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ABSTRACT 

 

During the development of the mammalian retina, neuroepithelial 

progenitors are proposed to pass through a series of competence states and 

give rise to different cell types on a predictable schedule.  The mechanism(s) 

by which multipotent progenitors respond to intrinsic factors and/or extrinsic 

signals and differentiate into mature neurons are poorly understood.  The 

neural retina leucine zipper protein (NRL), a bZIP transcription factor of the 

Maf subfamily, is a key regulator of developmental processes in the 

mammalian retina.  The goal of my dissertation is to investigate how NRL 

modulates photoreceptor cell fate decisions.   

In the first part of my dissertation, I tested the hypothesis that NRL 

plays an instructive role in determining rod photoreceptor fate.  To accomplish 

this, I generated a series of transgenic mouse lines that ectopically express 

NRL in early post-mitotic photoreceptor precursors or in presumptive cone 

photoreceptors using the Crx or the S-opsin promoter, respectively.  My 

studies reveal that expression of NRL results in complete transformation of 

cone precursors to functional rod photoreceptors.  In addition, rod 

photoreceptors — in the absence of cones — can recruit cone-specific 
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circuitry.  This research provided direct in vivo evidence of post-mitotic 

developmental and synaptic plasticity in the developing mammalian retina.   

 To investigate the epistatic relationship between NRL and NR2E3, an 

orphan nuclear receptor that appears to be downstream of NRL in 

transcriptional hierarchy, I generated a transgenic mouse line in which cone 

precursors express NRL but not NR2E3.  This new line also provided a novel 

tool to examine gene profiles from rods and cones.  Interestingly, ectopic 

expression of NRL can partially repress S-opsin, but not M-opsin, expression 

even in the absence of NR2E3.  These and additional studies suggest that, 

while the decision of rod versus cone cell fate is dependent on NRL, 

simultaneous expression of NRL and NR2E3 is required to promote functional 

rod differentiation and to suppress cone development. 

As both rods and cones connect to horizontal cells (HCs) in the retina, 

we wanted to understand whether the differentiation of HCs is affected by the 

absence of afferent neurons by examining Nrl-/- (rodless) and Crxp-Nrl 

(coneless) mice.  Our studies reveal that HCs can develop in the absence of 

either photoreceptor type; however, the morphology of axon terminal system 

or dendritic field of the HC is defined respectively by rods or cones.   

Finally, in the last part of my dissertation, I wanted to dissect the 

functional differences among Maf family proteins.  I used the Nrl promoter to 

examine whether the expression of NRL or related large Maf proteins in the 

retina could rescue the Nrl-/- phenotype.  As predicted, NRL expression in the 

rod precursors resulted in the expression of rod-specific markers, absence of 
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S-opsin staining, and normal electrophysiological responses to light.  

However, ectopic expression of related Maf family proteins in rods could only 

induce rhodopsin expression in vivo and did not suppress S-opsin expression.  

The major conclusions of my studies are that NRL plays an instructive 

role in rod photoreceptor development and that photoreceptor precursors are 

competent to make binary decisions in acquiring rod versus cone identity. 
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CHAPTER 1 

INTRODUCTION 

 

 With an aging population, retinal and macular degeneration are 

now increasingly common blinding eye diseases that afflict millions of people 

worldwide.  The incidence of these conditions is projected to triple over the 

next 25 years as the “baby boom” generation ages (www.nei.nih.gov).  At 

present, little effective treatment exists to prevent the progressive loss of 

vision and even lesser possibility of recovering the lost vision.  These 

degenerative diseases have a central effect on the death of photoreceptors, a 

retinal neuron that is critical for sensing light and forming an image.  Below, I 

review the current status of research in retinal biology, with an emphasis on 

several key transcription regulatory factors that are involved in the generation 

of rod and cone photoreceptors. 

 

Structure and function of the eye and the retina 

The highly ordered set of neuronal connections that characterize the 

adult visual system arises gradually during development.  By the time the 

eyes open, the neural tube (neuroectoderm), mesoderm and the surface 
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ectoderm develop into the retina proper and its associated pigment cell layer, 

the corneoscleral and uveal tunics, and the lens, respectively (Pei and 

Rhodin, 1970).  In the mouse, the first detectable anatomical structures that 

give rise to the retina are the optic pits, which are depressions in the anterior 

neural plate on day 8 of gestation (Pei and Rhodin, 1970).  The optic pit 

develops into the optic vesicle that comes into direct contact with the 

overlying surface ectoderm to induce the formation of a lens placode from the 

surface ectoderm.  Invagination of the optic vesicle leads to formation of the 

optic cup and lens vesicle on day 10 (Figure I-1).  As the optic cup develops, 

the outer layer of the cup becomes the retinal pigmented epithelium and the 

inner layer of the cup develops into the neural retina.  Retinal neurons are 

formed in a conserved sequential order with extensive overlap (Cepko et al., 

1996; Livesey and Cepko, 2001).  The retinal ganglion cells, cone 

photoreceptors, horizontal cells, and amacrine cells are among the first 

neurons born during prenatal development (Carter-Dawson and LaVail, 1979; 

Rapaport et al., 2004; Young, 1985).  The amacrine and ganglion cells extend 

processes into the developing inner plexiform layer so that at birth — in 

rodents — the retina consists of a large outer neuroblast layer (ONBL) and an 

inner region of more mature cells.  Bipolar and Muller glial cells are produced 

in the early postnatal days, while rods are born both during prenatal and 

postnatal developmental periods (Carter-Dawson and LaVail, 1979; Rapaport 

et al., 2004; Young, 1985).  By the end of the first postnatal week, the outer 

retina has clearly divided into the outer nuclear layer of photoreceptors and 
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an inner nuclear layer of bipolar, horizontal, amacrine, and Müller cells.  

During the second postnatal week, photoreceptors and ganglion cells connect 

to interneurons in the plexiform layers through a process called 

synaptogenesis (Figure I-2). 

In the vertebrate retina, rods and cones are the cells that transduce 

visual information into neural signals.  While cones are responsible for color 

and high acuity vision, rods are essential for night vision as they are more 

sensitive to light than cones.  In most vertebrates, rods outnumber cones, and 

in rodents this difference is as large as 32:1 (Carter-Dawson and LaVail, 

1979; Jeon et al., 1998).  Rod photoreceptors are remarkable cells that not 

only possess all the molecular machinery necessary for generating the light 

response, but also contain systems for adjusting light sensitivities in accord 

with the level of background illumination (Nickle and Robinson, 2007).  The 

light response is first initiated by the capture of photons by a complex of rod 

or cone opsins and 11-cis-retinal.  Rhodopsin is the rod opsin and has a peak 

absorption at 500 nm (Nathans and Hogness, 1983; Nathans and Hogness, 

1984).  While primates (including humans) have three cone subtypes, rodents 

have only two types of cones based on the presence of specific opsin 

pigment: M-cones containing M opsin (medium wavelength, with an 

absorption peak at 530 nm), and S-cones having S opsin (short wavelength, 

with an absorption peak at 420 nm) (Ebrey and Koutalos, 2001; Nathans et 

al., 1986).  Although various steps in the phototransduction cascade have 

been well-characterized, most of the research in this area is based on studies 
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of rod photoreceptors because of their abundance in most experimental 

animals.   

The activation phase of the phototransduction cascade begins when a 

photon is absorbed by rhodopsin, specifically its chromophore, 11-cis-retinal.  

Light exposure causes the isomerization of 11-cis-retinal to all-trans-retinal, 

which then stimulates the exchange of GDP to GTP in the heterotrimeric G 

protein transducin.  The active form of transducin (Tα) then dissociates from 

rhodopsin and activates cGMP phosphodiesterase (PDE), another 

component of the phototransduction cascade.  In rods, PDE consists of two 

equally active catalytic subunits, α and β, and two inhibitory γ subunits.  Upon 

activation, the γ subunits are released permitting the PDE α and β subunits to 

hydrolyze cGMP to 5’-GMP.  A decrease in cGMP levels results in the closure 

of cGMP-gated channels and hyperpolarizes the cell.  The resulting decrease 

in the steady inward ‘dark current’ ultimately leads to a decrease in the tonic 

release of the neurotransmitter glutamate from presynaptic terminals.  This 

final step results in the completion of activation phase. Recent studies 

suggest that this cascade is shut off and cGMP is resynthesized during the 

recovery of the photoresponse [reviewed in (Burns and Baylor, 2001; Calvert 

et al., 2006; Hamer et al., 2005; Pepe, 2001)] (Figure I-3).  

 

Retinal diseases that affect photoreceptors 

Age-related maculopathy (ARM) is the leading cause of severe visual 

impairment in the elderly population of industrialized countries.  There are two 
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broad types of age-related macular degeneration (AMD): “dry” and “wet.”  

Approximately 90% of the cases of macular degeneration are the “dry” 

(atrophic) type.  In the “dry” AMD, the deterioration of the retina is associated 

with the formation of small yellow deposits, known as drusen, in the macular 

region (www.nei.nih.gov).  This phenomena leads to thinning of the macula 

and results in the death of photoreceptors (Curcio et al., 2000; Curcio, 2001; 

Reme et al., 2003).  In ARM, rod photoreceptors play a major role during the 

initial progression of the disease; during early stages, rod sensitivity declines 

and the dark adaptation process is prolonged.  Although it is not known why 

rods die in ARM, several laboratories are trying to understand the role of 

apoptotic rod cell death in the pathogenesis of the disease.   

Retinitis Pigmentosa (RP) is another disease that involves photoreceptor 

degeneration (www.nei.nih.gov).  This disease is characterized by the death 

of rods, beginning in the mid-periphery and gradually advancing towards the 

macula.  Cone-Rod Dystrophy (CRD) is similar to retinitis pigmentosa in that 

a decreased visual acuity is observed in the early stages followed by loss of 

peripheral vision.  However, the cone photoreceptor function in CRD patients 

is first affected, followed by rod function (Birch and Anderson, 1990).  There is 

no early loss of night vision in CRD, and the rate of rod and cone 

degeneration is fairly close (Birch and Anderson, 1990) (Figure I-4).   
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Retinal development 

Retinal cell differentiation is initiated in the central optic cup and 

progresses towards the periphery in a wave-like fashion until reaching the 

region of the presumptive iris (Hu and Easter, 1999).  Retinal progenitors cells 

(RPCs) are multipotent cells that can give rise to all major types of cells in the 

retina.  The multipotent nature of RPCs was first elucidated in a series of 

seminal lineage tracing experiments in the embryonic clawed frog Xenopus 

laevis and in the mouse retina (Holt et al., 1988; Turner and Cepko, 1987; 

Turner et al., 1990; Wetts and Fraser, 1988).  These studies revealed that 

RPCs retained their ability to generate different cell types up to the final cell 

division. 

The differentiation of RPCs can be influenced by extrinsic signals such 

as transforming growth factor α (Lillien and Cepko, 1992), epidermal growth 

factor (Lillien, 1995), sonic hedgehog (Jensen and Wallace, 1997; Wallace 

and Raff, 1999), nerve growth factor (Frade et al., 1999), brain-derived 

neurotrophic factor (Frade et al., 1997; Frade et al., 1999), and ciliary 

neurotrophic factor (Ezzeddine et al., 1997; Hofmann, 1988).  RPCs display 

significant intrinsic changes in their potential to generate different cell types 

during retinogenesis and exhibit differential response to inductive and 

mitogenic factors (Cepko, 1999).  The intrinsic changes during retinal 

development have been illustrated by heterochronic co-culture studies that 

mixed early-born progenitors with late-born cells and vice versa (Alexiades 

and Cepko, 1997; Morrow et al., 1998).  These experiments demonstrated 
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that cells born early could not be influenced to adopt a late born identity, 

revealing the relative importance of intrinsic regulation on retinal cell fate.  In 

another significant study, rat retinal progenitors at embryonic day 16–17 

(E16–17) were found to develop similarly in serum-free clonal density cultures 

and in serum-containing retinal explants — in the number of times they divide, 

the cell types they generate, and the order in which they produce different cell 

types (Cayouette et al., 2003).  Thus, intrinsic mechanisms clearly play a 

significant role in cell fate decisions in the developing retina. 

In an effort to explain retinal cell fate determination, a competence 

model (Figure I-5) was proposed to integrate recent findings (Cepko et al., 

1996; Livesey and Cepko, 2001).  In this model, retinal progenitors are 

predicted to pass through a series of competence states and give rise to 

specific cell types.  It is thought that competence, or the ability to produce an 

exact cell type, is intrinsically defined and thus cell fate choices can only be 

made at precise times during development. Within a given competence state, 

the generation of a particular type of cell is regulated by positive and negative 

extrinsic signals.  

A number of transcription factors play important roles in defining the 

intrinsic state of mitotic retinal progenitors.  In particular, homeodomain (HD) 

transcription factors such as RX (Mathers et al., 1997), PAX6 (Ashery-Padan 

and Gruss, 2001; Gehring and Ikeo, 1999) and SIX3/6 (Loosli et al., 1999) 

have been implicated in an evolutionary-conserved regulatory network driving 

retinal development (Zuber et al., 2003).  Their central role was demonstrated 
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by the ability to promote the formation of ectopic retinal tissue in fish and frog 

embryos (Bernier et al., 2000; Chow et al., 1999; Kenyon et al., 2001; Loosli 

et al., 1999; Zuber et al., 1999).  CHX10 and PROX1 are HD proteins that 

regulate the exit of RPCs from the cell cycle.  In mice lacking CHX10, a 

reduction of retinal precursors and an absence of bipolar cells was observed 

(Burmeister et al., 1996), while PROX1 knockout mice lacked horizontal cells 

in the retina (Dyer et al., 2003).  In addition to HD transcription factors, the 

role of basic helix-loop-helix (bHLH) proteins has also been described.  

Studies on MASH1 (Tomita et al., 2000) and MATH3 (Tomita et al., 2000) 

have demonstrated that the dual expression of these proteins is essential for 

the specification of bipolar cells in mice. MASH1 or MATH3 mouse mutants 

show little to no phenotype in the visual system, yet when the two were 

intercrossed to create compound animals, bipolar cells were completely 

absent (Hatakeyama et al., 2001; Tomita et al., 2000).  This phenotype was 

accompanied by an increase in Müller glia cell numbers, suggesting that 

bHLH proteins play a key role in cell specification and bipolar cell fate 

determination.  

Newly-generated post-mitotic neurons must induce a number of genes 

necessary for the acquisition of mature functional phenotype.  Transcriptional 

regulators that influence cell fate have been characterized in photoreceptors.  

The expression of HD factor CRX is closely correlated with the postmitotic 

differentiation of photoreceptor cells (Chen et al., 1997; Furukawa et al., 

1997).  In mice deficient for Crx, rod and cone photoreceptor cells are 
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generated but fail to form outer segments (Furukawa et al., 1999).  CRX can 

activate the expression of several phototransduction genes in both rods and 

cones by potentially recruiting histone acetyl-transferase (HAT)-containing co-

activators and promoting histone acetylation (Chen et al., 1997; Peng and 

Chen, 2007).  Interestingly, human mutations in CRX lead to photoreceptor-

related retinopathies, such as cone-rod dystrophy-2 and retinitis pigmentosa 

(Freund et al., 1997; Sohocki et al., 1999; Swain et al., 1997; Swaroop et al., 

1999).  Nevertheless, CRX appears to be important for photoreceptor 

maturation and function, but it is not essential for the initial specification of rod 

or cone photoreceptor fate (Furukawa et al., 1999).   

Nuclear receptor proteins also play an important role in the retina by 

regulating cone photoreceptor maturation.  Expression of thyroid hormone 

receptor TRβ2 is critical for the development of M-cones and down regulation 

of S-opsin gene expression (Ng et al., 2001; Roberts et al., 2006).  Transient 

expression studies revealed that TRβ2 activated M-opsin expression and 

down regulated S-opsin in the presence of thyroid hormone.  Similarly, the 

loss of TRβ2 resulted in an absence of M-cones and a concomitant increase 

in S-cones. Retinoid-related receptor γ (RXRγ) is another negative regulator 

of S-cones (Roberts et al., 2005).  RXRγ expression is localized to developing 

cone photoreceptors, and RXRγ knockout mice revealed an increase in S-

opsin throughout the retina (Roberts et al., 2005).  Although RXRγ does not 

have a role in M-cone differentiation, it appears that RXRγ and TRβ2 

heterodimerize to suppress S-cone development.   
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A key transcription factor, NR2E3 was originally identified by its 

homology to the orphan nuclear receptor tailless (TLX or NR2E1) and 

demonstrated to regulate photoreceptor development (Akhmedov et al., 2000; 

Chen et al., 1999; Haider et al., 2000).  In mice, the expression of NR2E3 

begins around E18 in postmitotic cells and peaks during rod differentiation at 

around P6 (Cheng et al., 2004).  A rod-specific expression pattern was 

observed in mouse and human cryosections using NR2E3 antibodies (Cheng 

et al., 2004; Bumsted O'Brien et al., 2004).  Insights into NR2E3 function first 

came with the discovery of a naturally occurring mouse mutant retinal 

degeneration 7 (rd7) that lacked functional NR2E3 (Akhmedov et al., 2000).  

The mutant mice carry a 380 base pair (bp) deletion due to a splicing defect 

resulting from an L1-retrotransposon insertion (Chen et al., 2006).  

Interestingly, the rd7 mice have features associated with enhanced function of 

S-cones.  NR2E3 gene mutations were  discovered in patients with enhanced 

S-cone syndrome (ESCS) (Haider et al., 2001).  The expression pattern and 

function of NR2E3 is similar to that of neural retina leucine zipper protein 

(NRL).  In a subsequent section, I will elaborate on this important transcription 

factor.   

 

Maf family members 

The proteins of the Maf sub-family of basic motif leucine zipper (bZIP) 

transcription factors show homology to the v-Maf oncoprotein that was 

originally identified in the genome of the AS42 chicken musculoaponeurotic 
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sarcoma retrovirus (Kawai et al., 1992; Nishizawa et al., 1989).  Maf proteins 

have been cloned from many organisms including human, mouse, frog, chick, 

and zebrafish.  The common domains among these proteins include a highly 

conserved basic region and a bZIP domain.  Proteins of the Maf sub-family 

are divided into two groups: small Maf and large Maf (Figure I-6), based on 

their structure.  The small Maf proteins (MafK, MafF, MafG, MafT and MafS) 

lack a transactivation domain and act as repressors when they form 

homodimers (Igarashi et al., 1995; Kataoka et al., 1995).  Small Maf proteins 

can also act as activators of genes after forming heterodimers with 

Cap’n’collar (CNC) or Bach family bZIP proteins, and regulate erythroid-

differentiation and oxidative stress responses (Motohashi et al., 1997).  The 

large Maf proteins (v-Maf/c-Maf, MafB/Kreisler/Valentino, MafA/L-Maf/S-Maf1, 

S-Maf2/Krml2, NRL and DMaf/Traffic Jam) have a conserved amino-terminal 

domain that provides a trans-activation function (Kataoka et al., 2002; 

Kurschner and Morgan, 1995; Li et al., 2003; Swaroop et al., 1992; Wang et 

al., 1999).  This domain is rich in Asp (D), Glu (E), Ser (S), Thr (T) and Pro (P) 

residues, and recent findings suggest that phosphorylations within this domain 

regulate the biological activity of Maf proteins (Han et al., 2007; Swain et al., 

2001). 

The Maf transcription factors are important regulators of differentiation 

and modulate diverse processes such as hematopoiesis, lens differentiation, 

and segmentation of hindbrain (Blank and Andrews, 1997; Ogata et al., 2004; 

Ogino and Yasuda, 1998; Reza and Yasuda, 2004; Ring et al., 2000).  In the 
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avian lens, three large Maf family proteins (L-Maf, MafB, and c-Maf) are 

expressed in a sequential manner during development and regulate the 

expression of major lens-specific protein crystallins (Ogino and Yasuda, 

1998).  Recently, MafA and MafB have been implicated in regulating the 

transcription of insulin in pancreatic endocrine cells (Matsuoka et al., 2003; 

Nishimura et al., 2006; Tsuchiya et al., 2006; Zhao et al., 2005). NRL appears 

to be the only Maf protein expressed in the mammalian retina and plays a 

defining role in rod photoreceptor differentiation. 

 

Cloning and characterization of NRL 

In 1992, NRL was cloned by a subtractive hybridization approach 

(Swaroop et al., 1992) from a human adult retina library. NRL encodes a 

member of the bZIP family of DNA-binding proteins (Figure I-7) and is highly 

conserved between mouse and man.  Northern blot and in situ hybridization 

assays demonstrated the abundance of Nrl transcripts in the retina 

(Rehemtulla et al., 1996; Swaroop et al., 1992). Early in vitro experiments 

revealed that NRL could form homodimers and heterodimerize with Maf and 

several members of the c-FOS and c-JUN family (Kerppola and Curran, 

1994a; Kerppola and Curran, 1994b). NRL dimers could bind to the 

consensus sequence TGCN6-8GCA (Nrl response element, NRE).  Due to 

the retina-specific expression of NRL, Swaroop and colleagues looked at the 

promoter elements of several retina-enriched genes that contained NRE-like 

sequences.  This led to seminal experiments showing the presence of a NRE-
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like sequence in the promoter of rhodopsin and its regulation by NRL (Kumar 

et al., 1996; Rehemtulla et al., 1996).  Soon thereafter, it was shown that both 

NRL and CRX can together act synergistically and activate the expression of 

rhodopsin (Chen et al., 1997; Mitton et al., 2000; Swaroop et al., 1999). 

In an effort to understand whether NRL plays a role in human retinal 

disease, an analysis of patients with retinitis pigmentosa (RP) was carried 

out.  Initial mutation screenings of RP patients did not reveal disease-causing 

changes in NRL. In the mean time, linkage analysis of a large autosomal 

dominant RP (adRP) pedigree revealed the disease locus at 14q11, with a 

maximum lod score of 5.72 for the marker D14S64.  Interestingly, D14S64 

resided in the genomic region of NRL, and therefore the three NRL exons 

were screened for mutations in affected members (Bessant et al., 1999).  All 

affected individuals were found to have a T to A change, resulting in a serine 

to threonine substitution at codon 50 of the NRL protein (NRLS50T).  This 

mutation was within the putative transactivation domain, and the authors 

surmised that these amino acid substitutions could alter the activity, specificity 

or ability of NRL to interact with other transcription factors.  To assess the 

effect of the S50T mutation, an in vitro experiment was conducted; the data 

showed that mutant NRLS50T, in presence of CRX, could significantly enhance 

the synergistic activation of the rhodopsin promoter compared to the wild-type 

NRL (Bessant et al., 1999) (Figure I-7).  Currently, NRL mutation screens 

have revealed fourteen missense and three frameshift sequence variations in 

patients with different retinal diseases (Nishiguchi et al., 2004; Kanda et al, 
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2007) (Figure I-7). Several of these mutations alter NRL phosphorylation and 

affect rhodopsin promoter activation in vitro (Kanda et al, 2007).  These 

findings demonstrate that mutations in NRL can have an effect on the 

regulation of rhodopsin expression.  It will be of great interest to examine how 

altered rhodopsin expression may directly contribute to photoreceptor 

degeneration in vivo. 

