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Abstract: Express package carrier networks have large numbers of heavily-interconnected and tightly-constrained resources,
making the planning process difficult. A decision made in one area of the network can impact virtually any other area as well.
Mathematical programming therefore seems like a logical approach to solving such problems, taking into account all of these inter-
actions. The tight time windows and nonlinear cost functions of these systems, however, often make traditional approaches such as
multicommodity flow formulations intractable. This is due to both the large number of constraints and the weakness of the linear
programming (LP) relaxations arising in these formulations. To overcome these obstacles, we propose a model in which variables
represent combinations of loads and their corresponding routings, rather than assigning individual loads to individual arcs in the
network. In doing so, we incorporate much of the problem complexity implicitly within the variable definition, rather than explicitly
within the constraints. This approach enables us to linearize the cost structure, strengthen the LP relaxation of the formulation,
and drastically reduce the number of constraints. In addition, it greatly facilitates the inclusion of other stages of the (typically
decomposed) planning process. We show how the use of templates, in place of traditional delayed column generation, allows us to
identify promising candidate variables, ensuring high-quality solutions in reasonable run times while also enabling the inclusion of
additional operational considerations that would be difficult if not impossible to capture in a traditional approach. Computational

results are presented using data from a major international package carrier. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55:

670-683, 2008
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1. INTRODUCTION

In the freight transportation industry, effective network
planning is critical to success but often presents tremendous
computational challenges. In this article, we show how a
novel modeling approach (which embeds much of the system
complexity within the variable definition, rather than captur-
ing it through constraints), in tandem with the use of templates
to construct promising candidate variables, can enable us to
address many of these challenges within express package
carrier planning. We believe this approach will have broader
applicability in other areas of freight transportation planning
as well.

Freight transportation is critical in moving virtually all of
the products we use in our daily lives, from the food that
we eat to the medical supplies that help keep us healthy to
the computers that we use. In addition, raw materials such
as coal, oil, and lumber used to generate energy and manu-
facture goods move through the transportation network. The
amount of freight moved each year is staggering - in 2002,
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more than 19 billion tons valued at $13 trillion were moved
in the United States [42].

High-quality network planning in this industry is
important—consistent productivity gains are credited with
improving overall productivity in the U.S. and directly
increasing the nation’s GDP [43]. Such planning can be
quite challenging, however, for a number of reasons. First,
there are several inter-dependent resources (packages, trail-
ers, tractors, drivers) that must be considered. Second, freight
transportation problems often have nonlinear cost structures.
Third, many of the freight transportation problems that arise
in practice are quite large. All of these characteristics lead to
significant computational challenges.

Although there is an inherent network structure underly-
ing most freight transportation problems, traditional network
flow models such as multicommodity flow (MCF) are often
intractable. In particular, moving a nontrivial number of
commodities through a network gives rise to a prohibitively
large number of constraints and variables. In addition, lin-
earizing the cost structure can lead to intolerably weak linear
programming (LP) relaxations.

In this article, we consider three planning problems from
the express package industry—one of the fastest growing
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segments in the freight transportation industry [42]. We begin
by considering the load matching and routing problem (LMR)
and demonstrate why a traditional MCF formulation is inad-
equate for solving this problem. We present an alternative
formulation which embeds complexity within the variable
definition, dramatically decreasing the number of constraints
and simultaneously improving the strength of the LP relax-
ation. We also demonstrate how predefined templates can be
used to identify promising candidate variables, in place of the
use of delayed column generation.

We then focus on how to extend the LMR model to
also include two additional problems, trailer assignment and
empty balancing, simultaneously integrating three problems
that would otherwise have to be solved sequentially. We
demonstrate how this integration requires only minor changes
to the formulation, with most of the changes being embed-
ded in the variable definition. We provide computational
examples to investigate both computational performance and
solution quality, and discuss the trade-offs in run time and
objective value between the integrated and disaggregated
approaches.

The contributions of our work are threefold. First, we
present a method for solving a challenging real-world prob-
lem (LMR) that is intractable under a traditional modeling
approach. Second, we show how this approach facilitates
integrated planning—we are able to solve three stages of
the express package carrier planning process simultaneously,
for improved solution quality. Finally, we suggest that the
variable definition presented here will be applicable to other
freight transportation planning problems as well.

The outline of the article is as follows. In Section 2, we
give an overview of the planning process for express pack-
age carriers and introduce the load matching and routing
problem. In Section 3, we explain why traditional modeling
approaches are intractable for LMR and present an alternative
cluster-based model, which we solve with the use of tem-
plates. Computational results based on data from a prominent
express package carrier are presented. Next, Section 4 focuses
on incorporating the trailer assignment and empty balancing
problems in tandem with load matching and routing. Compu-
tational results for this integrated planning problem are given,
as well as as a discussion of the trade-offs between run-time
and solution quality. Finally, in Section 5, we conclude by
suggesting future areas of research.

