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PREFACE

In many statistical problems, it is necessary to take into account the order restric-

tions of the unknown parameters of interest. Sometimes, it is reasonable to assume

order restrictions on the parameters. For a simple example, consider the compari-

son of the treatment effects of a drug and a placebo. Most of the time it would be

reasonable to assert that the drug has a larger effect than the placebo in treating

the disease. A similar situation arises when several doses of a drug are applied. The

treatment effect would be higher for a higher dose. These are among the simplest

examples of isotonic regression analysis, which has a long history and has been exten-

sively studied in the literature (see, for example, Barlow et al., 2002 and Robertson

et al. 1988). In these kind of situations, the purpose of using estimators that take

the order restrictions into consideration is to gain efficiency. If the true parameters

indeed satisfy the order restrictions, then the estimators that take this into account

are more efficient than the estimators that ignore the order restriction. In some other

situations, the statistical model itself enforces order restrictions on the parameters.

A common example is the estimation of the nonparametric distribution function or

the cumulative hazard function of a random time to failure, or the estimation of the

baseline cumulative hazard function in a Cox regression model. In these problems,

one has to take into account the monotonic nature of the distribution function or

the cumulative hazard function. In this dissertation, I consider three different sta-

tistical problems in which an order restriction on the unknown parameters is either
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natural or reasonable, and discuss methods of estimation and inference of the un-

known parameters under the restrictions. The order restriction of the parameters is

the major concern for the problem in Chapter IV. In Chapters II and III, the main

focus is missing covariates in Cox regression models, while the order restrictions of

the parameters need to be taken care of in parameter estimation.

In the second chapter, we consider the Cox regression model with grouped sur-

vival data coming from case-cohort studies. The order restriction arises since the

baseline cumulative hazard function is an increasing function. The problem with

fully observed data has been studied in the literature. Here what we are interested

in is the case in which the data come from case-cohort studies or more general two

phase stratified sampling. In case-cohort studies, the covariate of interest is observed

for all the cases and a subsample of controls. This results in missing covariates, but

the probability that the covariate is observed is known for every subject. In this

situation, we propose using the weighted likelihood method, in which one maximizes

the inverse selection probability weighted likelihood function, to fit Cox models. The

weighted likelihood estimator can be easily calculated via the Newton-Raphson it-

eration. The asymptotic properties of the estimator are studied. It is shown that,

when the weights (or the probabilities that the covariates are observed) are reason-

ably estimated, the weighted likelihood estimator is more efficient than the weighted

likelihood estimator when the true weights are used. This study is motivated by an

HIV vaccine efficacy trial, and the proposed weighted likelihood method is applied

to analyze the data coming from that trial.

In fact, treating the data from the vaccine trial as grouped survival data is only

an approximation, and the true structure of the data is actually current status data.

Therefore, in Chapter III we further develop the method to fit proportional hazards
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models with current status data with missing covariates. We still assume the proba-

bility that the covariate is observed is a known function of a variable that is observed

for every subject. We study the weighted likelihood estimator for the estimation of

the unknown cumulative baseline hazard function and the logarithm of the hazard

ratios. We propose an adapted version of the “iterative convex minorant algorithm”

to compute the weighted likelihood estimator and establish the asymptotic properties

of the estimator with true weights and with estimated weights, and show that the es-

timator with estimated weights is more efficient than the estimator with true weights.

Since in this model the baseline cumulative hazard function is only estimable at the

n1/3 rate, and thus no existing theory is available to prove the asymptotic normality

of the estimator of the log hazard ratios when the weights are estimated, we establish

a general theorem for this purpose. For the estimation of variance of the estimator

of the log hazard ratios, we investigate the weighted bootstrap method. It turns out

that it works well for the estimator with true weights. For the estimator with esti-

mated weights, the bootstrap does not work, so the asymptotic variance is estimated

by estimating components of the variance formula separately, using nonparametric

smoothing. We also did simulation studies and analyzed the vaccine trial data to

illustrate the weighted likelihood method.

In Chapter IV, the problem is concerned with the inference of ordered proba-

bilities of binomial random variables. The case in which some of the adjacent cell

probabilities are equal or close to each other is of particular interest, since difficulties

arise in this case and it is not well studied in the literature. We suppose that there

is a one-way or two-way table, in each cell of the table, there is a binomial trial with

a certain probability of “success”, and the probabilities are ordered along either way

of the table. This is a convenient way of describing the situation in which there
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are a binary response variable and one or two categorical covariates, and the condi-

tional probability of response given levels of the categorical covariate(s) are ordered

according to levels of either covariate. The order restrictions on the probabilities

are the belief of the investigator based on commonsense or scientific knowledge. For

simplicity, we suppose that there are two binomial random variables and the proba-

bilities of “success” are p1 and p2 and they satisfy p1 ≤ p2. The maximum likelihood

estimator under the order restriction (restricted MLE) of the probabilities is a nat-

ural estimator, which guarantees the order restriction and is more efficient than the

estimator which ignores the order restriction. It can also be easily calculated using

the “pool adjacent violators” algorithm. However, the usual normal approximation

to the distribution of the estimator is not appropriate when p1 = p2 or under a local

alternative type of assumption. Hence, the confidence intervals constructed by using

this approximation do not have correct coverage rates when p1 = p2 or when they are

very close to each other. In an attempt to resolve this problem, we find the correct

asymptotic distribution of the restricted MLE when some of the two adjacent proba-

bilities are equal or satisfy a local alternative type assumption. Confidence intervals

are constructed based on these asymptotic distributions. The coverage rates of the

confidence intervals are improved, especially when the true adjacent cell probabili-

ties are equal. But when the adjacent probabilities are not equal but close to each

other, these confidence intervals still do not perform well. Further, we propose us-

ing bootstrap methods to construct confidence intervals. Several types of bootstrap

confidence intervals and two types of confidence intervals based on the asymptotic

distribution are compared in a simulation study and the bootstrap percentile confi-

dence interval is found to have good performance and outperforms the other types

of intervals. In addition, the bootstrap procedure can be applied to problems with
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parameters of higher dimension without any difficulty.
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CHAPTER I

Weighted Likelihood Method for Grouped Survival Data in
Case-Cohort Studies

1.1 Introduction

Interval censored data arise often in HIV studies where times to HIV infection

are not exactly observed, but instead the two time points within which the infection

happens are observed. The time points may be, for instance, the times of clinic

visits. This type of data are commonly seen in practice, for example patients in

clinical trials may be monitored for clinical response at a set of visit times. A special

case of interval censored failure times occurs when the visit times are fixed in advance

and are the same for all subjects. In this case the failure times are grouped into a

discrete set of time intervals. For such a data structure, Kalbfleisch and Prentice

(1973) and Prentice and Gloeckler (1978), among others, proposed and developed

methods for maximum likelihood estimation of the relative risks and survival function

in the proportional hazards model (Cox, 1972; Cox, 1975).

The case-cohort design was proposed by Prentice (1986) for large cohort studies

(e.g., prevention trials) for which the covariates of interest are expensive to collect. In

such a design, the covariate values are collected only for those subjects who experience

the failure event during the follow-up period and for a subcohort that is randomly

sampled from the study cohort. For right censored data, Self and Prentice (1988)

1
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derived the asymptotic theory for a pseudo likelihood estimator of the parameters in

a general relative risk model, including the proportional hazards model as a special

case.

Gilbert et al. (2005) employed the Self-Prentice method to analyze data from the

first randomized placebo-controlled Phase 3 trial of a preventive HIV vaccine (Flynn

et al., 2005). Forthal et al. (2007) also analyzed these data, using an alternative

psuedo likelihood estimator for the Cox model with case-cohort sampling (Estimator

II of Borgan et al., 2000). These analyses addressed the objective to evaluate in

vaccine recipients the association between anti-HIV antibody levels generated by the

vaccine and subsequent HIV infection. Trial participants were immunized with vac-

cine or placebo at months 0, 1, 6, 12, 18, 24 and 30. Volunteers testing negative for

HIV infection at month 0 were enrolled, and HIV infection tests were administered

at each immunization visit and at the final follow-up visit at month 36. Serum and

plasma samples were obtained from all volunteers at the immunization visits as well

as at visits 2 weeks after the immunization visits, scheduled for measuring peak im-

munologic response values. The assays were performed for all vaccine recipients who

became HIV infected and for a stratified random sample of the uninfected vaccine

recipients, selected after the trial. Covariates measured on everyone include demo-

graphic variables, geographic region, race, and baseline behavioral risk score (taking

integer values from 0 to 7).

For study participants who acquired HIV infection during the study, the infection

time can only be determined to be between the dates of the last negative and first

positive HIV tests. In both Gilbert et al.’s (2005) and Forthal et al.’s (2007) Cox

model analyses of the case-cohort data, the time to infection was approximated by

the midpoint of the dates of the last negative and first positive tests. Approximat-
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ing interval censoring to right censoring, however, may introduce bias in parameter

estimation. It is desirable to develop a more general method that takes the interval

censoring nature of the failure times into account.

We propose a weighted likelihood approach to fit a proportional hazards model

with grouped survival data and stratified case-cohort covariate sampling, and apply

the method to evaluate the association between the newest antibody measurement

described in Forthal et al. (2007) and HIV infection . The method maximizes the

inverse selection probability weighted log likelihood function (or log partial likeli-

hood function). The weighted likelihood approach has been used in other missing

data problems; see Breslow and Wellner (2007) and references cited therein. In our

case, we consider both true weights and estimated weights, where the true weights

are calculated by using the true selection probabilities determined by design and

the estimated weights are calculated by using sample fractions within strata. Both

methods lead to consistent and asymptotically normal estimators of the parame-

ters, and the variances of the estimators can be consistently estimated. As pointed

out by many authors including Breslow and Wellner (2007), the method with esti-

mated weights is more efficient. The numerical calculations can be readily carried

out via Newton-Raphson iteration. We apply multiple imputation to handle missing

immunological responses in the subcohort. We present the proposed methods and

asymptotic results in Section 1.2 and report a simulation study in Section 1.3. In

Section 1.4 we apply the proposed method to the vaccine trial study and make con-

cluding remarks in Section 1.5. We provide detailed technical derivations and proofs

of the asymptotic properties in the Appendices.
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1.2 The Weighted Likelihood Method

Consider the general setting of grouped survival data. Let T be the underlying

time to the event of interest, and C be the underlying censoring time. Let X be

a p-dimensional covariate (process). Assume noninformative censoring and C is

independent of T given X. In the HIV vaccine trial study, however, neither T nor C

is completely observed. Instead, T is either known to be in one of the m fixed time

intervals: (t0, t1], (t1, t2], . . . , (tm−1, tm), where 0 = t0 < t1 < . . . < tm−1 < tm = +∞,

or right censored at a visit time tj, 1 ≤ j ≤ m−1. In either case, X will be observed

up to the last observed visit time. The two cases coincide when j = m− 1.

Suppose we only observe data in the first Ri intervals for subject i, where 1 ≤

Ri ≤ m − 1; then the subject either experiences an event in the Rith interval or is

right censored at tRi
. Let ∆ij = 1 if the event for the ith subject falls into the jth

interval and ∆ij = 0 otherwise, 1 ≤ j ≤ Ri, and denote ∆i,Ri+1 = 1−∑Ri

j=1 ∆ij and

∆i = (∆i1, . . . , ∆i,Ri+1)
T . In fact ∆ij = 0 for all j < Ri, but we keep the vector

notation ∆i for ease of technical derivation. Note that Ri is a random variable and

the length of ∆i varies with Ri. Let the covariate be componentwise constant in each

of the Ri observed time intervals and denote Xi = (Xi1, . . . , Xi,Ri
)T , where Xij is the

p-dimensional covariate vector for the ith subject in the jth interval. Assume that

in a full cohort, we would have n i.i.d. observations (∆i, Ri, Xi), 1 ≤ i ≤ n, which is

equivalent to observing i.i.d. observations (∆i,Ri+1, Ri, Xi), 1 ≤ i ≤ n.

Suppose T follows a Cox regression model, i.e., the hazard function can be written

as

λ(t|X(t)) = λ(t) exp(X(t)T β),(1.1)

where X(t) is the p-dimensional covariate vector at time t and β = (β1, . . . , βp)
T . Let
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Λ(t) be the baseline cumulative hazard function, and denote αk = Λ(tk) − Λ(tk−1)

and γk = log αk, k = 1, 2, . . . , m, where αm and γm are equal to +∞. Then the

conditional probability of the event for the ith subject falling into the jth interval

given Xi is

P (∆ij = 1|Xi) = e−
Pj−1

k=1 eγk+XT
ikβ

(
1− e−e

γj+XT
ijβ

)
, 1 ≤ j ≤ m.

Here for notational convenience we assume that
∑0

k=1 eγk+XT
ikβ = 0. Note that the

above expression only involves covariates observed up to time tj for a fixed j.

By the conditional independence of Ti and Ci given Xi, the conditional probability

mass function of (∆i, Ri) given Xi can be written as

P (∆i = δi, Ri = j|Xi)

=

j+1∏

`=1

(
e−

P`−1
k=1 eγk+XT

ikβ

)δi` (
1− e−e

γj+XT
ijβ

)δij

f(δi, j|Xi)

≡ L(θ|∆i = δi, Ri = j)f(δi, j|Xi), 1 ≤ j ≤ m− 1,

where f(δi, j|Xi) does not contain any information about θ and hence can be dropped

when constructing the likelihood function for θ. Detailed derivation is given in Ap-

pendix A. Note that Li(θ) ≡ L(θ|∆i, Ri) above is more complicated than neces-

sary for numerical evaluation. But its current form will be very helpful in deriving

asymptotic properties for the proposed estimator, which will be easily seen in the

Appendices C and D. Also note that Li(θ) reduces to the likelihood contribution of

the ith subject in Prentice and Gloeckler (1978).

1.2.1 Estimation with True Weights

In case-cohort studies, the covariates are not observed for all subjects. Here we

consider the Bernoulli sampling scheme (Manski and Lerman, 1977) for selecting

the subcohort. Each subject is examined for a covariate Vi (which can either be
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part of Xi or be an ancillary variable(s)) that is measured in all subjects (i.e., at

phase one), and is then independently selected at phase two into the subcohort with

probability P (i ∈ SC|Vi) = π(Vi), where “SC” stands for subcohort and π(·) is a

known function. The covariate X is assembled only for subjects in the subcohort

and for those who experience the failure event during follow-up. The data resulting

from this sampling scheme preserve an i.i.d. structure and satisfy the missing at

random (MAR) assumption (Little and Rubin, 2002), because the probability that

the covariate X is missing depends only on V and ∆i,Ri+1
, which are always observed.

Kulich and Lin (2004) distinguished between “N-estimation” and “D-estimation”

for right censored data in case-cohort sampling designs, where N-estimation uses

weights that are independent of failure status while D-estimation uses weights that

depend on failure status. The main reason for distinguishing these approaches is

that the martingale theory applies for N-estimation, but not for D-estimation. This

distinction is irrelevant for our methodology for grouped failure time data because

it does not have any difficulty in handling failure status dependent weights.

For the observed data in a case-cohort study, we propose the following weighted

likelihood function for making inferences on θ:

Lw,n(θ) =
n∏

i=1

{
Li(θ)

}wi

,

where

wi = (1−∆i,Ri+1) +
I(i ∈ SC)

π(Vi)
∆i,Ri+1, 1 ≤ i ≤ n.

Clearly the weight wi depends on the failure status of subject i. It is easily seen that

only subjects with completely observed covariates contribute to the weighted likeli-

hood function, and wi is the inverse of the probability that subject i is selected from

the original cohort to have covariate Xi measured. The logarithm of the weighted
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likelihood function is

`w,n(θ) =
n∑

i=1

wi`i(θ)

=
n∑

i=1

wi

{
−

Ri+1∑
j=1

(
∆ij

j−1∑

k=1

eγk+XT
ikβ

)
+ ∆iRi

log

(
1− e−e

γRi
+XT

iRi
β
)}

.(1.2)

We call the maximizer of `w,n(θ) the weighted likelihood estimator of θ, denoted by

θ̂n, which can be obtained by solving the following weighted log likelihood estimating

equation for θ:

∂

∂θ
`w,n(θ) =

n∑
i=1

wi
∂

∂θ
`i(θ) = 0.(1.3)

The Newton-Raphson method can be employed to solve the above estimating

equation. Note that the covariates after the Rith interval do not contribute to the

log likelihood function and its derivatives. Define the matrix of the second derivatives

as

In =




Iγγ,n Iγβ,n

IT
γβ,n Iββ,n


 =



−∂2`w,n(θ)/∂γ∂γT −∂2`w,n(θ)/∂γ∂βT

−∂2`w,n(θ)/∂β∂γT −∂2`w,n(θ)/∂β∂βT


 .

The numerical inversion of In is necessary in Newton-Raphson iteration, which may

be difficult if there are many intervals (m is large). Following the idea of Prentice

and Gloeckler (1978) and Finkelstein (1986), however, the inversion can be simplified

by using the following equality

I−1
n =




I−1
γγ,n + AB−1AT −AB−1

−B−1AT B−1


 ,

where A = I−1
γγ,nIγβ,n, B = Iββ,n − IT

γβ,nI
−1
γγ,nIγβ,n, which only involves inverting the

p-dimensional matrix B since Iγγ,n is diagonal (see Appendix B for explicit forms of

the derivatives of the weighted log likelihood). Then the Newton-Raphson method
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updates values of θ = (γT , βT )T iteratively via




γ(k)

β(k)


 =




γ(k−1)

β(k−1)


 +

{
I−1
n

∂`w,n(θ)

∂θ

}

θ=θ(k−1)

until the algorithm converges; here the superscript (k) represents values in the kth

iteration. Note that when the sample size is small, or some time intervals are narrow,

there may be no observed events in an interval, in which case the Newton-Raphson

procedure will fail. A simple remedy is to combine such an interval with its neighbor

to make the number of events in the combined interval greater than zero.

The dependency of the sampling probabilities on covariates and outcome makes

the case-cohort design a biased sampling design. The inverse selection probability

weighted estimating equation (1.3) corrects the bias, however, because by MAR we

have

E(wi|∆i, Ri, Xi, Vi) = (1−∆i,Ri+1) + ∆i,Ri+1
P (i ∈ SC|Vi)

π(Vi)
= 1,(1.4)

and hence

E

{
wi

∂`i(θ)

∂θ

}
= EE

{
wi

∂`i(θ)

∂θ

∣∣∣∣ ∆i, Ri, Xi, Vi

}

= E

{
∂`i(θ)

∂θ
E(wi|∆i, Ri, Xi, Vi)

}

= E

{
∂`i(θ)

∂θ

}
= 0.

A naive approach to the analysis would simply put wi = 1 for all subjects with

covariates completely observed and wi = 0 otherwise. We call the corresponding

estimator the naive estimator. Since the equality (1.4) does not hold for all i, in

general the naive estimator will be asymptotically biased, which is verified by the

simulation study in Section 1.3.
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For full cohort data, Prentice and Gloeckler (1978) provided an intuitive discus-

sion on the asymptotic properties of the maximum likelihood estimator for grouped

survival data. We give a set of mild regularity conditions in the following theorem

that formally establishes both consistency and asymptotic normality of the weighted

likelihood estimator with true weights that are usually known for a case-cohort de-

sign, which includes the maximum likelihood estimator of Prentice and Gloeckler

(1978) as a special case. The proof is given in Appendix C.

Theorem I.1. Suppose the parameter space Θ is compact and the true parameter θ0

is an interior point of Θ. Assume the following conditions hold:

(i) The covariate X has bounded support.

(ii) The variance matrix of Xij is positive definite for all 1 ≤ j ≤ m− 1.

(iii) π(Vi) ≥ δ > 0 for all i and some δ > 0.

(iv) P (Ci ≥ tm−1|Xi) > 0 with probability 1.

If the maximizer θ̂n of `w,n(θ) does not occur on the boundary of Θ, then as n →

∞, θ̂n converges to θ0 in probability, and
√

n(θ̂n − θ0) converges in distribution to a

Gaussian random variable with mean zero and variance Σ(θ0) = I−1(θ0)D(θ0)I
−1(θ0),

where I(θ) = Eθ0{∂2`i(θ)/∂θ∂θT} and D(θ) = Eθ0 [{wi∂`i(θ)/∂θ}{wi∂`i(θ)/∂θ}T ].

Note that the compactness of Θ and the boundedness of X guarantee that the

probability of observing an event in each of the m intervals is strictly bounded

between 0 and 1. The asymptotic variance Σ(θ0) can be consistently estimated

by the sandwich estimator

Σ̂n(θ̂n) = Î−1
n (θ̂n)D̂n(θ̂n)Î−1

n (θ̂n),

where În(θ) = n−1
∑n

i=1 wi{∂2`i(θ)/∂θ∂θT}, D̂n(θ) = n−1
∑n

i=1 w2
i {∂`i(θ)/∂θ}{∂`i(θ)/∂θ}T .
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1.2.2 Estimation with Estimated Weights

Although the sampling probabilities π(Vi) are known, using estimated weights in

which π(Vi) is replaced by its estimator can improve the efficiency of the weighted

likelihood estimator (Robins et al., 1994; Breslow and Wellner, 2007). Suppose that

all censored subjects are divided into S strata by the variable V ∈ V ≡ {ν1, . . . , νS},

and in this subsection, we denote the true sampling probabilities by π(νs) = p0s,

1 ≤ s ≤ S. Suppose that there are ns subjects in stratum s, out of whom n∗s are

selected into the subcohort by the independent Bernoulli sampling. We assume that

when n → ∞, ns/n → αs > 0, 1 ≤ s ≤ S. Instead of using the true sampling

probabilities p0 = (p01, . . . , p0S)T in the weight function w, we now replace each p0s

with the sampling fraction p̂s = n∗s/ns, 1 ≤ s ≤ S, and set π̂(Vi) = p̂s if Vi = νs,

1 ≤ s ≤ S. Now the estimated weight function becomes

wi(p̂) = (1−∆i,Ri+1
) +

I(i ∈ SC)

π̂(Vi)
∆i,Ri+1

, 1 ≤ i ≤ n.

Denote the maximizer of
∑n

i=1 wi(p̂)`(θ; Xi) by θ̃n. The following theorem establishes

the consistency and asymptotic normality of θ̃n, but with a different asymptotic

variance matrix to that of θ̂n given in Theorem I.1. A detailed proof is given in

Appendix D.

Theorem I.2. Under the same conditions in Theorem II.1, θ̃n is consistent and

√
n(θ̃n− θ0) converges in distribution to a Gaussian random variable with mean zero

and variance

Σ(θ0)− I−1(θ0)B(θ0, p0)G22B
T (θ0, p0)I

−1(θ0)
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as n →∞, where

B(θ, p) = Eθ0 [{∂`(θ; Xi)/∂θ}{∂wi(p)/∂p}T ],

G22 = diag{p01(1− p01)/α1, . . . , p0S(1− p0S)/αS},

which can be consistently estimated by

B̂(θ, p) =
1

n

n∑
i=1

{∂`(θ; Xi)/∂θ}{∂wi(p)/∂p}T ,

Ĝ22 = diag{np̂1(1− p̂1)/n1, · · · , np̂S(1− p̂S)/nS}.

1.2.3 Multiple Imputation Approach to Handling Missing Covariate Data

Due to the expense of measuring the antibody responses in the HIV vaccine trial,

the antibody level for vaccine recipients who failed was only measured at the be-

ginning of the first interval (at the month 6.5 visit) and at the visit immediately

preceding the failure visit, and for censored vaccine recipients it was only measured

at month 6.5 and at a randomly selected visit month after month 6.5. Since the

missing elements of X for subject i are missing by design, depending only on ∆i,Ri+1
,

the missing mechanism is MAR (Little and Rubin, 2002). To handle this type of

missing data, we propose using multiple imputation to fill in the missing components

of X.

