraphic depths across two different thrust sheets in the IA (Fig. 3.7).  
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Sample IA1 modeling results infer initial cooling began ~100 Ma from ≥~80ºC, followed 

by residence in the PAZ until a final episode of more rapid cooling to the present from at 

most ~40 Ma (Fig. 3.7C).  Sample IA2 modeling results delimit recent cooling beginning 

20-22 Ma from ≥~100ºC (Fig. 3.7C).  Taken together, these two samples are consistent 

with rapid cooling starting 20-22 Ma and best represented by the results from IA2.  

Good-fit thermal envelopes for sample IA3 demarcate cooling from temperatures ≥~90ºC 

beginning 19-21 Ma (Fig. 3.7C).  For sample IA4, modeling results imply initial cooling 

began ≥~40 Ma from ≥~100ºC, followed by residence in PAZ temperatures of 55-80ºC 

until a final episode of more rapid acceptable cooling initiated from 3-20 Ma with good 

fits limiting final rapid cooling from 3-10 Ma. 

We also report two ZFT results from samples IA2 and IA3 (Fig. 3.7A & Table 

3.2).  IA2 was exhumed from the greatest stratigraphic depths in the IA of ~7 km and has 

a discordant ZFT pooled age of 385±58 Ma, but low grain yield.  The ZFT pooled age is 

younger than the Ordovician depositional age and hence considered reset, but not by 

the Cenozoic Andean orogeny.  IA3 has a discordant ZFT pooled age of 411±38 Ma 

which is equivalent to the Devonian depositional age.  We consider this ZFT sample 

unreset and probably detrital. 

Collectively, the IA samples were exhumed from 5-7 km stratigraphic depths and 

record mostly rapid AFT cooling starting in the early Miocene (19-22 Ma; IA1-3).  This 

early Miocene cooling is roughly uniform across most of the IA.  Sample IA4 shows late 

Miocene or younger (3-10 Ma) initial cooling from the PAZ.  Two reset and unreset 

Paleozoic ZFT ages indicate local Tertiary cooling has been limited to temperatures 

significantly <240ºC in the IA. 
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Figure 3.7.  Interandean zone (IA) thermochronology data integrated with the regional 
structure and stratigraphy at ~19.5ºS.  See Figure 3.5 caption for details. 

 

 

Subandes (SA) 

We report six samples (SA1-6) from Devonian to Carboniferous rocks exhumed 

from 4-6 km stratigraphic depths across five different thrust sheets in the SA (Fig. 3.8).  
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Acceptable modeling results for sample SA1 suggest recent cooling began from PAZ 

temperatures of <90ºC 3-30 Ma with good fits refining cooling from 60-85ºC 3-30 Ma.  

Discordant sample SA2 modeling implies cooling began ~50 Ma from ≥~100ºC, followed 

by residence in the PAZ until more recent cooling began ~8-20 Ma from ~80ºC (Fig. 

3.8C).  Concordant sample SA3 good fits imply significant residence in PAZ 

temperatures of ~75ºC until recent, rapid cooling began ~3-8 Ma (Fig. 3.8C).  For 

sample SA4, modeling suggests significant residence in PAZ temperatures of ~70-75ºC 

until recent, rapid cooling began 4-23 Ma (acceptable fits) or 7-13 Ma (good fits) from 

75ºC.  As part of the same thrust sheet, samples SA3 and SA4 probably cooled 

beginning 4-20 Ma (overlapping acceptable fits) or 7-8 Ma (overlapping good fits).  

Unfortunately, modeling did not produce any acceptable cooling histories for sample 

SA5.  Based on similarities in stratigraphic position, lithology, and AFT data, we assume 

a cooling history similar to SA4.  Finally, modeling of sample SA6 suggests significant 

residence in PAZ temperatures of ~65ºC until acceptable recent, rapid cooling began 2-

19 Ma with good-fits refining that to 2-8 Ma. 

Collectively, the SA samples were exhumed from 4-6 km stratigraphic depths 

and record Miocene to Pliocene initial cooling (~3-20 Ma; SA1-6).  Oligo-Miocene 

cooling (~10-30 Ma; SA1-2) began in the west, stepping eastward to late Miocene (~7-8 

Ma; SA3-4) and eventually as young as Pliocene (2-8 Ma; SA6) in the easternmost 

structure (Fig. 3.8).  One additional observation is that the SA samples show a 

systematic decrease in age with stratigraphic depth from concordant late Paleozoic to 

earliest Mesozoic pooled ages exhumed from ~4 km depths to discordant mid-Eocene 

ages exhumed from ~5.5 km depths (Fig. 3.8).  Several Devonian to Tertiary exposures 

previously analyzed along this transect also have Mesozoic to early Tertiary AFT ages 

[Moretti et al., 1996]. 
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Figure 3.8.  Subandes (SA) thermochronology data integrated with the regional 
structure and stratigraphy at ~19.5ºS.  See Figure 3.5 caption for details.  Depo 
age = deposition age. 

 

 

Discussion 

Erosional cooling of thermochronometer data 

In active orogens, thermochronometer cooling can result from erosional 

exhumation, tectonic exhumation along normal faults, magmatism, and/or fluid flow [Ring 

et al., 1999; Ehlers, 2005].  Erosional exhumation is a common mechanism for sample 
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cooling in fold-thrust belts.  In our study area (Fig. 3.2), a lack of extensional structures, 

insignificant Mesozoic rifting [e.g. Sempere et al., 2002], and volcanism spatially-limited 

to the EC back-thrust belt supports that erosional exhumation was responsible for the 

cooling histories reported.  Therefore, we assume that the initiation of deformation 

generates topography with erosion causing the onset of rapid (>~10ºC/M.y) exhumation 

recorded by the thermochronometer data [after e.g. Coughlin et al., 1998; Sobel and 

Strecker, 2003; Barnes et al., 2006; Ege et al., 2007]. 

Samples EC1-7 in the EC back-thrust belt are proximal (~4-25 km) to Tertiary 

volcanism suggesting their cooling histories could be associated with magmatism rather 

than erosional exhumation (Fig. 3.2A).  For the following two reasons, we conclude that 

magmatic heating was insufficient to overprint the erosion-related cooling signal in the 

sample data.  First, the AFT data display no correlation of age or track length distribution 

with respect to distance to the nearest volcanic outcrop (Figs. 3.2A & 3.5, Table 3.1).  

Second, we applied a step change in heating [after Ehlers, 2005] to compute the 

potential thermal disturbance caused by the Miocene to recent (~<1-25 Ma) Los Frailes 

ignimbrite flows nearby [Riera-Kilibarda et al., 1994; Barke et al., 2007].  We assumed 

an initial intrusion temperature of 800ºC, a 50ºC country rock temperature, a 300 m thick 

deposit [Riera-Kilibarda et al., 1994], and 32-64 km²/Ma thermal diffusivities based on 

average and measured values of conductivity, density, and heat capacity from southern 

EC rocks [Henry and Pollack, 1988; Ehlers, 2005].  The results predict a minor ~10-13ºC 

temperature change 4 km (our most proximal sample distance) from the intrusion center. 

 

Timing of deformation at ~19.5ºS 

Previous work constraining the deformation history at ~19.5ºS suggests the EC 

fore-thrust belt deformation initiated in the mid-late Eocene (~35-40 Ma) followed by 

distributed deformation moving both west and east reaching the Altiplano and SA by the 
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mid-Miocene (~15 Ma) (Figs. 3.9 & 3.10) [McQuarrie et al., 2005].  Late Eocene to 

earliest Oligocene (27-36 Ma) rapid erosion in the EC back-thrust and fore-thrust belts 

suggests distributed deformation at this time (Fig. 3.9B&C).  Two samples (EC1 & EC6) 

record the earliest cooling with robust grain/track yields documenting erosion and 

deformation in the back-thrust belt 32-36 Ma (Figs. 3.5C & 3.9C).  Sample EC11 

recorded the earliest cooling in the EC fore-thrust belt suggesting erosion and 

deformation started slightly later from 27-30 Ma (Figs. 3.6C & 3.9C).  However, two 

additional poor quality samples (EC9 & EC12) are consistent with this early Oligocene or 

even earlier erosion.  Our chronology implies either (a) the EC back-thrust belt started 

deforming first or (b) the earliest (~35-40 Ma) EC fore-thrust belt deformation was not 

recorded by our samples because they are limited to the younger, eastern portion as 

predicted by in-sequence deformation (Figs. 3.2 & 3.9).  Regardless, the results attest to 

near contemporaneous deformation in both directions ~27-36 Ma (Fig. 3.9B&C).  

Sediments shed by this exhumation were transported eastward into the adjacent 

foredeep deposits of the Incapampa syncline (Figs. 3.2A & 3.9A&B) [Horton, 2005; 

McQuarrie et al., 2005]. 

Late Oligocene to early Miocene (19-25 Ma) cooling suggests deformation 

across structures in the EC as well as initial deformation of the IA at 19-22 Ma (Fig. 

3.9D).  Although rapid erosion of samples EC8-10 is consistent with in-sequence 

deformation, they are all west of earlier exhumation recorded by EC11 indicating the 

opposite.  Sample EC5 erosion is younger in age and intermediate in across-strike 

distance suggesting out-of-sequence deformation in the EC back-thrust belt.  During this 

time (19-25 Ma), a change from foredeep to intermontane basin sedimentation suggests 

EC deformation waned while active deformation stepped eastward into the IA [Horton, 

2005].  The extensive and contemporaneous rapid erosion portrays distributed 

deformation localizing sedimentation in the EC, which waned shortly thereafter, and 
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eventually ceased by ~15 Ma [McQuarrie et al., 2005] or 21-25 Ma [Horton, 2005].  This 

history is supported by only minor resolved acceptable cooling in the EC back-thrust belt 

younger than 19 Ma. 

The 19-36 Ma deformation in the EC is associated with upper basement 

shortening (Fig. 3.9A-D) [McQuarrie, 2002; McQuarrie et al., 2005].  Similar magnitudes 

of shortening in the basement and cover rocks accounts for most of the present-day 

crustal thickness of the EC and presumably some of the elevation of the Andean plateau 

(Fig. 3.9D) [McQuarrie, 2002].  This upper basement structure eventually feeds slip in 

the IA causing early deformation in the IA cover rocks (Fig. 3.9D).  The recorded uniform 

exhumation of the IA at 19-22 Ma can be explained in two ways; a) by contemporaneous 

thrusting and exhumation in the IA cover rocks fed by upper basement deformation or b) 

by more passive uplift above the leading edge of a subsequently lower basement 

structure as it began to migrate eastward feeding slip into the SA (Fig. 3.9D&E). We 

prefer the latter explanation and suggest that the spatially uniform IA exhumation 19-22 

Ma signifies the initiation age for lower basement shortening which begins after 

cessation of the upper structure [McQuarrie, 2002].  Since it is the older, upper-

basement structure that is responsible for a proto-Andean plateau of modern width we 

infer this to been achieved by ~15-20 Ma (between D & E in Fig. 3.9) [McQuarrie, 2002; 

see also Barnes et al., 2006]. 

Mid-to-late Miocene rapid cooling occurred in the EC back-thrust belt (11-16 Ma), 

easternmost IA (IA4; 3-10 Ma), and initiated in the western SA (8-20 Ma) (Fig. 3.9E).  

Cooling in the EC back-thrust belt may be the result of (a) strain accumulation from ~12-

20 Ma evident by the locally deformed early-to-mid Miocene Mondragon Formation 20-

30 km northwest of Potosi [Kennan et al., 1995] or (b) simply enhanced protracted 

erosion after deformation had already ceased.  No record of rapid exhumation and the 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9.  Chronology of deformation and exhumation across the eastern flank of the 
central Andean plateau at ~19.5ºS.  Previous chronologic estimates (Ma*) and 
sequential kinematic reconstruction with foreland basin deposits are from 
McQuarrie et al. [2005].  This previous chronology is based on an integration of 
published structural, stratigraphic and thermochronologic data in Bolivia.  Grey 
boxes indicate a revised chronology based on the thermochronometer data 
presented in this paper.  Grey box text indicates sample ID(s) (top row) and the 
age of initial rapid cooling (in Ma) from good (1) and acceptable (2) thermal 
modeling results.  Black dots are samples with ID number.  Major exhumation 
and deformation episodes are highlighted with italicized text.  NF = no fits.  Arrow 
is eastern edge of the Andean plateau/Tarabuco & Incapampa syclines (see Fig. 
3.2 for location) and jagged line is the western edge of the Brazilian shield. 
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existence of the undeformed, regional San Juan del Oro erosion surface [e.g. Gubbels et 

al., 1993] implies deformation in the EC fore-thrust belt ceased by ~10 Ma.  The late 

Miocene exhumation (from PAZ temperatures) of the eastern IA can be explained by 

continued migration of the lower basement structure as it advanced farther east 

[McQuarrie et al., 2005].  Limited thermo-geochronology on Tertiary basin deposits and 

our recorded exhumation show deformation in the SA began ~8-20 Ma [Moretti et al., 

1996; Jordan et al., 1997; Barke, 2004; Uba et al., 2006].  At about the same time, to the 

west, erosion and deformation of the Rio Mulato fold belt in the Altiplano is broadly 

constrained between 3 and 30 Ma.  The unconformably overlying and folded Miocene 

Tambillo Formation sediments indicate both pre-Miocene and late Miocene (~10-14 Ma) 

Altiplano deformation locally [Kennan et al., 1995; Lamb and Hoke, 1997]. 

Late Miocene to Pliocene (2-8 Ma) rapid exhumation and deformation occurred 

throughout the central-to-eastern SA (Fig. 3.9F).  Local deposition of shallow marine 

rocks in the Yecua Formation [e.g. Hulka et al., 2006; Uba et al., 2006] place a 

maximum age of deformation on the SA structures sampled by SA3-6 of ~8 Ma.  Late 

Miocene exhumation is recorded by deposition of the Guandacay Formation (2.1-6 Ma) 

in the Chaco (Fig. 3.1) to the east that indicates a proximal foredeep outboard this 

deformation [Uba et al., 2006].  Overlapping good modeling fits of samples SA3-4 from 

the west-limb of the Sararenda anticline [McQuarrie, 2002] in the central SA record 

thrusting and exhumation starting 7-8 Ma.  A dated tuff from fluvial terraces on the 

Caipipendi thrust hanging wall (second easternmost SA structure in Fig. 8A) suggests 

inactivity for the last 1 Ma [Barke, 2004].  The model-constrained cooling envelopes are 

consistent with in-sequence deformation propagating east with time as proposed 

[McQuarrie, 2002; McQuarrie et al., 2005].  However, others have suggested out-of-

sequence deformation of the central and eastern SA structures over ≤6 Ma [Fig. 11 of 

Moretti et al., 1996; Barke, 2004 pgs. 148-151]. 
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Revised shortening rates 

Previous shortening rates for the EC and IA were ~9-11 mm/yr from ~20-40 Ma 

reducing to ~4-5 mm/yr in the SA over the last 15-20 Myr (Table 3.3) [see also Ramos et 

al., 2004].  We revise these rates by assuming the EC started deforming 40 Ma and the 

SA started either 8 or 20 Ma as suggested by the minimum and maximum good-fit 

exhumation histories of sample SA2 (Table 3.3).  Two hundred-eighteen km of 

shortening across the EC and IA from 40 to 10-20 Ma translates to a rate of ~7-11 

mm/yr.  Sixty-seven km of shortening across the SA since 8 or 20 Ma produces 

shortening rates of ~9 or ~4 mm/yr, respectively.  Our revised shortening rates 

presented here suggest Miocene to recent rates either decreased by half from a long-

term average of ~8 mm/yr or remained about the same to slightly increasing depending 

on the age of initial SA deformation and the end of EC deformation. 

 

Exhumation estimates 

Geothermal gradients and depth to closure 

The thermal structure across the thrust belt in southern Bolivia varies by a factor 

of two and has been well-constrained by borehole measurements [Henry and Pollack, 

1988; Hamza and Muñoz, 1996; Springer and Forster, 1998; Hamza et al., 2005].  We 

quantify exhumation magnitudes from AFT and ZFT effective closure depths using 

measured thermal gradients (Fig. 3.10B) [Reiners and Brandon, 2006].  We assumed 

average closure temperatures of 110ºC for AFT [e.g. Gallagher et al., 1998] and 240ºC 

for ZFT [Brandon et al., 1998], and average surface temperatures of 10ºC for the 

Altiplano and EC, 15ºC for the IA, and 23ºC for the SA [Springer and Forster, 1998; 

Instituto Geografico Militar, 2000].  Mean surface temperatures and proximal borehole 

measurements of the thermal gradient combine to represent the best-available proxy for 
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the thermal field through which the samples cooled.  Our selection criteria for thermal 

gradient estimates include: (1) measurement reliability, (2) location within the same 

physiographic province as the samples, (3) reported gradient has been corrected for 

near surface topographic perturbations, and (4) location of measurement is within one 

crustal thickness distance (~60-75 km in the Altiplano/EC, ~50-60 km in the IA, and ~40 

km in the SA [Beck and Zandt, 2002]) of the samples to minimize regional variations in 

basal heat flux biasing our calculation. 

 

 

 

 

 

Five measurements in the Bolivian Altiplano estimate a mean thermal gradient of 

38±10 (1σ)ºC/km [Henry and Pollack, 1988].  The high gradient is attributed to the 

position of a shallow (~70 km) asthenospheric mantle wedge, partial melts in the mid-

crust, and proximity to the volcanic arc to the west [Springer, 1999].  This high 

geothermal gradient suggests an erosion magnitude of ~2.5 km (range ~2-3.5 km) for 

reset AFT samples.  More specifically, the only measurement proximal to our Altiplano 



 

 

 

 

 

 

 

 

 

Figure 3.10.  Thermochronologic constraints on the exhumation history across the 
central Andean fold-thrust belt at 19.5-21.5ºS.  AL = Altiplano, BTB = back-thrust 
belt, FTB = fore-thrust belt. (A) Distribution of recorded rapid cooling episodes 
inferred from apatite fission-track (AFT) data compiled from this study and others.  
See legend for appropriate references.  Range of acceptable (open boxes) and 
good (gray boxes) fits from inverse modeling of the AFT data for the onset of 
rapid cooling for this study as well as summary results (dashed boxes) from 
Figure 12 of Ege et al. [2007], Figure 2 of Ege et al. [2003], and page 24 of 
Moretti et al. [1996]. (B) Estimated exhumation magnitudes.  Assumed surface 
temperature (Ts) and geothermal gradients necessary to quantify these 
estimates are listed at the top of each region.  Assumed closure temperatures 
(Tc) for the different thermochronometer systems are listed in the bottom left 
corner.  Abbreviations and references are the same as in A.  Black deltas are 
from Figure 13 of Ege et al. [2007].  ZFT = zircon fission track.  Vertical arrows 
indicate an upper limit due to not fully reset cooling ages.  Dashed lines are 
estimated from the representative stratigraphy with gray bars as estimated (or 
inferred with question marks) depth to fully reset and concordant AFT samples 
from Figure 3.4.  Dotted box in the SA is the most-likely estimate from the cross 
section for the SA where depth to AFT closure represents a maximum because 
the cooling ages are not fully reset.  (C) Cross section is the same as in Figure 
3.2B. 
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sample is located ~50 km away at Nasama and has a gradient of 36ºC/km ± 10% heat 

flow error [Henry and Pollack, 1988].  From this value, we estimate an exhumation 

magnitude of ~2.8 km ranging from ~2.5-3 km (Fig. 3.10B).  In comparison, previously 

estimated Oligocene paleo-geothermal gradients in the Altiplano to the south range from 

26-32ºC/km±~20% [Ege et al., 2007] suggesting this exhumation magnitude estimate is 

a minimum. 

In the Bolivian Eastern Cordillera, twelve measurements constrain a mean 

thermal gradient of 26±8 (1σ)ºC/km [Henry and Pollack, 1988].  The lower EC thermal 

gradient relative to the Altiplano is probably due to the large topographic effect from the 

higher relief (Fig. 3.1).  The 26±8 (1σ) ºC/km gradient suggests an erosion magnitude of 

3.9 km (range 3-~5.5 km) for reset AFT samples and 9 km (range 7-13 km) if any of the 

ZFT samples had been reset.  More specifically, three most proximal measurements to 

our EC samples are located ~100-150 km to the south and estimate a similar mean 

gradient of 27±11ºC/km, but larger uncertainty (stations Choroloque, Tatasi, and 

Chilcobija from Henry and Pollack [1988]).  This decreases the erosion magnitude 

estimate to 3.7 km and the range from 2.6-6.5 km for AFT and ~8.5 km with a range of 

6-15 km for ZFT (Fig. 3.10B).  Estimated EC Oligocene paleo-geothermal gradients to 

the south are similar, ranging from 19-32ºC/km±~20% [Ege et al., 2007]. 

Unfortunately, no thermal gradient measurements exist for the IA.  Therefore, we 

assume the gradient is the same as the EC at 27±11ºC/km with equivalent estimated 

erosion magnitudes (Fig. 3.10B).  The estimated IA Oligocene paleo-geothermal 

gradient to the south is nearly identical at 26ºC/km±~35% [Ege et al., 2007].  Regional 

heat flow studies treat the IA as part of the EC further justifying the assumption of similar 

gradients between the EC and IA [Springer and Forster, 1998; Springer, 1999]. 

SA sample cooling ages are not reset by the Miocene to recent deformation 

allowing us to estimate a depth to AFT closure as a maximum limit on SA exhumation.  
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Over 1500 measurements from the southern Bolivia SA and adjacent Chaco plain yield a 

mean geothermal gradient of 22.4ºC/km ± ~35% (Fig. 3.1) [Springer and Forster, 1998].  

The low gradient is attributed to the SA being both the locus of substantial late Tertiary 

sedimentation and proximal to the cold, Brazilian shield to the east [Springer, 1999].  

The 22.4ºC/km ± ~35% gradient suggests the SA erosion magnitude is less than ~4 km 

(range ~3-6 km).  Locally, three measurements (stations Monteagudo, Camiri, and 

Guairay [Springer and Forster, 1998]) within ~50 km of our samples suggest a lower 

mean gradient of 18±5ºC/km indicating an average maximum exhumation magnitude of 

~5 km with a range of <3.8-7 km (Fig. 3.10B). 

A systematic decrease in SA sample cooling age with depth allows us to semi-

quantitatively test the validity of using modern geothermal gradients to estimate erosion 

magnitude.  We estimate the paleo-thermal gradient through which the SA samples were 

exhumed by assuming the reconstructed sample stratigraphic depths are correct (Fig. 

3.8B), AFT closure is 110ºC, and the surface temperature is 23ºC.  As we outline here, 

the AFT data imply the SA samples were exhumed from within a fossil AFT PAZ [e.g. 

Fitzgerald et al., 1995].  First, mean track lengths are shortened, range from 9.97-11.64 

µm, and their variance generally increases with original stratigraphic depth.  Second, the 

percentage of reset individual grain ages within each sample (from ~55-60% (SA3 and 

6) to 100% (SA1)) increases with depth.  Third, there is a systematic decrease in pooled 

age with depth; two shallow, late Paleozoic to early Mesozoic, concordant ages overlie 

two intermediate-depth samples of much younger, and more significantly reset 

Cretaceous age, which in turn overlie two mid-Eocene discordant ages (Fig. 3.4).  

Fourth, sample cooling histories indicate residence in AFT PAZ temperatures that 

increase with depth from ~65-90ºC (Fig. 3.8C; see also section 4.6).  Finally, the 

youngest pooled ages (mid-Eocene) are discordant and substantially older than the 

maximum age of deformation in the SA (~20 Ma; [e.g. Barke, 2004; McQuarrie et al., 
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2005], suggesting none of the samples were exhumed from above AFT closure by the 

Miocene deformation.  Based on the sample depth profile, full closure must have 

occurred below the deepest sample at ≥6 km (grey zone in SA; Figs. 3.4 & 3.8).  This 

suggests the SA samples resided in a paleo-PAZ with a minimum depth of 6 km to the 

110ºC isotherm corresponding to a paleo-gradient of <~15ºC/km.  This is within the 

lower bound of the modern mean gradient (18±5ºC/km) used to estimate the exhumation 

magnitude above. 

Exhumation magnitude from the balanced section 

Balanced cross sections and their restorations provide an independent method 

for estimating the first-order spatial variations in erosion magnitude across the thrust belt 

[Barnes and Pelletier, 2006; McQuarrie et al., 2008].  In brief, the balancing of rock area 

can be used to reconstruct the amount of material eroded by projecting the stratigraphy 

and structures above the present-day topography in the balanced section (Fig. 3.2).  