2. PROBLEM DESCRIPTION AND
LITERATURE REVIEW

Express package carriers deliver millions of packages each
day [44]. Delivering all of these packages from origin to des-
tination within their time windows gives rise to an elaborate
planning process. The number of origin/destination (O /D)

pairs in the network is quite large, and the number of pack-
ages traveling between the majority of these O /D pairs does
not justify a dedicated truck. Therefore, packages are instead
routed through a series of intermediate facilities in the net-
work. At each of these facilities, called hubs or consolidation
centers, packages are sorted and then consolidated with other
packages that can travel together to more efficiently utilize
system resources.

The network planning hierarchy is outlined in Fig. 1a. It
demonstrates four stages of the planning process for a single
package, traveling from Port Clinton, OH (PC) to Beaumont,
TX (BEA). First, the package’s operational routing must be
determined. In this case, the package will travel in one load
from PC to Toledo, OH (TOL). This load will be broken down
and sorted in TOL, and the package will then move on a sec-
ond load from TOL to Houston, TX (HOU). Again, the load
will be broken and sorted, and the package assigned to its final
load, from HOU to BEA. The problem of assigning O/D pairs
to routings is known as the load planning or package routing
problem. [Note that all packages sharing a common origin
and destination follow the same routing, for operational sim-
plicity.] Operational routings are required to be time feasible
and to respect capacity limitations at the intermediate sorting
facilities.

After the load planning problem has been solved, it is easy
to calculate the volume (total number) of packages flowing
between any pair of sorts in the network (where a sort is
defined by a fixed operational time period in addition to a
location). This volume must then be assigned to one of two
trailer types, each of which has a different capacity. This stage
in the planning process is referred to as the trailer assign-
ment problem (see Fig. 1b), and determines the set of loads
to be moved through the network, where a load is defined by
an origin, destination, set of packages, trailer type, earliest
departure time, and latest arrival time. The earliest departure
of aload is determined by the latest available time of all of its
packages, and the latest arrival time is the earliest due date.

A load which has been assigned to the longer of the two
trailer types (referred to as a van) typically must travel indi-
vidually behind a tractor. However, two loads each assigned
to the shorter trailer type (referred to as a pup) can often be
combined and share a single tractor. It is significantly cheaper
to pull two trailers behind a single tractor as part of a double
trailer configuration than it is to pull each trailer individually
because only a single driver is required, less fuel is used, and
fewer tractors are needed. This cost savings may even jus-
tify having loads travel circuitous mileage so that they can
be matched with other loads. In our example, the TOL-HOU
load is routed through Cincinnati (CIN) so it can be matched
with a CIN-HOU load (see Fig. 1c). The process of deter-
mining which loads should be matched together and how
these matched loads should be routed is known as the load
matching and routing problem.
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Figure 1. Network planning hierarchy for express package carriers.

Next, observe that delivering all loads from origin to des-
tination may give rise to imbalance in the network. For
instance, if there are more loads inbound to a node than out-
bound, then that node will begin to accumulate empty trailers.
In the empty balancing stage of the planning process, empty
trailers must be redistributed (by type) from surplus nodes to
deficit nodes. Because the number of trailers available in the
network is typically not a limiting factor, the timing of rebal-
ancing is far less restrictive for empty trailers than for loads—
it is sufficient to balance trailers over the duration of the
planning process, rather than on an hourly or even daily basis.

Finally, drivers must be assigned to move all of the loaded
and empty trailers through the network. This is referred to
as driver scheduling. The drivers themselves have their own
complex constraints arising from labor negotiations, com-
pany policies, and federal safety regulations. As a result, a
load may be covered by several different drivers between
origin and destination. For instance, because the trip from
CIN to HOU is quite long, this movement may be broken
down into two segments, with Driver One completing the
first segment and then handing off the loads to Driver Two,
who completes the second segment. The driver scheduling
problem must consider both how to split the movement of
each load into smaller segments and how to assign individual
drivers to these segments.

Although it would be desirable to consider the entire
planning process simultaneously to capture the interactions
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between different levels, a global approach is intractable
due to the complexity of the individual problems as well as
their combined size. Instead, the planning process is typi-
cally decomposed into the five stages described above. Each
stage is considered individually, and the output of one prob-
lem becomes the input of the next. This myopic view makes
the planning problem more tractable but does not take into
account the impact that decisions made in one stage of the
planning process have on subsequent stages.

In this article, we first explore the load matching and rout-
ing problem, explaining how an approach which embeds
much of the complexity within the variable definition rather
than the constraints allows us to solve this challenging
problem. We then focus on how this approach enables us
to expand the scope of the problem, incorporating the trailer
assignment and empty balancing problems concurrently with
load matching and routing.