Specifically, suppose only X2 can be missing. For each time interval 2 through

m − 1 (excluding the last interval), we impute the missing values of X2 by random

draws from a linear regression model with the covariate in the first interval as the

predictor, which is fitted separately for cases and non-cases. For example, to impute

missing covariate values in the second interval for cases, we first fit a linear model

X22 = c0 + c1X21 + ε, where ε ∼ N(0, σ2), using all the cases with complete data for

X22. After obtaining estimates ĉ = (ĉ0, ĉ1)
T and σ̂2, we then take a random draw of

σ∗2 from σ̂2χn+1, where n is the number of subjects included in the linear regression,
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and c∗ and ε∗ are random draws from N(ĉ, σ∗2(AT A)−1) and N(0, σ∗2), respectively,

where A is the design matrix of the linear regression. Finally, we fill in the missing

value X22 by X̂22 = c∗1 + c∗2X21 + ε∗. We construct 10 complete data sets following

this procedure. For each imputed data set, we calculate the weighted likelihood

estimator of β and its variance estimate, and then combine the 10 sets of results

using the method of Little and Rubin (2002) to obtain the final estimate and its

variance estimate. Confidence intervals for β are calculated using the t distribution

following Little and Rubin (2002).

1.3 Simulation Studies

We conducted simulations to assess the performance of the weighted likelihood es-

timator by comparing the bias, efficiency and coverage properties to other estimators

including the maximum likelihood estimator for full cohort data, the naive estimator

for case-cohort data, and the Self-Prentice (1988) pseudo likelihood estimator for

case-cohort data. The pseudo likelihood estimation is based on approximating inter-

val censoring by right censoring, whereby event times are defined by the midpoint of

the left- and right-censoring intervals.

We consider two covariates (X1, X2), where the corresponding regression coeffi-

cients are (1,−1)T . Note that the subscript of X here denotes covariate component,

not an index for study subject as in Section 1.2. To match the HIV vaccine trial

(Flynn et al., 2005), we set the time origin as 6.5 months post-entry (the time by

which the study subjects are “fully immunized”) and use six time intervals (m = 6)

with fixed visit times at months 12, 18, 24, 30, and 36. The covariate X1 is set to

be discrete and time-independent, which takes values 1 and 2 with equal probabil-

ity. The covariate X2 = (X21, X22, X23, X24, X25)
T is specified as a 5-variate random

vector corresponding to the five post-immunization visits at months 6.5, 12.5, 18.5,
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24.5, 30.5, where X2j is the covariate value of X2 in the jth interval. The conditional

distribution of X2 given X1 is normal, i.e., X2|X1 = k ∼ N(µk, Σ), k = 1, 2, with

µ1 = (0.1, 0.2, 0.3, 0.4, 0.5)T , µ2 = (0, 0.1, 0.2, 0.3, 0.4)T , and

Σ =




1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1




,

where ρ = 0.7. With this set-up the covariates X2j, j = 1, . . . , 5, are positively

correlated following an AR(1) model, and X1 and X2 are also correlated.

We choose the cohort size n as 200, 500 or 3000. When n = 200, the probability

of selecting censored subjects into the subcohort is 0.333 and the baseline hazard is

a constant value 0.015; When n = 500, the probability of selecting censored subjects

into the subcohort is 0.25 and the baseline hazard is a constant value 0.02; when

n = 3000, the selection probability is 0.085 for censored subjects and the baseline

hazard is a constant value 0.005. With these settings there are approximately 90

completely observed subjects when n = 200, among whom about 40 are failures,

approximately 200 completely observed subjects when n = 500, among whom about

half are failures, and approximately 400 completely observed subjects when n =

3000, among whom about 150 are failures. The last situation resembles the HIV

vaccine trial data that will be analyzed in the next section. The survival times are

generated from a piecewise exponential distribution specified by model (1.1) (with

λ0(t) ≡ c specified above). Censoring times are generated from a discrete uniform

subdistribution at months (12, 18, 24, 30) combined with a truncation at month 36

to yield about 25 early dropouts (prior month 36), similar to what was observed in
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the HIV study. One thousand simulation runs are conducted under each simulation

setting.

For each simulation run, parameter estimates are obtained by solving equation

(1.3) with estimated weights using the Newton-Raphson method. The initial value of

β is set to be zero, and the initial value of γ is obtained from the Kaplan-Meier curve

S(0)(·), calculated by pushing the failure time to the right end point of the interval in

which an event occurs, via γ
(0)
j = log[log{S(0)(tj)}− log{S(0)(tj+1)}], 1 ≤ j ≤ m− 1.

Then the variance estimator is calculated from the expressions given in Theorems

II.1 and II.2, and the 95% Wald confidence interval for each parameter is obtained

based on the asymptotic normality. Bias, coverage percentage, the average of the

estimated standard deviations, and the empirical standard deviation are calculated

from the 1000 simulation runs. Since the parameter of interest is β, only the bias for

estimating γ is reported. The relative efficiency of the weighted likelihood estimator

of β versus the maximum likelihood estimator (MLE) computed from the full data

is calculated by the ratio of empirical variances.

In addition to evaluating the different methods with no missing components in X,

we evaluate the weighted likelihood method with multiple imputation, by coarsening

the simulated X2 covariates to have missing components in the pattern described in

SubSection 2.2.3. Tables 1.1 and 1.2 summarize the simulation results, where weights

are estimated by sampling fractions. From Table 1.1 we see that the weighted likeli-

hood estimators have reasonably small biases. The standard deviation estimators for

β̂ are accurate, which lead to accurate coverage percentages. The multiple imputa-

tion method works well. It is not surprising that the weighted likelihood method for

case-cohort data is less efficient than the maximum likelihood estimator for the full

cohort data. However, under case-cohort sampling the weighted likelihood method
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is much more efficient than the naive method that uses simple random sampling. In

addition, by ignoring the biased sampling nature of the case-cohort sampled data,

the naive estimator is clearly biased. The pseudo likelihood method of Self and Pren-

tice (1988) that uses approximated right censored data is also more biased than the

weighted likelihood method for grouped survival data. From Table 1.1 we see that

the bias of γ̂ is severe for both the naive method and the pseudo likelihood method,

whereas it is very small for the weighted likelihood method.

To better illustrate the efficiency gain of the weighted likelihood estimator with

estimated weights compared to the estimator with true weights, we generate an

auxiliary variable V that is a coarsening of X. Particularly, V = 1 if the average of

X2 over the five intervals is less than 1 and X1 = 1; V = 2 if the average of X2 is

less than 1 and X1 = 2; V = 3 if the average of X2 is greater than 1 and X1 = 1;

and V = 4 if the average of X2 over the five intervals is greater than 1 and X1 = 2;

The subcohort is selected by stratified Bernoulli sampling from the 4 strata defined

by V . When n = 200, the subcohort sampling probabilities are 0.4, 0.4, 0.7, and

0.7 for the 4 strata. When n = 500, the sampling probabilities are 0.2, 0.2, 0.7, and

0.7. When n = 3000, the sampling probabilities are 0.05, 0.05, 0.25, and 0.25. The

probabilities are determined such that the numbers of failures and controls selected

into the subcohort are approximately the same as in the previous simulation. Results

are give in Table 1.3, which clearly show the advantage of using estimated weights.

1.4 Analysis of the HIV Vaccine Trial Data

We now analyze the HIV vaccine trial data using the weighted likelihood method

to investigate the association between antibody levels and HIV infection. We inves-

tigate the newest antibody measurement described in Forthal et al. (2007), which

quantitates the degree to which the serum of a vaccine recipient reduces (relative
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to control serum) the avidity of the binding of soluble CD4 to the GNE8 strain of

HIV. We refer to this antibody variable as the GNE8 CD4 avidity level. We focus on

measurements taken at month 6.5, 12.5, 18.5, 24.5, and 30.5 to evaluate the relation-

ship between peak GNE8 CD4 avidity levels and the rate of HIV infection. Because

this antibody variable was only obtained from vaccine recipients who tested HIV

negative at month 6, and the main scientific goal is to evaluate the association in

vaccine recipients after they received the third immunization at month 6.5, the time

intervals for analysis are [6.5, 12), [12.5, 18), [18, 24), [24, 30), [30, 36), and [36,∞),

where month 36 is the time of the final study visit.

The GNE8 CD4 avidity level was measured for all infected vaccine recipients and

for a stratified random sample of uninfected vaccine recipients. Placebo recipients

are not used in the analysis because their GNE8 CD4 avidity levels all equal 0. We

only consider men in the analysis since only 4 women were included in the case-cohort

sample. The stratification variable is defined by four demographic subgroups: white

low risk men, nonwhite low risk men, white higher risk men, and nonwhite higher

risk men, with sampling fractions 0.047, 0.176, 0.208, and 0.450, respectively. Here

low (higher) risk subjects are those who had baseline behavioral risk score (defined

in Flynn et al., 2005) below or equal to (greater than) 2. The entire cohort size of

vaccine recipients at the time origin month 6.5 is 3370, of whom 131 became HIV

infected by month 36. Among uninfected vaccine recipients, 115, 73, 71, and 18 were

sampled from the four strata for measuring the GNE8 CD4 avidity level. Among

the 277 sampled uninfected vaccine recipients, 254 were right censored at month 36,

and 23 were right censored at an earlier visit time.

In addition to the primary covariate of interest peak GNE8 CD4 avidity level,

other covariates included in the Cox model analysis are race (white or nonwhite)
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and baseline behavioral risk score. The baseline risk score is categorized into three

groups: low (< 2), medium (2 or 3), and high (> 3). The peak antibody level is

time-dependent, but is assumed constant between two adjacent vaccine shots. It is

measured at time-points described at the beginning of SubSection 1.2.3.

To handle the missing covariate data we use the multiple imputation approach

described in SubSection 1.2.3. During the data exploration we found that the contri-

bution of the antibody level in model (1.1) is monotone, but not linear, with faster

increase at lower antibody levels. By trying out a few power transformations of

the antibody level, we found the one fifth power transformation seemed to provide

an estimated linear effect. Hence we implemented this transformation in the final

analysis.

The results are presented in Table 1.4. We first investigated interactions between

antibody level and the other covariates, and none are statistically significant. On

main effects, the race effect is not statistically significant, while baseline risk group is

highly significant. Compared to the low risk group, the estimated relative hazard of

HIV infection for the medium or high risk groups is approximately tripled, controlling

for antibody level and race. The GNE8 CD4 avidity levels are significantly inversely

associated with HIV infection rate. Note that on their original scale the antibody

levels range from 0 to about 0.75, and their transformed values range from 0 to

about 0.95. From Table 1.3 we see that the estimated log relative hazard of infection

for every 0.1 unit increase in the one fifth power of antibody level is −0.120 with

95% confidence interval of (−0.203,−0.034), controlling for race and baseline risk

score. Transformed back to the original scale, the strength of association is larger at

lower values of the antibody level. For example, an antibody level of 0.25 compared

to 0 reduces the hazard of HIV infection by about 59.8%; an antibody level of
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0.5 compared to 0.25 reduces the hazard by 12.7%; and the antibody level of 0.75

compared to 0.5 reduces the hazard by 8.5%, controlling for race and baseline risk

score.

1.5 Discussion

It should also be noted that, although the weighted likelihood estimator provides

an intuitively reasonable method that can be easily carried out numerically, it is not

the most efficient estimator. Efficient estimation will in general involve the joint

distribution of covariates and high-dimensional integration, and hence is much more

complicated, especially when some covariates are continuous. When covariates are

discrete, a simpler derivation is possible, but not pursued here.

Appendix A: Derivation of P (∆i = δi, Ri = j|Xi)

Clearly the pair of random variables (∆i, Ri), or equivalently (∆i,Ri+1, Ri), is

completely determined by (Ti, Ci). In particular, the set {∆i,Ri+1 = 0, Ri = j} is

equivalent to observing the event in (tj−1, tj], which in turn is equivalent to the set

{Ti ∈ (tj−1, tj], Ci ≥ tj}; and the set {∆i,Ri+1 = 1, Ri = j} is equivalent to censoring

the event at time tj, which in turn is equivalent to the set {Ti ≥ tj, Ci ∈ (tj−1, tj]}.

Let δi denote the realized vector values of ∆i. Then by the conditional independence

of Ti and Ci given Xi, the conditional probability mass function of (∆i, Ri) given Xi
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can be written as

P (∆i = δi, Ri = j|Xi)

= P

{
Ti ∈ (tj−1, tj], Ci ≥ tj

∣∣∣∣Xi

}1−δi,j+1

P

{
Ti ≥ tj, Ci ∈ (tj−1, tj]

∣∣∣∣Xi

}δi,j+1

=

{
e−

Pj−1
k=1 eγk+XT

ikβ
(
1− e−e

γj+XT
ijβ

)}1−δi,j+1
{

e−
Pj

k=1 eγk+XT
ikβ

}δi,j+1

f(δi, j|Xi)

=

j∏

`=1

{
e−

P`−1
k=1 eγk+XT

ikβ
(
1− e−eγ`+XT

i`β
)}δi`

{
e−

Pj
k=1 eγk+XT

ikβ

}δi,j+1

f(δi, j|Xi)

=

j+1∏

`=1

(
e−

P`−1
k=1 eγk+XT

ikβ

)δi` (
1− e−e

γj+XT
ijβ

)δij

f(δi, j|Xi)

≡ L(θ|∆i = δi, Ri = j)f(δi, j|Xi), 1 ≤ j ≤ m− 1,

where f(δi, j|Xi) = {P (Ci ≥ tj|Xi)}1−δi,j+1{P (tj < Ci ≤ tj+1|Xi)}δi,j+1 .

Appendix B: Derivatives of the Weighted Log Likelihood

Denote hij = eγj+XT
ijβ, 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1. The first order derivatives of

the weighted likelihood function are ∂`w,n(θ)/∂θ =
∑n

i=1 wi∂`i(θ)/∂θ, where

∂`i(θ)

∂β
= −

Ri+1∑
j=1

(
∆ij

j−1∑

k=1

hikXik

)
+ ∆iRi

hiRi
e−hiRi

1− e−hiRi
XiRi

,

∂`i(θ)

∂γs

= −
Ri+1∑
j=s+1

{∆ijhisI(Ri ≥ s)}+ ∆is
hise

−his

1− e−his
I(Ri = s), 1 ≤ s ≤ m− 1.

Let

bij =
hije

−hij

1− e−hij

(
1− hij

1− e−hij

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1.
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Then the second order derivatives are ∂2`w,n(θ)/∂θ∂θT =
∑n

i=1 wi∂
2`i(θ)/∂θ∂θT ,

where

∂2`i(θ)

∂β∂βT
= −

Ri+1∑
j=1

(
∆ij

j−1∑

k=1

hikXikX
T
ik

)
+ ∆iRi

biRi
XiRi

XT
iRi

,

∂2`i(θ)

∂γ2
s

= −
Ri+1∑
j=s+1

{∆ijhisI(Ri ≥ s)}+ ∆isbisI(Ri = s), 1 ≤ s ≤ m− 1,

∂2`i(θ)

∂β∂γs

= −
Ri+1∑
j=s+1

{∆ijhisXisI(Ri ≥ s)}+ ∆isbisXisI(Ri = s),

∂2`w,n(θ)

∂γs∂γt

= 0, s 6= t.

Appendix C: Proof of Theorem II.1

The proof of consistency of θ̂n is based on Theorem 5.7 of van der Vaart (1998),

which can be reduced to the following Lemma 1 that is more relevant to our problem.

In the following we omit the word “outer” from outer probability and outer integral,

and refer the detailed arguments to van der Vaart and Wellner (1996), Chapter 1.

Lemma 1: For i.i.d. observations Z1, · · · , Zn, let Mn(θ) = n−1
∑n

i=1 mθ(Zi) and

M(θ) = Emθ(Z), where θ ∈ Θ ⊂ Rd. Assume that Θ is compact, M(θ) is continuous

and has a unique maximizer at θ0, and the measurable function θ 7→ mθ(Z) is

continuous for every Z and dominated by an integrable function. Then any sequence

of estimators θ̂n satisfying Mn(θ̂n) ≥ Mn(θ0) − op(1) converges in probability to θ0

as n →∞.

Proof: Since Θ is compact and the function θ 7→ mθ(Z) is continuous for every

Z and dominated by an integrable function, the class of functions {mθ : θ ∈ Θ}

is Glivenko-Cantelli (see example 19.8 in van der Vaart, 1998). Hence we have the

uniform convergence of Mn(θ), i.e., supθ∈Θ |Mn(θ) − M(θ)| → 0 in probability as
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n →∞. On the other hand, by the compactness of Θ and the fact that the function

M(θ) has a unique maximizer at θ0, we have sup‖θ−θ0‖≥ε M(θ) < M(θ0) for every

ε > 0. Hence the conditions of Theorem 5.7 of van der Vaart (1998) are satisfied,

and it follows that θ̂n → θ0 in probability. ¤

We now apply Lemma 1 to prove the consistency of θ̂n in Theorem II.1. By Lemma

1, it suffices to show that the class of functions {w`(θ) : θ ∈ Θ} are continuous and

bounded by an integrable function, and µ(θ) = Eθ0{w`(θ)} is continuous and has

a unique maximizer at θ0, where `(θ) is the log likelihood function for one subject

with the subscript i suppressed. From equation (2) we see that `(θ) is continuous

and bounded by a constant since γ, β and Xj are all bounded. In addition, w is

bounded by Condition (iii). Thus the function θ 7→ w`(θ) is uniformly bounded

by an integrable function. Then the continuity of µ(θ) follows from the dominated

convergence theorem. It remains to show that µ(θ) has a unique maximizer at θ0.

Let µ∗(θ) = µ(θ) − µ(θ0). Denote the joint density of (∆, R, X) by pθ. Then for

any θ ∈ Θ we have

µ∗(θ) = Eθ0{w`(θ)− w`(θ0)}

= Eθ0

{
w log

pθ(∆, R, X)

pθ0(∆, R,X)

}

= Eθ0

{
log

pθ(∆, R, X)

pθ0(∆, R,X)
Eθ0(w|∆, R, X, V )

}

= Eθ0

{
log

pθ(∆, R, X)

pθ0(∆, R,X)

}
by (1.4)

≤ log Eθ0

{
pθ(∆, R, X)

pθ0(∆, R,X)

}
by the Jensen’s inequality

= log 1 = 0.

Hence µ(θ) is maximized at θ0. Note that the above calculation shows that µ∗(θ) is

equivalent to the negative Kullback-Leibler divergence and thus less than or equal
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to 0. Furthermore, since the equality in (1.5) holds if and only if pθ0(∆, R,X) =

pθ(∆, R, X) with probability 1, we have that µ(θ) = µ(θ0) if and only if pθ0(∆, R, X) =

pθ(∆, R, X) with probability 1. Denote θ0 = (γ1,0, · · · , γm−1,0, β
T
0 )T . Then by (2.1)

we have γk + XT
k β = γk,0 + XT

k β0, or equivalently XT
k (β − β0) = γk,0 − γk, with

probability 1, for all k. Since Var(Xk) > 0, we must have β = β0 and γk = γk,0 for all

k, i.e., θ = θ0. Therefore, µ(θ) has a unique maximizer at θ0. Thus the consistency

of θ̂n follows from Lemma 1. ¤

The proof of asymptotic normality of θ̂n in Theorem I.1 can be done by applying

Theorem 5.23 of van der Vaart (1998), which is listed as Lemma 2 in the following

for ease of reference.

Lemma 2: Let Z1, . . . , Zn be a random sample from some distribution P . For

each θ in an open subset of Euclidean space, let z 7→ mθ(z) be a measurable function

such that θ 7→ mθ(z) is differentiable at θ0 for P−almost every z with derivative

ṁθ0(z) and such that, for every θ1 and θ2 in a neighborhood of θ0 and a measurable

function ṁ with Eθ0ṁ
2 < ∞,

|mθ1(z)−mθ2(z)| ≤ ṁ(z)‖θ1 − θ2‖.

Furthermore, assume that the map θ 7→ Eθ0mθ admits a second order Taylor expan-

sion at a point of maximum θ0 with nonsingular symmetric second derivative matrix

Vθ0 . If
∑n

i=1 mθ̂n
(Zi) ≥ supθ

∑n
i=1 mθ(Zi)− op(1) and θ̂n →p θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ṁθ0(Zi) + op(1).

Proof: See van der Vaart (1998), page 54. ¤
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We introduce some additional notation before proving the asymptotic normality of

θ̂n. We still suppress the subscript i for subject i because we have i.i.d. observations.

For a single observation, let D = 1 if the subject either has a failure observed or

is right censored at tm−1 (the last visit time), and D = 0 if the subject is right

censored at a time earlier than tm−1. We also extend the length of ∆ to m if an

event is observed (it is m when the failure time is censored at tm−1) by adding m− r

zeros to the remaining intervals after the interval that contains the event. Then the

likelihood function for the subject can be decomposed as

L(θ) =

[
m∏

j=1

{
e−

Pj−1
k=1 eγk+XT

k β

(
1− e−e

γj+XT
j β

)}∆j
]D {

e−
Pr

j=1 e
γj+XT

j β
}1−D

≡ {L(1)(θ)}D{L(2)(θ)}1−D.

Likewise, the log likelihood function can be written as

`(θ) = D`(1)(θ) + (1−D)`(2)(θ),(1.5)

where `(1)(θ) = log L(1)(θ), and `(2)(θ) = log L(2)(θ).

We are now in a position to prove the asymptotic normality of θ̂n by checking

the conditions of Lemma 2. Identify Z and mθ(Z) in the lemma with (∆, R,X) and

w`(θ). Obviously the map z 7→ mθ(z) is measurable and θ 7→ mθ(z) is differentiable

at any θ in Θ for every z. By (1.5) and the boundedness of w, θ and (∆, R, X), every

element of ṁθ(z) = ∂mθ(z)/∂θ is bounded in both θ and z by a common constant,

say, C. By the mean value theorem and the Cauchy-Schwartz inequality we have

|mθ1(z)−mθ2(z)| = |ṁθ∗(z)T (θ1 − θ2)|

≤ ‖ṁθ∗(z)‖ · ‖θ1 − θ2‖ ≤ (p + m− 1)C‖θ1 − θ2‖,

where θ∗ lies on the line segment between θ1 and θ2. Hence we can take ṁ(z) in

Lemma 2 to be (m + p − 1)C and the condition Eθ0ṁ
2(Z) < ∞ is automatically
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satisfied. Since elements in both ∂mθ(z)/∂θ and ∂2mθ(z)/∂θ∂θT are bounded by

integrable functions, by the dominated convergence theorem we can exchange the

second order derivative and the expectation. Hence the map θ 7→ Eθ0mθ admits a

second-order Taylor expansion. Now we only need to show that Vθ0 in Lemma 2 is

nonsingular.

By (1.4) we have Eθ0mθ = Eθ0{w`(θ)} = Eθ0`(θ). Hence Vθ0 = Eθ0{∂2`(θ)/

∂θ∂θT}θ=θ0 = −I(θ0). Since

I(θ0) = −Eθ0

{
∂2`(θ)

∂θ∂θT

}

θ=θ0

= Eθ0

{
∂`(θ)

∂θ

(
∂`(θ)

∂θ

)T
}

θ=θ0

,

if I(θ0) singular, then there must exist a nonzero constant real vector α such that

αT I(θ0)α = 0, which implies by (1.5) that

Eθ0

{
αT ∂`(θ)

∂θ

}2

θ=θ0

= Eθ0

{
D

(
αT ∂`(1)(θ)

∂θ

)2

+ (1−D)

(
αT ∂`(2)(θ)

∂θ

)2
}

θ=θ0

= 0.

