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CHAPTER I

Introduction

Studying a geometric object by means of its group of symmetries has been a

central theme in mathematics ever since Klein proposed his Erlangen Program in

1872. In contrast, only in the last couple of decades has the converse approach

been widely applied: using geometric methods to study infinite discrete groups, or

Geometric Group Theory.

In a different direction, there has been a recent flourishing of research in the field

of analysis on metric spaces; that is, the study of the behavior of functions and spaces

with not necessarily smooth metric structure. (See [Hei07] for a survey of this area.)

At first glance these two fields may seem very far apart, since the ordinary (local)

tools of topology or analysis are seemingly of little use in studying a discrete group.

In fact, these fields have long had productive interactions. The classic example

of applying low regularity analysis (of quasiconformal mappings) to the theory of

discrete groups is given by Mostow’s rigidity theorem [Mos73]. One application of

this theorem is the surprising result that if two closed hyperbolic three dimensional

manifolds have isomorphic fundamental groups, then the manifolds are isometric.

This geometric and group theoretical result was proven by studying the behavior of

quasiconformal maps on the sphere at infinity of H3.
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In more recent developments, Gromov introduced the concept of a (Gromov)

hyperbolic group, capturing the large scale geometry of the fundamental groups of

compact negatively curved manifolds, but applicable in much wider contexts [Gro87].

Analogous to the sphere at infinity for hyperbolic space, hyperbolic groups have a

boundary at infinity. This boundary has a canonical topological structure, and it

carries a canonical family of quasisymmetrically equivalent metrics: an analytically

rich object. Quasisymmetric maps between boundaries are in correspondence with

quasi-isometric maps of the underlying groups [Pau96], and so any quasisymmetric

invariant of a metric space will give a quasi-isometric invariant of a hyperbolic group.

The structure of the boundary at infinity has been studied to gain insight into

the structure of the underlying group. For example, work of Bowditch shows that

in a one ended hyperbolic group, the boundary has local cut points if and only if

the group virtually splits over a virtually cyclic subgroup [Bow98]. Boundaries of

hyperbolic groups also provide new examples of spaces with interesting analytical

structure, such as those found in a recent work of Bourdon and Pajot [BP03]. These

matters and more are discussed in [Kle06].

One of the most natural quasisymmetry invariants of a metric space is Pansu’s

conformal dimension [Pan89]: it is defined as the infimum of the Hausdorff dimen-

sions of all quasisymmetrically equivalent metric spaces. In a sense, this invariant

measures the dimension of the ‘best shape’ of the metric space. It was introduced

by Pansu in his study of the boundary of rank one symmetric spaces which extended

the work of Mostow. Although natural, it is often difficult to calculate the conformal

dimension, or even to estimate it, particularly from below.

The conformal dimension of the boundary of a hyperbolic group is of particular

interest in the light of recent work of Bonk and Kleiner on Cannon’s conjecture. This
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conjecture states that if the boundary of a hyperbolic group is a topological 2-sphere,

then the group acts properly, cocompactly and isometrically on H3. As a corollary

to a theorem of Sullivan [Sul81], Cannon’s conjecture can be stated as follows:

Conjecture 1.0.1. If the boundary at infinity of a hyperbolic group is a topological

2-sphere, then the boundary is quasisymmetric to the standard 2-sphere.

Bonk and Kleiner give a partial resolution of Cannon’s conjecture [BK02a, BK05a]:

Theorem 1.0.2. If the boundary at infinity of a hyperbolic group is a topological

2-sphere, and the (Ahlfors regular) conformal dimension of the boundary is realized,

then the boundary is quasisymmetric to the standard 2-sphere.

Consequently, it is pertinent to ask: Under what circumstances is the confor-

mal dimension of the boundary of a hyperbolic group realized? Before dealing with

boundaries that have topological dimension two, it is natural to study lower dimen-

sional cases. The case of boundaries with topological dimension zero is trivial, since

every such infinite hyperbolic group is virtually free, and so the boundary is either

two points or a Cantor set. In both these cases the conformal dimension is zero; in

the former it is realized, in the latter it is not.

When the topological dimension of the boundary is one, the situation is less

clear. Any Fuchsian group has the standard circle as boundary, and so the conformal

dimension is realized. However, there are examples of Pansu where the conformal

dimension is one but it is not realized. We shall discuss this more in Chapters V

and VI. In [BK05a] Bonk and Kleiner ask whether groups whose boundaries have no

local cut points have conformal dimension greater than one. We answer this question

affirmatively.

Theorem 5.1.1. Suppose G is a non-elementary hyperbolic group whose boundary
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has no local cut points. Then the conformal dimension of ∂∞G is strictly greater

than one.

This result follows from a study of the quasisymmetric geometry of metric spaces

that are locally connected and have no local cut points in a uniform way. In this

more general context we can again bound the conformal dimension.

Theorem 4.0.1. Suppose (X, d) is a complete metric space which is doubling and

annulus linearly connected. Then the conformal dimension dimC(X) is at least C > 1,

where C depends only on the data of X (i.e., the constants associated to the two

conditions above).

(Chapter II provides general background on conformal dimension and quasisym-

metric maps; the statement of this theorem is explained in more detail in Chapter IV.)

A good example of a space satisfying the hypotheses of Theorem 4.0.1 is the

standard square Sierpiński carpet, especially as it has topological dimension one and

so the trivial lower bound of one is no help in proving Theorem 4.0.1.

A standard way of finding an obstruction to lowering the conformal dimension of

a metric space is to exhibit a good family of curves inside the space and then use

a modulus-type argument. This will be the approach that we use to prove Theo-

rem 4.0.1; the modulus argument is contained in a lemma of Pansu (see Section 2.3).

In order to construct our family of curves we will need a theorem of Tukia (The-

orem 3.1.4) that allows us to construct arcs that are quasisymmetric to the unit

interval (‘quasi-arcs’) inside a large class of metric spaces. We give a new and im-

proved proof of this theorem in Chapter III.

The process of finding a good family of curves involves a somewhat delicate lim-

iting argument whereby we begin with one arc, ‘split’ it into two, and then four, and

so on. In between these steps we use Tukia’s theorem to straighten out our arcs,
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and thereby control the limit of this process. Chapter IV contains the details of this

construction; see Theorem 4.0.2 in particular.

After applying Theorem 4.0.1 to the boundaries of hyperbolic groups in Chap-

ter V, we conclude with discussing natural questions that lead out of this work and

provide future avenues of research.

It should be noted that the new results described here have previously appeared

in the papers [Mac07a] and [Mac07b].



CHAPTER II

Metric space dimension and quasisymmetric geometry

In this chapter we recall the definition and basic properties of the Hausdorff

dimension of a metric space. We will also describe its lesser-known counterpart in

the world of quasisymmetric geometry: the conformal dimension of a metric space.

As mentioned in Chapter I, a lemma of Pansu provides a key tool in bounding the

conformal dimension from below. This lemma is described and proven in Section 2.3.

Finally, we define the Hausdorff and Gromov-Hausdorff metrics in Section 2.4,

and state some of their properties.

We will use the notation (X, d) for a metric space X with metric d : X×X → R+;

if the metric is understood we may refer simply to X. An open ball about x ∈ X of

radius r is denoted by B(x, r) = {y ∈ X : d(x, y) < r}. The corresponding closed

ball is denoted by B(x, r) = {y ∈ X : d(x, y) ≤ r}.

2.1 Hausdorff dimension

For smooth manifolds such as curves and surfaces, the standard notion of topo-

logical dimension measures the number of degrees of freedom present. For example,

a curve is one dimensional, a surface two dimensional, and so on. In the case of

certain ‘fractal’ metric spaces the topological dimension, while still defined, often

proves inadequate.

6
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Figure 2.1: The Sierpiński Carpet

To see this, let us consider the example of the Sierpiński carpet. This is con-

structed from the unit square in the plane, S0. We divide S0 into nine squares of

side length one third and remove the middle square to get the set S1. This process

is then repeated for the remaining eight squares to get the set S2, and so on. The

limit object S = ∩∞
i=0Si is called the Sierpiński carpet, see Figure 2.1.

It is a simple observation that the number of small balls of radius r required to

cover a compact n-dimensional Riemannian manifold is proportional to r−n. How-

ever, since Si is made up of 8i squares of side length 3−i we can show that the

number of balls of radius r = 3−i required to cover S is proportional to 8i =

(3−i)−(log 8)/(log 3) = r−(log 8)/(log 3): it seems that the Sierpiński carpet has ‘dimension’

n = log 8
log 3

≈ 1.893.
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One way to make this discussion precise is with the concept of the Hausdorff

dimension of a metric space (X, d). First, given d > 0 we define the d-dimensional

Hausdorff measure of a set A ⊂ X:

(2.1) Hd(A) = lim
δ→0

inf
{∑

(ri)
d : {B(xi, ri)} covers X, ri ≤ δ

}
∈ [0,∞].

In the infimum above we only consider covers by countable collections of sets.

(The standard definition of Hausdorff measure considers covers by arbitrary open

sets and uses the diameter of a set instead of the radius of a ball in the equation

above. However, definition (2.1) is comparable and will be more convenient to use.)

As is well known (for example, see [Hei01, Section 8.3]), the Hausdorff measure

satisfies some basic dimension comparison results.

d < d′,Hd(A) < ∞ =⇒ Hd′(A) = 0, and

d > d′,Hd(A) > 0 =⇒ Hd′(A) = ∞.

(2.2)

We can now define the Hausdorff dimension of A ⊂ X as

(2.3) dimH(A) = inf{d : Hd(X) = 0} ∈ [0,∞].

Example 2.1.1. If (X, d) is an n-dimensional Riemannian manifold, then we have

dimH(X) = n.

Example 2.1.2. As expected, the Sierpiński carpet S has Hausdorff dimension

dimH(S) = log 8
log 3

.

We also have the important inequality [Hei01, Theorem 8.14]

(2.4) dimtop(X) ≤ dimH(X).

For proofs of these statements and others, see the reference [Hei01].
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2.2 Quasisymmetric maps and conformal dimension

In the category of metric spaces, the most natural maps are isometries: maps

that preserve distances. Isometries are much too rigid and rare in most contexts,

where we consider bi-Lipschitz maps instead. These maps preserve distances up to a

constant multiplicative factor. To be precise, we say that a map f : (X, d) → (X ′, d′)

is a L-bi-Lipschitz map, for some constant L ≥ 1, if for all x, y ∈ X,

(2.5)
1

L
d(x, y) ≤ d′(f(x), f(y)) ≤ Ld(x, y).

It is straightforward to see that under a L-bi-Lipschitz map the d-dimensional

Hausdorff content of a space varies by a multiplicative factor of at most Ld. Therefore,

the Hausdorff dimension is preserved by bi-Lipschitz homeomorphisms.

We will be working in the category of quasisymmetric maps, where metrics can

be distorted in a wilder way. Quasisymmetric maps were first considered in the con-

text of complex analysis, where quasiconformal mappings have been a key tool since

Grötzsch and Ahlfors. A quasiconformal map from Rn to Rn is a homeomorphism

which sends infinitesimal circles to infinitesimal ellipses of uniformly controlled ec-

centricity. This infinitesimal control actually implies global control on such maps:

they are quasisymmetric.

(In the context of general metric spaces the passage from infinitesimal to global

control is not always possible. However, in recent work Heinonen and Koskela prove

this implication is true provided the metric space is Loewner [HK98].)