To the best of our knowledge, the only other study of
LMR in the literature is our prior work [18]. In this article,
we extend this prior work by including the additional prob-
lem of trailer assignment into the planning process. We also
quantify the value of integrating the three planning problems
and suggest where an integrated planning approach is likely
to demonstrate substantial improvements over a sequential
approach. In this article, we also demonstrate how rounding
the solution obtained by a relaxation of the integrated prob-
lem allows us to solve much larger problem instances than
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those solved in our prior work without any significant impact
on the quality of the solutions obtained.

In addition to our research, many topics related to LMR
have been well studied. Down-stream decisions in express
package carrier networks are considered in the thesis of [40].
Papers addressing nonlinear cost functions in transportation
planning problems include [9,27,31], and [33]. The issue
of time windows is considered in related application areas
such as vehicle routing, airline applications, and shipping
[10, 11, 19, 35, 38]. More broadly, there is a vast body of
literature addressing freight transportation problems closely
related to LMR. For example, the matching of loaded and
empty trailers in a hub-and-spoke network is considered in
[24]. Ref. [8] also consider load matching in a less-than-
truckload (LTL) network. Heuristics for building loads in
the LTL industry are considered in [2]. The work of [23] in
LTL planning discusses its hierarchical nature and the need
for decomposition in the planning process. Dynamic aspects
of freight transportation are discussed in [15]. Routing in
a hub-and-spoke network, in conjunction with facility loca-
tion, is addressed in [12]. Facility location is also considered
by [32]. Finally, surveys of optimization models in freight
transportation appear in [20] and [21].

3. SOLVING LMR

The objective of the load matching and routing problem is
to find the least expensive way to move a set of loads through
a network, taking advantage of the cost savings of double
trailer configurations (possibly through the use of circuitous
routing) while ensuring that all time windows are adhered to.

In our discussion of this problem, we initially assume, for
the sake of exposition, that all loads are assigned to pups
and that pups can be matched together as part of a double
trailer configuration on all arcs in the network. We relax these
assumptions in Section 4.

3.1. Arc-based MCF Formulation

Given the network structure underlying LMR, it is nat-
ural to formulate this problem as a variation of the multi-
commodity flow problem [1, 14, 26, 30]. In an arc-based
formulation of MCF, the variables represent the flow of com-
modities on each arc. Two sets of constraints apply to these
variables. First, for each node/commodity pair, flow must be
balanced—supply plus flow in must equal demand plus flow
out. Second, the sum of flows across all commodities on a
given arc cannot exceed the capacity of that arc. [Note that in
our problem, arc capacities are infinite.] To model LMR as a
variation of MCF, with commodities corresponding to loads
that share both an O /D and a time window, two key changes
must be made.

First, in order to satisfy the time-window requirements, a
time-space network must be used. In such a network, each
node corresponds not only to a facility f, but to a point in
time ¢ as well. An arc between { f1, #;} and { f5, ,} represents
the flow of a commodity from facility f; to facility f5, leav-
ing at time #; and arriving at time #,. The use of a time-space
network enables the timing constraints to be captured while
maintaining the pure MCF structure, but at the expense of a
much larger network, since each facility is represented by not
just one node but rather by one node per point in time.

The second change that must be made is to linearize the
nonlinear objective function. [Recall that the cost of an even
number e of trailers is the cost of g double configurations,
while the cost of an odd number o of trailers is the cost of
L 5] double configurations plus one single configuration.] To
linearize the objective function, the MCF structure can be
modified by introducing two new sets of integer variables,
one to represent the number of single trailer configurations
on each arc and one to represent the number of double trailer
configurations. These trailer configurations, rather than the
actual commodity flows, are used in the objective function.
[Additional details can be found in [18]].

This formulation is problematic for two important reasons.
First, even modestly-sized problem instances become quite
large after the introduction of the time-space network. For
instance, assuming a node every five minutes, a problem with
just 10 nodes, 50 arcs, and 20 commodities would have more
than 300,000 variables and 70,000 constraints. Second, the
cost structure naturally lends itself to very fractional solu-
tions, because it is less costly for trailers to move as half of a
double trailer configuration than to move as a single trailer.
Whenever there is an odd number of loads flowing on an arc
(i, j), the fractional solution will assign the “odd” load to
half of a double configuration rather than to the more costly
single configuration. This gives rise to very large branch-
and-bound trees in which each node of the tree is itself a
prohibitively large LP, because of the time-space network.
Thus, the arc-based MCF formulation is intractable for all
but trivial instances of LMR.