Although a simplification, dividing the estimated area removed by erosion by the modern 

length of the thrust belt provides an average, regional thickness of denudation.  The 

eroded area estimates at ~19.5ºS in Table 3.4 both exclude (lower range) and include 

(upper range) a 3 km thick Tertiary section (similar to the modern estimate; [Horton and 

DeCelles, 1997]) based on preserved deposits throughout the EC that document the 

eastward migration of the foreland basin during the early to mid-Tertiary [DeCelles and 

Horton, 2003].  Estimates are 725-1285 km2 of material removed from the 194 km-wide 

EC, 347-640 km2 from the 56 km-wide IA, and 192-432 km2 from the 130 km-wide SA 

(Table 3.4).  Total magnitude of removed material is estimated to be 1264-2357 km2. 

Synthesis of exhumation magnitudes and rates at ~19.5ºS 

Table 3.4 shows a comparison between denudation estimates derived from both 

the thermochronology and the cross section.  Both methods produce denudation 

estimates for the EC that range from ~3-7 km.  Although exhumation is variable across 
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the different EC structures, ~4-7 km is most consistent amongst the various estimates 

(Table 3.4 & Fig. 3.10B).  Maximum exhumation of the EC is <~8.5 km constrained by 

several Paleozoic ZFT ages.  The IA is unique in that the cross section estimate of 

erosion is greater than that given by the thermochronology (~3-6.5 vs. ~6-11 km) with 

the representative stratigraphy suggesting an intermediate value of ~5-7 km.  Significant 

structural overlap (3-5 km) recorded in the IA may have never been expressed as burial 

if erosion kept pace with faulting.  Thus removal of material was lateral verses vertical 

making the integrated “vertical” amount of exhumation an overestimate.  Exhumation 

estimates across the IA are most likely ~4-6 km.  Maximum exhumation of the IA is also 

<~8.5 km as constrained by two Paleozoic ZFT ages.  In the SA, the cross section, 

closure depth, and the stratigraphy combine to both estimate and limit the exhumation 

magnitude.  The average SA thermal gradient estimate (~5 km) is a maximum because it 

represents a depth to full AFT closure and none of the sample ages were fully reset by 

the Miocene to recent erosion and deformation.  The stratigraphy estimates (4-6 km) 

probably represent maximums because a) sample-specific reconstructed depths are up 

to ~0.5 km less than these regionally averaged stratigraphic thicknesses and b) the 

assumption of a 3-km thick Tertiary fill might be too large.  Give these considerations, we 

think the cross section-derived magnitude of ~3 km (1.5-3.3 km) is the best average 

estimate of the SA exhumation magnitude. 

We estimated exhumation rates from the cross section and thermochronology-

derived magnitudes assuming simplistic timescales for the duration of exhumation 

across each zone (Table 3.4).  Rates for the EC range from ~0.1-0.2 mm/yr with a 

maximum of ~0.4 mm/yr averaged over the last 40 Myr.  IA rates are higher ranging from 

~0.1-0.6 mm/yr with a maximum of ~0.8 mm/yr averaged over the last 20 Myr.  Rates for 

the SA range from ~0.1-0.2 mm/yr up to ~0.4 mm/yr averaged over the last 20 Myr or 

~0.2-0.4 mm/yr up to ~0.9 mm/yr averaged over the last 8 Myr.  However, rates on  
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individual structures could be much higher, especially the eastern SA thrust sheets if 

they were exhumed as recently as the Pliocene (i.e. ~5 Ma; ~0.8-1.4 mm/yr). 

In summary, exhumation magnitudes generally decrease both eastward and 

westward from local maximums of ~6-8 km in the EC fore-thrust belt to 1.5-3.3 km in the 

SA and Altiplano (Fig. 3.10B).  Exhumation rates range from ~0.1-0.2 mm/yr in the EC, 

~0.1-0.6 mm/yr in the IA, and from ~0.1-0.4 mm/yr to 1.4 mm/yr or more in the eastern 

SA. 

 

Along-strike variations in southern Bolivia/northern Argentina (19-23ºS) 

The chronology of exhumation and deformation in the central Andean fold-thrust 

belt is generally similar, but differs in detail within an along-strike distance of ~400 km 

from our study area southward to northernmost Argentina (Figs. 3.1 & 3.10A).  At 

~21.5ºS, AFT began in the central EC during the late Eocene (36-40 Ma) followed by 

distributed EC deformation [Ege et al., 2007].  We document younger late Eocene to 

earliest Oligocene (27-36 Ma) distributed exhumation in the EC, to the east and west of 

the oldest cooling recorded at ~21.5ºS (Fig. 3.10A), also suggesting distributed 

deformation.  Wedgetop basin deposits near Tupiza (~21.5ºS) suggest the EC back-

thrust belt began ~34 Ma consistent with our earliest documented exhumation [Horton, 

1998; Horton et al., 2002; McQuarrie et al., 2005].  Distributed exhumation existed 

across the entire EC at 21.5ºS during the early Oligocene (27-33 Ma) [Ege et al., 2007], 

whereas we document distributed exhumation throughout the late Oligocene to earliest 

Miocene (19-30 Ma).  In both transects (19.5º & 21.5ºS), erosional cooling during these 

times is generally consistent with (a) mostly eastward propagation of deformation from 

the central EC, and (b) out-of-sequence exhumation and deformation across the EC 

back-thrust belt that almost completely ceased by ~20 Ma [Ege et al., 2007].  A late 

pulse of late Miocene (~11-16 Ma) exhumation in the EC back-thrust belt at ~19.5ºS and 
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10-18 Ma growth structures in the western Tupiza basin at ~21.5ºS [Horton, 1998] 

suggest limited deformation continued in the EC until ~10 Ma.  Additionally, thermal 

histories from the Uyuni-Khenayani Fault zone in the central Altiplano (21.5ºS) show 

exhumation began ~30 Ma [Ege et al., 2007] consistent with our Altiplano sample in the 

Rio Mulato fold belt, the along-strike equivalent structure to the north. 

During the early Miocene (18-22 Ma), the IA became active as exhumation and 

deformation continued uniformly along strike from 19.5-21.5ºS (Fig. 3.10A) [Ege et al., 

2007].  Mid-to-late Miocene (~8-20 Ma) erosion and deformation continued into the 

eastern IA and western SA (Fig. 3.10A) [Moretti et al., 1996; Echavarria et al., 2003; Ege 

et al., 2003; Uba et al., 2006].  Unfortunately, we can only say that model-constrained 

cooling of sample AL1 is consistent with initial cooling anytime between the early 

Oligocene and Pliocene (3-30 Ma).  Several lines of evidence suggest deformation in the 

EC and Altiplano completely ceased by 7-13 Ma, including: minor folding of late Miocene 

(~10-14 Ma) sediments in the Rio Mulato fold belt in the Altiplano [Kennan et al., 1995; 

Lamb and Hoke, 1997], elimination of growth structure evidence near Tupiza (21.5ºS) 

[Horton, 1998], the undeformed San Juan del Oro erosion surface (18-22+ºS) [Gubbels 

et al., 1993], exhumation histories in the Uyuni-Khenayani Fault zone (21.5ºS) [Ege et 

al., 2007], and flat-lying ignimbrites.  Finally, late Miocene to Pliocene (2-8 Ma) initial 

exhumation and deformation occurred in the central to eastern SA and continues today 

(Fig. 3.10A) [see also Echavarria et al., 2003; Ege et al., 2003; Scheuber et al., 2006]. 

Estimated magnitudes of exhumation across the thrust belt are remarkably 

similar between ~19.5 and 21.5ºS (Fig. 3.10B).  A variety of methods have been used to 

estimate exhumation magnitudes across the southern Bolivia portion of the thrust belt: 

vitrinite reflectance and illite crystallinity (at ~21.5ºS) [Kley and Reinhardt, 1994], 

representative stratigraphy (this study), mass deficits inferred from a balanced section 

(this study), and thermochronology (~19.5-21.5ºS) [Ege et al., 2007 and this study].  In 
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summary, exhumation magnitudes generally range from ~4-7 km in the EC (but may 

exceed that locally up to <~8.5 km) with the vitrinite and illite data suggesting, in 

particular, the Ordovician rocks were buried to great depths (~5-7 km) ~350 Ma, and 

subsequently exhumed either (a) at a constant rate to the surface or (b) to ~2-3 km 

depths by ~300 Ma, followed by recent rapid exhumation to the surface in the Tertiary 

[Kley and Reinhardt, 1994].  In the IA, exhumation estimates range from ~4-6 km (and 

<~8.5 km) with the Devonian rocks supposedly first buried by ~4-6 km of sediments that 

were later eroded by the end of the Carboniferous, and subsequently followed a similar 

thermal history to the SA to the present [Kley and Reinhardt, 1994].  Finally, estimates 

range from ~2-<5 km in the SA (Fig. 3.10B & Table 3.4) [see also Kley and Reinhardt, 

1994; Ege et al., 2007].  Estimated rates of exhumation in southern Bolivia range from 

~0.1-0.3 mm/yr in the EC, from ~0.1-0.6 mm/yr in the IA, and ~0.1-1.6 mm/yr in the SA 

(Table 3.4) [Ege et al., 2007]. 

 

Along-strike variations in Bolivia (15-21.5ºS) 

Comparison of exhumation and deformation in Bolivia (15-21.5ºS) suggests a 

relatively cohesive evolution with some distinctive differences.  For this comparison we 

focus on ‘good-fit’ thermal histories reported in the literature.  In general, the Bolivia EC 

experienced several phases of rapid exhumation since the Eocene.  Initial deformation 

and exhumation began in the EC during the late Eocene to earliest Oligocene (~30-40 

Ma) [e.g. Gillis et al., 2006; Ege et al., 2007 and this study].  Next, the southern Altiplano 

and EC (19.5-21.5ºS) experienced extensive erosion and deformation throughout the 

Oligocene and into the earliest Miocene (~20-33 Ma) distinguished by out-of-sequence 

strain in the EC as demonstrated by this study and Ege et al. [2007].  Unfortunately, 

extreme exhumation of the northern EC fore-thrust belt has exposed the lowest 

Ordovician phyllites and slates [see cross section and sampling gap in Barnes et al., 
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2006; McQuarrie et al., 2008] which are poorly amenable to AFT analysis (e.g. sample 

EC4 in Barnes et al. [2006]) and hence to date, preclude any noteworthy local constraint 

on the Eo-Oligocene exhumation history.  Limited exhumation began in the northern IA 

by at least the late Oligocene (>~25 Ma), followed by substantial exhumation of the IA all 

along strike since the early to mid-Miocene (~15-22 Ma) [see also Ege et al., 2007; 

McQuarrie et al., 2008]. 

Latest Oligocene to earliest Miocene (~15-25 Ma) is a crucial time period in 

plateau development throughout Bolivia.  Sediment provenance indicates eastern and 

western highlands suggestive of an internally drained proto-Altiplano by ~25 Ma [Horton 

et al., 2002].  Transition from foredeep to intermontane sedimentation ~21-25 Ma is 

immediately followed by a severe reduction (but not complete cessation) of upper-crustal 

deformation throughout the EC [Horton, 2005].  And finally, kinematic reconstructions 

suggest IA exhumation (and potentially the onset of SA exhumation as well) both across 

and along strike ~15-20 Ma is associated with the onset of lower basement deformation 

signifying the modern width of the plateau was established by this time [McQuarrie, 

2002; Barnes et al., 2006]. 

The northern EC experienced a second exhumation phase during the mid-to-late 

Miocene (~11-15 Ma) to present [Benjamin et al., 1987; Barnes et al., 2006; Gillis et al., 

2006; Safran et al., 2006; McQuarrie et al., 2008].  This young (<~28 Ma) exhumation is 

unrelated to deformation as constrained by the maximum age of growth structures in the 

local synorogenic sediments of the Luribay and Salla Formations [McFadden et al., 

1985; Sempere et al., 1990; Lamb and Hoke, 1997; Kay et al., 1998; Gillis et al., 2006; 

McQuarrie et al., 2008].  SA exhumation began in the west ~8-20 Ma all along strike 

[Moretti et al., 1996; Ege et al., 2003; Barnes et al., 2006; Scheuber et al., 2006], 

perhaps contemporaneous with a third exhumation pulse (11-16 Ma) in the southern EC 

back-thrust belt (19.5ºS) related to deformation or post-deformation erosion.  The 
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northern Altiplano experienced late Miocene exhumation and deformation between ~5-

11 Ma constrained by mapping, thermochronology, sedimentology of neotectonic strata, 

and geochronology of volcanic rocks [Lamb and Hoke, 1997; Barnes et al., 2006; 

McQuarrie et al., 2008].  In contrast, the last gasps of shortening in the southern 

Altiplano and EC ceased by ~7-13 Ma [Gubbels et al., 1993; Kennan et al., 1995; Lamb 

and Hoke, 1997; Horton, 1998; Müller et al., 2002; Ege et al., 2007].  Finally, exhumation 

is consistent with an eastward migration through the central and eastern SA during the 

Mio-Pliocene (~2-8 Ma) in the south (19.5-21.5ºS) [Ege et al., 2003; Scheuber et al., 

2006], but maybe more spatially uniform and somewhat earlier (~5-12 Ma at 1σ 

uncertainty; ~4-19 Ma at 2 σ) in the north [Barnes et al., 2006].  However, detailed 

analyses of structural geometries and isolated geochronology suggest some out-of-

sequence deformation in the SA [Baby et al., 1995; Roeder and Chamberlain, 1995; 

Moretti et al., 1996; Barke, 2004]. 

Comparison of exhumation magnitudes along strike (15-21.5ºS) suggests most 

significant variations in the EC with only minor differences in the Altiplano, IA, and SA.  

Exhumation magnitudes for the Altiplano range from ~2-4 km [see also Barnes et al., 

2006].  Reset biotite and muscovite 40Ar/39Ar and ZFT ages in the northern EC fore-

thrust belt suggest ~9-11 km of Tertiary erosion [e.g. Gillis et al., 2006] whereas local 

maximums from the southern portion range from ~6-8 km (Fig. 3.10B) [see also Ege et 

al., 2007].  However, neither 40Ar/39Ar nor ZFT ages have been measured in the 

southern EC fore-thrust belt.  Estimates for the EC back-thrust belt are ~3-6 km with 

unreset ZFT ages limiting the maximum to <~8.5 km (Fig. 3.10B) [McQuarrie et al., 

2008].  Best estimates for the IA are ~5-9 km in the north and from ~4-6 km in the south 

with Paleozoic ZFT ages limiting the maximum to <~8 km in the south [see also 

McQuarrie et al., 2008].  Finally, estimates for the SA in the north are ~3-4 km (from 

reset young component AFT ages) with an upper limit of <~7 km from unreset zircon (U-
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Th)/He ages [Barnes et al., 2006].  The best southern SA estimates are ~3 km by AFT 

samples exhumed from PAZ temperatures. 

Estimated rates of deformation in Bolivia (15-19.5ºS) are similar.  The EC and IA 

regions shortened at rates of ~7-11 mm/yr from ~25-40 Ma (Figs. 3.9 & 3.10) [see also 

McQuarrie et al., 2008].  The SA shortened at rates of ~4 or 8 mm/yr depending on 

initiation of deformation either ~15-20 Ma or ~8 Ma [McQuarrie et al., 2008].  Average 

shortening rates at 21.5ºS are 0-8 mm/yr 30-46 Ma, 5-10 mm/yr 10-30 Ma, and 6-14 

mm/yr since 10 Ma [Elger et al., 2005; Oncken et al., 2006]. 

 

Implications for plateau growth models 

The integrated exhumation and deformation record discussed above provides 

important constraints on central Andean plateau growth and allows associated insights 

into proposed models of plateau evolution.  First, lithospheric weakening is commonly 

considered a precondition of the Eocene through Oligocene distributed deformation in 

the plateau region because of shortening and magmatism [e.g. Isacks, 1988; Francis 

and Hawkesworth, 1994; Wdowinski and Bock, 1994].  However, deformation generally 

precedes magmatism [e.g. Elger et al., 2005; Ege et al., 2007 and this study] and the 

regional time-space distribution of deformation and magmatism precludes a direct 

connection between the two because they vary independently [Trumbull et al., 2006].  

Second, the proposal that mantle delamination caused 2-3+ km of rapid Andean plateau 

surface uplift ~6-10 Ma also implies concomitant eastward propagation of accelerated 

deformation into the SA [Garzione et al., 2006; Ghosh et al., 2006].  The SA exhumation 

and deformation history is certainly consistent with activation ~8 Ma [Echavarria et al., 

2003; Ege et al., 2003; Barnes et al., 2006; Scheuber et al., 2006].  However, several 

western SA thermochronometer samples are also consistent with earlier initial cooling 

~10-20 Ma [Barnes et al., 2006 and this study] implying a more gradual eastward 
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migration of deformation from the IA starting ~20 Ma which may not be consistent with 

the delamination model. 

We interpret the central Andean fold-thrust belt to be deforming as a Coulomb 

wedge which seeks to maintain taper by both eastward propagation and out-of-

sequence deformation [Dahlen and Suppe, 1988; Dahlen, 1990; Willett, 1992].  The 

early Eo-Oligocene distributed plateau region deformation could represent episodes of 

alternating wedge conditions leading to both propagation and significant internal 

deformation, whereas the eastward propagation since ~20 Ma could represent a more 

stable condition promoting advance at a potentially reduced rate (Table 3.4).  Evidence 

of out-of-sequence SA deformation ≤6 Ma [Moretti et al., 1996; Barke, 2004] suggests 

some relatively recent readjustments of the wedge to rebuilt taper.  The history and 

changing modes of deformation of a central Andes ancient analogue, the Nevadaplano 

and Sevier fold-thrust belt in the western US [e.g. DeCelles, 2004], has been previously 

interpreted this way [DeCelles and Mitra, 1995].  The latitudinal contrast in erosion, 

which is believed to have existed since potentially as early as the late Miocene [Horton, 

1999; Barnes and Pelletier, 2006], is probably effecting the wedge as suggested by (a) a 

larger magnitude of concentrated exhumation in the northern EC (~9-11 km) compared 

to more distributed and limited exhumation in the south (<~8.5 km) constrained by ZFT 

and 40Ar/39Ar thermochronometers [Benjamin et al., 1987; Gillis et al., 2006] and (b) 

younger and mixed reset AFT cooling ages in the northern SA [Barnes et al., 2006] 

compared to the unreset and discordant Mesozoic AFT cooling ages in the southern SA 

[Scheuber et al., 2006 and this study]. 

 

Summary and conclusions 

This study presents 23 new apatite and zircon fission-track (AFT & ZFT) 

analyses spanning the entire central Andean fold-thrust belt at its widest extent in Bolivia 
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at ~19.5ºS.  Exhumation histories were quantified with thermal modeling, interpreted in 

the context of the regional geology, stratigraphy, geothermal gradients, and mass 

deficits inferred from a balanced section, and then integrated with previous kinematic 

reconstructions and associated foreland basin deposits to refine the chronology and rate 

of deformation.  Primary conclusions of this study are: 

 

1. Cooling histories inverted from the AFT data are consistent with Eocene to recent 

rapid cooling: (a) Distributed exhumation of the Eastern Cordillera (EC) occurred in the 

late Eocene to earliest Oligocene (27-36 Ma) and continued during the late Oligocene to 

early Miocene (19-25 Ma), (b) Exhumation of the eastern Altiplano began anytime from 

3-30 Ma, (c) Exhumation across most of the Interandean zone (IA) began 19-22 Ma, (d) 

Exhumation of the western Subandes (SA) began 8-20 Ma, perhaps contemporaneous 

with a third exhumation pulse (11-16 Ma) in the EC back-thrust belt, and (e) Exhumation 

of the central-to-eastern SA propagated eastward during the late Mio-Pliocene (2-8 Ma). 

 

2. The exhumation chronologies characterize EC deformation as distributed, as 

opposed to previous kinematic reconstructions that assumed in-sequence deformation in 

the direction of transport.  However, Miocene to recent (~0-20 Ma) exhumation of the IA 

and SA is consistent with in-sequence deformation progressing eastward towards the 

Chaco foreland.  We propose that the propagation of deformation from the EC towards 

the SA, marked by uniform IA exhumation 19-22 Ma, indicates a switch from a higher to 

lower basement structure.  The cessation of most EC exhumation signifies 

establishment of the modern Andean plateau width and substantial crustal thickness 

briefly thereafter by ~15-20 Ma. 
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3. Exhumation magnitudes decrease laterally from local maximums of <8 km in the 

EC fore-thrust belt to average values of ~4-7 km.  Magnitudes are ~2.5-3 km in the 

Altiplano, ~4-6 km in the IA, and ~3 km in the SA.  Paleozoic ZFT ages constrain 

maximum exhumation of the EC back-thrust belt and IA to <~8.5 km. 

 

4. Shortening rates across the EC and IA from 40 to 10-20 Ma range from ~7-11 

mm/yr.  Shortening rates across the SA since 8 or 20 Ma range from ~9 to ~4 mm/yr.  

These rates suggest the Miocene to recent rates either decreased by half from the long-

term average of ~8 mm/yr or remained about the same or slightly increased depending 

on the age of initial SA deformation and the end of EC deformation. 

 

Finally, we draw three important generalizations from the integrated record of 

central Andean fold-thrust belt exhumation, deformation, and sedimentation throughout 

Bolivia:  (A) Deformation began in the EC ~35-40 Ma and continued in a distributed 

manner throughout the Altiplano and EC regions until ~20-25 Ma with minor, isolated 

deformation continuing until ~10 Ma.  (B) Uniform exhumation in the southern IA ~18-22 

Ma signifies establishment of the modern width of the Andean plateau with unknown, but 

significant crustal thickness shortly thereafter by ~15-20 Ma.  (C) From ~20 Ma to 

present, deformation mostly propagated eastward from the IA with evidence for minor 

out-of-sequence deformation in the central- to-eastern SA. 
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Appendix 3.1. Representative stratigraphy 

Representative stratigraphic sections were constructed from measurements of 

the balanced and restored section of McQuarrie [2002] (Figs. 3.2 & 3.4).  We describe 

the methodology proceeding from west to east and upsection from the Ordovician 

through the Tertiary.  Stratigraphic thicknesses and sample location errors are estimated 

to be ±~20% arbitrarily, but are not included for brevity. 

We estimate the average thickness of the Ordovician at 5.5 km in the EC.  The 

Silurian thins eastward from 4.2-1.2 km with averages of 2725 m and 1500 m for the 

back-thrust and fore-thrust zones, respectively.  The Devonian is absent in most of the 

EC except for the eastern margin where it thickens rapidly to a maximum of 1650 m at 

the EC-IA boundary for an average of 825 m in the EC fore-thrust belt.  Presumably, the 

EC Devonian rocks were eroded in pre-Mesozoic time [McQuarrie and DeCelles, 2001].  

The Carboniferous section is missing, the Mesozoic rocks are ~1500 m thick, and 

Tertiary rocks are only present locally [e.g. Horton, 2005]. 

The Ordovician thins eastward (4.15-1.65 km) with an average thickness of 2.9 

km in the IA.  The Silurian thins eastward from 2.5-1.25 km for an average of 1875 m.  

The average Devonian thickness is 2.5 km because it thickens eastward from 1.65 to 

3.35 km.  The Carboniferous is absent here.  The Mesozoic rocks range from 850 m 

thick to absent from east to west for an average of 425 m.  Tertiary rocks are not present 

regionally. 

Minimal Devonian is exposed in the SA, but it supposedly thins from 3950-500 m 

for an average of 2225 m.  The average Carboniferous thickness is 1700 because it 

ranges from 1150-2250 m.  Mesozoic units range from 520-1200 m thick for an average 
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of 860 m.  Finally, Tertiary sediment thicknesses vary greatly among the constraints, but 

average 3 km with a range from 2-4 km. 

Studies tracked the early-mid Tertiary migration of the central Andean foreland 

basin system as a proxy of the hinterland thrust belt evolution [DeCelles and Horton, 

2003; Horton, 2005; McQuarrie et al., 2005].  This suggests that Tertiary foreland 

deposits existed outboard the thrust belt to the east which was subsequently uplifted and 

mostly eroded from the EC and IA.  Consequently, we assume a uniform 3 km-thick 

Tertiary foreland section from the EC through the SA in our representative sections [after 

Barnes and Pelletier, 2006]. 