In order to understand the function of NRL in the retina, additional in 

vitro experiments have been conducted to discover new downstream targets. 

The promoter of β-subunit of cGMP-PDE (PDE6B) is reported to contain two 

functionally relevant control elements, an AP1/ NRE binding sequence and a 

G/C-rich sequence (Lerner et al., 2001).  Interactions of these cis elements 

with NRL and SP1/SP4 DNA-binding proteins, respectively, were 

characterized in vitro.  In a related study, both NRL and CRX were shown to 

bind to and transactivate the α-subunit of cGMP-PDE (PDE6A) promoter 

(Pittler et al., 2004).   

 

Role of NRL in photoreceptor development 

 The first in vivo demonstration of NRL function came from the 

characterization of the Nrl knockout mice (Figure I-8).  Mears and colleagues 

replaced almost entire coding region with a neomycin cassette and 

determined that mice lacking Nrl were viable and fertile (Mears et al., 2001).  

Upon examining retinal histology, the authors discovered a complete loss of 

rod photoreceptors.  This was confirmed by the analysis of rod specific 
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transcripts at the RNA and protein level.  In place of the rod photoreceptors, 

an increase was observed in S-cones.  Electroretinograms (ERGs) were then 

recorded to evaluate retinal function.  Mice lacking Nrl did not respond to flash 

intensities typical of rod function, while light–adapted ERG b-waves were 

several times larger.  These data were consistent with the histological data 

and suggested that these mice had enhanced cone activity.  Additional ERGs 

were performed to reveal that the amplitude of S-cone responses was six 

times larger in Nrl-/- mice.  More recently, the S-cones in Nrl-/- mice have been 

shown to be similar to cones in the wild-type retina by ultrastructural, 

histochemical, molecular, and physiological studies (Daniele et al., 2005; 

Nikonov et al., 2005).  The Nrl-/- mice could therefore serve as a good model 

to understand cone biology.  These mice have been used for microarray gene 

profiling to characterize cone photoreceptor specific genes (Corbo et al., 

2007; Yoshida et al., 2004; Yu et al., 2004) that could be potential candidates 

for human retinal diseases.  

 Another advance in understanding the role of NRL came from the 

generation of mice expressing green fluorescent protein (GFP) in NRL-

expressing cells (Figure I-8).  Akimoto and colleagues utilized the Nrl 

promoter to express GFP for several reasons (Akimoto et al., 2006).  First, 

the authors wanted to clarify whether NRL was expressed in mitotically-active 

or post-mitotic cells.  In co-labeling studies with various cell cycle markers, 

the authors show that GFP was absent in mitotic cells.  Thus, NRL was 

indeed a marker of post-mitotic rods.  Second, these transgenic mice were 
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generated to establish whether S-cones in the Nrl-/- mice were derived from 

rod precursors.  This question was addressed by crossing Nrl-/- mice to Nrl-

GFP mice.  Subsequent studies of the hybrid line demonstrated that S-cones 

were in fact GFP positive.  The Nrl-GFP mice provided a source of rod 

photoreceptor cells that could be purified using flow cytometry.  These cells 

could then be used for a variety of investigations such as microarray analysis 

and transplantation studies.  Recent advances in the transplantation work in 

mice have revealed that GFP-positive rod precursors can in fact integrate in a 

degenerating retina, differentiate into rhodopsin expressing rod cells, and 

exhibit some photoresponse (MacLaren et al., 2006).   

The important data generated by Mears and colleagues that NRL is 

necessary for rod differentiation provided the platform to carry out this 

dissertation.  In addition, the availability of the Nrl-/- mice and the 

characterization of the Nrl promoter yielded new tools and information to ask 

whether NRL or any other gene of interest can directly instruct photoreceptor 

precursors to become rods.  I have evaluated these issues and documented 

my findings in the following chapters: 

 

1. Through gain of function studies, I demonstrate that NRL expression in 

cone precursors can drive rod differentiation at the expense of cones.  In 

addition, I show that even S-cones can differentiate into rods.  A potential 

mechanism for this plasticity has been explored by testing whether NRL 

can regulate cone-specific genes. (Chapter II) 
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2. I have determined whether Nr2e3 is a direct transcriptional target of NRL 

and whether NRL, in the absence of NR2E3, is sufficient to convert cones 

to rods.  To isolate cone specific genes, I have generated gene expression 

profiles of retina from various transgenic lines. (Chapter III) 

 

3.  I have examined whether photoreceptors play a role in defining horizontal 

cell birth and morphology.  In addition, I have carried out quantitative PCR 

experiments using P5 and P10 retinal tissue from coneless mice to 

examine genes that may be implicated in specific cellular pathways. 

(Chapter IV) 

 

4. Using transgenic mice, I have examined whether Nrl under the control of 

Nrl promoter can rescue the Nrl-/- phenotype.  In addition, I have tested 

whether other large Maf proteins can regulate photoreceptor-specific gene 

expression in vitro and/or in vivo. (Chapter V)  
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Figure I-1: Eye development.  (A) Scanning electron micrographs of the 
developing E11 rat embryo optic cup showing the optic vesicles (OV) with a 
broad attachment to the forebrain vesicle.  The midline neural groove has not 
fully closed at this stage (arrows).  (B) At E13, the optic cup (OC) is more 
obvious and the optic fissure (OF) does not extend into the optic stalk (OS).  
Illustrations in (C) and (D) highlight early developmental events when 
indentation of the central region of the optic placode results in the formation of 
the optic pit.  The optic pit develops into the optic vesicle, which comes into 
direct contact with the overlying surface ectoderm to induce formation of a 
lens placode from the surface ectoderm.  Invagination of the optic vesicle 
then leads to formation of the optic cup and lens vesicle. (Zhang et al., 2002) 
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Figure I-2: The architecture of the retina and major neuronal cell-types in 
the different layers. (A) A retinal cross-section from mGluR6-GFP transgenic 
mouse showing lamination of cell bodies and synaptic terminals.  The bipolar 
cells (green), photoreceptors (magenta), and amacrine and ganglion cells (red) 
can be readily stained with various antibodies.  (B) Schematic illustrating the 
major neuronal components and their projection patterns in the mature vertebrate 
retina.  The location of rods (R), cones (C), rod bipolars (RB), cone bipolars (CB), 
horizontal cells (H), amacrine (AII and A), and ganglion cells (G) are marked in 
the illustration (adapted from the laboratory of Rachel Wong). 
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Figure I-3: The phototransduction cascade.  In the Dark (top): The 
chromophore molecule, 11-cis-retinal, lies in the pocket formed by rhodopsin (R).  
Both the G-protein transducin (Gα-GDP-Gβ-Gγ) and phosphodiesterase (PDE6) 
are in their inactive states; and the intracellular concentration of cyclic GMP is 
relatively high.  cGMP is thus able to bind to and open cyclic-nucleotide-gated 
(CNG) channels in the plasma membrane, through which Ca2+ and Na+ ions 
flow into the cell.  Activation (bottom): The absorption of a photon isomerizes the 
chromophore to its all-trans form, and triggers a conformational change of 
rhodopsin into its activated state (R*).  R* then activates transducin by catalyzing 
the exchange of GDP for GTP, which causes the separation of activated α-
transducin (Gα*) from the trimer.  Gα* in turn activates the phosphodiesterase 
enzyme (PDE6*) by exposing a site that catalyzes the hydrolysis of cGMP into 
GMP.  The decreased cGMP concentration results in the loss of cGMP from the 
CNG channels, which close, blocking the inward flow of Na+ and Ca2+ ions, 
reducing the circulating electrical current, and hyperpolarizing the membrane 
voltage (Stockman et al., 2007).  
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Figure I-4: Fundus images from human patients with photoreceptor-related 
diseases.  (A) Figure showing the back of the eye (retinal fundus) in a normal 
patient.  (B) Fundus image from a retinitis pigmentosa patient demonstrates the 
presence of black pigment flecks in the retina (bone spicules), which is a 
hallmark sign of this condition.  A narrowing of blood vessels and abnormalities 
of the optic nerve head are also associated findings.  (C) and (D) show two 
clinical presentations of AMD.  (C) is taken from a 71 year old male with 
extensive soft drusen.  (D) is taken from a 87 year old woman with geographic 
atrophy of the retinal pigemented epithelium (figure from  www.nei.nih.gov) and 
(Swaroop et. al, 2007) 
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Figure I-5: The competence model and generation of neurons in the mouse 
retina.  (A) A progenitor passes through waves of competence, indicated by 
different colors, during which it is competent to generate only a subset of types of 
postmitotic cells.  A key feature of this model is that cells both acquire and lose 
the ability to make various cell types.  (B) A predicted lineage tree built up by cell 
divisions of multipotent progenitors over time.  The first division shown generates 
two progenitors, whereas all of the other divisions generate either a progenitor 
and a postmitotic cell or two postmitotic cells.  (C) Predicted timetable when 
retinal cells are born in the mouse.  Ganglion, horizontal, cone and amacrine 
cells are for the most part born during prenatal stages, while rods, bipolars, and 
muller glia are predominantly born during the first postnatal week.  (Livesey and 
Cepko, 2001; Marquardt, 2003). 
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Figure I-6: The Maf family of transcription factors.  (A) Schematic of the 
structure and function of small and large Maf proteins. MARE: Maf-recognition 
element.  (B) Members of large Maf family proteins identified in various species 
(Homo sapiens, Mus musculus, Gallus gallus, Xenopus tropicalis, Danio rerio 
and Drosophila melanogaster).  Note that chicken L-Maf is an orthologue of 
mammalian MafA, but its function in lens fiber cells to activate crystallin genes 
seems to be replaced by c-Maf in mammals. (Kataoka, 2007). 
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Figure I-7: Cloning of NRL and analysis of human mutations.  (A) Schematic 
diagram of the NRL protein, including the minimal transactivation domain (MTD), 
the basic leucine zipper (bZIP) domain, and the intron/exon structure of the NRL 
gene.  The location of 10 different amino acid changes is indicated above the 
protein structure.  (B) Effect of the S50T mutation on NRL-mediated 
transactivation of rhodopsin promoter activity in CV1 cells.  Different 
concentrations of pED-NRL and pED-NRLS50T expression constructs (0.003-0.3 
mg) were cotransfected with pBR130-luc (Rhodopsin promoter/ luciferase 
reporter) with and without pCDNA-CRX.  An increased transactivation of the 
rhodopsin promoter was observed with NRLS50T compared with NRL.  The 
synergistic transactivation of NRLS50T with CRX was enhanced over that of 
NRL+CRX (Akimoto et al., 2006; Bessant et al., 1999). 
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Figure I-8: Characterization of NRL expression in the retina and Nrl-/- 
phenotype in mice.  (A) Retinal cross sections from Nrl-GFP mice.  GFP is 
expressed under the control of the Nrl promoter and is found only in rod 
photoreceptors. The temporal expression of GFP can be observed from E12 
onwards.  (B) Retinal cross sections were taken from wild-type (+/+), 
heterozygote (+/-), and Nrl-/- (-/-) mice.  There is a lack of rhodopsin staining, and 
increased S-opsin staining in Nrl-/- mice.  (C) Electroretinograms demonstrate 
that the scotopic response (dark-adapted ERG) in Nrl-/- mice is impaired, while 
photopic responses (light-adapted ERG) are enhanced (Akimoto et al., 2006; 
Mears et al., 2001). 
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CHAPTER II 

TRANSFORMATION OF CONE PRECURSORS TO FUNCTIONAL ROD 
PHOTORECEPTORS BY BZIP TRANSCRIPTION FACTOR NRL 

 
 

Abstract 
 

 Networks of transcriptional regulatory proteins dictate specification of neural 

lineages from multipotent retinal progenitors.  Rod photoreceptor differentiation 

requires the basic motif-leucine zipper (bZIP) transcription factor NRL, as loss of 

Nrl in mice (Nrl-/-) results in complete transformation of rods to functional cones.  

To examine the role of NRL in cell fate determination, we generated transgenic 

mice that express Nrl under the control of Crx promoter in post-mitotic 

photoreceptor precursors of wild type and Nrl-/- retina.  We show that NRL 

expression, in both genetic backgrounds, leads to a functional retina with only 

rod photoreceptors.  The absence of cones does not alter retinal lamination, 

though cone synaptic circuitry is now recruited by rods.  Ectopic expression of 

NRL in developing cones can also induce rod-like characteristics and partially 

suppress cone-specific gene expression.  We show that NRL is associated with 

specific promoter sequences in Thrb (encoding TRβ2 transcription factor required 

for M-cone differentiation) and S-opsin, and may therefore directly participate in 

transcriptional suppression of cone development.  These studies establish that 

NRL is not only essential but is sufficient for rod differentiation and that post-
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mitotic photoreceptor precursors are competent to make binary decisions during 

early retinogenesis. 

 

Introduction 

Neuronal cell fate is determined by a hierarchical, stepwise process of 

binary decisions, commencing with multipotent progenitors that give rise to 

distinct cell lineages (Livesey and Cepko, 2001; Malicki, 2004; Shen et al., 2006).  

The neural retina is an attractive model to investigate cell fate determination; it 

contains seven major cell types that derive from common pool(s) of multipotent 

progenitor cells (Turner et al., 1990; Wetts and Fraser, 1988).  These retinal 

progenitors pass through sequential waves of competence, during which post-

mitotic cells can be specified to only a subset of neuronal fates (Cepko et al., 

1996; Livesey and Cepko, 2001).  Birthdating studies in rodents indicate that 

ganglion cells, horizontal cells, cone photoreceptors, and amacrine cells are born 

prenatally, whereas most rod photoreceptors, bipolar cells and Muller glia are 

generated postnatally (Carter-Dawson and LaVail, 1979b; Rapaport et al., 2004; 

Young, 1985).  The orderly sequence of cell birth and a considerable overlap in 

their generation suggest a sequential program of cell intrinsic mechanisms and 

extrinsic signals that control cell fate decisions (Dyer et al., 2003; Gan et al., 

1996; Hatakeyama and Kageyama, 2004; Marquardt et al., 2001; Ng et al., 2001; 

Nishida et al., 2003; Roberts et al., 2006).   

Each neuronal lineage is meticulously established by highly coordinated 

transcription factor network(s) in response to local micro-environmental cues 
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(Edlund and Jessell, 1999).  Although extrinsic factors can promote differentiation 

(Levine et al., 2000; Watanabe and Raff, 1992), heterochronic mixing 

experiments demonstrate that progenitor cells at a particular time in development 

cannot be induced to generate temporally inappropriate cell types (Belliveau et 

al., 2000; Livesey and Cepko, 2001).  Additionally, intrinsic priming of retinal 

progenitors appears to supersede the influence of environmental signals in 

specifying cell fate (Cayouette et al., 2003).  Whether commitment of lineage-

restricted precursors to a specific differentiation pathway is unidirectional has not 

been clearly elucidated.   

Post-mitotic plasticity was first revealed in low-density retinal cell cultures 

derived from embryonic chicks; cells isolated on embryonic day (E) 6 became 

photoreceptors shortly after terminal mitosis, while those from E8 embryos gave 

rise to non-photoreceptors suggesting that the fate of a cell could be changed in 

response to the microenvironment (Adler and Hatlee, 1989).  In another 

demonstration of cellular plasticity, treatment of retinal explants with ciliary 

neurotrophic factor (CNTF) was sufficient to block rhodopsin expression in post-

mitotic rod precursors and resulted in the expression of bipolar interneuron 

markers (Ezzeddine et al., 1997).  Interestingly, ETS transcription factors are 

selectively expressed during motor and sensory neuron development but only 

after their axons reach the periphery, suggesting that these proteins confer post-

mitotic subtype identity during the establishment of selective connections (Arber 

et al., 2000; Lin et al., 1998).  These findings indicate that neural identity can be 
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specified even after the terminal cell cycle exit; however, direct in vivo evidence 

of post-mitotic plasticity has not been reported. 

The Maf-family transcription factor Nrl is expressed specifically in post-

mitotic rod photoreceptors of the retina and in the pineal gland (Akimoto et al., 

2006; Swain et al., 2001).  NRL interacts with the homeodomain protein CRX 

(Mitton et al., 2000), orphan nuclear receptor NR2E3 (Cheng et al., 2004) and 

other retinal proteins (Lerner et al., 2001; Mitton et al., 2003; Wang et al., 2004) 

to regulate the expression of rod-specific genes (Akimoto et al., 2006; Yoshida et 

al., 2004).  NRL is essential for rod differentiation, as rods are transformed to 

functional S-cones in the Nrl-/- mouse retina (Akimoto et al., 2006; Daniele et al., 

2005; Mears et al., 2001).  The apparent switch from rod to S-cone fate in the Nrl-

/- mouse suggests that post-mitotic photoreceptor precursors retain some degree 

of plasticity.  In this report, we generated a series of transgenic mice that express 

Nrl during early and late stages of photoreceptor differentiation in wild type or Nrl-

/- background.  We demonstrate that NRL is sufficient to guide post-mitotic 

photoreceptors towards rod lineage and that photoreceptor precursors are 

competent to make binary decisions of acquiring rod versus cone identity.  

 

Materials and Methods 

Plasmid constructs and generation of transgenic mice.  A 2.3 kb mouse Crx 

promoter DNA (from -2286 to +72, GenBank # AF335248 and AF301006) and 

the Nrl coding region (GenBank # NM008736) with an additional Kozak 

sequence were amplified and cloned into a modified promoter-less pCl (pCIpl) 
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vector (Akimoto et al., 2004).  The 3.7 kb Crxp-Nrl insert was purified and 

injected into fertilized Nrl-/- (mixed background of 129X1/SvJ and C57BL/6J) 

mouse oocytes (UM transgenic core facility).  Transgenic founders were bred to 

the Nrl-/- mice to generate F1 progeny.  The progeny was also mated to 

C57BL/6J to generate Crxp-Nrl/WT mice.  The BPp-Nrl transgenic mice were 

generated in a similar manner, except that a 520 bp mouse S-opsin promoter 

DNA (Akimoto et al., 2004) was used.  All studies involving mice were performed 

in accordance with institutional and federal guidelines and approved by the 

University Committee on Use and Care of Animals at the University of Michigan. 

 

Immunohistochemistry and confocal analysis.  Retinal sections and 

dissociated cells were prepared as described (Cheng et al., 2004; Strettoi et al., 

2002).  Sections were visualized under an Olympus FluoView 500 laser scanning 

confocal microscope or a Leica TSC NT confocal microscope, equipped with an 

argon-krypton laser.  Images were digitized using FluoView software version 5.0 

or Metamorph 3.2 software.  Antibodies used for immunohistochemistry are as 

follows: rabbit anti S-opsin, M-opsin, and cone arrestin antibodies (generous gifts 

from C. Craft, University of Southern California, Los Angeles, CA), mouse anti-

rhodopsin (1D4) (generous gift from R. Molday, University of British Columbia, 

Vancouver, BC, Canada), rabbit b-galactosidase (Cappel), rat anti-b-

galactosidase (a generous gift from T. Glaser, University of Michigan, Ann Arbor, 

MI) rabbit anti-Cre (Covance), mouse anti-Cre (Chemicon), rabbit and mouse 

anti-Protein Kinase C a (Sigma); rabbit anti-mGluR6 (Neuromics); rabbit anti-
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calbindin D-28k (Swant); mouse anti-G0a (Chemicon); mouse anti-Neurofilament 

200 kDa (clone N52; Sigma); mouse anti-Glutamine Synthetase (Chemicon); 

mouse anti-NK3-receptor (Abcam, Novus Biologicals); mouse anti-bassoon 

(Stressgen); mouse anti-kinesin 2 (Covance); mouse anti-synaptophysin 

(Boehringer); mouse anti-PSD95 (Abcam); goat anti-Choline Acetyl Transferase 

(ChAT; Chemicon); and rabbit anti-Tyrosine Hydroxylase (Chemicon). 

Fluorescent detection was performed by using Alexa Fluor 488, 546, or 633 

(Molecular Probes) conjugated secondary antibodies. 

 

Chromatin immunoprecipitation (ChIP). Mouse retinas from different 

developmental stages were subjected to ChIP analysis using ChIP-ITTM kit 

(Active motif, Carlsbad, CA).  IP was performed using anti-NRL or normal rabbit 

immunoglobulin (IgG).  PCR primers, derived from the Thrb and S-opsin 

promoter region (GenBank # NT_039340.6 and NT_039595.6, respectively) 

spanning the putative NRE, were used for amplification (from nucleotides 

26331250 to 26331458 and 13773280 to 13773502, respectively) using 

immunoprecipitated DNA as template.  The albumin PCR primers were: 5’ 

GGACACAAGACTTCTGAAAGTCCTC 3’ and 5’ 

TTCCTACCCCATTACAAAATCATA 3’. 

   

EMSA. Oligonucleotides spanning the putative NRE were radiolabeled using [γ-

32]P-ATP (Amersham Biosciences) and incubated in binding buffer (20mM 
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HEPES pH 7.5, 60mM KCl, 0.5mM DTT, 1mM MgCl2, 12% glycerol) with bovine 

retinal nuclear extract (RNE; (Mitton et al., 2003)) (20 µg) and 50µg/ml poly(dI-

dC) for 30 min at room temperature, as described (Khanna et al., 2006) For 

competition experiments, non-radiolabeled oligonucleotides were used in molar 

excess of the labeled oligonucleotides.  In some experiments, antibodies were 

added after the incubation of 32P-labeled oligonucleotides with RNE.  Samples 

were analyzed by 7.5% non-denaturing PAGE. 

 

Electroretinography.  ERGs were recorded as described (Mears et al., 2001). 

 

 

Results 

Overexpression of Nrl in photoreceptor precursors drives rod 

differentiation at the expense of cones 

We hypothesized that if cones develop from a unique pool of competent 

cells, early cone precursors would not be responsive to NRL.  On the other hand, 

transformation of cone precursors to rods by NRL would indicate an intrinsic 

capacity to give rise to both rods and cones.  To directly test this, we generated 

transgenic mouse lines (Crxp-Nrl/WT) expressing Nrl under the control of a 

previously-characterized 2.5 kb proximal promoter of the Crx gene (Crxp-Nrl), 

which is specifically expressed in post-mitotic cells that can develop into either 

cone or rod photoreceptors (Cheng et al., 2006; Furukawa et al., 2002).  
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Light micrographs of semi-thin (plastic) sections of Crxp-Nrl/WT mouse 

retina showed normal laminar organization (Figure II-1 A, B).  Immuno-

fluorescence studies demonstrated comparable rhodopsin expression relative to 

wild type and Nrl-/- mice (Figure II-1 E-G); however, staining of cone-specific 

markers (cone arrestin, peanut agglutinin (PNA), S-opsin and M-opsin) was 

undetectable in cryosections and flat-mount preparations from transgenic retinas 

(Figure II-1 I-K, and data not shown).  Confocal examination of the outer nuclear 

layer revealed only the photoreceptor nuclei with dense chromatin (Figure II-1 A, 

B) that are characteristics of rods in the wild type retina (Carter-Dawson and 

LaVail, 1979a).  Dark-adapted corneal flash electroretinograms (ERGs) from 

Crxp-Nrl/WT mice revealed normal rod function even at six months (Figure II-1 

M, N), whereas the cone-derived photopic ERG response was absent at all ages 

(Figure II-1 O, P, and data not shown).  These studies suggested a complete 

absence of cone functional pathway in the Crxp-Nrl/WT mice.  Consistent with 

these, quantitative RT-PCR analysis demonstrated no expression of cone 

phototransduction genes in the Crxp-Nrl/WT retina, with little or no change in rod-

specific genes (Figure II-6 C). 