3.2. Path-based MCF Formulation

Even without the special considerations introduced by
LMR, the large number of balance constraints encountered
whenever using an arc-based formulation of MCF can limit
tractability. As an alternative, MCF problems are often mod-
eled using a path-based formulation. In this approach, vari-
ables represent the flow of a commodity over an entire path
from origin to destination, rather than just over a single arc
[1]. Such a formulation eliminates the need for the large set
of constraints required to ensure node balance in the arc-
based formulation, replacing it with a much smaller set of
constraints (one per commodity) requiring that the flow on all
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paths associated with that commodity sum to its demand. This
formulation, which is typically solved via column generation
due to its very large number of variables, can be derived from
the arc-based formulation via Dantzig-Wolfe decomposition
[1].

As with the arc-based formulation, the path-based formu-
lation can be modified to accommodate LMR with two key
changes. First, the underlying network from which the path
variables are generated must be a time-space network, so as
to ensure that each commodity satisfies its time window. The
MCEF network itself must also be a time-space network, to
ensure that matched loads are time-compatible.

Second, the nonlinear cost structure must be addressed,
as in the arc-based MCF formulation. Single and double
trailer configurations must again be built from the commodi-
ties flowing on each arc, giving rise to the same single and
double trailer variables and objective function as in the arc-
based formulation. The option to move every trailer as half
of a double configuration continues to exists on each arc for
each commodity. Thus, the very weak LP relaxation remains
and, with it, the corresponding intractability.

3.3. Cluster-based Formulation

Although converting from an arc-based formulation to a
path-based formulation of MCF is not sufficient to achieve
tractability for LMR, it nonetheless demonstrates the poten-
tial power of capturing problem complexity within the vari-
able definition. By defining variables representing the flow of
commodities over an entire path rather than just over a single
arc, the very large set of balance constraints can be elimi-
nated. We further extend this idea in our research, embedding
additional complexity within the variable definition to over-
come the challenges of time-windows and a non-linear cost
function when solving LMR.

The idea of capturing complexity within the variable
definition rather than through constraints has appeared in
the literature as composite variable modeling, variable
redefinition, inverse projection, and extended reformula-
tion. Extensive discussions of these broad topics appear in
[3,4,6, 13, 16-18, 22, 25, 28, 29, 34, 37, 39], with [7] and
[41] focusing specifically on these issues for integer and
mixed-integer programs.

While in some cases, models are formed via a decomposi-
tion or other modification of an initial, “traditional” model,
in cases such as ours the modeling philosophy focuses on
designing variables from the start expressly with the goal
of addressing sources of intractability arising in more tradi-
tional formulations. In LMR, there are two primary sources
of intractability. The first stems from the challenge of incor-
porating timing considerations and the second comes from
the weak LP relaxation associated with linearizing the objec-
tive function. Two key observations assist us in constructing
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Figure 2. Sample cluster.

an alternative variable definition to address these challenges.
First, many different feasible timings may be equivalent from
a cost and feasibility perspective—all timings, in fact, in
which the load is delivered on-time. For example, we are
indifferent as to whether a load leaves as soon as it is available
and arrives an hour early, leaves an hour after it is available
and arrives promptly on time, or any time in between. The
second observation of importance is that, whenever an arc
does not have more than one load flowing over it, the oppor-
tunity for creating a double trailer configuration on this arc
does not exist, except in a fractional solution.

Thus, we define variables that represent the clustering of
interacting loads, rather than the flow of individual loads on
arcs or paths through the network. Specifically, a cluster is
a group of interrelated loads, the routes that they take, and
the configurations in which they are pulled (see Fig. 2 for
an example). By construction, a cluster is only defined if
each of its loads is routed completely from origin to desti-
nation and can satisfy its time window. Given this definition,
a number of important benefits are achieved. First, as in the
path-based MCF formulation, we bypass the need for bal-
ance constraints. Second, recognizing that the cost of a given
cluster can easily be computed off-line (given that a clus-
ter is defined by the routing as well as the set of loads), the
overall cost of a set of clusters then becomes a linear func-
tion. Third, we do not need to assign specific times to the
loads, but merely ensure that valid times exist for which the
loads will be delivered on-time. Finally, the opportunity to
fractionally assign a single load to half of a double trailer
configuration no longer exists, because individual loads are
no longer treated independently. These benefits have signifi-
cant impact on tractability, as we will demonstrate in Section
3.5.

A sample cluster is presented in Fig. 2. This cluster is com-
prised of three loads: one from A to C, a second from A to
D, and a third from B to D. Loads AC and AD are matched
to form a double trailer configuration between locations A
and C, and loads AD and BD are matched to form a double
configuration between nodes C and D; load BD travels as a
single trailer from B to C. The cost of this cluster is simply
the cost of double configuration moves from A to C and C
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to D, plus the cost of a single configuration move from B
to C. To determine whether this cluster is time-feasible, we
assume that load BD leaves node B at its earliest available
time, and that loads AC and AD leave node A at the later of
their respective earliest available times. Similarly, loads AD
and BD leave node C at the later of the two loads’ arrival
time at C. Based on these departure times, it is then trivial
to determine whether the loads can all arrive at their destina-
tions on-time (if not, then the cluster simply isn’t included in
the model).