Quasisymmetric maps are defined using a three point condition which says that,

in effect, balls are sent to ‘quasi-balls’ of uniformly controlled eccentricity.

Definition 2.2.1. A topological embedding f : (X, d) → (X ′, d′) is quasisymmetric

if there exists a homeomorphism η : [0,∞) → [0,∞) such that for every triple of
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points x, y, z ∈ X, x �= z, we have

(2.6)
d′(f(x), f(y))

d′(f(x), f(z))
≤ η

(
d(x, y)

d(x, z)

)
.

If we wish to specify the distortion function used, we say that f is an η-quasisym-

metric embedding.

If f is also surjective then we call f a quasisymmetric homeomorphism and say

(X, d) and (X ′, d′) are quasisymmetrically equivalent, written as (X, d)
qs� (X ′, d′).

Example 2.2.2. If f is a L-bi-Lipschitz embedding, then it is also a quasisymmetric

embedding with distortion function η(t) = L2t.

Example 2.2.3. For any metric space (X, d) and ε ∈ (0, 1], Hölder’s inequality

implies that dε satisfies the triangle inequality and so (X, dε) is also a metric space.

We can further see that dimH(X, dε) = 1
ε
dimH(X, d).

The process of raising the metric by a power smaller than one is called ‘snowflak-

ing’ because in the case of the unit interval, choosing ε = log 3
log 4

gives a metric space

that is bi-Lipschitz to the von Koch snowflake.

We have shown that the Hausdorff dimension of a metric space is not a quasisym-

metric invariant because, using snowflake maps, it is possible to raise the dimension

arbitrarily high by ‘crinkling up’ the space. On the other hand, it is a much more dif-

ficult, and interesting, challenge to ‘straighten out’ a space, i.e., to lower its Hausdorff

dimension.

With this in mind, we can define a natural notion of dimension that is quasisym-

metrically invariant.

Definition 2.2.4. The conformal dimension of a metric space (X, d) is the infimal

Hausdorff dimension among all quasisymmetrically equivalent metric spaces, and is
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denoted by dimC(X, d):

(2.7) dimC(X, d) := inf{dimH(X ′, d′) : (X, d)
qs� (X ′, d′)}.

This definition was introduced by Pansu in his study of the conformal structure

possessed by the boundary at infinity of negatively curved manifolds [Pan89]. We

will discuss its relevance to hyperbolic groups in Section 5.1.

Notice that for a metric space (X, d), by equations (2.4) and (2.7) we have that

(2.8) dimtop(X, d) ≤ dimC(X, d) ≤ dimH(X, d).

We have already stated that the image of a ball under a quasisymmetric homeo-

morphism is a ‘quasi-ball’ of controlled distortion. In the next section we will need a

stronger statement concerning the image of an annulus, which we now prove. Recall

that a proper metric space is one where all closed balls are compact.

Lemma 2.2.5. If f : (X, d) → (X ′, d′) is an η-quasisymmetric homeomorphism

between proper, non-trivial metric spaces, then for all x ∈ X, r > 0 and C ≥ 1, there

exists some R > 0 such that

(2.9) B(f(x), R) ⊂ f(B(x, r)) ⊂ f(B(x, Cr)) ⊂ B(f(x), 2η(C)R).

Proof. First, we assume that B(x, r) � X.

Set x′ = f(x), let y′ be the furthest point from x′ in f(B(x, Cr)) and let z′ be the

closest point to x′ in X ′ \ f(B(x, r)). If we set R = d′(x′, z′), then we have

B(x′, R) ⊂ f(B(x, r)) ⊂ f(B(x, Cr)) ⊂ B

(
x′, 2

d′(x′, y′)
d′(x′, z′)

R

)
.

However, if y = f−1(y′), we know that y lies in B(x, Cr), and so d(x, y) ≤ Cr.

Similarly, if z = f−1(z′) then z lies outside B(x, r), and d(x, z) ≥ r. Thus

d′(x′, y′)
d′(x′, z′)

≤ η

(
d(x, y)

d(x, z)

)
≤ η(C).
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As a corollary to the proof so far, note that if X is bounded then so is X ′. To

see this, suppose diam(X) ≤ ∞. Then there exist u, v ∈ X such that d(u, v) ≥
3
4
diam(X), thus

B(u, 1
2
diam(X)) � X = B(u, 31

2
diam(X)),

and so

X ′ = f
(
B(u, 3

2
diam(X))

) ⊂ B(x′, 2η(3)R)

for some R, in particular, X ′ is bounded.

So, finally, if B(x, r) = X then (2.9) is satisfied for R = 3
2
diam(X ′). (Strictly

speaking, we are using that η(1) ≥ 1; this follows from the definition of a quasisym-

metric map by taking y = z in (2.6).)

As we have seen, a quasisymmetric map f : (X, d) → (X ′, d′) need not be bi-

Lipschitz; however, on good spaces it will be Hölder, i.e., there exist constants C > 0,

and α, β ∈ (0, 1] such that

1

C
d(x, y)α ≤ d(f(x), f(y)) ≤ Cd(x, y)β.

Theorem 2.2.6 (Corollary 11.5 of [Hei01]). Quasisymmetric embeddings of uni-

formly perfect spaces are Hölder continuous on bounded sets.

A metric space X is uniformly perfect if there exists a constant C > 1 such that

for all x ∈ X and 0 < r ≤ diam(X), then B(x, r) \ B(x, r/C) �= ∅. For example,

connected spaces are uniformly perfect.

2.3 Pansu’s lower bound for conformal dimension

Finding a lower bound for conformal dimension that is greater than the topological

dimension is a difficult challenge. A key tool that we will use is a lemma of Pansu that
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gives a nontrivial lower bound in the presence of certain families of curves [Pan89,

Lemma 6.3].

We will use one further notion of dimension in this proof: the packing dimension

of a metric space. This is defined in a way analogous to the definition of Hausdorff

dimension. First, we define the d-dimensional packing premeasure of a set A ⊂ X.

(2.10)

Pd(A) = lim
δ→0

sup
{∑

(ri)
d : {B(xi, ri)} is a packing, xi ∈ A, ri ≤ δ

}
∈ [0,∞].

By a ‘packing’ we mean a pairwise disjoint countable collection of balls.

As before, we have the following inequalities [Cut95, Theorem 3.7(f)]:

d < d′,Pd(A) < ∞ =⇒ Pd′(A) = 0, and

d > d′,Pd(A) > 0 =⇒ Pd′(A) = ∞,

(2.11)

and we define the packing dimension of A ⊂ X as

(2.12) dimP(A) = inf{d : Pd(X) = 0} ∈ [0,∞].

The packing dimension, as defined here, is the same as the upper Minkowski

dimension [Cut95, Theorem 3.7(g)], and so for all A ⊂ X,

(2.13) dimtop(A) ≤ dimH(A) ≤ dimP(A).

The version of Pansu’s lemma that we shall prove is due to Bourdon [Bou95,

Lemma 1.6]. We include it below because of its importance to our work and for the

reader’s convenience; I have not found a proof in the literature written in English.

Lemma 2.3.1. Suppose (X, d) is a uniformly perfect, compact metric space con-

taining a collection of arcs C = {γi|i ∈ I} whose diameters are bounded away from

zero. Suppose further that we have a Borel probability measure µ on C and constants
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A > 0, σ ≥ 0 such that for all balls B(x, r) in X the set {γ ∈ C|γ ∩ B(x, r) �= ∅} is

µ-measurable with measure at most Arσ.

Then the packing dimension τ = dimP(X) satisfies τ − σ ≥ 1, and the conformal

dimension of X is at least 1 + σ
τ−σ

> 1.

Proof. Suppose (X, d) carries a quasisymmetrically equivalent metric d′. We wish to

find a lower bound for the Hausdorff dimension of (X, d′) that depends only on the

data described in the lemma.

Note that X is bounded since it is compact, and since (X, d) is uniformly perfect

Theorem 2.2.6 implies that the metrics d and d′ are Hölder equivalent. We will

consider balls and distances in both the d and d′ metrics; those in the latter will be

distinguished by the use of a prime symbol.

Fix r′ > 0, and let {B′
k : k ∈ K} be a countable cover of X by (d′-)balls, where

each B′
k has radius r′k less than r′. Since X is compact we may assume that the index

set K is finite.

Using the ‘5B’-lemma for ball coverings in metric spaces [Hei01, Theorem 1.2],

we may extract a disjoint collection of balls {B′
j : j ∈ J}, where the collection

{5B′
j : j ∈ J} also covers X ′. (Here, if B = B(x, r) is a ball and C > 0 a constant,

then CB denotes the ball CB = B(x, Cr).)

By applying Lemma 2.2.5 to the identity map and the ball pairs B′ ⊂ 5B′, there

exists a constant C ≥ 1 and balls Bj , for each j ∈ J , with the same center as B′
j and

(d-)radii rj that satisfy

Bj ⊂ B′
j ⊂ 5B′

j ⊂ CBj .

We will use the following characteristic function to detect when a curve γ ∈ C
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meets 5B′
j.

χj(γ) =




1 if γ ∩ 5B′
j �= ∅,

0 otherwise.

Since we know that the curves γ ∈ C have uniformly large d-diameter, and the

metrics d and d′ are Hölder equivalent, each γ ∈ C has d′-diameter greater than some

constant D > 0.

The collection of balls {5B′
j : j ∈ J} covers X, so it also covers each γ ∈ C, and

thus for each γ ∈ C we have

D ≤
∑
j∈J

10r′jχj(γ).

We will average this inequality over (C, µ), and use Hölder’s inequality to show

the following bound:

1

10
D ≤

∫
C

∑
j∈J

r′jχj(γ)dµ(γ)

=
∑
j∈J

r′j

∫
C
χj(γ)dµ(γ)

≤
∑
j∈J

r′jµ{γ ∈ C : γ ∩ CBj �= ∅}

≤ ACσ
∑
j∈J

r′jr
σ
j(2.14)

≤ ACσ

(∑
j∈J

r′j
β

β−1

)β−1
β
(∑

j∈J

rj
σβ

) 1
β

.(2.15)

Now, {Bj : j ∈ J} is a packing of (X, d) by balls of radius less than r. Since

d and d′ are Hölder equivalent, we have that r → 0 as r′ → 0. Consequently, if

σβ > τ = dimP(X, d) then for r′ (and hence r) sufficiently small we have

∑
j∈J

rj
σβ ≤ 1.
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So we obtain ∑
j∈J

r′j
β

β−1 ≥
(

A−1C−σ D

10

) β
β−1

= C̃ > 0,

where C̃ is independent of the choice of cover of (X, d′). Thus H β
β−1 (X, d) ≥ C̃ and

(2.16) dimH(X, d′) ≥ β

β − 1
.

We can take any β > τ
σ
, and so we wish to bound the packing dimension τ

of (X, d). If we apply (2.14) to the case d = d′, r′j = rj, then we get that the

Hausdorff dimension dimH(X, d) satisfies dimH(X, d) ≥ σ + 1, and so by (2.13)

τ = dimP(X, d) ≥ σ + 1.

Finally, taking β ↘ τ
σ

in (2.16) we get that

dimH(X, d′) ≥ 1 +
σ

τ − σ
.

Remark 2.3.2. It is clear that we can apply the lemma when we only assume that X

is proper, rather than compact, but require the collection C to be contained in some

bounded set.