 

Appendix 3.2. Analytical procedures 

Mineral separations and fission-track analyses were performed using standard 

techniques by Apatite to Zircon, Inc.  Apatite and zircon concentrates were created using 

standard heavy-liquid techniques [see Appendix 1 of Donelick et al., 2005].  Apatite 

grains were immersed in an epoxy resin that was cured at 90°C for 1 hour.  The cured 

mounts were polished to expose grain surfaces, followed by etching in 5.5N HNO3 for 

20.0 seconds (± 0.5 seconds) at 21°C (± 1°C) to reveal all natural fission tracks.  Zircon 

grains were mounted in FEP Teflon.  The zircon mounts were also polished followed by 

immersion in a eutectic melt of NaOH + KOH at ~210°C (± 10°C) for ~37 hours and 10 

minutes to adequately reveal the naturally occurring tracks. 

Most AFT analyses and all ZFT analyses presented here used the laser ablation 

(LA-ICPMS) method of Donelick et al. [2005].  Age standards used to calculate the LA-

ICPMS zeta calibration factor were (1) Durango apatite (30.6±0.3 Ma) from Cerro de 

Mercado, Mexico, and (2) Fish Canyon zircon (27.9±0.7 Ma) from the San Juan 

Mountains, Colorado.  AFT sample 713-5B and 714-1B analyses used the external 
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detector method [e.g. Gallagher et al., 1998].  The age standard used to calculate the 

traditional zeta factor was the same Durango apatite.  A zeta calibration factor of 113.8 ± 

2.9 (1σ) (for RAD) was used. 

Following age analysis, grain mounts were irradiated by a 252Cf source in a 

vacuum to enhance the measurability of the natural tracks [Donelick and Miller, 1991].  

The irradiated grain mounts were re-immersed in 5.5N HNO3 for 20.0 seconds (± 0.5 

seconds) at 21°C (± 1°C) to reveal any horizontal, confined tracks. Both the track lengths 

and their angle relative to the crystallographic c-axis were recorded.  For each apatite 

grain age and track length, a mean Dpar value was determined from 1-4 measurements. 

 

Appendix 3.3. AFT data analysis and thermal modeling 

We used BinomFit to deconvolve the component ages for sample 714-1B 

because it is both discordant and was analyzed with the external detector method.  The 

new LA-ICPMS-derived data is not compatible with BinomFit because a non-Poissonian 

counting process is used in the measurement of the U, Ca, and Si isotopes, and thus the 

same statistical techniques can not be applied.  Consequently, we conservatively 

modeled all the remaining sample AFT data as one kinetic population. 

We conducted inverse thermal modeling of the AFT data with HeFTy beta 

version 6 [Ehlers et al., 2005; Ketcham, 2005] with the 252Cf irradiation option activated.  

We used 2σ uncertainty, included Dpar values, and both the traditional zeta and LA-

ICPMS ratio methods as appropriate with the age and length data. 

For each sample, an initial, open-ended model was performed with all sample 

data as one kinetic population with (a) a starting temperature of 200ºC at a time that is 

50 Myrs older than deposition and (b) 20ºC at present.  This model was run to assess 

how distinct the recent cooling history is without bias from multiple user-defined 
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constraints. Next, a more refined model was run by imposing additional geologic 

constraints such as a fixed 10-30ºC temperature equal to the deposition age and a fixed 

50-180ºC temperature equal in age to either (a) the 2σ range in the concordant pooled 

age or the 2σ range in discordant component age(s) (if available), or (b) between the 

sample depositional age and 1 Ma for discordant samples to allow for the maximum 

flexibility in attempted thermal history paths explored.  These models defined the 

envelope of permissible thermal histories given the samples’ local geologic context.  

Since we cannot delineate component ages and kinetic populations for discordant 

samples, we followed this conservative approach and report the refined model results.  

This approach allows for identification of the full range of sample cooling histories 

permitted by all measured ages and track lengths. 

Modeled thermal history segments were designated as episodic style, monotonic, 

and random spacing with halved 5 times (5E) to provide the most simple, yet flexible 

(“allowed complexity”) style of cooling paths between constraints [Ketcham, 2005].  A 

40ºC/My maximum cooling/heating rate was imposed on all segments.  Inversions were 

run with a Monte Carlo search and 50,000 attempted paths. 
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Chapter 4 

Plio-Quaternary sediment budget between thrust belt erosion and foreland 
deposition in the central Andes, southern Bolivia1 

 

 

Abstract 

Estimates of the physical boundary conditions on sediment source and sink 

regions and the flux between them provide insights into the evolution of topography and 

associated sedimentary basins.  We present a regional-scale, Plio-Quaternary to recent 

sediment budget analysis of the Grande, Parapeti, and Pilcomayo drainages of the 

central Andean fold-thrust belt and related deposits in the Chaco foreland of southern 

Bolivia (18-23°S).  We constrain source-sink dimensions, fluxes and their errors with 

topographic maps, satellite imagery, a hydrologically-conditioned digital elevation model, 

reconstructions of the San Juan del Oro (SJDO) erosion surface, foreland sediment 

isopachs, and estimated denudation rates.  Modern drainages range from 7,453 km2 to 

86,798 km2 for a total source area of 153,632 km2.  Paleo-drainage areas range from 

9,336-52,620 km2 and total 100,706 km2, suggesting basin source area growth of ~50% 

since ~10 Ma.  About 2.4-3.1 x 104 km3 were excavated from below the SJDO surface 

since ~3 Ma.  The modern foredeep is 132,080 km2 with fluvial megafan areas and 

                                                 
1Official citation: 
 
Barnes, J. B. and W. A. Heins (2008), Plio-Quaternary sediment budget between thrust 

belt erosion and foreland deposition in the central Andes, southern Bolivia, Basin 
Research, in press. 
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volumes ranging from 6,142-22,511 km2 and 1,511-3,332 km3, respectively.  Since 

Emborozú Formation deposition beginning 2.1 ± 0.2 Ma, the foreland has a fill of ~6.4 x 

104 km3.  The volume and rate of deposition require that at least ~40-60% of additional 

sediment be supplied beyond that incised from below the SJDO.  The data also place a 

lower limit of ≥ 0.2 mm/yr (perhaps ≥ 0.4 mm/yr) on the time- and space-averaged 

source area denudation rate since ~2-3 Ma.  These rates are within the median range 

measured for the Neogene, but are up to 2 orders of magnitude higher than some 

observations, as well as analytic solutions for basin topography and stratigraphy using a 

2D-mathematical model of foreland basin evolution.  Source-to-sink sediment budget 

analyses and associated interpretations must explicitly and quantitatively reconcile all 

available area, volume, and rate observations because of their inherent imprecision and 

the potential for magnification when they are convolved. 

 

Introduction 

The sediment-routing system links sources to sinks, determining how mountains 

erode, how topography evolves, and how landscapes translate into the sedimentary 

record [Allen, 2008].  Sediment sources and sinks are coupled through various surface 

processes and their fluxes to the extent that mountain belt deformation can be 

influenced by deposition downstream [e.g. Flemings and Jordan, 1989; Beaumont et al., 

2000; Simpson, 2006].  Unfortunately, questions remain about what combination of 

factors influence the volume and rate of sediment production, the spatial variability of 

sediment production within the source, and the rate of sediment delivery to the sink 

[Tucker and Slingerland, 1996; Stock et al., 2006; Phillips and Gomez, 2007].  Sediment 

delivery rates are a particularly important control on the dimensions and physical 

characteristics of basin-filling sediments [Hovius and Leeder, 1998].  If estimates of the 

volume and mass flux (among other things) from the source area are available, then 
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quantitative tools can be used to predict sedimentary architecture [Robinson and 

Slingerland, 1998a, b; Geslin et al., 2001; Geslin et al., 2002; Clevis et al., 2003; Clevis, 

2003; Van Wagoner et al., 2003; Overeem et al., 2005; Robin et al., 2005] and reservoir 

quality [Lander and Walderhaug, 1999; Perez et al., 1999; Bray et al., 2000; Bonnell and 

Lander, 2003]. 

A mass balance approach has been used to quantify sediment budgets for the 

Alps, Appalachians, Himalayas, and Rocky Mountains by integrating river sediment 

loads, paleogeographic reconstructions, seismic data, and the stratigraphic record [Hay 

et al., 1992; Le Pichon et al., 1992; Curray, 1994; Einsele et al., 1996; Pazzaglia and 

Brandon, 1996; Kuhlemann et al., 2001; Schlunegger et al., 2001; Clift et al., 2002; 

Kuhlemann et al., 2002; Clift, 2006; McMillan et al., 2006].  These sediment budgets 

provide some of the best constraints for inferring mountain paleotopography and 

estimating denudation rates, but uncertainties are often large and/or not quantified 

because of the scales over which they are applied. 

Active fold-thrust belts and their foreland basin systems are sources and sinks 

closely linked in space and time that possess a variety of evidence that can be used to 

constrain their sediment budget (Fig. 4.1) [DeCelles and Giles, 1996; Critelli, 1999; 

Critelli et al., 2003].  For example, many thrust belts have paleosurfaces, formed by 

periods of protracted erosion [Widdowson, 1997], that have been used as markers to (a) 

estimate uplift magnitudes [de Sitter, 1952; Epis and Chapin, 1975; Scott, 1975; Kennan, 

2000; Barke and Lamb, 2006], (b) estimate exhumation magnitudes [Sobel and Strecker, 

2003; Babault et al., 2005; McMillan et al., 2006], (c) reconstruct paleo-drainage 

networks [Kennan et al., 1997; Kennan, 2000], (d) constrain the deformation history 

[Gubbels et al., 1993; Clark et al., 2006], and (e) calculate the amount of material 

removed from below the surface by post-formation incision [Kennan et al., 1997; 

McMillan et al., 2006].  In the sink, flexure associated with the adjacent topographic load 
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creates a foreland basin consisting of wedgetop, foredeep, forebulge and backbulge 

depozones [DeCelles and Giles, 1996].  Fluvial megafans (typically 103–105 km2, with 

low gradients of 0.01-0.1°) are easily discernable and can be dominant depositional 

features of some wedgetops and foredeeps [Gohain and Parkash, 1990; Gupta, 1997; 

DeCelles and Cavazza, 1999; Leier et al., 2005].  Additionally, isopach maps 

constructed from measured sections, geochronology, seismic data, and well logs provide 

constraints on the spatio-temporal distribution of the foreland-filling sediments [e.g. Uba 

et al., 2006]. 

 

 

 

Figure 4.1.  Schematic thrust belt-foreland basin system sediment budget in cross 
section.  Eroded and deposited sediment volumes (gray to white shaded regions 
and boxes) for time slices T1 – T3 (increasing to the present) from a thrust belt 
hinterland source to an adjacent foredeep sink, respectively.  The hinterland 
topographic evolution from ancient (dashed) to modern (solid) time and the 
equivalent sink foreland sedimentary evolution are also shown.  In this ideal 
case, boxes T1 – T3 in the source are the same size as the equivalent boxes in 
the sink.  For simplicity, no thrust belt propagation is shown. 
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This foreland sedimentary record is shaped by thrust belt topography, tectonics, 

climate, erosion, lithology, drainage patterns, and base level [Dickinson, 1974; Flemings 

and Jordan, 1989; Damanti, 1993; Devlin et al., 1993; Patterson et al., 1995; Van 

Wagoner, 1995; Burgess and Allen, 1996; Tucker and Slingerland, 1996; Schlunegger et 

al., 1997; Leeder et al., 1998; Geslin et al., 2002].  Although prior studies have 

characterized sediment source and sink dimensions and determined erosion rates, few 

attempts have been made to quantify regional-scale sediment budgets and associated 

uncertainties in thrust belt-foreland settings. 

The goal of this paper is to quantify the sediment budget for the central Andean 

fold-thrust belt and foreland in southern Bolivia since the Plio-Quaternary (~ 3-0 Ma).  

We account for the area, volume and rates of sediment removed from the upland 

sources and deposited within the downstream sink, specifically fluvial megafans and the 

foredeep.  The following logic governs our analysis.  The amount of sediment produced 

must fall within limits imposed by the size of the drainage, the rate and duration of 

denudation, and the volume of deposited sediment.  The amount of sediment generated 

must be at least as great as the amount of sediment deposited in the proximal foredeep.  

The generated sediment cannot be greater than the amount denuded from the present-

day drainage at the maximum estimated rate of denudation over the longest possible 

denudation time.  This lower sediment-production limit excludes some combinations of 

size, rate, and duration placing improved constraints on the large range of denudation 

rates estimated. 

 

Why southern Bolivia? 

The central Andean fold-thrust belt and Chaco foreland of southern Bolivia (18-

23°S) is well-suited for quantifying a Plio-Quaternary sediment budget (Fig. 4.2).  Fluvial 

megafans have been important foreland depositional features since the mid-Tertiary and 
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currently occupy most of the Chaco plain [Horton and DeCelles, 2001].  Isopachs 

quantify the spatial and temporal distribution of the Chaco sediments since the late 

Oligocene [Uba et al., 2006].  Reconstructions of the widespread late Miocene San Juan 

del Oro (SJDO) erosion surface provides an unusual constraint on timing and volume of 

thrust belt erosion [Servant et al., 1989; Gubbels, 1993; Gubbels et al., 1993; Kennan et 

al., 1997].  Finally, source region erosion rates have been estimated across multiple 

spatial and temporal scales [e.g. Barnes and Pelletier, 2006 and references therein]. 

 

 

 

Figure 4.2.  The central Andean fold-thrust belt and Chaco foreland in Bolivia. (A) 
Topography (GTOPO30 1 km) and major tectonic zones [modified from 
McQuarrie, 2002; Uba et al., 2006]: WC = Western Cordillera, AL = Altiplano, EC 
= Eastern Cordillera, IA = Interandean zone, SA = Subandes.  Megafans are 
outlined in black.  Inset shows location in west-central South America. (B)  
Satellite image of study area draped over topography (SRTM 90 m) showing the 
Rio Grande, Rio Parapeti, and Rio Pilcomayo channels (solid lines where 
perennial, dashed where ephemeral), their drainage areas, and megafans.  RV = 
Rio Viejo area; IZ = Izogog swamp; PA = Patino swamp; 1 = white line 
representing the eastern basin edge of Pilcomayo 1 (Table 4.1); 2 = black line 
representing the eastern basin edge of Pilcomayo 2 (Table 4.1) at the megafan 
apex (see text and Appendix 4.1 for discussion). 
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Geologic setting 

Crustal shortening associated with Cenozoic Andean mountain building has 

resulted in a retroarc plateau, fold-thrust belt, and foreland basin system in western 

Bolivia (Fig. 4.2) [Jordan and Alonso, 1987; Isacks, 1988; Jordan, 1995; Kley, 1996; 

Allmendinger et al., 1997; Horton and DeCelles, 1997; Jordan et al., 1997; Kley, 1999; 

McQuarrie, 2002; DeCelles and Horton, 2003; McQuarrie et al., 2005].  The dominantly 

east-vergent fold-thrust belt steps down in structural and topographic elevation from the 

Altiplano basin to the Eastern Cordillera, Interandean zone, Subandes and Beni/Chaco 

plains [Kley, 1996; McQuarrie, 2002].  Rocks involved in the deformation range from 

Paleozoic marine siliciclastics to Mesozoic non-marine clastics and Cenozoic 

synorogenic deposits [McQuarrie, 2002 and references therein].  In southern Bolivia, the 

fold-thrust belt is flanked on the west by the Altiplano plateau and on the east by the 

Chaco plain (Fig. 4.2).  The Altiplano is a low-relief, internally drained, intermontane 

depression [e.g. Placzek et al., 2006].  The Chaco plain is a low-relief, low-elevation 

slope thought to be the aggradational surface of the wedge-top and foredeep depozones 

of the modern foreland [Horton and DeCelles, 1997].  The thrust belt is traversed by 

three large rivers, the Río Grande (or Guapay), Río Parapeti, and Río Pilcomayo, which 

form fluvial megafans in the Chaco (Fig. 4.2B) [Horton and DeCelles, 2001].  The 

relatively straight river courses across the Subandes suggests the rivers are antecedent 

from the late Miocene and hence the source drainages somewhat long-lived.  Megafan 

apexes begin at the frontal-most Subandes structure implying a more recent origin (Fig. 

4.2B) [Horton and DeCelles, 2001]. 

Timing of initial thrust belt deformation ranges from late Eocene to late Oligocene 

(~27-40 Ma) with deformation concentrated in the Subandes since the early to late 

Miocene (~10-20 Ma) [Elger et al., 2005; McQuarrie et al., 2005; Ege et al., 2007; 

Barnes et al., 2008; McQuarrie et al., 2008].  Sediment deposition in the Chaco foreland 
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commenced with the late Oligocene Petaca Formation and continues today with the 

Emborozú Formation [Uba et al., 2006].  Structural, stratigraphic, and geophysical data 

from southern Bolivia constrain the regional Neogene evolution, particularly in the 

Subandes [Baby et al., 1992; Baby et al., 1995; Dunn et al., 1995; Roeder and 

Chamberlain, 1995; Kley, 1996; Moretti et al., 1996; Kley, 1999; Müller et al., 2002; Uba 

et al., 2005] and Chaco [Marshall et al., 1993; Hulka et al., 2006; Uba et al., 2006]. 

 

San Juan del Oro (SJDO) surface 

Here we summarize age constraints and reconstructions of the SJDO erosion 

surface that we adopt to quantify the paleo-drainage morphology and sediment volume 

removed from below the surface by Plio-Quaternary incision.  The SJDO surface is 

identified by spatially correlative, remnant, low-relief surfaces at ca. 2000-3800 m 

elevations, which have been mapped throughout the Eastern Cordillera and Interandean 

zone of southern Bolivia (Fig. 4.3).  The SJDO surface is a composite landform of (1) 

low-relief erosional uplands, (2) coalesced pediments, and (3) an unconformity beneath 

undeformed Tertiary sediments and ignimbrites that is the stratigraphic equivalent to 

surface types 1 and 2 [Servant et al., 1989; Gubbels et al., 1993; Kennan et al., 1995; 

Kennan et al., 1997; Barke and Lamb, 2006].  All surface types are subhorizontal, 

truncate deformed bedrock, decrease in elevation eastward, and are sometimes mantled 

by sediments up to 250 m thick with inter-bedded tuffs and fossiliferous layers [Gubbels 

et al., 1993; Kennan et al., 1995; Kennan et al., 1997].  Surveying the surfaces, 40Ar/39Ar 

dating of the tuffs, and ages of mammalian fossils bracketing the unconformity, show 

that the age of the SJDO is time-transgressive from ~12-3 Ma with incision beginning 3 ± 

1.5 Ma [Gubbels, 1993; Gubbels et al., 1993; Kennan et al., 1995; Kennan et al., 1997; 

Barke and Lamb, 2006].  The lack of deformation and a dominantly ~10 Ma age for the 

SJDO surface suggests (a) cessation of deformation in the Eastern Cordillera and its 
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migration eastward into the Subandes, and (b) 1.1-2.5 km of surface uplift has occurred 

in the region since surface formation (Figs. 4.2 & 4.3) [Gubbels et al., 1993; Kennan et 

al., 1997; Barke and Lamb, 2006]. 

 

 

Figure 4.3.  Preserved remnants of the San Juan del Oro surface in southern Bolivia.  
Remnant surfaces are mapped in white and simplified from Kennan et al. [1997] 
with the modern Grande, Parapeti, and Pilcomayo basins and megafans outlined 
in black for comparison. 

 

 

Two different models for SJDO surface formation characterize it as a pediment 

and paleo-drainage base level, respectively.  Gubbels and coworkers proposed a “cut 

and fill” model for the SJDO surface whereby as deformation ceased, aggradation and 

pediment development began (Fig. 4.4) [Gubbels, 1993; Gubbels et al., 1993].  

Eventually, incision isolated the surface remnants.  In this model, the SJDO surface 

 123



slopes down to the east from ~4.2 km elevation in the Eastern Cordillera to ~3 km in the 

Interandean zone over ~150 km [see Fig. 2.33 of Gubbels, 1993].  This model suggests 

a regional gradient of ~0.46° and implicitly allows that the SJDO pediment was not 

ubiquitous and that intervening highlands existed (Fig. 4.4).  Kennan and coworkers 

 

 

 

Figure 4.4.  Schematic of the cut and fill model for San Juan del Oro surface evolution in 
cross section (modified from Fig. 4.1 of Gubbels [1993]).  Five time steps are 
shown from pre-Miocene (T1) to present (T5) with absolute ages indicated where 
possible.  Numbers 1 – 3 in T4 indicate the three surface types as discussed in 
the text.  IH = intervening highlands. 
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proposed that the SJDO surface represents the regional base-level associated with two 

paleo-drainage basins (Fig. 5.5A) [Kennan et al., 1997; Kennan, 2000].  This model 

suggests regional, upstream basin gradients of ~0.46° that decrease to ~0.23-0.27° in 

the downstream reaches.  In both models, the preserved extent of the SJDO surface 

represents the minimum size of the drainage basin source area that supplied sediment 

to the foreland. 

Key aspects of the SJDO surface relevant for quantifying a sediment budget 

include: (a) it formed ~10 Ma and (b) it experienced rapid incision at ~3 ± 1.5 Ma 

[Gubbels et al., 1993; Kennan et al., 1995; Kennan et al., 1997; Barke and Lamb, 2006].  

Additionally, an estimated 1-2 x 104 km3 of material was eroded from the pre-existing 

topography above the paleo-drainage base levels that together form the SJDO surface 

[Kennan et al., 1997].  All of this sediment was apparently transported out to the foreland 

(and possibly beyond) because neither (1) adequate local sinks exist in the EC or IA to 

store the estimated sediment nor (2) any major depositional hiatus exists in the 

Subandes source region between 12 and 3 Ma [Coudert et al., 1993; Kennan et al., 

1997]. 

 

Foreland sediments 

Isopachs constrain the spatio-temporal distribution of Oligocene to recent 

foredeep sediments in the Chaco plain [Uba et al., 2006].  The sedimentary unit most 

correlated with sediment exported from the thrust belt since the Plio-Quaternary is the 

Emborozú Formation [see Uba et al., 2006 their Fig. 15E].  The Emborozú Formation is 

the currently depositing, sedimentary unit characterized by fluvial megafan-dominated 

conglomerates interbedded with sandstone and mudstone [Uba et al., 2005].  A seismic 

N5 interval is equivalent to the Emborozú Formation which has a maximum thickness of 

~1500 m at the mountain front and tapers rapidly eastward (Fig. 4.6) [Uba et al., 2006].  
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Beginning of Emborozú Formation deposition has been variously estimated at 3.3 Ma 

[Moretti et al., 1996], 2.1 ± 0.2 Ma [Hulka, 2005], and 1.8 Ma [Echavarria et al., 2003].  

The basal age of 2.1 ± 0.2 Ma is preferred [Uba et al., 2006] because it agrees with the 

1.8 Ma documented correlative strata in Argentina by Echavarria et al. [2003]. 

 

 

 

Figure 4.5.  The late Miocene (~10 Ma) paleo-drainage model for San Juan del Oro 
surface evolution overlaying the modern topography.  (A) Map of the paleo-
drainage basins (dashed black lines = boundaries, shaded regions are 
distributions of SJDO surface elevations today) from Kennan et al. [1997] with 
minor modifications at the outlet convergence to mimic the modern basins.  Other 
features include local highlands (jackstraw pattern), river networks (solid black 
lines with arrows), mountain front (thrust fault) and paleo-foreland basin (now 
occupied by the Subandes).  Modern drainage basins and megafans 
(background gray lines) are shown for comparison.  Two things to note; (1) the 
area between Potosi and Sucre used to be part of the paleo-Grande basin, but 
has been captured by the Rio Pilcomayo (compare with Fig. 1B), and (2) the 
SJDO surface elevation range suggests typical regional gradients of 0.4-0.8% 
[Kennan et al., 1997].  (B) Various potential evolutionary trajectories between the 
paleo- and modern drainages.  Orig = original; DA = drainage area, Mod = 
modern, Emb = Emborozú Formation. 
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Methods 

We account for the sediment budget in the Andean fold-thrust belt and Chaco 

foreland across a range of scales: spatially, from the drainage basin and megafan to 

entire hinterland drainage and proximal foredeep; and temporally, from recent to the late 

Miocene-Pliocene.  Here we briefly outline the datasets and methods.  Further details, 

particularly related to the definition and quantification of uncertainties, are available in 

Appendix 4.1. 