Using this variable definition, LMR can be formulated as a
simple variation of the classical set partitioning formulation
[5], using the following notation.

Variables:

x. = number of times cluster c¢ is used in the solution

Parameters:

w, = cost of cluster ¢

8k = number of loads of commodity k that appear in

cluster ¢ (where a commodity is a set of loads sharing a
common origin, destination, and time window)

b = number of loads of commodity k£ that must be
moved through the network

Sets:

C = set of valid clusters ¢

K = set of commodities k

Formulation:
Min Z WeXe (D
ceC
S.t.
D dexe=be VkeK )
ceC
xeeZt VYeceC 3)

The objective (1) is to minimize the cost of the selected
clusters. Constraint set (2) requires that a combination of
clusters be selected such that the correct number of loads
of each commodity kare moved. Finally, constraint set (3)
ensures that an integral number of each cluster is selected.

3.4. Generating Clusters

Traditionally, linear programs with very large numbers
of variables are solved via column generation [7, 36], in
which an embedded pricing problem uses dual informa-
tion to identify promising variables to pivot into the basis,
rather than enumerating all variables a priori. This approach
depends on the ability to quickly solve this pricing problem,
typically itself as a mathematical program. In our formu-
lation, however, we have intentionally designed our cluster
variables specifically to incorporate the difficulties (non-
linear cost structure, time windows) that make a traditional

@ AB

®— AB AB @
@ AB AC AC
@ AC @ BC A
@ AB AC @ BC A

Figure 3. Templates for LMR computational experiments.

OO

MP approach problematic. Given that both of these com-
plications are captured implicitly within the variable defin-
ition, the problems that were present in the original MCF
formulations—the large time-space network and the weak
LP relaxation—would simply reemerge in the pricing prob-
lem. Because this pricing problem must be solved not once,
but several times, this makes using a MP-based pricing prob-
lem approach impractical for the cluster-based formulation
of LMR.

Given the computational challenges posed by a column
generation approach, and the fact that in real-world problems
we are concerned not only with solution quality (“prov-
able optimality”) but also with runtime, we instead solve
the problem by considering only a restricted set of vari-
ables, generated from templates, that are constructed a priori.
Templates are predefined patterns of loads that have reason-
able potential to appear in a high-quality solution. For each
template, all valid load combinations are included in the for-
mulation. Figure 3 displays the templates that we consider in
our computational experiments.

Although limiting the problem to only these predefined
cluster templates certainly might eliminate desirable solu-
tions from consideration, we have found this not to be a
significant disadvantage in our computational experiments. In
an express package carrier network, loads’ time windows are
typically quite tight. As aresult, this greatly restricts the num-
ber of intermediate stops that a load can make, because of the
circuitous routing as well as the tractor reconfigurations, both
of which are time-consuming. Very complex cluster struc-
tures, with large numbers of interconnecting loads, simply
are not time feasible in most cases. Those that are time-
feasible can often be broken into sets of smaller clusters
without significant increase in cost. In our computational
experiments, when we considered the inclusion of other,
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Table 1. LMR problem instances.

No. of No. of No. of No. of

ID Loads Comms. Nodes Clusters
1 2,067 1,257 263 8,955
2 3,539 2,426 352 21,666
3 13,636 6,394 568 116,031
4 30,554 12,404 1,106 324,622

more elaborate clusters, solution quality did not improve to
any significant degree, but tractability was greatly impacted.
Note also that complex clusters are actually undesirable from
an implementation standpoint. This is because of the cor-
responding complexity in overseeing the operation of these
clusters, with many pieces to be coordinated in downstream
decisions such as driver scheduling. Furthermore, delays can
propagate through large clusters with greater impact, as one
delayed load may delay other loads in the cluster as well.
Thus, smaller clusters may be viewed as more robust.

3.5. Computational Results for LMR

The purpose of our first set of computational experiments
was twofold. First, we wanted to assess the tractability of
our proposed cluster-based formulation. Second, we wanted
to evaluate the impact of the heuristic approach—that is,
could high-quality solutions be found while only considering
a subset of the feasible clusters?

3.5.1. Tractability

We considered four different data sets, all provided by
a major express package carrier. These range in size from
approximately 2000 loads to approximately 30,000 loads.
Table 1 describes the four data instances, giving the number
ofloads, the corresponding number of commodities (i.e. loads
sharing a common origin, destination, and time window), the
number of nodes, and the number of clusters (based on the
templates shown in Fig. 3).