We then bred the Crxp-Nrl transgenic mice into the Nrl-/- background 

(Crxp-Nrl/Nrl-/-) to test whether Nrl expression in a cone-only retina could convert 

a retina solely composed of cones to rods as seen in the Crxp-Nrl/WT mice.  

Analysis of retinal morphology uncovered a remarkable transformation of a 

dysmorphic retina with whorls and rosettes in the Nrl-/- mice (Mears et al., 2001) 

to a wild type-like appearance (Figure II-1 C, D).  Images from toluidine blue-
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stained retinal sections revealed clear extended outer segments and a highly 

organized laminar structure (Figure II-1 D).  Similar to the wild type (Carter-

Dawson and LaVail, 1979a), and unlike the all-cone retina in Nrl-/- mice (Mears et 

al., 2001), the outer nuclear layer of Crxp-Nrl/Nrl-/- retina had rod-like nuclei with 

dense chromatin.  Immunolabeling of adult Crxp-Nrl/Nrl-/- retinal sections 

demonstrated a complete absence of cone proteins (cone arrestin data is shown 

in Figure II-1 L).  In contrast to the Nrl-/- retinas (Figure II-1 G), Crxp-Nrl/Nrl-/- mice 

displayed normal levels of rhodopsin (Figure II-1 H).  No photoreceptor 

degeneration was evident by histology or ERG at least up to 6 months (Figure II-

1, data not shown). 

 

Retinal synaptic architecture is modified in the absence of cones 

Given that a complete rod-only retina did not reveal gross changes in 

retinal morphology, we contemplated whether cones are essential for proper 

development and lamination of cone-connected neurons.  Cones are presynaptic 

to dendrites originating from the cell bodies of horizontal cells and to at least 9 

different types of cone bipolar neurons (Ghosh et al., 2004; Pignatelli and 

Strettoi, 2004).  Immunostaining of Crxp-Nrl/WT retinas with a panel of cell-type 

specific antibodies (Strettoi et al., 2002) did not reveal any major difference in the 

distribution of the marker proteins for horizontal, bipolar, amacrine and glial cells 

(Figure II-2).  Despite the absence of cones, it was apparent that both the ON 

and OFF subtypes of cone bipolar cells were retained (Figure II-2 A, B, E).  All 

ON bipolar neurons (both rod and cone bipolar cells) carried metabotropic 
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glutamate receptors on their dendritic tips (mGluR6) and thus, presumably, they 

were postsynaptic to rod spherules.  It was unclear from these studies whether 

cone bipolar cells belonging to the OFF functional type received synapses from 

rod photoreceptors.  The dendrites of one type of OFF cone bipolar cells, marked 

with Neurokinin receptor 3 (NK3-R), form basal (or flat) junctions with cone 

pedicles in the outer plexiform layer (Figure II-7).  Although confocal microscopy 

does not reach the necessary resolution to detect such putative contacts, it is 

apparent from the preparations that not all the dendrites of NK3-R positive cone 

bipolar cells come in close apposition to the rod spherules, and that basal 

junctions are therefore unlikely (Figure II-2 E).  It remains to be established if and 

how rod spherules make connections to OFF cone bipolar cells, and whether the 

OFF channel gains access to the scotopic pathway.  

To study the morphology of horizontal cells, we stained Crxp-Nrl/WT 

retinas with a calbindin antibody (Figure II-2 F).  While no gross changes were 

observed, we noticed rare ectopic sprouts emerging from the outer plexiform 

layer and extending into the outer nuclear layer.  Other examined markers also 

revealed a normal distribution throughout the retina (see Figure II-2 G-I).  AII 

amacrine neurons exhibited their peculiar bi-stratified morphology (Figure II-2 G).  

Cholinergic amacrine cells (Figure II-2 H, I) showed a typical distribution in two 

mirror-symmetric populations.  Dopaminergic amacrines and Muller glial cells 

also showed normal organization (data not shown).  Thus, besides the likely 

reconnections of ON cone bipolar and horizontal cells to rods, the retina from 

Crxp-Nrl/WT mice was indistinguishable from wild type. 
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Ectopic expression of NRL can suppress cone function and induce rod 

characteristics in a subset of photoreceptors expressing S-opsin  

The onset of S-opsin expression begins at E16-E18 in rodents (Chiu and 

Nathans, 1994; Szel et al., 1993).  To further delineate NRL’s role in cell fate 

determination, we generated transgenic mouse lines (BPp-Nrl/WT) expressing 

NRL under the control of a previously-characterized S-opsin promoter (Akimoto 

et al., 2004).  Immunostaining revealed a significant decrease of S-opsin positive 

cells in the inferior region of flat-mounted retinas (Figure II-3 A).  Consistent with 

histological and immunohistochemical analysis, ERGs from the BPp-Nrl/WT mice 

showed a 50% reduction in the photopic b-wave amplitude compared to the wild 

type (Figure II-3 B); however, scotopic ERG a- and b- wave amplitudes were 

largely unaffected (data not shown). 

We then transferred the BPp-Nrl transgene to the Nrl-/- background (BPp-

Nrl/Nrl-/- mice).  Ectopic expression of Nrl in the all-cone Nrl-/- retina even at this 

stage (i.e., under the control of S-opsin promoter) resulted in rhodopsin staining 

in the ONL; however, as in the Nrl-/- mice (Figure II-3 C-F) the outer and inner 

segments remained stunted (Figure II-3 G-N).  The BPp-Nrl/Nrl-/- retina also 

revealed hybrid cells that expressed both S-opsin and rhodopsin in ONL, INL and 

ganglion cell layer (Figure II-3 G-N; Figure II-8 A).  ERG data showed that while 

the phototopic b-wave (cone-derived) was somewhat reduced, the scotopic b-

wave amplitude was still undetectable in BPp-Nrl/Nrl-/- mice (data not shown).   
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To examine the fate of S-opsin expressing cells, we mated the BP-Cre 

transgenic mice (that expresses Cre-recombinase under the control of the same 

S-opsin promoter) (Akimoto et al., 2004) with the R26R reporter line and the 

BPp-Nrl/WT line (Figure II-8 B-K).  A large number of Cre-negative cells were 

labeled with ß-galactosidase in the BP-Cre; R26R; BPp-Nrl/WT background 

(Figure II-8 B-K).  Approximately 40% of ß-galactosidase positive cells did not co-

localize with S-opsin.  Their position in the ONL and the lack of S-opsin staining 

indicate that these are rod photoreceptors, suggesting a possible fate switch in 

response to ectopic NRL expression.  However, we could not validate their 

identity as rods because the rod marker – rhodopsin – does not clearly label the 

nuclear layer.  TUNEL staining of sections from E18 retina did not detect obvious 

differences between wild type and BPp-Nrl/WT mice (data not shown).   

 

NRL can associate with cone-specific promoter elements 

NRL is established as a positive transcriptional regulator of rod-specific 

genes (Chen et al., 1997; Lerner et al., 2001; Mitton et al., 2000; Pittler et al., 

2004; Rehemtulla et al., 1996; Yoshida et al., 2004).  To examine whether NRL 

can directly modulate cone-specific promoters, we screened 3 kb of 5’ upstream 

promoter regions of the two cone-expressed genes - Thrb (encoding TRβ2 that is 

involved in M-cone differentiation, (Ng et al., 2001)) and S-opsin - for the 

presence of Nrl or Maf response element (NRE / MARE) (Rehemtulla et al., 

1996).  Oligonucleotides spanning the single putative NRE sites, identified within 

the Thrb and S-opsin promoters, were used for electrophoretic mobility shift 
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assay (EMSA) with bovine retinal nuclear extracts.  We detected a shifted band 

that could be specifically competed by the addition of 50-fold molar excess of 

unlabeled NRE-oligonucleotide, but not a random oligonucleotide (Figure II-4 A, 

B).  The addition of anti-NRL antibody abolished the shifted band for the Trβ2 

oligonucleotide (Figure II-4 A), whereas S-opsin promoter-protein complex 

demonstrated an increased mobility in the native polyacrylamide gel (Figure II-4 

B).  Notably, disappearance of the shifted band may occur due to the dynamic 

nature of some DNA-protein interactions, whereas the net charge to mass (e/m) 

ratio of the ternary complex determines their rate of mobility in a native 

polyacrylamide gel (DW, 2001).  Similar results were obtained when the 

radiolabeled oligonucleotides were incubated with anti-NRL antibody 

simultaneously with the retinal nuclear extract or with the nuclear extract pre-

incubated with the anti-NRL antibody for 15 min. (data not shown).  No effect on 

the gel-shift was observed in the presence of control rabbit IgG. 

To further evaluate the association of NRL with Thrb and S-opsin 

promoter elements in vivo, we performed chromatin immunoprecipitation (ChIP) 

assays using wild type embryonic and adult mouse retinas.  PCR primer sets 

spanning the Thrb and S-opsin NRE amplified specific products with DNA 

immunoprecipitated with the anti-NRL antibody but not with the rabbit IgG (Figure 

II-4 C).  ChIP experiments using the Nrl-/- mouse retina (negative control) did not 

reveal specific amplified products (Figure II-4 C).   
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DISCUSSION 

Specification of neuronal cell fate involves changes in progenitor 

competence over time (Livesey and Cepko, 2001).  In the developing retina, 

progenitor cells show heterogeneity in their developmental competence, and 

have the potential to produce many or all fates.  Genesis of rod photoreceptors 

overlaps with the birth of all other retinal cell types.  How regulatory factors 

orchestrate this decision-making has not been clearly delineated.  As CRX is 

expressed in all post-mitotic photoreceptor precursors (Furukawa et al., 2002), 

we hypothesized that CRX-expressing cells are not committed to a specific fate 

and are plastic, and that NRL dictates the rod fate over a developmental time 

window.  The transgenic data presented (see Figure II-1) strongly supports the 

hypothesis of post-mitotic plasticity in mammalian retina, as expression of NRL in 

even CRX-expressing cone precursors produces functional rods.  It is therefore 

the timing of expression, availability and amount/activity of NRL that determine 

whether the post-mitotic precursor will acquire rod or a cone fate (Figure II-5; 

Figure II-9).  Surprisingly, ectopic expression of NRL can still drive a subset of 

presumptive S-opsin expressing cone photoreceptors towards the rod lineage 

though not to a fully functional phenotype.   

NR2E3 is a photoreceptor-specific orphan nuclear receptor, which is 

shown to suppress cone-specific gene expression in cultured cells (Chen et al., 

2005; Peng et al., 2005) and in transgenic mice (Cheng et al., 2006).  NRL is 

upstream of NR2E3 in regulatory hierarchy of photoreceptor differentiation 

(Cheng et al., 2004; Mears et al., 2001) and is an established activator of rod-
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specific genes (Yoshida et al., 2004; Yu et al., 2004).  It was therefore of interest 

to examine whether NRL can also directly suppress cone genes or all of its 

effects on cone differentiation are mediated via NR2E3.  The finding of NRL 

binding to Thrb and S-opsin promoter sequences suggests that NRL functions, 

probably together with NR2E3, in suppressing cone differentiation in vivo.  NRL’s 

role as a transcriptional repressor is not surprising as key regulatory proteins can 

control transcription through context-dependent combinatorial mechanisms 

(Levine and Tjian, 2003).  Notably, distinct phosphorylated isoforms of NRL are 

expressed during retinal development (Swain et al., 2001), and phosphorylation 

differences are suggested to modulate transcriptional activity of NRL by altering 

nuclear translocation, DNA binding, or protein interactions (Kanda et al., 2007).  

Additional studies are required to evaluate whether different NRL isoforms 

participate in transcriptional activation versus repression during early 

photoreceptor development.  

The loss of cones produces an alteration in retinal synaptic connectivity 

such that ON cone bipolar cells are now connected to rods in the absence of 

their natural synaptic partner (i.e., cones).  These results complement previous 

findings (Strettoi et al., 2004), demonstrating that neurons of the rod pathway are 

recruited by newly-generated cones in the Nrl-/- retina.  In addition, the data 

provide support to the hypothesis that while intrinsic mechanisms may guide the 

formation of synaptic connections, the strength(s) of afferent input determine the 

final establishment of synaptic circuitry (Buffelli et al., 2003; Kasthuri and 

Lichtman, 2003; Katz and Shatz, 1996).  In the cone-only Nrl-/- retina and the rod-
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only transgenic mice reported here, a lack of input from the other competing 

afferent neurons leads to functional synaptic connections that are not usually 

observed in the wild type mouse retina. 

These studies establish that NRL is not only essential (Mears et al., 2001) 

but is also sufficient for rod genesis.  To what extent NRL can dictate rod 

specification in proliferating cells or other subsets of retinal precursors will require 

further investigations using transgenic mice expressing NRL under the control of 

early cell-type promoters.  In utero infection of mouse embryonic retinas 

(Dejneka et al., 2004) with Nrl may also demonstrate whether we can stretch the 

developmental potential of retinal progenitors.  These studies give rise to the 

prospect of exploiting the plastic nature of retinal precursors to replenish dying 

rods in degenerative retinal diseases by ectopic NRL expression in retinal stem 

cells (Banin et al., 2006; Coles et al., 2004) or by transplantation of NRL-

expressing progenitors (MacLaren et al., 2006). 
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Notes to Chapter II 

A modified version of this chapter has been previously published in: 

Proceedings of National Academy of Sciences of the United States of 

America. Oh, E.C., Khan, N., Novelli, E., Khanna, H., Strettoi, E., and 

Swaroop, A. (2007). Transformation of cone precursors to functional rod 

photoreceptors by bZIP transcription factor NRL. 

 

Outside contribution: Naheed Khan conducted the ERG experiments.  

Elena Novelli and Enrica Strettoi performed the immunohistochemistry for 

bipolar cells.  Hemant Khanna assisted with the EMSA and ChIP 

experiments.  
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Figure II-1.  Expression of NRL in cone precursors.  Toluidine blue staining of 
WT (A), Crxp-Nrl/WT (B), Nrl-/- (C), and Crxp-Nrl/Nrl-/- (D) retinal sections 
demonstrate unique chromatin pattern in the photoreceptor layer for cones 
(indicated by arrowhead) and rods.  Normal laminar structure is observed in both 
Crxp-Nrl/WT (B) and Crxp-Nrl/Nrl-/- (D) plastic sections.  Immunohistochemical 
markers for rod photoreceptors (rhodopsin) can be detected in WT (E), Crxp-
Nrl/WT (F) and Crxp-Nrl/Nrl-/- (H) retina but not in Nrl-/- (G).  The pan cone 
photoreceptor marker, cone arrestin, is present only in WT (I) and Nrl-/- (K) retina, 
but is largely absent in the Crxp-Nrl/WT (J) and Crxp-Nrl/Nrl-/- (L).  ERG intensity 
series and responses were recorded from 2-month-old WT, Nrl-/-, Crxp-Nrl/WT 
and Crxp-Nrl/Nrl-/- mice under dark- (M, N) and light-adapted (O, P) conditions.  
The X axes for M and O indicate time lapsed after flash.  Stimulus energy is 
indicated (log cd-s/m2).  OS, outer segments; IS, inner segments, ONL, outer 
nuclear layer; INL, inner nuclear layer.  Scale bar: 25 µm and 50 µm. 
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Figure II-2.  Synaptic organization of the inner retina in the absence of 
cones.  (A).  The glutamatergic receptor mGluR6  is clustered selectively at 
puncta (Dejneka et al.) in the OPL, on the dendritic tips of ON bipolar cells, 
labeled by G0α antibodies (green).   
 
(B).  G0α antibody labels the whole population of ON bipolar cells (green signal), 
whereas PKCα labels rod bipolar cells only (RBC; red signal).  Rod bipolar 
neurons are therefore double-labeled by both antibodies and appear yellow.  
Green cells are ON cone bipolar cells (indicated as CBC).   
 
(C). mGluR6 receptors are labelled as red puncta located at the dendritic tips of 
rod bipolar cells, labeled green by PKCα antibodies. In addition, clusters of 
mGluR6 are visible in the OPL, but not in association with rod biolar cell 
dendrites. These clusters are likely to be associated to the dendrites of ON cone 
bipolar cells. 
 
 (D).  Rod bipolar cells (RBC), labeled by PKCα (red signal), are postsynaptic to 
photoreceptors in the OPL at ribbon synapses (indicated by R), as indicated  by 
antibodies against kinesin, a synaptic ribbon marker (green signal).   
 
 (E).  High magnification of one type of cone bipolar cell (CBC), labeled with NK3-
R antibody (red signal).  Rod spherules (RS) are labeled with anti-PSD95 
antibody (green signal).  Few dendrites of cone bipolar cells reach the basal 
aspect of some spherules (arrows); however, many spherules do not appear 
apposed to CBC dendrites, although these belong to one of the most abundant 
types of retinal cone bipolar cell.   
 
(F).  Calbindin staining (red signal) of the Crxp-Nrl/WT retina shows a normal 
distribution of intensely-labeled horizontal cells and weakly fluorescent amacrine 
cells with their processes in the IPL.  Occasionally, horizontal cell sprouts are 
observed (arrow).   
 
(G).  AII amacrine cells (the most abundant population of mammalian amacrines) 
are specifically stained with DB3 antibodies (red signal).  They exhibit a typical, 
bi-stratified morphology.  Their innermost dendrites terminate in apposition to the 
axonal endings of rod bipolar cells, stained green by PKCα antibodies.   
 
(H).  Cholinergic amacrine cells are stained in the transgenic retina by ChAT 
antibodies (red signal).  They form two, mirror symmetric populations of neurons.  
Axonal complexes of horizontal cells are labeled with neurofilament antibodies 
(green).  Axonal fascicles of ganglion cells are also intensely stained in the optic 
fiber layer.   
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(H).  Ethidium bromide nuclear staining (red signal) and ChAT immunostaining 
(green signal) demonstrate the normal layering and lamination of the transgenic 
retina.  
OS, outer segments; ONL, outer nuclear layer; INL, inner nuclear layer; OPL, 
outer plexiform layer; IPL, inner plexiform layer. 
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Figure II-3.  Ectopic expression of Nrl in S-opsin-expressing cone 
photoreceptors.  Quantification of S-cones in the inferior domain of flat-mounted 
retinas from WT and BPp-Nrl/WT mice with anti-S-opsin antibody (A) revealed a 
40% decrease in S-cones.  Light–adapted ERG photoresponses from WT and 
BPp-Nrl/WT mice are shown in (B).  Immunostaining of cryosections from Nrl-/- 
retina (C-F).  In the BPp-Nrl/Nrl-/- retina rhodopsin expression can be detected in 
the ONL and the OS (G, K).  Hybrid photoreceptors expressing both S-opsin (H, 
L) and rhodopsin can be observed in the ONL, INL and the GCL (G-N).  OS, 
outer segments; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, 
ganglion cell layer; BBZ, bisbenzamide.  Scale bar: 25 µm and 50 µm.  
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Figure II-4.  Association of Nrl to cone specific promoters.   
A, B: EMSA.  Radiolabeled double-stranded oligonucleotides from Thrb and S-
opsin promoters were incubated with RNE, followed by non-denaturing PAGE.  
Lanes are as indicated.  Arrows represent specific shifted bands.  Competition 
experiments were performed with increasing concentration (1, 5, or 50-fold molar 
excess, respectively) of unlabeled specific oligonucleotide or 50-fold higher 
concentration of non-specific (ns) oligonucleotide, to validate the specificity of 
band shift.  Anti-NRL or normal rabbit IgG was added in some of the reactions, 
as indicated.  Disappearance (see panel A) or increased mobility of the shifted 
band (B; shown by asterisk) was detected with anti-NRL antibody but not IgG.  
These experiments were performed three times and similar results were 
obtained.  C.  ChIP assay.  WT or Nrl-/- mouse retina was used for ChIP with 
anti-NRL or rabbit IgG antibody.  The positive and negative controls for ChIP 
assays are Pde6a and Albumin, respectively.  Lanes are as indicated.  Input 
DNA served as positive control for PCR.  E: Embryonic day. 
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Figure II-5.  A model of photoreceptor specification.  Otx2 and Rb influence 
multipotent retinal neuroepithelial cells to exit cell cycle.  We hypothesize that Crx 
is the competence factor in post-mitotic photoreceptor precursors.  The cells that 
express Nrl are committed to rod photoreceptor fate, with subsequent expression 
of Nr2e3.  The cells expressing only Crx are cone precursors.  We propose that a 
degree of plasticity exists in early retinal development, such that changes in Nrl 
and/or Nr2e3 expression can lead to alterations in final ratio of rod and cone 
photoreceptors.  Additional transcription factors (Ng et al., 2001; Srinivas et al., 
2006) are required to guide the development to mature photoreceptors. 
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Figure II-6.  Nuclear morphology in the outer nuclear layer of WT and Crxp-
Nrl/WT retina.  Flat-mounts of WT (A) and Crxp-Nrl/WT (B) retina were stained 
with the nuclear dye YOYO 1. The focal plane is set at the height of cone nuclei, 
illustrating their larger size and nonhomogeneous chromatin in the WT retina but 
not in the Crxp-Nrl/WT retina.  (C) Gene expression analysis. Quantitative RT-
PCR profiles show loss of cone-specific gene expression in both Crxp-Nrl/WT 
and Crxp-Nrl/Nrl-/- retinas, whereas rod-specific expression is largely unchanged. 
WT and Nrl-/- retinas show expected changes in gene expression. Expression 
levels are normalized to Hprt. 
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Figure II-7.  NK3-R immunostaining of OFF cone bipolar cells in the WT 
retina.  Using NK3-R antibody, the morphology and flat dendritic arbors of OFF 
cone bipolars are illustrated in WT P20 (A) and 7 month (B) retinas.  PNA lectin 
and NK3-R staining (C) show the proximity of OFF cone bipolars to cone 
pedicles (Inset). 
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Figure II-8.  Quantification of photoreceptors and fate-mapping 
experiments. Adult retinas were dissociated and assayed for rhodopsin and s-
opsin expression (A) A total of 300 cells per sample in triplicate were scored.  (B) 
A schematic illustration of transgenic constructs and breeding for the fate 
mapping is shown.  (C-E) Presumptive cone precursors showing b-galactosidase 
immunoreactivity exhibit high degree of coexpression with Cre in the superior 
domain of the retina.  (F-K) Central and inferior domains reveal an increase in b-
galactosidase labeled cells that do not overlay with Cre and are presumably rods 
based on their position in the ONL. 
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Figure II-9.  Immunoblot analysis to examine NRL expression in Crxp-
Nrl/Nrl-/- and BPp-Nrl/Nrl-/- retinas.  Expression levels of the NRL protein were 
compared in retinas of transgenic mice. In contrast to Crxp-Nrl/Nrl-/-, BPp-Nrl/Nrl-/- 
retinas contain > 5% of the NRL protein. 
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CHAPTER III 

ROD DIFFERENTIATION FACTOR NRL ACTIVATES THE EXPRESSION OF 
NUCLEAR RECEPTOR NR2E3 TO SUPPRESS THE DEVELOPMENT OF 

CONE PHOTORECEPTORS 
 

Abstract 

 

Neural developmental programs require a high level of coordination 

between the decision to exit cell cycle and acquisition of cell fate.  The Maf-family 

transcription factor NRL is essential for rod photoreceptor specification in the 

mammalian retina as its loss of function converts rod precursors to functional 

cones.  Ectopic expression of NRL or a photoreceptor-specific orphan nuclear 

receptor NR2E3 completely suppresses cone development while concurrently 

directing the post-mitotic photoreceptor precursors towards rod cell fate.  Given 

that NRL and NR2E3 have overlapping functions and NR2E3 expression is 

abolished in the Nrl-/- retina, we wanted to clarify the distinct roles of NRL and 

NR2E3 during retinal differentiation.  Here, we demonstrate that NRL binds to a 

sequence element in the Nr2e3 promoter and enhances its activity synergistically 

with the homeodomain protein CRX.  Using transgenic mice, we show that NRL 

can only partially suppress cone development in the absence of NR2E3.  Gene 

profiling of retinas from transgenic mice that ectopically express NR2E3 or NRL 

in cone precursors reveals overlapping and unique targets of these two 
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transcription factors.  Together with previous reports, the current findings 

establish the hierarchy of transcriptional regulators in determining rod versus 

cone cell fate in photoreceptor precursors during the development of mammalian 

retina.  