We used ArcGIS™ 9.2 and the following datasets to estimate the modern 

morphology and area of the Río Grande, Río Parapeti, and Río Pilcomayo catchments 

and megafans: 1:250,000 topographic maps from the Instituto Geografico Militar (IGM) 

in Bolivia, 15 to 150 m LANDSAT TM-7 satellite imagery, a hydrologically-conditioned 

digital elevation model (HydroSHEDS: http://hydrosheds.cr.usgs.gov/), and digital 

topography derived from NASA’s 2000 Shuttle Radar Topographic Mission (SRTM).  All 

mapping and calculations reported were carried out in the Geographic and Universal 

Transverse Mercator (Zone 20 South) coordinate systems with the datum WGS84. 

We defined and mapped megafan margins by one or several of the following 

criteria; (1) at the transition from foreland-convex to mountain-front parallel contours, (2) 

the boundary between (a) well-defined distributary channels and their flanking overbank 

areas (both of which can be clearly linked back to the fan apex) and (b) inter-megafan 

areas (with drainages originating from the frontal anticlinal ridge, not from the fan apex), 

(3) systematic changes in local slope aspects and their magnitudes, and (4) consistent 

contrasts in color, morphology, and texture from 15 m satellite images artificially 

enhanced by topographic shading from multiple sun angles (criteria 2 and 3 after Horton 

and DeCelles (2001); B. K. Horton, pers. comm. 2006). 

We overlaid the paleotopography associated with the SJDO surface 

reconstructions of Gubbels (1993) and Kennan et al. (1997) onto the modern topography 
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in order to compare them.  We created gridded surfaces corresponding to the 

reconstructed SJDO surfaces for both models to estimate the volume of material incised 

from below the surface by measuring the volume difference relative to the modern 

topography (Fig. 4.6).  For the cut and fill model [Gubbels, 1993], we created a surface 

by interpolating between four N-S contours that span 66.5-64.4°W to 17-23°S.  The 

contours have decreasing values from east to west of 4200, 3600, 3000, and 2400 m to 

replicate a regional gradient of 0.46°.  This surface has a calculated mean slope of 0.46° 

± 0.06 (1σ).  For the paleo-drainage model [Kennan et al., 1997], we created a surface 

by interpolating between contours tracing the distribution of regional paleosurface 

elevations (compare Figs. 4.5 & 4.7B).  Additional contours were added for this 

interpolation to properly recreate the paleotopographic highlands and intermediate 

paleosurface elevations.  However, the spatial extent of the contours was limited to that 

estimated by the paleo-drainage reconstructions [Kennan et al., 1997].  The resultant 

surface slopes mimic the estimated values of 0.46-0.23°, but locally possess slopes of < 

0.2° in the downstream regions and > 1° in very limited areas of the mid-to-upper 

reaches. 

The nature and geometry of fluvial megafan basal surfaces have yet to be 

studied.  Therefore, we calculated megafan volumes between the modern topographic 

surface and two alternate basal–surface geometries: (1) a horizontal, planar, basal 

surface equal in elevation to the minimum megafan surface elevation, and (2) a basal 

surface that is the mirror image of the fan surface about a horizontal plane of symmetry 

at the lowest elevation.  Under assumption (1), the volume of the megafan is equal to 

(average elevation – lowest elevation) x surface area.  Under assumption (2), the 

volume is just twice the value of assumption (1).  Assumption (1) is a minimum estimate 

and assumption (2) is a more realistic estimate (see Appendix 4.1 for further discussion). 
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We created a gridded surface corresponding to the base of the N5 seismic 

interval defined by isopachs [Uba et al., 2006] in order to estimate the sediment volume 

in the foredeep.  To encompass the entire study area, isopachs were extended parallel 

to the mountain front both north and south.  We inferred the zero isopach to be parallel 

to the 500 m isopach and east of the Pilcomayo megafan margin because there are no 

data to constrain its location more specifically (Fig. 4.6). 

 

Results 

Modern drainage areas 

Drainage basin area estimates for the Grande, Parapeti, and Pilcomayo are 

59,381 ± 1,188, 7,453 ± 149, and 86,798 ± 1,736 km2, respectively (Table 4.1).  These 

estimates are within 7-15% of those previously reported [Horton and DeCelles, 2001; 

Leier et al., 2005] for reasons related to choice of basin outlet position and/or differences 

in map projection and datum (Table 4.1 & Appendix 4.1).  For example, variation among 

area estimates using identical catchment boundaries, but different projections is ~10%.  

Minimum, maximum, and average elevations, as well as relief, are also summarized in 

Table 4.1. 

 

Paleo-drainage areas 

The paleo-Río Grande and Río Pilcomayo drainage basins, as defined by the 

SJDO surface, may have covered an area of > ~100,000 km2 at ~10 Ma (Fig. 4.5A).  

Taking the paleo-drainage model of the SJDO surface at face value, we estimate the 

size of the paleo-Grande, Parapeti, and Pilcomayo drainage basins (Fig. 4.5) to be 

52,620 km2, 9,336 km2, and 38,750 km2, respectively (Table 4.1).  Apparently, the paleo-

Grande basin was larger than the paleo-Pilcomayo basin because the Potosi-Sucre area 

was subsequently captured by the Río Pilcomayo (compare Figs. 4.2B & 4.5A).  In total,  
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Figure 4.6.  San Juan del Oro surface reconstructions and Chaco basin isopachs in 
southern Bolivia.  Contours (solid lines; dashed where inferred) used to recreate 
the SJDO surface prior to Plio-Quaternary incision.  Foreland isopachs (dashed 
where inferred in this study) are for the ~2.1-0 Ma Emborozú Formation (from 
Uba et al. [2006]; their Fig. 15E).  Abbreviations are the same as in Figure 2.  
Schematic block diagrams of the idealized SJDO surface reconstructed (left) and 
the distribution of elevation contours used to create the gridded surface (right) on 
top of the modern topography for the cut and fill (A) and paleo-drainage (B) 
models.  Idealized trellis drainage pattern shown for the Subandes.  Grey-shaded 
region is the extent of the reconstructed SJDO surface in each model.  Block 
diagram in B shows how basin slopes grade inward to the center and eastward to 
the foreland.  Contours in B are from Figure 5 plus additional, inferred lines (grey 
dashed) where necessary. 
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the preserved remnants of the SJDO surface delineate a minimum drainage area of 

100,706 km2, which is roughly two-thirds of the modern surface area of the three 

drainage basins (Table 4.1).  The modern drainage (Fig. 4.2B) represents the maximum 

area that could have been covered by the SJDO surface.  Figure 4.5B shows the range 

of uncertainty in paleo and modern area estimates and potential evolutionary trajectories 

between the two of them. 

 

Volume excavated below the SJDO surface 

We estimate 23,920 to 30,900 km3 has been removed by incision from below the 

SJDO surface since 3 ± 1.5 Ma.  Figure 4.7 shows regions that have experienced 

volume loss between the SJDO surface and the modern topography for both surface 

reconstruction models.  The distribution of incision below both models is similar in the 

Pilcomayo basin.  This reflects the fact that (1) the cut and fill model was based almost 

exclusively on remnants located in the Pilcomayo drainage [see Fig. 1 of Gubbels et al., 

1993] and (2) most of the aerial extent of surface remnants is preserved there today 

(Fig. 4.3), providing most of the control for both models.  Significantly less incision below 

the SJDO surface in the Grande basin is determined from the paleo-drainage model 

because this model predicts a lower local base level relative to the Pilcomayo basin (Fig. 

4.5).  The nature of the difference between the two models suggests the cut and fill 

surface represents an upper bound and the paleo-drainage surface represents a lower 

bound on the volume of material removed.  The results are reported this way. 

 

Megafan Areas 

The fluvial megafans extend >150 km across the foredeep from their mountain-

front apexes to their distal lobes.  Total surface area of the megafans is ~42,000 km2, 

whereas the total surface area of the proximal Chaco foredeep is ~132,000 km2 (Table 
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4.1).  We estimate the megafan surface areas to be 12,985 km2, 6,142 km2, and 22,511 

km2 ± 20% for the Grande, Parapeti, and Pilcomayo, receptively (Table 4.1 & Appendix 

4.1).  Our mapping criteria are sufficiently restrictive that the estimate of the Pilcomayo 

megafan is an order of magnitude less than the 210,000 km2 reported by Iriondo [1993]. 

 

Megafan and foredeep basin fill volumes 

Megafan volumes corresponding to the planar-basal-surface and mirror-image 

assumptions are reported in Table 4.1.  The estimates range from 604 km3 for the 

Parapeti megafan assuming a planar surface, to 3,332 km3 for the Pilcomayo megafan 

assuming a mirror image between the fan surface and the basal surface.  The foredeep 

volume of the Emborozú Formation is 63,772 km3 ± 20% (Table 4.1 & Appendix 4.1). 

 

Denudation-rate estimates 

Barnes and Pelletier (2006) compiled denudation-rate estimates from a variety of 

methods for southern Bolivia.  Estimates range from 0.04 to 1.6 mm/yr (= km/Ma) (Fig. 

4.8).  These estimates integrate sediment removal over temporal scales of 101 - 107 yrs 

and spatial scales from 100 to 105 km2 (Fig. 4.9) (see Appendix 4.1 for further 

discussion). 

The relevant denudation rate for our source-to-sink calculation is an idealized 

average over the whole hinterland (105 km2) and the whole depositional history of the 

Emborozú Formation (106 yrs) (see Appendix 4.1 for additional discussion).  Although 

observations span a range of values, the highest rates come from smaller spatial scales 

and larger temporal scales than the relevant analytic scale (Fig. 4.9).  Observations that 

come from the relevant analytic scales (black oval in Fig. 4.9) fall into a much smaller 

range of 0.1 - 0.4 mm/yr.  The only observation that matches the relevant analytic spatial 

and temporal scale is ~0.2 mm/yr (grey circle in Fig. 4.9). 
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Sediment production and deposition estimates 

Boundary conditions.  This source-to-sink sediment budget starts with today and 

integrates back to the Plio-Quaternary (~3 - 0 Ma).  The chronologic boundary is either 

initial incision into the SJDO surface or initial deposition in the Emborozú Formation.  In 

space, the budget starts with the modern landscape, bounded by the modern drainage 

divides of the Ríos Grande, Parapeti, and Pilcomayo on the source side and by the zero-

isopach of the Emborozú Formation on the sink side.  The spatial boundary is the pre-

incision SJDO surface and bordering highlands and the basal surface of the Emborozú 

Formation. 

 

 

Figure 4.7.  Spatial distribution of Plio-Quaternary (~3-0 Ma) incision for both San Juan 
del Oro surface models.  Black areas indicate volume loss when comparing the 
reconstructed SJDO surfaces to the modern topography for the cut and fill (A) 
and paleo-drainage (B) models.  Significantly less volume has been lost from the 
Grande basin in the paleo-drainage model. 
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Figure 4.8.  Map showing locations of erosion-rate estimates for the central Andean 
fold-thrust belt in southern Bolivia [modified from Barnes and Pelletier, 2006].  
Method = method used for calculating the estimate; Time Span = time span over 
which the erosion rate is averaged; sed flux = sediment-flux data with range of 
published data from Aalto et al. [2006] and Barnes and Pelletier [2006]; AFT = 
apatite fission-track thermochronology; x-section = cross section; mass bal = 
mass balance; ES/DEM = erosion surface and DEM analysis; seismic = seismic 
cross-sectional area; basin fill = basin fill rate. 

 

 

Volume balance.  The source area sediment volume produced must be at least 

as large as the volume of sediment deposited in the Emborozú Formation.  The 

maximum volume of sediments excavated from below the preserved area of the SJDO 

surface (~2.4 - 3.1 x 104 km3) is smaller than the minimum volume of the Emborozú 

Formation (~5.1 x 104 km3) (Table 4.1).  Initiation of incision into the SJDO surface (4.5 - 

1.5 Ma) overlaps with initial Emborozú Formation deposition (3.3 - 1.8 Ma) within error, 

but incision (most likely age 3.0 Ma) probably predates initial deposition (most likely age 

2.1 Ma).  The volume disparity between incision and deposition means that erosion from 
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the intervening highlands and the drainage regions beyond the SJDO surface extent 

(Fig. 4.7) contributed at least ~40-60% of the sediment to the Emborozú or ~2-2.7 x 104 

km3 by volume. 

Treatment of ions and pores.  Exposed source-area bedrock is mostly Mesozoic 

and Paleozoic siliciclastic sedimentary rock [e.g. McQuarrie, 2002].  These rocks have 

some preserved porosity.  Some fraction of the rocks is also lost to dissolution during 

conversion of bedrock to transportable sediment.  We estimate that the volume lost to 

dissolved ions (~1-15%) plus the original rock porosity (≤ 12%) is similar to the volume of 

void space among sedimentary particles deposited in the basin (16-32%) (see Appendix 

4.1 for quantitative justification).  Thus, we treat gross volumes of denuded and 

deposited material as equivalent because the solid/void ratio is similar between source 

and sink. 

Estimates.  There are two paths for estimating sediment-production rates from 

the source area based on the data in this paper.  First, we divided the volume of 

sediment excavated from beneath the SJDO surface by the time incision began.  Table 

4.2 summarizes the range of sediment-production rates calculated from the estimated 

volumes and time.  Sediment-production rates range from 5,316 to 20,600 km3/Ma with a 

middle value of 9,137 km3/Ma.  Second, we integrated linear denudation rates over the 

hinterland area.  Table 4.2 also summarizes the sediment-production rates calculated 

from a range of denudation rates and potential hinterland areas.  Denudation rates were 

chosen to uniformly cover (on a log2 scale) the range reported in Figure 4.8.  We picked 

areas from Figure 4.5B to represent the smallest, likely, and largest regions that could 

have been encompassed by the drainage from the earliest initiation of Emborozú 

deposition to today.  These sediment-production rates show a much wider range, from 

5,261 to 250,733 km3/Ma with a middle value of 57,215 km3/Ma. 
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Figure 4.9.  Erosion-rate estimates versus their integration in space and time for the 
central Andean fold-thrust belt in southern Bolivia [data from Barnes and 
Pelletier, 2006].  Ovals highlight values that are both relevant (black) and 
specifically match (gray) the scale of this study. 

 

 

There is only one path to estimate sediment-deposition rates.  We divided the 

Emborozú Formation sediment volume by the time since deposition began.  Sediment-

deposition rates calculated from a range of estimated volumes and times are in Table 

4.2.  Rates range from 22,182 to 42,515 km3/Ma with a middle value of 30,368 km3/Ma.  

The deposition duration of 3.3 Ma is included for completeness, but is considered 

unlikely (see discussion in Uba et al. (2005). 
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Reconciling the estimates.  We calculated the minimum extra upland area 

required to produce the Emborozú sediment by subtracting the volume of SJDO surface 

excavation from the volume of the Emborozú then dividing by a linear denudation rate.  

The value is only a minimum because some SJDO surface-derived sediment might have 

been deposited elsewhere (e.g. in an older formation or bypassed downstream).  

Nevertheless, this exercise excludes denudation-rate estimates that are impossible for 

the relevant scale because they require more upland area than exists today.  Table 4.3 

summarizes the results within the ranges of rates, space, and time constrained by 

observations.  Space limits encompass the smallest total paleo-drainage size 

(corresponding to the earliest onset of Emborozú deposition) to the largest possible 

modern drainage size (estimate plus error).  Time limits were derived from the oldest 

potential onset of Emborozú deposition and the youngest possible onset of incision.  

Incision probably began earlier than the oldest onset of Emborozú deposition, but that 

case is not relevant to this calculation of minimum area.  Table 4.3 rows are ordered by 

increasing mass flux required to fill the Emborozú.  The results are shaded to indicate 

possibility: impossible (dark shading) because the combination of volumes and rates 

imply a hinterland area greater than the modern drainage, possible results (light 

shading) because they are within the range of potential hinterland areas, and certainly 

possible (no shading) results because they are smaller than the smallest drainage size. 

Results indicate that any denudation rate < 0.1 km/Ma is impossible as the 

average is over the complete (time, space) that generated the Emborozú sediments 

(Table 4.3).  Denudation rates < 0.2 km/Ma are impossible unless the volume of 

sediments in the Emborozú is near the low end of the likely range, and the onset of 

deposition is toward the old end of the likely range.  Given the most likely volumes of 

SJDO surface excavation, Emborozú deposition and deposition duration, the average 

denudation rate should have been ≥ 0.2 km/Ma. 
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Modern sediment-production estimates 

Boundary conditions.  This source-to-sink sediment budget starts with today and 

integrates backward to the onset of modern megafan deposition.  The budget starts with 

the modern landscape surface, bounded by the modern drainage divides of the Grande, 

Parapeti, and Pilcomayo rivers in the source, and bounded by the megafan extents in 

the sink. 

 

 

 

 

The megafan sediment volume is probably equal to, or slightly less than, the 

volume produced in the source area for the following reasons.  Very little surface water 

escapes the Chaco foredeep because the Río Parapeti and Pilcomayo terminate into 
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swamps just downstream of their megafans and the Río Grande stalls as it bifurcates 

into small channels, drops sediments in the adjacent floodplains in the Río Viejo area 

beyond the megafan margin, and consequently severs its connection to the Río 

Paraguay (Fig. 4.2B) [Iriondo, 1984; Iriondo, 1993; Horton and DeCelles, 2001].  In 

particular, the Río Pilcomayo presently deposits such a sediment excess that it blocks its 

own channel, floods its levees, and spills into nearby swamps [Wilkinson et al., 2006].  

Furthermore, tectonic depressions, vegetative-debris accumulations, and abandoned 

channels facilitate water and sediment ponding in lakes both on and around the 

megafans [Iriondo, 1993; Wilkinson et al., 2006].  Appendix 4.1 outlines observations 

that suggest the megafans themselves might not be entirely closed systems. 

Sediment production.  Integrating a linear denudation rate over the modern 

drainage area yields the modern sediment-production rate.  Table 4.4 summarizes 

sediment-production rates calculated from a range of denudation rates and measured 

drainage areas.  Denudation rates were chosen to cover the range reported with 

particular emphasis on rates estimated from the basin outlet on each of the rivers: 0.89-

0.93 mm/yr for the Grande (point AP in Fig. 4.8), 0.98-1.04 mm/yr for the Parapeti (point 

SA in Fig. 4.8), and 0.33-0.35 mm/yr for the Pilcomayo (point VI in Fig. 4.8).  The highest 

rate used represents the highest observed rate throughout the Neogene (apatite fission-

track thermochronology) whereas the lowest rate is the lowest possible calculated in 

Table 4.3.  For each river, the best sediment-production rate estimate (shading) is based 

on the most likely drainage size and the measured denudation rate for that drainage. 

Age of megafan initiation.  If all sediment produced in the drainages is deposited 

on the megafans, as observations documented above suggest, then onset of modern 

megafan deposition can be estimated by dividing the megafan sediment volume by the 

rate of sediment production.  Table 4.5 summarizes the results of this calculation with  
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rate and volume ranges constrained by observation for each megafan and their 

aggregate. 

For most likely values for drainage area, sediment delivery, and megafan 

volume, estimated age of megafan initiation varies considerably from 52-55 ka for the 

Grande, to 110-116 ka for the Pilcomayo, and 218-228 ka for the Parapeti (Table 4.5 & 

Appendix 4.1).  It is possible that this result is correct and megafan initiation is 

diachronous.  Alternatively, modern denudation rates may be inaccurate estimates of the 

average rate since the (common?) initiation time of the megafans because they are 

based on only a few years, compared to the 100’s of ka over which the megafans must 

have been accumulating.  If we apply the median denudation rate observed across the 

entire Neogene to the total volume of sediments in all megafans, onset of deposition 

would be ~66 ka.  Table 4.5 essentially presents a series of hypotheses about the age of 

the modern Chaco megafans that can be tested by dating the actual basal surface.  

Radiocarbon or pollen ages from relatively shallow boreholes could provide the 

necessary information.  

 

Discussion and implications 

Sediment production volumes through time and space 

Estimated sediment volumes have implications for erosion variability through 

time and the distribution of sediment production within the source region.  The c. 1000 m 

relief between the SJDO surface and intervening highlands led Kennan et al. [1997] to 

estimate that ~1-2 x 104 km3 was excavated from the original paleotopography to make 

the SJDO surface presumably prior to ~10 Ma.  Since ~2-3 Ma, a minimum of ~5.1 x 104 

km3 has been deposited into the Emborozú Formation, of which at least ~40-60% (2.4 - 

3.1 x 104 km3) came from below the SJDO surface via incision.  Although we cannot 

quantify the source area extent at any point prior to SJDO formation, we speculate  

 142



 

 

 

143

 

 



 

relative denudation rates were low for some time period prior to ~10 Ma because the 

sediment volume produced was only ~20-40% of the volume deposited in the last 3 

Myrs.  This is already implied because most of the long-term (>10 Myr) averaged 

denudation rates are <0.4 mm/yr (Fig. 4.9) and we already demonstrated they were most 

likely ≥ 0.4 mm/yr during the Plio-Quaternary. 

Comparison of estimated sediment volumes between source and sink over the 

last 2-3 Myrs shows at least ~40-60% came from incision into the SJDO surface.  The 

remainder must have come from some combination of the intervening highlands and 

drainage areas outside the current SJDO surface extent.  In map view (Fig. 4.7), the 

largest source areas not accounted for by SJDO incision are the modern Subandes and 

the intervening highlands.  The Subandes probably contributed to the Emborozú 

Formation, but sediments probably can get trapped locally in the Tertiary piggyback 

basins prior to reaching the perennial Grande, Parapeti, and Pilcomayo trunk rivers.  The 

best candidate source might be the intervening highlands because they extend over 

significant areas and exhibit the steepest slopes. 

 

Plio-Quaternary to modern denudation rates 

Measurements of denudation rates, drainage areas, and volumes of sediment 

produced or deposited are inherently imprecise.  No singular observation, or even a 

range of observations on a single feature, can be considered accurate in isolation.  

Observations can only be evaluated based on their internal consistency.  Our analysis 

demonstrates that estimates of denudation <0.1 km/Ma cannot (and estimates <0.2 

km/Ma probably do not) characterize the entire Bolivian-Andes hinterland of the Chaco 

foreland over the Plio-Quaternary (last 2-3 Myrs) even though some observations 

demonstrate that such rates may be locally viable (Fig. 4.8).  Modern estimates suggest 

the Pilcomayo basin erodes at a rate (0.34 mm/yr) near the minimum that characterized 
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the Plio-Quaternary.  In contrast, both the Grande and Parapeti basin rates (0.91 and 

1.01 mm/yr) are significantly higher (Fig. 4.8).  This variation in erosion rates could be 

the result of the general southward aridification [e.g. Barnes and Pelletier, 2006], 

anthropogenic effects, and/or sediment discharge variations resulting from the type of 

dominant erosion process and precipitation storminess [e.g. Fuller et al., 2003]. 
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Evolution of topography 

Topographic evolution can be better understood by determining the amount and 

rate of morphologic change across different spatial and temporal scales.  Here we use 

the physical dimensions determined in this study to comment on central Andean fold-

thrust belt and Chaco foreland topographic variations over the late Miocene-Quaternary 

(last ~10 Myrs). 

The Grande, Parapeti, and Pilcomayo basins collectively expanded by ~50% 

from ~100,000 to ~150,000 km2 since ~10 Ma (Table 4.1).  Migration of the drainage 

divide westward was ~100 km since ~10 Ma as was the migration of the drainage outlet 

eastward (Fig. 4.5).  This migration rate of 10 mm/yr is similar to locally estimated rates 

of thrust belt propagation (6-8 mm/yr), shortening (~4-8 mm/yr), and foreland basin 

migration (~13 mm/yr) [McQuarrie et al., 2005; Barnes et al., 2008].  Westward, 

headward erosion, stream piracy, and eastward drainage expansion into the Subandes 

probably contributed to drainage basin growth.  In particular, stream piracy by the Río 

Pilcomayo of the Sucre/Potosi region probably contributed the most to the Pilcomayo 

basin’s growth of ~115% from ~40,000 to ~87,000 km2 (Table 4.2).  Despite the area lost 

to the Pilcomayo, the Grande basin still grew in overall size by almost 10%.  Finally, the 

Parapeti basin actually decreased in size by ~15% probably via the encroachment of the 

two larger basins on either side of it.  These data suggest that large (104-5 km2) 

drainages in (potentially protracted) semi-arid climates still evolve substantially over 10 

Myr time frames. 