Each of these instances (as well as all other computational
experiments in future sections) was solved using CPLEX ver-
sion 11.0 on a 3.2 GHz Pentium D PC with 3.5 GB of real
memory. Default CPLEX parameters were used, with an opti-
mality gap of 1%. The results appear in Table 2, which shows
the time (in seconds) to generate the set of clusters and then
to solve the IP, the number of nodes in the branch-and-bound
tree, and the optimality gap.

The results are encouraging. As expected, the LP relax-
ations are very strong—only one instance required branching
in addition to CPLEX’s standard preprocessing in order find
an integer solution, and this instance required only 10 nodes
in the branch-and-bound tree. In addition, because the model
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is so small (recall that the number of constraints is the same
as the number of commodities), the LP’s solve quickly. In all
four instances, solutions with an optimality gap less than one
percent were found in less than 2 min.

3.5.2.  Lower Bounds

These optimality gaps, however, are relative to the set of
clusters provided, not to the original problem. To find a true
lower bound against which to compare our heuristic results,
we could solve the MCF formulation, which can guarantee
a provably optimal solution. However, this is intractable for
all but the smallest of problem instances, both because of its
size (due to the time windows) and its weak LP relaxation
(due to the linearization of the cost function). As an alterna-
tive, we set out to solve a relaxation of LMR in which we
ignored time windows. Clearly, a solution to this problem
will give a lower bound on the true optimal value. However,
even when time windows are ignored, the size of the model
and weak LP relaxation is still problematic. We attempted to
run the MCF formulation of Instance One (with time win-
dows ignored). This instance has 197,341 constraints and
1,364,362 variables. Even after fine-tuning the CPLEX para-
meters, the system runs out of memory after preprocessing
and finding an initial integer solution (which is six percent
larger than the heuristic solution found with LMR). When the
system runs out of memory, the current lower bound of the
MCEF formulation shows that the solution to LMR is within
eleven percent of optimality. Note, however, that this gap is
based on a lower bound in which both time windows and inte-
grality are relaxed; presumably, the true gap is substantially
smaller.

3.6. Additional Benefits of the Cluster-Based
Approach: Operational Considerations

Trading off between realism and tractability is always a
challenge when modeling any real-world problem. In addi-
tion to the benefits of tractability achieved by the cluster-
based model relative to a MCF-based approach, the cluster-
based approach also enables us to incorporate several real-
world operational considerations that could not be captured
in a MCF-based approach.

Table 2. LMR results.

ID Gen.time Solvetime No.of BB Nodes Opt. gap (%)

1 1 1 0 0.77
2 2 7 10 0.99
3 19 26 0 0.79
4 105 71 0 0.53
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3.6.1. Allowances

When combining loads at intermediate locations to form
double trailer configurations, there is a time delay associated
with stopping, uncoupling existing loads, and joining new
loads together. This time, referred to as the allowance, varies
depending upon whether the loads are inbound or outbound,
the type of facility where the stop occurs, and how many
trailers are being coupled or decoupled. By ignoring these
allowances in the calculation of travel time for aload, we may
create a plan that violates the load’s time window. Adding this
operational consideration into a MCF-based formulation is
not possible without making substantial structural changes,
however, because the model does not include information
about which loads are paired together, or when. On the other
hand, it is trivial to include allowances into the cluster frame-
work. We simply incorporate it in the off-line time-feasibility
check we perform when enumerating clusters.

3.6.2. Triple Trailer Configurations

In some locations (for example, in parts of the mid-western
United States), it is permissible to pull three pup trailers
behind a single tractor as part of a triple trailer configura-
tion. The potential cost savings of sharing a single driver and
tractor between three load can be substantial. Capturing this
opportunity in a MCF-based formulation, however, would
require the addition of several new variables, representing
the flow of triples in the network. Additionally, the model
would become even more fractional, as the model would
first try to route individual loads as one-third of a triple con-
figuration, then one-half of a double, before finally finding
an integer solution using a single configuration. Similarly,
double loads would first be routed as two-thirds of a triple
configuration. Thus, the amount of branching to find an inte-
ger solution would be substantially increased. Incorporating
triple trailer configurations in the cluster-based model, on the
other hand, requires only the addition of new cluster templates
that incorporate the use of triple configurations on the appro-
priate arcs. Although this will certainly increase the number
of variables in the model, the problem structure (and strength
of LP relaxation) remain unchanged.

3.6.3. Intermodal Transport

Package carriers often move loads not only by road but
also by rail. Transporting loads by rail is typically less costly
but more time-consuming. In addition, the rail network inter-
faces with some but not all of the existing facilities in the
network. Incorporating the rail network in a MCF-based
formulation of LMR would give rise to an even larger time-
space network, more variables, and more constraints. In the
cluster-based approach, however, we can again incorporate

this additional opportunity by adding new cluster templates
that capture the interactions of loads using rail (or other
modes of transportation) for some or all of their journey.