 

INTRODUCTION 

The central nervous system is assembled from thousands of distinct cell 

types that must be produced in correct numbers and within appropriate spatial 

and temporal constraints (Donovan and Dyer, 2005, Dyer and Cepko, 2001 and 

Stevens, 1998).  Unraveling the molecular mechanisms that control specification 

of diverse cell types during neurogenesis has been the subject of intense 

scrutiny.  The vertebrate retina offers a convenient paradigm to examine cell fate 

decisions, as it is relatively less complex and more accessible to experimental 

manipulations.  Birth-dating studies reveal that six neuronal cell types and one 

type of glia are produced from common pools of neuroepithelial progenitors in a 

conserved order of birth (Adler and Raymond, 2008, Carter-Dawson and LaVail, 

1979, Livesey and Cepko, 2001, Marquardt and Gruss, 2002, Turner and Cepko, 

1987, Turner et al., 1990 and Wetts and Fraser, 1988).  Retinal ganglion cells are 

generated first, followed by cone, amacrine and horizontal cells, whereas rods, 

bipolar cells and Muller glia are generated later (Carter-Dawson and LaVail, 

1979, Rapaport et al., 2004 and Young, 1985).  A competence model has been 

proposed to explain the sequential birth order (Cepko et al., 1996 and Livesey 

and Cepko, 2001); according to this, multipotent pools of progenitor cells go 
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through discrete competence states during which they can only give rise to 

specific subsets of neurons.  Restriction(s) in developmental potential can occur 

prior to or after exit from the final cell cycle through combinatorial regulatory 

mechanism(s) involving intrinsic factors and/or extrinsic signaling molecules 

(Cayouette et al., 2003, Edlund and Jessell, 1999 and Levine et al., 2000).  As 

considerable overlap exists in the timings of cell birth, specific instructions and 

stringent controls are required to produce particular subtypes of neurons from a 

set of progenitor cells.  

Rod and cone photoreceptors are specialized light-sensing neurons with 

highly structured membrane disks (called outer segments), which contain visual 

pigments and other phototransduction components.  In most mammals (including 

humans and mice), rod photoreceptors greatly outnumber cones and generally 

account for over 70% of all cells in the retina (Carter-Dawson and LaVail, 1979).  

Although the morphology and physiology of photoreceptors are well documented, 

the developmental pathways from a multipotent retinal progenitor to a committed 

precursor and a terminally-differentiated photoreceptor are only beginning to be 

elucidated.  

NRL belongs to the basic motif-leucine zipper (bZIP) family of transcription 

factors and is an essential regulator of early events leading to the birth and 

development of rod photoreceptors (Akimoto et al., 2006, Mears et al., 2001, Oh 

et al., 2007, Rehemtulla et al., 1996 and [waroop et al., 1992).  It is preferentially 

expressed in rods (and not other retinal cells) and pineal gland (Akimoto et al., 

2006 and Swain et al., 2001).  In mice lacking NRL, rods are transformed to 
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cones that share morphological, molecular, and electrophysiological 

characteristics similar to wild type cones (Daniele et al., 2005, Mears et al., 2001 

and Nikonov et al., 2005).  More recently, gain of function studies reveal that 

NRL can influence all photoreceptor precursors to initiate a rod differentiation 

program at the expense of cones (Oh et al., 2007).  Despite the absence of 

cones, cone bipolar and horizontal interneurons are present in the adult retina 

but do not attain appropriate neuronal morphology during synaptogenesis (Oh et 

al., 2007 and Raven et al., 2007).  CRX is a photoreceptor-specific 

homeodomain protein that plays a critical role in the maturation of photoreceptors 

(Chen et al., 1997 and Furukawa et al., 1997), but it does not appear to be 

essential for initial specification events (Furukawa et al., 1999).  Mis-expression 

studies in adult iris cells (Akagi et al., 2005) suggest that CRX acts as a 

photoreceptor competence factor before NRL defines rod identity.  Control of 

photoreceptor cell fate also involves the participation of NR2E3, a photoreceptor-

specific orphan nuclear receptor (Akhmedov et al., 2000, Chen et al., 2005, 

Cheng et al., 2004, Haider et al., 2000 and Peng et al., 2005).  The rd7 mice 

carrying an antisense L1 insertion into exon 5 of the Nr2e3 gene exhibit a 

progressive photoreceptor degeneration accompanied by 1.5–2 fold increase in 

the number of S-cones (Akhmedov et al., 2000, Chen et al., 2006, Haider et al., 

2001 and Ueno et al., 2005).  Ectopic expression of NR2E3 or NRL (Cheng et al., 

2006 and Oh et al., 2007) in the photoreceptor precursors of Nrl−/− mice results in 

the complete inhibition of cone developmental program (Cheng et al., 2006); 
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however, in contrast to NRL (Oh et al., 2007), functional rods are not generated 

by NR2E3 expression alone (Cheng et al., 2006).  

Given that NRL and NR2E3 functions are overlapping and NR2E3 

expression is undetectable in the Nrl−/− mice (Cheng et al., 2006, McIlvain and 

Knox, 2007, Mears et al., 2001 and Oh et al., 2007) it has been suggested that 

NR2E3 is downstream of NRL in transcriptional hierarchy controlling retinal 

development (Mears et al., 2001).  In this report, we have examined whether 

NR2E3 is a direct target of NRL and evaluated the precise role NRL in cone 

specification in the absence of NR2E3.  We also present expression profiles of 

retinas from transgenic mice that ectopically express either NRL and NR2E3 or 

NR2E3 alone in cone precursors, with a goal to identify cone-enriched genes in 

mature photoreceptors. 

 

Materials and Methods  

Transgenic mice.  The Crxp-Nrl/WT and Crxp-Nr2e3/WT mice were generated 

previously (Cheng et al., 2006; Oh et al., 2007).  We mated Crxp-Nrl/WT mice 

with the rd7 mice (procured from Jackson Laboratory) to generate Crxp-Nrl/rd7 

mice.  The mice, used for analysis reported here, were in a mixed background of 

129X1/SvJ and C57BL/6J. PCR primers for genotyping the Crxp-Nrl/WT allele 

are: F: 5’-AGCCAATGTCACCTCCTGTT-3’ and R: 5’-

GGGCTCCCTGAATAGTAGCC-3’.  PCR primers for genotyping the rd7 allele 

are as reported (Haider et al., 2001).  All studies involving mice were performed 
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in accordance with institutional and federal guidelines and approved by the 

University Committee on Use and Care of Animals at the University of Michigan. 

 

Gene Profiling.  The details of microarray analysis have been described earlier 

(Yoshida et al., 2004; Yu et al., 2004; Zhu et al., 2005).  Briefly, total RNA (Trizol, 

Invitrogen) from P28 retinas was used to generate double-stranded cDNA for 

hybridization to mouse GeneChips MOE430.2.0, per guidelines (Affymetrix).  

Total retinal RNA from four independent samples was used for each evaluation.  

Normalized data were subjected to two-stage analysis based on false discovery 

rate with confidence interval (FDRCI) for identifying differentially expressed 

genes (Zhu et al., 2005). 

 

Immunohistochemistry.  Retinal whole mounts and 10 µm sections were 

probed with the following antibodies (Cheng et al., 2004; Strettoi et al., 2002): 

rabbit S-opsin, rabbit M-opsin, and rabbit cone-arrestin (generous gift from C. 

Craft, University of Southern California, Los Angeles, CA, and Chemicon), mouse 

anti-rhodopsin (1D4 and 4D2; generous gift from R. Molday, University of British 

Columbia, Vancouver, Canada).  The secondary antibodies for fluorescent 

detection were AlexaFluor 488 and 546 (Molecular probes, Invitrogen).  Sections 

were visualized using an Olympus FluoView 500 laser scanning confocal 

microscope.  Images were subsequently digitized using FluoView software 

version 5.0. 
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EMSA.  The electrophoretic mobility shift assays were performed using 

established methods (Hao et al., 2003), with minor modifications.  Nuclear 

protein extracts from transfected COS-1 cells were prepared using a commercial 

kit (Active motif, Carlsbad, CA), and expression of NRL protein was confirmed by 

SDS-PAGE followed by immunoblotting.  Nuclear extracts were incubated with 1 

µg poly (dI-dC) at 4°C for 15 min in the binding buffer (12 mM HEPES [N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid], pH 7.9; 60 mM KCl; 4 mM 

MgCl2; 1 mM EDTA [ethylenediaminetetra acetic acid]; 12% glycerol; 1 mM 

dithiothreitol; and 0.5 mM phenylmethylsulfonyl fluoride [PMSF]).  Then, 32P-

labeled double-stranded oligonucleotide (40,000 cpm) was added and the 

reaction was incubated at 4°C for 20 min.  The DNA probe (-2820 nt to -2786 nt: 

NRE F5’-TGGCCTCTGGTGGCTTTGTCAGCAGTTCCAAGGCT-3’, NRE R 5’-

AGCCTTGGAACTGCTGACAAAGCCACCAGAGGCCA-3’) contains a putative 

NRL-response element (NRE) (underlined) that is predicted by Genomatix.  In 

competition studies, nuclear extracts were pre-incubated with 50 or 100X 

unlabeled oligonucleotide for 30 min at room temperature and incubated with 

labeled probe at room temperature for 20 min.  A mutant oligonucleotide (F: 5’-

TGGCCTCTGGTGGCTT TATTTGCAGTTCCAAGGCT-3’, R: 5’- 

AGCCTTGGAACTGCAAATAAAGC CACCAGAGGCCA-3’) with three nucleotide 

change in the NRE site was also used to compete for the protein binding to the 

probe.  In order to immunologically identify the components in protein-DNA 

complexes, nuclear extracts were incubated with 2.0 µg of the anti-NRL antibody 

or normal rabbit IgG for 30 min at room temperature, followed by the addition of 
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labeled probe and a further incubation for 20 min at room temperature.  The 

reaction mixtures were electrophoresed on 6% polyacrylamide gels at 175 volts 

for 2.5 hr and subjected to autoradiography. 

 

ChIP.  The chromatin immunoprecipitation assays were performed using a 

commercial kit (Active motif, Carlsbad, CA).   Briefly, four snap-frozen retinas 

from wild type C57BL/6J mice were cross-linked for 15 min at room temperature 

with 1% formaldehyde in PBS containing protease inhibitors (Oh et al., 2007).  

The reaction was stopped by adding glycine (125 mM), followed by 5 min 

incubation at room temperature.  The remaining steps were performed according 

to the manufacturer’s instructions, using anti-NRL polyclonal antibody or normal 

rabbit IgG.  ChIP DNAs were used for PCR amplification of a 248-bp fragment (-

2989nt to -2742nt), containing a putative NRE (as determined by Genomatix), 

with primers 5’- GCATGCACTGTTCAAACACC-3’ and 5’-

GATAGGCTGTGCAGGGGTTA-3’. PCR with another pair of primers (5’-

TGTCCTGAGTCTCC CTGCTT -3’ and 5’- TAAGGCTGGCCAT AAAGTGG -3’) 

that amplify a 209-bp fragment (1230 nt to 1438 nt) located about 4 kb 

downstream from the NRE site, served as a negative control.  

 

ERG.  Electroretinograms (ERGs) were recorded from 2–3 month old adult mice.  

Animals were dark-adapted for at least 12 h before intraperitonial administration 

of ketamine (93 mg/kg) and xylazine (8 mg/kg).  After pupil dilation with topical 

1% atropine and 0.5% tropicamide, corneal ERGs were recorded from both eyes 
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using gold wire loops with 0.5% tetracaine topical anesthesia and a drop of 2% 

methylcellulose for corneal hydration.  A gold wire loop placed in the mouth was 

used as reference, and the ground electrode was attached to the tail.  Body 

temperature was maintained at 37 °C with a heating pad.  ERGs were recorded 

to single xenon white flashes (PS22 Photic Stimulator, Grass Telefactor, West 

Warwick, RI) presented in a Ganzfeld bowl.  Responses were amplified at 10,000 

gain at 1 to 1000 Hz (CP511 AC amplifier, Grass Telefactor), and digitized at a 

rate of 32 kHz. A notch filter was used to remove 60 Hz line noise.  Stimulus 

intensity was attenuated with neutral density filters and ERGs were recorded to 

increasing intensity (− 6.0 to 1.09 log cd-s/m2).  Scotopic ERGs were recorded at 

3 to 60 s interstimulus intervals depending on the stimulus intensity and 

responses were computer averaged with at least 20 averages at the lower 

intensities.  Animals were then light adapted for 10 min by exposure to a white 

32 cd/m2 rod saturating background, and photopic ERGs were recorded for 

single flash white stimuli over a 2 log unit range.  The a-wave was measured 

from the pre-stimulus baseline to the initial trough.  B-waves were measured from 

the trough of the a-wave when present or from the baseline to the b-wave 

maximum.  A second recording system was used to record S- and M-cone ERGs 

(Espion e2, Diagnosys LLC, Lowell, MA).  Light-adapted ERGs were recorded on 

a 40 cd/m2 background to a xenon flash and a UV filter (360 nm peak; Hoya U-

360 filter, Edmund Optics, Barrington, NJ).  M-cone ERGs were isolated using a 

green light-emitting diode (510 nm peak) on the Espion e2.  The flash energy 

was adjusted to elicit responses of approximately equal amplitude for the two 
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wavelengths in WT mice.  These stimuli were then used to record S- and M-cone 

ERGs in WT and in Crxp-Nrl/rd7 mice.  

 

RESULTS 

NRL directly binds to the Nr2e3 promoter 

To determine whether NRL can modulate NR2E3 expression, we first 

analyzed the promoter of the Nr2e3 gene and identified four sequence regions 

that are conserved in mammals (Figure III-1 A).  In silico analysis revealed a 

putative NRL response element (NRE) in one of the conserved regions (see 

Figure III-1 A, grey box).  Addition of nuclear extracts from COS-1 cells 

expressing the NRL protein, but not from mock-transfected cells, to 32P-labeled 

NRE oligonucleotide resulted in band-shift in electrophoretic mobility shift assays 

(EMSA) (Figure III-1 B; lanes 1–3), suggesting the binding of NRL to NRE 

sequence in the Nr2e3 promoter region.  The specificity of binding was 

substantiated by competition with an excess of unlabeled oligonucleotide 

spanning the NRE but not with a mutant sequence (lanes 4–6).  The major 

shifted band (shown by the arrowhead) was clearly detectable upon the addition 

of rabbit IgG but not anti-NRL antibody (lanes 7, 8), providing further evidence in 

support of NRL's binding to Nr2e3-NRE.  To determine whether NRL could bind 

the Nr2e3 promoter in vivo, we performed chromatin immunoprecipitation (ChIP) 

experiments.  Cross-linked protein–DNA complexes from wild-type adult retinas 

were immunoprecipitated with anti-NRL antibody, and purified ChIP DNA was 

used for PCR with primers flanking the Nr2e3-NRE site.  A strong enrichment of 
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the Nr2e3-NRE promoter fragment was observed with anti-NRL antibody 

compared to rabbit IgG (Figure III-1C).  Additionally, no significant enrichment 

was detected for another randomly-selected sequence in the Nr2e3 gene 

(negative control) (Figure III-1 C). 

 

NRL induces the Nr2e3 promoter activity in transfected cells 

We then examined the activity of a 4.5 kb Nr2e3 promoter fragment 

(encompassing the conserved NRE sequence; see Figure III-1 A) in the 

presence of NRL.  Transfection of HEK-293 cells with NRL, but not CRX, 

expression plasmid induced the luciferase reporter activity that was driven by the 

Nr2e3 promoter (Figure III-1 D).  Co-transfection of HEK-293 cells with both NRL 

and CRX plasmids resulted in further increase of the Nr2e3 promoter activity 

(Figure III-1 D).  This is consistent with previously-reported synergistic activation 

of several rod-specific genes by NRL and CRX (Chen et al., 1997, Cheng et al., 

2004, Mitton et al., 2000 and Pittler et al., 2004). 

 

Overlapping yet distinct gene profiles are generated by NRL and NR2E3 

Recent investigations into the role of NRL and NR2E3 (Chen et al., 2005, 

Cheng et al., 2006, Hsiau et al., 2007, Oh et al., 2007 and Peng et al., 2005) and 

our findings reported here (Figure III-1) suggest that NRL suppresses cone 

differentiation by directly signaling through NR2E3.  This level of regulation also 

implies that many molecular defects observed in mice lacking functional NR2E3 

(e.g., the rd7 mouse) are also present in the Nrl−/− mice (Corbo and Cepko, 2005 
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and Mears et al., 2001).  To dissect the transcriptional activity of NRL versus 

NR2E3 in mature photoreceptors, we took advantage of two recently-generated 

transgenic mouse models — Crxp-Nrl/WT (Oh et al., 2007) and Crxp-Nr2e3/WT 

(Cheng et al., 2006).  In these mice, a 2 kb Crx proximal promoter (Furukawa et 

al., 2002) leads to the expression of NRL or NR2E3 in photoreceptor precursors 

and transformation of cones to rod photoreceptors, without any obvious 

perturbation in retinal lamination or development of other cell types (Cheng et al., 

2006 and Oh et al., 2007).  

In the Crxp-Nrl/WT retinas, NRL and consequently NR2E3 ((Oh et al., 

2007), see Figure III-1) are ectopically expressed in cone precursors; while only 

NR2E3 (and not NRL) is ectopically expressed in cone precursors of the Crxp-

Nr2e3/WT retina.  NRL and NR2E3 are also expressed in the developing rod 

precursors of both transgenic lines.  Therefore, gene profiling of retinas from 

Crxp-Nrl/WT and Crxp-Nr2e3/WT mice can reveal expression changes induced 

by NRL+NR2E3 or NR2E3 alone in cone precursors, respectively.  Retinal RNA 

from P28 adult mice was hybridized to Affymetrix MOE430.2.0 GeneChips, which 

contain 45,101 probesets for mouse transcripts.  A comparative analysis of gene 

clusters from Crxp-Nrl/WT and Crxp-Nr2e3/WT retinas to WT samples revealed a 

number of genes involved in diverse signaling pathways and transcriptional 

regulation; Table III-1 shows the genes with FDRCI P-value of < 0.1 and a fold 

change > 4.  In addition to established cone-specific genes, we also discovered 

several new genes down-regulated in the Crxp-Nrl/WT and Crxp-Nr2e3/WT 

coneless groups which are potential cone-enriched target genes.  We then 
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compared Crxp-Nrl/WT and Crxp-Nr2e3/WT gene profiles to Nrl−/− (cone-only) 

and rd7 (1.5–2 fold more S-cones) profiles.  Many cone phototransduction genes 

that are up-regulated in the Nrl−/− (cone-only, Table III-2) and rd7 (1.5–2 fold 

more S-cones, Table III-3) retinas are also significantly repressed in the Crxp-

Nrl/WT and Crxp-Nr2e3/WT coneless samples.  Gene expression changes 

showing FDRCI P-value < 0.1 and a fold change > 10 are listed in Table III-2 and 

Table III-3.  

 

Expression of NRL can only suppress a subset of S-cones in the absence 

of NR2E3 

Similarities in gene profiles of Crxp-Nrl/WT and Crxp-Nr2e3/WT retinas 

raise the question whether NRL can suppress cone gene expression and 

differentiation even in the absence of NR2E3.  To evaluate this, we mated Crxp-

Nrl/WT mice to rd7 mice to generate a transgenic mouse line (Crxp-Nrl/rd7) that 

expresses NRL, but not NR2E3, in both cone and rod precursors.  We first 

analyzed cone markers, such as S- and M-opsin, in retinal whole mounts.  As 

previously demonstrated (Applebury et al., 2000), we observed an inferior to 

superior gradient of S-opsin expression (Figure III-2 A–C) and a superior to 

inferior gradient of M-opsin in the WT mice (data not shown).  As predicted, S-

opsin was detected throughout in the Nrl−/− retinal whole mounts (Figure III-2 D–

F) and increased S-opsin staining was observed in the rd7 retinas (Figure III-2 J–

L); however, both S-opsin and M-opsin could not be detected in Crxp-Nrl/WT 

retinas (Figure III-2 G–I, and data not shown).  In both Nrl−/− and rd7 mice, whorls 
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are detected in the whole mount preparations (Figure III-2 D–F and J–L).  In 

Crxp-Nrl/rd7 retinal whole mounts, we observed a large absence of S-opsin 

staining in the superior domain (Figure III-2 M, N) yet detected a small population 

of S-opsin positive cells in the inferior retina (Figure III-2 M, O).  The expression 

of M-opsin was unaltered (data not shown), and whorls could be detected 

throughout the retinas (Figure III-2 M–O).  

As shown previously (Haider et al., 2001, Mears et al., 2001 and Oh et al., 

2007), the number of cone arrestin (mCAR) and S-opsin positive cells in retinal 

cross-sections from Nrl−/− and rd7 retinas were increased compared to WT, and 

there is an absence of cone-specific markers in Crxp-Nrl/WT mice (Figure III-3 A: 

a–o).  In Crxp-Nrl/rd7 sections, we observed normal cone arrestin and M-opsin 

staining but an absence of S-opsin in the superior domain (Figure III-3 A: m–o).  

In the inferior domain, we identified a few S-opsin positive cones and many S-

opsin positive cell bodies at the inner portion of the ONL (Figure III-3 B: i, j).  