Example 2.3.3. Let (X, d) be an Ahlfors regular compact metric space of Hausdorff

dimension Q, that is to say, there exists some constant C such that for all x ∈ X

and r ≤ diam(X),

1

C
rQ ≤ HQ(B(x, r)) ≤ CrQ.

In this case, X× [0, 1] is a compact, uniformly perfect metric space of Hausdorff, and

packing, dimension 1 + Q. We can take the collection of curves C = {γx : [0, 1] →
X × [0, 1]}x∈X, where γx(t) = (x, t), and the measure on C is HQ.

Lemma 2.3.1 together with (2.8) now demonstrates that

1 + Q = dimH(X × [0, 1]) ≥ dimC(X × [0, 1])

≥ 1 +
Q

(Q + 1) − Q
= 1 + Q,
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and so the conformal dimension of X × [0, 1] equals 1 + Q.

Example 2.1.2, continued. Since the Sierpiński carpet S contains a copy of C ×

[0, 1], where C is the standard 1
3
-Cantor set, the previous example gives the bound

dimC(S) ≥ 1 + log 2
log 3

≈ 1.631.

2.4 Hausdorff distance and convergence

In a metric space (X, d) there are different ways to measure the distance between

two sets. The most obvious is the (infimal) distance between two subsets U, V ⊂ X.

This is defined as

(2.17) d(U, V ) = inf{d(u, v) : u ∈ U, v ∈ V }.

The problem with this definition is that two sets can be close in the infimal

distance but look very different. For example, the x and y axes in the plane have

distance zero, despite being very different sets.

The Hausdorff distance between U and V , dH(U, V ), is another measurement

of when two sets are close that better avoids this problem. First, given a point

u ∈ X, we set d(u, V ) = d({u}, V ), and say that the r-neighborhood of U is the set

N(U, r) = {x : d(x, U) < r}. We can now define

(2.18) dH(U, V ) = inf{r : U ⊂ N(V, r), V ⊂ N(U, r)} ∈ [0,∞].

Example 2.4.1. If we consider Z ⊂ R, then dH(Z, R) = 1
2
.

Example 2.4.2. If we let U and V denote the x and y axes in R2 respectively, then

dH(U, V ) = ∞.

The Hausdorff distance has many useful properties [BBI01, Section 7.3]; here are

some that we will use.
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Theorem 2.4.3. Let M(X) denote the set of all closed subsets of a metric space

X. Then (M(X), dH) is a metric space. Furthermore,

• If X is complete, then (M(X), dH) is complete.

• If X is compact, then (M(X), dH) is compact.

We denote the Hausdorff limit of a sequence of sets Sn by limH Sn. For example,

if Z/n denotes the rescaling of the integers by 1
n
, then limH Z/n = R.

We can further develop the Hausdorff metric into a measurement of distance

between different metric spaces. (See [BBI01, Chapter 7].) We define the Gromov-

Hausdorff distance between metric spaces X and Y by considering all metric spaces

Z containing subsets X ′ and Y ′ isometric to X and Y respectively, and let dGH(X, Y )

be the infimum of the distances dH(X ′, Y ′).

A more intuitive interpretation of this metric is the following: If X and Y are

metric spaces with dGH(X, Y ) ≤ ε, then there exists a function f : X → Y , not

necessarily continuous, so that

• f distorts distances by at most an additive error of 2ε, and

• every point of Y is within 2ε of the image of f .

Conversely, the existence of a map f satisfying these two conditions implies that

dGH(X, Y ) ≤ 4ε. (See [BBI01, Cor. 7.3.28].)

If the spaces Xi satisfy a condition that can be reasonably expressed in terms of

distances of finitely many points, then the limit space X = limGH Xi will satisfy this

condition also.

Example 2.4.4. A metric space is a length space if the distance between two points

equals the infimum of the lengths of paths between the points. For a complete metric
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space X, this is equivalent to the existence of ε-midpoints for every ε > 0. A point

z is an ε-midpoint for x and y if d(x, z) and d(y, z) are both greater than or equal

to 1
2
d(x, y) − ε. Consequently, if Xi are length spaces, and limGH Xi = X, where X

is a complete metric space, then X will be a length space also.

Example 2.4.5. A compact metric space X is connected if and only if for every

pair of points x, y ∈ X and ε > 0 there exists a finite chain of points joining x to y

by jumps of distance less than ε.

Therefore, if Xi are compact, connected metric spaces and X = limGH Xi is a

compact metric space, then X will also be connected.

The following definition provides a convenient way of ensuring that a metric space

is finite dimensional on every scale. It is equivalent to the condition of having finite

Assouad dimension.

Definition 2.4.6. A metric space (X, d) is N-doubling if every closed ball of radius

R can be covered using at most N closed balls of radius R
2
.

Example 2.4.7. The doubling condition is equivalent to the existence of N points

x1, . . . , xN in each closed ball B(R), so that B(R) ⊂ ⋃B(xi,
R
2
).

This formulation makes it easy to prove that if each Xi is N -doubling, for the

same N , and X = limGH Xi is complete, then X will be N -doubling as well.

The importance of the doubling condition is provided by the following precom-

pactness result.

Theorem 2.4.8 (Theorem 7.4.15 of [BBI01]). The class of N-doubling, complete

metric spaces of diameter at most D is precompact: any sequence of such spaces has

a convergent subsequence in the Gromov-Hausdorff metric.
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Sketch of proof. Suppose Xi is a sequence of such spaces. The doubling condition

implies that there exist constants 0 ≤ N1 ≤ N2 ≤ · · · ≤ Nm ≤ · · · , independent of i,

and countable sets Si = {xi
j ∈ Xi : j ∈ N} in each Xi, so that for every i and m, the

1
m

neighborhood of {xi
j : 1 ≤ j ≤ Nm} equals Xi.

Now, for i, j, k ∈ N we have that d(xi
j, x

i
k) lies in [0, D]. By choosing subsequences

using an Arzelà-Ascoli style of argument – we re-label our indices for convenience –

we can ensure that, for each j and k, the limit

(2.19) lim
i→∞

d(xi
j, x

i
k)

exists.

Let S be an abstract countably infinite set S = {yj : j ∈ N}. It is natural to

define a metric on S by setting d(yj, yk) to be the limit given by (2.19). However,

d may be only a pseudometric: two different points in S may be zero distance from

each other. This is easily remedied by considering the quotient space S/(d = 0).

Finally, we set X to be the completion of S/(d = 0).

By construction, X is complete, and for each m the 2
m

neighborhood of the set

Tm = {yj : 1 ≤ j ≤ Nm} covers X, so X is totally bounded and therefore compact.

The fact that X is the Gromov-Hausdorff limit of (our subsequence of) the spaces

Xi follows from the fact that X is well approximated by the finite sets Tm, which are

themselves well approximated by their counterparts in Si ⊂ Xi.

This proof immediately adapts to more complicated situations. For example,

suppose we have a sequence of configurations (Xi, Ai), where each Ai is a closed

subset of a compact, N -doubling metric space Xi of diameter at most D. Using the

same proof, we can choose an appropriate subsequence so that the configurations

(Xi, Ai) Gromov-Hausdorff converge to a configuration (X∞, A∞), where A∞ ⊂ X∞
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is a closed subset.

Gromov-Hausdorff convergence for such a sequence of configurations means that

for any ε > 0 there exists N > 0 and maps fi : Xi → X∞ so that for all i ≥ N , we

have the following properties:

• fi distorts distances by at most ε.

• Every point of X∞ is within ε of fi(Xi).

• dH(fi(Ai), A∞) ≤ ε.

To see how this convergence is achieved, fix m and consider the following sets for

each i:

(2.20) I i
m :=

{
j : d(xi

j , Ai) ≤ 1

m
, 1 ≤ j ≤ Nm

}
.

We can choose a subsequence so that I i
m is the same for every i. Doing this for each m

and then choosing a diagonal subsequence gives the desired convergent subsequence.

We will use the precompactness of configurations of sets in Chapter IV.



CHAPTER III

Existence of quasi-arcs

3.1 Introduction and definitions

It is a standard topological fact that a complete metric space which is locally

connected, connected and locally compact is arc-wise connected. Tukia [Tuk96]

showed that an analogous geometric statement is true: if a complete metric space is

linearly connected and doubling, then it is connected by quasi-arcs, quantitatively.

In fact, he proved a stronger result: any arc in such a space may be approximated

by a local quasi-arc in a uniform way. In this chapter we give a new and more direct

proof of this fact.

Besides its intrinsic interest, this result is useful in studying the quasisymmetric

geometry of metric spaces. For example, Tukia’s result was used in the context of

boundaries of hyperbolic groups by Bonk and Kleiner [BK05b], and it will be a key

tool in our proof of Theorem 4.0.1. Bonk and Kleiner use Assouad’s embedding

theorem to translate Tukia’s result from its original context of subsets of Rn into our

setting of doubling and linearly connected metric spaces.

Before stating the theorem precisely, we recall some definitions. As we saw in

Definition 2.4.6, a metric space (X, d) is called doubling if there exists a constant N

such that every ball can be covered by at most N balls of half the radius. Note that

22
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any complete, doubling metric space is proper: all closed balls are compact.

Definition 3.1.1. We say (X, d) is L-linearly connected for some L ≥ 1 if for all

x, y ∈ X there exists a compact, connected set J � x, y of diameter less than or

equal to Ld(x, y). (This is also known as bounded turning or LLC(1).)

We can actually assume that J is an arc, at the cost of increasing L by an ar-

bitrarily small amount. To see this, note that X is locally connected, and so the

connected components of an open set are open. Thus, for any open neighborhood U

of J , the connected component of U that contains J is an open set. We can replace

J inside U by an arc with the same endpoints, since any open, connected subset

of a locally compact, locally connected metric space is arc-wise connected [Cul68,

Corollary 32.36].

It is straightforward to adapt Example 2.4.5 to show that if Xn are L-linearly

connected compact metric spaces, and X = limH Xn is a compact metric space, then

X is also L-linearly connected. We will need to use this fact in Chapter IV.

For any x and y in an embedded arc A, we denote by A[x, y] the closed, possibly

trivial, subarc of A that lies between them.

Definition 3.1.2. We say that an arc A in a doubling and complete metric space is

an ε-local λ-quasi-arc if diam(A[x, y]) ≤ λd(x, y) for all x, y ∈ A such that d(x, y) ≤ ε.

This terminology is explained by Tukia and Väisälä’s characterization of qua-

sisymmetric images of the unit interval as those metric arcs that are doubling and

bounded turning [TV80].

One non-standard definition will be useful in our exposition.

Definition 3.1.3. We say that an arc B ε-follows an arc A if there exists a coarse

map p : B → A, sending endpoints to endpoints, such that for all x, y ∈ B, B[x, y]
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is in the ε-neighborhood of A[p(x), p(y)]; in particular, p displaces points at most ε.

(We call the map p coarse to emphasize that it is not necessarily continuous.)

The condition that B ε-follows A is stronger than the condition that B is contained

in the ε-neighborhood of A. It says that, coarsely, the arc B can be obtained from

the arc A by cutting out ‘loops.’ (Of course, A contains no actual loops, but it may

have subarcs of large diameter whose endpoints are 2ε-close.)