3.6.4. Nonfacility Meets

Thus far, it has been assumed that trailers can only be
coupled at carrier facilities within the network. In reality,
however, these meets can occur at many other places as
well. For instance, many parking lots near turnpike exits and
interstate highways exist solely for this purpose. Incorporat-
ing these additional opportunities within a MCF formulation
could be modeled by adding nodes for these meet opportu-
nities, but this would dramatically increase the size of the
time-space network. Permitting this option in the cluster-
based formulation, on the other hand, would have no impact
except on the pre-processing time of constructing the clusters,
taking advantage of the carrier’s knowledge of convenient
meet locations.

3.6.5. User Expertise

More generally, another benefit of the cluster-based
approach is that it provides a natural mechanism for lever-
aging the expertise of those who are most familiar with the
problem. For instance, load planners and routers can play an
active role in developing new cluster templates. Understand-
ing the best practices of load routing as well as those things
that have shown in practice to perform poorly is invaluable
in developing a solution that is easy to implement and likely
to succeed in practice.

3.6.6. Complexity Limitations

Finally, note that an optimal solution to a MCF-based for-
mulation may be quite complex, with frequent matching and
unmatching of loads and several stops at intermediate facili-
ties. Although this solution may be the best in terms of cost,
it may be significantly less desirable than a slightly more
costly solution that is easier to implement. Limiting the set
of clusters to manageable structures provides a natural way
to address this operational issue.

4. INTEGRATED PLANNING: LOAD MATCHING
AND ROUTING, TRAILER ASSIGNMENT,
AND EMPTY BALANCING

As discussed in Section 2, the planning process for the
express package industry is typically decomposed into five
separate stages, due to its complexity. Each of these stages
is considered individually, with the output from one problem
becoming the input to the next. The cluster-based approach

Naval Research Logistics DOI 10.1002/nav



678 Naval Research Logistics, Vol. 55 (2008)

to LMR has the benefit of not only providing a means to
solve a difficult planning problem, but also of allowing us to
expand the problem scope to consider additional stages of the
planning process as well.

Integrating multiple stages of the planning process is
advantageous both to ensure feasibility and to improve solu-
tion quality. Given that traditional modeling approaches to
each of the individual stages are already computationally
challenging to solve, directly integrating these models (for
example, through the use of linking constraints), is not a
viable option. The cluster-based formulation of LMR, on the
other hand, naturally lends itself to the inclusion of trailer
assignment and empty balancing decisions.

Recall that in the express package industry, volume is
assigned to trailers prior to solving the LMR. The solution
to the trailer assignment problem (TA) directly impacts LMR
since the assignment of packages to pups and vans determines
the set of loads to be moved in LMR and, consequently, which
loads can be matched together. TA also impacts the empty
balancing problem, because the set of loads also determines
the imbalance of trailers at each node. Finally, LMR and EB
are closely related, because loaded and empty pups can travel
together as part of a double trailer configuration.

We refer to the integrated problems of trailer assign-
ment, load matching and routing, and equipment balancing
as TALMREB.

4.1. Modeling TALMREB

Incorporating TA and EB in a MCF-based formulation of
LMR would require significant changes in model structure
and size. Modifying the cluster-based LMR formulation to
include TA and EB decisions, however, requires just a slight
modification of the variable definition and the addition of one
set of constraints. Instead of defining clusters to consider the
movement of loads, we now consider the combined move-
ment of commodity-specific capacities (associated with spe-
cific trailer types) and empty trailers. As before, we require
the movement of the commodities in each cluster to be time-
feasible and each commodity to be routed completely from
origin to destination.

Consider the example presented in Fig. 4. In this cluster,
two pups (one with the capacity to carry up to 800 packages
from A to C and the other with the capacity to carry up to
800 packages from A to D) move together from A to C. On
the B-C leg, there is one pup (with the capacity to carry 800
packages from B to D) and one empty pup. Finally, two pups
travel together from C to D, one the continuation of the A
to D packages and the other the continuation of the B to D
packages.

Associated with each cluster is a set of local node imbal-
ances. In the example in Fig. 4, because there are two pups
departing from node A but none arriving, there is a net loss
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Figure 4. Sample cluster for integrated model.

of two pups. At node C, since there are four inbound pups
but only two outbound, there is a net gain of two pups. As
before, it is easy to compute the cost and time-feasibility of
a cluster.

Using this new definition of a cluster, it is straightforward
to modify the formulation presented in Section 3.3. To do so,
we introduce the following notation.