The modern fluvial megafans are estimated to be up to ~228 kyrs old (Table 4.5).  

Unfortunately, to the best of our knowledge, no studies have estimated the age of any 

other modern megafans for comparison.  Regardless, the ~228 kyr age suggests that 

large sediment bodies can be dispersed over distances of >200 km across low-sloped 

(mostly <0.35°) regions rather rapidly even in semi-arid climates.  Furthermore, the 
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currently active megafans represent only a small portion (in either time or sediment 

volume) of the most recent seismically resolvable sedimentation history in the basin.  In 

fact, sedimentary evidence suggests Subandes megafans have existed for the last ~8 

Ma [Uba et al., 2007]. 

 

Thrust belt-foreland geodynamics 

Thrust belt deformation and erosion are dynamically coupled to their associated 

foreland basin systems via deformation, foreland flexure, and erosion [e.g. DeCelles and 

DeCelles, 2001].  Models of this coupling predict that regions of reduced erosion are 

characterized by wedge growth, a wide, rapidly propagating thrust belt with dominantly 

wedgetop deposition and an underfilled foredeep, whereas regions of enhanced erosion 

are characterized by wedge recycling, a narrow thrust belt with more constant width, and 

dominantly foredeep deposition in a wide and largely filled foreland (Fig. 4.2) [Simpson, 

2004, 2006].  These predictions are, to first-order, consistent with the central Andean 

fold-thrust belt where observations mentioned above suggest the dry, southern Chaco 

foredeep is basically underfilled and the wet, northern Beni foredeep is overfilled 

because ~50% of the sediment bypasses it and enters the Amazon [Horton, 1999; Aalto 

et al., 2006; Barnes and Pelletier, 2006].  Unfortunately, the models have only been 

developed for the general case.  They could be tested by calibrating them to specific 

regions and constraining the surface process parameters with such datasets as those 

presented here.  Figure 4.10 schematically illustrates the central Andean thrust belt-

Chaco foreland basin system sediment budget presented here.  Selected, important 

values derived throughout this study are indicated.  Comparison of Figures 4.1 and 4.10 

illustrates the contrast between the idealized and our applied thrust belt-foreland system 

sediment budget analysis. 
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Figure 4.10.  Schematic central Andean fold-thrust belt and Chaco foreland basin 
system sediment budget in cross section at ~20°S. cf = cut and fill model surface 
representation (dashed line in source), pd = paleo-drainage surface 
representation (solid concave up line in source). (A) Source and sink features 
during peak San Juan del Oro (SJDO) formation at ~10 Ma prior to incision. (B) 
Source and sink features after incision at present.  Time slice T1 is the Plio-
Quaternary to recent (~2 or 3 – 0 Ma) represented by the volume eroded by 
incision into the SJDO surface in the source and deposited within the Emborozú 
Formation in the sink, respectively.  Time slice T2 is very recent time (~230 – 0 
ka) represented by the modern drainage areas and the megafan volumes in the 
foreland, respectively.  Additional source region solid lines represent the modern 
maximum (jagged line) and minimum (lowest line) topography. 
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Appendix 4.1.  Elaboration on methods, uncertainties, and discussion 

Overview 

This Appendix elaborates on methodologies and reported uncertainties as well 

as provides further discussion on several items mentioned in the main text. 

 

Method details 

All mapping and calculations were performed in ArcGIS™ 9.2, primarily with the 

Functional Surface, Raster Surface, Extraction, Hydrology, Interpolation, and Surface 

modules within the 3D Analyst and Spatial Analyst extensions.  All mapping was done 

using the Geographic Coordinate System WGS84 datum.  Area calculations were made 

on maps projected to WGS84 UTM Zone 20 South. 

 

Modern drainage area 

The Grande, Parapeti, and Pilcomayo watershed boundaries were extracted by 

determining the area of contributing flow to the pixel of maximum flow accumulation 

located within the active channel at the mountain front.  The contributing flow area was 

defined by the HydroSHEDS flow-accumulation grid using the “Watershed” function in 

ArcGIS Spatial Analyst.  Although no internally drained basins occupy the Parapeti and 
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Grande drainage basins, three small (<20 km2), internal basins within the Pilcomayo 

watershed were removed and assumed to contribute to the overall basin area for 

simplicity.  We estimate ~200 m (or ~2 pixels) accuracy in outlet location determined by 

comparisons between the DEM and satellite images that translates to at most a 2% 

difference in estimated basin area.  Therefore, we report at 2% error on our measured 

basin areas. 

Our area estimate for the Grande drainage basin is very close to the estimate 

published by Leier et al. (2005), but ~15% smaller than the value reported by Horton and 

DeCelles (2001) (Table 4.1).  Our estimates are within 7% of the values previously 

reported for the Parapeti drainage (Table 4.1).  In the case of the Pilcomayo catchment, 

Horton and DeCelles (2001) and Leier et al. (2005) based their drainage-basin outline 

(white boundary in Fig. 4.2, corresponding to Pilcomayo 1 area estimates in Table 4.1), 

on the location of the nearest gauging station, which lies >50 km west of the megafan 

apex.  If we use that definition, our estimate of the drainage basin area is virtually 

identical to the previous estimates (Table 4.1).  However, we prefer to locate the 

drainage basin outlet at the megafan apex, because the extra ~6000 km2 between the 

major mountain front and the megafan apex is certainly part of the source area 

contributing to megafan deposition. 

It is important to note that map projections and datums are important when 

comparing area estimates from different sources.  Using the same watershed boundary, 

area estimates for the Grande drainage varies from 53,864 km2 (South America Lambert 

Conformal Conic projection) to 59,342 km2 (Albers Equal Area projection).  This 

magnitude of variation projections is ~10%, which is the same order of magnitude (~7-

15%) as the deviation of our reported drainage areas from other published estimates. 

 

Paleo-drainage area 
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The paleo-drainage area is conceptually bounded by the area of the preserved 

SJDO surface and the area of the modern drainage. The measurement uncertainty on 

these limits is the same as for the modern drainage, as discussed above. 

 

Megafan areas 

The upstream megafan margins were the easiest to delineate based primarily on 

criteria 1-3.  We estimate the accuracy on these portions of the megafan margins to be 

~1 km.  The megafan terminations (eastern margins) were more difficult to define and 

were mostly distinguished by criteria 3 and 4 due to the more subtle topography.  We 

estimate the accuracy on these portions of the megafans to be on the order of ~10 km.  

A 10 km radius extension of a symmetrical, double-cone-shaped megafan with an 

internal apex angle of 66°, 145 km radius, and 933 km3 in volume (roughly the size of 

the Grande megafan) would result in a 14% increase in area. 

In detail, the western and northern margins of the Pilcomayo megafan are well-

defined, but the eastern margin accuracy is poor.  For the Parapeti megafan, the 

northern margin is well-defined by the modern floodplain of the active channel, but the 

southeastern margin is poorly constrained due to the overprint of dunes.  Finally, for the 

Grande megafan, the southeastern margin is well-constrained by the modern floodplain 

of the ephemeral portion of the Río Parapeti channel [see also Horton and DeCelles, 

2001] and poorly constrained in its northwestern and southwestern margins by the 

overprint of agriculture and dunes, respectively. 

The southern Bolivia megafans vary by an order of magnitude in size, but display 

relatively similar surface slopes and relief (Table 4.1).  Most surface slopes are <0.35° 

(<~0.45%) with values as high as ~15° (~35%) localized along the active channel banks.  

The dominantly low relief and gradients on the megafan surfaces mean area calculations 

are most sensitive to the map-view outline of the megafan.  The total variation among 
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the three megafan estimates, defined as (largest-smallest)/average, is 25.7% for the 

Grande, 14.9% for the Parapeti, and 25.5% for the Pilcomayo. 

With the Geographic Coordinate System WGS84, our Grande megafan area 

estimate is 12,985 km2 (Table 4.1).  Using the same megafan boundary, area estimates 

using different projections vary from 11,796 km2 (South America Lambert Conformal 

Conic projection) to 12,994 km2 (Albers Equal Area projection).  The magnitude of 

variation among area estimates obtained with different projections is 9%, which is similar 

to the uncertainty for megafan margin positions (~14%).  We presume that some portion 

of the difference in our reported areas, compared to Horton and DeCelles (2001) or Leier 

et al. (2005), is due to differences in fan margin location, whereas the remaining 

difference is due to differences in the mechanics of area calculation.  It is possible that 

these two sources of difference could work in opposite directions, making the apparent 

divergence in area estimates either smaller or larger than we have reported. 

 

Megafan volumes 

The planar base assumption probably represents an unrealistically small 

approximation of the fan volumes.  Accommodation space created by thrust-loading of 

the basin margin commonly decreases basinward from the thrust front.  Thus, a 

horizontal basal surface for the fan equal to the elevation of the most distal edge of the 

fan likely represents a lower bound for the megafan volume.  Assumption (2) is 

directionally more realistic because it places the basal surface progressively deeper 

closer to the thrust front where the elevation of the fan surface is higher.  Unfortunately, 

there is no clear evidence to test whether it over-estimates or under-estimates the true 

depth to the real basal surface.  Seismic lines shot across the fans, or boreholes through 

the fans, would provide the only definitive observations to properly establish the proper 

geometry of the basal surface.  In addition to uncertainty about the exact position of the 
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basal surface, errors associated with the map-view outline of the megafans propagate 

into the volume calculation. 

Uncertainty in megafan area is a very small contribution to megafan volume 

uncertainty fan because the megafan is vanishingly thin at the position of the uncertain 

margins. 

 

Foredeep basin fill volumes 

Significant topography and islands of zero thickness only ~20 km east of the 

Parapeti megafan termination [Uba et al., 2006] suggest our reconstructed basal surface 

is too deep in places, implying that the volume estimates derived from this method may 

represent an upper limit, regardless of the uncertainties discussed below. 

Uncertainties include: (a) how closely the N5 seismic-package lower boundary 

actually corresponds to the dated base of the Emborozú Formation; (b) how accurately 

the lower boundary of the N5 can be picked, given the limitations of the seismic-data 

coverage and quality; (c) how precisely time on the seismic section is converted to 

depth; and (d) how confidently we can extrapolate published contours to the north of the 

region where they have actually been mapped.  The first two uncertainties (a and b) are 

likely to be small (a few 10s of meters) and non-systematic, so that their overall 

contribution to the uncertainty of the volume estimate can be neglected.  The time-depth 

conversion uncertainty (c) cannot be answered directly from the published details [Uba 

et al., 2006].  There are at least a dozen wells that tie to their seismic, so errors might be 

as low as 3%.  However, errors on the order of 12-20% are known from time-depth 

conversions calculated only from seismic moveout velocities (C. Lloyd, ExxonMobil 

Geophysical Applications Specialist for South America, pers. comm.).  The northward 

extrapolation uncertainty (d) appears reasonable because the mapped isopachs parallel 

the mountain front, but remain speculative. 
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We take 20% as the integrated value of all these uncertainties based on the 

maximum uncertainty of time-depth conversion.  Uncertainty in the vertical dimension of 

the basin fill is certainly larger than the uncertainty in the horizontal dimensions, and so 

should be the dominant factor in assessing overall uncertainty. 

 

Denudation-rate estimates 

At any scale, most denudation will occur in a relatively small fraction of the space 

or time over which the estimate is integrated.  In space, feldspar mineral dissolution is 

localized on the mineral surface [Lüttge, 2005], disaggregation within rock is initially 

localized at fractures and microfractures [Heins, 1995], and landscape-scale erosion is 

focused by relief in rills, spurs, or valleys [Brandt and Thornes, 1987].  In time, mineral-

surface dissolution is most significant during isolated periods of step-wave migration 

[Lasaga and Lüttge, 2001], hillslope sediment export is most rapid during episodic mass-

wasting events [Crozier, 1986], and alluvial/fluvial sediment transport is most significant 

during episodic high-flow events [Kochel, 1988].  Every denudation observation 

integrates active with inactive (space, time).  Every observation is an appropriate 

estimate for some relevant (time, space), but none of the observations are appropriate 

estimates for every (time, space). 

 

Treatment of ions and pores 

Assuming reasonable values for the hinterland provenance lithotypes of 20% Q-

rich sand, 10% F-rich sand, 10% L-rich sand, 50% shale, and 10% meta-sandstone, no 

more than 1-15 wt% of the weathered rock should be lost to dissolved ions based on an 

equilibrium weathered mineral assemblage constrained by the aluminum content of the 

provenance lithotypes [Heins and Kairo, 2007].  Void space among deposited 

sedimentary particles depends on the degree of sorting within the deposit [Beard and 
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Weyl, 1973; Atkins and McBride, 1992], particle ductility, and their burial depth [Paxton 

et al., 2002].  For reasonable sediment properties: ductile:rigid = 4; Folk sorting = 0.7; 

matrix volume fraction = 0.1 and β = 0.06 MPa-1, we would expect porosities in the 

Chaco foreland sediments to be on the order of 32% near the surface, declining to 

approximately 16% at maximum burial depth (1,500 m). 

 

Modern sediment-production estimates 

Geomorphic evidence suggests the megafans are not closed systems 

themselves.  The megafans are not closed because (a) some suspended sediments 

bypass the megafans via the active channels that range from 10s m wide at the 

mountain front to 10s of km wide by the time they reach the megafan terminations 

[Iriondo, 1993], (b) stratigraphic and isotopic evidence suggest the Parapeti and 

Pilcomayo channels may have been stable over the last 1 - 35 kyrs [Iriondo, 1993; Geyh 

et al., 1998], (c) the Río Parapeti channel beyond the megafan appears to be both 

eroding into and being deflected by the Río Grande megafan as it sweeps northward 

towards the Izogog swamp (Fig. 4.2B), (d) small ephemeral channel headwaters 

originate within the megafans themselves [Horton and DeCelles, 2001], and (e) aeolian 

input on both seasonal and glacial time scales give rise to present (e.g. light areas on 

the south-to-southeast margins of the Grande and Parapeti megafans, Fig. 4.2B) and 

past dune fields, depositing loess up to 20 m thick in the Quaternary alone [Iriondo, 

1997].  This collective evidence suggests our megafan volume calculations are 

minimums. 
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Chapter 5 

Cenozoic deformation, uplift, and evolution of the central Andean Plateau1 
 

. 
  

Abstract 

We synthesize a wide range of geologic, geochemical, and geophysical 

observations to present a current description and evaluation of geologic and geodynamic 

models of central Andean Plateau (AP) development (14-28°S).  We discuss 

consistencies and inconsistencies in studies of the history of deformation, sedimentation, 

exhumation and uplift as well as the structure of the lithosphere.  We find that AP 

deformation began ~60-40 Ma and migrated eastward with variable shortening 

magnitudes (~530-150 km) and rates (~20-1 mm/yr) in space and time, respectively.  

Constraints on the resulting uplift history indicate a ~1.5 km elevation gain since ~10 Ma, 

but are equally consistent with a linear rise since ≥25 Ma as a rapid rise of ~2.7 km ~10-

6 Ma within error.  Widespread, substantial incision (2.5-1 km) occurred along the 

western AP flank since ~11-8 Ma associated with surface uplift or climate change.  

Geophysical and geodynamic investigations identify an isostatically-compensated thick 

crust (~80-65 km), elevated heat flow, zones of low and high velocity and attenuation in 

the crust and mantle, and stress the importance of weakened lithosphere, partial melt, 

and crustal flow or delamination for AP morphology.  We conclude that significant upper-
                                                 
1Citation: 

 
Barnes, J. B., and T. A. Ehlers (in prep), Cenozoic deformation, uplift, and evolution of 

the central Andean Plateau. 
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plate deformation is an essential process in AP growth and that the history of shortening: 

(a) has taken significantly longer and (b) was more uniform over an along-strike distance 

of ~1500 km than previously thought.  Finally, we suggest that late Miocene, rapid 

surface uplift models for the AP are not entirely consistent with observations used to 

support this interpretation and a more protracted Cenozoic uplift history is tenable. 

 

Introduction 

The plateaus of Tibet and the central Andes are the most prominent modern 

orogenic features on Earth.  Despite this, the topographic, tectonic, and geodynamic 

evolution of orogenic plateaus is imprecisely known and the focus of much current 

research.  These high elevation plateaus are thought to influence local-to-far-field 

lithospheric deformation, global sediment fluxes, ocean chemistry, atmospheric 

circulation, precipitation, and climate change [Richter et al., 1992; Molnar et al., 1993; 

Masek et al., 1994; Lenters and Cook, 1995; Royden, 1996; Ruddiman et al., 1997; 

Sobel et al., 2003].  A plethora of important processes has been invoked for facilitating 

plateau growth.  These processes include: (1) magmatic addition [Thorpe et al., 1981; 

Kono et al., 1988], (2) distributed shortening [Dewey et al., 1988; Isacks, 1988; 

Tapponnier et al., 2001], (3) spatio-temporal variations in upper plate properties, plate 

interface, and subduction geometry [Jordan et al., 1983; Isacks, 1988; Gephart, 1994; 

Allmendinger and Gubbels, 1996; Kley et al., 1999; McQuarrie, 2002a; Lamb and Davis, 

2003; Hoke and Lamb, 2007], (4) ablative subduction, crustal flow, and delamination 

[England and Houseman, 1989; Bird, 1991; Kay and Mahlburg Kay, 1993; Kay et al., 

1994; Lamb and Hoke, 1997; Pope and Willett, 1998; Clark and Royden, 2000; 

Beaumont et al., 2001; Husson and Sempere, 2003; Garzione et al., 2006], (5) cratonic 

under-thrusting [Lamb and Hoke, 1997; Matte et al., 1997], (6) spatial erosion gradients 

[Masek et al., 1994; Horton, 1999; Beaumont et al., 2001; Montgomery et al., 2001], and 
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(7) gravitational collapse [Dewey, 1988; Molnar et al., 1993].  Although numerous 

studies have presented various data sets contributing valuable localized insights into 

these various processes, an updated and generalized view of plateau evolution is 

needed. 

Previous plateau studies have resulted in a consensus that has eliminated 

processes like magmatic addition as important [e.g. Francis and Hawkesworth, 1994; 

Giese et al., 1999] and stressed the significance of shortening, thermal weakening, 

extrusion, and lithospheric thinning for plateau formation [e.g. Allmendinger et al., 1997; 

Hodges, 2000; Tapponnier et al., 2001; McQuarrie, 2002b; Clark et al., 2005].  However, 

controversy remains on other issues such as the history of plateau uplift [e.g. Molnar et 

al., 1993; Garzione et al., 2006; Rowley and Currie, 2006; Garzione et al., 2007; Hartley 

et al., 2007] and the structure and behavior of plateau lithosphere [e.g. Tapponnier et al., 

2001; McQuarrie, 2002b; Müller et al., 2002; Beaumont et al., 2004; Bendick and Flesch, 

2007].  Numerical models of orogenesis can reproduce realistic plateau morphologies 

when accounting for temperature-dependent viscosity variations in a thickening crust 

[Willett et al., 1993; Wdowinski and Bock, 1994b; Royden, 1996; Willett and Pope, 

2004].  However, numerical modeling studies are often limited by inadequate knowledge 

of the kinematics, timing, and rates of plateau deformation and uplift as well as how 

variable they are along strike.  This review addresses both the accepted and more 

tenuous existing hypotheses associated with Andean Plateau (AP) development and 

highlights possible directions for future research.  The main purpose of this paper is to 

present an up-to-date, synoptic history of AP growth that can be used to (a) better 

evaluate conceptual geologic AP formation models and (b) calibrate and refine future 

numerical simulations of plateau evolution. 

We identify plateau-wide trends from a diverse range of geologic observations 

that place constraints on the Cenozoic history of Andean Plateau development.  More 
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specifically, we present a synthesis of (1) the structure and deformation history inferred 

from cross sections, sedimentary basins, and geo-thermochronology, (2) the 

deformation history estimated from rock exhumation, (3) the uplift history constrained by 

marine sedimentation, paleobotany, paleoclimate proxies, erosion surfaces, and stable 

isotopes, (4) the history of fluvial incision into the plateau margins quantified from 

geomorphic, stratigraphic, and thermochronologic analysis, and (5) the current 

lithospheric structure deduced from geophysical studies.  Within each subject, we 

summarize the observations, highlight the key interpretations relevant to AP formation, 

and point out important caveats.  Finally, we develop a single chronologic history for the 

Andean Plateau from the collective observations and interpretations and evaluate the 

implications it has for three current geologic models of AP formation.  The most 

important conclusion is that substantial upper-plate deformation is essential to AP 

growth and it may have taken significantly longer and was more uniform along strike 

than previously appreciated. 

 

Previous reviews 

Several previous review papers have addressed the Cenozoic evolution of the 

central Andes.  The most notable overview of the AP is by Isacks [1988] and the most 

recent review is by Allmendinger et al. [1997].  Individual papers addressing the entire 

Andes are rare [e.g. Kley et al., 1999; Montgomery et al., 2001], but regional-scale 

summaries with a particular geologic focus (e.g. shortening, erosion, uplift) are common 

[Megard, 1987; Noblet et al., 1996; Jordan et al., 1997; Gregory-Wodzicki, 2000; 

Kennan, 2000; Ramos et al., 2004; Barnes and Pelletier, 2006; Strecker et al., 2007].  

Several papers focus on the upper-plate deformation and magmatism specifically 

associated with the AP [Isacks, 1988; Allmendinger et al., 1997; Riller and Oncken, 

2003; Oncken et al., 2006b].  A few papers synthesize the local tectonic, sedimentary, 
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magmatic, and lithospheric structure and evolution of the central Andes in northern Chile 

and Bolivia [Lamb et al., 1997; McQuarrie et al., 2005].  The recent book The Andes 

Active Subduction Orogeny edited by Oncken et al. [2006a] contains chapters that 

present a database-oriented synthesis of specific geologic topics related to the southern-

central Andes.  An older book with a similar structure and theme is Tectonics of the 

southern central Andes: structure and evolution of an active continental margin edited by 

Reutter et al. [1994].  Finally, many papers simulate AP evolution with numerical models 

[e.g. Wdowinski and Bock, 1994b; Babeyko et al., 2002; Yang et al., 2003; Yanez and 

Cembrano, 2004; Vietor and Oncken, 2005]. 

This study builds upon previous work by including: (a) reference to the large 

amount of literature published in the last decade, and (b) a wide cross section of Earth 

Science sub-disciplines that are not all covered in the previous reviews.  Finally, this 

study encompasses the entire AP region from southern Peru to northern Argentina (Fig. 

5.1B). In this study, we focus on the well-cited, current, occasionally seminal, and 

thorough papers that often include regional compilations themselves.  We generally 

exclude references to conference abstracts and less accessible journals. 

 

Geologic overview and context 

The central Andean (or Altiplano-Puna) Plateau (AP) is defined as the region >3 

km in elevation in the core of the Andes at ~14-28°S in western South America (Fig. 5.1) 

[Isacks, 1988].  The AP spans ~1800 km north to south and ~200-450 km west to east.  

The AP overrides a normal, east-dipping (~30°) portion of the subducting Nazca Plate 

between zones of flat slab geometries.  Cenozoic normal-to-oblique subduction in the 

central Andes has produced considerable magnitude and latitudinal variability in 

shortening (~530-150 km) that has both bent the Bolivian orocline and contributed to AP 

uplift [Isacks, 1988; McQuarrie, 2002a].  Neogene magmatism is distributed throughout 
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both flanks of the AP with Pliocene to recent volcanism concentrated only along its 

western flank and non-existent above the flat slab zones to the north and south [e.g. de 

Silva, 1989].  Crust and mantle thicknesses beneath the plateau range from ~50-75 km 

and 100-150 km, respectively [Beck et al., 1996; Whitman et al., 1996; Myers et al., 

1998; Beck and Zandt, 2002].  The AP is morphologically divided into the northern 

Altiplano (~3700 m elevation, low relief) and the southern Puna (~4200 m elevation, 

higher relief) (Fig. 5.1C). 