Hence Eθ0 [D{αT ∂`(1)(θ)/∂θ}2]θ=θ0 = 0. Again by (1.5) we have,

∂`(1)(θ)

∂γs

∣∣∣∣
θ=θ0

= −
m∑

j=s+1

∆jh
0
s + ∆s

h0
se
−h0

s

1− e−h0
s
, s = 1, 2, · · · ,m− 1,

∂`(1)(θ)

∂β

∣∣∣∣
θ=θ0

=
m∑

j=1

∆j

(
−

j−1∑

k=1

h0
kXk +

h0
je
−h0

j

1− e−h0
j

Xj

)
,

where h0
s = eγs+XT

s βs|θ=θ0 , 1 ≤ s ≤ m− 1. Hence we have

Eθ0

{
D

(
αT ∂`(1)(θ)

∂θ

)2
}

θ=θ0

= Eθ0

{
m∑

j=1

D∆jfj(X)

}2

θ=θ0

= Eθ0

{
m∑

j=1

D∆jf
2
j (X)

}

θ=θ0

=
m∑

j=1

Eθ0

{
P (∆j = D = 1|X)f 2

j (X)
}

= 0(1.6)

for some function fj. Now by (2.1), (1.5) and Assumption (iv), we obtain

P (∆j = D = 1|X) = e−
Pj−1

k=1 h0
k

(
1− e−h0

j

)
P (C ≥ tj|X) > 0, j < m,
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and

P (∆m = D = 1|X) = e−
Pj−1

k=1 h0
k

(
1− e−h0

j

)
P (C ≥ tm−1|X) > 0.

Hence (1.6) holds if and only if fj(X) = 0 with probability 1 for all j. Denoting

α = (c1, · · · , cm−1, ᾱ
T )T , then we can write

αT ∂`(1)(θ)

∂θ

∣∣∣∣
θ=θ0

=

{
m−1∑
s=1

cs
∂`(1)(θ)

∂γs

+ ᾱT ∂`(1)(θ)

∂β

}

θ=θ0

=
m−1∑
s=1

cs

{
−

m∑
j=s+1

∆j +
∆se

−h0
s

1− e−h0
s

}
h0

s

+ ᾱT

m∑
j=1

∆j

{
−

j−1∑

k=1

h0
kXk +

h0
je
−h0

j

1− e−h0
j

Xj

}
.

Therefore the coefficient of ∆1 is f1(X) = (c1 + ᾱT X1)h
0
1e
−h0

1/(1− e−h0
1). By setting

f1(X) to be 0, we obtain c1 + ᾱT X1 = 0 with probability 1. Since Var(X1) > 0,

this implies ᾱ = 0 and then it follows that c1 = 0. Now f2(X) becomes f2(X) =

c2h
0
2e
−h0

2/(1 − e−h0
2), so we have c2 = 0. By continuing this procedure we conclude

that c3 = · · · = cm−1 = 0. Therefore, we obtain α = 0, which contradicts the

assumption of nonzero α. This shows that I(θ0) must be nonsingular. Then by

Lemma 2 and the consistency of θ̂n that we have already shown, we obtain

√
n(θ̂n − θ0) = I−1(θ0)

1√
n

n∑
i=1

wi
∂`i(θ)

∂θ

∣∣∣∣
θ=θ0

+ op(1),

and asymptotic normality is guaranteed by the central limit theorem since wi{∂`i(θ)/∂θ}

is bounded and thus square integrable. ¤

Appendix D: Proof of Theorem II.2

Similar to the proof of consistency of θ̂n in Theorem II.1, the consistency of θ̃n

follows directly from Theorem 5.7 of van der Vaart (1998), in which the random
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objective function Mn(θ) is more general and contains estimated weights in our case.

Based on the proof of Theorem II.1, we only need to show

sup
θ∈Θ

∣∣∣∣∣
1

n

n∑
i=1

{wi(p̂)− wi(p0)}`(θ; Xi)

∣∣∣∣∣ → 0

in probability as n →∞. This follows easily by the boundness of `(θ, Xi):

sup
θ∈Θ

∣∣∣∣∣
1

n

n∑
i=1

{wi(p̂)− wi(p0)}`(θ; Xi)

∣∣∣∣∣ ≤ C

n

n∑
i=1

|wi(p̂)− wi(p0)|

≤ C

S∑
s=1

∣∣∣∣
1

p̂s

− 1

p0s

∣∣∣∣ → 0(1.7)

in probability as n →∞ for some constant C.

Since the vector of sample fractions p̂ is an asymptotic linear estimator of p0,

together with the asymptotic linearity of θ̂n established in Theorem II.1, we have the

joint asymptotic normality of (θ̂n, p̂):

√
n




θ̂n − θ0

p̂− p0


 →d N




Σ(θ0) G12

G21 G22


 ,(1.8)

where G22 = diag{p01(1 − p01)/α1, · · · , p0S(1 − p0S)/αS} is the asymptotic variance

matrix of p̂, and G12 = GT
21 is the asymptotic covariance matrix between θ̂n and p̂.

Based on the differentiability of the weighted log likelihood function
∑n

i=1 wi(p̂)`(θ; Xi)

to θ and that the maximizer θ̃n does not occur on the boundary of the parameter

space, we have

1√
n

n∑
i=1

wi(p̂)
∂`(θ; Xi)

∂θ

∣∣∣∣
θ=θ̃n

= 0.

By the Taylor expansion of the left hand side of the above equation around θ = θ0,

it follows that

1√
n

n∑
i=1

wi(p̂)
∂`(θ; Xi)

∂θ

∣∣∣∣
θ=θ0

+ An

√
n(θ̃n − θ0) = 0,(1.9)
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where

An =
1

n

n∑
i=1

wi(p̂)
∂2`(θ; Xi)

∂θ∂θT

∣∣∣∣
θ=θ0

+ Rn,

and Rn is op(1) by the boundness of the third derivative of `(θ; Xi) to θ. Similar to

(1.7) by the boundness of the second derivative of `(θ; Xi) to θ, further by the weak

law of large numbers and equation (4) we have

An =
1

n

n∑
i=1

wi(p0)
∂2`(θ; Xi)

∂θ∂θT

∣∣∣∣
θ=θ0

+ op(1) = I(θ0) + op(1).

By the Taylor expansion again to the first term of the left hand side of (1.9)

around p0 and the boundness of the derivatives of ` and w, we can write

An

√
n(θ̃n − θ0) = − 1√

n

n∑
i=1

wi(p0)
∂`(θ; Xi)

∂θ

∣∣∣∣
θ=θ0

− 1

n

n∑
i=1

∂`(θ; Xi)

∂θ

(
∂w(p)

∂p

)T
∣∣∣∣∣
θ=θ0,p=p0

√
n(p̂− p0) + op(1)

= − 1√
n

n∑
i=1

wi(p0)
∂`(θ; Xi)

∂θ

∣∣∣∣
θ=θ0

−B(θ0, p0)
√

n(p̂− p0) + op(1),

where

B(θ, p) = E

{
∂`(θ; Xi)

∂θ

(
∂w(p)

∂p

)T
}

.

Therefore, by the nonsingularity of I(θ0) proved in Theorem II.1, we conclude

that

√
n(θ̃n − θ0) = −I−1(θ0)

1√
n

n∑
i=1

wi(p0)
∂`(θ; Xi)

∂θ

∣∣∣∣
θ=θ0

−I−1(θ0)B(θ0, p0)
√

n(p̂− p0) + op(1).(1.10)

In view of (1.8) and (1.10), it now follows from the result in Pierce (1982) that

√
n(θ̃n − θ0) →d N(0, Σ(θ0)− I−1(θ0)B(θ0, p0)G22B

T (θ0, p0)I
−1(θ0),

as n →∞. ¤
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Table 1.1: Summary statistics of simulations, with true parameter values β1 = 1 and β2 = −1.

n = 200. Mean sample size of completely observed subjects in the case-cohort sample is 90, in
which the mean number of censored subjects selected in the subcohort is 50.

Coverage Average Empirical Relative efficiency
Method Parameter Bias Percentage SD SD (from empirical variances)
Weighted β1 -0.007 0.963 0.440 0.435 0.636
likelihood β2 0.044 0.942 0.203 0.211 0.720

Full data β1 -0.007 0.968 0.093 0.347 1
MLE β2 0.014 0.956 0.173 0.179 1

Naive β1 0.172 0.923 0.372 0.362 –
estimator β2 -0.080 0.907 0.175 0.177 –

Pseudo β1 -0.349 0.813 0.131 0.146 –
likelihood β2 0.360 0.722 0.262 0.293 –

Multiple β1 0.008 0.970 0.481 0.457 –
imputation β2 0.074 0.924 0.223 0.230 –

n = 500. Mean sample size of completely observed subjects in the case-cohort sample is 200, in
which the mean number of censored subjects selected in the subcohort is 100.
Weighted β1 -0.022 0.942 0.295 0.302 0.580
likelihood β2 0.026 0.931 0.133 0.136 0.607

Full data β1 -0.026 0.955 0.230 0.230 1
MLE β2 0.010 0.954 0.108 0.106 1

Naive β1 0.218 0.824 0.233 0.239 –
estimator β2 -0.128 0.761 0.108 0.108 –

Pseudo β1 -0.261 0.780 0.131 0.146 –
likelihood β2 0.249 0.675 0.262 0.293 –

Multiple β1 0.030 0.964 0.301 0.287 –
imputation β2 0.011 0.959 0.145 0.147 –

n = 3000. Mean sample size of completely observed subjects in the case-cohort sample is 400, in
which the mean number of censored subjects selected in the subcohort is 250.
Weighted β1 -0.003 0.945 0.208 0.215 0.561
likelihood β2 0.016 0.935 0.096 0.106 0.412

Full data β1 -0.018 0.948 0.066 0.161 1
MLE β2 -0.002 0.940 0.067 0.068 1

Naive β1 0.275 0.562 0.156 0.160 –
estimator β2 -0.183 0.229 0.067 0.068 –

Pseudo β1 -0.090 0.863 0.102 0.118 –
likelihood β2 0.099 0.774 0.203 0.234 –

Multiple β1 0.028 0.935 0.215 0.227 –
imputation β2 0.019 0.920 0.098 0.110 –
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Table 1.2: Biases for estimation of the γi’s in the simulations.

Weighted likelihood Full data MLE Naive estimator Pseudo likelihood Multiple imputation

n = 200, γi = −2.41
γ1 -0.13 -0.10 0.45 0.28 0.13
γ2 -0.07 -0.04 0.56 0.31 0.04
γ3 -0.02 -0.01 0.68 0.42 0.07
γ4 -0.04 -0.01 0.77 0.33 0.02
γ5 -0.06 -0.05 0.85 0.24 -0.03

n = 500, γi = −2.12
γ1 0.01 -0.02 0.57 0.53 0.06
γ2 -0.01 -0.01 0.64 0.29 0.03
γ3 -0.02 -0.03 0.72 0.30 0.09
γ4 -0.00 -0.03 0.85 0.24 0.03
γ5 -0.02 -0.02 1.04 0.31 0.02

n = 3000, true γi ≡ −3.51
γ1 -0.01 -0.01 1.55 1.60 0.04
γ2 -0.01 -0.00 1.63 1.23 0.04
γ3 -0.00 -0.01 1.76 1.28 0.03
γ4 -0.00 -0.00 1.93 1.28 0.04
γ5 -0.01 -0.00 2.11 1.28 0.01
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Table 1.3: Comparing the weighted likelihood methods using true weights and estimated weights.

β1 = 1 β2 = −1
bias SE1 SE2 coverage bias SE1 SE2 coverage

n = 200
true weights 0.046 0.195 0.212 0.938 -0.033 0.456 0.446 0.959
estimated weights 0.037 0.185 0.181 0.917 -0.019 0.397 0.390 0.959

n = 500
true weights 0.020 0.129 0.121 0.939 0.001 0.288 0.278 0.940
estimated weights 0.014 0.122 0.117 0.939 0.004 0.255 0.243 0.935

n = 3000
true weights 0.018 0.095 0.087 0.932 0.013 0.203 0.207 0.948
estimated weights 0.018 0.085 0.080 0.937 0.007 0.158 0.166 0.955

SE1: empirical standard deviation
SE2: average of estimated standard deviations
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Table 1.4: Estimated log relative hazards (RHs) of HIV infection in the vaccine trial.

(Antibody)1/5 White Medium risk score High risk score
log(RH) -1.204 -0.191 1.249 1.109
95% CI (-2.027, -0.342) (-0.736, 0.354) (0.728, 1.771) (0.489, 1.728)
P value 0.009 0.492 <0.001 <0.001

White: 1 for white, 0 for nonwhite
Medium risk group: risk score is equal to 2 or 3
High risk group: risk score is greater than 3
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CHAPTER II

Missing Covariates in Cox Regression with Current Status
Data

2.1 Introduction

The Cox proportional hazards model (Cox, 1972) with right censored data has

been extensively studied in the literature (see, for example, Andersen et al., 1993,

Fleming and Harrington, 1991, or Kalbfleisch and Prentice, 2002). Besides right

censoring, other types of censoring also arise in practice. For example, failure time

data may be interval censored, i.e., we only know that the failure time for a subject

falls into some random interval. In the so-called “case 1” interval censoring, we only

know whether the failure event has occurred prior to a random observation time Y or

not, and hence the observed data are (∆, Y ), where ∆ = I(T≤Y ) and T is the time to

event. This type of data are also called current status data. Groeneboom and Well-

ner (1992) studied the nonparametric maximum likelihood estimator (NPMLE) of

the distribution function of T with current status data. They developed an efficient

iterative algorithm to compute the nonparametric likelihood estimate of the under-

lying distribution function of T based on n independent and identically distributed

(i.i.d.) observations of (∆, Y ), which converges faster than the EM algorithm. They

proved the consistency of the NPMLE and showed its n1/3 rate of convergence and

derived its (non-normal) asymptotic distribution. In the regression setting, instead

34
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of the marginal distribution of T , we are interested in the association between the

failure time T and a vector of covariates Z. Therefore, the observed data consist of

i.i.d. copies of (∆, Y, Z), where Z is a d-dimensional covariate vector. Huang (1996)

studied the maximum likelihood estimation for both the baseline cumulative hazard

function and the log hazard ratio parameter in a proportional hazards model with

current status data, and developed an algorithm based on Groeneboom and Well-

ner (1992) for computing the maximum likelihood estimates. Other work on this

topic includes Murphy and Van Der Vaart (2000) and Van Der Vaart (2002), and

the former treated this problem as an example of their profile likelihood approach.

The maximum likelihood estimators of the finite dimensional vector of log hazard

ratios and the infinite dimensional baseline cumulate hazard function are proved to

be consistent and asymptotically efficient, and the former converges to a normal ran-

dom variable at n1/2 rate while the latter converges at n1/3 rate, the same rate as in

Groeneboom and Wellner (1992).

In this chapter we consider the problem of fitting the proportional hazards model

with current status data when covariates are not always observed. We assume that

covariates are missing at random (MAR, a terminology of Little and Rubin Little

and Rubin (2002)), and the probability of observing those covariates is known or can

be reasonably estimated. This kind of missing data problem can arise in many situ-

ations. One example is two-phase stratified sampling, which was originally proposed

by Neyman (1938). It was proposed to estimate the population mean of a target

variable that is costly or hard to measure. At phase one an auxiliary variable, which

is correlated to the target variable and easy to measure, is measured on a relatively

large sample. Then at phase two, the target variable is measured in a random sub-

sample drawn by random sampling stratified by the variable measured at phase one.
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The case-cohort design, proposed by Prentice (1986), is a special type of two-phase

stratified sampling design, in which the strata are defined by the outcome (failure

status) and possibly other auxiliary variables that are measured for every subject.

For statistical inference in such type of missing data problems, the usual like-

lihood approach can be very difficult if not impossible. The weighted likelihood

method, however, can be easily applied, in which one maximizes the inverse probabil-

ity weighted version of the log likelihood function (see e.g. Kalbfleisch and Lawless,

1988 and Skinner et al., 1989), or solves a weighted version of the score equation

(see e.g. Manski and Lerman, 1977) to estimate the parameter of interest. When

the weighted likelihood approach is applied to parametric models, the asymptotic

properties of the regular estimators with n1/2 rate follow readily from the results for

M-estimation (see e.g. Van Der Vaart, 1998). For example, Li et al. (2008) em-

ployed the weighted likelihood method in a proportional hazards model for grouped

survival data coming from an HIV vaccine study, where the covariates of interest are

obtained from a case-cohort design. In a recent work on semiparametric models for

two-phase sampling designs in which the infinite dimensional nuisance parameter can

be estimated at n1/2 rate, Breslow and Wellner (2007) considered the weighted like-

lihood method and derived asymptotic results for both Bernoulli sampling and finite

population stratified sampling in selecting the phase two sample. They also derived

asymptotic results for the weighted likelihood estimator using estimated sampling

probabilities in the weight function for the Bernoulli sampling, showing the efficiency

gain comparing to the estimator using true sampling probabilities.

When we fit the proportional hazards model to current status data with missing

covariates using the weighted likelihood, however, we may expect a slower than n1/2

convergence rate for the baseline cumulative hazard function based on the result of
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Huang (1996) for the full data. Hence the theory developed by Breslow and Wellner

(2007) does not apply. In Section 2.7, we construct a general theorem that generalizes

Theorem 6.1 in Wellner and Zhang (2007), which was developed for their pseudo

likelihood method, and apply the theorem to show that our proposed estimators for

the log hazard ratio are n1/2-consistent and asymptotically normal, and that using

estimated weights improves efficiency as shown for the case in Breslow and Wellner

(2007).

The construction of this chapter is as follows. In Section 2.2 we provide an algo-

rithm that is modified from the one given in Huang (1996) for computing the weighted

likelihood estimator. In Section 2.3, we first establish the asymptotic properties of

the weighted likelihood estimators using true weights, then show that similar asymp-

totic results hold for the weighted likelihood estimator using estimated weights and

that such an estimator is more efficient than the one obtained by using true weights.

We discuss variance estimation in Section 2.4, and conduct simulations and analyze

the data from a case-cohort HIV vaccine study in Section 2.5. A brief discussion

is given in Section 2.6. In Section 2.7, we introduce a general theorem that is use-

ful for the proof of asymptotic properties of the weighted likelihood estimator using

estimated weights. All the major proofs are given in Section 2.8. We adopt the em-

pirical process notation of Van Der Vaart and Wellner (1996) throughout the article

by denoting Pf as the integral of f with respect to the probability measure P , Pnf

as the integral of f with respect to the empirical measure Pn, which is the sample

average of f for i.i.d. data, and Gnf = n1/2(Pn − P )f .
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2.2 The Weighted Likelihood Estimator

Suppose failure time T and observation time Y are independent given covariate

Z, and T follows a proportional hazards model:

Λ(t|Z) = Λ(t)eβT Z ,

where Λ(t|Z) is the conditional cumulative hazard function given Z, and Λ(t) is

the baseline cumulative hazard function. We consider the case that covariate Z

can be missing. The probability of observing Z is denoted as πα(∆, V ), which may

depend on a parameter α, the failure status ∆, and an auxiliary variable V that is

observed for everyone. For example, in a case-cohort design with stratified sampling

of the subcohort, the probability of observing covariate Z is πα(∆, V ) = ∆ + (1 −

∆)
∑J

j=1 pjI(V ∈Vj), where V1, · · · ,VJ are J strata determined by the value of the

auxiliary variable V , α = (p1, · · · , pJ)T , and pj is the probability that a subject is

sampled into the subcohort from stratum j, 1 ≤ j ≤ J . The parameter α may or

may not be known. In Section 2.4 we shall discuss the effect of estimating α from

observed data. It is possible that V is part of Z. The density of a single observation

X ≡ (∆, Y, Z, V ) at x ≡ (δ, y, z, v) can be written as

pβ,Λ(x) =
(
1− e−Λ(y)eβT z

)δ (
e−Λ(y)eβT z

)1−δ

f(y, z, v),(2.1)

where f(y, z, v) is the joint density of (Y, Z, V ). The parameter of interest is the log

hazard ratio β, and Λ(·) is a nuisance parameter.

Let X1, · · · , Xn be n i.i.d. copies of X. The log likelihood function, up to an

additive constant, is

l(β, Λ) =
n∑

i=1

∆i log
(
1− e−Λ(Yi)e

βT Zi
)
− (1−∆i)Λ(Yi)e

βT Zi .
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Because Zi’s are only observed for a subsample, the NPMLE can be too complicated

to be useful. However, we can use the following weighted version of the log likelihood

function

lwn (β, Λ) =
n∑

i=1

wi

{
∆i log

(
1− e−Λ(Yi)e

βT Zi
)

(2.2)

− (1−∆i)Λ(Yi)e
βT Zi

}
,

where wi = ξi/πα(∆i, Vi) with ξi = 1 if Zi is observed and 0 otherwise, 1 ≤ i ≤ n.

For simplicity, here and in the sequel we suppress the dependence of w on α, ∆ and

V except in Subsections 2.3.2 and 2.4.2, where we discuss the weighted likelihood

estimator with estimated weights. The weighted likelihood estimator of the true pa-

rameter (β0, Λ0(·)) is defined as the maximizer of the weighted log likelihood function

(2.2) with discretized Λ at observed time points and denoted by

(β̂n, Λ̂n) = argmaxPnwl(β, Λ; X).

Let (Y(1), · · · , Y(n)) be the order statistics of (Y1, · · · , Yn). Let ∆(i), Z(i) and w(i)

be the values of ∆, Z and w associated with Y(i), 1 ≤ i ≤ n. Following Huang (1996)

we assume that ∆(1) = 1, ∆(n) = 0, and the estimator Λ̂n(·) is a right-continuous

step function on [0, Y(n)] with jumps at Y(i)’s and Λ̂n(0) = 0. Replacing Λ by its

estimator Λ̂n, we obtain the following score equation for β by differentiating the

objective function (2.2) with respect to β and setting it to 0:

n∑
i=1

w(i)



∆(i)

e−Λ̂n(Y(i))e
β̂T

n Z(i)

1− e−Λ̂n(Y(i))e
β̂T

n Z(i)
− (1−∆(i))



 Λ̂n(Y(i))e

β̂T
n Z(i)Zi = 0.(2.3)

Due to the monotonicity constraint on Λ̂n, there is no such a simple score equation

for Λ̂n. However, analogous to Groeneboom and Wellner (1992) and Huang (1996),

Λ̂n can be characterized by a set of inequalities and an equality, which are given in
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the following Theorem II.1. In the development in this section, we assume that there

are kn(≤ n) distinct observation times Y ∗
1 < Y ∗

2 < · · · < Y ∗
kn

. Both Theorems II.1

and II.2 below allow multiple observations at the same time point. Although Y is

assumed to be a continuous random variable, in practice two or more observation

times may be tied due to rounding errors.

Theorem II.1. The weighted likelihood estimator (β̂n, Λ̂n) satisfies the score equation

(2.3) and

∑

Yj≥Y ∗i

wje
β̂T

n Zj



∆j

e−Λ̂n(Yj)e
β̂T

n Zj

1− e−Λ̂(Yj)e
β̂T

n Zj
− (1−∆j)



 ≤ 0,(2.4)

for i = 1, 2, · · · , kn, and

n∑
i=1

wie
β̂T

n Zi

{
∆i

e−Λ̂n(Yi)e
β̂T

n Zi

1− e−Λ̂n(Yi)eβ̂T
n Zi

− (1−∆i)

}
= 0.(2.5)

Remark 2.1. By the pool adjacent violators algorithm, see Robertson et al.