These findings were in contrast to S-opsin positive cell bodies distributed 

throughout the ONL and INL in Nrl−/− and rd7 retinas (Figure III-3 B: c–d and g–

h).  The expression of cone arrestin and M-opsin in the Crxp-Nrl/rd7 mice 

(harboring the Crxp-Nrl transgene in rd7 background with no NR2E3 function) but 

not in the Crxp-Nrl/WT mice (harboring the Crxp-Nrl transgene in wild-type 

background) demonstrates that NR2E3 is the primary suppressor of cone gene 

expression and cone differentiation.  

 

Cone function is detected but reduced in the Crxp-Nrl/rd7 mice 
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We performed electroretinography (ERG) recordings to measure the 

massed-field potential across the retina in the different transgenic lines.  As 

reported previously (Oh et al., 2007), the ectopic expression of NRL in cone 

precursors (Crxp-Nrl/WT) resulted in an absence of cone-driven responses, 

whereas rod-driven components were preserved (Figure III-4 A–E).  To 

characterize the functionality of cone-driven neurons in the absence of NR2E3, 

we analyzed the photopic response from Crxp-Nrl/rd7 mice (Figure III-4 C, D).  In 

response to brief flashes of white light, we first detected a cone-driven b-wave at 

0.09 log cd-s/m2.  At the higher flash intensity of 1.09 log cd-s/m2 the maximum 

b-wave amplitude was about 40% of the WT and rd7 response amplitude (Figure 

III-4 C, D). 

We further examined the photopic ERG in the Crxp-Nrl/rd7 transgenic 

mice by recording light-adapted cone-mediated responses at 360 nm and 

510 nm to isolate S-cone and M-cone function, respectively (Figure III-4 F).  As 

predicted, the Nrl−/− mice showed an enhanced S-cone response when compared 

with WT mice (Daniele et al., 2005 and Mears et al., 2001).  There was no 

significant difference in the M-cone response amplitude between Nrl−/− and WT 

mice.  We then recorded from Crxp-Nrl/rd7 mice and found that while the M-cone 

response was reduced by 40% from WT mice, S-cone responses were 

undetectable (Figure III-4 F). 

 

DISCUSSION 
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Regulatory networks defining rod versus cone identity are under the direct 

control of bZIP transcription factor NRL (Mears et al., 2001 and Oh et al., 2007).  

In this report, we demonstrate that NR2E3 is a direct transcriptional target of NRL 

and that specification of rod cell fate over cone differentiation is dictated by the 

activation of NR2E3 in response to NRL.  Restricted expression of these two key 

transcriptional regulators in photoreceptor precursors is essential for proper 

development of rods.  Ectopic expression of either protein in cone precursors can 

reprogram the cone development pathway to generate rod photoreceptors 

(Cheng et al., 2006 and Oh et al., 2007).  We had shown previously that ectopic 

NR2E3 expression can inhibit the development of functional S and M-cones in 

the Nrl−/− retina (Cheng et al., 2006).  The current data suggest that NR2E3 is 

necessary to completely repress the development of M and some S-cones, and 

NRL alone can only repress a subset of S-cones.  These genetic models 

therefore raise the possibility of heterogeneity within S-cones.  

Several studies have indicated the association of NRL and NR2E3 with 

promoter elements of cone-specific genes (Oh et al., 2007, Peng et al., 2005 and 

Peng and Chen, 2005).  In this report, we analyzed the relationship of NRL and 

NR2E3 in modulating the cone developmental program.  Data from 

immunohistochemical and physiological studies presented herein suggest that 

NRL modulates the development of S-cones, and its gain or loss of function 

primarily results in alterations of the S-cone pathway.  One possibility is that S-

cones represent the “default fate” for early-born photoreceptors in mice ([Cepko, 
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2000] and [Szel et al., 2000]) and that the expression of NRL controls an 

important node for this process.  

The presence of ectopic S-opsin cells in the INL of rd7 and Nrl−/− retinas is 

reminiscent of previous findings showing opsin-like immunoreactive cells in the 

developing retina (Gunhan et al., 2003).  Our study reveals the presence of 

ectopic S-opsin positive cells that persist and survive in the adult retinas from 

Nrl−/− and rd7 mice.  What can account for the existence and survival of these 

neurons outside of their normal retinal photoreceptor layer?  It is possible that 

NRL and NR2E3 dictate the expression of specific guidance cues that facilitate 

photoreceptor pathfinding to the vicinity of their appropriate target regions in a 

highly stereotyped and directed manner.  Several candidate proteins that show 

an altered expression profile in the Nrl−/− retina appear to match the role of an 

axonal guidance cue (Yoshida et al., 2004 and Yu et al., 2004).  These include 

members of families of secreted signaling molecules, such as Wingless/Wnt and 

Decapentaplegic/Bone Morphogenic Protein/Transforming Growth Factor B 

(Dpp/BMP/TGFb) (Charron and Tessier-Lavigne, 2005), which appear to have 

important functions during retinal development (Belecky-Adams and Adler, 2001, 

Liu et al., 2006, Liu et al., 2003, Osakada et al., 2007, Van Raay and Vetter, 

2004, Xu et al., 2004 and Yu et al., 2004).  We hypothesize that in the absence 

of NRL, and consequently NR2E3, changes in Wnt and BMP pathway may 

create noise in a homing signal that is required to (i) bring all photoreceptors to 

the ONL, and/or (ii) promote the appropriate wiring of rods and cones to bipolar 

and horizontal neurons.  Although our current microarray experiments of P28 
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retinas did not reveal significant changes in classical pathfinding genes, future 

efforts will focus on profiling early postnatal stages of retinal development.  

The absence of cones in the Crxp-Nrl/WT and Crxp-Nr2e3/WT retinas 

resulted in normal architecture and lamination features, similar to the WT.  A lack 

of structural abnormalities has allowed us to profile expression changes that may 

be specifically due to the absence of one class of neurons (i.e., cones).  While 

the retinal profiles of Crxp-Nrl/WT and Crxp-Nr2e3/WT mice had many common 

genes, the Crxp-Nrl/WT profile contained more unique changes in gene 

expression, consistent with NRL being upstream of NR2E3 in transcriptional 

hierarchy.  One interesting novel gene revealed from the gene profiling 

experiments is PTTG1, which is down-regulated in the coneless retinas.  The 

inhibitory chaperone PTTG1 has been implicated as a mitotic checkpoint gene 

involved at the metaphase-anaphase interface (Zou et al., 1999).  Elucidation of 

specific roles of PTTG1 and other cone-enriched genes will require further 

investigation.  

In conclusion, our work refines the roles of NRL and NR2E3 during 

photoreceptor differentiation.  We show, for the first time, that NR2E3 is a direct 

downstream target of NRL and that the correct sequential expression of these 

transcriptional regulators may be required for appropriate expression of rod-

specific opsin and suppression of cone phototransduction genes during normal 

retinal development.  Additional studies are needed to precisely define how 

specific down-stream targets of NRL and NR2E3 fine-tune the differentiation of 

functional photoreceptors from post-mitotic committed precursors. 
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Notes to Chapter III 

A modified version of this chapter has been previously published in:  

Brain Research. Oh, E.C., Cheng, H., Hao, H., Jia, L., Khan, N.W., and 

Swaroop, A. (2007). Rod differentiation factor NRL activates the expression 

of nuclear receptor NR2E3 to suppress the development of cone 

photoreceptors. 

 

Outside contribution: Hong Cheng performed luciferase experiments.  

Hong Hao performed ChIP and EMSA experiments.  Lin Jia performed 

perfusions and some immunohistochemistry.  Naheed Khan conducted the 

ERG experiments.  We also thank Matthew Brooks and Ritu Khanna for 

microarray chip experiments and analyses. 
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Figure III-1.  NRL directly binds to and activates the Nr2e3 promoter.  (A) 
Schematic of approximately 4.5 kb genomic DNA upstream of the Nr2e3 
transcription start site (denoted as +1).  The four boxes indicate sequence 
regions conserved in mammals. A comparison of sequences in the second 
conserved region including a putative NRE (highlighted in grey) is shown.  (B) 
EMSA.  NRL containing COS-1 nuclear extract and 32P-labeled NRE probe (-
2820 nt to -2786 nt) were used in EMSA. Lanes 1 to 8, 40 000 cpm 32P-labeled 
probe; lane 2, 10 µg nuclear extract (NE) from untransfected COS-1 cells; lanes 
3 to 8, 10 µg nuclear extract from COS-1 cells transfected with Nrl cDNA 
expression plasmid (NRL NE); lane 4, 50-fold excess wild-type unlabeled NRE 
probe; lane 5, 100-fold excess wild-type unlabeled NRE probe; lane 6, 100-fold 
unlabeled mutant NRE probe; lane 7, 2.0 µg anti-NRL antibody; and lane 8, 2.0 
µg normal rabbit IgG.  (C) ChIP assays with chromatin from adult C57BL/6J 
retinas.  Lane1, NRL antibody used for IP; lane 2, normal rabbit IgG used for IP, 
a negative control; and lane 3, input DNA used as template for PCR.  Top panel: 
primers amplifying the NRE containing region (-2989 nt to -2742 nt) in the Nr2e3 
promoter region were used for PCR. Bottom panel: primers amplifying an 
irrelevant region (1230 nt to 1438 nt) in the Nr2e3 gene were used for PCR.  (D) 
Luciferase transactivation assays showing the activation of Nr2e3 promoter by 
NRL and CRX. 
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Figure III-2.  NRL does not completely suppress S-opsin expression in the 
absence of NR2E3.  (A–C) WT retina, showing superior to inferior gradient of S-
opsin expression. (D–F) Nrl−/− retina.  In the absence of NRL and NR2E3, whorls 
(arrows) and S-opsin can be detected throughout the retina.  (G–I) Crxp-Nrl/WT 
retina.  Ectopic expression of NRL in early cone precursors results in the 
complete absence of S-opsin.  (J–L) rd7 retina. In the absence of functional 
NR2E3, enhanced S-opsin expression and whorls (arrows) are observed in both 
superior and inferior domain.  (M–O) Crxp-Nrl/rd7 retina. In the presence of NRL 
but absence of NR2E3, expression of S-opsin is reduced but detectable in the 
inferior domain.  Asterisks are positioned at 3-o'clock relative to the whorls (M). 
Arrows indicate the irregular S-opsin staining of whorls (O).  Scale bar: 200 µm 
(A, D, G, J, and M), and 50 µm (B, C, E, F, H, I, K, L, N, and O). 
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Figure III-3.  Expression of cone-specific markers and targeting of some 
photoreceptors to the ONL is perturbed in the absence of NRL and NR2E3.   
Immunostaining with mCAR, S-opsin, and M-opsin from WT (A: a-c), Nrl-/- (A: d-
f), Crxp-Nrl/WT (A: g-i), rd7 (A: j-l) and Crxp-Nrl/rd7 (A: m-o) retinal 
cryosections.  Compared to WT (B: a-b) and Crxp-Nrl/WT (B: e-f), targeting of S-
cones (arrows) to the ONL is perturbed in Nrl-/- (B: c-d) and rd7 retinas (B: g-h), 
and S-opsin positive nuclei are present in the INL. S-cone staining (arrowheads) 
in the Crxp-Nrl/rd7 retinas (B: i-j) is observed in cells closest to the outer 
plexiform layer. OS, outer segments; ONL, outer nuclear layer; INL, inner nuclear 
layer; BBZ, bisbenzamide. Scale bar: 25 µm.  
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Figure III-4.  Absence of normal cone function in cone photoreceptors 
expressing NRL but not NR2E3.  (A) Representative dark-adapted ERGs for 
increasing stimulus intensities are shown for WT, Nrl−/−, Crxp-Nrl/WT, rd7 and 
Crxp-Nrl/rd7 mice at two months age.  Intensity-response functions for the (B) a-
wave and (C) b-wave amplitude were plotted on log-linear coordinates.  (D) 
Representative light-adapted ERGs waveforms with increasing stimulus intensity 
for WT, Nrl−/−, Crxp-Nrl/WT, rd7 and Crxp-Nrl/rd7 mice, as indicated.  (E) Plots of 
the b-wave amplitude as a function of stimulus intensity for light-adapted 
conditions.  At 2 months of age, there was no significant difference in the 
photopic response between WT and rd7 mice.  (D–E) B-wave amplitude at the 
maximum intensity for the Crxp-Nrl/rd7 mice.  A reduction of about 40% is 
observed from the WT and rd7 mice.  (F) Representative light-adapted S- 
(360 nm) and M- (510 nm) cone ERGs showing a smaller M-cone response and 
undetectable S-cone response in Crxp-Nrl/rd7 mice compared to WT mice.  Bars 
indicate  ±  standard error. 
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Table III-1.  Non-redundant differentially expressed genes in Crxp-Nrl/WT or 
Crxp-Nr2e3/WT samples compared to WT retinas.   
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Table III-2.  Non-redundant differentially expressed genes in Crxp-Nrl/WT or 
Crxp-Nr2e3/WT samples compared to Nrl-/- retinas.   
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Table III-3.  Non-redundant differentially expressed genes in Crxp-Nrl/WT or 
Crxp-Nr2e3/WT samples compared to rd7 retinas.   
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CHAPTER IV 

AFFERENT CONTROL OF HORIZONTAL CELL MORPHOLOGY REVEALED 
BY GENETIC RE-SPECIFICATION OF RODS AND CONES 

 
 

Abstract 

 

The first inhibitory interneurons of the retina, the horizontal cells, stratify 

within the outer plexiform layer, extending dendritic terminals that connect to the 

pedicles of cone photoreceptors, and an axon terminal system contacting the 

spherules of rod photoreceptors.  How the horizontal cells acquire this 

morphology is unknown, but instructive interactions with afferents are suggested 

to play a role in the development of synaptic circuits.  Here we show that the 

morphology of the axon terminal system and the dendritic field are selectively 

regulated by innervation from their respective afferents: Genetic re-specification 

of all cones to become rods, in Crxp-Nrl transgenic mice, produces an atrophic 

dendritic field, yet leaves the axon terminal system largely intact.  By contrast, in 

the retinas of Nrl-/- mice, where the population of rod photoreceptors is re-

specified to adopt a cone fate, the dendritic field is hypertrophic while the axon 

terminal system is underdeveloped.  Our studies reveal that, while cell-intrinsic 

mechanisms drive the formation of independent dendritic versus axonal domains, 

the afferents play a selectively instructive role in defining their respective 

morphologies.  
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Introduction 

Horizontal cells in the mammalian retina give rise to dendrites that ramify 

in a radiate pattern within the outer plexiform layer (OPL), where their sole 

source of innervation is from the terminals of cone photoreceptors, the pedicles 

(Kolb, 1974).  One form of horizontal cell, being the only type present in the 

murine retina (Peichl et al., 1998), also extends an axonal-like process that 

courses for a short distance away from the dendritic field before elaborating a 

terminal arbor.  Despite the similarity to axons elsewhere in the nervous system, 

the horizontal cell axon does not conduct nerve impulses but rather provides 

metabolic support for its terminal arbor, which is selectively innervated by the 

spherules of rod photoreceptors and serves as an independent functional entity 

comparable to the dendritic domain (Peichl et al., 1998).  The dendritic and the 

axonal domains are not only post-synaptic to the cones and the rods, 

respectively, but also provide inhibitory feedback onto those photoreceptors 

through a currently debated mechanism (Kamermans et al., 2001; Hirasawa and 

Kaneko, 2003; Hirano et al., 2005).  The molecular mechanisms generating this 

polarization of the cell into a dendritic and an axonal domain are unknown, but 

cell-intrinsic specification seems likely (Horton and Ehlers, 2003; Jan and Jan, 

2003; Horton et al., 2005).  Afferent innervation may still, however, shape the 

differentiation of these cells, through secreted factors or by way of membrane-

bound or activity-dependent signaling (McAllister, 2000; Cline, 2001; Lom et al., 
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2002; Wong and Ghosh, 2002; Hua and Smith, 2004; Sorensen and Rubel, 

2006).   

In the mouse retina, the afferent population of photoreceptors is 

composed of 97% rods and 3% cones (Carter-Dawson and LaVail, 1979b).  We 

sought to define the role of the afferents by taking advantage of two different 

mouse models that genetically re-specify the cones to adopt a rod fate, or the 

rods to adopt a cone fate, by manipulating the expression of the transcription 

factor gene Nrl (Swaroop et al., 1992).  In Crxp-Nrl transgenic mice, (referred to 

herein as rod-full), the Crx promoter drives Nrl expression, instructing the post-

mitotic cone precursors to become rods; hence, cones are never formed (Oh et 

al., 2007).  This transgenic mouse is distinct from a previously described cone-

less mouse (Reese et al., 2005), in which the expression of an attenuated 

diphtheria toxin gene driven by a cone opsin promoter obliterates the cones 

during the first postnatal week (Soucy et al., 1998).  The loss of Nrl in Nrl-/- mice 

(referred to herein as cone-full), in contrast, causes all post-mitotic rod 

precursors to become cones (Mears et al., 2001; Daniele et al., 2005).  In this 

report, we first describe the general condition of the outer retina in these two 

mouse models, using immunofluorescence techniques to identify the 

organization of the outer plexiform layer (OPL).  We subsequently examine the 

morphology of individually labeled horizontal cell axons and dendrites to 

determine the extent to which their properties are dependent upon the afferents.   
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Materials and Methods 

Tissue preparation.  All experiments were conducted in accord with the NIH 

Guide for the Care and Use of Laboratory Animals, and under authorization by 

respective Institutional Animal Care and Use Committees at UCSB and at the 

University of Michigan.  Wild-type C57BL/6 mice, rod-full (Crxp-Nrl) mice (Oh et 

al., 2007) and cone-full (Nrl-/-) mice (Mears et al., 2001) were given a lethal dose 

of sodium pentobarbital (120 mg/kg, i.p.) and perfused with 0.9% saline followed 

by 4% paraformaldehyde in 0.1M sodium phosphate buffer (pH 7.2 at 20oC).  

Whole retinas were either dissected from the eyes, or the entire eye was 

embedded in agarose and sectioned through the optic nerve head on a 

Vibratome at a thickness of 100 µm.  Retinal sections were prepared for 

immunofluorescence, while whole retinas were prepared for DiI labeling.  

 

Immunofluorescence.  Retinal sections from one month old mice were triple-

labeled using antibodies to calbindin (a mouse monoclonal antibody at 1:10,000 

from Sigma, C8666; St. Louis, MO), neurofilaments (a rabbit polyclonal 

antiserum to the 150kDa neurofilament subunit at 1:500 from Millipore, AB1981; 

Temecula, CA), cytochrome oxidase (a mouse monoclonal antibody at 1:100 

from Invitrogen, AB6403; Eugene OR), piccolo (an affinity-purified guinea pig 

antibody at 1:1000; Dick et al., 2001; a generous gift from W. Altrock, Leibniz 

Institute for Neurobiology) and mouse cone arrestin (an affinity-purified rabbit 

antibody (LUMIj) at 1:1000; Zhu et al., 2002; a generous gift from C. Craft, 
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University of Southern California).  Primary antibodies were detected with a 

cocktail of appropriate donkey secondary IgGs conjugated to Cy2 or Alexa 488, 

Cy3 and Cy5 (at 1:200 from Jackson ImmunoResearch Labs; West Grove, PA, 

or from Invitrogen; Eugene, OR).  Specimens were examined using an Olympus 

Fluoview laser scanning confocal microscope with a 60× objective, in which 

image stacks were collected at 1 µm intervals across 10 µm. 

 

DiI labeling.  Crystals of the lipophilic dye, DiI (Invitrogen, D3911; Eugene, OR) 

were inserted into fixed whole retinas from adult (2-4 month old) mice, and in P-5 

and P-10 mice, as previously described (Reese et al., 2005).  Individual 

horizontal cell dendritic fields or axon terminals, labeled by diffusion through their 

axons, were subsequently imaged at 0.5 µm intervals using confocal microscopy, 

and reconstructed through their full three-dimensional extent using Metamorph 

(Downington, PA).  For adult labeled cells, the dendritic field area, the number of 

primary dendrites, and the depth of dendritic processes were determined using 

Metamorph, as were the area and the depth of the axonal terminal fields.  One-

way ANOVAs were conducted, followed by post-hoc Scheffe tests to determine if 

any of these morphological features differed between the adult wild-type, rod-full 

and cone-full retinas.  Additional details are provided elsewhere (Reese et al., 

2005).   
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Results 

Re-organization of the outer retina in rod-full and cone-full mice 

The characteristic features of the outer retina in the wild-type adult mouse 

are shown in Figure IV-1 a-d: an antibody to mouse cone arrestin, in blue, shows 

the cone outer segments at the top (Figure IV-1 a); beneath these, the cone inner 

segments and somata are labeled less intensely.  The somata are restricted to 

this outermost portion of the outer nuclear layer (ONL), largely adjacent to the 

mitochondria-rich inner segments of the rods and cones, detected using an 

antibody to cytochrome oxidase, shown in green in Figure IV-1 c.  Each cone 

soma has a prominent mitochondrion situated basally (Carter-Dawson and 

LaVail, 1979a), at the location where the axon emerges (Figure IV-1 c).  Those 

axons extend through the full thickness of ONL, expanding to produce a stratum 

of pedicles within the OPL (blue profiles in the OPL in Figure IV-1 a, c).  The 

presynaptic cytomatrix protein, piccolo, present along the tip of synaptic ribbons 

in both pedicles and spherules (Dick et al., 2001), has also been labeled with an 

antibody, shown in red (Figure IV-1 a-d).  Figure 1b and d are higher 

magnification views of the OPL, showing the localization of piccolo along the 

base of the pedicles, revealing the clustered distribution of the synaptic ribbons 

associated with each pedicle; the remaining piccolo labeling, largely outside or 

overlapping the apical aspect of the pedicles, identifies the distribution of the 

ribbon synapses associated with the rod spherules (unlabeled).  The pedicles 

and spherules are also rich in mitochondria (Figure IV-1 d), though the 
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mitochondria are more apically positioned relative to the ribbons, never co-

localizing with the piccolo labeling (Carter-Dawson and LaVail, 1979a).  Shown 

as well, in green in Figure IV-1 a, is labeling for the calcium binding protein, 

calbindin, a marker for horizontal cells and their processes, particularly their 

proximal dendrites.  Because the plexus of horizontal cell dendrites is so dense 

and overlapping (Reese et al., 2005), the processes from individual horizontal 

cells cannot be resolved using immunostaining techniques.  Notice the sites of 

contact between the calbindin-positive processes and the pedicles (Figure IV-1 

b).   

The architecture of the adult rod-full retina (Crxp-Nrl) is comparable to that 

of the wild-type retina, except that no cones are present (Figure IV-1 g-j).  