The AP region is divided into several tectonomorphic zones.  From west to east 

these include: the Precordillera (PrC), the Western Cordillera (WC), the Altiplano-Puna 

basin (AL and PU), the Eastern Cordillera (EC), the Interandean zone (IA), and the 

Subandes (SA)/Santa Barbara Ranges (SB)/Sierras Pampeanas (SP) (Fig. 5.2).  The 

Precordillera and Western Cordillera constitute the western AP flank, which is a faulted 

[Muñoz and Charrier, 1996; Victor et al., 2004], crustal-scale monocline of west-dipping 

late Oligocene to mid-Miocene sediments [Hoke et al., 2007].  The Precordillera includes 

the Atacama basin which forms a westward concave bend in the AP margin at ~23°S 

[Jordan et al., 2007].  The Western Cordillera is the modern volcanic arc marking the 

western drainage divide of the Altiplano-Puna basin.  The Altiplano-Puna is a region of 

low-relief, closed depocenters filled with Tertiary sediments, evaporates, and volcanics 

[e.g. Sobel et al., 2003; Placzek et al., 2006; Strecker et al., 2007].  The eastern AP 

margin is occupied by the thick-to-thin skinned central Andean fold-thrust belt [e.g. 

McQuarrie, 2002b].  The Eastern Cordillera is the highest relief region consisting of 

deformed, predominantly Paleozoic sedimentary rocks with overlying Tertiary volcanism 

and is the eastern Altiplano-Puna drainage divide.  North of ~23°S, the Interandean zone 

and Subandes step progressively downwards in topographic elevation and upwards in 

structural depth eastward exposing mostly Devonian and Carboniferous through 

Mesozoic and Tertiary rocks, respectively [e.g. Kley, 1996; McQuarrie, 2002b].  South of



 

 

 

 

 

 

 

 

 

 

Figure 5.1.  The Andes of South America with particular focus on the Andean Plateau. 
(A) Topography is from the GTOPO30 1 km data set.  Elev = elevation.  Flat-slab 
regions marked with black bars.  Central Andes present-day plate boundary (bold 
line) with shortening restored sequentially back to ~70 Ma (thin lines; values = 
km shortening) and plate convergence vectors and chronology from McQuarrie 
[2002b]. (B) Andean Plateau region topography is from the SRTM 90 m data set.  
Plateau extent is defined by the 3 km contour after Isacks [1988]. (C) 50 km 
swath-averaged S-N plateau topographic profile after Whitman et al. [1996].  
Profile location is line in part B. 
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~23°S, the Interandean zone and Subandes transition into high angle, reverse-faulted 

ranges and basement-cored uplifts of the Santa Barbara Ranges [Kley and Monaldi, 

2002] and Sierra Pampeanas [Schmidt et al., 1995; Ramos et al., 2002], respectively.  

The morphological and structural transition from Altiplano to Puna at ~23°S is related to 

Precambrian to Mesozoic paleogeography and changes in the lithospheric thickness and 

subduction geometry [Allmendinger et al., 1997 and references therein]. 

 

Three current geologic models of Andean Plateau (AP) development 

There are three current and contrasting geologic models for AP development 

which provide an important framework for how the various data sets are synthesized in 

the following section.  We outline the models here. 

 

Model 1 

Early characterization of Andean orogeny identified several major punctuated 

deformation events: the late Cretaceous Peruvian, the late Eocene Incaic, and the late 

Miocene Quechua phases [Megard, 1987; Sempere et al., 1990; Noblet et al., 1996].  

The latter two deformation phases correlate with periods of rapid plate convergence 

reconstructed from seafloor magnetic anomalies and reconstructions of the western 

coastline (Fig. 5.1A) [Pardo-Casas and Molnar, 1987].  Isacks [1988] proposed a model 

consistent with these notions that has two distinct stages.  Phase one (1) is pure shear, 

late Oligo-Miocene (~27-10 Ma) Quechua deformation and thickening in the Altiplano 

and Eastern Cordillera accompanied by lithospheric weakening due to lower-angle 

subduction relative to present.  Phase two (2) is late Miocene to present (~10-0 Ma) 

simple shear deformation in the Subandes contemporaneous with lower crust thickening 

below the plateau [see also Gubbels et al., 1993; Allmendinger and Gubbels, 1996].  

During phase 1, processes supposedly responsible for surface uplift include shortening 
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and lower crustal flow [Husson and Sempere, 2003].  During phase 2, uplift is related to 

under-plating of forearc material [Baby et al., 1997], lithospheric removal [e.g. Kay et al., 

1994; Allmendinger et al., 1997], and under-thrusting of the Brazilian lithosphere below 

the foreland [e.g. Barke and Lamb, 2006]. 

 

Model 2 

An alternative view of AP plateau formation is characterized by continuous 

simple shear deformation over a considerably longer time period [e.g. Noblet et al., 

1996; McQuarrie et al., 2005].  This view is the result of recent estimates on the 

magnitudes, timing, and rates of shortening, exhumation, and foreland basin migration 

combined with kinematic reconstructions of the central Andean fold-thrust belt 

[McQuarrie, 2002b; DeCelles and Horton, 2003; Elger et al., 2005; Horton, 2005; Ege et 

al., 2007; Barnes et al., 2008; Carrapa and DeCelles, 2008; McQuarrie et al., 2008].  

This model describes eastward-propagating deformation starting in the late Cretaceous-

Paleocene (~70 Ma) in the Western Cordillera and jumping to the central Eastern 

Cordillera in the mid Eocene (~40 Ma).  Deformation then became generally bi-vergent 

in the Eastern Cordillera and propagated into the Altiplano and Interandean zone during 

the Oligocene to mid-Miocene (~20-15 Ma).  Deformation then moved farther east into 

the Subandes by the mid Miocene to present (~15-0 Ma).  In this model, the massive 

shortening is controlled by large basement structures in the mid-upper crust [Kley, 1999; 

McQuarrie, 2002b].  This extended chronology, when combined with geodynamic 

models, has led to the suggestion that thickening and shortening facilitated removal of 

mantle lithosphere by ablative subduction and/or piecemeal-to-wholesale delamination 

[Pope and Willett, 1998; Beck and Zandt, 2002; McQuarrie et al., 2005; Garzione et al., 

2006].  The associated surface uplift history ranges from a slow and steady rise since 

the Eocene to recent elevation gain of ~3.5-2.5 km during a delamination event ~10-6 
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Ma contemporaneous with migration of accelerated shortening into the Subandes [e.g. 

Garzione et al., 2006; Hartley et al., 2007; Ehlers and Poulsen, in prep]. 

 

Model 3 

The most complex geologic model of AP formation involves the interplay 

between three key parameters: (1) differential motion between the subducting slab and 

upper plate (e.g. slab rollback), (2) high coupling of the plate interface due to low trench 

sedimentation, and (3) the lateral distribution of weakened zones in the upper plate 

[Oncken et al., 2006b].  This model highlights two main episodes determined from a 

quantitative analysis of spatio-temporal variations in deformation: (a) a period of higher 

sediment flux into the trench, which reduced the strength of the plate interface, 

decreased shortening, and enhanced slab rollback from 45-33 Ma, followed by (b) a 

period of reduced slab dip that accelerated shortening from 33-22 Ma.  The focus and 

distribution of deformation is facilitated by inherited zones of structural weakness.  

Residency of the AP within the arid latitudinal zone is also important.  In this model, 

recognition that deformation preceded magmatism and their time-space distribution vary 

independently [Trumbull et al., 2006] downplays the role of magmatism in 

preconditioning the lithosphere by thermal weakening, but supports delamination as a 

possible heat source.  The associated uplift history is demonstrated by a simulated 

elevation history requiring 30 Myrs of thickening and isostasy with a transition from pure 

to simple shear at 10 Ma (without any redistributive mechanisms of crustal material).  

The simulated topography is similar to the Altiplano region, but not the Puna or 

Subandes. 

 

Synthesis of observations 
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In the following, we organize, illustrate, and tabulate previous AP region studies 

into the following subsections: (1) structure, deformation, and the associated 

sedimentation, (2) spatial and temporal variations in exhumation, (3) surface and rock 

uplift histories, (4) fluvial incision along the plateau flanks, and (5) lithospheric structure 

derived from geophysical observations.  In each subsection, we synthesize the 

observations, highlight key interpretations relevant to the formation of the AP, and briefly 

discuss associated caveats. 

 

Structure, deformation, and associated sedimentation  

Numerous studies have integrated sedimentology, stratigraphy, geo-

thermochronology, reflection seismology, and structural data to constrain the chronology 

of Cenozoic upper-crustal deformation in the AP region.  For example, (a) balanced 

sections and shortening estimates combined with chronologic information provide insight 

into the mode, style, and rate of deformation [e.g. Allmendinger et al., 1997; Kley and 

Monaldi, 1998; McQuarrie, 2002b], (b) dating growth strata with magnetostratigraphy or 

40Ar/39Ar dating of interbedded tuffs provides time control on sedimentation synchronous 

with local deformation [e.g. Elger et al., 2005], and (c) dating sediments with palynology 

and detailing their provenance provides a proxy for the timing source region deformation 

uplift, and erosion [e.g. Horton et al., 2002].  In this compilation, we chose to exclude the 

literature of deformation magnitude and style that is devoid of chronologic constraints 

[e.g. Roeder, 1988; Sheffels, 1990; Baby et al., 1995; Dunn et al., 1995; Roeder and 

Chamberlain, 1995; Welsink et al., 1995]. 

Figure 5.2A shows the locations and timing of AP region deformation estimated 

from sedimentary and structural evidence by studies listed in Table 5.1.  This synthesis 

shows deformation in the Precordillera/Western Cordillera region began in the 

Paleocene to mid-Eocene (~60-35 Ma).  Deformation has been ongoing in these regions 
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since ~40-35 Ma.  Deformation moved into the Eastern Cordillera in the mid-Eocene 

lasting until the late Miocene (~40-10 Ma).  Deformation propagated both eastward and 

westward from the Eastern Cordillera since ~40 Ma in Bolivia.  Eastward, deformation of 

the Interandean zone began in the early Miocene (~20 Ma) followed by the Subandes 

from late Miocene to today (9-0 Ma).  Westward from the Eastern Cordillera, deformation 

of the Altiplano-Puna began in the earliest Oligocene (~30 Ma) and ceased in the 

Altiplano by late Miocene (~7 Ma), but remains active today in the Puna.  In the 

Argentine Eastern Cordillera, both late Eocene (~40 Ma) and early Miocene to recent 

(~20-0 Ma) deformation is documented.  Finally, paleomagnetic rotation data observe 

Cenozoic counterclockwise rotations (~10-30°) north of the Bolivian orocline and 

clockwise rotations (~10-60°) south of the orocline [see summaries in Lamb, 2001; 

Roperch et al., 2006; Barke et al., 2007]. 

There are several key interpretations relevant to AP development.  The western 

plateau flank is a simple monoclinal structure that exhibits thrust deformation and has 

experienced associated uplift since ~60-40 Ma all along strike.  Basement-involved 

structures kinematically link the Altiplano plateau to its eastern thrust belt margin.  These 

basement structures have controlled the thrust belts’ physiography, short-wavelength (1-

10 km) deformation, and high magnitude shortening (~250-500 km; Fig. 5.1A) in a thick 

(8-15 km) sedimentary wedge [Kley, 1996; Kley and Monaldi, 1998; Kley, 1999; 

McQuarrie and DeCelles, 2001; McQuarrie, 2002b; McQuarrie et al., 2005].  However, 

controversy exists on how complicated the ramp-flat thrust sheet geometries are in the 

basement [e.g. compare McQuarrie, 2002b; Müller et al., 2002; Elger et al., 2005].  The 

sedimentary history and kinematic reconstructions of the Altiplano both suggest the 

modern width of the plateau was established by ~25-20 Ma after which most deformation 

ceased in the Eastern Cordillera [Horton et al., 2002; McQuarrie, 2002b; Horton, 2005]. 

Finally, estimated shortening rates for the Altiplano region average ~11-8 mm/yr, but 
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range in space and time from 16 to <1 mm/yr [Elger et al., 2005; McQuarrie et al., 2005; 

Oncken et al., 2006b; Barnes et al., 2008; McQuarrie et al., 2008]. 

 

 

Figure 5.2.  The deformation, sedimentation, and exhumation history of the Andean 
Plateau.  Tectonomorphic zones are modified from Jordan et al. [1983], 
McQuarrie [2002], Roperch et al. [2006], and Insel et al. [in revision]:  PrC = 
Precordillera, WC = Western Cordillera, AL = Altiplano, PU = Puna, EC = Eastern 
Cordillera, IA = Interandean zone, SA = Subandes, SB = Santa Barbara Ranges, 
SP = Sierras Pampeanas. (A) Timing (in Ma) of initiation and/or duration of 
deformation inferred from integrated sedimentation, geo-thermochronology, and 
structure data.  Superscripted uppercase letters refer to rows in Table 5.1. (B) 
Timing (in Ma) of initiation and/or duration of deformation inferred from 
exhumation studies based on thermochronology data.  Superscripted lowercase 
letters refer to rows in Table 5.2. 
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The structure of the Argentine Puna is high-angle reverse fault-bounded, 

basement-cored ranges separated by intermontane basins characterized by long 

wavelength (10-30 km) deformation and lower magnitude shortening (~150 km; Fig. 

5.1A) of a thin clastic wedge [Coutand et al., 2001; McQuarrie, 2002a].  Pre-existing 

Paleozoic and Mesozoic structures presumably exhibit the dominant control on the 

location of Puna deformation structures.  Previous consensus was initial deformation 

and sedimentation began in the Puna (~20 Ma) significantly later than in the Altiplano 

[Allmendinger et al., 1997; Jordan et al., 1997; McQuarrie, 2002a].  However, we 

conclude from several studies that the Puna has experienced widespread and 

continuous deformation and sedimentation both internally and along its margins since 

~40 Ma, perhaps even earlier along the western flank suggestive of deformation 

propagating eastward since the Paleocene (~60 Ma) (Table 5.1) [Marrett et al., 1994; 

Coutand et al., 2006; Hongn et al., 2007; Carrapa and DeCelles, 2008]. 

The paleomagnetic rotation data have been used to argue for [Kono et al., 1985; 

Isacks, 1988; Roperch et al., 2006; Barke et al., 2007] and against [Kley, 1999; Roperch 

et al., 2000] the Cenozoic bending of the Bolivian orocline with consensus developing 

around the former.  This bending is believed to be accommodated by the observed 

shortening gradients [Lamb, 2001; Barke et al., 2007] and attests to the fact that the AP 

deformation has been fundamentally 3-dimensional in nature rather than 2-dinemsional 

as assumed by constructed cross sections.  The distribution of outward rotations from 

the plateau center at the bend axis suggests that there is some element of extrusion of 

material outward along strike. 

 

Spatial and temporal variations in exhumation  

Various studies have used low-temperature thermochronology [Reiners and 

Ehlers, 2005] in bedrock to chronicle exhumation in the AP region.  For example, apatite 
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fission-track thermochronology and inverse modeling of fission tracks can be used to 

quantify upper-crustal cooling of rock samples from temperatures of ~60-120°C [e.g. 

Deeken et al., 2006; Ege et al., 2007].  Combined analysis of multiple 

thermochronometer systems such as fission-track and 40Ar/39Ar thermochronology have 

been used to quantify AP exhumation histories sensitive to temperatures <~350°C [e.g. 

Gillis et al., 2006]. 

Figure 5.2B shows the locations and timing (in Ma) of rapid erosional exhumation 

estimated from AP region studies listed in Table 5.2 (for a plot of apatite fission-track 

ages throughout the southern-central AP see Figure 12.3 of Alonso et al. (2006)).  This 

synthesis shows that the Precordillera/Western Cordillera region began exhumation first 

in the Paleocene to mid-Eocene (~60-40 Ma).  Next, exhumation jumped into the 

Eastern Cordillera in the mid-Eocene and continued until the early Miocene (~45-40 to 

~20 Ma).  The exhumation front propagated both eastward and westward from the 

central Eastern Cordillera since ~40 Ma.  Eastward, exhumation occurred in the 

Interandean zone from early to late Miocene (~20 to between 10-5 Ma) followed by the 

Subandes from mid-late Miocene to present (~15-0 Ma).  In the south, the exhumation 

front migrated eastward into the Sierras Pampeanas in the late Miocene (10-5 Ma).  

Westward from the Eastern Cordillera, exhumation in the Altiplano-Puna began in the 

earliest Oligocene and continued into the Quaternary (~30-2 Ma), with some mid-

Miocene (~15 Ma) exhumation also recorded in the Precordillera.  It is important to note 

that the Eastern Cordillera experienced two distinct phases of exhumation; in Bolivia, 

localities record both late Eo-Oligocene (~40-20 Ma) and mid-late Miocene to recent 

(~15-0 Ma) exhumation, and in Argentina, sites record both mid Eo-Oligocene (~50-30 

Ma) and early Miocene (23-15 Ma) exhumation (Fig. 5.2B). 
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The previous exhumation histories have been used to reconstruct AP evolution 

based on the assumption that rock cooling is a proxy for deformation.  This assumption 

is generally valid in regions where cooling related to volcanism can be ruled out.  In 

convergent orogens erosion is the primary mechanism of exhumation [Ring et al., 1999; 

Ehlers, 2005] and the onset of rapid erosional exhumation is a signature of deformation 

because it generates the topography and relief necessary to drive erosional processes 

[e.g. Coughlin et al., 1998; Carrapa et al., 2005; Barnes et al., 2006; Ege et al., 2007].  

Some periods of recorded, rapid exhumation are considered the result of only enhanced 

erosion when combined with local geologic evidence [e.g. Gillis et al., 2006].  However, 

exhumation may not be recorded if the deformation magnitude is insufficient to cause 

rock cooling below the relevant thermochronometer system closure temperature (~40-

70°C for apatite (U-Th)/He, ~60-130°C for apatite fission track, ~150-180°C for zircon 

(U-Th)/He, ~190-250°C for zircon fission track, and muscovite (400-345°C), biotite (325-

280°C), and K-feldspar 40Ar/39Ar (150-250°C) [Reiners et al., 2005]). 

Probably the most important interpretation that can be deduced from previous 

exhumation studies is that the modern width of the Altiplano plateau was established by 

~15-20 Ma [Barnes et al., 2006; Ege et al., 2007; Barnes et al., 2008; McQuarrie et al., 

2008].  In addition, the early episode of Eastern Cordillera exhumation (~50-20 Ma) is 

considered related to deformation all along strike [Gillis et al., 2006; Ege et al., 2007; 

Barnes et al., 2008; McQuarrie et al., 2008].  The later episode of Eastern Cordillera 

exhumation (23-0 Ma) is considered unrelated to major deformation and related to 

enhanced erosion in Bolivia [Horton, 2005; Gillis et al., 2006; Barnes et al., 2008], 

whereas it is related to deformation in Argentina [e.g. Deeken et al., 2006]. 

 

Constraints on the history of uplift  
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Many types of information have been used to reconstruct the uplift history of the 

AP.  For example, (a) dated marine facies provide a paleoelevation constraint of near 

sea level [e.g. Sempere et al., 1997], (b) perched erosion surfaces are important for 

estimating rock uplift [e.g. Barke and Lamb, 2006], and (c) paleoaltimetry techniques 

such as fossil floras [Gregory-Wodzicki et al., 1998; Meyer, 2007] and stable isotopes 

[Quade et al., 2007] provide paleoelevation estimates.  A previously compiled history of 

AP elevation suggested the AP had reached ~25-30% of its modern elevation by early-

mid Miocene and ~50% by ~10 Ma [Gregory-Wodzicki, 2000; see also Hartley, 2003]. 

Figure 5.3 shows the locations and constraints on AP region uplift and elevation 

from marine facies, paleobotanical techniques, paleoclimate proxies, erosion surfaces, 

paleosol oxygen and clumped 13C-18O isotopes, and monocline tilting by studies listed in 

Table 5.3.  Marine facies of the late Cretaceous El Molino Formation establishes the 

entire AP region at near sea level ~73-60 Ma [e.g. Sempere et al., 1997].  The remaining 

constraints generally support one of the following three simplified histories for the 

plateau:  (1) significant (> ~1 km) uplift prior to 10 Ma, (2) minor uplift (≤ ~1 km) prior to 

10 Ma with most gain (≥ ~3 km) post 10 Ma, and (3) significant uplift since ~25 to 20 Ma 

to present which equivocally could provide support for either history 1 or 2.  We outline 

the constraints that support each simplified history here. 

1. Significant pre-late Miocene (>10 Ma) uplift;  Paleobotanical evidence using 

the nearest-living-neighbor method at the Corocoro and Potosi localities suggests 2-.2.4 

km elevation prior to 11 Ma (5 and 6a in Table 5.3).  Atacama Desert paleosols indicate 

a climate change to hyper-aridity 19-13 Ma implying >2 km elevation in the plateau 

region had induced a rain shadow by this time (9 in Table 5.3). 

2. Mostly late Miocene to present (~10-0 Ma) uplift;  Paleobotanical evidence 

using the nearest-living-neighbor method from the Chucal Formation suggests only 1 km 

elevation 25-19 Ma (4 in Table 5.3).  Reinterpretation of the Potosi paleobotanical 
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evidence using the foliar-physiognomic method suggests ≤1320 m elevation was 

attained by 21-14 Ma (6b in Table 5.3).  The Jakokkota site, also using the foliar-

physiognomic method, suggests 600-1600 m elevation 11-10 Ma (7 in Table 5.3). 1.7 ± 

0.7 km of rock uplift since 12-9 Ma was estimated from the San Juan del Oro surface in 

the Eastern Cordillera of southern Bolivia (12 in Table 5.3) and δ18O and clumped 13C-

18O isotopes from pedogenic carbonates suggest an elevation gain of ~2.7 ± 0.7 km 

10.3-6.7 Ma (Fig. 5.3 and 13-18 in Table 5.3). 

3. Most uplift since the latest Oligocene-early Miocene (~25 to 20 Ma to present);  

A 25 Myr-old abraded marine transgression surface in the Peruvian Precordillera 

suggests 1100 m of uplift since 25 Ma (1 in Table 5.3).  Internal drainage development 

24-14 Ma in the Puna implies uplifted regions of unknown elevation along both plateau 

flanks by this time (8 in Table 5.3).  The elevated Altos de Camilaca surface suggests 

1100-1300 m of rock uplift in southern Peru since 25-18? Ma (11 in Table 5.3) and 

monoclinal tilting and rock uplift of the western plateau flank escarpment suggest 1700-

2500 m of uplift since 19 Ma (19 in Table 5.3). 

When integrated together, the previous indicators of rock and surface uplift 

suggest that the high AP region was uplifted by ~1.5 km in elevation over the last ~10 

Myrs (dashed lines in Fig. 5.3B).  Estimates from perched erosion surfaces imply 1-3 km 

of rock uplift with as much as 2.4 km since 12-9 Ma.  Within 1 sigma error, the 

paleoelevation data constrain the Altiplano elevation history as <~2 km elevation until 

~11 Ma followed by a rapid rise from 0.5-2 km to the present elevation of ~3.8 km 

starting ~10 Ma (gray region in Fig. 5.3B).  Within 2 sigma error, the paleoaltimetry data 

constrain the Altiplano elevation history as <~2.4 km elevation until ~18 Ma followed by 

either a rapid to steady rise from 0-2.4 km to the present elevation of ~3.8 km starting 

somewhere between ~18 and 10 Ma (dashed lines in Fig. 5.3B).  We conservatively 

conclude that, within 2 sigma error, observations suggest anything from a slow and 

 186



 

 187

steady rise of the Altiplano since ≥25 Ma to a recent and rapid rise from ~1 km 10.3 Ma 

to its modern height of 3.8 km ~6.7 Ma [Garzione et al., 2006; Ghosh et al., 2006]. 