(1988), for example, the estimates Λ̂n(Y(1)), · · · , Λ̂n(Y(n)) form a number of constant

blocks (called level blocks), say, Λ̂n(Y(1)) = · · · = Λ̂n(Y(b1)) < Λ̂n(Y(b1+1)) = · · · =

Λ̂n(Y(b2)) < · · · < Λ̂n(Y(bm+1)) = · · · = Λ̂n(Y(n)), for some 1 ≤ b1 < b2 < · · · < bm ≤

n − 1. By maximizing the sum of weighted log likelihood functions in each level

block, we get a stronger result than (2.5):

bi+1∑

j=bi+1

w(j)e
β̂T

n Z(j)



∆(j)

e−Λ̂n(Y(j))e
β̂T

n Z(j)

1− e−Λ̂n(Y(j))e
β̂T

n Z(j)
− (1−∆(j))



 = 0,(2.6)

for each i = 0, 1, · · · ,m, where b0 = 0 and bm+1 = n. When there is no missing

covariates, a result parallel to (2.6) is implicit in Huang (1996) for the MLE of (β, Λ)

where no wi is involved.

Our next result yields an iterative algorithm to compute Λ̂n(·, β) for any fixed β.

This algorithm is more efficient than the pool adjacent violators algorithm that can
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also be applied to calculate Λ̂n(·, β) for a fixed β. Following Huang (1996) we define

WΛ(Y ∗
i ) =

∑

Yj≤Y ∗i

wje
βT Zj



∆j

e−Λ(Yj)e
βT Zj

1− e−Λ(Yj)e
βT Zj

− (1−∆j)



 ,

GΛ(Y ∗
i ) =

i∑
j=1

∆GΛ(Y ∗
j ) with

∆GΛ(Y ∗
j ) =

∑

Yk=Y ∗j

wke
βT Zk

{
∆k

eβT Zke−Λ(Yk)eβT Zk

(
1− e−Λ(Yk)eβT Zk

)2 +
1−∆k

Λ(Yk)

}
,(2.7)

VΛ(Y ∗
i ) = WΛ(Y ∗

i ) +
∑

Y ∗j ≤Y ∗i

Λ(Y ∗
j )∆GΛ(Y ∗

j ),

where we have added the quantity wke
βT Zk(1−∆k)/Λ(Yk) in the original definition of

∆GΛ(·) on page 545 of Huang (1996) to make ∆GΛ(Y ∗
j ) ≡ GΛ(Y ∗

j ) − GΛ(Y ∗
j−1) > 0

with GΛ(Y ∗
0 ) ≡ 0, 1 ≤ j ≤ kn, a required condition for the algorithm. See the

following Remark 2.2 for an explanation.

Theorem II.2. For any fixed β, Λ̂n(·; β) maximizes lwn (β, Λ) if and only if Λ̂n(·; β)

is the left derivative of the greatest convex minorant of the “self-induced” cumulative

sum diagram defined by the points (0, 0) and

(
GΛ̂n(·,β)(Y

∗
i ), VΛ̂n(·,β)(Y

∗
i )

)
, 1 ≤ i ≤ kn.

Remark 2.2. The function GΛ(·) in Theorem II.2 can be chosen arbitrarily, as

long as ∆GΛ(Y ∗
i ) > 0, 1 ≤ i ≤ kn, and the constructed VΛ(·) is nondecreasing. The

point is clearly seen in the proof of Proposition 1.4 and Remark 1.4 of Groeneboom

and Wellner (1992). The choices in both Groeneboom and Wellner (1992) and Huang

(1996) are based on a second order Taylor expansion of the log likelihood function.

It works well for the nonparametric estimation of the marginal distribution function

of T , but numerical issue arises in the semiparametric regression case since such

chosen GΛ(·) (determined by the first of two terms in the summands in (2.7)) has
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zero increments at all observation times for censored subjects. This problem can be

resolved by adding a positive quantity to the increments of GΛ(·) at those time points

as what we have done in (2.7). Such added quantity also makes VΛ(·) nondecreasing.

Since for a fixed β there is no closed form for Λ(·, β), we follow Huang (1996)

to iterate between β and Λ to find the weighted likelihood estimator (β̂n, Λ̂n). For

a fixed β, Λ is obtained iteratively by the algorithm given in Theorem II.2. Then

for the updated Λ, β is updated by solving score equation (2.3) using the Newton-

Raphson method. This procedure is repeated until convergence. Simulation studies

show that the algorithm converges very quickly.

2.3 Asymptotic Properties

2.3.1 The Weighted Likelihood Estimator with True Weights

Asymptotic properties of the estimator are based on the following assumptions.

(A) The parameter space for β, B ⊂ Rd, is compact, and the true parameter β0 is

an interior point of B.

(B) The observation time Y possesses a Lebesgue density that is continuous and

positive on an interval [σ, τ ] with σ > 0 and vanishes outside this interval, and the

joint distribution F (y, z) of (Y, Z) has bounded second order partial derivative with

respect to y.

(C) The cumulative hazard function Λ satisfies 1/M ≤ Λ ≤ M on [σ, τ ] for some

positive constant M . The true parameter Λ0 satisfies 0 < Λ0(σ−) < Λ0(τ) < M and

is continuously differentiable with positive derivative on [σ, τ ].

(D) The covariate vector Z is bounded and E[var(Z|Y )] > 0.

(E) There exists a constant ε such that πα(∆, V ) ≥ ε > 0 for all α in a neighborhood

of the true parameter α0.
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Denote the parameter space for Λ defined in (C) by Φ and the parameter space

for (β, Λ) by Θ. The above Assumptions (A) to (D) are basically the same as those

in Huang (1996) and Van Der Vaart (2002) for the full data NPMLE for the Cox

model with current status data. They are imposed mainly for technical reasons,

but also make practical sense. For instance, τ can be viewed as the time of the

end of study. Assumption (D) ensures the identifiability of β as well as the positive

definiteness of the efficient information matrix for β (see proofs of Theorems II.3 and

II.6). Assumption (E) is a common assumption for missing data problems.

Let | · | be the Euclidian norm, and ‖Λ‖2 = {∫ Λ2(y)dQY (y)}1/2 for every Λ ∈ Φ,

where QY (y) is the probability measure of the censoring variable Y . Define the

distance in Rd×Φ as d((β1, Λ1), (β2, Λ2)) = |β1− β2|+ ‖Λ1−Λ2‖2. The consistency

of the weighted likelihood estimator (β̂n, Λ̂n) can be proved by applying Theorem

5.8 and Lemma 5.9 in Van Der Vaart (2002), in which Theorem 5.8 gives a sufficient

condition for the consistency of an M-estimator of a parameter in a general metric

space, while Lemma 5.9 provides a way of checking the conditions in Theorem 5.8.

We drop the word “outer” and its corresponding notation for the outer measure

throughout the article, which we believe would not cause any confusion.

Theorem II.3. Under Assumptions (A) to (E), we have β̂n →p β0 and Λ̂n(t) →p

Λ0(t) for every t ∈ (σ, τ), as n →∞.

In fact, the above convergence also holds almost surely. Convergence in probability

suffices for our purpose. To derive the rate of convergence of (β̂n, Λ̂n), we need

to calculate the bracketing entropy number of the class of functions {m(β, Λ; X) :

(β, Λ) ∈ Θ}, where m(β, Λ; X) = w`(β, Λ; X) and `(β, Λ; X) = log{(pβ,Λ+pβ0,Λ0)/2}.

The function ` was introduced by Van Der Vaart (2002) for technical convenience

(see the proof of Theorem II.3). For a probability measure P and a class of functions
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F in L2(P ), denote the ε-bracketing number of F by N[ ](ε,F , L2(P )). The logarithm

of the bracketing number is called the entropy number of F . The entropy number of

{m(β, Λ; X) : (β, Λ) ∈ Θ} turns out to be of the same order as that of {`(β, Λ; X) :

(β, Λ) ∈ Θ} (see the proof of Theorem II.4), and the latter is O(1/ε) by Lemma 8.6

of Van Der Vaart (2002).

Theorem II.4. Under Assumptions (A) to (E), there exists a constant C such that

for every ε > 0,

log N[ ](ε, {m(β, Λ; X) : (β, Λ) ∈ Θ}, L2(P )) ≤ C/ε.

Based on the above results, the rate of convergence of (β̂n, Λ̂n) can be derived

by Theorem 3.2.5 in Van Der Vaart and Wellner (1996), which states that the rate

of convergence is determined by the smoothness of the model and the modulus of

continuity of the objective function. The following theorem shows exactly the same

result as the full data case, see Theorem 3.3 of Huang (1996), also see Lemma 8.5 of

Van Der Vaart (2002).

Theorem II.5. Under Assumptions (A) to (E), we have |β̂n − β0|+ ‖Λ̂n − Λ0‖2 =

Op(n
−1/3).

Similar to the full data case, the overall rate of convergence is dominated by Λ̂n

that has a cubic root-n rate, while the rate of convergence for β̂n is root-n that will

be given in the following Theorem II.6. To prove the asymptotic normality of β̂n,

we can apply Theorem 6.1 of Wellner and Zhang (2007), which generalizes Theorem

6.1 of Huang (1996). The theorem provides a set of sufficient conditions for the

asymptotic normality of the M-estimator of the finite dimensional parameter in a

semiparametric model. We further generalize it in Section 2.7 to the case where

an additional parameter in the objective function is estimated a priori, which takes
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care of the weighted likelihood estimation using estimated weights. If the additional

parameter is known, then our general theorem, Theorem II.10 in Section 2.7, reduces

to Theorem 6.1 of Wellner and Zhang (2007). For ease of reference, we apply II.10

to show the asymptotic normality of β̂n in Section 2.8. Now we introduce some

necessary notation.

Suppose that Λη is a parametric submodel in Φ passing through Λ at η = 0.

Let H = {h : h = ∂Λη/∂η|η=0} be the collection of all directions to approach Λ.

The efficient score function for β is defined as the projection of the ordinary score

function for β onto the orthogonal complement of the tangent space for Λ, which

is the closure of the linear space spanned by H (see Bickel et al., 1993 for detailed

discussions). When there is no missing data, let l1(β, Λ; X) be the score function for

β, i.e., l1(β, Λ; X) = ∂l(β, Λ; X)/∂β = eβT ZΛ(Y )Q(X)Z, where

Q(X) = ∆
e−eβT ZΛ(Y )

1− e−eβT ZΛ(Y )
− (1−∆).

Denote the score for Λ as l2(β, Λ; X)[h] = ∂l(β, Λη; X)/∂η = eβT ZQ(X)h(Y ) for

every h ∈ H, and l2(β, Λ; X)[h] = (l2(β, Λ; X)[h1], · · · , l2(β, Λ; X)[hd])
T for any h =

(h1, · · · , hd)
T , where hk ∈ H, 1 ≤ k ≤ d. Then by Huang, (1996) (or Murphy and

Van Der Vaart, 2000) and Van Der Vaart (2002) for a more precise argument on the

calculation based on an approximated least favorable submodel) for the full data,

the efficient score function for β is

l̃(β, Λ; X) = l1(β, Λ; X)− l2(β, Λ; X)[h∗]

= eβT ZΛ(Y )Q(X)


Z −

E
(
Ze2βT Zr(Y, Z; β, Λ)|Y

)

E
(
e2βT Zr(Y, Z; β, Λ)|Y )


 ,(2.8)

where

r(Y, Z; β, Λ) =
e−Λ(Y )eβT Z

1− e−Λ(Y )eβT Z
,
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and

h∗(y) = Λ0(y)
E(Ze2βT

0 ZQ2(X)|Y = y)

E(e2βT
0 ZQ2(X)|Y = y)

.(2.9)

The information matrix for β is then given by

I(β) = E{l̃(β, Λ; X)}⊗2

= E





e2βT ZΛ2(Y )Q2(X)


Z −

E
(
Ze2βT Zr(Y, Z; β, Λ)|Y

)

E
(
e2βT Zr(Y, Z; β, Λ)|Y )



⊗2





.(2.10)

We then have the following theorem of asymptotic normality for the weighted like-

lihood estimator β̂n obtained by using true weights. We can see that the asymptotic

variance matrix is the full data asymptotic variance plus an additional nonnegative

definite matrix that reflects the loss of efficiency due to missing data.

Theorem II.6. Under Assumptions (A) to (E) and that α = α0, we have

n1/2(β̂n − β0) = I−1(β0)n
1/2 Pnwl̃(β0, Λ0; X) + op(1) →d N(0, Σ),

as n →∞, where Σ = I−1(β0) + I−1(β0)DI−1(β0), and

D = E

[
1− πα(∆, V )

πα(∆, V )

{
l̃(β0, Λ0; X)

}⊗2
]

.

2.3.2 The Weighted Likelihood Estimator with Estimated Weights

Here we denote the weight by w(α), where α = (α1, · · · , αJ)T with true value

α0 = (α01, · · · , α0J)T . No matter α0 is known or not, it may be replaced by a good

estimator α̂n = (α̂n1, · · · , α̂nJ)T , then the estimated weight w(α̂n) is used in the

weighted likelihood function. Let

(β̃n, Λ̃n) = argmaxPnw(α̂n)l(β, Λ; X)

be the weighted likelihood estimator of (β0, Λ0) obtained by using estimated weights.

When the nuisance parameter can be estimated at root-n rate, the efficiency gain
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of the estimator β̃n comparing to β̂n that is obtained using true weights has been

discussed by many authors, see e.g. Pierce (1982), Robinson et al. (1994), Breslow

and Wellner (2007), and Li et al (2008), among many others. It turns out that

for the current setting in which the nuisance parameter can only be estimated at a

slower than root-n rate, such an efficiency gain for the estimation of the parameter

of interest also holds under mild conditions. The detail follows.

Theorem II.7. Suppose α̂n →p α0 and w(α) is differentiable with uniformly bounded

first order derivative ẇ(α) in a neighborhood of α0. Then under Assumptions (A) to

(E), we have β̃n →p β0 and Λ̃n(t) →p Λ0(t) for every t ∈ (σ, τ).

Theorem II.8. Suppose En1/2|α̂n−α0| is bounded, and w(α) is twice differentiable

with uniformly bounded first and second order derivatives ẇ(α) and ẅ(α) in a neigh-

borhood of α0. Then under Assumptions (A) to (E), we have |β̃n−β0|+‖Λ̃n−Λ0‖2 =

Op(n
−1/3).

Remark 3.1. The uniform boundedness of ẇ(α) and ẅ(α) is not too restrictive.

For example, for a case-cohort design with a stratified Bernoulli sampled subcohort,

we have πα(∆, V ) = ∆+(1−∆)
∑J

j=1 pjI(V ∈Vj), and the above conditions are satisfied

as long as all the stratified selection probabilities pj’s are bounded away from 0. The

same is true for a two-phase design in which the second stage sample is selected by

a stratified Bernoulli sampling. More generally, if πα(∆, V ) follows a logistic model,

say, logit πα(∆, V ) = α0+αT
1 V +α2∆, then the conditions are still satisfied given that

V is bounded. The boundedness of En1/2|α̂n − α0| is a little more restrictive. The

asymptotic normality of n1/2(α̂n − α0) is neither sufficient nor necessary for this to

hold, while the condition that En1/2|α̂n−α0| converges to a finite limit as n →∞ is

stronger than necessary. Nevertheless, in the two most important cases: case-cohort
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sampling and two-phase stratified sampling, p̂j is the proportion of subjects selected

from stratum j, 1 ≤ j ≤ J . Then it is easy to show that En1/2|p̂j − p0j| converges

to a finite limit as n →∞, and hence the sequence is bounded.

The following theorem shows the asymptotic normality of β̃n as well as the effi-

ciency gain of β̃n comparing to β̂n, which can be proved by applying II.10 that will

be introduced in Section 2.7.

Theorem II.9. Under the same conditions in Theorem II.8, we have

n1/2(β̃n − β0) = I−1(β0)n
1/2 Pnwl̃(β0, Λ0; X)− Cn1/2(α̂n − α0) + op(1)

as n →∞, where C = I−1(β0)P{l̃(β0, Λ0; X)ẇT (α0)}. Furthermore, if α̂n is asymp-

totically efficient with influence function `α, then

n1/2(β̃n − β0) = I−1(β0)n
1/2 Pnwl̃(β0, Λ0; X)− Cn1/2 Pn`α + op(1)

→d N(0, Σ− CΣαCT ),

where Σ was defined in Theorem II.6 and Σα = E(`α⊗2).

2.4 Variance Estimation

2.4.1 Using True Weights

When α0 is given and w(α0) is used in the estimation of β, the asymptotic variance

given in Theorem II.6 can be used to obtain the variance estimator of the weighted

likelihood estimator β̂n. However, as discussed in Huang (1996), smoothing is in-

evitable in such calculation.

Without smoothing, the weighted bootstrap with i.i.d. weights, also called the

“wild boostrap” (see e.g. Van Der Vaart and Wellner (1996)), turns out to be an

effective and robust approach in variance estimation for the weighted likelihood es-

timator with true weights. See Ma and Kosorok (2005) for a detailed argument of
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using the weighted bootstrap method to the general M-estimation in a semiparamet-

ric model.

Suppose that u1, · · · , un are n i.i.d. nonnegative and bounded random weights,

independent of X1, · · · , Xn and w1, · · · , wn, and satisfying E(ui) = 1 and var(ui) =

δ0 < ∞ for a constant δ0. Denote the estimator of β obtained by maximizing the

objective function Pnuwl(β, Λ; X) by β̂∗n. Randomly generate (u1, · · · , un) repeat-

edly, say, B times, and obtain corresponding β̂∗n that are denoted by β̂∗n1, · · · , and

β̂∗nB. A variance estimator of β̂n is then obtained from the empirical variance of

β̂∗n1, · · · , β̂∗nB rescaled by δ0. Analogous to the case in Ma and Kosorok (2005), this

weighted bootstrap estimation of variance can be justified in the following way.

Since u is bounded with mean 1 and independent of the Xi’s and wi’s, we have

E{uwl(β, Λ; X)} = E{wl(β, Λ; X)}. By Theorem II.6 we have

n1/2(β̂∗n − β0) = I−1(β0)n
1/2 P∗nwl̃(β0, Λ0; X) + op(1),

where P∗nwl̃(β0, Λ0; X) = Pnuwl̃(β0, Λ0; X). Hence

n1/2(β̂∗n − β̂n) = I−1(β0)n
1/2(P∗n − Pn)wl̃(β0, Λ0; X) + op(1).

By Theorem 2 of Ma and Kosorok (2005) we know that, conditional on (X1, w1), · · · ,

(Xn, wn), (n/δ0)
1/2(β̂∗n−β̂n) has the same asymptotic distribution as that of n1/2(β̂n−

β0) unconditionally.

2.4.2 Using Estimated Weights

Unfortunately, the above weighted bootstrap method does not work for the weighted

likelihood estimator β̃n with estimated weights. To see this, we assume β̃∗n1, · · · , and

β̃∗nB are the B bootstrap estimates of β0 based on estimated weights. Then by The-

orem II.9,

n1/2(β̃∗n − β0) = I−1(β0)n
1/2 P∗nwl̃(β0, Λ0; X) + n1/2C(α̂n − α0) + op(1),
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hence

n1/2(β̃∗n − β̃n) = I−1(β0)n
1/2 (P∗n − Pn)wl̃(β0, Λ0; X) + op(1).

This implies that the asymptotic distribution of (n/δ0)
1/2(β̃∗n− β̂n) conditional on all

the observed data is the same as that of n1/2(β̂n − β0) unconditionally. Therefore,

the empirical variance of β̃∗n1, · · · , β̃∗nB actually estimates the asymptotic variance of

β̂n (after rescaling), not the asymptotic variance of β̃n that is of interest.

We propose using the smoothing technique to calculate the asymptotic vari-

ance given in Theorem II.9, which involves estimating I(β0) as well as the matrices

E(w2l̃⊗2(β0, Λ0; X)) and C. The full data information matrix I(β0) can be estimated

by
∑n

i=1 wil̃
⊗2
n (β̃n, Λ̃n; Xi)/n, where l̃n is l̃ with conditional expectations replaced by

their estimates obtained from nonparametric smoothing. Similarly, in estimating

E(w2l̃⊗2(β0, Λ0; X)), we use

1

n

n∑
i=1

w2
i (α̂n)l̃n(β̃n, Λ̃n; Xi) =

1

n

∑
i∈C

1

π2
α̂n

(∆i, Vi)
l̃⊗2
n (β̃n, Λ̃n; Xi),

and in estimating the matrix C, we use

1

n

n∑
i=1

l̃n(β̃n, Λ̃n; Xi)ẇ
T
i (α̂n) = − 1

n

∑
i∈C

l̃n(β̃n, Λ̃n; Xi)
π̇T

α̂n
(∆i, Vi)

π2
α̂n

(∆i, Vi)
,

here C denotes the set of indices of all subjects with complete data and π̇α(∆, V ) =

∂πα(∆, V )/∂α. Finally, the matrix Σα needs to be estimated. The estimator of Σα

depends on the model used for estimating α0. For a two-phase stratified sampling,

for example, α = (p1, · · · , pJ)T and pj is estimated by the sampling proportion p̂j in

stratum j, 1 ≤ j ≤ J , then we have Σ̂α = diag(np̂1(1− p̂1)/n1, · · · , np̂J(1− p̂J)/nJ),

where nj is the number of subjects in stratum j, 1 ≤ j ≤ J , among n subjects. Note

that the vector of sampling proportions p̂j’s is the maximum likelihood estimator of

α and hence most efficient.
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2.5 Numerical Results

2.5.1 Simulations

A simulation study is conducted to explore the performance of the proposed

weighted likelihood estimators. We assume the unobserved time to failure T fol-

lows a proportional hazards model given covariate Z with a constant baseline hazard

function λ(t) ≡ c, which implies that the failure time has an exponential distribution.

The censoring time Y is assumed to be uniformly distributed in the interval between

0.5 and 8.5. The covariate Z has two components Z1 and Z2, where Z1 ∼ N(0, 1),

and Z2 is a categorical covariate with Pr(Z2 = 0) = Pr(Z2 = 1) = 0.5. The true pa-

rameter for β is β0 = (1,−1)T . We consider two sample sizes, n = 500 and n = 3000.

When n = 500, we take c = 0.03; when n = 3000, we take c = 0.01. We first gener-

ate n i.i.d. samples of (∆, Y, Z) and then generate missing covariates. The missing

covariates are generated via a case-cohort sampling method. We assume that Z1

can be missing while Z2 is always observed. The probability of missing Z1 is 0 for a

subject with a failure event, and depends on an auxiliary variable V for a censored

subject. The auxiliary variable V is associated with the covariates of interest in the

following way: V = 1 when Z1 < 1 and Z2 = 0, V = 2 when Z1 < 1 and Z2 = 1,

V = 3 when Z1 >= 1 and Z2 = 0, and V = 4 when Z1 >= 1 and Z2 = 1. When

n = 500, the probability of missing covariate Z1 is p = 0.2 if V = 1 or 2, and p = 0.7

if V = 3 or 4. When n = 3000, p = 0.05 if V = 1 or 2, and p = 0.15 if V = 3

or 4. Under these circumstances, when sample size n = 500, there are about 170

subjects with covariates fully observed, among whom about 100 are observed to have

a failure event; and when n = 3000, there are about 400 subjects with fully observed

covariates, among whom 250 are failures. The setting for n = 3000 here mimics the

setting for the HIV case-cohort study in the next subsection.
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We then calculate the weighted likelihood estimator (β̂n, Λ̂n) using the iterative

algorithm in Section 2.2 for each generated data set. We choose (0, 0) as the initial

value of β̂n, and then iterate between β̂n and Λ̂n until convergence. The same proce-

dure is executed to obtain (β̃n, Λ̃n). We run 500 replications for the simulation, and

then obtain point estimates and biases of the estimators of β0. Variance estimates

of β̂n are obtained by the weighted bootstrap procedure and that of β̃n are obtained

by using smoothing splines. To apply the weighted bootstrap method, we generate

independent weight u from a uniform distribution on (0, 2), and use 100 bootstrap

samples to estimate variance for each simulated data set. Smoothing splines can

be used for the variance estimation for both β̂n and β̃n in evaluating the quantities

E(·|Y = y). The actual calculation is implemented in R. To be specific, for a function

h(Y, Z1, Z2), we have

E[h(Y, Z1, Z2)|Y ] = E[h(Y, Z1, 1)|Y, Z2 = 1]Pr(Z2 = 1|Y )

+ E[h(Y, Z1, 0)|Y, Z2 = 0]Pr(Z2 = 0|Y ),

where E[h(Y, Z1, 1)|Y, Z2 = 1], E[h(Y, Z1, 0)|Y, Z2 = 0] and Pr(Z2 = 1|Y ) are cal-

culated separately using the weighted generalized additive models (function “gam”)

with cubic smoothing splines to Y and Gaussian (or logit) link function. Default

smoothing parameter values are used.