Labeled cone outer segments and somata are entirely absent (note the lack of 

blue profiles in Figure IV-1 g, i), as is the stratum of perinuclear mitochondria in 

the outer parts of the ONL (Figure IV-1 i; compare with green basal labeling in 

the blue somata in Figure IV-1 c), along with the stratum of pedicles within the 

OPL (Figure IV-1 g-j).  Consistent with this absence of stratified cone pedicles, 

the pattern of piccolo-immunostaining in the OPL is now devoid of an isolated 

stratum of clustered ribbons adjacent to the horizontal cell plexus (compare 

Figure IV-1 h, j, l with b, d, f).  The calbindin-positive plexus of dendrites is still 

labeled in the rod-full retina, showing no overt changes relative to the wild-type 

retina (green label in Figure IV-1 h).  The architecture of these rod-full retinas is 

similar to that of a cone-less transgenic mouse model in which nearly all (97%) of 

the cone photoreceptors die during the early postnatal period following activation 
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of an attenuated diphtheria toxin transgene driven by a cone opsin upstream 

regulatory sequence (Soucy et al., 1998; M.A.R. and B.E.R. unpublished 

observations).   

The cone-full (Nrl-/-) retina, by contrast, shows cone somata labeled for 

mouse cone arrestin throughout the full thickness of the ONL (Figure IV-1 m, n), 

and large cytochrome oxidase-positive puncta throughout the ONL (Figure IV-1 

o, p), consistent with other evidence indicating that the entire population of cells 

in the ONL has now adopted a cone fate (Mears et al., 2001; Daniele et al., 2005; 

Nikonov et al., 2005).  Within the OPL, a single stratum of large cone pedicles is 

no longer detectable; cone arrestin labeling now fills the entire depth of the OPL, 

but discrete profiles are less readily discriminated (Figure IV-1 m-p).  The piccolo 

labeling pattern within the OPL also lacks an isolated stratum of basally located, 

clustered, ribbons adjacent to the horizontal cell plexus (Figure IV-1 n, p; 

compare with 1 b, d).  These morphological changes are consistent with EM data 

showing a reorganization of the OPL, in which pedicle-like structures with 

multiple synaptic ribbons are present throughout the depth of the OPL, but that 

the ribbons within a pedicle are not stratified along the basal surface (Strettoi et 

al., 2004).  

The axon of the horizontal cell is rich in neurofilaments (Peichl and 

Gonzalez-Soriano, 1993), and antibodies to the medium neurofilament subunit 

label processes within the OPL that do not, for the most part, colocalize with 

calbindin-labeled dendrites (Figure IV-1 e, f).  Both are distributed within the OPL 

of the wild-type retina; however, the distal tips of the dendrites and the axon 
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terminal system, where these contact the pedicles and spherules, respectively, 

are less readily labeled (Figure IV-1 e, f).  In the rod-full retina, the organization 

of the OPL in such immunolabeled specimens is not appreciably different, but for 

the presence of occasional sprouting by labeled processes into the ONL (Figure 

IV-1 k, l).  The sprouting is most clearly revealed using antibodies to NF, but 

these processes are also occasionally calbindin-positive, and cannot be 

unambiguously associated with either a dendritic or axonal component on the 

basis of their immunolabeling alone (Figure IV-1 k, l).  Such sprouting is not 

detected in the cone-full (Nrl-/-) retina, where the immunolabeling pattern for NF is 

qualitatively like that seen in the wild-type retina (Figure IV-1 q, r).  

 

Dendritic morphology is regulated by the cones 

Horizontal cells give rise to, on average, six primary dendrites that extend 

from the soma to course within the OPL, branching to establish a dendritic field 

with an average diameter of 79 µm (Figure IV-2 a).  Higher order branches give 

rise to periodic terminal clusters that contact individual pedicles within the 

dendritic field, and because of their overlapping dendritic coverage, about six 

neighboring horizontal cells contact each pedicle (Reese et al., 2005). 

Horizontal cells in the rod-full retina, by contrast, show an atrophic 

dendritic morphology when compared with wild-type retina (Figure IV-2 b), yet 

dendritic field size is largely unchanged, being on average 78 µm in diameter.  

The periodic terminal clusters are absent, although small clusters are infrequently 

found within the field.  The atrophic morphology of these cells is comparable to 
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that observed in the retinas of cone-less transgenic mice, but the latter show 

conspicuously larger and dystrophic, if comparably rare, terminal clusters (Reese 

et al., 2005).  The overall similarity in phenotype between these models 

demonstrates that the atrophy cannot reflect putative degenerative changes 

following denervation, because the horizontal cells in the rod-full retina are never 

exposed to cone pedicles during development.   

Horizontal cells in the cone-full retina have an average of eight primary 

dendrites, and establish a dendritic field that is slightly smaller than that in the 

wild-type or cone-less retinas, averaging 71 µm in diameter (Figure IV-2 d, e).  

More conspicuously, the density of higher order branching within the dendritic 

field is far greater in the cone-full retina (Figure IV-2 c).  Within that dense 

dendritic field, individual terminal clusters associated with single pedicles are not 

discriminable when compared with wild-type horizontal cells, due to the density of 

pedicles within the OPL.  Consistent with this, labeled dendritic fields, when 

viewed in rotation, now occupy the full depth of the OPL rather than arborizing 

only within the innermost portion of this synapse-rich region, where their synaptic 

contacts with pedicles are normally found (compare with Figures IV-1 b and n).  

Dendritic arborization depth was significantly greater in these cone-full retinas 

(Figure IV-2 f).   

These features discriminating the dendritic field of horizontal cells in wild-

type, rod-full and cone-full retinas emerge after the normal period of 

synaptogenesis with the cone pedicles, beginning at P-5.  Prior to this stage, the 

dendrites of horizontal cells radiate in multiple directions from the soma.  On P-5, 
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they begin to stratify in the nascent OPL, though periodic terminal clusters have 

yet to form (Reese et al., 2005).  Horizontal cells in the wild-type, rod-full and 

cone-full retinas are barely discriminable at this initial stage of stratification 

(Figure IV-3 a-c).  By P-10, however, the wild-type cells display periodic clusters 

studded across the stratified dendritic field, associated with the sites of pedicle 

contact (Figure IV-3 d), while those in the rod-full retina show no evidence of 

terminal clustering (Figure IV-3 e), well after they have stratified within a cone-

free environment.  Rather, in the absence of pedicles, the dendritic fields of 

horizontal cells in the rod-full retina exhibit hypertrophic branching (Figure IV-3 

e), as they do in the cone-less transgenic retina at this stage (Reese et al., 

2005).  The dendritic fields of P-10 horizontal cells in the cone-full retina are also 

hypertrophic (Figure IV-3 f), maintaining this excessive branching into maturity 

(Figure IV-2 c), whereas the horizontal cells deprived of any cone afferents 

subsequently atrophy (Figure IV-2 b). 

    

Axonal morphology is regulated by the rods 

The axon terminal and its appendages, forming contacts exclusively with 

rod spherules, has a more variable size, shape and orientation (Figure IV-4 a).  

The axon broadens to form the thicker body of the terminal, giving rise to multiple 

branches that in turn yield individual branchlets extending into the spherules, with 

2-4 per spherule in association with the 1-2 ribbons made by each spherule 

(Migdale et al., 2003).  In the rod-full retina, the morphology of single axon 

terminals appears expanded in size, although not significantly (Figure IV-4 b, d).  
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Cone-full retinas, by contrast, having no rod photoreceptors, display an axon 

terminal arbor that is comparably atrophic: while the primary branch of the axon 

terminal is present, the higher-order branchlets that characterize the wild-type 

and rod-full terminal field are often reduced in density in the cone-full retina 

(Figure IV-4 c).  Associated with this, the overall area of the axon terminal field is 

smaller (Figure IV-4 d), though the depth of its distribution is greater (Figure IV-4 

e), spanning the thickness of the expanded OPL (Figure IV-1 n, p, r).   

The rod spherules normally establish synaptic contacts after the cone 

pedicles initiate synaptogenesis (Olney, 1968; Blanks et al., 1974; Sherry et al., 

2003). Curiously, changes in the axon terminals can be detected as early as P-5, 

when both the developing arbor, as well as the girth of the axonal process itself, 

are reduced relative to those axonal arbors for wild-type and rod-full retinas 

(Figure IV-5).  In the absence of any rods, their growth would appear to be 

stunted even at this early stage, but they go on to develop a morphology similar 

to that of a wild-type axon terminal arbor, albeit reduced in area and expanded in 

depth (Figure IV-4).  

 

Discussion 

The establishment of neuronal architecture within the central nervous 

system is a complex developmental process that is as yet poorly elucidated.  The 

lesser complexity and ready access to the neural retina render it an ideal system 

for dissecting the underlying mechanisms that generate synaptic connectivity and 
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cellular architecture using genetically-manipulated mouse models.  In this report, 

we show that the distinct properties of the dendritic and the axonal arbors of 

horizontal cells are independently controlled by their afferents during 

development.  The periodic distribution of cone pedicles instructs a comparably 

periodic formation of terminal clusters in the wild-type retina.  In strains of mice 

with a 50% reduction in cone afferents, the frequency of such terminal clustering 

is coincidently reduced (Reese et al., 2005), while a complete elimination of cone 

afferents in the rod-full retina leads to a failure of these clustered terminals to 

form.  Conversely, the large increase in cone afferents in the cone-full retina 

induces a blanket of dendritic terminals to form, no longer showing any 

periodicity nor stratification in their formation, extending to fill the depth of the 

OPL.  Together, these results make clear that the cone afferents play an 

instructive, rather than merely a permissive, role in defining the dendritic 

morphology of a horizontal cell.   

The dense distribution of rod spherules present in the wild-type retina, 

differentiating slightly later than the cone pedicles (Olney, 1968; Blanks et al., 

1974), acts independently upon the axon terminal system, inducing a comparably 

dense branching and terminal sprouting to form.  Re-specification of the cones to 

become rods appears to yield a larger axonal arbor, while the entire loss of the 

rods in the cone-full retina yields an underdeveloped axon terminal field, although 

those changes do not appear to be proportional to the size of the afferent 

population.  The stunted development of the axon terminal system in the cone-

full retina is apparent even before synaptogenesis, suggesting that differentiating 
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rods are already supplying a signal for axon terminal outgrowth during normal 

development.  Together, these results demonstrate how different afferent 

populations regulate the morphology of a nerve cell.  While horizontal cell 

morphology is unique in having discrete compartments as synaptic targets, nerve 

cells throughout the central nervous system exhibit regional specificity in the 

distribution of their afferents upon the cell surface, and may in turn prove to 

differentiate those select portions of the post-synaptic cell under the instructive 

effects of those afferents.     

The selective responsiveness of these two compartments of the horizontal 

cell cannot be explained by the effects of regionally distinct signals, because the 

axon terminals and the dendritic arbors of neighboring horizontal cells overlap 

one another within the OPL.  Despite their overlapping distributions, they must 

recognize one another as distinct entities since each forms gap junctional 

contacts exclusively with their homotypic partners (He et al., 2000).  While there 

is a slight temporal delay between the maturation of cone pedicles and rod 

spherules, both the dendritic arbor and a discriminable axon are already present 

by the time of synaptogenesis (Raven et al., 2005), and so each must be 

exposed to the same local environment within the developing OPL. Instead, our 

results suggest that cell-intrinsic mechanisms establish a polarization of the 

neuron, trafficking proteins to each compartment that constrain their subsequent 

development and render them sensitive to distinct instructive signals. The fact 

that horizontal cell dendrites become hypertrophic at P-10 in the rod-full retina, 

much like they do in the cone-less retina (Reese et al., 2005), suggests that, 
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while this cellular compartment is instructively regulated by afferent density, there 

is an intrinsic component to this developmental process as well, as though the 

horizontal cells are programmed to seek out afferent innervation.  Failing to find 

it, they undergo regression, while finding normal or excessive densities of cone 

afferents, they branch accordingly to innervate all of the pedicles within their 

dendritic fields.  

Our data, showing how the local retinal environment regulates neuronal 

morphology, run counter to recent publications favoring a cell-autonomous 

specification of morphological differentiation.  For example, Math5-/- and Brn3b-/- 

mice contain reduced numbers of retinal ganglion cells that still develop a normal 

dendritic morphology (Lin et al., 2004), even in the presence of excessive 

amacrine cells (Wang et al., 2001).  Cholinergic amacrine cells likewise develop 

a normal dendritic arbor despite reductions in the local density of homotypic cells 

as well as other cell types (Farajian et al., 2004).  In comparison, the horizontal 

cells would appear to be sensitive to both their afferents (present data) as well as 

their homotypic neighbors, given the reciprocal relationship between dendritic 

field size and horizontal cell density across different strains of mice (Reese et al., 

2005).  Somewhat surprisingly, the horizontal cells of the cone-full retinas had 

smaller dendritic fields, indicating that field size is not exclusively controlled by 

proximity to homotypic neighbors.  The expansion of cellular volume associated 

with this degree of dendritic branching may come at a cost to the overall dendritic 

field extent, reducing slightly dendritic coverage. 
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The present results are also unexpected given the recent demonstration 

that the primary target of the rod spherules, the rod bipolar cells, do not fail to 

differentiate their dendrites in the absence of rods in the Nrl-/- retina.  Rather, they 

become innervated by the re-specified population of cone photoreceptors 

(Strettoi et al., 2004).  Rod bipolar cells do not differentiate normally in the rd1 

retina, in which the rod and cone photoreceptor populations die postnatally, 

indicating that they do require an afferent population to form (Strettoi and 

Pignatelli, 2000).  Our data suggest that, while the central post-synaptic elements 

at the ribbons of such re-specified cones may now include rod bipolar dendrites 

(Strettoi et al., 2004), many of the lateral post-synaptic elements should be the 

dendritic terminals of horizontal cells, indicating that the recruitment of the rod 

pathway in this mouse model may be only a partial one.  That the axon terminal 

arbor is not entirely atrophic in these cone-full retinas reveals some intrinsic 

capacity to differentiate; as these terminals extend throughout a thicker OPL in 

such retinas, but do not exhibit conspicuous sprouting into the ONL (present 

results and Oh et al., 2007), they are also likely to form synaptic contacts with the 

re-specified cones.   

The developmental plasticity associated with horizontal cell morphology 

described in the present study is distinct from recent descriptions of horizontal 

cell sprouting in rodent models of retinal degeneration.  Disrupted gene function, 

affecting either phototransduction in the outer segment (Park et al., 2001; Strettoi 

et al., 2002; Cuenca et al., 2004; Claes et al., 2004) or neurotransmission within 

the outer plexiform layer (Mansergh et al., 2005; Chang et al., 2006) can lead to 
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an outgrowth of ectopic horizontal cell processes into the inner and/or outer 

nuclear layers.  This sprouting appears to be relatively slow, progressive and in 

some cases reactive, indicating the cellular response to maintain normal 

morphology or function in degenerating retina (Lewis et al., 1998; Fariss et al., 

2000; Jones et al., 2003).  In this report, the present mouse models primarily 

reveal the cellular determinants for attaining appropriate neuronal morphology 

during synaptogenesis. 
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Notes to Chapter IV 

 
A modified version of this chapter has been accepted for publication 

in: Journal of Neuroscience. Raven, M.A., Oh, E.C., Swaroop, A., and 

Reese, B.E. (2007). Afferent Control of Horizontal Cell Morphology 

Revealed by Genetic Re-specification of Rods and Cones. 

 

Outside contribution: Edwin Oh generated the coneless mice for the 

analysis and prepared samples for immunohistochemistry and Dil labeling 

(performed by Mary Raven). He also generated gene profiles from P5 and 

P10 coneless and rodless mice. 
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Figure IV-1.  A comparison of retinal markers in WT, rod-full, and cone-full 
retinas.   Sections were immunolabeled for piccolo to identify the ribbon 
synapses, and to reveal the plexiform layers as a landmark.  Sections in the top 
two-thirds of the figure (a-d; g-j; m-p) also show labeling for cone arrestin (blue), 
to identify the cone photoreceptor cells and their inner and outer segments, 
axons and pedicles.  Sections in the top (a, b; g, h; m, n) and bottom (e, f; k, l; 
q, r) thirds were also labeled for calbindin (green) to identify the horizontal cells 
and their dendritic plexus, while those in the middle third (c, d; i, j; o, p) were 
labeled for mitochondria using an antibody to cytochrome oxidase (green).  
Sections in the bottom third (e, f; k, l; q, r) were also labeled for neurofilaments 
(blue), to identify the axonal plexus.  Calibration bar in q = 50 µm for the low 
magnification images, and = 14 µm for the high magnification images. 
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Figure IV-2.  Examples of individual horizontal cells and their dendritic 
fields labeled with DiI.  Staining can be observed in the mature wild-type (a), 
rod-full (b) and cone-full (c) retinas.  The dendritic field is sparse and atrophic in 
the rod-full retina, while it is hypertrophic in the cone-full retina.  Calibration bar = 
50 µm. The dendritic field area is slightly smaller in the cone-full retina (d), and 
the number of primary dendrites is slightly greater (e), while the thickness of the 
dendritic arbor is larger (f).    
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Figure IV-3.  Developing dendritic fields in the transgenic animals.  Wild-
type (a, d), rod-full (b, e) and cone-full (c, f) retinas were labeled with DiI at P-5 
(a-c) and P-10 (d-f).  Dendritic fields become discriminable only after P-5, when 
synaptogenesis between the pedicles and horizontal cells takes place.  
Calibration bar = 50 µm.  
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Figure IV-4.  Individual horizontal cell axon terminals labeled with DiI.  
Staining is shown for wild-type (a), rod-full (b) and cone-full (c) retinas.  The 
terminal field is dense in the wild-type and rod-full retinas, while it is relatively 
atrophic in the cone-full retina.  Calibration bar = 50 µm.  The size of the axon 
terminal field is reduced in the cone-full retina, while its depth of termination is 
greater (d, e).   
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Figure IV-5.  Developing axonal arbors in the transgenic animals.  Wild-type 
(a), rod-full (b) and cone-full (c) retinas are labeled with DiI at P-5.  Even at this 
early stage, before synaptogenesis between the spherules and axonal arbor, the 
girth of the axon and the size of the developing terminal are reduced in the cone-
full retina.  Calibration bar =  50 µm.  
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CHAPTER V 

FUNCTIONAL CONSERVATION OF LARGE MAF TRANSCRIPTION 
FACTORS  

 
 

Abstract 

 

The family of large Maf transcription factors is involved in controlling cell 

fate and coordinating various biological processes.  During retinal development in 

mammals, expression of the large Maf protein NRL is sufficient and necessary 

for the differentiation of rod photoreceptors.  A complete loss of rod function and 

super-normal cone function, mediated by S cones is observed in Nrl-/- mice.  We 

have used genetic rescue experiments to investigate the functional equivalence 

of large Maf proteins in the differentiation of rod precursors.  Using transgenic 

mice, we first demonstrate that the Nrl-/- phenotype can be rescued by targeted 

expression of the NRL protein under the control of a rod-specific Nrl proximal 

promoter.  We then show that under the control of these rod-specific regulatory 

elements, three other large Maf gene products are able to substitute NRL in 

activating the expression of a key rod-specific marker, rhodopsin.  However, only 

the expression of NRL can suppress S-opsin activity.  Using transient 

transfection studies, we provide biochemical evidence that large Maf proteins 

together with CRX can activate a rhodopsin-promoter reporter, while only NRL 

can suppress Crx-mediated activation of the S-opsin promoter.  Our results 

indicate that despite considerably diverged sequences, large Maf proteins can 
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partially promote rod photoreceptor identity.  We propose that differences in large 

Maf function rely in part on their spatiotemporal expression during development. 

 

Introduction  
 

In the vertebrate retina, a common proliferating progenitor gives rise to 

amacrine, ganglion, horizontal, cone, rod, and bipolar neurons and Muller glia 

(Holt et al., 1988; Turner and Cepko, 1987; Turner et al., 1990; Wetts and Fraser, 

1988).  The earliest postmitotic neuron in mice is born around embryonic day (E) 

11 and cells are added to the retina up to postnatal day (P) 21 (Carter-Dawson 

and LaVail, 1979b; Young, 1985).  While the inner retina is mainly composed of 

interneurons (horizontal, amacrine, and bipolar cells) and ganglion cells, the 

outer retina consists of photoreceptors (rods and cones) that are responsible for 

converting light information into an electrical signal.  In rodents, rhodopsin is the 

visual pigment in rods while cones utilize either S or M-opsin (reviewed in Fu and 

Yau, 2007).  The retina is therefore particularly unique in that it is the only 

neuronal tissue directly exposed to light.  This anatomical feature has permitted 

facile genetic manipulation (Matsuda and Cepko, 2004; Matsuda and Cepko, 

2007) of specific genes in the central nervous system. 

  Maf proteins constitute a family of diverse and well-conserved 

transcription factors implicated in the control of cell fate and coordinating various 

developmental processes (Artner et al., 2007; Cordes and Barsh, 1994; Ho et al., 

1996; Kim et al., 1999b; Matsuoka et al., 2003; Mears et al., 2001; Ogino and 

Yasuda, 1998; Tsuchiya et al., 2006; Zhang et al., 2005).  The Maf family shares 
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homology to the v-Maf oncoprotein, which was originally identified in the genome 

of the AS42 chicken musculoaponeurotic sarcoma retrovirus (Nishizawa et al., 

1989).  Sequence analysis of these transcription factors reveal that they contain 

a highly conserved basic region and a leucine zipper domain that allows them to 

bind to target DNA elements and dimerize with the same or other proteins 

possessing a bZIP domain (Kataoka et al., 1994; Kerppola and Curran, 1994).  

All Maf proteins are subdivided into a large or small group of transcription factors 

depending on the presence of a putative activation domain (Kataoka, 2007).  

Collectively, Maf proteins dictate the specification of cellular identity and function 

through tightly regulated spatiotemporal expression patterns, interactions with co-

factors and regulation of specific downstream genes.   

 In mammals, four large Maf proteins have emerged as important 

regulators of insulin gene expression (Artner et al., 2007; Matsuoka et al., 2003; 

Zhang et al., 2005), erythroid differentiation (Ho et al., 1996), segmentation 

(Cordes and Barsh, 1994) and retinal (Mears et al., 2001) and lens development 

(Kim et al., 1999b).  Structural studies of MafA (L-Maf), MafB (Kreisler), c-Maf (v-

Maf), and NRL reveal that in addition to the bZIP domain, they share a conserved 

Maf N-terminal domain related to transactivator function.  Recent findings 

suggest that this domain is not only important for the activation of downstream 

targets, but also for its biological activity (Benkhelifa et al., 2001; Bessant et al., 

1999; Ochi et al., 2003).  Maf protein function has been elucidated through loss 

of function studies.  Mice lacking either MafA or MafB show a defect in the 

regulation of insulin transcription.  While the loss of MafB resulted in a 50% 
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decrease of insulin and glucagon producing cells (Artner et al., 2007), MafA-/- 

mice revealed a decrease in insulin secretion with no change in cell numbers 

(Zhang et al., 2005).  Disruption of the c-Maf gene confirmed a role for the 

cellular counterpart of v-Maf in Th2 differentiation and interleukin-4 production 

from CD4+ T lymphocytes (Kim et al., 1999a).  Interestingly, c-maf-/- mice are also 

microphthalmic and display a defect in the elongation of the posterior lens fiber 

cells (Kim et al., 1999b).  Expression analyses of the neural leucine zipper (NRL) 

protein reveal that it is the only Maf protein expressed in the retina (Akimoto et 

al., 2006).  NRL is both necessary (Mears et al., 2001) and sufficient (Oh et al., 

2007) for rod photoreceptor development, and recent studies demonstrate that 

Nrl determines whether photoreceptor precursors differentiate into a rod or cone 

photoreceptor (Oh et al., 2007). 