 

 

 

Figure 5.3.  The uplift and elevation history of the Andean Plateau. (A) Study locations 
are shown with white polygons and labeled with letters that refer to rows in Table 
5.3.  Constraints are from sedimentary facies, paleobotany, paleoclimate, erosion 
surfaces, paleoaltimetry, and monocline tilting data.  The quantity and timing of 
local surface uplift is highlighted for selected studies.  See Figure 5.2 for 
tectonomorphic zones and their abbreviations. (B) Paleoelevation estimates of 
the high plateau region derived from paleobotany, oxygen isotopes, and clumped 
13C-18O isotopes listed in Table 5.3.  Errors bars shown are 2σ or standard (std.) 
error. 
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There are several caveats associated with these uplift constraints.  First, work 

done in the early 1900s is generally not accepted because so little was known about 

modern-to-ancient South American vegetation at that time (5 and 6 in Table 5.3) 

[Gregory-Wodzicki, 2000].  Second, paleoclimate proxies and erosion studies often 

invoke far-a-field causes, which may be non-unique.  For example, Rech et al. [2006] 

infer plateau height of >2 km far from their study location in the northern Atacama as a 

mechanism for the onset of aridity (Fig. 5.3).  In fact, the traditional view that hyper-

aridity (related to rain shadow development) by 14 Ma induced supergene oxidation and 

enrichment of porphyry copper deposits throughout the AP western flank in Peru and 

Chile [Alpers and Brimhall, 1988; Stillitoe and McKee, 1996] has recently been called 

into question with periodic evidence of enrichment since the mid-Eocene (~44-0 Ma) 

[Hartley and Rice, 2005; Quang et al., 2005; Arancibia et al., 2006].  Third, rock uplift is 

not necessarily equivalent to surface uplift unless some correction is made for the 

isostatic response to erosion regionally (Table 5.3) [England and Molnar, 1990].  Finally, 

paleoelevation estimates from stable isotope data are based on modern relationships 

between fractionation in modern meteoric water, elevation, and surface temperatures 

[Quade et al., 2007], which may not be representative of the past.  Climate and moisture 

sources change over time making the assumption that the modern meteoric fractionation 

relationship indicative of the past tenuous and the resultant δ18O paleoelevation 

estimates potentially underestimates [Ehlers and Poulsen, in prep].  Clumped 13C-18O 

paleoaltimetry it is a nascent technique with large uncertainty (~±4°C) and compares the 

inferred paleo-surface temperature to modern lapse rates [Quade et al., 2007].  It is 

interesting to note that the oldest (~10 Ma) δ18O and 13C-18O data are inconsistent with 

each other even at the 2 sigma uncertainty (Fig. 5.3B). 

 

Constraints on the history of incision  
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Many studies have investigated the history of fluvial incision in the AP region 

which can be a proxy for uplift.  For example, (U-Th)/He thermochronometry can 

constrain the timing of canyon incision [Schildgen et al., 2007] and degradation into 

erosion surfaces or stratigraphic markers of known age provides a measure of the 

amount and timing of incision [Sebrier et al., 1988; Kennan et al., 1997; Thouret et al., 

2007]. 

Figure 5.4 shows the locations, timing, and estimates of incision magnitude from 

AP region studies listed in Table 5.4.  The major observation is that substantial incision 

(1-2.5 km) has occurred along the western Altiplano plateau flank since 11-8 Ma (a-c, h-j 

in Table 5.4).  Evidence exists for earlier incision of ≥400 m 16-11 Ma in southern Peru 

(g in Table 5.4) and tilting and incision of Atacama gravels starting ~15 Ma along the 

southern Puna (d in Table 5.4).  Most recent evidence demonstrates <450 m of incision 

into the San Juan del Oro surface since ~3 Ma in the Bolivian Eastern Cordillera (e in 

Table 5.4). 

There are several possible mechanisms for incision.  Authors have suggested 

surface uplift [e.g. Sebrier et al., 1988; Servant et al., 1989; Gregory-Wodzicki, 2000; 

Schildgen et al., 2007] as the result of delamination [Garzione et al., 2006; Ghosh et al., 

2006] or lower crustal flow [Schildgen et al., 2007; Thouret et al., 2007].  One key point 

is that even if surface uplift did trigger incision, the incision depth is not necessarily equal 

to the amount of uplift unless it has been corrected for the isostatic response to erosion 

[Molnar and England, 1990].  Climate change can also trigger incision (and result in 

regional uplift).  Paleoclimate proxies of the western AP flank in Chile indicate both 

changes from semi-humid to arid conditions in the last 15 Myrs as well as contradictory 

conditions occurring simultaneously (e.g. both wet and dry climates) which suggests a 

climatic incision trigger is difficult to evaluate [e.g. Gaupp et al., 1999; Hartley, 2003]. 
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Figure 5.4.  The incision history of the Andean Plateau.  Study locations are shown with 
white polygons and labeled with letters that refer to rows in Table 5.4.  
Constraints are from geo-thermochronology, erosion surface and canyon 
incision, and topographic and river profile analysis data.  The integrated quantity 
and timing of incision is highlighted for selected studies (see Table 5.4 for 
details).  See Figure 5.2 for the tectonomorphic zones and their abbreviations. 
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Lithospheric structure  

Many types of geophysical studies have been conducted to gain insight into the 

lithospheric structure below the AP.  For example, (a) earthquake locations and focal 

mechanism solutions provide constraints on the location of the subducting Nazca Plate 

[e.g. Cahill and Isacks, 1992], (b) seismic wave attenuation and tomography produce 

subsurface velocity variations that can be interpreted in terms of lithospheric structure 

[e.g. Dorbath et al., 1993; Whitman et al., 1996; Beck and Zandt, 2002], and (c) 

measured and modeled heat flow densities can provide approximations of the thermal 

structure of the lithosphere [e.g. Springer, 1999].  We chose not to include 

magnetotellurgic and electromagnetic studies [e.g. Swartz et al., 1994; Swartz and 

Kruger, 1997; Soyer and Brasse, 2001] in this compilation for brevity. 

Figure 5.5 shows the locations of seismic stations and networks and highlights 

major features of the lithosphere below the AP with specific studies listed in Table 5.5.  

The Western Cordillera, Altiplano, and Eastern Cordillera regions exhibit a positive geoid 

height, a negative Bouguer gravity anomaly, and elevated heat flow with locally positive, 

isostatic residual gravity anomalies in the central Altiplano and Eastern Cordillera 

[Froidevaux and Isacks, 1984; Henry and Pollack, 1988; Gotze et al., 1994; Gotze and 

Kirchner, 1997; Springer and Forster, 1998; Scheuber and Giese, 1999; Springer, 1999].  

Bouguer gravity combined with topography data have been used to determine strong 

flexural rigidity (effective elastic thickness, Te ~40 km) in the forearc and near the 

foreland in contrast to the high elevations which are characterized by the opposite (Fig. 

5.5B) [Watts et al., 1995; Tassara, 2005; Perez-Gussinye et al., 2008].  The low gravity 

and high heat flow and topography are attributed to a thick crust (~65-80 km) that is 

isostatically compensated below the plateau, which sits above a hot asthenospheric 

wedge.  The spatial variations in lithospheric strength are interpreted to be related to (a) 

the thermal structure and thickness of the felsic crust (Fig. 5.5B), (b) the age of the

 193



 

 

 

 

 

 

 

 

Figure 5.5.  The lithospheric structure of the Andean Plateau.  Constraints are from 
geophysical studies. (A) Study locations and associated seismic stations and 
networks are shown with specific literature listed in Table 5.5.  D93 = Dorbath et 
al. [1993], DG96 = Dorbath and Garnet [1996], W94 = Wigger et al. [1994], GA99 
= Graeber and Asch [1999], CDP = common depth point reflection line [see 
Oncken et al., 2003], APVC = Altiplano Volcanic Complex.  Upper mantle velocity 
(vel) zones and edge of Brazilian craton from Beck and Zandt [2002].  See Figure 
5.2 for the tectonomorphic zones and their abbreviations. (B) Cross section of 
heat flow, thermal structure, and effective elastic thickness (Te) at ~20°S 
[modified from Tassara, 2005].  Moho discontinuity (thin short dashed line) is 
from Yuan et al. [2000].  Modeled isotherms and measured (thick solid lines 
above topography profile) mean heat flow densities are from Springer and 
Forster [1998] and Springer [1999].  Topography is exaggerated five times. (C) 
Along-strike variations in lithospheric structure (inferred from seismic attenuation) 
and depth to the Nazca Plate [modified from Whitman et al., 1996].  See Figure 
5.2B for profile location. (D) Schematic lithospheric cross section modified from 
McQuarrie et al. [2005].  White stars are BANJO/SEDA stations in part A.  Dark 
lithosphere reflects fast upper mantle P-wave velocities and white areas are slow 
(see also part A).  White waves are crustal low velocity zones.  Black/gray crustal 
low-velocity zones associated with partial melts are shown for the Western 
Cordillera and the Eastern Cordillera (Los Frailes ignimbrites).  Upper-crustal 
structure is a balanced section from McQuarrie [2002] with basement in gray and 
cover rocks in white. 
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subducting oceanic lithosphere, and (c) proximity to the under-plating Brazilian 

lithosphere. 

In the early-mid 1990s, intermediate depth (>60 km) earthquakes and focal 

mechanisms were used to delineate a moderately dipping (30° to the east) Wadati-

Benioff zone (representing the Nazca plate) below the plateau flanked by regions of flat 

slab subduction north of ~14°S in Peru and south of ~28°S in Argentina (Figs 5.1A & 

5.5C) [Cahill and Isacks, 1992].  S and P waves generated from within the Nazca plate 

showed significant attenuation in the upper mantle below the plateau south of ~22°S 

relative to the north [Whitman et al., 1992].  The interpretation was the Altiplano had a 

thick mantle lithosphere whereas the Puna possessed a much thinner lithosphere 

perhaps due to delamination (Fig. 5.5C) [Whitman et al., 1996; see also Yuan et al., 

2002].  Teleseismic and local tomography showed slow velocities below the Altiplano 

down to the Moho and recognized a upper mantle high velocity zone below the Eastern 

Cordillera and eastward [Dorbath et al., 1993; Dorbath and Granet, 1996].  Lower crustal 

velocity perturbations, seismic refraction, and tomography were also used to estimate 

crustal thicknesses of 32-80 km in Bolivia (70-74 km in the Western Cordillera, 65-80 km 

in the Altiplano, 50-74 km in the Eastern Cordillera, 43-47 in the Subandes, and 32-38 in 

the Chaco foreland) (Fig. 5.5) [Wigger et al., 1994; Zandt et al., 1994; Beck et al., 1996]. 

Many geophysical studies conducted since the mid-1990s have refined the 

structure of the Andean Plateau lithosphere.  Earthquake locations, teleseismic and local 

earthquake tomography, attenuation, refraction surveys, and waveform modeling 

observe key features: (1) an east-dipping high velocity zone down to 660 km below the 

plateau [Dorbath and Granet, 1996; Graeber and Asch, 1999; Scheuber and Giese, 

1999; Oncken et al., 2003; Asch et al., 2006], localized low and high velocity zones in 

the crust (2) and upper mantle (3) below the Western Cordillera, Altiplano, Puna, and 

Eastern Cordillera (Fig. 5.5A) [Myers et al., 1998; Chmielowski et al., 1999; Schmitz et 
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al., 1999; Yuan et al., 2000; Baumont et al., 2002; Beck and Zandt, 2002; Asch et al., 

2006; Schurr et al., 2006; Heit et al., 2008], and (4) high attenuation (low QP) in the 

upper crust and mantle [Haberland et al., 2003; Schurr et al., 2003; Schurr and 

Rietbrock, 2004; Schilling et al., 2006].  These features are generally interpreted as the 

subducting Nazca slab (1), indications of high temperatures, fluids and partial melts (2 

and 4), and intact mantle lithosphere to piecemeal-to-wholesale detached lithospheric 

mantle (3) below both the Altiplano and Puna (Fig. 5.5 & Table 5.5).  Additional 

estimates of crustal thickness are similar to previous estimates (up to ~80 km below the 

center tapering to ~30 km in the foreland) and suggest a dominantly felsic to layered 

felsic-mafic composition [e.g. Beck and Zandt, 2002; Yuan et al., 2002].  Several studies 

infer that the Altiplano crust is decoupled [Beck and Zandt, 2002; Oncken et al., 2003].  

The high velocity upper mantle down to 120 km below the western Eastern Cordillera is 

interpreted to be the western limit of the under-thrusted Brazilian craton (Fig. 5.5A) [e.g. 

Beck and Zandt, 2002].  Location of the Brazilian craton is further defined by an E-W fast 

direction in shear-wave splitting east of 66°W, which contrasts with a N-S fast direction 

directly below the Altiplano that is interpreted to be related to mantle flow [Bock et al., 

1998; Polet et al., 2000].  Figure 5.5D is a schematic block diagram summarizing the 

interpreted lithospheric structure below the AP at ~20°S from many of the geophysical 

observations mentioned here. 

There are caveats with the interpretations of lithospheric structure that stem from 

the geophysical data.  In general, tomography depicts changes in relative seismic 

velocities and hence is less reliable at characterizing sharp boundaries especially for 

intra-crustal structures from teleseismic conversions.  Resolution of tomographic images 

is usually dependable in the horizontal direction, but significantly less so in the vertical 

direction because that is parallel to the ray paths.  For example, while the low and high 

mantle velocity regions below the Altiplano and Eastern Cordillera region are certainly 
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there, their vertical extent and any associated interpretation, such as lithospheric 

removal, is more tenuous (Fig. 5.5A&D).  Furthermore, tomographic images are more 

reliable when they are constrained by local earthquakes rather than by teleseismic 

earthquakes.  In either case, tomographic images are fundamentally limited by the 

frequency and spatial variability of earthquake sources. 

 

Discussion 

In this section, we integrate the observations summarized above into a synoptic 

chronology of AP evolution and then focus on consistencies and inconsistencies in the 

observations and interpretations.  We then evaluate the synoptic history within the 

context of the three current geologic models described above. 

 

Synoptic chronology of Andean Plateau (AP) evolution 

Observations constraining the structure, deformation, sedimentation, and 

exhumation produce a chronology that is consistent throughout the entire AP from 

southern Peru to northern Argentina: (a) exhumation and deformation began along the 

entire western plateau flank ~60-40 Ma, (b) initial exhumation and deformation jumped 

into the central Eastern Cordillera ~40 Ma, (c) exhumation and deformation continued 

throughout the Eastern Cordillera until ~20 Ma, (d) the exhumation and deformation front 

propagated eastward into the Interandean zone contemporaneous with limited 

deformation in the Altiplano from ~20 to 10-5 Ma, and (e) finally, the exhumation and 

deformation front eventually migrated into the Subandes/Santa Barbara Ranges/Sierras 

Pampeanas ~15-10 Ma to present roughly contemporaneous with a second pulse of 

exhumation in the Eastern Cordillera (~23-15 Ma to present).  One observation 

inconsistent with this chronology is a minor older phase of Oligocene (or older) 

exhumation recorded in the northern Interandean zone that is consistent with a recent 
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kinematic reconstruction that shows very limited local Eo-Oligocene deformation 

[McQuarrie et al., 2008].  The younger, mid-Miocene to recent (~15-0 Ma) phase of 

exhumation recorded in the Bolivian Eastern Cordillera is considered unassociated with 

significant deformation and probably the result of enhanced erosion [Barnes et al., 2006; 

Gillis et al., 2006; Barnes et al., 2008; McQuarrie et al., 2008].  In contrast, 

magnetostratigraphic, seismic, and detrital thermochronologic evidence shows mid-late 

Miocene to recent (~20-0 Ma) deformation in the Argentine Eastern Cordillera (Fig. 5.2) 

[Reynolds et al., 2000; Coutand et al., 2006; Mortimer et al., 2007]. 

The specific chronology of deformation and exhumation in the Altiplano-Puna is 

generally consistent, but differs in detail.  Deformation is documented from ~30 Ma 

throughout the Altiplano-Puna, but ceased by ~8-7 Ma in the Altiplano and continues 

today in the Puna (Fig. 5.2) [Cladouhos et al., 1994; Marrett et al., 1994; Kennan et al., 

1995; Lamb and Hoke, 1997; Kraemer et al., 1999; Elger et al., 2005].  Exhumation may 

have begun as recently as the Pliocene in parts of the Altiplano relative to older 

documented deformation (~3-2 vs. ~8-7 Ma) (Fig. 5.2) [Kennan et al., 1995; Lamb and 

Hoke, 1997; Elger et al., 2005; Barnes et al., 2006; Barnes et al., 2008].  The 

deformation and associated exhumation could either not be recorded if the magnitude 

was insufficient to reset the particular thermochronometer system or the exhumation 

could continue long after deformation has ceased via protracted erosion which could 

explain these discrepancies. 

The most important observation of the integrated deformation, sedimentation, 

and exhumation history of the entire AP region is that it is uniform along strike and 

initiated as long ago as the Paleocene (~60-0 Ma) (Fig. 5.2).  This idea challenges the 

previous consensus that deformation and sedimentation was ~5-10 Myrs younger in the 

Eastern Cordillera margin of the Puna compared to the Altiplano [e.g. Allmendinger et 

al., 1997; Jordan et al., 1997; McQuarrie, 2002a].  It is particularly interesting that (a) the 
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first pulse of exhumation in the Eastern Cordillera (~40 Ma) is synchronous and related 

to deformation related and (b) the younger pulse of Eastern Cordillera exhumation 

adjacent to the Puna is older (~23-15 Ma) and also related to deformation, while next to 

the Altiplano it is younger (~15-0 Ma) and probably only associated with enhanced 

erosion. 

 

Inconsistency in upper-crustal structure of the Bolivian Altiplano 

A major inconsistency in interpretations is the geometry of basement deformation 

below the Bolivian Eastern Cordillera and Altiplano inferred from the mapped surface 

geology.  The basic issue is how the brittle upper-basement rocks accommodate the 

substantial shortening observed in the tightly folded and faulted Paleozoic and younger 

sedimentary cover rocks [e.g. McQuarrie et al., 2005].  One model treats the basement 

rocks as competent rocks above a weak detachment at the brittle-ductile transition zone 

itself [Hatcher, 2004] with ramp-flat-ramp geometries (called megathrusts) identical to 

those found in the cover-rock-cored thrusts sheets (upper-crustal structure in Fig. 5.5D) 

[McQuarrie and DeCelles, 2001; McQuarrie, 2002b; McQuarrie et al., 2005; McQuarrie 

et al., 2008].  The other model infers a more complicated pattern of basement-involved 

thrusts that shallow into the brittle-ductile transition zone [see Kley et al., 1996; Müller et 

al., 2002; Elger et al., 2005; Oncken et al., 2006b]. 

The most important point is that both models are more similar in overall outcome 

than is commonly appreciated.  First, they both construct basement thrusts with similar 

aspect ratios (~1:10 – 1:15) and detachment depths (~15 and 25 km) and hence make 

similar assumptions about the depth to the brittle-ductile transition [McQuarrie et al., 

2008].  Second, style of basement strain does not affect estimates of shortening 

magnitude, which are generally large in the central Andean fold-thrust belt (Altiplano to 

Chaco foreland in Bolivia: ~285-330 km) [McQuarrie et al., 2005].  The megathrust 

 201



 

model has also been tested to be viable (i.e. it has been sequentially restored to an 

undeformed state; see Elliot [1983]). 

 

Inconsistency between history of deformation and uplift 

The most significant and current debate about the AP is the inconsistency 

between the documented deformation and uplift history [Eiler et al., 2006; Garzione et 

al., 2006; Ghosh et al., 2006; Sempere et al., 2006; Garzione et al., 2007; Hartley et al., 

2007].  A major premise is that since the dominant mode of Andean crustal thickening is 

shortening, the topographic/surface uplift history probably correlates in time and space 

with shortening and deformation [Jordan et al., 1997].  As outlined above, the geologic 

record attests to significant deformation, sedimentation, and exhumation throughout 

wide regions within and along the plateau and its margins ≥~10 Ma, which argues for 

substantial crustal thickness prior to the late Miocene (Fig. 5.2).  Extensive ignimbrites 

as old as 25 Ma along both plateau margins [Worner et al., 2002; Barke et al., 2007] also 

indicate significant heat and crustal sources associated with a thickened crust were 

already in place (possibly with resulting isostatic uplift) by ~20 Ma [Babeyko et al., 2002; 

Hartley et al., 2007].  Yet, potentially 3.1-2.3 km of surface uplift (~80-60% of the total 

current elevation) did not occur until 10 million years later from ~10-6 Ma in the Altiplano 

(Fig. 5.3) [Quade et al., 2007].  The widespread and significant incision (2.5-1 km) of the 

plateaus’ western flank since the late Miocene (11-8 Ma) is consistent with the recent 

rapid uplift hypothesis, but climate variations need to be ruled out as the trigger (Fig. 5.4 

and Table 5.4).  In fact, sediment accumulation rates on the eastern plateau flank in the 

Chaco foreland have been recently used to suggest significant climate change and 

monsoon intensification at ~8-6 Ma [Uba et al., 2007]. 

The rapid late Miocene surface uplift hypothesis makes several testable 

predictions.  The hypothesis implies the following at ~10 Ma: (1) a decrease in the rate of 
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shortening across the Altiplano, (2) a shift in deformation eastward in the Subandes, and 

(3) a decrease in convergence rate between the Nazca and South American Plates 

[Garzione et al., 2006; Ghosh et al., 2006].  Although evidence exists to support these 

predictions [Garzione et al., 2006; Ghosh et al., 2006], several exhumation histories from 

the Bolivian Subandes are consistent with previous estimates that suggested 

deformation began as early as ~20 Ma (Fig. 5.2) and estimated shortening rates suggest 

either a relatively continuous rate since the Eocene to a decrease by half since the 

Miocene [McQuarrie et al., 2005; Barnes et al., 2006; Barnes et al., 2008; McQuarrie et 

al., 2008]. 

The most important conclusion is that the collective paleoaltimetry data, within 2 

sigma error, are equally consistent with protracted, steady uplift since ≥25 Ma as implied 

by the deformation, sedimentation, exhumation constraints or recent surface uplift ~10-6 

Ma inferred from the stable isotope data (Figs 5.2 & 5.3).  This result certainly suggests 

more efforts are needed to better quantify the paleoelevation and uplift history of the AP. 

 

Lithospheric structure interpretations 

Observations of the lithospheric structure delimit similar zones of high/low 

velocity and attenuation in the crust and mantle below the AP, but there are 

inconsistencies in the interpretations (Table 5.5).  Several studies stress the fact that the 

entire thick crust (~80-65 km) below the plateau is felsic [Zandt et al., 1994; Swenson et 

al., 2000; Beck and Zandt, 2002], but another study suggests the crust is layered: felsic 

down to 55-50 km and mafic below that [Yuan et al., 2002].  One study suggests there is 

no partial melt in the Altiplano crust [Swenson et al., 2000], but many suggest there is 

considerable partial melt [e.g. Schmitz et al., 1999; Yuan et al., 2000; Haberland et al., 

2003; Schilling et al., 2006].  Although these studies are not in the exact same locations, 
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they emphasize variable observations and associated interpretations of the AP crust and 

imply that there are large lateral variations within it. 

An interesting change in thinking since the mid-1990s is that delamination was 

only initially considered to be relevant to the Puna, now it is also interpreted for the 

Altiplano, albeit perhaps only in piecemeal form (Fig. 5.5C&D) [e.g. compare Whitman et 

al., 1996; Beck and Zandt, 2002].  Finally, even though direct observation is not 

possible, the history of plate vectors, their convergence rates, and magmatism have 

been combined to build a consensus that the geometry of subduction below the plateau 

used to be flat prior to changing to its current angle of ~30° [e.g. Isacks, 1988; James 

and Sacks, 1999]. 

A main conclusion is that consensus has identified the importance of weakened 

lithosphere in the evolution of the AP.  Partial melting (perhaps via fluid injection into the 

mantle wedge), proximity above the asthenospheric wedge and adjacent to the arc, pre-

existing stratigraphic and structural features, and foundering of the mantle root are some 

of the weakening mechanisms proposed [e.g. Isacks, 1988; Kley et al., 1999; Schurr et 

al., 2003; Asch et al., 2006; Oncken et al., 2006b; Schilling et al., 2006].  However, the 

relative roles of these mechanisms and the extent and nature of delaminated mantle 

lithosphere below the AP remain open questions. 

 

Evaluation of geologic models of Andean Plateau (AP) development 

Chronology is the main issue for evaluating the three current geologic models for 

Andean Plateau development (outlined above) in the context of the integrated 

observations.  The chronology of Isacks’ [1988] model of AP development since ~27 Ma 

needs to be pushed back to initiation ~60-40 Ma to be consistent with observations.  

Also, the switch in deformation mode from pure to simple shear could have happened 

anywhere between 20 and 8 Ma (as opposed to specifically at ~10 Ma) if it is best 
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represented by the onset of thin-skinned deformation in the Subandes.  This shift also 

implies an equivalent shift in the slab geometry of flat subduction below the plateau.  

Isacks [1988] initially proposed flat slab subduction from ≥~12 Ma and its return to 

normal subduction ~10 Ma.  Now, flat slab subduction must have been from ~35-25 Ma 

with its return to normal-angled subduction ~25-15 Ma [compare Isacks, 1988; James 

and Sacks, 1999].  However, the evidence for late Miocene onset of Altiplano western 

flank incision and rapid surface uplift makes a case that the switch in mode did occur at 

~10 Ma.  Both the long and continuous simple shear [e.g. McQuarrie et al., 2005] and 

the Oncken et al. (2006) models invoke deformation beginning ≥~45 Ma which is 

consistent with the observations, especially since neither model directly requires a 

particularly slow or rapid associated surface uplift history.  Geophysical observations of 

the lithosphere structure and the suggestion that some form of mantle lithospheric 

thinning has occurred appear to be equally viable for all three models. 