Biases, means of estimated variances, empirical variances, and coverage propor-

tions (CP) of 95% confidence intervals for the estimators of coefficients of Z1 and Z2

are presented in Table 2.1. The biases are reasonably small across the board, partic-

ularly for the larger sample size. Variance estimators, obtained either by weighted

bootstrap or smoothing, are very close to corresponding empirical variances and

yield reasonably good coverage proportions. Comparing empirical variances of the
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weighted likelihood estimator with true weights and those with estimated weights,

the efficiency gain of the latter is clear, supporting our theoretical results in Section

2.2.

2.5.2 A Case-Cohort Study from An HIV Vaccine Trial

We illustrate our method here by analyzing a case-cohort study from one of the

largest phase 3 HIV-1 vaccine efficacy trials in the world (see Flynn et al., 2005 and

Gilbert et al., 2005). The trial demonstrated lack of efficacy of the vaccine, but

Gilbert et al. Gilbert et al. (2005) undertook a secondary objective, which was to

determine whether antibody responses are correlated with the incidence of HIV-1

infection among vaccine recipients. The trial was designed to have multiple visits

and either vaccine or placebo was administered at each visit. For simplicity, we only

consider the infection status at the last visit and thus have the current status data

to work with. The original trial consists of 5095 men and 308 women who received

the study vaccine or placebo at a 2 : 1 ratio. Gilbert et al. (2005) designed a case-

cohort study that consisted of all 241 infected subjects and 167, a fraction of 5%,

uninfected subjects, all were selected from vaccine recipients. They found that the

peak antibody levels reached a high level at month 6.5 (after the second vaccine shot)

and became relatively stable afterwards. We consider the only functional assay, the

MN neutralization titer, among all antibody responses and use its peak level at month

6.5 (hence infections prior month 6.5 are excluded) as the covariate of interest in our

analysis. This antibody in principle should be most relevant for HIV protection.

Cubic-root power transformation of this variable is used to achieve a better linear

effect in the Cox model. Several demographic variables are also considered, but only

the baseline behavioral risk score is significant. Since only the sample fraction of 5%

for uninfected subjects was provided by Gilbert et al. (2005), we use the weighted
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likelihood method with estimated weights in our analysis. The final result is given

in Table 2. We can see that the antibody MN neutralization titer has a protection

effect against HIV infection, which is consistent with the finding in Gilbert et al.

(2005) where an analysis for approximated right censored data was conducted.

2.6 A General Theorem

In this section, we provide a general theorem that generalizes Theorem 6.1 of

Wellner and Zhang (2007) by replacing one of the nuisance parameters by its es-

timator in the objective function that will be maximized with respect to all other

parameters. We will follow their notation closely.

Given i.i.d. observations X1, · · · , Xn, suppose that the estimates (β̃n, Λ̃n) of

unknown parameters (β, Λ) are set to be the maximizer of the objective function

Pnm(β, Λ, α̂n; X), where α̂n is an estimator of the true parameter α0, β ∈ Rd, and

Λ ∈ F , an infinite dimensional Banach space. Here we assume α0 to be finite dimen-

sional, though it can be more general. Suppose that Λη is a parametric submodel in

F passing through Λ, that is, Λη ∈ F and Λη=0 = Λ. Let H = {h : h = ∂Λη/∂η|η=0}
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be the collection of all directions to approach Λ. For any h ∈ H, we define

m1(β, Λ, α; x) =

(
∂m(β, Λ, α; x)

∂β1

, · · · ,
∂m(β, Λ, α; x)

∂βd

)T

,

m2(β, Λ, α; x)[h] =
∂m(β, Λη, α; x)

∂η

∣∣∣∣
η=0

,

m3(β, Λ, α; x) =
∂m(β, Λ, α; x)

∂α
,

m11(β, Λ, α; x) =
∂2m(β, Λ, α; x)

∂β∂βT
,

m12(β, Λ, α; x)[h] =
∂m1(β, Λη, α; x)

∂η

∣∣∣∣
η=0

,

m13(β, Λ, α; x) =
∂2m(β, Λ, α; x)

∂β∂αT
,

m21(β, Λ, α; x)[h] =
∂m2(β, Λ, α; x)[h]

∂β
,

m22(β, Λ, α; x)[h1, h2] =
∂m2(β, Λη2 , α; x)[h1]

∂η2

∣∣∣∣
η2=0

,

m23(β, Λ, α; x)[h] =
∂m2(β, Λ, α; x)[h]

∂α
.

We also define

S1(β, Λ, α) = Pm1(β, Λ, α; X),

S2(β, Λ, α)[h] = Pm2(β, Λ, α; X)[h],

S3(β, Λ, α) = Pm3(β, Λ, α; X)

S1n(β, Λ, α) = Pnm1(β, Λ, α; X),

S2n(β, Λ, α)[h] = Pnm2(β, Λ, α; X)[h],

Ṡ11(β, Λ, α) = Pm11(β, Λ, α; X),

Ṡ12(β, Λ, α)[h] = ṠT
21(β, Λ, α)[h] = Pm12(β, Λ, α; X)[h],

Ṡ13(β, Λ, α) = Pm13(β, Λ, α; X),

Ṡ22(β, Λ, α)[h1, h2] = Pm22(β, Λ, α; X)[h1, h2],

Ṡ23(β, Λ, α)[h] = Pm23(β, Λ, α; X)[h].
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Furthermore, for h = (h1, · · · , hd)
T ∈ Hd, where hj ∈ H for 1 ≤ j ≤ d, we denote

m2(β, Λ, α; x)[h] = (m2(β, Λ, α; X[h1], · · · ,m2(β, Λ, α; X[hd])
T ,

m12(β, Λ, α; x)[h] = (m12(β, Λ, α; X[h1], · · · , m12(β, Λ, α; X[hd]),

m21(β, Λ, α; x)[h] = (m21(β, Λ, α; X[h1], · · · , m21(β, Λ, α; X[hd])
T ,

m22(β, Λ, α; x)[h, h] = (m22(β, Λ, α; X[h1, h], · · · ,m22(β, Λ, α; X[hd, h])T ,

m23(β, Λ, α; x)[h] = (m23(β, Λ, α; X[h1], · · · , m23(β, Λ, α; X[hd])
T ,

S2(β, Λ, α)[h] = Pm2(β, Λ, α; X)[h],

S2n(β, Λ, α)[h] = Pnm2(β, Λ, α; X)[h],

Ṡ12(β, Λ, α)[h] = Pm12(β, Λ, α; X)[h],

Ṡ21(β, Λ, α)[h] = Pm21(β, Λ, α; X)[h],

Ṡ22(β, Λ, α)[h, h] = Pm22(β, Λ, α; X)[h, h],

Ṡ23(β, Λ, α)[h] = Pm23(β, Λ, α; X)[h],

The following conditions are parallel to those in Theorem 6.1 of Wellner and Zhang

(2007), but here they are adapted to accommodate a more general setting.

A1. |α̂n − α0| = op(1), |β̃n − β0| = op(1), and ‖Λ̃n − Λ0‖ = Op(n
−γ) for some γ > 0

and some norm ‖ · ‖.

A2. There exists an h∗ = (h∗1, · · · , h∗d)
T , where h∗j ∈ L2(P ), j = 1, 2, · · · , d, such

that

Ṡ12(β0, Λ0, α0)[h]− Ṡ22(β0, Λ0, α0)[h
∗, h] = 0,

for all h ∈ H. Moreover, the matrix

A = −Ṡ11(β0, Λ0, α0) + Ṡ21(β0, Λ0, α0)[h
∗]

= −P{m11(β0, Λ0, α0; X)−m21(β0, Λ0, α0; X)[h∗]}
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is non-singular.

A3. S1(β0, Λ0, α0) = 0 and S2(β0, Λ0, α0)[h
∗] = 0.

A4. The estimator (β̃n, Λ̃n) satisfies

S1n(β̃n, Λ̃n, α̂n) = op(n
−1/2) and S2n(β̃n, Λ̃n, α̂n)[h∗] = op(n

−1/2).

A5. For any δn ↓ 0 and C > 0, let

Θn = {(β, Λ, α) : |(βT , αT )− (βT
0 , αT

0 )| ≤ δn, ‖Λ− Λ0‖2 ≤ Cn−γ}.

We have

sup
(β,Λ,α)∈Θn

|n1/2(S1n − S1)(β, Λ, α)− n1/2(S1n − S1)(β0, Λ0, α0)|

= op(1),

and

sup
(β,Λ,α)∈Θn

|n1/2(S2n − S2)(β, Λ, α)[h∗]

− n1/2(S2n − S2)(β0, Λ0, α0)[h
∗]| = op(1).

A6. For some µ > 1 satisfying µγ > 1/2, and for (β, Λ, α) ∈ Θn,

∣∣∣S1(β, Λ, α)− S1(β0, Λ0, α0)− Ṡ11(β0, Λ0, α0)(β − β0)

− Ṡ12(β0, Λ0, α0)[Λ− Λ0]− Ṡ13(β0, Λ0, α0)(α− α0)
∣∣∣

= o(|β − β0|) + o(|α− α0|) + O(‖Λ− Λ0‖µ),
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and

|S2(β, Λ, p)[h∗] − S2(β0, Λ0, α0)[h
∗]

− Ṡ21(β0, Λ0, α0)[h
∗](β − β0)

− Ṡ22(β0, Λ0, α0)[h
∗, Λ− Λ0]

− Ṡ23(β0, Λ0, α0)[h
∗](α− α0)|

= o(|β − β0|) + o(|α− α0|) + O(‖Λ− Λ0‖µ).

Theorem II.10. Suppose that conditions A1 to A6 hold. Then we have

n1/2(β̃n − β0) = A−1n1/2Pnm∗(β0, Λ0, α0; X)− Cn1/2(α̂n − α0) + op∗(1),

where

m∗(β0, Λ0, α0; X) = m1(β0, Λ0, α0; X)−m2(β0, Λ0, α0; X)[h∗],

and

C = A−1(Ṡ13(β0, Λ0, α0)− Ṡ23(β0, Λ0, α0)[h
∗]).

If n1/2(α̂n − α0) is asymptotically normal with influence function `α, then n1/2(β̃n −

β0) is asymptotically normal. Furthermore, if α̂n is asymptotically efficient, then

n1/2(β̃n − β0) →d N(0, Ω) with

Ω = A−1E[m∗(β0, Λ0; X)⊗2](A−1)T − CE(`α⊗2)CT .

Proof: By A1, A3 and A5,

S1n(β̃n, Λ̃n, α̂n)− S1(β̃n, Λ̃n, α̂n)− S1n(β0, Λ0, α0) = op(n
−1/2).

In view of A4, this reduces to

S1n(β0, Λ0, α0) + S1(β̃n, Λ̃n, α̂n) = op(n
−1/2).
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Then by A6, it follows that

Ṡ11(β0, Λ0, α0)(β̃n − β0) + Ṡ12(β0, Λ0, α0)[Λ̃n − Λ0]

+ Ṡ13(β0, Λ0, α0)(α̂n − α0) + S1n(β0, Λ0, α0)

= o(|β̃n − β0|) + o(|α̂n − α0|) + O(‖Λ̃n − Λ0‖2)(2.11)

= op(n
−1/2),

In a similar way, we obtain

S2n(β0, Λ0, α0)[h
∗] + S2(β̃n, Λ̃n, α̂n)[h∗] = op(n

−1/2),

and then

Ṡ21(β0, Λ0, α0)[h
∗](β̃n − β0) + Ṡ22(β0, Λ0, α0)[h

∗, Λ̃n − Λ0]

+ Ṡ23(β0, Λ0, α0)[h
∗](α̂n − α0) + S2n(β0, Λ0, α0)[h

∗]

= o(|β̃n − β0|) + o(|α̂n − α0|) + O(‖Λ̃n − Λ0‖2)(2.12)

= op(n
−1/2).

Subtracting (2.12) from (2.11) and rearranging terms, by A2 we obtain

n1/2(β̃n − β0) = n1/2A−1Pnm∗(β0, Λ0, α0; X)− Cn1/2(α̂n − α0)(2.13)

+ op(1).

When n1/2(α̂n − α0) is asymptotically normal with influence function `α, the right

hand side of the above equation converges to a zero mean normal random variable

by the classical central limit theorem. Furthermore, when α̂n is efficient, n1/2(β̃n −

β0) →d N(0, Ω) follows from (2.13) and the result in Pierce (1982), with Ω being

stated in the theorem. ¤
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2.7 Proofs of Theoretical Results in Section 3

2.7.1 Proof of Theorem II.1

This proof of this theorem follows from the same idea as the proof of Proposition

1.1 in Groeneboom and Wellner (1992).

Let x̃ = (x1, · · · , xrn). Define

φi(x) =
∑

Yj=Y ∗i

wj

{
∆j log(1− e−xeβ̂T

n Zj
)− (1−∆j)xeβ̂T

n Zj

}
,

1 ≤ i ≤ rn, and

φ(x̃) =
rn∑
i=1

φi(xi),

where x̃ satisfies the constraint

0 ≤ x1 ≤ x2 · · · ≤ xrn .(2.14)

Suppose ã = (a1, · · · , arn) maximizes φ(x̃) under constraint (2.14). Then the vector

ã + ε1̃i satisfies constraint (2.14), for any ε > 0, and 1 ≤ i ≤ rn, where 1̃i is the rn

dimensional vector with the first rn − i components 0 and the last i components 1.

Since ã maximizes φ(x̃), we have

lim
ε↓0

φ(ã + ε1̃i)− φ(ã)

ε
=

∑

Yj≥Y ∗i

φ′j(aj)

=
∑

Yj≥Y ∗i

wje
β̂T

n Zj



∆j

e−Λ̂n(Yj)e
β̂T

n Zj

1− e−Λ̂(Yj)e
β̂T

n Zj
− (1−∆j)





≤ 0,

for any i = 1, · · · , rn. Moreover, since φ is differentiable and attains a maximum at
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ã, we obtain

lim
h→0

φ(ã + hã)− φ(ã)

h
=

rn∑
i=1

aiφ
′
i(ai)

=
n∑

i=1

wiΛ̂n(Yi)e
β̂T

n Zi

{
∆i

eβ̂T
n Zie−Λ̂n(Yi)e

β̂T
n Zi

1− e−Λ̂n(Yi)eβ̂T
n Zi

− (1−∆i)

}

= 0.

Conversely, suppose that ã satisfies (2.4), (2.5) and (2.14), with Λ̂n(Yi) replaced

by ai. Since φ is concave, if x̃ satisfies (2.14), then

φ(x̃)− φ(ã) ≤ 〈5φ(ã), x̃− ã〉.(2.15)

By (2.5), 〈5φ(ã), ã〉 = 0, thus (2.15) becomes φ(x̃)− φ(ã) ≤ 〈5φ(ã), x̃〉. Now write

x̃ in form x̃ =
∑rn

i=1 αi1̃i, where αi = xrn−i+1 − xrn−i ≥ 0, and α0 = 0. Then for any

x̃ satisfying (2.14),

φ(x̃)− φ(ã) ≤ 〈5φ(ã), x̃〉

=
rn∑
i=1

αi

∑
Yj≥Yi

φ′j(aj)

≤ 0,

and hence ã maximizes φ(x̃). ¤

2.7.2 Proof of Theorem II.2

The proof of this theorem follows along the same lines as Proposition 1.4 in

Groeneboom and Wellner (1992).

For simplicity of notation, we write Λ̂n instead of Λ̂n(·; β). By definition, the left

derivative of the convex minorant of the cumulative sum diagram is given by

hn(τi) =
VΛ̂n

(τi)− VΛ̂n
(τi−1)

GΛ̂n
(τi)−GΛ̂n

(τi−1)
,
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at the successive locations τi of the vertices of the greatest convex minorant of the

cumulative sum diagram, and τ0 = 0. Moreover, defining Y ∗
0 = 0, ∆Vn,i = VΛ̂n

(Y ∗
i )−

VΛ̂n
(Y ∗

i−1), ∆Gn,i = GΛ̂n
(Y ∗

i ) − GΛ̂n
(Y ∗

i−1), and ∆Wn,i = WΛ̂n
(Y ∗

i ) −WΛ̂n
(Y ∗

i−1), 1 ≤

i ≤ rn, we have that hn maximizes

rn∑
i=1

{
h(Y ∗

i )− ∆Vn,i

∆Gn,i

}2

∆Gn,i,

over all nondecreasing functions h such that h(0) = 0. This means by Theorem 1.3.2

in Robertson, Wright and Dykstra (1988) that

rn∑
i=1

{
∆Vn,i

∆Gn,i

− hn(Y ∗
i )

}
h(Y ∗

i )∆Gn,i ≤ 0,(2.16)

rn∑
i=1

{
∆Vn,i

∆Gn,i

− hn(Y ∗
i )

}
hn(Y ∗

i )∆Gn,i = 0,(2.17)

for all nondecreasing h such that h(0) = 0. We now show that (2.16) implies (2.4)

and (2.17) implies (2.5), with hn replaced by Λ̂n.

For a fixed i, let h(t) = 1(t≥Y ∗i ), then (2.16) reduces to

∑
j≥i

{
∆Vn,j − hn(Y ∗

j )∆Gn,j

} ≤ 0,

or

∑
j≥i

∆Wn,j =
∑

Yj≥Y ∗i

wje
βT Zj



∆j

e−hn(Y ∗j )eβT Zj

1− e−hn(Y ∗j )eβT Zj
− (1−∆j)



 ≤ 0.

Similarly, by (2.17), we get

rn∑
i=1

hn(Y ∗
i ){∆Vn,i − hn(Y ∗

i )∆Gn,i} =
∑

i

hn(Y ∗
i )∆Whn(Y ∗

i )

=
n∑

i=1

hn(Y ∗
i )wie

βT Zi

{
∆i

e−hn(Y ∗i )eβT Zi

1− e−hn(Y ∗i )eβT Zi
− (1−∆i)

}

= 0.

It now follows from Theorem II.1 that hn maximizes (2.2) for the fixed β.
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Now suppose Λ̂n maximizes (2.2) for a fixed β, then by Theorem II.1, (2.4) and

(2.5) hold. For any nondecreasing function h such that h(0) = 0, define αi =

h(Y ∗
(rn−i+1)) − h(Y ∗

(rn−i)), 1 ≤ i ≤ rn, and ∆Vn,i, ∆Wn,i are defined as before, except

that Λ̂n is now replaced by hn, then (h(Y ∗
1 ), · · · , h(Y ∗

rn
)) =

∑n
i=1 αi1̃i, and

rn∑
i=1

{
∆Vn,i

∆Gn,i

− Λ̂n(Y ∗
i )

}
h(Y ∗

i )∆Gn,i =
rn∑
i=1

∆Wn,ih(Y ∗
i ) = 〈∆W̄ ,

rn∑
i=1

αi1̃i〉

=
n∑

i=1

αi〈∆W̄ , 1̃i〉 ≤ 0,

by (2.4), where ∆W̄ = (∆Wn,1, · · · , ∆Wn,rn). In addition, (2.5) is equivalent to (2.17)

with hn(Y ∗
i ) replaced by Λ̂n(Y ∗

i ). Again, by Robertson, Wright and Dykstra (1988),

(2.16) and (2.17) both imply that Λ̂n minimizes
∑rn

i=1 {h(Y ∗
i )−∆Vn,i/∆Gn,i}2 ∆Gn,i

over all nondecreasing functions h such that h(0) = 0. By the pool adjacent violators

algorithm, this implies that

Λ̂n(τi) =
VΛ̂n

(τi)− VΛ̂n
(τi−1)

GΛ̂n
(τi)−GΛ̂n

(τi−1)
,

which is the left derivative of the greatest convex minorant of the cumulative sum

diagram consisting of the points Pj, j = 0, 1, · · · , rn. ¤

2.7.3 Proof of Theorem II.3

Following Van Der Vaart (2002), we introduce the functions `(β, Λ; X) = log{(pβ,Λ+

p0)/2} and m(β, Λ; X) = w`(β, Λ; X), where p0 = pβ0,Λ0 . Although Pnm(β, Λ; X) is

not maximized at (β̂n, Λ̂n), it is true that Pnm(β̂n, Λ̂n; X) ≥ Pnm(β0, Λ0; X). Only

this less restrictive condition is needed by Theorem 5.8 in Van Der Vaart (2002).

Note that, under our assumptions, p0 is bounded and bounded away from 0, so it

follows that m(β, Λ; X) is uniformly bounded. Then by Theorem 5.8 and Lemma 5.9

in Van Der Vaart (2002), to prove the consistency of (β̂n, Λ̂n), it suffices to show that
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the parameter space for (β, Λ) is compact, the map (β, Λ) 7→ pβ,Λ(x) is continuous for

every x, and the map (β, Λ) 7→ Pm(β, Λ; X) achieves a unique maximum at (β0, Λ0).

The compactness of the parameter space B of β is from Assumption (A). By the

theorem on page 239 of Billingsley (1999), the parameter space Φ of Λ is compact

if Φ is closed, and for each sequence {Λn, n ≥ 1} in Φ, there exists a subsequence

{Λn′} and Λ0 ∈ Φ, such that ‖Λn′ − Λ0‖2 → 0, as n′ → ∞. By the same diagonal

argument used to prove Helly’s selection theorem (see e.g. Shorack, 2000), for any

sequence {Λn, n ≥ 1} in Φ, there exists a subsequence {Λn′} and Λ0, such that

|Λn′(y) − Λ0(y)| → 0, for every continuity point of Λ0. But this implies, by the

dominated convergence theorem, that ‖Λn′ − Λ0‖2 → 0, since the density of Y is

bounded above and bounded away from 0. In addition, Φ is clearly closed. Therefore,

Φ is also compact. The continuity of the map (β, Λ) 7→ pβ,Λ(x) for every x is clearly

seen from equation (2.1).