 Given their differences in expression patterns and proposed roles in the 

differentiation of diverse tissues, it seemed possible that individual Maf proteins 

might perform some common activity in the retina.  However, since not all Maf 

proteins are expressed in the retina, we queried whether factors with conserved 

activity mediate different functional outcomes when expressed in the appropriate 

tissue.  To gain insight into whether all large Maf proteins display functional 

conservation in the retina we first generated transgenic mice that expressed Nrl 

under the control of a 2.5 kb proximal promoter (Akimoto et al., 2006) in the Nrl-/- 

background.  Our analyses revealed that the expression of the transgene 

resulted in various levels of histological and functional rescue of the Nrl-/- 

phenotype.  With the knowledge that the Nrl promoter could facilitate the proper 
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spatiotemporal expression of NRL, we then utilized an in vivo electroporation 

technique (Matsuda and Cepko, 2004; Matsuda and Cepko, 2007) to express all 

large Maf proteins under the control of the Nrl promoter in the Nrl-/- background.  

Our results revealed that while rhodopsin expression could be activated in vivo, 

high levels of S-opsin expression in the photoreceptor layer was unchanged.  

These findings suggest that while all large Maf proteins could promote rod-

specific identity, each factor has evolved to direct specific developmental 

activities and cannot completely compensate for each other. 

 

Materials and Methods 
 

Transgene constructs and generation of transgenic mice.  A 2.5 kb mouse 

Nrl promoter DNA (GenBank # AY526079) and the Nrl coding region (GenBank # 

NM008736) with an additional Kozak sequence were amplified and cloned into a 

pEGFP-1 vector (Clontech).  The 4 kb Nrlp-Nrl insert was purified and injected 

into fertilized Nrl-/- (mixed background of 129X1/SvJ and C57BL/6J) mouse 

oocytes (UM transgenic core facility).  Transgenic founders were bred to the Nrl-/- 

mice to generate F1 progeny.  All studies involving mice were performed in 

accordance with institutional and federal guidelines and approved by the 

University Committee on Use and Care of Animals at the University of Michigan. 

 

In vivo electroporation.  P2-P4 mice were anesthetized on ice before receiving 

subretinal DNA injections (1–2 µl).  A homemade copper probe was then placed 
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on both eyes and 5 pulses of 75 V were delivered using an electroporation pulse 

generator. 

 
Immunohistochemistry and confocal analysis.  Mice were sacrificed at P9-11 

and eyes were removed and immersed in 4% paraformaldehyde (pH 7.2) for 1 h 

at room temperature.  After the lens was removed, we used an epifluorescent 

dissecting microscope to identify the retinal region that revealed GFP 

fluorescence.  Eyecups were then equilibrated in 30% sucrose and frozen in 

embedding medium for cryosectioning. Sections (10 µm) were used for 

immunostaining.  At least three retinas from three different injections were used 

for analysis. Retinal sections were probed with rhodopsin (1D4 and 4D2; 

generous gift from R. Molday, University of British Columbia, Vancouver, 

Canada) and S-opsin (generous gift from C. Craft, University of Southern 

California, Los Angeles, CA, and Chemicon).  Sections were visualized under an 

Olympus FluoView 500 laser scanning confocal microscope or a Leica TSC NT 

confocal microscope, equipped with an argon-krypton laser.  Images were 

digitized using FluoView software version 5.0 or Metamorph 3.2 software. 

 

Electroretinography.  Six-week old animals were anesthetized with 

intraperitoneal ketamine 86 mg/kg and xylazine 13 mg/kg.  Pupils were fully 

dilated with topical0.5% tropicamide and 0.5% phenylepherine HCl.  Body 

temperature was maintained by placing the animal on a heating pad before and 

during recordings.  Gold wire loops placed on the cornea as active and reference 

electrodes.  Mice were dark-adapted for overnight (16 hrs) and recordings were 
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made from both eyes simultaneously beginning at dark-adapted threshold.  A 30 

µs full-field stimulus was used with maximum intensity of 0.6 log cd-s/m2, and 

attenuated with neutral density filters.  Photopic responses were recorded on a 

34 cd/m2 full-field background.  Amplified and filtered responses (5,000 gain, 0.1-

1000 Hz) from each eye were used as separate data points since variability 

within a group depended more on the ERG setup than phenotype of individual 

animals.   

 

Transient transfection and luciferase assays.  HEK 293 cells (ATCC CRL-

1573) were maintained in DMEM (Invitrogen) supplemented with 10% fetal 

bovine serum, penicillin G (100 U/ml) and streptomycin (100 µg/ml) at 37°C in a 

humidified incubator with 5% CO2.  Cells were transfected in 24-well plates 

(1x105 cells/well) using Fugene 6 (Roche, Indianapolis, IN, USA) according to 

manufacturer's instructions.  Expression constructs for CRX, NR2E3, NRL 

(Cheng et al., 2004), MafA, MafB, and c-Maf were used for transfection . 

Luciferase assays were performed as described earlier (Mitton et al., 2003).  All 

transfections included the reporter construct pGL2-BRP-130 or pGL3-S-opsin as 

well as pCMV-ß-gal to normalize for transfection efficiency.  Luciferase 

expression was measured using luminescence-based assay system (Promega, 

Madison, WI, USA).  The luciferase activity was calculated as fold change on the 

basis of the control transfections using empty vector and pGL2-BRP-130 or 

pGL3- S-opsin. 

 

RESULTS AND DISCUSSION 
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The expression of NRL under the control of the Nrl promoter results in the 

rescue of rhodopsin expression and suppression of S-opsin expression  

To first establish an in vivo system to examine the function of large Maf 

proteins, we took advantage of the Nrl–/– mice.  This allowed us to analyze 

whether the exogenous expression of NRL could: (1) decrease the expression of 

cone-specific markers; (2) increase the expression of rhodopsin expression in the 

photoreceptor layer; (3) convert the morphology of an all-cone retina back to a 

predominantly rod-full retina; and (4) lead to a rescue of rod function.  An 

analysis of a previously characterized mouse Nrl promoter revealed that the 2.5 

kb proximal promoter shared four conserved domains in mammals (Figure V-1 a) 

(Akimoto et al., 2006).  We therefore generated a construct (Nrlp-Nrl) that 

permitted the expression of mouse Nrl under the control of this promoter (Figure 

V-1 b).  Injection of the transgene into Nrl–/– eggs yielded 9 founder lines of 

transgenic mice in a mixed 129X1/SvJ and C57BL/6J background (Nrlp-Nrl/Nrl-/-).  

We determined through PCR and Southern blot analysis of Nrlp-Nrl/Nrl-/- mouse 

tail DNA that only seven lines transmitted the transgene to their offspring (Figure 

V-1 d).  By immunoblot assays, the NRL protein was detected in only four 

founders (Figure 1 D). 

We then characterized the expression of rod and cone specific markers in 

the retina of adult transgenic mice.  As can be observed in wild-type mice, both 

S-opsin and rhodopsin are expressed at low levels in the cytoplasm, but highly 

expressed in the outer segments of photoreceptors (Figure V-2 A-D).  Since wild-
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type mice have rod-dominant retinas and Nrl-/- mice have cone-only retinas, 

obvious differences in rod and cone opsin expression can be easily distinguished 

(Figure V-2 E-H).  Of the seven founder lines, we determined that there were at 

least three groups of mice showing rhodopsin expression (low, medium, and 

high) when compared to retinas from the Nrl-/- mice.  Three of the seven founders 

expressed high levels of rhodopsin, one founder expressed medium levels, and 

three founders expressed low levels of rhodopsin. The difference in the 

expression level is probably due to the integration site of the transgene.  Retinal 

confocal images taken from a high rhodopsin-expressing founder, Nrlp-Nrl/Nrl-/- 

37, resembled staining observed from WT retinas (Figure V-2 A-D, Q-T).  A 

normal level of both S-opsin and rhodopsin expression indicated that this founder 

expressed NRL in most rod photoreceptors (Figure V-2 Q-T).  Medium rhodopsin 

expression was detected in an unusual line, Nrlp-Nrl/Nrl-/- 32.  Interestingly, 

rhodopsin staining was detected at high levels in both the outer segments and in 

the innermost rod cell bodies (Figure V-2 M-P).  Since these cell bodies typically 

belong to early born rods, it is possible that the Nrlp-Nrl transgene integrated in a 

genomic locus that corresponds to a novel gene expressed in firstborn rods.  Low 

or scattered rhodopsin expression is illustrated in retinal immunohistochemical 

images from founder Nrlp-Nrl/Nrl-/- 910 (Figure V-2 I-J).  Here, we noticed that 

cells expressing rhodopsin no longer expressed S-opsin (Figure V-2 I-J).  These 

transgenic lines demonstrate that when NRL is expressed under the control of 

the Nrl promoter, rhodopsin expression is activated while S-opsin expression is 

repressed.   
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NRL can rescue rod morphology and function in the Nrl–/– retina 

In the wild-type retina, rods and cones can be distinguished by several 

anatomical features.  Rods have small nuclei (4–5 µm diameter) with a 

characteristic polyhedral shape and contain a single, large clump of 

heterochromatin (Figure V-3 A), while cones have large nuclei (8-10 µm 

diameter) with several large clumps of heterochromatin (Figure V-3 A) (Carter-

Dawson and LaVail, 1979a).  Cone nuclei also typically occupy the outermost 

nuclei layer in the outer nuclear layer (ONL), while rod nuclei are distributed 

throughout the ONL (Figure V-3 A).  In the Nrl-/- retina, only cone nuclei can be 

detected in plastic sections and whorls and rossettes are frequently observed 

(Figure V-3 B) (Mears et al., 2001).  In agreement with immunohostochemical 

data on rhodopsin and S-opsin expression (Figure V-2), we discovered that the 

retinal histology in the Nrlp-Nrl/Nrl-/- transgenic mice varied according to the level 

of rhodopsin expression.  The high rhodospin-expressing line Nrlp-Nrl/Nrl-/- 37 

showed no signs of whorls and rossettes, and cone nuclei could only be detected 

in the outermost nuclei of the ONL (Figure V-3 E).  The Nrlp-Nrl/Nrl-/- 32 line 

again displayed an interesting phenotype where only the innermost nuclei of the 

ONL appeared rod-like (Figure V-3 D).  Finally, as predicted, the Nrlp-Nrl/Nrl-/- 

910 founder line revealed few characteristic rod nuclei, and appeared similar to 

Nrl-/- retinas (Figure V-3 C).   

In order to determine whether the presence of various histological features 

translated into a functional rescue of the Nrl-/- phenotype, we recorded 
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electroretinograms (ERGs) from the different founder lines.  We first established 

the response profiles from wild-type and Nrl-/- mice (Figure V-3 F-H).  As 

previously established, the Nrl-/- mice exhibit no dark-adapted ERG responses at 

or below -2.4 log cd-s/m2 (Figure V-3 F) but have super-normal photopic 

responses (Figure V-3 G).  Their dark-adapted thresholds are slightly below that 

of the rhodopsin knockout mouse, which has only cone function (Toda et al., 

1999).   This lower threshold and larger scotopic responses compared to the 

rhodopsin knockout mouse at and above -1.4 log cd-s/m2 is expected for Nrl-/- 

retinas that have a much greater number of cones.  The transgenic founder lines 

revealed dark-adapted responses at -2.4 log cd-s/m2 and below arising from rod 

activity.   These transgenic lines segregate by rod b-wave amplitude at -2.4 log 

cd-s/m2 in the order of Nrlp-Nrl/Nrl-/- 37 having the largest response and Nrlp-

Nrl/Nrl-/- 32 having the smallest.  The Nrlp-Nrl/Nrl-/- 32 rod response is 

considerably smaller than Nrlp-Nrl/Nrl-/-37, indicating fewer rods or rod 

responsivity (Figure V-3 F).  This functional data is consistent with our 

immunohistochemical and morphological analyses.  Since little rod function could 

be detected in Nrlp-Nrl/Nrl-/- 32, we did not record from the Nrlp-Nrl/Nrl-/- 910 line.  

Photopic amplitudes of the transgenic lines were inversely related to the order of 

the rod scotopic responses, indicating that the presence of more functional cones 

resulted in fewer functional rods (Figure V-3 G).  One can note that for the 

highest stimulus intensity in the dark-adapted state there is intermixing of 

response amplitudes for these two categories, but this is of no consequence as 
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this condition evokes a complex rod and cone response that is difficult to 

interpret.   

 

In vivo electroporation of large Maf proteins in the Nrl–/– retina results in the 

expression of rhodopsin in the photoreceptor layer 

Having established that a 2.5 kb proximal promoter could effectively drive 

the expression of NRL in the photoreceptor layer (Akimoto et al., 2006), we were 

curious whether other large family members could substitute for NRL function.  

We first examined the level of sequence identity and homology between the DNA 

binding domain from the four large Maf proteins.  Interestingly, the bZIP domain 

from MafA, MafB, and c-Maf was 70-80% identical and almost 90% similar to 

NRL (Figure V-4 A).  

To examine whether the sequence conservation translated to functional 

conservation, we then wanted to express the Maf proteins in Nrl-/- retinas.  As a 

first step to elucidate this function, we first generated transgenes in which the Nrl 

promoter was cloned upstream of each Maf gene (Nrlp-Nrl, Nrlp-MafA, Nrlp-

MafB, and Nrlp-c-Maf).  Using a modified version of a recently reported 

electroporation technique (Matsuda and Cepko, 2004), we injected each 

construct in the subretinal space of P2-4 newborn mice and electroporated the 

DNA in the direction of the retina.  A GFP vector was also co-electroporated into 

the retina to track the presence of the transgene.  Retinas were then harvested 

7-9 days later, and sections that revealed the expression of GFP were collected 

for further immunohistochemical analyses.  Though GFP could be detected 



 

 

158 

throughout the retina, expression of all large Maf proteins revealed rhodopsin 

expression only in the ONL (Figure V-4).  Interestingly, high rhodopsin 

expression could be detected both in the cell bodies and the outer segments.  In 

a parallel experiment, we also co-electroporated a GFP control vector, the large 

Maf transgenes, and a rhodopsin-DsRedII reporter.  Confocal analysis of retinal 

sections from this experiment also confirmed the activation of the rhodopsin-

DsRedII construct (data not shown). 

 

The expression of large Maf proteins drives the transactivation of the 

bovine rhodopsin promoter 

Using HEK 293 cells, we have previously established that NRL can bind 

and activate the rhodopsin promoter in transient transfection assays (Rehemtulla 

et al., 1996).  Expression of NRL with the homeobox transcription factor, CRX 

(Chen et al., 1997; Mitton et al., 2000) or nuclear receptor, NR2E3 (Cheng et al., 

2004; Peng et al., 2005) also demonstrated a synergistic or additive activation of 

the rhodopsin promoter construct, respectively.  Due to the high level of amino 

acid conservation in the bZIP domain and that large Maf proteins can activate 

rhodopsin expression in vivo, we then used the same rhodopsin promoter-

luciferase activity assay to test whether MafA, MafB, or c-maf could substitute for 

NRL.  While NRL alone resulted in a seven-fold activation of the reporter (Figure 

5-4 A), expression of all Maf proteins resulted in only a two to four-fold activation 

(Figure V-5 B-D).  We then transfected NRL together with CRX in our assay 

system and determined that the rhodopsin promoter was activated twenty-fold 
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(Figure V-5 A).  Co-expression of the three Maf family members with CRX did not 

result in synergistic activation of the rhodopsin promoter.  Instead, an additive 

effect of three to seven-fold activation could be observed (Figure V-5 B-D).   

 

Not all large Maf proteins can inhibit S-opsin expression in the Nrl–/– retina 

Given that Nrlp-Nrl/Nrl-/- transgenic mice reveal rhodopsin expression in 

the ONL and an absence of S-opsin expression, we wanted to verify whether the 

expression of the large Maf proteins, using the in vivo electroporation technique, 

could show a change in S-opsin expression.  We first tested the Nrlp-Nrl 

construct, and discovered that like the Nrlp-Nrl/Nrl-/- transgenic mice, S-opsin was 

not expressed in any rhodopsin-positive cell (Figure V-6 A-D).  We then analyzed 

retinal samples that had been electroporated with each Maf construct.  Though 

rhodopsin could be observed in response to the expression of the Maf protein, 

high levels of S-opsin was also expressed in the same cell (Figure V-6 E-P). 

 

NRL is the only large Maf protein that can inhibit Crx-mediated 

transactivation of the S-opsin promoter in vitro 

The in vivo expression of NRL in photoreceptor precursors resulted in the 

inactivation of S-opsin expression (Figure V-2).  Although we have previously 

demonstrated that NRL can bind to elements in the S-opsin promoter (Oh et al., 

2007), our recent studies suggest NR2E3 is the major repressor of M and S-

opsin expression.  These findings demonstrate that NRL activates NR2E3 

transcription, thereby suppressing cone opsin expression.  To test whether we 
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could phenocopy this result in vitro, we utilized similar transient transfection 

assays as earlier using a S-cone opsin promoter (Srinivas et al., 2006).  

Consistent with previous reports, we found that the expression of CRX alone 

could activate the S-cone promoter reporter six-fold (Peng et al., 2005; Srinivas 

et al., 2006).  We then expressed NRL with CRX and determined that NRL 

reduced the activation of the S-cone promoter to three-fold (Figure V-7 A).  We 

then tested whether the other large Maf proteins could substitute for NRL in 

suppressing Crx-mediated transactivation of the S-opsin promoter.  As can be 

observed in Figure V-7 B-D, no significant effect on the reporter could be 

recorded when MafA, MafB, or c-Maf was co-expressed with CRX. 

 

CONCLUSION 

During the development of diverse tissues, proper spatiotemporal control 

of large Maf proteins is observed in several cell-types. How lymphocytes, 

photoreceptors, lens fiber cells or insulin producing cells induce the expression of 

the correct large Maf is still unknown. In this report, we test a hypothesis that 

large Maf proteins can function outside of the tissue that they are normally 

expressed. Using transgenic mice and in vivo electroporation, we show for the 

first time that large Maf proteins can partially function in photoreceptors. Our 

selective use of genetic tools represents the first study in the mammalian retina 

of the functional equivalence of a well-conserved gene family. 
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Figure V-1.  Injection of the Nrlp-Nrl transgene results in several transgenic 
founders.  Schematic of approximately 2.5 kb genomic DNA upstream of the Nrl 
transcription start site (denoted as +1) (A). The four boxes indicate sequence 
regions conserved in mammals. The mouse Nrl promoter was used to drive the 
expression of mouse Nrl (B). A probe corresponding to Nrl (B) was employed to 
assay 4 transgenic founders using mouse genomic tail DNA. Southern blot 
analysis revealed a ~ 4 kb transgene band (C). Retinal tissue from these 
founders was used to test for NRL expression (D).  
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Figure V-2.  Expression of NRL rescues the Nrl-/- phenotype.  High levels of 
both rhodopsin and S-opsin staining could be observed in the outer segments 
from wild-type retinas (A-D).  In Nrl-/- retinas, rhodopsin could not be detected 
while S-opsin staining was distributed throughout the photoreceptors (E-H).  The 
Nrlp-Nrl/Nrl-/- 910 revealed high levels of S-opsin staining (I), similar to Nrl-/- 
retinas.  However, rhodopsin staining was detected in areas where S-opsin was 
not expressed (Arrows; J-L).  The Nrlp-Nrl/Nrl-/- 32 also revealed high levels of S-
opsin staining (M), similar to Nrl retinas.  In this line, we observed a row of nuclei 
closest to the INL that expressed rhodopsin (Arrows; N).  In these cells, no S-
opsin could be detected (M-P).  The Nrlp-Nrl/Nrl-/- 37closely resembled the wild-
type phenotype and showed normal levels of S-opsin (Bessant et al.) and 
rhodopsin (R-T).  OS, outer segments; ONL, outer nuclear layer; INL, inner 
nuclear layer; BBZ, bisbenzamide. Scale bar: 25 µm. 
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Figure V-3.  Rod morphology and function results from the expression of 
the Nrlp-Nrl transgene.  Semi-thin plastic sections from WT (A), Nrl-/- (B), Nrlp-
Nrl/Nrl-/- 910 (C), Nrlp-Nrl/Nrl-/- 32 (D), and Nrlp-Nrl/Nrl-/- 37 (E) were stained with 
toluidine blue.  A major difference between rods and cones is most obvious in the 
chromatin organization in the ONL (Arrows; A, E).  Whorls and rosettes are 
present in retinal sections from Nrl-/- and the Nrl/Nrl-/- 910 line (B-C).  Figures F-G 
show the average b-wave amplitude (+ SEM) of three mice (6 eyes) at each 
point.  Nrlp-Nrl/Nrl-/- 37 mice have a normal intensity vs. response relationship for 
both the scotopic (F) and photopic (G) ERG.  The appearance of a dark-adapted 
b-wave (F) below cone threshold in Nrlp-Nrl/Nrl-/- 32 and a reduction in the 
photopic (G) response compared to the Nrl-/- suggests a partial shift from all cone 
to cone plus rod function.  OS, outer segments; ONL, outer nuclear layer; INL, 
inner nuclear layer; GCL, ganglion cell layer. Scale bar: 25 µm. 
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Figure V-4.  Expression of large Maf proteins in the retina results in 
rhodopsin expression.  The sequence identity and similarity of bZIP domain 
from the large Maf proteins to NRL was computed using an alignment program 
(A). Co-electroporation of a GFP control vector and the Nrlp-Nrl transgene 
resulted in high levels of rhodopsin staining in the rod end feet, through the cell 
body and into the outer segments (B-E). Substituting the Nrlp-Nrl transgene with 
the Nrlp-MafA (F-I), Nrlp-MafB (J-M), and Nrlp-c-Maf (N-Q) transgenes also 
resulted in rhodopsin staining in the ONL.  OS, outer segments; ONL, outer 
nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. Scale bar: 25 
µm. 
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Figure V-5.  Large Maf proteins transactivate the bovine rhodopsin reporter 
construct.  HEK 293 cells were co-transfected with 0.3 µg of bovine rhodopsin –
130 to +72/luciferase fusion construct (pGL2-BRP-130) together with the 
indicated amount of CRX, NR2E3 and NRL (A), or CRX, NR2E3 and MafA (B), or 
CRX, NR2E3 and MafB (C), or CRX, NR2E3 and c-Maf (D) expression plasmids.  
Luciferase activity was corrected for transfection efficiency using a ß-
galactosidase internal control (pCMV-ß-gal) (0.3 µg) and shown as fold change, 
which was calculated as the ratio of each combination to the reporter construct 
with empty vector (lane 1). Error bars show the standard deviation, n=9.  
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Figure V-6.  Not all large Mafs can block S-opsin expression in the retina.  
Co-electroporation of a GFP control vector and the Nrlp-Nrl transgene revealed 
specific areas of S-opsin staining that were absent in the ONL (A-D). In contrast, 
substituting the Nrlp-Nrl transgene with the Nrlp-MafA (E-F), Nrlp-MafB (I-L), and 
Nrlp-c-Maf (M-P) transgenes did not result in changes in S-opsin expression in 
the ONL.  OS, outer segments; ONL, outer nuclear layer; INL, inner nuclear 
layer; GCL, ganglion cell layer. Scale bar: 25 µm.  
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Figure V-7.  NRL suppresses Crx-mediated transactivation of the S-opsin 
reporter construct.  Similar to earlier experiments in Figure 4, HEK 293 cells 
were co-transfected with 0.3 µg of S-opsin luciferase fusion construct together 
with the indicated amount of CRX, NR2E3 and NRL (A), or CRX, NR2E3 and 
MafA (B), or CRX, NR2E3 and MafB (C), or CRX, NR2E3 and c-Maf (D) 
expression plasmids.   
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CHAPTER VI 

CONCLUSIONS AND UNRESOLVED ISSUES 

 

Summary of Findings 

This thesis presents studies on the role of NRL in photoreceptor cell 

fate determination.  When I first approached this project in 2004, the specific 

aim was to determine whether NRL was sufficient to induce rod-specific gene 

expression and generate functional rods in vivo.  At that time, we were aware 

that NRL activated rod-specific genes in vitro and was necessary for rod 

photoreceptor specification in vivo (Chen et al., 1997; Lerner et al., 2001; 

Mears et al., 2001; Mitton et al., 2000; Mitton et al., 2003; Pittler et al., 2004; 

Rehemtulla et al., 1996; Swain et al., 2001; Wang et al., 2004; Yoshida et al., 

2004; Yu et al., 2004).  Based on these important observations, we 

hypothesized that expression of NRL in post-mitotic cone precursors would 

drive rod differentiation at the expense of cone development.   