We can now state the stronger version of Tukia’s theorem precisely, and as an

immediate corollary our initial statement [Tuk96, Theorem 1B, Theorem 1A]:

Theorem 3.1.4 (Tukia). Suppose (X, d) is a L-linearly connected, N-doubling, com-

plete metric space. For every arc A in X and every ε > 0, there is an arc J that

ε-follows A, has the same endpoints as A, and is an αε-local λ-quasi-arc, where

λ = λ(L, N) ≥ 1 and α = α(L, N) > 0.

Corollary 3.1.5 (Tukia). Every pair of points in a L-linearly connected, N-doubling,

complete metric space is connected by a λ-quasi-arc, where λ = λ(L, N) ≥ 1.

Our strategy for proving Theorem 3.1.4 is straightforward: find a method of

straightening an arc on a given scale (Proposition 3.2.1), then apply this result on

a geometrically decreasing sequence of scales to get the desired local quasi-arc as

a limiting object. The statement of this proposition and the resulting proof of the

theorem essentially follow Tukia [Tuk96], but the proof of the proposition is new and

much shorter.

3.2 Finding quasi-arcs as a limit of arcs

Given any arc A and ι > 0, the following proposition allows us to straighten A on

a scale ι inside the ι-neighborhood of A.
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Proposition 3.2.1. Given a complete metric space X that is L-linearly connected

and N-doubling, there exist constants s = s(L, N) > 0 and S = S(L, N) > 0 with

the following property: for each ι > 0 and each arc A ⊂ X, there exists an arc J

that ι-follows A, has the same endpoints as A, and satisfies

(∗) ∀x, y ∈ J, d(x, y) < sι =⇒ diam(J [x, y]) < Sι.

We will apply this proposition on a decreasing sequence of scales to get a local

quasi-arc in the limit. The key step in proving this is given by the following lemma.

Lemma 3.2.2. Suppose (X, d) is a L-linearly connected, N-doubling, complete metric

space, and let s, S, ε and δ be fixed positive constants satisfying δ ≤ min{ s
4+2S

, 1
10
}.

Now, if we have a sequence of arcs J1, J2, . . . , Jn, . . . in X, such that for every n ≥ 1

• Jn+1 εδn-follows Jn, and

• Jn+1 satisfies (∗) with ι = εδn and s, S as fixed above,

then the Hausdorff limit J = limH Jn exists, and is an εδ2-local 4S+3δ
δ2 -quasi-arc.

Moreover, the endpoints of Jn converge to the endpoints of J , and J ε-follows J1.

We will now prove Theorem 3.1.4.

Proof of Theorem 3.1.4. Let s and S be given by Proposition 3.2.1, and set δ =

min{ s
4+2S

, 1
10
}.

Let J1 = A and apply Proposition 3.2.1 to J1 and ι = εδ to get an arc J2 that

εδ-follows J1. Repeat, applying the lemma to Jn and ι = εδn, to get a sequence of

arcs Jn, where each Jn+1 εδn-follows Jn, and satisfies (∗) with ι = εδn.

We can now apply Lemma 3.2.2 to find an αε-local λ-quasi-arc J that ε-follows

A, where α = δ2 and λ = 4S+3δ
δ2 . Every Jn has the same endpoints as A, so J will

also have the same endpoints.
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The proof of Lemma 3.2.2 relies on some fairly straightforward estimates and a

classical characterization of an arc.

Proof of Lemma 3.2.2. For every n ≥ 1, Jn+1 εδn-follows Jn. We denote the associ-

ated coarse map by pn+1 : Jn+1 → Jn.

In the following, we will make frequent use of the inequality
∑∞

n=0 δn < 11
9
.

We begin by showing that the Hausdorff limit J = limH Jn exists. The collection

of all compact subsets of a compact metric space, given the Hausdorff metric, is itself

a compact metric space (Theorem 2.4.3). Since {Jn} is a sequence of compact sets

in a bounded region of a proper metric space, to show that the sequence converges

with respect to the Hausdorff metric, it suffices to show that the sequence is Cauchy.

One bound follows by construction: Jn+m ⊂ N(Jn, 11
9
εδn) for all m ≥ 0. For the

second bound, take Jn+m and split it into subarcs of diameter at most εδn, and write

this as Jn+m = Jn+m[z0, z1]∪ · · · ∪ Jn+m[zk−1, zk] for some z0, . . . , zk and some k > 0.

Our coarse maps compose to give p : Jn+m → Jn, showing that Jn+m
11
9
εδn-follows

Jn. Furthermore, since d(zi, zi+1) ≤ εδn, we have d(p(zi), p(zi+1)) ≤ 4εδn ≤ sεδn−1.

Combining this with the fact that p maps endpoints to endpoints, for n ≥ 2 we have

Jn = Jn[p(z0), p(z1)] ∪ · · · ∪ Jn[p(zk−1), p(zk)] ⊂ N({p(z0), . . . , p(zk)}, Sεδn−1)

⊂ N

(
Jn+m,

11

9
εδn + Sεδn−1

)
.

Taken together, these bounds give dH(Jn, Jn+m) ≤ 11
9
εδn + Sεδn−1, so {Jn} is

Cauchy and the limit J = limH Jn exists. Moreover, J is compact (by definition)

and connected (because each Jn is connected).

Now we let an, bn denote the endpoints of Jn. Since pn(an) = an−1, and pn

displaces points at most εδn, the sequence {an} is Cauchy and hence converges to

some point a ∈ J . Similarly, {bn} converges to a point b ∈ J .



27

There are two cases to consider. If a = b, then d(an, bn) ≤ 211
9
εδn ≤ sεδn−1.

Consequently, diam(Jn) ≤ Sεδn−1, J = limH Jn has diameter zero, and thus J = {a}.
Otherwise, a �= b and so J is non-trivial. We claim that in this case J is a local quasi-

arc.

To show J is an arc with endpoints a and b it suffices to demonstrate that every

point x ∈ J \ {a, b} is a cut point [HY61, Theorems 2-18 and 2-27]. The topology of

Jn induces an order on Jn with least element an and greatest bn. Given x ∈ J , we

define three points hn(x), xn and tn(x) that satisfy an < hn(x) < xn < tn(x) < bn,

where xn is chosen such that d(x, xn) ≤ 11
9
εδn, and hn(x) and tn(x) are the first and

last elements of Jn at distance (S +1)εδn−1 from x. As long as x is not equal to a or

b, for n greater than some n0 these points will exist and this definition will be valid.

We shall denote the 11
9
εδn-neighborhoods of Jn[an, hn(x)] and Jn[tn(x), bn] by

Hn(x) and Tn(x) respectively, and define H(x) = ∪{Hn(x) : n ≥ n0} (the Head)

and T (x) = ∪{Tn(x) : n ≥ n0} (the Tail). By definition, H(x) and T (x) are open.

We claim that, in addition, they are disjoint and cover J \ {x}, and so x is a cut

point.

Fix y ∈ J , and suppose y /∈ H(x) ∪ T (x). We want to show that y = x. To this

end, we assume that n ≥ 3 and bound the diameter of Jn[hn(x), tn(x)] using Jn−1.

Because d(pn(hn(x)), pn(tn(x))) ≤ 2εδn−1+2(S+1)εδn−1 ≤ sεδn−2, we know that the

diameter of Jn−1[pn(hn(x)), pn(tn(x))] must be less than Sεδn−2. Thus the diameter

of Jn[hn(x), tn(x)] is less than Sεδn−2 + 2εδn−1, as Jn εδn−1-follows Jn−1.

For every n ≥ n0, y is 11
9
εδn close to some yn ∈ Jn. Since y /∈ H(x) ∪ T (x), yn
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must lie in Jn[hn(x), tn(x)], so

d(x, y) ≤ d(x, Jn[hn(x), tn(x)]) + diam(Jn[hn(x), tn(x)]) + d(yn, y)

≤ 2
11

9
εδn + (S + 2δ)εδn−2 =

(
2
11

9
δ2 + S + 2δ

)
εδn−2,

therefore d(x, y) = 0 and J \ (H(x) ∪ T (x)) = {x}.

We now show that H(x) and T (x) are disjoint. If not, then Hn(x) ∩ Tm(x) �= ∅

for some n and m. It suffices to assume n ≤ m. Now Tm(x) ⊂ N(Jm[xm, bm], 11
9
εδm)

by definition. We send Jm to Jn using f = pn+1 ◦ · · · ◦ pm : Jm → Jn, to get that

Tm(x) ⊂ N(Jn[f(xm), bn], 3εδn). Since

d(f(xm), xn) ≤ d(f(xm), xm) + d(xm, x) + d(x, xn) < 4εδn < sεδn−1,

we have, even for n = m,

Tm(x) ⊂ N(Jn[xn, bn], 3εδn) ∪ B(xn, (S + 3δ)εδn−1).

Since (S + 3δ)εδn−1 + 11
9
εδn < (S + 1

2
)εδn−1, Hn(x) cannot meet Tm(x) in the ball

B(xn, (S + 3δ)εδn−1). Thus Hn(x) ∩ Tm(x) �= ∅ implies that there exist points p and

q in Jn such that an ≤ p ≤ hn(x) < xn ≤ q ≤ bn and d(p, q) < 3εδn < sεδn−1.

But then we know that Jn[p, q] has diameter less than Sεδn−1, while containing both

hn(x) and xn. This contradicts the definition of hn(x), so H(x) ∩ T (x) = ∅.

We have shown that J is an arc with endpoints a and b; it remains to show that

J is a local quasi-arc with the required constants.

Say we are given x and y in J , with xn and yn as before. Our argument shows

that the segments Jn[xn, yn] converge to some arc J̃ [x, y], because Jn+1[xn+1, yn+1]

(εδn +Sεδn−1)-follows Jn[xn, yn] for all n ≥ 2. This arc J̃ [x, y] must lie in J , therefore

J̃ [x, y] must equal J [x, y]. Now, suppose that d(x, y) ∈ (εδn+1, εδn] holds for some

n ≥ 2. Then d(xn, yn) ≤ 3εδn + εδn < sεδn−1, and so the subarc J [x, y], which lies
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in N(Jn[xn, yn],
11
9
ε(δn + Sδn−1)), has diameter less than Sεδn−1 + 3ε(δn + Sδn−1) ≤

4S+3δ
δ2 d(x, y), as desired.

Furthermore, this same argument gives that, for all n ≥ 2, J 11
9
ε(δn + Sδn−1)-

follows Jn, which itself 11
9
εδ-follows J1 = A. Taking n sufficiently large, we have that

J ε-follows A.

Let us remark that a similar, but simpler, proof gives the following statement:

Proposition 3.2.3. If Xn, for n = 1, 2, . . ., are each ε-local λ-quasi-arcs, and X =

limGH Xn is a compact metric space, then X is an ε′-local λ-quasi-arc, for all ε′ < ε.

Proof. First, by Example 2.4.5 and the remark following Definition 3.1.1, we have

that X is ε′-locally λ-linearly connected as a metric space, for all ε′ < ε.

Second, to show X is an arc, it suffices to show that all points except two are cut

points. This is proven in a similar way as in Lemma 3.2.2.

Let fn : Xn → X be maps distorting distance by at most δn, and with image

that is δn-dense, where limn→∞ δn = 0. Since X is compact, we can (after possibly

choosing subsequences and adjusting δn) assume that the endpoints an and bn of Xn

have images under fn at a distance of at most δn to points a and b in X.