We now show that the map (β, Λ) 7→ Pm(β, Λ; X) achieves a unique maximum at

(β0, Λ0). By the fact that E(w|∆, V ) = 1, we have P{m(β, Λ; X)−m(β0, Λ0; X)} =

P{`(β, Λ; X)− `(β0, Λ0; X)} that is negative Kullback-Leibler divergence and hence

is always less than or equal to 0. It is 0 if and only if pβ,Λ = p0 with probability 1,

or equivalently, eβT ZΛ(Y ) = eβT
0 ZΛ0(Y ) with probability 1. Denoting β̄ = β − β0,

this is equivalent to β̄T Z = − log Λ(Y ) + log Λ0(Y ), with probability 1, and hence

β̄T Evar(Z|Y )β̄ = 0. But since Evar(Z|Y ) > 0 by Assumption (D), this implies that

β = β0, and then Λ(t) = Λ0(t) follows. By Theorem 5.8 and Lemma 5.9 in Van Der

Vaart (2002), we conclude that β̂n → β0 and ‖Λ̂n −Λ0‖2 → 0 in probability (almost

surely), as n → ∞. By the fact that the density of Y is bounded away from 0, the

latter is equivalent to
∫ τ

σ
(Λ̂n(t)−Λ0(t))

2dt → 0 in probability (almost surely). Since

Λ0(·) is continuous and strictly monotone, it further implies that Λ̂n(t) → Λ0(t) in
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probability (almost surely) for every t ∈ (σ, τ). ¤

2.7.4 Proof of Theorem II.4

Denote the ε-bracketing number of the set of functions {`(β, Λ; X) : (β, Λ) ∈ Θ}

by n(ε). Then there exist ε-brackets [`L
βi,Λi

, `U
βi,Λi

], 1 ≤ i ≤ n(ε), such that for

any `(β, Λ; X), we have `L
βi,Λi

≤ `(β, Λ; X) ≤ `U
βi,Λi

for some i, which translates to

mL
βi,Λi

≡ w`L
βi,Λi

≤ m(β, Λ; X) ≤ w`U
βi,Λi

≡ mU
βi,Λi

. By Assumption (E) we know that

|w| < K for some constant K < ∞, hence

‖mL
βi,Λi

−mU
βi,Λi

‖2 = E[w2(`L
βi,Λi

− `U
βi,Λi

)2] ≤ K2E(`L
βi,Λi

− `U
βi,Λi

)2 ≤ K2ε2.

This shows that every [mL
βi,Λi

,mU
βi,Λi

] is a Kε-bracket for the set of functions {m(β, Λ; X) :

(β, Λ) ∈ Θ}, and the brackets [mL
βi,Λi

,mU
βi,Λi

], 1 ≤ i ≤ n(ε), cover {m(β, Λ; X) :

(β, Λ) ∈ Θ}. Form Lemma 8.6 of Van Der Vaart (2002) we know that the ε-bracketing

number of {`(β, Λ; X) : (β, Λ) ∈ Θ} is of the order ec/ε/εd for some positive con-

stant c. Hence the ε-bracketing number of {m(β, Λ; X) : (β, Λ) ∈ Θ} is of the order

ec′/ε/εd, for some constant c′, which yields the desirable result. ¤

2.7.5 Proof of Theorem II.5

It is well known that for any pair of probability densities p and q, we have

Ep (log q/p) ≤ − ∫
(p1/2 − q1/2)2dµ, where µ is the dominating measure for the den-

sities (see e.g. equation (8.1) in Van Der Vaart (2002)). Then by Lemma 8.7 of Van

Der Vaart (2002), we have

P{m(β, Λ; X)−m(β0, Λ0; X)}

= P{`(β, Λ; X)− `(β0, Λ0; X)}

≤ −
∫

(p
1/2
β,Λ − p

1/2
0 )2dµ

≤ − C

∫ τ

σ

(Λ(t)− Λ0(t))
2dt− C|β − β0|2,
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for some constant C. The rest of the proof follows exactly the same as the proof

of Lemma 8.5 in Van Der Vaart (2002). We still provide it here because it will be

helpful to the proof of Theorem II.8. Based on the above calculation and Assumption

(B), to apply Theorem 3.2.5 of Van Der Vart and Wellner (1996) we can choose

d2((β, Λ), (β0, Λ0)) = ‖Λ(t)− Λ0(t)‖2
2 + |β − β0|2.

Let F = {m(β, Λ; X) : (β, Λ) ∈ Θ}. By Theorem II.4, for a sufficiently small δ we

have

J[ ](δ,F , L2(P )) =

∫ δ

0

{
1 + log N[ ](ε,F , L2(P ))

}1/2

dε ≤ C1δ
1/2

for some constant C1. Hence by Lemma 3.4.2 of Van Der Vart and Wellner (1996),

we obtain

E sup
d((β,Λ),(β0,Λ0))<δ

|Gn{m(β, Λ; X)−m(β0, Λ0; X)}| ≤ C2φn(δ)(2.18)

for some constant C2, where

φn(δ) = δ1/2

(
1 + M

δ1/2

δ2n1/2

)
,

and M is a constant satisfying sup |m(β, Λ; x) − m(β0, Λ0; x)| ≤ M . Thus by the

consistency of (β̂n, Λ̂n) provided in Theorem II.3 and Theorem 3.2.5 of Van Der Vart

and Wellner (1996), it follows that d((β̂n, Λ̂n), (β0, Λ0)) = Op(n
−1/3). ¤

2.7.6 Proof of Theorem II.6

The proof proceeds along the same lines as the proof of Theorem 3.4 in Huang

(1996) by verifying Conditions A1-A6 in II.10 with α̂n fixed at α0 and m(β, Λ, α0; X) =

w(α0)l(β, Λ; X) = w(α0)[∆ log(1− e−Λ(Y )eβT Z
)− (1−∆)Λ(Y )eβT Z ]. Here we denote

the estimators of (β, Λ) as (β̂n, Λ̂n) instead of (β̃n, Λ̃n), the notation used in Theorem

II.10. For notational simplicity, we drop α0 wherever it appears in this proof. For

instance, we write m(β, Λ; X) instead of m(β, Λ, α0; X).
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By Theorem II.5, Condition A1 in II.10 is satisfied with γ = 1/3 and ‖·‖ being the

L2 norm with respect to the probability measure of Y . In order to verify A2, we first

need to find an h∗ ∈ L2(P ) such that Ṡ12(β0, Λ0; X)[h] − Ṡ22(β0, Λ0; X)[h∗, h] = 0

for all h ∈ H. Because E(w|X) = 1, such a condition reduces to the exact same

condition for the full data where w ≡ 1, hence holds with the h∗ given in (2.9), which

is the least favorable direction for the full data. See Huang (1996), Murphy-Van Der

Vaart (2000) or Van Der Vaart (2002) for details. Furthermore, A is the information

matrix for β for the full data, and its non-singularity is guaranteed by Assumption

(D). We thus have verified Condition A2. Condition A3 holds automatically because,

by E(w|X) = 1, S1 and S2 are equal to the expectations of full data scores for β and

Λ, and hence equal to 0 at (β0, Λ0).

The first part of Condition A4 is trivial because β̂n is obtained from equation

S1n(β̂n, Λ̂n) = 0. Due to the monotonicity constraint on Λ, however, we may not

exactly have S2n(β̂n, Λ̂n)[h∗] = 0. We now verify that S2n(β̂n, Λ̂n)[h∗] = op(n
−1/2).

Similar to Huang (1996), we define ξ0 = h∗ ◦ Λ−1
0 . The characterization of Λ̂n given

by (2.6) yields that

ki+1∑

j=ki+1

w(j)e
β̂T

n Z(j)


∆(j)

e−e
β̂T

n Z(j)Λ̂n(Y(j))

1− e−e
β̂T

n Z(j) Λ̂n(Y(j))
− (1−∆(j))


 = 0,

for each i = 0, 1, · · · , n, and thus

n∑
j=1

w(j)ξ0(Λ̂n(Y(j)))e
β̂T

n Z(j)


∆(j)

e−e
β̂T

n Z(j)Λ̂n(Y(j))

1− e−e
β̂T

n Z(j) Λ̂n(Y(j))
− (1−∆(j))


 = 0.
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Therefore, noting that h∗ = h∗ ◦ Λ−1
0 ◦ Λ0 = ξ0 ◦ Λ0, we can write

S2n(β̂n, Λ̂n)[h∗] = Pn

{
weβ̂T

n Zh∗(Y )(∆r(Y, Z; β̂n, Λ̂n)− (1−∆))
}

= Pn

{
weβ̂T

n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̂n, Λ̂n)

− (1−∆))
}

= I1 + I2,

where

I1 = (Pn − P )
{

weβ̂T
n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̂n, Λ̂n)

− (1−∆))
}

,

I2 = P
{

weβ̂T
n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̂n, Λ̂n)

− (1−∆))
}

.

We want to show that both I1 and I2 are of order op(n
−1/2). Let

ψ(x; β, Λ) = weβT z(ξ0 ◦ Λ0(y)− ξ0 ◦ Λ(y))(δr(y, z; β, Λ)− (1− δ)).

For any η > 0, it will be verified in Lemma II.11, given at the end of this proof, that

the entropy number of the class of functions

Ψ0(η) = {ψ(x; β, Λ) : |β − β0|+ ‖Λ− Λ0‖2 ≤ η, β ∈ B, Λ ∈ Φ}

is of order 1/ε, and hence Ψ0(η) is a Donsker class. By Assumptions (B), (C), (D)

and equation (2.9) we see that function ψ(X; β, Λ) converges to ψ(X; β0, Λ0) = 0 in

quadratic mean as d((β, Λ), (β0, Λ0)) → 0. Then by Corollary 2.3.12 of Van Der Vart

and Wellner (1996), we have

sup
ψ∈Ψ0(Cn−1/3)

(Pn − P )ψ(X; β, Λ) = op(n
−1/2),
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which shows that I1 is of order op(n
−1/2). On the other hand, since h∗ has bounded

derivative by Assumption (C), ξ0 also has bounded derivative. Applying the Cauchy-

Schwartz inequality and Theorem II.5 together with the fact that E(w|X) = 1, we

obtain

I2 = P
{

eβ̂T
n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̂n, Λ̂n)− (1−∆))

}

= P

{
eβ̂T

n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))
e−eβ̂T

n ZΛ̂n(Y ) − e−eβT
0 ZΛ0(Y )

1− e−eβ̂T
n ZΛ̂n(Y )

}

≤ C
{

P (Λ̂n(Y )− Λ0(Y ))2
}1/2

×
{

P
(
eβ̂T

n ZΛ̂n(Y )− eβ′0ZΛ0(Y )
)2}1/2

= Op(n
−2/3).

Hence I2 is also op(n
1/2). The second equality above is obtained by an iterated condi-

tional expectation argument in which the inner conditional expectation is calculated

given (Y, Z) and (β̂n, Λ̂n) is treated as fixed.

To verify condition A5, we consider the following classes of functions

Ψ1(η) =
{

wl1(β, Λ; x)− wl1(β0, Λ0; x) :

|β − β0|+ ‖Λ− Λ0‖2 ≤ η, β ∈ B, Λ ∈ Φ
}

,

Ψ2(η) =
{

wl2(β, Λ; x)[h∗]− wl2(β0, Λ0; x)[h∗] :

|β − β0|+ ‖Λ− Λ0‖2 ≤ η, β ∈ B, Λ ∈ Φ
}

,

for η > 0, where l1 and l2 are the scores for β and Λ, respectively. Given by Lemma

II.11 that the entropy numbers of Ψ1(η) and Ψ2(η) are both of order 1/η, we know

that both Ψ1(η) and Ψ2(η) are Donsker, and hence condition A5 is satisfied.

Finally, by a Taylor expansion of S1(β, Λ) and S2(β, Λ)[h∗] at (β0, Λ0), it is easy

to see that condition A6 is satisfied with µ = 2, and we have µγ = 2× (1/3) > 1/2.

Then by Theorem II.10 we have,

n1/2(β̂n − β0) = I−1(β0)n
1/2Pnwl̃(β0, Λ0; X) + op∗(1) →d N(0, Σ)
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as n →∞, where Σ = I−1(β0)BI−1(β0) with

B = E
[
w2{l̃(β0, Λ0; X)}⊗2

]

= E
[
E(w2|X){l̃(β0, Λ0; X)}⊗2

]

= E

[{
1 +

1− πα(∆, V )

πα(∆, V )

}{
l̃(β0, Λ0; X)

}⊗2
]

≡ I(β0) + D,

hence Σ = I−1(β0) + I−1(β0)DI−1(β0).

The following is the lemma that has been used in the above proof. Its proof follows

similarly to the proof of Lemma 7.1 in Huang (1996) with the uniform boundedness

of w, Λ, Z and the derivative of ξ0, hence is omitted here.

Lemma II.11. For the above classes of functions Ψ0(η), Ψ1(η) and Ψ2(η), we denote

their L2 covering numbers as N0(ε, Ψ0, L2(Q)), N1(ε, Ψ1, L2(Q)) and N2(ε, Ψ2, L2(Q)),

respectively. Then under Assumptions (A) to (E),

sup
Q

Ni(ε, Ψi, L2(Q)) ≤ C1i/ε
de1/ε, i = 0, 1, 2,

hence for sufficiently small ε, the entropy numbers satisfy

sup
Q

log Ni(ε, Ψi, L2(Q)) ≤ C2i/ε, i = 0, 1, 2,

where C1i and C2i, i ∈ {0, 1, 2}, are constants and Q runs through all probability

measures.

2.7.7 Proof of Theorem II.7

The proof follows the same idea used in the proof of Theorem 5.8 in Van Der Vaart

(2002). Define m(β, Λ, α; X) = w(α) log{(pβ,Λ + pβ0,Λ0)}/2. In the proof of Theorem

II.3 we have showed that (β0, Λ0, α0) is the unique maximizer of Pm(β, Λ, α0; X).
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Hence,

(2.19) sup
(β,Λ): d((β,Λ),(β0,Λ0))>δ

Pm(β, Λ, α0; X) < Pm(β0, Λ0, α0; X)

holds for every δ > 0. By the definition of (β̃n, Λ̃n), we have

Pnm(β̃n, Λ̃n, α̂n; X) ≥ Pnm(β0, Λ0, α̂n; X)(2.20)

= Pnm(β0, Λ0, α0; X) + op(1),

where the equality is obtained by Taylor expansion and the uniform boundedness

of ẇ(α). From Theorem II.4 we know that the class of functions {m(β, Λ, α0; X) :

(β, Λ) ∈ Θ} is Donsker and hence Glivenko-Cantelli. Thus from (2.19) and (2.20)

we have

0 ≤ Pm(β0, Λ0, α0; X)− Pm(β̃n, Λ̃n, α0; X)(2.21)

= Pnm(β0, Λ0, α0; X)− Pnm(β̃n, Λ̃n, α0; X) + op(1)

≤ Pnm(β̃n, Λ̃n, α̂n; X)− Pnm(β̃n, Λ̃n, α0; X) + op(1)

= op(1),

where the last step is again obtained by Taylor expansion and the uniform bound-

edness of ẇ(α). By inequality (2.19), for every δ > 0 we have

{
d((β̃n, Λ̃n), (β0, Λ0)) ≥ δ

}
⊂

{
Pm(β̃n, Λ̃n, α0; X) < Pm(β0, Λ0, α0; X)

}

with the sequence of the events on the right going to a null event in view of (2.21),

which yields the almost sure (thus in probability) convergence of (β̃n, Λ̃n). ¤
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2.7.8 Proof of Theorem II.8

Let `(β, Λ; X) = log{(pβ,Λ+pβ0,Λ0)/2} as before and Sn(β, Λ) = Pnw(α̂n)`(β, Λ; X).

Clearly Sn(β̃n, Λ̃n) ≥ Sn(β0, Λ0). A Taylor expansion on α at α0 yields

Sn(β, Λ) = Pnw(α0)`(β, Λ; X) + Pnẇ
T (α0)`(β, Λ; X)(α̂n − α0)(2.22)

+ (α̂n − α0)
TPnẅ(α∗n)`(β, Λ; X)(α̂n − α0),

where α∗n is a point between α0 and α̂n. To apply Theorem 3.2.5 of Van Der

Vart and Wellner (1996), we define M0
n(β, Λ) = Pnw(α0)`(β, Λ; X), M(β, Λ) =

Pw(α0)`(β, Λ; X), and Mn(β, Λ) = M0
n(β, Λ) + PẇT (α0)`(β, Λ; X)(α̂n − α0). Then

by the uniform boundedness of ẅ, it is easy to see that the third term on the right

hand side of equality (2.22) is Op(n
−1). Thus (2.22) becomes

Sn(β, Λ) = Mn(β, Λ) + n−1/2
{
Gnẇ

T (α0)`(β, Λ; X)
}

(α̂n − α0) + Op(n
−1).

Applying Theorem II.4 with w replaced by ẇ(j), 1 ≤ j ≤ J , where J is the dimension

of α, we know that the classes of functions {ẇ(α0)
(j)`(β, Λ; X) : β ∈ B, Λ ∈ Φ},

1 ≤ j ≤ J , are Donsker. Hence

sup
β,Λ

|Gnẇ
(j)(α0)`(β, Λ; X)| = Op(1), 1 ≤ j ≤ J,

and we have Sn(β, Λ) = Mn(β, Λ)+Op(n
−1). The inequality Sn(β̃n, Λ̃n) ≥ Sn(β0, Λ0)

then implies thatMn(β̃n, Λ̃n) ≥Mn(β0, Λ0)−|Op(n
−1)|, which further impliesMn(β̃n, Λ̃n)

≥Mn(β0, Λ0)− |Op(r
−2
n )| with rn = n1/3.

By the triangle inequality and the calculation in the proof of Theorem II.5, we
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obtain

E sup
d((β,Λ),(β0,Λ0))<δ

∣∣∣n1/2(Mn −M)(β, Λ)− n1/2(Mn −M)(β0, Λ0)
∣∣∣

≤ E sup
d((β,Λ),(β0,Λ0))<δ

∣∣∣n1/2(M0
n −M)(β, Λ)− n1/2(M0

n −M)(β0, Λ0)
∣∣∣

+ E sup
d((β,Λ),(β0,Λ0))<δ

∣∣∣n1/2(Mn −M0
n)(β, Λ)− n1/2(Mn −M0

n)(β0, Λ0)
∣∣∣

≤ Cδ1/2

(
1 + M

δ1/2

δ2n1/2

)

+
J∑

j=1

sup
d((β,Λ),(β0,Λ0))<δ

|A(j)(β, Λ)− A(j)(β0, Λ0)|En1/2|α̂nj − α0j|,(2.23)

where A(j) is the jth component of Pẇ(α0)`(· , · ; X). Based on the assumptions on

model (2.2) and the uniform boundedness of ẇ(α0), we know that for 1 ≤ j ≤ J ,

|A(j)(β, Λ)− A(j)(β0, Λ0)|

= |Pẇ(j)(α0){`(β, Λ; X)− `(β0, Λ0; X)}|

≤ Cj

[
|β − β0|+ {P (Λ(Y )− Λ0(Y ))2}1/2

]

= Cjd((β, Λ), (β0, Λ0))

≤ Cjδ

for some constant Cj. Together with the boundedness of En1/2|α̂nj − α0j|, the

above inequality implies that the term (2.23) is bounded by Kδ ≤ Kδ1/2(1 +

Mδ1/2/(δ2n1/2)) for a constant K and sufficiently small δ. Hence,

E sup
d((β,Λ),(β0,Λ0))<δ

∣∣∣n1/2(Mn −M)(β, Λ)− n1/2(Mn −M)(β0, Λ0)
∣∣∣

≤ C∗δ1/2

(
1 + M

δ1/2

δ2n1/2

)

for a constant C∗.

Finally, the inequality M(β, Λ) −M(β0, Λ0) ≤ −Cd2((β, Λ), (β, Λ)0) has already

been established in the proof of Theorem II.5. Thus the conditions of Theorem 3.2.5
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of Van Der Vart and Wellner (1996) are all satisfied with the same function φn(δ)

as that derived in the proof of Theorem II.5. Hence, (β̃n, Λ̃n) converges at the same

rate as (β̂n, Λ̂n), which is n1/3. ¤

2.7.9 Proof of Theorem II.9

We prove the theorem by checking Conditions A1 to A6 in II.10 with m(β, Λ, α; X) =

w(α)l(β, Λ; X). Condition A1 holds with γ = 1/3 by Theorem II.8. Conditions A2

and A3 have been verified in the proof of Theorem II.6. We now verify Condition

A4.

The first part of A4 holds automatically since we have S1n(β̃n, Λ̃n, α̂n) = 0. For

the second part, we also define ξ0 = h∗ ◦Λ−1
0 with h∗ given in (2.9). Using the same

argument as that in the proof of Theorem II.6 and taking a Taylor expansion with

respect to α at α0, we obtain

S2n(β̃n, Λ̃n, α̂n) = J1 + (α̂n − α0)
T J2 + (α̂n − α0)

T J3(α̂n − α0),

where

J1 = Pn

{
w(α0)e

β̃T
n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̃n, Λ̃n)− (1−∆))

}
,

J2 = Pn

{
ẇ(α0)e

β̃T
n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̃n, Λ̃n)− (1−∆))

}
,

and

J3 = Pn

{
ẅ(α∗n)eβ̃T

n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̃n, Λ̃n)− (1−∆))
}

for some α∗n lying between α0 and αn. In the proof of Theorem II.6, we have shown

that J1 = op(n
−1/2). It is easy to see that J3 = Op(1) by the boundedness assump-

tions, hence (α̂n − α0)
T J3(α̂n − α0) = op(n

−1/2) because |α̂n − α0| = Op(n
−1/2). We

now show that J2 = op(1).
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Let J2 = K1 + K2, where

K1 = (Pn − P )
{

ẇ(α0)e
β̃T

n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̃n, Λ̃n)

− (1−∆)]
}

,

K2 = P
{

ẇ(α0)e
β̃T

n Z(ξ0 ◦ Λ0(Y )− ξ0 ◦ Λ̂n(Y ))(∆r(Y, Z; β̃n, Λ̃n)

− (1−∆))
}

.

Replacing w by ẇ, which is uniformly bounded, in the definition of function ψ(x; β, Λ)

and following the same calculation as that for Ψ0, I1 and I2 in the proof of Theorem

II.6, we obtain that both K1 and K2 are op(1). Thus we have verified Condition A4.

To verify A5, it suffices to show that the classes of functions

Ψ∗
1(η) =

{
w(α)l1(β, Λ; x)− w(α0)l1(β0, Λ0; x) :

|α− α0|+ |β − β0|+ ‖Λ− Λ0‖2 ≤ η, α ∈ RJ , β ∈ B, Λ ∈ Φ
}

,

Ψ∗
2(η) =

{
w(α)l2(β, Λ; x)[h∗]− w(α0)l2(β0, Λ0; x)[h∗] :

|α− α0|+ |β − β0|+ ‖Λ− Λ0‖2 ≤ η, α ∈ RJ , β ∈ B, Λ ∈ Φ
}

are Donsker. This follows in a similar way as that in Lemma II.11.

Finally, A6 is verified by Taylor expansions of functions S1(β, Λ, α) and S2(β, Λ, α)[h∗]

at (β0, Λ0, α0). We also have µ = 2 and µγ > 1/2. When α̂n is efficient with influ-

ence function `α, then the last part of the Theorem follows from the result of Pierce

(1982).

A geometric interpretation of the efficiency gain using estimated weights for the

missing data problem is given in the following. Let Ṗ⊥Λ,α be the orthogonal comple-

ment of the tangent space of (Λ, α) in L2(P ). Then the influence function of the

regular asymptotic linear estimator β̃n is in Ṗ⊥Λ,α. Since the score function (or equiv-

alently the influence function) of α̂n for data missing at random is orthogonal to
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Ṗ⊥Λ,α, we know that α̂n is asymptotically independent of β̃n, which yields the result

given by Pierce (1982). For technical details of this simple interpretation, we refer

to Bickel et al. (1993), Robinson et al. (1994) and Yu and Nan (2006). ¤
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Table 2.1: Summary statistics of simulations, with true parameter values β1 = 1 and β2 = −1.
Scenario 1: n = 500, which yields about 170 completely observed subjects including about
100 failures. Scenario 2: n = 3000, which yields about 400 completely observed subjects
including about 250 failures.