A distinction between the two long duration models of AP evolution is the 

temporal variation in shortening rates since deformation began in the Eocene.  Oncken 

et al. (2006) exclusively used documented shortening-rate variations at ~21°S to 

highlight reduced shortening from 45-33 Ma followed by enhanced shortening from 33-

20 Ma.  In contrast, documented shortening rates along strike of the eastern Altiplano 

flank from 15-19.5°S estimate a consistent average rate of ~8-11 mm/yr since 

deformation began, potentially decreasing to ~3-4 mm/yr depending on the age of 

Subandes deformation (~20 vs. ~8 Ma) [McQuarrie et al., 2005; Barnes et al., 2008; 

McQuarrie et al., 2008].  However, in northern Bolivia, there is a pause to minor rates of 

shortening for 15-5 Myrs as inferred from a lack of a thermochronometer cooling signal 

from ~25 Ma until 20-8 Ma [McQuarrie et al., 2008]. 

Besides extending the chronology of deformation, the idea that the modal change 

in deformation from dominantly pure to simple shear with activation of Subandes 
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deformation appears to remain important today [Isacks, 1988; Allmendinger and 

Gubbels, 1996].  Unfortunately, temporally variable to near constant rates of shortening 

since the Eocene suggest anything from significant to no coupling of upper-plate 

deformation rate to changes in the magnitude and direction of plate convergence since 

that time [e.g. Pardo-Casas and Molnar, 1987; Oncken et al., 2006b]. 

 

Comparison of Andean observations with geodynamic models  

Many studies have used numerical models of varying complexity to provide 

additional insights into AP formation processes.  For example, (a) 1D models provide 

bounds on the feasibility of geodynamic processes such as mantle convection and 

delamination [Bird, 1979], (b) 2D thin sheet models with viscoplastic rheologies help 

determine important factors controlling deformation in the upper South American plate 

[e.g. Medvedev et al., 2006], and (c) 2D thermo-mechanical models with viscoplastic 

rheologies are used to determine the nature of coupling within and between the crust 

and mantle during orogenesis as well as explore conditions necessary to facilitate 

processes like lower crustal flow or delamination [e.g. Willett and Pope, 2004].  In this 

section, we include only a few relevant studies that focus on plateaus other than the AP 

for brevity. 

Table 5.5 lists various geodynamic models relevant to the AP and outlines their 

type, major assumptions, key results, and important inferences.  A few processes are 

consistently demonstrated to be important in plateau formation given reasonable 

boundary conditions, parameter values explored, and sometimes, poorly constrained, 

yet specific threshold rheological behavior values.  For example, weakening of the AP 

lithosphere is paramount and related to partial melting, significant heat flux from the 

mantle, and thickening of the radiogenic and felsic crust which eventually reduces in 

viscosity and begins to flow [e.g. Royden, 1996; Beaumont et al., 2001; Willett and 
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Pope, 2004; Vietor and Oncken, 2005].  This weakened plateau lithosphere contrasts 

dramatically with the cold Brazilian craton to the east [e.g. Medvedev et al., 2006].  A few 

models show that delamination can occur provided some transition from gabbro to 

ecologite is implemented for the mid-lower crust [Sobolev and Babeyko, 2005; Sobolev 

et al., 2006; see also Molnar and Garzione, 2007]. 

These numerical models of AP development use constraints and produce results that 

are reasonably consistent with observations synthesized in this paper.  Table 5.6 

highlights comparisons between some AP model results and/or constraints and our 

generalized observations related to plateau region shortening, mean elevation, duration 

of deformation, crustal thickness, time needed to develop its modern width, and uplift 

history.  Comparisons of modeled and observed heat flow values are not listed in Table 

5.6, but are generally good [e.g. Pope and Willett, 1998].  While most models predict 

mean plateau elevation consistent with modern values, several chose substantially less 

shortening than the total inferred (~500 km) in the Altiplano as well as less than ~60-40 

Myrs for the deformation duration.  However, most of these models did prescribe the 

amount of shortening observed (~300-350 km).  A few studies ran contrasting 

simulations of short and long (~25 and ~70 Myrs) deformation in which the longer 

duration result intuitively predicted more gradual rise from 2 km elevation ~25 Ma [Yang 

et al., 2003].  Two studies focused specifically on plateau evolution over only the last 10 

Myrs [Babeyko et al., 2006; Iaffaldano et al., 2006].  Several models that include 

delamination predict a recent uplift history consistent with late Miocene rapid surface 

uplift.  Finally, models predict both young (~10 Ma) and old (~15-20 Ma) establishment 

of the modern AP width, the latter consistent with interpretations of the documented 

structure, deformation, and exhumation. 
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It is important that in the context of observations synthesized in this paper, many 

numerical modeling studies of AP evolution under-simulated both the documented 

duration of deformation ( ≤~30 vs. ~60-40 Ma) and the maximum inferred magnitude of 

shortening (~530 vs. ~350 km) (Table 5.7).  This may have a profound effect on the 

results and any associated interpretations, especially with results that are used to 

differentiate between the end-member uplift histories allowed by the paleoaltimetry data. 

Finally, many models also do not include erosion. 

 

Future directions 

There are several potentially fruitful lines of future research to better constrain 

Andean Plateau evolution in order to gain further insight into plateau formation.  The 

synchronicity of deformation, sedimentation, and exhumation throughout the Bolivian 

Altiplano and the Argentina Puna implies a similar history for the northern portion of the 

AP in southern Peru, but observations do not yet exist (Fig. 5.2).  Results from such 

studies, as well as balanced cross sections and kinematic reconstructions, along the 

northernmost Altiplano flanks could test the hypothesis that upper-crustal deformation in 

the AP is uniform along strike, determine how the flanking thrust belt is linked to the AP, 

and provide insight into how the structural and stratigraphic architecture varies 

northward.  Shallow geophysical studies across the same regions as well as the Bolivian 

Altiplano may help solve the controversy surrounding the geometry of the basement-

involved structures that link the AP to thrust belt deformation. 

Another avenue of future research is better determination of the initial timing and 

duration of Subandes deformation and erosion throughout Bolivia and southern Peru.  

This pursuit could be used to test predictions of the model for AP formation that 

emphasizes substantial late Miocene surface uplift.  Additionally, more oxygen and 

clumped 13C-18O isotope data need to be collected from various paleosols north and 
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south of the current location at 18°S (numbers 13-18 in Fig. 5.3) as well as in older (>10 

Myr) sediments to better delimit the Eocene to recent plateau elevation history and 

reveal whether or not it is synchronous throughout the entire Altiplano as proposed.  The 

uniform deformation, sedimentation, and exhumation history of the AP certainly begs the 

hypothesis of a complimentary uniform uplift history as well.  However, mafic magmas in 

the Puna have been used to hypothesize delamination occurred only ~3 Ma [Kay and 

Mahlburg Kay, 1993].  Isotope paleoaltimetry data in the Puna could also test this 

hypothesis. 

Additional avenues of future research include expanding the regional 

paleoclimate record back into the early Miocene, if not earlier.  This would help with 

evaluating the reliability of the oxygen paleoaltimetry data and decipher which, if any, 

incision records may reflect a climatic change as opposed to some form of uplift.  

Expansion of geophysical studies to determine the lithospheric structure below the Puna, 

Argentine Eastern Cordillera, and northern Altiplano in Peru would go a long way 

towards along-strike substantiation or contradiction of the tomography-driven 

interpretations of piecemeal-to-wholesale mantle lithosphere delamination below the 

Altiplano.  Finally, further numerical simulations constrained by the observations 

synthesized in this paper could be used to address questions such as: (1) What uplift 

histories are most consistent with the observed magnitudes, rates, and timing of 

deformation and shortening across the central Andean fold-thrust belt and Santa 

Barbara Ranges/Sierras Pampeanas? (2) How unique is the mechanism of mantle 

delamination to the possible late Miocene surface uplift history? (3) Has erosion limited 

thrust belt propagation (and effectively plateau width) as some have suggested? [e.g. 

Masek et al., 1994; Horton, 1999] and (4) Does any important plateau geodynamic 

process (i.e. crustal flow, delamination, eclogitization of the lower crust) produce any 

unique and identifiable evidence in the near surface that geoscientists can look for? 
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Conclusions 

We conclude by listing a series of observations consistent across many 

investigations presented in our synthesis above.  This list is presented to identify what 

can be said with confidence concerning the Cenozoic geologic evolution and structure of 

the Andean Plateau region and provide a litmus test for evaluating future geodynamic, 

erosion, and paleoclimate models of the orogen.  More specifically, any model that 

attempts to explain Andean Plateau development must honor the following observations: 

 

A. Initial deformation and exhumation began along the western flank ~60-40 Ma and 

then jumped into the central Eastern Cordillera ~40 Ma.  Distributed Eastern Cordillera 

deformation continued from ~40-20 Ma with propagation of the deformation and 

exhumation front both eastward into the Interandean zone and westward in the Altiplano 

from ~20 Ma until 10-5 Ma.  Finally, deformation and exhumation migrated further 

eastward into the Subandes/Santa Barbara Ranges/Sierras Pampeanas ~15-10 Ma 

where it continues today.  A younger phase of early-mid Miocene to present (~23-0 Ma) 

exhumation in the Eastern Cordillera was probably the result of enhanced erosion along 

the northern Altiplano flank and related to deformation along the southern Puna flank.  

The 3-dimensional deformation field of the AP region is characterized by some rotation 

outward from the orocline axis. 

 

B. The high AP region was uplifted by at least ~1.5 km in elevation since ~10 Ma.  

Paleoaltimetry and uplift constraints allow a wide variety in uplift history from a slow and 

steady rise since ≥25 Ma to a recent and rapid rise of most of its current elevation ~10-6 

Ma. 
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C. Significant incision (2.5-1 km) of the Altiplano western flank has occurred since 

the late Miocene (11-8 Ma) with only minor incision prior to this time. 

 

D. A central plateau region that is characterized by a positive geoid, a negative 

Bouguer gravity anomaly, low rigidity, high heat flow, and an isostatically compensated 

thick crust (~80-65 km).  In contrast, the plateau margins are characterized by 

progressively thinner crust, reduced heat flow, and a more rigid lithosphere away from 

the plateau center. 

 

E. A lithospheric structure that exhibits an east-dipping high velocity zone down to 

660 km corresponding to the Nazca plate, plateau region low and high velocity zones 

and high attenuation in the crust and upper mantle, and a high velocity mantle beneath 

the Eastern Cordillera probably corresponding to the western margin of the under-

thrusted Brazilian craton. 
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Chapter 6 

Summary and conclusions 

 

The principal goal of this dissertation is to constrain the deformation and erosion 

history of the Andean Plateau (results summarized in Fig. 6.1).  Below, is a summary of 

the results of each dissertation chapter, some concluding remarks, and answers to the 

motivating questions about orogenic plateau evolution posed in chapter 1. 

 

Results summary 

Chapter 2 results from the eastern plateau margin in northern Bolivia at 15-17°S 

suggest (Fig. 6.1A&B): (1) Eo-Oligocene (~40–25 Ma) initial rapid exhumation in the 

Eastern Cordillera, (2) accelerated, distributed exhumation across the entire thrust belt 

since the early to mid-Miocene (~15-0 Ma), and (3) a reduction in the magnitude of 

erosion eastward from ~11-9 km in the Eastern Cordillera, to ~4 km in the Altiplano, ~6-4 

km in the Interandean zone, and ~4 km in the Subandes.  When compared to two end-

member models of Andean evolution, this deformation and exhumation chronology 

favors the end-member that emphasizes long duration and large magnitude deformation 

controlled by sequentially-stacked basement structures.  If this model is correct, this 

chronology implies early development of the Andean Plateau analogous to its modern 

width, but unknown elevation, by the early Miocene (~20 Ma).  Associated work that 

integrates the local structural, kinematic, and exhumation history suggests exhumation 

rates of ~0.4-0.1 mm/yr in the Eastern Cordillera, ~0.9-0.3 mm/yr in the Interandean 

zone, and ~0.3-0.1 mm/yr or more in the Subandes as well as long-term shortening rates 
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of 8-4 mm/yr that imply a pause or deceleration in deformation rate and thrust-belt 

propagation between 25 and ~15 or 8 Ma [McQuarrie et al., 2008]. 

Chapter 3 results from the eastern plateau margin in southern Bolivia at 

~19.5°S suggest (Fig. 6.1A&C): (1) Eo-Oligocene (36-27 Ma) initial rapid exhumation in 

the Eastern Cordillera, (2) continued, distributed Oligo-Miocene (25-19 Ma) exhumation 

in the Eastern Cordillera, (3) early Miocene (22-19 Ma) Interandean zone exhumation, 

(4) a third pulse of mid-Miocene (16-11 Ma) exhumation in the Eastern Cordillera 

backthrust belt and initial Miocene (20-8 Ma) cooling in the westernmost Subandes, (5) 

late Mio-Pliocene (8-2 Ma) exhumation in the central-to-eastern Subandes, (6) a 

reduction of exhumation magnitude from maximums of <8 km in the Eastern Cordillera, 

to ~3-2.5 km in the Altiplano, ~6-4 km in the Interandean zone, and ~3 km in the 

Subandes, (7) exhumation rates range from ~0.2-0.1 mm/yr in the Eastern Cordillera, to 

~0.6-0.1 mm/yr in the Interandean zone, and ~0.4-0.1 mm/yr to locally 1.4 mm/yr or 

more in the eastern Subandes.  Comparisons throughout Bolivia combined with 

constraints from sediments characterize Andean Plateau development by (A) distributed 

deformation throughout the Altiplano and Eastern Cordillera from ~40-20 Ma with minor 

deformation continuing until ~10 Ma, (B) contemporaneous cessation of most Eastern 

Cordillera deformation and exhumation of the Internadean zone ~20 Ma implying 

establishment of modern plateau width with significant, but unknown crustal thickness 

and elevation shortly thereafter by ~20-15 Ma, and (C) dominantly eastward propagation 

of deformation from the Interandean since ~20 Ma with minor out-of-sequence 

deformation in the central-eastern Subandes.  Associated work suggests a difference of 

~10% in shortening between the northern and southern Subandes is evidence that 

climate-driven erosion may be influencing thrust belt and plateau width since the 

Miocene, but not before [McQuarrie et al., in review]. 
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Chapter 4 results from a quantified sediment budget of central Andean fold-

thrust belt erosion and foreland sedimentation in southern Bolivia at ~18-22°S suggest: 

(1) Modern drainages range from 7,453-86,798 km2 for a total source area of 153,632 

km2, (2) paleo-drainage areas range from 9,336-52,620 km2 and total 100,706 km2 which 

implies basin source area growth of ≤ 50% since ~10 Ma,  (3) about 2.4-3.1 x 104 km3 

were excavated from below the San Juan del Oro (SJDO) erosion surface since ~3 Ma, 

(4) the modern foredeep is 132,080 km2 with fluvial megafan areas and volumes ranging 

from 6,142-22,511 km2 and 1,511-3,332 km3, respectively, (5) the foreland has a fill of 

~6.4 x 104 km3 since Emborozú Formation deposition began 2.1 ± 0.2 Ma, and (6) 

volume and rate of deposition require that at least ~40-60% of additional sediment be 

supplied beyond that incised from below the SJDO surface and imply ≥ 0.2 mm/yr 

(perhaps ≥ 0.4 mm/yr) on the time- and space-averaged source area denudation rate 

since ~2-3 Ma. 

Chapter five results from a synthesis of constraints on the structure, 

deformation, sedimentation, uplift, and fluvial incision history of the entire Andean 

Plateau from southern Peru to northern Argentina suggest: (1) deformation began ~60-

40 Ma and propagated eastward with variable shortening magnitudes (~530-150 km) 

and rates (~20-1 mm/yr) in space and time, respectively, (2) surface and rock uplift data 

quantify a ~1.5 km elevation gain since ~10 Ma, but are equally consistent with a linear 

rise since ≥25 Ma to a rapid rise of ~2.7 km ~10-6 Ma within error, (3) widespread, 

substantial incision (2.5-1 km) is observed along the western Altiplano flank since ~11-8 

Ma as the result of either surface uplift or climate change, (4) geophysical and 

geodynamic investigations identify an isostatically-compensated thick crust (~80-65 km), 

elevated heat flow, zones of low and high velocity and attenuation in the crust and 

mantle, and stress the importance of weakened lithosphere, partial melt, and crustal flow 

or delamination to AP morphology, and (5) the most important conclusion is Andean  
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Figure 6.1.  Thermochronologic constraints on the exhumation history across the entire 
Andean Plateau region.  IA = Interandean zone. (A) Timing (in Ma) of initiation 
and/or duration of rapid exhumation from numerous studies based on 
thermochronology data (see chapter 5 for references).  Red values are 
contributions from this dissertation (chapters 2 and 3). (B) Estimated exhumation 
magnitudes in northern Bolivia [simplified from McQuarrie et al., 2008].  
Constraints from apatite fission-track (AFT) (solid black lines and boxes) data, 
zircon fission-track (ZFT) data (solid blue lines and boxes), and material removed 
from above the present-day topography of a balanced cross section (dashed 
black boxes; x-section).  Vertical arrows indicate an upper limit due to not fully 
reset cooling ages.  Muscovite and biotite 40Ar/39Ar (pink box; m/b Ar/Ar) data and 
estimated Eastern Cordillera pluton emplacement depth (green box) is from Gillis 
et al. [2006].  (C) Estimated exhumation magnitudes in southern Bolivia simplified 
from chapter 3.  Constraints from apatite fission-track (AFT) (solid black lines and 
boxes) data, zircon fission-track (ZFT) data (solid blue lines and boxes), regional 
stratigraphy (long dashed polygon) and material removed from above the 
present-day topography of a balanced cross section (short dashed black boxes; 
x-section).  Vertical arrows indicate an upper limit due to not fully reset cooling 
ages. 
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Plateau growth may have been significantly longer and more uniform along strike than 

previously thought. 

 

Conclusions 

Studies presented in, and associated with, this dissertation show that significant 

deformation and erosion has occurred as part of Andean Plateau growth particularly 

along its eastern margin throughout Bolivia since the late Eocene (Fig. 6.1).  Any model 

that attempts to explain the development of the Andean Plateau must honor this 

observation. 

This dissertation specifically demonstrates that deformation throughout the 

Andean Plateau started ~60-40 Ma along its western flank and began along its eastern 

flank ~40 Ma (Fig. 6.1A) (chapters 2-3 and 5).  Although the chronology of plateau 

deformation is similar all along strike, deformation rates may have been variable.  In 

northern Bolivia, shortening rates along the eastern flank were ~8-7 mm/yr during the 

late Eo-Oligocene (~40-25 Ma), potentially paused for ~15-10 Myrs, and then resumed 

at similar to reduced rates of 8-4 mm/yr depending on the age of the Subandes 

[McQuarrie et al., 2008].  In contrast, in southern Bolivia, shortening rates have been 

relative constant at ~11-8 mm/yr, potentially reducing to 4-3 mm/yr depending on the 

age of the Subandes (chapter 3). 

This dissertation also specifically demonstrates that the eastern Andean Plateau 

flank has experienced significant magnitudes of exhumation and erosion since the late 

Eocene ranging from 11-7 km in the Eastern Cordillera to ~4-3 km in the Subandes (Fig. 

6.1B&C) (chapters 2 and 3).  In this case, the erosion magnitudes are variable along 

strike.  Erosion magnitudes range from 11-9 km in the central Eastern Cordillera in 

northern Bolivia, but are limited to <~8 km in the Eastern Cordillera of southern Bolivia.  
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Erosion magnitudes are similar throughout the Interandean zone (~6-4 km) and are 

slightly higher in the northern Subandes by ~1 km (~4 vs. ~3 km). 

 

 

Answers to motivating questions of plateau evolution 

Below are brief answers to the motivating questions about orogenic plateau 

evolution posed in chapter 1 with specific focus on the Andean Plateau. 

 

(1) What is the deformation history associated with plateau development? 

The broadest view of the deformation and exhumation history of the Andean 

Plateau in Bolivia shows crustal shortening and thickening generally progressed at 

temporally variable rates of ~1-20 mm/yr from west to east since as early as the 

Paleocene (~60-40 Ma).  Distributed deformation began in the Eastern Cordillera by the 

late Eocene (~40 Ma) and continued through the Oligocene into the early Miocene (~20 

Ma) at which point it migrated eastward to the currently active Subandes. These 

observations, combined with results from Peru and Argentina, recommends that Andean 

Plateau deformation and growth was significantly longer and more uniform along strike 

than previously appreciated. 

 

(2) What is the erosional response to plateau growth? 

The erosional response of the eastern Andean Plateau flank in Bolivia has been 

significant with exhumation magnitudes up to 11-9 km and variable exhumation rates of 

~0.1-≥1.4 mm/yr.  The temporal distribution of greater erosion magnitude concentrated 

in the Eastern Cordillera and Subandes of northern Bolivia suggests that enhanced 

erosion has been important in the morphological development of the central Andean 

fold-thrust belt and plateau since the mid-late Miocene (~15 Ma).  Since the mid-late 
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Miocene, a 10% reduction in shortening relative to the south implies increased erosion is 

regionally limiting plateau width [McQuarrie et al., in review].  The record of erosion and 

sedimentation since the Plio-Quaternary (~3-2 Ma to present) suggests variable erosion 

rates of ~1.0-0.1 mm/yr along the eastern plateau flank in southern Bolivia. 

 

(3) What is the history of plateau elevation gain? 

The history of Andean Plateau elevation gain remains controversial because of 

contrasting implications inferred from the histories of deformation, sedimentation, and 

exhumation and the paleoelevation and associated proxy data.  Constraints quantify 

~1.5 km of surface uplift since ~10 Ma, but within error, allow a range of hypotheses 

from a linear, slow and steady rise since ≥25 Ma to a recent, rapid rise of 2.7 km ~10-6 

Ma.  The late Eocene to present (~40-0 Ma) deformation and exhumation documented in 

this dissertation suggests the modern width of the plateau was established by ~20-15 

Ma, presumably characterized by some significant amount of crustal thickness and 

associated isostatic uplift. 

 

(4) Why are plateaus so broad and low relief? 

The documented geometry and chronology of deformation suggests the Andean 

Plateau crust has been characterized by thrust sheets transporting material large 

distances at a constant structural elevation balanced by thrust deformation at the surface 

in smaller wavelengths since at least the late Eocene (~40 Ma).  Particularly focused 

uplift and volcanism along the plateau margins as well as imbricate thrust-bound ranges 

throughout the AP helped create internal drainage, allowing a substantial amount of 

Tertiary sediments to pond and facilitate topographic smoothing.  The significant and 

protracted crustal shortening and thickening eventually lead to the development of a 

weak lower crust that helps maintain the broad and flat morphology of the AP.  In fact, 
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geodynamic simulations of plateau development show that plateaus develop because 

significantly shortened and thickened lithosphere eventually weakens and begins to flow 

at depth.  A survey of current AP simulations suggests most are under-prescribing the 

documented duration and inferred magnitude of deformation, as well as neglecting 

erosion, which may be adversely influencing their results. 

 

(5) What processes are important in plateau evolution? 

There are many potentially important processes in plateau evolution.  This 

dissertation demonstrates that sustained and substantial shortening and thickening of 

the AP crust since the Paleocene-Eocene (~60-40 Ma to present) is a particularly 

important part of plateau growth.  Although significant along-strike erosion variability 

(Fig. 6.1; ~11-9 km in the northern Eastern Cordillera vs. <8-~6 km in the south) has 

been documented along the eastern AP flank, propagation of the plateau margin (and 

hence orogen growth) has been similar throughout Bolivia suggesting erosion has not 

been important.  However, 10% greater shortening is documented in the Subandes 

suggesting that the enhanced erosion in the north has limited the thrust belt and plateau 

width since the mid-late Miocene (~15 Ma to present).  This deformation and erosion has 

occurred within a hot lithosphere that is probably the result of partial melt, crustal flow, 

and/or delamination.  Located in the core of this hot Andean orogen, crustal flow and/or 

delamination of mantle lithosphere have occurred probably following of the documented 

shortening and are also considered important processes responsible for Andean Plateau 

evolution. 
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