Assume x ∈ X is not equal to a or b. To show that x is a cut point, it suffices

to show that there exists a constant D > 0 so that for all sufficiently small δ, every

δ-chain from a to b passes through B(x, Dδ). Recall that a δ-chain from a to b is

a sequence of finitely many points, beginning with a and ending with b, where the

distance between subsequent points is at most δ.

Now, x is δn close to the image of some xn ∈ Xn. Since Xn is a ε-local λ-quasi-arc,

if η < ε then any η-chain from an to bn will come within a distance of λη from xn.

If we have a δ-chain C in X that joins a to b, then fn lifts this to a (δ + 3δn)-chain
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joining an to bn, therefore this chain must be at most (δ + 3δn)λ from xn, and so C

is within (δ + 3δn)λ + δn of x.

Choosing n large enough so that δn ≤ δ, and taking D = 4λ+1, we are done.

3.3 Discrete paths and straightened arcs

The proof of Proposition 3.2.1 is based on a quantitative version of a simple

geometric result. Before we state this result, recall that a maximal r-separated set

N is a subset of X such that for all distinct x, y ∈ N we have d(x, y) ≥ r, and for

all z ∈ X there exists some x ∈ N with d(z, x) < r.

Now suppose that we are given a maximal r-separated set N in an L-linearly

connected, N -doubling, complete metric space X. Then we can find a collection of

sets {Vx}x∈N so that each Vx is a connected union of finitely many arcs in X, and

for all x, y ∈ N :

(1) d(x, y) ≤ 2r =⇒ y ∈ Vx.

(2) diam(Vx) ≤ 5Lr.

(3) Vx ∩ Vy = ∅ =⇒ d(Vx, Vy) > 0.

For x ∈ N , we can construct each Vx by defining it to be the union of finitely

many arcs joining x to each y ∈ N with d(x, y) ≤ 2r. By linear connectedness,

we can ensure that diam(Vx) ≤ 4Lr. Condition (3) is trivially satisfied for compact

subsets of a metric space, but we will strengthen it to the following:

(3′) Vx ∩ Vy = ∅ =⇒ d(Vx, Vy) > δr.

Lemma 3.3.1. We can construct the sets Vx satisfying (1), (2) and (3 ′) for δ =

δ(L, N).
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Proof. Without loss of generality, we can rescale the metric to set r = 1.

Since X is doubling, the maximum number of 1-separated points in a 20L-ball is

bounded by a constant M = M(20L, N). We can label every point of N with an

integer between 1 and M , such that no two points have the same label if they are

separated by a distance less than 20L.

To find this labeling, consider the collection of all such labelings on subsets of N

under the natural partial order. A Zorn’s Lemma argument gives the existence of a

maximal element: our desired labeling. So N is the disjoint union of 20L-separated

sets N1, . . . ,NM .

Now let N≤n = ∪n
k=1Nk, and consider the following

Claim ∆(n). We can find Vx for all x ∈ N≤n, such that for all x, y ∈ N≤n (1), (2)

and (3 ′) are satisfied with δ = 1
2
(5L)−n.

∆(0) holds trivially, and Lemma 3.3.1 immediately follows from ∆(M), with δ =

δ(L, N) = 1
2
(5L)−M . So we are done, modulo the statement that ∆(n) =⇒ ∆(n+1)

for n < M .

Proof that ∆(n) =⇒ ∆(n + 1), for n < M . By ∆(n), we have sets Vx for all x in

N≤n.

As Nn+1 is 20L-separated we can treat the constructions of Vx for each x ∈ Nn+1

independently. We begin by creating a set V
(0)
x that is the union of finitely many

arcs joining x to its 2-neighbors in N . We can ensure that diam(V
(0)
x ) ≤ 4L.

Now construct V
(i)
x inductively, for 1 ≤ i ≤ n. V

(i−1)
x can be 5L-close to at most

one y ∈ Ni. If d(V
(i−1)
x , Vy) ∈ (0, 1

2
(5L)−i), then define V

(i)
x by adding to V

(i−1)
x an

arc of diameter at most L(5L)−i joining V
(i)
x to Vy. Otherwise, let V

(i)
x = V

(i−1)
x .

Continue until i = n and set Vx = V
(n)
x .
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Note that Vx satisfies (1) and (2) by construction. The only non-trivial case

we need to check for (3′) is whether d(Vx, Vy) ∈ (0, 1
2
(5L)−n) for some y ∈ Ni,

i < n. (The i = n case follows from the last step of the construction.) Then, since

Vx = V
(n)
x ⊃ V

(i)
x , V

(i)
x ∩ Vy �= ∅, and d(V

(i)
x , Vy) ≥ 1

2
(5L)−i. The construction then

implies that

d(Vx, Vy) ≥ 1

2
(5L)−i(1 − (2L)(5L)−1 − (2L)(5L)−2 − · · · − (2L)(5L)−(n−i))

>
1

2
(5L)−n(5L)

(
1 − 2/5

1 − (1/(5L))

)
≥ 5

2

(
1

2
(5L)−n

)
,

contradicting our assumption, so ∆(n + 1) holds.

We now finish by using this construction to prove our proposition.

Proof of Proposition 3.2.1. By rescaling the metric, we may assume that ι = 20L. If

the endpoints a and b of A satisfy d(a, b) ≤ 20 = ι
L
, then join a to b by an arc of

diameter less than ι. This arc will, trivially, satisfy our conclusion for any S ≥ 1.

Otherwise, d(a, b) > 20. In the hypotheses for Lemma 3.3.1, let r = 1 and let N be

a maximal 1-separated set in X that contains both a and b. Now apply Lemma 3.3.1

to get {Vx}x∈N satisfying (1), (2) and (3′) for δ = δ(L, N) > 0.

We want to ‘discretize’ A by finding a corresponding sequence of points in N .

Now, every open ball in X meets the arc A in a collection of disjoint, relatively

open intervals. Since N is a maximal 1-separated set, the collection of open balls

{B(x, 1) : x ∈ N} covers X; in particular, it covers A. By the compactness of A,

we can find a finite cover of A by connected, relatively open intervals, each lying in

some B(x, 1), x ∈ N .

Using this finite cover, we can find points xi ∈ N and yi ∈ A for 0 ≤ i ≤ n,

such that a = y0 < · · · < yn = b in the order on A, and A[yi, yi+1] ⊂ B(xi, 1) for
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each 0 ≤ i < n. Since a, b ∈ N , we have that x0 = a and xn = b. The sequence

(x0, . . . , xn) is a discrete path in N that corresponds naturally to A.

We now find a subsequence (xrj
) of (xi) such that the corresponding sequence of

sets (Vxrj
) forms a ‘path’ without repeats. Let r0 = 0, and for j ∈ N+ define rj

inductively as rj = max{k : Vxk
∩ Vxrj−1

�= ∅}, until rm = n for some m ≤ n. The

integer rj is well defined since d(y(rj−1+1), xk) ≤ 1 for k = rj−1 and k = rj−1 + 1,

so Vx(rj−1+1)
∩ Vxrj−1

�= ∅. Note that if i + 2 ≤ j then Vxri
∩ Vxrj

= ∅, and thus

d(Vxri
, Vxrj

) > δ.

Let us construct our arc J in segments. First, let z0 = xr0 . Second, for each i

from 0 to m − 1, let Ji = Ji[zi, zi+1] be an arc in Vxri
that joins zi ∈ Vxri

to some

zi+1 ∈ Vxri+1
, where zi+1 is the first point of Ji to meet Vxri+1

. (In the case i = m−1,

join zm−1 to xrm = zm.) Set J = J0 ∪ · · · ∪ Jm.

This path J is an arc since each Ji ⊂ Vxri
is an arc, and if there exists a point

p ∈ Ji ∩ Jj for some i < j, then j = i + 1 and p = zi+1 = zj . This is true

because Vxri
∩ Vxrj

�= ∅ implies that j = i + 1, and the definition of zi+1 implies

that Ji ∩ Vxri+1
= {zi+1}. Any finite sequence of arcs that meet only at consecutive

endpoints is also an arc, so we have that J is an arc.

In fact, J satisfies (∗). For any y, y′ ∈ J , y < y′, we can find i ≤ j such that

zi ≤ y < zi+1, zj ≤ y′ < zj+1. (If y = zm, set i = m; likewise for y′.) If d(y, y′) ≤ δ

then, because y ∈ Vxri
and y′ ∈ Vxrj

, we have d(Vxri
, Vxrj

) ≤ δ, so either j = i or

j = i + 1. This gives that J [y, y′] ⊂ Vxri
∪ Vxrj

, and so diam(J [y, y′]) is bounded

above by 10L.

Furthermore, J ι-follows A. There is a coarse map f : J → A defined by the

following composition: first map J to N by sending y ∈ J [zi, zi+1) ⊂ J to xri
∈ N ,

and sending xrm to itself. Second, map each xri
to the corresponding yri

in A. Taking
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arbitrary y < y′ in J as before, we see that

J [y, y′] ⊂ J [zi, zj+1] ⊂ N({xri
, . . . , xrj

}, 5L) ⊂ N({yri
, . . . , yrj

}, 5L + 1)

⊂ N(A[yri
, yrj

], 5L + 1) ⊂ N(A[f(y), f(y′)], ι).

We let s = 1
20L

δ and S = 1
20L

10L, and have proven the Proposition.

3.4 Quantitative estimates

Unlike Tukia’s original proof, our proof of Theorem 3.1.4 allows us to give explicit

estimates for the constants α and λ. (Recall that we found an αε-local λ-quasi-arc

in the ε neighborhood of any arc A.) These estimates are certainly not optimal, but

since they may be of interest we collect them in this section.

First, if X is N -doubling, then the maximum number of r-separated points in a

ball B of radius R is at most N . For such a maximal set of points S, the collection

of balls of radius R
2

centered at S forms a cover of B. Iterating this argument allows

us to estimate that the maximum number of R
2n separated points in a R ball is less

than N1+n.

We use this to see that the constant M(20L, N), which describes the maximum

number of 1-separated points in a 20L ball, may be taken to equal

M(20L, N) = N1+�log(20L)/ log(2)�.

Therefore, in Lemma 3.3.1 we take

δ(L, N) =
1

2
(5L)−M =

1

2
(5L)−N1+�log(20L)/ log(2)�

.

Finally, since S = 1
2

and s = δ
20L

, we have that

α = δ2 and λ =
2 + 3δ

δ2
.



CHAPTER IV

Conformal dimension bounds

In this chapter we shall prove the following lower bound on conformal dimension:

Theorem 4.0.1. Suppose (X, d) is a complete metric space which is doubling and

annulus linearly connected. Then the conformal dimension dimC(X) is at least C > 1,

where C depends only on the data of X, i.e., the constants associated to the two

conditions above.

The annulus linearly connected condition is a quantitative analogue of the topo-

logical conditions of being locally connected and having no local cut points; see

Definition 4.1.2 and the subsequent discussion. For now, a good example of such a

space is the standard square Sierpiński carpet.

It is easy to find a family of curves in the Sierpiński carpet that allow us to apply

Pansu’s lemma on conformal dimension, as we saw in Example 2.1.2. We will use

the lemma to prove Theorem 4.0.1, but to do so we have to construct a family of

arcs in X akin to the product of an interval and a regular Cantor set (of controlled

dimension).