Method Full Data MLE True Weights Estimated Weights
Parameter β1 β2 β1 β2 β1 β2

Scenario 1

Bias -0.022 0.016 -0.028 0.072 -0.033 0.074
Bootstrap Variance 0.020 0.021 0.033 0.036 – –
Smoothing Variance 0.019 0.020 0.031 0.034 0.028 0.030
Empirical Variance 0.021 0.022 0.033 0.037 0.030 0.033
Bootstrap CP 0.946 0.946 0.953 0.946 – –
Smoothing CP 0.940 0.945 0.941 0.923 0.941 0.925

Scenario 2

Bias 0.013 -0.020 0.013 0.029 0.009 0.030
Bootstrap Variance 0.005 0.007 0.018 0.019 – –
Smoothing Variance 0.006 0.007 0.020 0.018 0.015 0.012
Empirical Variance 0.006 0.007 0.019 0.020 0.013 0.014
Bootstrap CP 0.940 0.945 0.940 0.955 – –
Smoothing CP 0.960 0.940 0.946 0.928 0.948 0.932
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Table 2.2: Estimates of log hazard ratios for MN neutralizing titer (MN) and the baseline behavioral
risk score.

Variable MN Medium Risk High Risk
Estimate -0.6544 0.8976 2.3854
Variance 0.1051 0.0628 0.2941
P-value 0.0435 0.0003 < 0.0001

Reference: the group with risk scores equal to 0
Medium Risk: the group with risk scores from 1 to 3
High Risk: the group with risk scores greater than 3
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CHAPTER III

Inference for Ordered Binomial Probabilities when the
Truth Can Be on the Boundary

3.1 Introduction

In this chapter, we consider the inference of ordered binomial probabilities. We

suppose that there is a binary outcome variable for which the probability of response

depends on one or more ordered categorical covariates. In biomedical studies, some-

times it is reasonable or natural to assume that the probabilities are ordered according

to the categorical covariates. In other words, they change monotonically as each of

the categorical variables changes level. The problem can be conveniently described

as inference of cell probabilities in a one-way (if there is one covariate) or two-way

contingency table. There is a binomial trial in each of the cells and the probabili-

ties of “success” are ordered in either way of the table. The goal is to estimate the

probability of the response under each combination of levels of the covariates, while

incorporating the order restriction of the parameters. The statistical problems with

restricted parameters have a long history and a vast literature (see, for example, Bar-

low et al., 2002 and Robertson et al., 1988). The purpose of incorporating the order

restriction is to gain efficiency of the estimator compared with the estimator ignoring

the restriction. Taylor et al. (2007) considered this problem with two categorical

covariates and compared various methods via simulations. The methods include an

82
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“empirical” estimator which is the usual maximum likelihood estimator ignoring the

order restriction (unrestricted MLE), the isotonic regression estimator, which is the

maximum likelihood estimator under the order restriction (restricted MLE), and a

Bayesian estimator in which the ordering is introduced through prior distributions.

They found that utilizing Bayesian isotonic regression can improve efficiency and

minimize bias and guarantee order restriction in a wide variety of scenarios. How-

ever, when the true parameters in two adjacent cells are close to each other, the biases

become large and the variances are not correctly estimated by using the asymptotic

variance formula of the estimator which ignores the order restriction. In the setting

of testing hypotheses with ordered alternatives, Agresti and Coull (1996) presented

two likelihood ratio tests for comparison of binomial proportions; Agresti and Coull

(1998) presented the likelihood ratio test and Nair (1987) examined the properties

of the so called cumulative chi-squared-type tests of such alternatives in contingency

tables. See Agresti and Coull (2002) for a survey of ways of taking order restrictions

into account in the analysis of contingency tables.

Since the restricted MLE is a very natural estimator, which guarantees that the

order restriction is always satisfied, and improves efficiency, we are particularly in-

terested in the inference based on this estimator. Due to the difficulty in inference

when some of the true adjacent cell probabilities are equal or close to each other,

we will focus on this particular situation. We attempt to construct confidence inter-

vals of the cell probabilities that have robust performance whether the parameters

in adjacent cells are close to each other or well separated, though our main goal is

to handle the case in which some of the adjacent probabilities are equal or close.

At first, we find that the difficulty arises because, when two adjacent probabilities

are equal or close, the distribution of the estimator cannot be well approximated by
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a normal distribution in the usual way. Actually, the asymptotic distributions of

the estimator in these situations are even not normal. In the following section, we

will derive the asymptotic distributions of the estimator and construct confidence

intervals based on these asymptotic distributions. In Section 3.3, we consider several

types of bootstrap confidence intervals, which can improve the performance of the

confidence intervals based on the asymptotic distributions of the estimators.

3.2 Inference Based on Asymptotic Distributions of the Estimator

3.2.1 Asymptotic Distributions

At first, we assume that the categorical covariate is one dimensional and has

two levels. Denote the binary outcome variable by Y , and the covariate by V .

Assume that p1 = P (Y = 1|V = 1) ≤ p2 = P (Y = 1|V = 2). Suppose that

there are ni subjects and di events in the group with V = i, i = 1, 2. The re-

stricted MLE of p1 and p2 are p̃1n = min (d1/n1, (d1 + d2)/(n1 + n2)) and p̃2n =

max (d2/n2, (d1 + d2)/(n1 + n2)), respectively. This can be easily seen as follows.

If d1/n1 ≤ d2/n2, then (d1/n1, d2/n2) maximizes the likelihood function in the re-

stricted region of (p1, p2). If d1/n1 > d2/n2, then the maximizer of the likelihood

function is on the boundary and hence p̃1n = p̃2n = (d1 + d2)/(n1 + n2). When

p1 = p2, the asymptotic distributions of p̃1n and p̃2n are not normal, as stated in the

following theorem.

Theorem III.1. Suppose that p1 = p2 and limn→∞ n2/n1 = c, then

√
n1(p̃1n − p1) →d min

[
W1,

1

1 + c
W1 +

√
c

1 + c
W2

]
,

and

√
n2(p̃2n − p2) →d max

[
W2,

√
c

1 + c
W1 +

c

1 + c
W2

]
,

as n →∞, where W1, W2 are independent and Wi ∼ N(0, p1(1− p1)), i = 1, 2.
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Proof: By the continuous mapping theorem (Billingsley, 1999), and the fact that

√
n1(d1/n1 − p1) →d W1 and

√
n2(d2/n2 − p2) →d W2, it follows that

√
n1(p̃1n − p1) =

√
n1

[
min

(
d1

n1

,
d1 + d2

n1 + n2

)
− p1

]

= min

[√
n1

(
d1

n1

− p1

)
,

n1

n1 + n2

√
n1

(
d1

n1

− p1

)

+
n2

n1 + n2

√
n1

n2

√
n2

(
d2

n2

− p2

)]

→d min

[
W1,

1

1 + c
W1 +

√
c

1 + c
W2

]
.

Similarly,

√
n1(p̃2n − p2) =

√
n2

[
max

(
d2

n2

,
d1 + d2

n1 + n2

)
− p2

]

= max

[√
n2

(
d2

n2

− p2

)
,

n1

n1 + n2

√
n2

n1

√
n1

(
d1

n1

− p1

)

+
n2

n1 + n2

√
n2

(
d2

n2

− p2

)]

→d max

[
W2,

√
c

1 + c
W1 +

c

1 + c
W2

]
. ¤

The theorem can be extended to higher dimensions. For example, if there are

3 ordered cell probabilities, say, p1, p2 and p3, and p1 = p2 = p3, the asymptotic

distributions of the ordered MLEs p̃1n, p̃2n, p̃3n of p1, p2, p3 follow in a similar way as

the above theorem. As an example, we give the result for p̃1n. The restricted MLE

of p1 is

p̃1n =





d1

n1
, if d1

n1
≤ d2

n2
≤ d3

n3
, or d1

n1
≤ d2+d3

n2+n3
, d2

n2
> d3

n3
,

d1+d2

n1+n2
, if d1

n1
> d2

n2
, d1+d2

n1+n2
≤ d3

n3
,

d1+d2+d3

n1+n2+n3
, if d1

n1
> d2

n2
, d1+d2

n1+n2
> d3

n3
, or d2

n2
> d3

n3
, d1

n1
> d2+d3

n2+n3
.

(3.1)

Suppose that W1,W2,W3 are independent and Wi ∼ N(0, pi(1 − pi)), i = 1, 2, 3.

Denote c2 = limn→∞ n2/n1 and c3 = limn→∞ n3/n1. The continuous mapping the-

orem and the fact that
√

ni(di/ni − pi) →d N(0, p1(1 − p1)), for i = 1, 2, 3 yield
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√
n1(p̃1n − p1) →d W , where W = W1, if W1 ≤ W2/

√
c2 ≤ W3/

√
c3, or W1 ≤

(
√

c2W2 +
√

c3W3)/(c2 +c3) and W2/
√

c2 > W3/
√

c3; W = (W1 +
√

c2W2)/
√

1 + c2, if

W1 > W2/
√

c2, (
√

c3W1 +
√

c2c3W2)/(1 + c2) ≤ W3; W =
(
W1 +

√
c2W2 +

√
c3W3

)
/

(1 + c2 + c3), if W1 >
√

c2W2, (
√

c3W1 +
√

c2c3W2)/(1 + c2) > W3, or W3/
√

c3 >

W2/
√

c2 and W1 > (c2W2 +
√

c3W3)/(c2 + c3). In principle, the asymptotic distri-

bution of the restricted MLE in even higher dimensions can be derived analogously.

We can still write out the explicit formula of the estimator by the pool adjacent

violators algorithm and then write out the asymptotic distributions accordingly, but

it becomes much more complicated with more parameters. We assume that there

are m(m ≥ 4) ordered probabilities p1, p2, · · · , pm. In the special case where all

nj, 1 ≤ j ≤ m are equal, or more generally, limn→∞ nj/n1 = 1, 1 ≤ j ≤ m, the

asymptotic distribution of (p̃1n, · · · , p̃mn)T can be expressed in a simple form. De-

note T (·) to be the function which transforms the unrestricted MLE (p̂1n, · · · , p̂mn)T

to the restricted MLE (p̃1n, · · · , p̃mn)T , that is, (p̃1n, · · · , p̃mn)T = T (p̂1n, · · · , p̂mn).

Then it is easy to see that, when p1 = p2 = · · · = pm,

√
n1




p̃1n − p1

...

p̃mn − p1



→d T (W1, · · · ,Wm),

as n →∞, where W1, · · · , Wm are independent and Wi ∼ N(0, p1(1−p1)), 1 ≤ i ≤ m.

However, the above results have limited application, since in practice it is rarely

the case that p1 = p2, and we never know whether it is true. In order to approximate

the distribution of the restricted MLE of the cell probabilities in a wider range

of situations, we use a more general assumption than that p1 = p2, that is, we

assume that p2 = p1 + ∆/
√

n1, where ∆ is an unknown constant which controls

the difference between p1 and p2. Under this assumption, it is easy to obtain the
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asymptotic distributions of the restricted MLEs of p1 and p2. Towards this end, we

first establish the following result. In the following theorem, we consider a series of

binomial random variables with probabilities of “success” going to a constant p with

a
√

n rate. Note that for a particular n, there is only one binomial random variable,

and here n has no connection with n1 and n2 mentioned above.

Theorem III.2. Suppose that dn ∼ B(n, pn), n ≥ 1, where pn = p + ∆√
n
, p and ∆

are constants, 0 ≤ p ≤ 1, and ∆ ≥ 0. Under these assumptions, we have

√
n

(
dn

n
− pn

)
→d N(0, p(1− p)),

as n →∞.

Proof: Suppose Si ={“success” in the ith Bernoulli trial}, 1 ≤ i ≤ n, and

dn =
∑n

i=1 Si. Then we can write

ξn =
√

n

(
dn

n
− pn

)
=
√

n

[
1

n

n∑
i=1

I(Si)− pn

]
=

1√
n

n∑
i=1

[I(Si)− pn] .

Hence the characteristic function of ξn is

φn(t) = E exp(itξn) = E exp

(
it

1√
n

n∑
j=1

[I(Sj)− pn]

)

=
n∏

j=1

E exp

(
it√
n

[I(Sj)− pn]

)

=
n∏

j=1

E

{
1 +

it√
n

[I(Sj)− pn]− t2

2n
[I(Sj)− pn]2 + O

(
t3

n3/2
[I(Sj)− pn]3

)}

=
n∏

j=1

{
1− t2

2n
pn(1− pn) + O

(
t3

n3/2

)}

=
n∏

j=1

{
1− t2

2n
p(1− p) + O

(
1

n3/2

)}

→ exp

(
−σ2

2
t2

)
, as n →∞,

where σ2 = p(1− p). This implies that
√

n (dn/n− pn) →d N(0, p(1− p)). ¤
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Now we can derive the asymptotic distributions of p̃1n, p̃2n under the above as-

sumption.

Theorem III.3. Under the assumption that p2 = p1+∆/
√

n1 and limn→∞ n2/n1 = c,

we have

√
n1(p̃1n − p1) →d min

(
W1,

1

1 + c
W1 +

√
c

1 + c
W2 +

c

1 + c
∆

)
≡ U1,

and

√
n2(p̃2n − p2) →d max

(
W2,

√
c

1 + c
W1 +

c

1 + c
W2 −

√
c

1 + c
∆

)
≡ U2,

as n →∞.

Proof: The results follow since, by Theorem III.2,

√
n1(p̃1n − p1) = min

[√
n1

(
d1

n1

− p1

)
,
√

n1

(
d1 + d2

n1 + n2

− p1

)]

= min

[√
n1

(
d1

n1

− p1

)
,

n1

n1 + n2

√
n1

(
d1

n1

− p1

)

+
n2

n1 + n2

√
n1

(
d2

n2

− p2

)
+

n2

n1 + n2

∆

]

→d min

(
W1,

1

1 + c
W1 +

√
c

1 + c
W2 +

c

1 + c
∆

)
,

and

√
n2(p̃2n − p2) = max

[√
n2

(
d2

n2

− p2

)
,
√

n2

(
d1 + d2

n1 + n2

− p2

)]

= max

[√
n2

(
d2

n2

− p2

)
,

n1

n1 + n2

√
n2

(
d1

n1

− p1

)

+
n2

n1 + n2

√
n2

(
d2

n2

− p2

)
− n1

n1 + n2

√
n2

n1

∆

]

→d max

(
W2,

√
c

1 + c
W1 +

c

1 + c
W2 −

√
c

1 + c
∆

)
.

3.2.2 Construction of Confidence Intervals

We discuss the construction of confidence intervals for p1 and p2 under the re-

striction that p1 ≤ p2. These confidence intervals are based on the asymptotic
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distributions of the restricted MLE.

In view of the above theorems, the asymptotic distribution of the restricted MLE

of (p1, p2)
T is not normal when p1 = p2 or under the more general assumption

p2 = p1+∆/
√

n1. The consequence is that when p1 = p2 or when p1 and p2 are close to

each other, the standard normal approximation of the distributions of the estimates

of p1 and p2 is not appropriate. The appropriate distribution to use is the one given

in Theorem III.3. A naive method that approximates the distributions of p̃1n and

p̃2n by normal distributions and estimate their standard errors by
√

p̃1n(1− p̃1n)/n1

and
√

p̃2n(1− p̃2n)/n2, respectively, does not make sense in principle.

Based on Theorem III.3, the following procedure of constructing confidence inter-

vals of p1, p2 is proposed.

Step 1. After calculating the estimates p̃1n and p̃2n, estimate ∆ by ∆̂ =
√

n1(p̃2n −

p̃1n).

Step 2. Let c = n2/n1. Generate N = 1000 i.i.d. samples of W1, W2 ∼ N(0, p̃1n)

and calculate U1, U2. Based on the N samples of U1 and U2, calculate their 0.025

and 0.975 sample quantiles, respectively. Denote the 0.025 quantiles of U1 and U2 as

q1(0.025) and q2(0.025), and their 0.975 quantiles as q1(0.975) and q2(0.975), respec-

tively.

Step 3. The 95% confidence interval for p1 is set to be
[
p̃1n − q1(0.975)/

√
n1, p̃1n−

q1(0.025)/
√

n1

]
, and the 95% confidence interval for p2 is

[
p̃2n − q2(0.975)/

√
n2, p̃2n−

q2(0.025)/
√

n2

]
.

Simulation results show that the above confidence intervals give accurate coverage

rates when the true values of p1 and p2 are equal or almost equal. However, when

they are close to each other, but not too close, the coverage rates can be much lower
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than the nominal 95% (see Tables 3.2-3.4).

To improve the performance of these confidence intervals, we add the following

criterion similar to a test of H0 : p1 = p2 to the above procedure. The first two steps

remain unchanged. Let

Tn =
|p̃1n − p̃2n|√

p̃1n(1−p̃1n)
n1

+ p̃2n(1−p̃2n)
n2

.

Choose a constant δ > 0, when Tn ≤ δ, then the third step is not changed; but

when Tn > δ, use the standard confidence intervals p̃1n ± 1.96
√

p̃1n(1− p̃1n)/n1 and

p̃2n ± 1.96
√

p̃2n(1− p̃2n)/n2, respectively. The optimal choice of δ may depend on

the ratio of n1 and n2. A relatively good choice can be found by trying a wide range

of scenarios in simulation studies, and choose the δ that yields the best coverage

rates of resulting confidence intervals. Our choice is δ = 0.3 for sample sizes n1 =

50, n2 = 100. Simulation studies show that this kind of “optimal” choice of δ only

depends on the sample sizes n1 and n2.

For one-sample i.i.d. data problems, Andrews (2000) pointed out that the boot-

strap is not consistent if the parameter is on a boundary of the parameter space

defined by linear or nonlinear constraints. As a remedy, he proposed four alternative

methods to construct confidence intervals when this happens. His first method is

analogous to the above method with a “test”. He first defines {ηn : n ≥ 1} to be a

sequence of positive random variables (possibly constant) that satisfies

P
(

lim
n→∞

ηn = 0 and lim inf
n→∞

ηn(n/(2 log log n))1/2 > 1
)

= 1.

According to his first method, if p̃2 − p̃1 ≤ ηn, then use the asymptotic distribution

of p̃1 and p̃2 when p1 = p2 to construct confidence intervals for p1 and p2. Other-

wise, use the usual normal asymptotic distribution of p̃1 and p̃2, i.e., the asymptotic

distribution when p1 6= p2, to construct confidence intervals for p1 and p2. In the
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simulation study, we choose ηn = 2
√

(log log n)/n, which satisfies the requirement

for ηn.

The naive method, the method that uses the correct asymptotic distribution with-

out a test, and the method with a test, and Andrews (2000) first method (with

ηn = 2
√

(log log n)/n) are compared in a simulation study (see Tables 3.2-3.4). The

procedure with a test criterion, as well as Andrews’ first method, improves the per-

formance (empirical coverage rates) of the confidence intervals, although the overall

performance is still not ideal. In the following section, we discuss some bootstrap

methods that may yield better confidence intervals.

3.3 Bootstrap Confidence Intervals

For simplicity, we still suppose that there are two ordered probabilities. Assume

that d1 ∼ B(n1, p1), d2 ∼ B(n2, p2), and p1 ≤ p2. Bootstrap methods (Efron and

Tibshirani, 1993; Andrews, 2000) can be used to construct confidence intervals for

p1 and p2. Since a Binomial random variable can be treated as the sum of a number

of i.i.d. Bernoulli random variables, we can resample from the i.i.d. Bernoulli sam-

ples and hence use the nonparametric bootstrap, although only one observation of a

Binomial random variable is available. A closer look at the nonparametric bootstrap

and parametric bootstrap methods reveals that they are equivalent in our particu-

lar problem. Hence, in the following discussion we only consider the nonparametric

bootstrap. We consider two types of confidence intervals constructed from the boot-

strap sample, which differ in their ways of determining the end points of the intervals.

Descriptions of the two types of confidence intervals are given below. Note that this

is a two-sample problem and the bootstrap samples are generated in each individual

sample respectively, which is different from bootstrapping from a single i.i.d. sample.
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3.3.1 Bootstrap percentile confidence intervals

The confidence intervals constructed by the following procedure are called boot-

strap percentile confidence intervals.

• Suppose u1, · · · , un1 ∼ Bernoulli(p1), v1, · · · , vn2 ∼ Bernoulli(p2). All of them

are independent.

• Resample with replacement from u1, · · · , un1 B times. For the kth sample

u∗1k, · · · , u∗n1k, calculate d∗1k =
∑n1

i=1 u∗ik, 1 ≤ k ≤ B.

• Resample with replacement from v1, · · · , vn2 B times. For the kth sample

v∗1k, · · · , v∗n2k, calculate d∗2k =
∑n2

i=1 v∗ik, 1 ≤ k ≤ B.

• Calculate

p∗1k = min

(
d∗1k

n1

,
d∗1k + d∗2k

n1 + n2

)
, p∗2k = max

(
d∗2k

n2

,
d∗1k + d∗2k

n1 + n2

)
, 1 ≤ k ≤ B.

• Calculate the 0.025 and 0.975 quantiles of p∗11, · · · , p∗1B, denoted by q1(0.025)

and q1(0.975). The 95% confidence interval for p1 is [q1(0.025), q1(0.975)]. An

analogous method is used to obtain confidence interval for p2. Note that the

closed interval is used.

• Repeat the above procedure s = 1000 times, and calculate the coverage rates of

the confidence intervals.

3.3.2 Confidence intervals based on bootstrap “tables”

In this bootstrap method, we try to estimate the distribution of
√

n1(p̃1−p1) and

√
n2(p̃2− p2) by the distribution of

√
n1(p

∗
1− p̃1) and

√
n2(p

∗
2− p̃2), given p̃1 and p̃2,

respectively, where p∗1 and p∗2 are bootstrap estimates of p1 and p2.
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• Suppose u1, · · · , un1 ∼ Bernoulli(p1), v1, · · · , vn2 ∼ Bernoulli(p2). All of them

are independent.

• Calculate d1 =
∑n1

i=1 ui, d2 =
∑n2

i=1 vi, and

p̃1 = min

(
d1

n1

,
d1 + d2

n1 + n2

)
, p̃2 = max

(
d2

n2

,
d1 + d2

n1 + n2

)
.

• Resample with replacement from u1, · · · , un1 B times. For the kth sample

u∗1k, · · · , u∗n1k, calculate d∗1k =
∑n1

i=1 u∗ik, 1 ≤ k ≤ B.

• Resample with replacement from v1, · · · , vn2 B times. For the kth sample

v∗1k, · · · , v∗n2k, calculate d∗2k =
∑n2

i=1 v∗ik, 1 ≤ k ≤ B.

• Calculate

p∗1k = min

(
d∗1k

n1

,
d∗1k + d∗2k

n1 + n2

)
, p∗2k = max

(
d∗2k

n2

,
d∗1k + d∗2k

n1 + n2

)
,

and define

z1k =
√

n1(p
∗
1k − p̃1), z2k =

√
n2(p

∗
2k − p̃2), 1 ≤ k ≤ B.

• Calculate the 0.025 and 0.975 quantiles of z11, · · · , z1B, denoted by q1(0.025) and

q1(0.975). The 95% confidence interval for p1 is set to be [p̃1−q1(0.975)/
√

n1, p̃1−

q1(0.025)/
√

n1]. Similarly do this for p2.

• Repeat the above procedure s = 1000 times, and calculate the coverage rates of

the confidence intervals over all the s = 1000 simulations.