We began these investigations by obtaining genomic DNA that 

corresponded to the proximal promoter elements of the Crx gene.  In 2003, 

Furukawa and colleagues reported that a 12 kb or a 2 kb promoter fragment 

could drive Cre-recombinase in the photoreceptor layer (Furukawa et al., 

2002).  Upon closer examination, we noticed that the promoter was indeed 

active in both rods and cones, but not bipolar cells.  I then communicated with 
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Dr Furukawa and discovered that both the 2 kb and the 12 kb promoters 

worked equivalently.  This information set in motion a number of experiments 

with the 2 kb promoter that led to the generation of several transgenic lines 

used in this thesis.  

My findings in Chapter II relate to the potency of NRL in the retina 

during photoreceptor development.  Although this body of work is 

summarized in Figure II-5, I will reiterate a number of salient points.  As 

reviewed in Chapter I, a previously proposed model of retinal cell fate 

determination predicts that retinal progenitors pass through a series of 

competence states, during each of which the progenitors are competent to 

produce only a subset of retinal cell types (Cepko et al., 1996; Livesey and 

Cepko, 2001).  This may imply that cone precursors would not be responsive 

to NRL (a putative rod determining factor) since cones develop from an early 

competence state.  To test this hypothesis, we expressed NRL under the 

control of the Crx promoter and examined the retina of our transgenic mice 

(Oh et al., 2007).  Through ultrastructural, histochemical, molecular, and 

physiological analyses of transgenic mouse lines, I discovered that the 

expression of NRL in cone precursors resulted in an all rod retina.  Due to the 

lack of any obvious increase in TUNEL stained cells and that only cone 

photoreceptor cell numbers were perturbed, the data was consistent with 

cone precursors transforming into rod photoreceptors. Although we could not 

directly show that Crx positive cone precursors transformed to rods, I 

genetically tagged S-opsin positive cells and demonstrated that they had 
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converted to rods.  These findings highlight the robust activity of NRL as an 

activator of rod genes and more importantly as a potential suppressor of cone 

specification (as shown in ChIP and EMSA data, Figure II-4).  In addition, we 

were able to conclude that a bipotent photoreceptor precursor exists during 

early retinal development and is competent to develop into either a rod or 

cone photoreceptor (Figure II-5 and VI-1).   

While this work in Chapter II was being conducted, another study from 

our laboratory addressed the role of ectopic expression of NR2E3 in cone 

precursors (using the same Crx promoter) (Cheng et al., 2006).  Interestingly, 

the expression of NR2E3 — a putative downstream transcriptional target of 

NRL (Akimoto et al., 2006; Mears et al., 2001; Yoshida et al., 2004) — was 

sufficient to suppress the specification of cone photoreceptors.  A key 

difference in these mice from the Crxp-Nrl transgenic mice was that in the 

absence of NRL, cone photoreceptors were converted to rhodopsin-

expressing neurons that lacked rod-specific photoresponse (Figure VI-2).  

This implied that a switch from cone to rod cell fate had commenced but was 

incomplete.  Cheng and colleagues then determined through quantitative 

PCR analyses that at least one of the phototransduction proteins rod 

transducin Gnat1, was not expressed in the absence of NRL.  This 

information provided at least one of the missing links to why cones could not 

be converted to functional rods and was consistent with my earlier 

experiments demonstrating that Gnat1 is a transcriptional target of NRL, CRX 

and NR2E3 (Cheng et al., 2004).  More importantly, these findings provided a 
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reason to cross the Crxp-Nr2e3 mice into a wild-type background and test 

whether the expression of NRL could facilitate the expression of rod specific 

genes.  As anticipated, the Crxp-Nr2e3 mice in a wild-type background 

revealed a full functional transformation from cones to rods. 

The published studies on NR2E3 by our lab (Cheng and colleagues) 

and other laboratories have provided key insights into mechanisms that 

regulate photoreceptor differentiation (Chen et al., 2005; Chen et al., 2006; 

Cheng et al., 2006; Haider et al., 2000; Milam et al., 2002; Peng et al., 2005).  

As a result, we can now ask questions about genetic relationships between 

various transcription factors in the retina. In particular, we wanted to figure out 

how NRL regulates NR2E3 and vice versa.  Although we had microarray data 

from mouse knockout models that suggested NR2E3 was a downstream 

transcriptional target of NRL (Akimoto et al., 2006; Yoshida et al., 2004), we 

lacked a direct evidence.  Therefore, I started the experiments that are 

covered in Chapter III.  We hypothesized that NR2E3 was a downstream 

target of NRL and that NR2E3 facilitates cone photoreceptor suppression in 

the Crxp-Nrl transgenic mice.  To test the initial part of the hypothesis, my first 

step involved using a bioinformatics program to establish the presence of 

NRL-response element (NRE) in the Nr2e3 promoter.  I then used these sites 

for EMSA and found NRL could bind to these DNA sequences.  In addition, 

NRL in concert with CRX could activate the Nr2e3 promoter in transient 

activation assays.  These findings suggested that the Nr2e3 promoter is in 

fact a direct transcriptional target of NRL.  In the second part of hypothesis, I 
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then asked whether ectopic expression of NR2E3 in cones, in the Crxp-Nrl 

mice, results in the suppression of cone specification?  To approach this, I 

needed to remove NR2E3 from the mice and test for cone-specific markers 

and function.  I crossed the Crxp-Nrl mice to rd7 mice (which lacks functional 

NR2E3) (Chang et al., 2002; Haider et al., 2001) and analyzed retinal 

histology.  Both retinal whole-mounts and cryosections revealed that M-opsin 

was expressed at levels similar to wild-type mice and S-opsin was partially 

rescued.  ERG recordings then suggested that cone function was present 

though at lower levels than wild-type mice.  These results provided additional 

evidence that NRL is a strong activator of rod differentiation but a weak 

suppressor of cone development, while NR2E3 is a weak activator of rod 

differentiation and a strong suppressor of cone development.  In order to 

identify cone-specific genes, we also carried out microarray studies on whole 

retinal tissue from various transgenic and knockout backgrounds.  The new 

targets listed in this report may potentially lead to new projects on cone 

biology. 

The Crxp-Nrl mice are now being used in many (at least 8) laboratories 

around the world to characterize various aspects of photoreceptor biology 

ranging from rod morphogenesis to physiological questions.  In addition to 

these studies, our lab — in collaboration with Dr Enrica Strettoi at CNR, Italy 

and Dr. Benjamin Reese at UCSB — was interested in understanding how 

retinal interneurons develop in the absence of photoreceptors (Raven et al., 

2007; Strettoi et al., 2004).  Photoreceptors directly connect to one type of rod 
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bipolar cell, 9 different types of cone bipolar cells, and horizontal cells (Ghosh 

et al., 2004; Kolb, 1974; Pignatelli and Strettoi, 2004; Reese et al., 2005).  In 

Chapter II, we were able to show that in the absence of cones, cone bipolar 

cells were still born.  Since bipolar cells develop from a later born retinal 

progenitors, it appeared that they do not need extracellular signals from 

cones to develop in the retina (Oh et al., 2007).  We next wanted to 

understand how horizontal cells differentiate in response to a pure cone or a 

pure rod retina and much of this work constitutes Chapter IV.  Horizontal cells 

connect to rods and cones through their axon and dendrites, respectively 

(Kolb, 1974).  One fascinating question that arises from this systematic 

synaptic partnership is what happens when either the rods or cones are 

depleted?  To answer this question, we examined horizontal cells from P5, 

P10 and adult retinal preparations from Nrl-/- (rodless) and Crxp-Nrl (coneless) 

animals.  Our analyses revealed that although horizontal cells are born, the 

absence of either rods or cones resulted in the progressive atrophy of the 

axon terminal and dendritic field, respectively (Raven et al., 2007).  

In Chapter V, I made use of the Nrl promoter to ask questions about 

the functional conservation of Maf protein function and photoreceptor 

differentiation.  I first tested a hypothesis that the expression of NRL under 

the control of the Nrl promoter (Nrlp-Nrl) could rescue the Nrl-/- phenotype 

(Mears et al., 2001).  After generating and characterizing several Nrlp-Nrl 

lines, I discovered that at least three lines could completely rescue the Nrl-/- 

background.  I also observed a range of rescue effects that could be 
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categorized by variable amounts of rhodopsin expression in the photoreceptor 

layer (Figure V-2).  Based on the immunohistochemical analyses, it appeared 

the re-expression of NRL in the Nrl-/- background could promote rhodopsin 

expression levels similar to wild-type levels and a reduction in S-opsin 

expression.  To test the rod function, ERGs were carried out and both 

photopic and scotopic ERGs from two transgenic mouse lines looked identical 

to wild-type mice.  These experiments allowed us to conclude that a 2.5 kb 

Nrl proximal promoter was sufficient to express the NRL protein in the correct 

temporospatial manner.  Since the expression of NRL in transgenic mice 

could rescue the Nrl-/- phenotype, we were curious whether other large Maf 

proteins could play the same role.  Therefore, we generated new constructs in 

which MafA, MafB or c-Maf was expressed under the control of the Nrl 

promoter.  We then proceeded to optimize a new protocol (Figure VI-4) to 

inject these constructs into the subretinal space of P2 Nrl-/- pups and 

electroporate the DNA transgenes.  This technique led to our discovery that 

the expression of large Maf proteins resulted in the activation of rhodopsin.  

Although we do not know if these rhodopsin-expressing photoreceptors 

behave like functional rods, this study demonstrates the utility of the Nrl 

promoter and in vivo electroporation into neonatal pups.  We then explored 

whether the large Maf proteins could directly transactivate the rhodopsin 

promoter in cultured cells using transient transfection studies.  We found that 

the expression of each Maf member either alone or in concert with CRX 

positively influenced the rhodopsin reporter construct.  We then asked 
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whether the Maf family members could down-regulate the S-opsin promoter in 

transient transfection assays.  Although the expression of NRL could lead to 

the inhibition of CRX-mediated activation of the S-opsin promoter activity, the 

other three Maf proteins could not.   

 

Unresolved Issues 

 

Can NRL instruct all retinal progenitors to become rods? 

Ectopic expression of NRL in photoreceptor precursors drives the 

expansion of the rod photoreceptor population at the expense of cones 

(Chapter I) (Oh et al., 2007).  This observation suggests that NRL acts like a 

master regulator in post-mitotic neurons where it plays an instructive role 

during differentiation.  These results provide a new platform to ask whether 

NRL can instruct all cells to become rods, or whether this effect is limited to 

post-mitotic photoreceptor precursors in the retina (Akimoto et al., 2006; 

Mears et al., 2001; Oh et al., 2007).  

Several recent studies have described the expression of specific 

promoters in the retina.  More specifically, work on SIX3 (Furuta et al., 2000), 

Pax6 (Zhang et al., 2003), and CHX10 (Rowan and Cepko, 2004; Rowan et 

al., 2004) reveal their promoters can be used to drive Cre recombinase in 

both early retinal progenitors and subsequently in a number of different post-

mitotic cells (Figure VI-5).  These promoters present an interesting resource 

to ask whether the expression of NRL in retinal precursors can drive the 
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expansion of rod photoreceptors.  Since cell intrinsic signals are essential in 

dictating the fate of early born cells (Cepko et al., 1996; Livesey and Cepko, 

2001), I predict that the generation and characterization of such transgenic 

mice will result in a number of different possibilities: First, the expression of 

NRL may not affect retinal differentiation.  This may indicate the limits of NRL 

function in post-mitotic neurons.  Secondly, we may find that late-born cells 

(such as bipolar cells and Muller glia) are transformed to rods.  This outcome 

will not be surprising as ectopic expression of several master control genes at 

specific times during development is shown to result in the exclusion of 

specific cell fates (Dyer, 2003; Dyer et al., 2003; Li et al., 2004; Livne-Bar et 

al., 2006; Ma et al., 2004).  Finally, another possibility is that NRL reprograms 

all retinal progenitors to rods.  In light of recent findings that the removal of 

Notch in the retina can reprogram retinal precursors to cones (Jadhav et al., 

2006; Yaron et al., 2006), it is possible that NRL could have the same effect 

for rods.  Although Notch is normally expressed in mitotic cells and NRL is 

not, it will be interesting to fully explore the dominant function of NRL. 

 

How do human mutations in NRL result in retinitis pigmentosa? 

The characterization of the Nrlp-Nrl transgenic mice and the efficiency 

at which the Nrl proximal promoter can be used to express genes of interest 

(Akimoto et al., 2006) allowed us to investigate new issues about rod biology.   

Several published studies clearly define an association of mutations in NRL 

with retinal degeneration (Acar et al., 2003; Bessant et al., 2000; Martinez-
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Gimeno et al., 2001; Nishiguchi et al., 2004; Sullivan et al., 2006; Wright et 

al., 2004).  These genetic studies provide a reason to use transgenic mouse 

tools to investigate the direct correlation between the mutation and the 

disease.  I propose that the generation of transgenic lines of NRL 

phosphorylation mutants under the control of the Nrl promoter will help 

determine a direct link between mutation and disease.  

 A direct association of the S50T allele and adRP has been clearly 

documented in a number of different human patients (Bessant et al., 2000; 

Nishiguchi et al., 2004).  In addition, our lab has established an in vitro assay 

to demonstrate that lower protein levels of NrlS50T can transactivate the 

rhodopsin promoter to much higher levels than wild-type NRL (Nishiguchi et 

al., 2004).  I hypothesize that the generation of an NrlS50T mouse will lead to 

higher rhodopsin levels in vivo and retinal degeneration over time (Figure VI-

6).  A first test before generating these transgenic mice would be to utilize the 

in vivo electroporation technique to test whether the presence of the Nrlp-

NrlS50T transgene can lead to expression of rhodopsin.  Since we have shown 

that wild-type NRL — when expressed at P2 in the Nrl-/- background — can 

activate rhodopsin expression, we can use this time-point as a control.  If 

rhodopsin expression is observed, several transgenic lines should be 

generated, aged, and analyzed for retinal histology and function.  If adRP can 

be modeled in mice, it will be important to examine whether a single copy of 

the transgene in an Nrl+/- heterozygote mouse will best phenocopy what is 

observed in humans.  
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What are the downstream targets of NRL? 

One satisfying outcome of microarray results is observing dramatic 

changes in the expression of novel genes.  Our analysis of the retinas from 

Nrl-/- (rodless) and Crxp-Nrl (coneless) mice revealed a number of potential 

cone- and rod-specific genes.  An example of these findings is that the 

Pituitary Tumor-Transforming 1 gene (Chapter III) appears to be enriched in 

cones.  This gene has been previously demonstrated to orchestrate sister-

chromatid separation (Stemmann et al., 2001; Zou et al., 1999), and it would 

be interesting if it regulates chromatin remodeling in cones versus rods.  

Gene expression profiling from rods has also revealed many exciting novel 

genes that are yet to be characterized.  For example, we determined that 

REEP6 was down regulated in Nrl-/- retinal profiles (Chapter III).  REEP6 

(receptor enhancing expression protein 6) is also known as DP1L1 (Deleted 

in Polyposis 1 like 1) (Behrens et al., 2006; Sato et al., 2005) and belongs to 

a family of proteins that play a role in transporting G-protein coupled 

receptors (GPCRs) such as olfactory receptors in neurons (Behrens et al., 

2006).  Although REEP6/DP1L1 was initially characterized as a novel gene 

enriched in ganglion cells, many experiments in that report lacked appropriate 

controls (Sato et al., 2005).  

I have recently generated antibodies to REEP6.  REEP6 protein 

expression can be observed in the retina, liver, kidney and testis.  In the 

retina, a rod-enriched pattern of expression can be observed when I stain 
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wild-type and Nrl-/- retinal cryosections (Figure VI-7).  In addition, the initiation 

of REEP6 expression coincides with the birth of rod photoreceptors (Figure 

VI-7).  The protein expression data is supported by quantitative PCR and in 

situ analyses of retinal tissue.  By confocal analysis, REEP6 appears to be 

enriched in the inner segments and synaptic terminals of rods.  The ribbon 

synapses of the vertebrate retina are unique chemical synapses 

characterized by presynaptic ribbons, sheet-like organelles with a lamellar 

organization (Dowling, 1987; Sterling, 1988).  In contrast to the detailed 

knowledge about the morphology, physiology, and overall protein 

complement of the terminals of ribbon synapses, little is known about the 

composition of the ribbons themselves.  It has been suggested that the 

primary function of the ribbons is to speed up vesicle traffic by serving as a 

conduit for synaptic vesicles (Schmitz et al., 2000).  The expression of 

REEP6 in the ribbons could therefore enhance the transport of synaptic 

proteins.  Additional studies will be needed to purify ribbon synapses and 

verify the presence of REEP6 in this compartment. In addition, knockdown 

studies will assist in demonstrating the role of REEP6 in ribbon formation.  

 

In conclusion, my studies provide significant new insights into the role of 

NRL in photoreceptor differentiation.  The studies presented here show that 

NRL is not only essential but is sufficient for rod differentiation.  Our data 

provide direct evidence of post-mitotic plasticity in the developing mammalian 

retina by the expression a single transcription factor in vivo.  Finally, my 
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research gives rise to the prospect of exploiting the plastic nature of retinal 

precursors to replenish dying rods in degenerative retinal diseases. 
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Figure VI-1: New models of retinal differentiation.  (A) Retinal progenitors 
comprise a dynamic mixture of distinct mitotic cell types that interact with the 
environment to make the different postmitotic cell types.  A complex of 
transcription factors can define the competence of progenitors to make a 
particular retinal cell type, or small set of cell types.  Retinal progenitors are 
modeled to progress from one state of competence another in only one 
direction. Early progenitor cells appear to be unable to jump ahead to later 
stages of competence. There are most likely many more states of competence 
than shown here, and there may be many branch points along this progression. 
The environment is shown to be changing over time, in part due to the 
production of postmitotic, differentiating cells. The postmitotic cell types can 
regulate, via feedback inhibition, the production of more neurons of the same 
type, and possibly regulate cell fate choices through other types of interactions.  
(B) Our research suggests that cone precursors can jump ahead and make rod 
photoreceptors.  In turn, our model reveals that there are exceptions to what is 
commonly observed in the vertebrate retina (Livesey and Cepko, 2001). 
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Figure VI-2: Ectopic expression of NR2E3 in cone precursors suppresses 
cone differentiation.  (A) Rhodopsin is detected in the ONL and OS of the WT 
and CrxpNr2e3/Nrl–/– retina. S-opsin and cone arrestin are enriched in the Nrl–/– 
retina but are undetectable in the CrxpNr2e3/Nrl–/– retina. (B) Light-adapted, 
spectral ERG amplitudes demonstrate the enrichment of S-cone activity 
(360 nm) in Nrl–/– mice compared with WT. CrxpNr2e3/Nrl–/– mice (gray 
symbols) show responses indistinguishable from noise.  (C) Dark-adapted 
ERGs in WT mice show rods dominating the first flash photoresponse (dark 
line).  In Nrl–/– mice, dark-adapted photoresponses are smaller and slower than 
WT; the paired-flash response closely tracks the first flash response. ERG 
photoresponses are not detectable in the CrxpNr2e3/Nrl–/– mice (Cheng et al., 
2006).   
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Figure VI-3: Schematic of in vivo electroporation of the mouse and rat 
retina.  (A) Illustration showing the subretinal injection and in vivo 
electroporation method. (B) The electrodes used in this study are shown. 
Tweezer-type electrodes (a) are placed to hold the head of newborn (P0) rat or 
mouse (b) (Matsuda and Cepko, 2004). 
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Figure VI-4: The CHX10, PAX6, and SIX3 promoters can be used to drive 
NRL expression in retinal precursors.  (A) Schematic of a modified BAC that 
was used for integration of the GFP Cre-IRES-AP cassette into the first exon of 
Chx10.  Here, we would remove this cassette and insert Nrl.  (Rowan and Cepko, 
2004).  (B) Schematic diagram of the Pax6 P0 enhancer region and transgenic 
constructs.  The number of independent transgenic (denominators) and β-
galactosidase positive embryos (numerators) analyzed transiently from E10.5 to 
E14.5 are shown (Zhang et al., 2003).  (C) Schematic diagram of a 9-kb genomic 
clone of the mouse Six3 locus. HD in the shaded box in the exon represents the 
homeodomain-coding region that would be replaced by NRL (Furuta et al., 2000). 
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Figure VI-5: Generation and characterization of NRL S50T mice.  (A) 
Schematic of a construct that can be used to generate transgenic mouse lines 
for NRL S50T.  (B) Schematic of mouse breeding and the different generations 
that can be aged and analyzed for the retinal degeneration. 
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Figure VI-6: Characterization of REEP6, a novel rod-enriched protein.  (A) 
WT and Nrl-/- mouse retinal cryosections stained for REEP6 (green) and PKCa 
(Wright et al.).  The REEP6 signal is predominantly in the photoreceptor layer. 
In the absence of NRL, REEP6 signal is dramatically reduced.  (B) P2 to adult 
WT mouse retinal sections stained for REEP6.  The staining can be seen again 
localized to the photoreceptor layer and starts to peak around P4-6.  
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