To see how this may be done, let us consider a topological analogue. Let X be

a connected, locally connected, complete metric space. It is well known that such a

space is arc-wise connected. If we now further assume that X has no local cut points

35
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then a topological argument shows that the product of a Cantor set and the unit

interval embeds homeomorphically into X. A weaker statement is that there exists a

collection of arcs {Jσ} in X such that, under the topology induced by the Hausdorff

metric, the set {Jσ} is a topological Cantor set.

We will show a quantitatively controlled analogue of this weaker statement. First,

recall that (M(X), dH) is the set of all closed subsets of X endowed with the Haus-

dorff metric, and it is complete (Theorem 2.4.3). For each σ > 0, Zσ denotes a

standard Ahlfors regular Cantor set of Hausdorff dimension σ. (Details are given in

Section 4.1.)

Theorem 4.0.2. For all L ≥ 1 and N ≥ 1, there exist C ′ ≥ 1, σ > 0 and λ′ ≥ 1 such

that if X is an L-annulus linearly connected, N-doubling, complete metric space of

diameter at least one, then there exists a C ′-bi-Lipschitz embedding of Zσ into M(X),

where each point in the image is a λ′-quasi-arc of diameter at least 1
C′ .

So, how do we create such a good collection of arcs? First, use the topological

properties of the space to split one arc into two arcs and apply Tukia’s theorem

(Theorem 3.1.4) to straighten these arcs into uniformly local quasi-arcs. Second,

repeat this procedure in a controlled way by using the compactness properties of the

quasi-arcs and spaces. This process gives four arcs, then eight, and so on, limiting to

a collection of arcs indexed by a Cantor set. We describe this in detail in Section 4.1.

Once we have proven Theorem 4.0.2 it is straightforward to prove Theorem 4.0.1

using Pansu’s lemma. We do so in Section 4.2.

For more discussion on conformal dimension we refer the reader to the Bonk and

Kleiner paper [BK05a]. Incidentally, they work with the Ahlfors regular conformal

dimension, where the Hausdorff dimension is infimized over all quasisymmetrically

equivalent metric spaces that are Ahlfors regular. However, this dimension is bounded
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below by the conformal dimension so our lower bounds apply to the Ahlfors regular

conformal dimension as well.

4.1 Unzipping arcs

Consider a complete locally connected metric space with no local cut points, i.e.,

no connected open set is disconnected by removing a point. In such a space it is

straightforward to ‘unzip’ a given arc A into two disjoint arcs J1 and J2 lying in a

specified neighborhood of A. Repeating this procedure to get four arcs, then eight,

and so on, it is possible, with some care, to get a limiting set homeomorphic to the

product of a Cantor set and the interval. Such a limit set is useless for our purposes

because there is no control on the minimum distance between two unzipped arcs,

and so no way to get a lower bound on conformal dimension that is greater than one.

We will use compactness type arguments to overcome this problem.

We begin by proving the topological unzipping result.

Lemma 4.1.1. Given an arc A in a complete, locally connected metric space with

no local cut points, and ε > 0, it is possible to find two disjoint arcs J1 and J2 in

N(A, ε) such that the endpoints of Ji are ε-close to the endpoints of A. Furthermore,

the arcs Ji ε-follow the arc A.

Proof. Here, B0(x, r) will denote the connected component of an open ball B(x, r) ⊂

X that contains its center x. As X is locally connected, B0(x, r) is always open and

connected, and, moreover, B0(x, r) \ {x} is also open and connected because x is not

a local cut point. Any open and connected subset of X is arcwise connected.

Let a and b be the initial and final points of A respectively (in a fixed order

given by the topology). We are going to define J1 and J2 inductively. There exists

w ∈ B0(a, 1
2
ε) \ A, otherwise there would be a open set in X homeomorphic to an
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Figure 4.1: Unzipping an arc

arc segment, violating the no local cut point condition. Now join w to a by an arc

in B0(a, 1
2
ε). Stop this arc at x, the first time it meets A, and call it J1 = J1[w, x].

Set J2 = A[a, x]. (Perhaps x = a, but this is not a problem).

Now we have two head segments for J1 and J2 meeting only at x ∈ A, and we want

to ‘unzip’ this configuration further along A. This is possible since in B0(x, ε) there

is a tripod type configuration with two incoming arcs J1 and J2 and one outgoing

arc A. As noted above, B0(x, ε) \ {x} is arcwise connected, and so we can find an

arc in this set that joins some point in J1 (not x) to a point in A (not x). The arc

may meet J1, J2 and A in many places but there must be some sub-arc A′ joining

some point in J1 or J2 to some point y in A with interior disjoint from them all. (See

Figure 4.1, where A′ is emphasized.) Use A′ to detour one of J1 and J2 around x to

the new unzipping point y, and extend the other Ji to y using A[x, y].

What if this unzipping process approaches a limit before we are ε-close to the final

point b in A? This cannot happen. Suppose it is not possible to unzip past z ∈ A.
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Figure 4.2: Avoiding a limit point

Since B0(z,
ε
4
) \ {z} is arcwise connected, inside this set we can construct an arc A′′

that detours around z, from z1 ∈ A to z2 ∈ A, where z1 < z < z2 in the order on A.

Now by the limit point hypothesis, we can unzip J1 and J2 past z1 to x, where

z1 < x < z. To continue the construction of J1 and J2 past z, find the arc given by

following z2 to z1 along A′′, stopping if one of J1 or J2 is met. If we reach z1 without

intersecting J1 or J2, as is the case in Figure 4.2, then continue to follow A from

z1 towards z. By the construction of J1 and J2, this arc will meet J1 or J2 before

reaching z. In either case, this arc can be used as a legitimate detour around x and

z, contradicting the assumption on z. Thus it is possible to continue unzipping until

x ∈ B(b, ε
2
).

Label each point of J1 and J2 by the point x ∈ A they were used to detour round.

Call the resulting labeling a map fi : Ji → A and this will coarsely preserve order as

desired.

We would like to give a lower bound for the distance between the two split arcs.
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To do this we need a quantitative metric version of the no local cut points condition

as having no local cut points is not preserved under Gromov-Hausdorff convergence.

(Neither is the standard LLC(2) condition.)

Definition 4.1.2. We say a metric space X is (L-)annulus linearly connected for

some L ≥ 1 if it is L-linearly connected and, in addition, given r > 0 and three

distinct points p, x and y in X such that x and y lie in the annulus A(p, r, 2r), then

there is an arc J joining x to y that lies in the annulus A(p, r
L
, 2Lr).

There are many possible equivalent formulations of this condition. Its key features

are that if Xi are L-annulus linearly connected and Xi → X∞ in the Gromov-

Hausdorff topology then X∞ is also L-annulus linearly connected. Furthermore,

annulus linearly connected implies no local cut points.

We do need a stronger condition than no local cut points as a hypothesis for

Theorem 4.0.1: it is straightforward to modify the Sierpiński carpet construction to

get a doubling, linearly connected, complete metric space with no local cut points

whose Hausdorff dimension is one, therefore by (2.8) the conformal dimension is also

one.

Now for the remainder of this section we will assume that L and N are fixed

constants, and λ ≥ 1, α ∈ (0, 1] are as given by Theorem 3.1.4. Consider the

collection C of all λ-quasi-arcs A in any complete metric space X that is L-annulus

linearly connected and N -doubling, and whose endpoints a and b satisfy d(a, b) ∈

[ 1
R
, R] for some R ≥ 1. Fix ε > 0, and consider the supremum of possible separations

of two arcs split from A by the topological lemma above. Call this δA (δA > 0).

Lemma 4.1.3. There exists δ� = δ�(λ, L, N, ε, R) > 0 such that for all A ∈ C,

δA > δ�.
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Proof. If not, then we can find a sequence of arcs Ai ⊂ Xi such that δAi
< 1

i
. Let ai

and bi denote the endpoints of Ai. We are only interested in what happens inside the

ball Bi := B(ai, 2R(2L + ε)). As the sequence of configurations (Bi ⊂ Xi, Ai, ai, bi)

is precompact in the Gromov-Hausdorff topology, we can take a subsequence so that

Bi → B∞, and (inside B∞) Ai → A∞; this will also be a λ-quasi-arc. This means

that there exist constants Ci → 0 and maps fi : B∞ → Bi such that fi distorts

distances by an additive error of at most Ci, and every point of Bi is within Ci of

fi(B∞). Furthermore, fi(A∞) ⊂ Ai, fi(a∞) = ai and fi(b∞) = bi.

Since B∞ will be L-annulus linearly connected (away from the edge of the ball),

it will have no local cut points in its interior. Consequently, we can split A∞ into

two arcs J1 and J2 using Lemma 4.1.1 inside an ε
3
-neighborhood of A∞. These arcs

are disjoint so they are separated by some distance 0 < δ′ ≤ ε
3
. The remainder of the

proof consists of showing that this contradicts the assumption on Ai ⊂ Bi for some

large i.

For sufficiently large i, Ci ≤ δ′
8L

because Ci → 0 as i → ∞. For j = 1, 2, the

arc Jj in B∞ contains a discrete path Dj with Ci sized jumps that corresponds to

a discrete path D′
j = fi(Dj) in Xi with 2Ci ≤ δ′

4L
jumps. The L-linearly connected

condition can then be used to join each D′
j up into a continuous arc J ′

j.

To be precise, if D′
j = {p1, . . . , pM}, join p1 to p2 by an arc J ′

j of diameter at most

2CiL ≤ δ′
4
. Assume that at a stage k we have an arc J ′

j from p1 to pk. There is an arc

I of diameter at most δ′
4

joining pk+1 to pk. We extend J ′
j to pk+1 by following I from

pk+1 to pk, stopping at x, the first time it meets J ′
j, and gluing together J ′

j [p1, x] and

I[x, pk+1] to make a new arc J ′
j , and repeat until k = M . Define a map hj : J ′

j → D′
j

that sends each of the points added at stage k to the point pk. Note that for all

x, y ∈ J ′
j, J ′

j[x, y] ⊂ N(D′
j [hj(x), hj(y)], δ′

4
); in a coarse sense, J ′

j
δ′
4
-follows D′

j.
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By construction, for sufficiently large i, J ′
1 and J ′

2 are δ′
4
-separated and ε-close to

Ai, but to get a contradiction we need that they ε-follow Ai.

Since A∞ and Ai are both λ-quasi-arcs, Fact 4.1.4 below implies that for all

x, y ∈ A∞, fi(A∞[x, y]) is contained in the ((2Ciλ + Ci)λ + Ci)-neighborhood of

Ai[fi(x), fi(y)]. For each j, we can lift the map hj : J ′
j → D′

j to a map h′
j : J ′

j →

Dj ⊂ B∞. By Lemma 4.1.1, Dj
ε
3
-follows A∞, so further compose with the associated

map Dj → A∞. Finally, compose with fi : A∞ → Ai.

The composed maps J ′
j → Dj → A∞ → Ai, for each j, show that each J ′

j

follows Ai with constant
(

δ′
4

+ ε
3

+ Ci + (2Ciλ + Ci)λ + Ci

)
. This is smaller than ε

for sufficiently large i because Ci → 0 as i → ∞. We have contradicted our initial

assumption, so the proof is complete.

We used the following fact in the proof:

Fact 4.1.4. If A and A′ are λ-quasi-arcs, and f : A → A′ is a map distorting

distances by at most C, then for all x and y in A,

(4.1) f(A[x, y]) ⊂ N(A′[f(x), f(y)], (2Cλ + C)λ + C).