3.3.3 A parametric bootstrap with parameter shrunk to the boundary

This method is proposed in Andrews (2000). It is proposed as the second remedy

to the usual bootstrap method when parameters can be on the boundary of the pa-

rameter space. It is similar to the parametric bootstrap, but the parameter estimator
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used to generate the bootstrap samples shrinks to the boundary of the parameter

space. Let ηn be defined as above. In our case, we define p̃1 = d1/n1 and p̃2 = d2/n2

if |d1/n1 − d2/n2| > ηn and d1/n1 < d2/n2, and define p̃1 = p̃2 = (d1 + d2)/(n1 + n2)

if |d1/n1 − d2/n2| ≤ ηn or d1/n1 ≥ d2/n2. Now generate bootstrap samples us-

ing the distributions B(n1, p̃1) and B(n2, p̃2), respectively in a parametric bootstrap

procedure.

3.4 Simulation Results

At first, we present simulation results to assess the method in Section 3.2.2. We

pick p1 = 0.2, 0.5 and 0.8, and for each fixed p1, we consider a range of p2 starting

at p1 and gradually increases to a value close to 1. The sample sizes are n1 = 50

and n2 = 100. For each combination of p1 and p2, we calculate the biases for both

the unrestricted MLE and the restricted MLE and coverage rates of all types of 95%

confidence intervals. In Tables 3.2 to 3.4, the confidence intervals compared include,

the standard confidence interval based on the unrestricted MLE of p1 and p2 and

a normal approximation of its distribution, the naive confidence interval based on

the restricted MLE, treating its distribution as normal and using
√

p̃1(1− p̃1)/n1

and
√

p̃2(1− p̃2)/n2 as the standard errors of p̃1 and p̃2, respectively, the confidence

intervals based on the asymptotic distribution of the restricted MLE with or without

a “test”, and Andrews’ first method, with ηn chosen as above. In all scenarios,

1000 simulation runs are repeated. From Table 3.1, we see that the restricted MLE,

which guarantees the order of the parameters, is more efficient than the unrestricted

MLE, although in smaller sample sizes it leads to some negative bias for p1 and some

positive bias for p2. Moreover, if we use the restricted MLE and approximate its

distribution by a normal distribution, the resulting coverage rates of the confidence
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intervals can be quite inaccurate when p1 and p2 are equal or very close, especially in

the case p1 = 0.8 (Tables 3.2 to 3.4). The confidence intervals based on the correct

asymptotic distribution when the two probabilities are equal or very close improve

the coverage rates where the naive method does not perform well. Nevertheless, they

may yield coverage rates that are much lower than the nominal 95% rate when the two

true probabilities are close to each other. The reason for this is that, for the method

with a test, when p1 and p2 are close, neither the asymptotic distribution under the

null p1 = p2, nor the normal distribution approximate the true distribution of the

estimator well enough. For the method using the local alternative assumption, we see

that when p1 = p2, then ∆ = 0 and the asymptotic distribution derived in Theorem

III.3 is an appropriate approximation to the true distribution, according to the result

in Theorem III.1; when p1 and p2 are well separated, then ∆ is a large number, and

the asymptotic distributions in Theorem III.3 reduce to normal distributions, which

are also the correct (asymptotic) distribution for the estimator. However, when p1

and p2 are close to each other, the asymptotic distribution in Theorem III.3 is not

a good approximation to the true distribution of the estimator for finite samples,

although asymptotically and under the local alternative assumption, it is the correct

distribution. Finally, the coverage rates for the confidence intervals based on the

restricted MLE under the local alternative assumption p2 = p1 + ∆/
√

n1 can be

quite inaccurate when p1 and p2 are far apart. This happens because we treat

p1 as constant, and hence the variances of W1 and W2 are p1(1 − p1). Due to

this formulation, when p1 and p2 are far apart, the variance of W2 is not correctly

estimated.

The simulation results of the bootstrap methods are presented in Tables 3.5 to

3.7. We list the coverage rates of the following types of confidence intervals: the
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bootstrap percentile confidence interval based on unrestricted MLE, the bootstrap

percentile confidence interval based on restricted MLE, the confidence interval based

on bootstrap “tables”, and Andrews’ parametric bootstrap confidence interval. We

run 1000 simulations, and in each simulation, we draw 1000 bootstrap samples of

the original data. The results show that the percentile bootstrap and the Andrew’s

parametric bootstrap both work well even for small sample sizes (n1 = 20, n2 = 40),

but the confidence intervals based on bootstrap “tables” does not perform well. This

may be due to two reasons. First, according to Andrews (2000), it is impossible to

consistently estimate the asymptotic distribution of
√

n1(p̃1n−p1) and
√

n2(p̃2n−p2),

when p2 = p1+∆/
√

n, or in other words, when p1 and p2 are close, the bootstrap esti-

mate of the distributions may be not a good approximation to the true distributions.

Second, according to Efron and Tibshirani (1993), for the confidence intervals based

on bootstrap “tables” to work well, the quantities
√

n1(p̃1n − p1) and
√

n1(p̃1n − p1)

should be pivotal quantities. However, in our case, their standard deviations still

depend on the unknown parameters p1 and p2 and hence they are not pivotal quan-

tities.

In Table 3.8, we did a further simulation study to assess the performance of sev-

eral of the above mentioned methods, including the method based on the asymptotic

distribution and a test and all the bootstrap method based on restricted MLE, in

larger sample sizes, that is, n1 = 500 and n2 = 1000. The results show that the

method based on the asymptotic distribution does not perform well even in a large

sample like this (for example, the coverage rate for p1 is too low when p1 = 0.5 and

p2 = 0.55). The confidence interval based on bootstrap “tables” still has some prob-

lem, while the two other bootstrap methods both work well. Finally, the simulation

results in Table 3.9 show that for sample sizes as small as n1 = 10, n2 = 20, the boot-
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strap percentile confidence interval based on restricted MLE still works well when

p1 is not small. For comparison, we also show the results of the bootstrap percentile

confidence interval based on the unrestricted MLE. They alos have lower than ideal

coverage rates, indicating that the low coverage rates for the restricted MLE of p1,

when p1 is small, is due mainly to the small sample size, rather than the restricted

nature of the estimator.
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Table 3.1: Biases of the restricted MLE and the unrestricted MLE: n1 = 50, n2 = 100.

unrestricted MLE restricted MLE
p1 p2 p1 p2

bias
p1 = 0.2, p2 = 0.2 0.0006 0.0000 -0.018 0.009

p1 = 0.2, p2 = 0.22 0.0003 -0.0011 -0.013 0.0054

p1 = 0.2, p2 = 0.25 -0.001 -0.001 -0.003 0.0000

p1 = 0.2, p2 = 0.3 -0.0001 0.0003 -0.002 0.001

p1 = 0.2, p2 = 0.5 -0.001 0.0005 -0.001 0.0005

p1 = 0.2, p2 = 0.9 0.001 0.0000 0.001 0.0000

p1 = 0.5, p2 = 0.5 -0.0016 -0.0010 -0.024 0.010

p1 = 0.5, p2 = 0.52 0.0008 -0.0000 -0.017 0.0086

p1 = 0.5, p2 = 0.55 -0.0012 -0.0005 -0.011 0.0044

p1 = 0.5, p2 = 0.6 -0.0005 0.0002 -0.004 0.002

p1 = 0.5, p2 = 0.7 0.0007 0.0006 0.0007 0.0006

p1 = 0.5, p2 = 0.9 -0.0008 -0.0014 -0.0008 -0.0014

p1 = 0.8, p2 = 0.8 0.0009 -0.0002 -0.018 0.009

p1 = 0.8, p2 = 0.82 0.0002 0.0016 -0.012 0.0075

p1 = 0.8, p2 = 0.85 0.0005 0.0006 -0.0048 0.0032

p1 = 0.8, p2 = 0.9 0.0003 -0.0003 -0.0007 0.0002

ratio of empirical variances
p1 = 0.2, p2 = 0.2 1 1 0.562 0.784

p1 = 0.2, p2 = 0.22 1 1 0.620 0.818

p1 = 0.2, p2 = 0.25 1 1 0.728 0.864

p1 = 0.2, p2 = 0.3 1 1 0.871 0.934

p1 = 0.2, p2 = 0.5 1 1 0.993 0.996

p1 = 0.2, p2 = 0.9 1 1 1 1

p1 = 0.5, p2 = 0.5 1 1 0.562 0.784

p1 = 0.5, p2 = 0.52 1 1 0.620 0.818

p1 = 0.5, p2 = 0.55 1 1 0.728 0.864

p1 = 0.5, p2 = 0.6 1 1 0.871 0.934

p1 = 0.5, p2 = 0.6 1 1 0.993 0.996

p1 = 0.5, p2 = 0.9 1 1 1 1

p1 = 0.8, p2 = 0.8 1 1 0.589 0.767

p1 = 0.8, p2 = 0.82 1 1 0.672 0.812

p1 = 0.8, p2 = 0.85 1 1 0.806 0.884

p1 = 0.8, p2 = 0.9 1 1 0.945 0.968
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Table 3.2: Empirical coverage rates of 95% confidence intervals based on distributions of the estima-
tors: n1 = 50, n2 = 100, and p1 = 0.2.

p2 = 0.2 p2 = 0.22 p2 = 0.25 p2 = 0.3 p2 = 0.5 p2 = 0.9
unrestricted MLE with p1 0.935 0.941 0.938 0.937 0.938 0.936
normal distribution p2 0.931 0.933 0.946 0.951 0.937 0.932

restricted MLE with p1 0.952 0.952 0.955 0.948 0.931 0.938
normal distribution p2 0.966 0.977 0.962 0.959 0.952 0.945

restricted MLE p1 0.937 0.922 0.890 0.881 0.927 0.939
without “test” p2 0.932 0.912 0.900 0.887 0.871 0.900

restricted MLE p1 0.938 0.943 0.913 0.912 0.939 0.936
with “test” p2 0.958 0.962 0.935 0.941 0.937 0.932

Andrews’ p1 0.922 0.913 0.888 0.855 0.820 0.940
first method p2 0.931 0.900 0.868 0.846 0.826 0.939

restricted MLE without “test”: CIs based on the asymptotic distribution of the restricted MLE
under the local alternative assumption.
restricted MLE with “test”: CIs based on the asymptotic distribution of the restricted MLE
under the local alternative assumption or normal distribution, the choice of which depends on
the result of a “test” of H0 : p1 = p2.
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Table 3.3: Empirical coverage rates of 95% confidence intervals based on distributions of the estima-
tors: n1 = 50, n2 = 100, and p1 = 0.5.

p2 = 0.5 p2 = 0.52 p2 = 0.55 p2 = 0.6 p2 = 0.7 p2 = 0.9
unrestricted MLE with p1 0.940 0.930 0.938 0.937 0.940 0.937
normal distribution p2 0.945 0.944 0.940 0.944 0.953 0.934

restricted MLE with p1 0.975 0.976 0.974 0.963 0.942 0.938
normal distribution p2 0.967 0.958 0.961 0.955 0.957 0.931

restricted MLE p1 0.937 0.935 0.913 0.871 0.938 0.939
without “test” p2 0.960 0.939 0.927 0.926 0.965 0.997

restricted MLE p1 0.969 0.948 0.940 0.912 0.936 0.937
with “test” p2 0.959 0.955 0.947 0.943 0.950 0.934

Andrews’ p1 0.947 0.926 0.888 0.854 0.821 0.796
first method p2 0.932 0.947 0.937 0.922 0.931 0.964

restricted MLE without “test”: CIs based on the asymptotic distribution of the restricted MLE
under the local alternative assumption.
restricted MLE with “test”: CIs based on the asymptotic distribution of the restricted MLE
under the local alternative assumption or normal distribution, the choice of which depends on
the result of a “test” of H0 : p1 = p2.
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Table 3.4: Empirical coverage rates of 95% confidence intervals based on distributions of the estima-
tors: n1 = 50, n2 = 100, and p1 = 0.8.

p2 = 0.8 p2 = 0.82 p2 = 0.85 p2 = 0.9
unrestricted MLE with p1 0.933 0.934 0.944 0.935
normal distribution p2 0.932 0.940 0.936 0.930

restricted MLE with p1 0.985 0.982 0.975 0.953
normal distribution p2 0.964 0.949 0.939 0.941

restricted MLE p1 0.955 0.925 0.876 0.875
without “test” p2 0.966 0.951 0.964 0.976

restricted MLE p1 0.972 0.960 0.935 0.915
with “test” p2 0.941 0.939 0.932 0.928

Andrews’ p1 0.941 0.913 0.967 0.933
first method p2 0.961 0.959 0.965 0.946

restricted MLE without “test”: CIs based on the asymptotic distribution of the restricted MLE
under the local alternative assumption.
restricted MLE with “test”: CIs based on the asymptotic distribution of the restricted MLE
under the local alternative assumption or normal distribution, the choice of which depends on
the result of a “test” of H0 : p1 = p2.
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Table 3.5: Comparison of coverage rates of 95% bootstrap confidence intervals: p1 = 0.2.

p1 = 0.2 p1 = 0.2 p1 = 0.2 p1 = 0.2 p1 = 0.2 p1 = 0.2
p2 = 0.2 p2 = 0.22 p2 = 0.25 p2 = 0.3 p2 = 0.5 p2 = 0.9

n1 = 50, n2 = 100

percentile bootstrap CI p1 0.950 0.958 0.953 0.952 0.952 0.952
based on unrestricted MLE p2 0.951 0.957 0.952 0.958 0.954 0.956

percentile bootstrap CI p1 0.916 0.942 0.954 0.952 0.952 0.952
based on restricted MLE p2 0.951 0.963 0.955 0.959 0.954 0.956

CI based on p1 0.876 0.880 0.835 0.831 0.882 0.879
bootstrap “tables” p2 0.947 0.969 0.987 0.981 0.989 0.832

Andrews’ parametric p1 0.916 0.942 0.955 0.948 0.957 0.950
bootstrap CI p2 0.951 0.961 0.954 0.959 0.954 0.956

n1 = 20, n2 = 40

percentile bootstrap CI p1 0.923 0.921 0.925 0.924 0.922 0.920
based on unrestricted MLE p2 0.956 0.938 0.957 0.957 0.959 0.916

percentile bootstrap CI p1 0.911 0.911 0.925 0.924 0.923 0.920
based on restricted MLE p2 0.959 0.942 0.957 0.957 0.959 0.916

CI based on p1 0.910 0.912 0.890 0.887 0.888 0.900
bootstrap “tables” p2 0.937 0.961 0.987 0.984 0.985 0.797

Andrews’ parametric p1 0.900 0.911 0.925 0.924 0.922 0.920
bootstrap CI p2 0.956 0.940 0.960 0.961 0.959 0.917
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Table 3.6: Comparison of coverage rates of 95% bootstrap confidence intervals: p1 = 0.5.

p1 = 0.5 p1 = 0.5 p1 = 0.5 p1 = 0.5 p1 = 0.5 p1 = 0.5
p2 = 0.5 p2 = 0.52 p2 = 0.55 p2 = 0.6 p2 = 0.7 p2 = 0.9

n1 = 50, n2 = 100

percentile bootstrap CI p1 0.964 0.952 0.962 0.960 0.961 0.961
based on unrestricted MLE p2 0.958 0.956 0.951 0.953 0.959 0.960

percentile bootstrap CI p1 0.938 0.949 0.961 0.961 0.961 0.961
based on restricted MLE p2 0.951 0.952 0.949 0.953 0.959 0.960

CI based on p1 0.952 0.934 0.915 0.883 0.919 0.950
bootstrap “tables” p2 0.967 0.965 0.969 0.960 0.925 0.735

Andrews’ parametric p1 0.937 0.949 0.962 0.961 0.964 0.960
bootstrap CI p2 0.952 0.952 0.952 0.953 0.957 0.958

n1 = 20, n2 = 40

percentile bootstrap CI p1 0.958 0.958 0.965 0.960 0.960 0.964
based on unrestricted MLE p2 0.954 0.938 0.962 0.950 0.957 0.923

percentile bootstrap CI p1 0.934 0.946 0.963 0.962 0.962 0.964
based on restricted MLE p2 0.948 0.941 0.958 0.949 0.957 0.934

CI based on p1 0.945 0.936 0.927 0.890 0.878 0.933
bootstrap “tables” p2 0.961 0.961 0.967 0.956 0.922 0.710

Andrews’ parametric p1 0.938 0.947 0.963 0.960 0.961 0.964
bootstrap CI p2 0.949 0.929 0.956 0.952 0.959 0.920
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Table 3.7: Comparison of coverage rates of 95% bootstrap confidence intervals: p1 = 0.8.

n1 = 50 p1 = 0.8 p1 = 0.8 p1 = 0.8 p1 = 0.8
n2 = 100 p2 = 0.8 p2 = 0.82 p2 = 0.85 p2 = 0.9

n1 = 50, n2 = 100

percentile bootstrap CI p1 0.948 0.947 0.958 0.948
based on unrestricted MLE p2 0.958 0.949 0.960 0.957

percentile bootstrap CI p1 0.951 0.962 0.966 0.950
based on restricted MLE p2 0.938 0.941 0.951 0.954

CI based on p1 0.950 0.927 0.884 0.876
bootstrap “tables” p2 0.952 0.940 0.928 0.843

Andrews’ parametric p1 0.953 0.964 0.968 0.950
bootstrap CI p2 0.938 0.938 0.953 0.952

n1 = 20, n2 = 40

percentile bootstrap CI p1 0.934 0.924 0.925 0.928
based on unrestricted MLE p2 0.960 0.928 0.940 0.928

percentile bootstrap CI p1 0.959 0.943 0.961 0.946
based on restricted MLE p2 0.942 0.929 0.933 0.925

CI based on p1 0.936 0.913 0.887 0.824
bootstrap “tables” p2 0.946 0.928 0.906 0.824

Andrews’ parametric p1 0.956 0.962 0.962 0.945
bootstrap CI p2 0.943 0.930 0.933 0.923
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Table 3.8: Coverage rates of confidence intervals when sample sizes are n1 = 500, n2 = 1000.

p1 = 0.2 p1 = 0.2 p1 = 0.2 p1 = 0.5 p1 = 0.5 p1 = 0.5 p1 = 0.8 p1 = 0.8 p1 = 0.8
p2 = 0.2 p1 = 0.22 p2 = 0.25 p2 = 0.5 p2 = 0.52 p2 = 0.55 p2 = 0.8 p2 = 0.82 p1 = 0.85

CIs based on the asymptotic distribution of the restricted MLE and a test of p1 = p2

p1 0.955 0.923 0.939 0.973 0.932 0.919 0.973 0.940 0.940
p2 0.958 0.938 0.939 0.968 0.944 0.941 0.957 0.959 0.950

percentile bootstrap CIs based on restricted MLE

p1 0.935 0.931 0.936 0.950 0.964 0.957 0.939 0.963 0.958
p2 0.950 0.941 0.938 0.947 0.941 0.962 0.944 0.969 0.957

CIs based on bootstrap “tables”

p1 0.943 0.890 0.923 0.952 0.909 0.882 0.909 0.918 0.958
p2 0.957 0.958 0.968 0.964 0.962 0.956 0.961 0.921 0.866

Andrews’ parametric bootstrap CIs

p1 0.922 0.951 0.959 0.924 0.962 0.957 0.936 0.956 0.958
p2 0.936 0.960 0.952 0.942 0.949 0.963 0.932 0.952 0.956
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Table 3.9: Coverage rates of the bootstrap percentile confidence interval based on restricted MLE
compared with the bootstrap percentile confidence interval based on unrestricted MLE,
when sample sizes are n1 = 10, n2 = 20.

p1 = 0.2 p1 = 0.2 p1 = 0.2 p1 = 0.5 p1 = 0.5 p1 = 0.5 p1 = 0.8 p1 = 0.8 p1 = 0.8
p2 = 0.2 p1 = 0.22 p2 = 0.25 p2 = 0.5 p2 = 0.52 p2 = 0.55 p2 = 0.8 p2 = 0.82 p1 = 0.85

bootstrap percentile CI based on unrestricted MLE

p1 0.891 0.867 0.891 0.971 0.964 0.977 0.887 0.881 0.898
p2 0.916 0.936 0.954 0.949 0.927 0.961 0.930 0.907 0.967

bootstrap percentile CI based on restricted MLE

p1 0.870 0.865 0.885 0.942 0.943 0.960 0.952 0.960 0.953
p2 0.956 0.939 0.957 0.942 0.920 0.946 0.930 0.901 0.932
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3.5 Conclusion

When the true parameters satisfy an order restriction, the restricted MLE is

shown to be more efficient than the unrestricted MLE. Moreover, confidence inter-

vals based on the restricted MLE can be constructed using the bootstrap method

and have good performances for small sample sizes such as n1 = 20 and n2 = 40.

The percentile bootstrap confidence interval and the Andrews’ parametric bootstrap

confidence intervals have similar performances regarding empirical coverage rates of

the intervals.

The bootstrap methods were investigated for the simplest case where there are

only two ordered probabilities. However, the approaches can be generalized to prob-

lems with any higher dimension of parameters without any difficulty, such as for

two-way or three-way contingency tables.
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CHAPTER IV

Future Work

For the missing data problems with grouped survival data or current status data,

we assume that the data are independent and identically distributed. However, this

assumption may not hold in some important practical situations. A common example

is the two-phase stratified sampling with simple random sampling instead of Bernoulli

sampling in the second stage. Since the simple random sampling is frequently used in

practice, it is important to know the properties of the proposed weighted likelihood

estimator in this case. Research in this direction is one of our future research plans.

Breslow and Wellner (2007) considered the weighted likelihood estimator in a two-

phase stratified sampling with simple random sampling in the second sampling stage,

for a general semiparametric problem in which all the parameters are estimable at

the
√

n rate. They show that the weighted likelihood estimator is more efficient if

the simple random sampling is used rather than the Bernoulli sampling in the second

stage, and the asymptotic variance of the estimator with simple random sampling

is equivalent to that of the estimator with estimated weights. Similar properties

are expected to hold in our grouped survival data problem and current status data

problem. For the grouped survival data problem, the theory in Breslow and Wellner

(2007) may apply, since the model is parametric. However, the current status data

110
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problem will be more challenging since it is a semiparametric problem, and part of

the parameter is not estimable at the
√

n rate. Another interesting future work in

this setting is exploring the possibility of an analogue of the likelihood ratio test of

the parameter β. Banerjee et al. (2007) studied such likelihood ratio tests in the

semiparametric binary regression model involving monotonicity constraints, in the

full data case, which is connected to the current status data problem with full data.

It is worthwhile to explore such possibilities in the missing data case.

For the estimation of ordered probabilities of binomial random variables, we

showed via simulation results that the usual percentile bootstrap confidence interval

has good properties, and it is the most attractive confidence interval among all those

considered. Andrews (2000) claimed that, in the one-sample, i.i.d. data case, the

confidence interval based on bootstrap “tables” is not consistent when the parameter

is on a boundary of the parameter space defined by linear or nonlinear constraints.

However, for our particular problem, simulation results show that the percentile

bootstrap confidence intervals have good performances both in smaller sample sizes

(n1 = 20, n2 = 40) and larger sample sizes (n1 = 500, n2 = 1000), and the empirical

coverage rates of the confidence intervals get very close to 95% in the latter case.

Thus it seems that the percentile bootstrap confidence interval does work in our

problem with parameter on the boundary. A future work to find out theoretical

justification for this is desirable. In the setting of hypothesis testing with ordered

alternatives, several methods are available, for example, see Morris (1988) and Nair

(1987). Confidence intervals (or regions) of ordered parameters can be obtained,

possibly by inverting such tests. We plan to investigate such confidence intervals (or

regions) and compare them with the ones discussed above. Finally, for sample sizes

smaller than n1 = 20, n2 = 40, such as n1 = 5, n2 = 10, both the confidence inter-
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vals based on asymptotic distribution of the estimator and the bootstrap confidence

intervals do not give correct coverage rates in this case. Confidence intervals based

on exact distributions of the restricted MLE is possible and may potentially improve

the performance of the bootstrap confidence intervals in such small samples. This

will also be pursued in our future work.