Proof. Let x = p0 < p1 < · · · < pn = y be a chain of points in A so that the diameter

of A[pi−1, pi] is less than C, for i = 1, . . . , n.

Let x′ = f(x), y′ = f(y), and p′i = f(pi). For some l and some m we have

p′l−1 ≤ x′ < p′l and p′m < y′ ≤ p′m+1. Assume l is the greatest such and m is the least

such number. Since d(p′i, p
′
i+1) ≤ 2C, we have d(p′l, x

′) and d(p′m, y′) are both less

than or equal to 2Cλ.

This lifts, by f , to give that d(pl, x) and d(pm, y) are both less than or equal to

2Cλ + C, and so

(4.2) diam(A[x, pl]) ≤ (2Cλ + C)λ and diam(A[pm, y]) ≤ (2Cλ + C)λ.
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Therefore,

f(A[x, y]) = f(A[x, pl] ∪ A[pl, pm] ∪ A[pm, y])

⊂ N({x′, y′}, (2Cλ + C)λ + C) ∪ N(A′[x′, y′], 2Cλ)

⊂ N(A′[f(x), f(y)], (2Cλ + C)λ + C).

The important point to note in Lemma 4.1.3 was the presence of the diameter

constraint R allowing us to use a compactness type technique. Without this con-

straint we have various problems: our sequence of counterexamples still converges

in some sense, but would likely give an unbounded arc. Topological unzipping still

works but the resulting arcs would not necessarily have a positive lower bound on

separation.

We can deal with the problem of no diameter bounds by dividing the problem

into two collections of non-interacting smaller problems. To be precise, given a λ-

quasi-arc A, or even just a local λ-quasi-arc, we can use Lemma 4.1.3 on uniformly

spaced out small subarcs of A (that are genuine λ-quasi-arcs) with a sufficiently small

ε value – this is the first collection of problems.

Now the second collection of independent problems is how to join together two of

these small splittings with two disjoint arcs having uniform bound on their separation

– but this a problem with bounded diameter! So compactness arguments allow us

to fix this and to remove the dependence of δ� on R in Lemma 4.1.3.

Lemma 4.1.5. Given 0 < ε ≤ diam(X) and an αε-local λ-quasi-arc A in X, where

α ∈ (0, 1] is a constant, there exists δ� = δ�(λ, L, N, α) > 0 such that for all δ < δ�

we can split A into two arcs that ε-follow A and that are δε separated.

Proof. Without loss of generality we can rescale to ε = 1. As before, choose a linear

order on A compatible with its topology. Let x0 be the first point in A, and y0 be the
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first point at distance D1 = α
5λ

from x0. (If there is no such point, diam(A) ≤ 1
5

= ε
5

and so we can split A into two points that are ε
2

separated.) Label the next point at

distance D1 from y0 by x1. Continue in this manner with all jumps D1 until the last

label yn, with d(xn, yn) ∈ [D1, 3D1).

Let D2 = 1
4
D1 = α

20λ
, and D3 = 1

2λ(Lλ+2)
D2. We can control the interactions of

the collection of sub-arcs of types A[xi, yi] and A[yi, xi+1]: the D3 neighborhoods of

two different such sub-arcs are disjoint outside the collection of balls {B(xi, D2)} ∪

{B(yi, D2)}. This is because otherwise there are points z and z′ in two different

sub-arcs that satisfy d(z, z′) ≤ 2D3 < α; so the diameter of A[z, z′] is less than

2λD3 < 1
2
D2 – but A[z, z′] has to pass through the center of a D2-ball that does not

contain z or z′, contradiction.

Now A[xi, yi] is a λ-quasi-arc and we use Lemma 4.1.3 to create Ji and J ′
i in a 1

2
D3

neighborhood of A[xi, yi] that are 1
2
δ0 separated for some δ0 = δ0(λ, L, N, D3) > 0.

By applying Theorem 3.1.4 to straighten the arcs we may assume that they are

λ′-quasi-arcs in a D3 neighborhood of A[xi, yi] that are 1
4
δ0 separated, where λ′ =

λ′(L, N, δ0, D3).

We want to join up the pair of arcs Ji and J ′
i ending in B(yi, D3) to the arcs Ji+1

and J ′
i+1 starting in B(xi+1, D3), without altering the setup outside the set Join(i) =

B(yi, D2) ∪ N(A[yi, xi+1], D3) ∪ B(xi+1, D2). Figure 4.3 shows this configuration.

We will do this joining in two stages; first a topological joining that keeps the arcs

disjoint, and second a quantitative version that controls the separation of the arcs in

the joining.

Topological joining: Join the endpoints of Ji and J ′
i to the arc A in the ball

B(yi, LD3) and the endpoints of Ji+1 and J ′
i+1 to A in the ball B(xi+1, LD3). Use

the topological unzipping argument of Lemma 4.1.1 to unzip A along this segment
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Figure 4.3: Joining unzipped arcs

resulting in ‘wiring’ the pair (Ji, J
′
i) to the pair (Ji+1, J

′
i+1) (not necessarily in that

order) inside Join(i). These arcs are disjoint, and so separated by some distance

δ > 0.

Quantitative bound on δ: If there is no quantitative lower bound on δ then there

are configurations (relabeling for convenience our joining arcs)

Cn = (Xn, An, Jn
1 , J ′n

1 , Jn
2 , J ′n

2 ),

where the best joining of the pair Jn
1 and J ′n

1 to the pair Jn
2 , J ′n

2 is at most 1
n

separated.

But this configuration is precompact in the Gromov-Hausdorff topology as the

Xn are all N -doubling, and the An and Jn arcs are uniform quasi-arcs. (This is

the importance of Tukia’s theorem.) So we can take a subsequence converging to a

configuration C∞ = (X∞, A∞, J∞
1 , J ′∞

1 , J∞
2 , J ′∞

2 ) in a suitable ball, and join the arcs

using the topological method above, giving some valid rewiring with some positive
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separation δ∞ > 0. Following the proof of Lemma 4.1.3 we can lift this to Cn for

sufficiently large n retaining a separation of 1
2
δ∞ > 0: contradiction for large n.

Now since we have some δ� > 0 to use when joining together our wirings in the

disjoint collection of all Join(i), we can apply this procedure for all i to create two

arcs along A that are δ�-separated, for δ� depending only on λ, L, N , and α as

desired. We assumed ε = 1, but rescaling to any ε gives the same conclusion with

our resulting arcs δ�ε separated.

Now we will use this lemma to create a ‘Cantor set’ of arcs. Recall that the space

Z = {0, 1}N can be given the metric

dσ((a1, a2, . . .), (b1, b2, . . .)) = exp(−(log(2)/σ) inf{n|an �= bn}),

where σ > 0 is a constant, and the infimum of the empty set is positive infinity. The

space (Z, dσ) has Hausdorff dimension σ, and is Ahlfors regular since there is a Borel

probability measure νσ on Z that satisfies rσ ≤ νσ(B(z, r)) ≤ 2rσ, for all z ∈ Z and

r < diam(Z).

4.2 Collections of arcs and conformal dimension bounds

We now have the tools to prove Theorem 4.0.2.

Proof of Theorem 4.0.2. Begin with any arc J ′, assume it has endpoints 1 unit apart

and apply Theorem 3.1.4 to J ′ and ε = 1
10

to get J∅, a λ-quasi-arc on scales below

α
10

. Let our scaling factor be β = αδ�

32λ
≤ 1

32
.

We can assume that for a given n we have a collection of λ-quasi-arcs on scales

below βn, written as {Ja1a2...an |ai ∈ {0, 1}, 1 ≤ i ≤ n}, and that these arcs are βn

separated.
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Now for each Ja1a2...an we split it into two arcs using Lemma 4.1.5 applied to

ε = 1
8
βn, then straighten each arc using Theorem 3.1.4 with ε = δ�

32
βn to get two

new arcs Ja1a2...an0 and Ja1a2...an1 that are λ-quasi-arcs on scales below αδ�

32
βn ≥ βn+1,

and are δ�

16
βn ≥ βn+1 separated. In fact, all the arcs created at this stage are βn+1

separated as the new arcs arising from different arcs in the previous generation can

only get 2
(

1
8
βn + δ�

32
βn
)

< 1
2
βn closer, still at least βn+1 separated.

At this point it is useful to record the following simple

Fact 4.2.1. If J is a λ-quasi-arc on scales below ε, and we have an arc J ′ ⊂ N(J, ε
4
),

whose endpoints are ε
4

close to those of J , then we must have J ⊂ N(J ′, λε). In

particular, dH(J, J ′) ≤ λε.

Proof. To see this, fix an order on J ′ compatible with its topology. Take p0 < p1 <

· · · < pN in J ′ such that p0 and pN are the endpoints of J ′, and for i = 0, . . . , N − 1,

diam(J ′[pi, pi+1]) ≤ ε
12

. Associate a point qi ∈ J to each pi so that d(pi, qi) ≤ ε
4
, and

J = J [q0, qN ]. By construction,

d(qi, qi+1) ≤ d(qi, pi) + d(pi, pi+1) + d(pi+1, qi+1) ≤ 7

12
ε.

Therefore, diam(J [qi, qi+1]) ≤ 7
12

ελ, and we have

J = J [q0, q1] ∪ · · · ∪ J [qN−1, qN ]

⊂ N({q0, . . . , qN}, 7
12

ελ)

⊂ N({p0, . . . , pN}, 10
12

ελ)

⊂ N(J, ελ).

Given a sequence a = (a1, a2, . . .) ∈ {0, 1}N the sequence of arcs J∅, Ja1 , Ja1a2 , . . . is

Cauchy in the Hausdorff metric (using Fact 4.2.1), and hence convergent to Ja1a2... =

Ja, a set of diameter at least 1
2
. A priori, this set need not be an arc, but only
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compact and connected: this is actually enough to prove Pansu’s lemma. On the

other hand, for each n we know that Ja1a2...an is a βn-local λ-quasi-arc that βn-follows

Ja1a2...an−1 , and we know that β < 1
10λ

. Using these facts, Lemma 3.2.2 gives us that

Ja1a2... is a λ′-quasi-arc, with λ′ = λ′(β, L, N) = λ′(L, N), that βn-follows Ja1a2...an

for each n.

(Finding quasi-arcs in the limit is not unexpected since on each scale the limit set

will look like the quasi-arc approximation on the same scale.)

If we set M(X) to be the set of all closed sets in X, we can define a map F :

Z → M(X) by F (a) = Ja. Let J = F (Z) be the image of this map and choose the

metric dσ for Z, σ = − log(2)
log(β)

> 0. It remains to show that F : (Z, dσ) → (M(X), dH)

is a bi-Lipschitz embedding.

Take a = (a1, a2, . . .), b = (b1, b2, . . .) ∈ Z. Then dσ(a, b) ∈ (βn+1, βn] if and only

if ai = bi for 1 ≤ i < n and an �= bn. By construction, and a geometric series,

Ja ⊂ N(Ja1...an , 1
4
βn), and so as n stage arcs are βn separated we get that

(4.3) dH(Ja, Jb) ≥ d(Ja, Jb) ≥ 1

2
βn ≥ 1

2
dσ(a, b).

Conversely, applying the triangle inequality and Fact 4.2.1 we get that

(4.4) dH(Ja, Jb) ≤ dH(Ja, Ja1...an−1) + dH(Jb1...bn−1 , Jb) ≤ 2λβn−1 ≤ 2λ

β2
dσ(a, b),

so F is bi-Lipschitz, quantitatively.

As a final remark, note that there is a natural measure µσ = F∗(νσ) on J . The

estimates (4.3) and (4.4) imply that for any ball B(x, r) ⊂ X the set {Ja ∈ J |Ja ∩
B(x, r) �= ∅} is measurable (in fact open), and if two arcs Ja and Jb both meet this

ball we have that 2r ≥ d(Ja, Jb) ≥ 1
2
dσ(a, b), and so

µσ{Ja ∈ J |Ja ∩ B(x, r) �= ∅} ≤ 4σrσ.
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Proof of Theorem 4.0.1. The construction of Theorem 4.0.2 gives a lower bound for

conformal dimension by virtue of Lemma 2.3.1.

Two remarks are required. First, in Theorem 4.0.1, X may be non-compact, but

we know that it is complete and doubling, therefore it is proper and, as noted in

Remark 2.3.2, Lemma 2.3.1 applies, provided all arcs γ ∈ C lie in some fixed ball in

X. Second, the packing dimension of X is finite and bounded above by a constant

derived from the doubling constant N .

Therefore, following Theorem 4.0.2, we can apply Lemma 2.3.1 with C = J ,

µ = µσ and A = 4σ, where σ depends only on L and N , to find a lower bound for

the conformal dimension of C = C(L, N) > 1.



CHAPTER V

One dimensional boundaries of hyperbolic groups

The original motivation for proving Theorem 4.0.1 was in the context of bound-

aries of hyperbolic groups. In this chapter we apply Theorem 4.0.1 to this case in

order to answer a question of Bonk and Kleiner.

5.1 Hyperbolic groups and their boundaries

Given a finitely generated group G and a choice of finite symmetric generating

set S ⊂ G (i.e., s ∈ S implies s−1 ∈ S), then we can define a word norm for g ∈ G

by

‖g‖S = inf{n : g = s1s2 · · · sn, si ∈ S},

and word metric

dS(g, h) = ‖h−1g‖.

Another way to view this word metric is as the path metric on the Cayley graph

Γ(G, S). Recall that Γ(G, S) is the graph with vertex set G and one edge (of length

one) between pairs of vertices g and gs, for all g ∈ G and s ∈ S. The action of G on

itself by left multiplication induces an (isometric) action on Γ(G, S).

The standard observation in geometric group theory is that different choices of fi-

nite generating set give quasi-isometric Cayley graphs. Therefore, quasi-isometrically

50
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invariant properties of a metric space, applied to a Cayley graph, will be well defined

for the underlying group.

An exceptionally useful property of a metric space was introduced by Gromov in

his study of negatively curved groups and spaces. A geodesic metric space is called

(Gromov) hyperbolic if every geodesic triangle is δ-thin for some δ > 0: every point

on each edge of the triangle is within a distance of δ of one of the other two sides.

The name ‘hyperbolic’ comes from the fact that, as an a easy consequence of the

Gauss-Bonnet theorem, Hn is δ-hyperbolic for δ = log(1 +
√

2).

The property of being hyperbolic is a quasi-isometric invariant of a metric space,

and so we can call a group hyperbolic if one (and hence every) Cayley graph of the

group is hyperbolic. Hyperbolic groups are precisely those groups that satisfy a sub-

quadratic isoperimetric inequality, and have many good properties, such as having

solvable word problem [Gro87].

The fundamental group of a compact hyperbolic manifold Mn with totally geo-

desic boundary is a hyperbolic group. As is well known, the universal cover of M is

a convex subset of Hn, quasi-isometric to π1(M), and we can find the limit set in the

sphere at infinity ∂∞π1(M) = ∂∞M ⊂ Sn−1. We can do a similar construction for

any hyperbolic group G and define its boundary at infinity ∂∞G. The quasi-isometric

ambiguity in the metric on G leads to a quasisymmetric ambiguity in the choice of

metric on ∂∞G.

Therefore, a quasisymmetric invariant of a metric space will give a quasi-isometric

invariant of a (hyperbolic) group. In our case, we can speak of the conformal dimen-

sion of the boundary of a hyperbolic group G, and denote this by dimC(∂∞G).

From the basic properties of conformal dimension we have that

dimtop(∂∞G) ≤ dimC(∂∞G).
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If the boundary has topological dimension zero it is totally disconnected. A simple

argument using Stallings’ theorem on ends [Sta68] and Dunwoody’s accessibility

theorem for finitely presented groups [Dun85] gives that in this case the group is

virtually free and the boundary has conformal dimension zero.

When the boundary has topological dimension one the situation is more compli-

cated. There are three basic cases.

Case 1: The boundary is a circle, thus by [Gab92, CJ94] the group is virtually

Fuchsian. This happens if and only if the (Ahlfors regular) conformal dimension of

the boundary is one, and it is realized for a particular choice of metric [BK02b].

Case 2: The boundary is not a circle, but it does have local cut points. In

this case the group virtually splits over a virtually cyclic subgroup [Bow99]. There

are examples in this case which have conformal dimension one, and examples with

conformal dimension greater than one. For more discussion, see Chapter VI.

Case 3: The boundary has no local cut points, and so by [KK00] is homeomorphic

to the Sierpiński carpet or the Menger curve. Bonk and Kleiner asked if in this case

the conformal dimension was greater than one [BK05a, Problem 6.2]. This is the

content of the following theorem.

Theorem 5.1.1. Suppose G is a non-elementary hyperbolic group which does not

virtually split over any elementary group. Then the conformal dimension of ∂∞G is

strictly greater than one.

Work of Bowditch and Swarup [Bow99, Swa96] on the boundaries of hyperbolic

groups shows that the algebraic criterion in the statement of the theorem is equivalent

to the boundary being connected with no local cut points. Essentially, the self-

similarity of the boundary then allows us to promote these conditions to the annulus

linearly connected condition, using a short dynamical argument similar to one given
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by Bonk and Kleiner in [BK05b]. We prove this in the next section.

5.2 A new conformal dimension bound.

Proof of Theorem 5.1.1. By work of Bowditch and Swarup [Bow99, Swa96] a hyper-

bolic group G does not (virtually) split over an elementary subgroup if and only if

the conformal boundary has no local cut points.

Proposition 4 in [BK05b] shows that ∂∞G with some visual metric d is compact,

doubling and linearly connected. It remains to show that (X, d) = (∂∞G, d) is

annulus linearly connected, but this follows by a proof similar to that of Bonk and

Kleiner’s proposition.

Suppose (X, d) is not annulus linearly connected. Then there is a sequence of

annuli An = A(zn, rn, 2rn) containing points xn and yn such that there is no arc

joining xn to yn inside A(zn, 1
n
rn, 2nrn). As X is compact we have that rn → 0,

otherwise there would be a subsequence nj → ∞ as j → ∞ with rnj
> ε > 0 for

some ε. In this case take further subsequences so that rnj
→ r∞ ∈ [ε, diam(X)],

znj
→ z∞, xnj

→ x∞ and ynj
→ y∞. Then a contradiction follows from the fact that

z∞ is not a local cut point, so we must have rn → 0.

Now we can consider the rescaled sequence (X, 1
rn

d, zn). By doubling, this subcon-

verges to a limit (W, dW , z∞) with respect to pointed Gromov-Hausdorff convergence.

By Lemma 5.2 of [BK02b], W is homeomorphic to ∂∞G \ {p} for some p, and so z∞

cannot be a local cut point in W . So we can connect the components of A(z∞, 0.9, 2.1)

in W \z∞ by finitely many compact sets, and these must lie in some A(z∞, 1/M, 2M)

for some 1 ≤ M < ∞. For sufficiently large n we can lift these connecting sets to

A(zn, 1
2M

rn, 4Mrn), contradicting the assumption.

In conclusion, ∂∞G is annulus linearly connected, doubling and complete and so
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Theorem 4.0.1 gives that the conformal dimension of ∂∞G is strictly greater than

one.



CHAPTER VI

Conclusion

So what can we say about the conformal dimension of hyperbolic groups with

connected one dimensional boundary? We have noted that Fuchsian groups are pre-

cisely those groups whose Ahlfors regular conformal dimension is one and is realized.

Theorem 5.1.1 showed that if the group does not virtually split over a virtually cyclic

subgroup then the conformal dimension is greater than one. However, we do not have

an answer to the following

Question 6.0.1. Which hyperbolic groups have a boundary at infinity of (Ahlfors

regular) conformal dimension one?

The answer is not yet clear. For example, if we amalgamate a group with carpet

boundary and a Fuchsian group along a cyclic subgroup, then the resulting group will

have local cut points in the boundary, and the conformal dimension will be greater

than one. This is because the carpet group, which has conformal dimension greater

than one (Theorem 5.1.1), is a quasi-convex subgroup of the amalgam [Bow99], and so

the boundary of the carpet group is embedded quasi-symmetrically in the boundary

of the amalgam.

On the other hand, Pansu remarked that if two copies of a closed hyperbolic

surface are glued along a simple closed geodesic then the conformal dimension of the
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fundamental group is one. This is because we can deform the surface groups to make

the simple closed geodesic smaller and smaller; this has the consequence of lowering

the Hausdorff dimension of the boundary of the universal cover arbitrarily close to

one.

One would like to know under what circumstances the amalgam of two Fuchsian

groups along a cyclic subgroup has a boundary at infinity of conformal dimension

one; this is a current research goal. For more background and discussion on this,

see [BK05a]. A more general question is:

Question 6.0.2. When is the conformal dimension of the boundary of a hyperbolic

group realized?

Another corollary of Theorem 4.0.1 is worth noting. If we have a carpet con-

tained in S2, i.e., a compact subset homeomorphic to the Sierpiński carpet, where

the boundary circles are uniform quasi-circles with a uniform bound on their relative

distance, then the conformal dimension is greater than one. This is because the

annulus linearly connected condition is satisfied for such spaces.

Example 6.0.3. As pointed out to me in a discussion with Juha Heinonen, there

are ‘round’ carpets of conformal dimension arbitrarily close to one. A round carpet

is a carpet in S2 with round circles for its boundary circles.

To construct a sequence of examples Xm, modify the standard square Sierpiński

carpet construction by removing a square of side 3m−2
3m from the middle of each square

at each step. This gives a space of Hausdorff dimension

dimH(Xm) =
log (4 · (3m − 1))

log(3m)
→ 1 as m → ∞.

Each Xm is quasisymmetric to a round carpet Ym by work of Bonk [Bon06], and

therefore Ym, m = 1, 2, . . ., is a sequence of round carpets whose conformal dimension
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converges to one. (By Theorem 4.0.1, we have dimC(Ym) = dimC(Xm) > 1.)

However, for boundaries of hyperbolic groups we do not have such examples.

Question 6.0.4. Are there hyperbolic groups with Sierpiński carpet boundary and

conformal dimension arbitrarily close to one?

For hyperbolic groups with Menger curve boundary, this question has been an-

swered by examples of Bourdon and Pajot [BP99]; in fact, for these groups the

conformal dimension takes values in a dense subset of (1,∞).

Finally, it would be nice to know the answer to the following question.

Question 6.0.5. What is the conformal dimension of the square Sierpiński carpet?
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[Pan89] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques
de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60.

[Pau96] F. Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2)
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