Variables:

x. = number of times cluster c¢ is used in the solution

Parameters:

w, = cost of cluster ¢

Vg = maximum volume (in packages) of commodity
k that can be transported in cluster ¢

by = demand (in packages) for commodity k

n:fc = impact on balance of trailer type ¢ at facility f
for cluster ¢

Sets:

C = set of time-feasible clusters ¢

K = set of commodities k

T = set of trailer types ¢

F = set of facilities f

Formulation:
min Z WeXe 4)
ceC
st
> viexe = b Vkek 5)
ceC
> nyexe=0 VteT,.feF (6)
ceC
x.€Z" YeeC @)

The objective (4) is to minimize the total cost of the clusters
selected. Constraint set (5) requires that the selected clusters
provide enough capacity to move the demand for each com-
modity through the system. Constraint set (6) requires trailer
balance at each facility for each trailer type. Finally, con-
straint set (7) requires that an integral number of each cluster
be selected.

This formulation, like the original LMR formulation, does
not require the use of a time-space network. The number
of constraints is manageable—one for each commodity and
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Figure 5. Templates for integrated model computational experi-
ments.

one for each trailer type/facility combination. In addition, this
formulation allows us to incorporate the operational consid-
erations described in Section 3.6. One problem introduced
by the integrated formulation, however, is that the cover con-
straints (5) lend themselves naturally to fractional solutions.
For instance, if a cluster has a capacity of 800 packages of
commodity k but only 200 packages need to be moved, it
would be feasible (and desirable from a cost perspective)
for the cluster to assume a value of one-fourth. To improve
performance, we therefore introduce a set of cuts designed
to strengthen the LP relaxation. Defining max_cap to be the
maximum capacity for a given commodity across all feasible
clusters, the cuts are

b
Y oxe= [—"W Vk € K. (8)
max_cap

ceC:v.>0

In other words, for each commodity, there is a minimum
number of clusters that would be required to move this vol-
ume through the network. (8) requires that the number of
clusters used in the solution be at least this minimum number.
(For a similar result, see Ref. [4].)

4.2. Computational Experiments for TALMREB

In our computational experiments, we set out to determine
the impact on tractability of adding the trailer assignment
and empty balancing problems to the load matching and rout-
ing problem. We used the same four instances considered in
Section 3.5. We again leveraged the idea of cluster templates
introduced in 3.4, using the set of templates shown in Fig.
5. CPLEX defaults were used for all parameters, with the
exception of MIPSearch, which was set to “dynamic” and
VarSel, which was set to “MaxInfeas.” In addition, for the
two larger data sets, MemoryEmphasis was set to “on”.

Results are presented in Table 3, which provides the num-
ber of commodities, the number of clusters, the run time
(in seconds), the number of nodes in the branch-and-bound
tree, the input optimality gap, and the actual gap of the final
solution.

Note that we were unable to solve the largest instance -
after approximately two days of run-time, the machine ran
out of memory, having solved about 16,700 nodes without
finding an integer-feasible solution.

We also ran the first three instances without cuts (8) to eval-
uate the impact of these cuts. As seen in Table 4, the smallest
instance is actually faster without cuts - the benefits of a
stronger LP relaxation are outweighed by the increased num-
ber of constraints. The other two instances, however, show
the benefits of the cut. We also note that in the third instance,
the solution quality is not as good (a 3.49% optimality gap
versus a 4.7% gap). However, when we tried to run the fourth
instance without cuts to achieve the lower gap, we ran out of
memory.

4.3. Enhanced TALMREB

In Table 3, we observe that the smaller instances still solve
very quickly. On the other hand, they are clearly becoming
more fractional than LMR alone. This is largely due to the
inclusion of empty trailers. Because empty trailers can be

Table 3. TALMREB computational results.

No. of No.of  Time Set gap True gap

ID Comm. Clusters (s) Nodes (%) (%)
1 1,257 20,604 79 400 1 0.66
2 2,426 48,442 228 640 1 0.98
3 6,394 235,080 16,429 5,569 5 3.49
4 12,404 621,312 X X 5 X
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Table 4. TALMREB computational results without cuts.

No. of No. of Time w/cuts Time w/o cuts
ID Comm. Clusters (s) (s)
1 1,257 20, 604 79 49
2 2,426 48,442 228 295
3 6,394 235,080 16,429 17,539

routed between any pair of nodes, and because itis always the-
oretically possible to match two empties on any arc, we must
create these options in the cluster templates. Thus, whenever
it is necessary to move a single empty trailer, this empty is
initially instead assigned in the LP relaxation to one-half of a
double empty configuration, so as to reduce cost. This is, on
a smaller scale, similar to the fractionality of loaded trailers
that is seen in a MCF-based formulation.

In the larger instances, we observe that this fractionality
of empty clusters has far greater impact than in the smaller
instances, resulting in dramatically slower run times. This
motivated us to further investigate the impact of empty bal-
ancing (and, particularly, the trade-off between single empty
pup configurations and double empty pup configurations) on
performance. In addition, we have observed that, especially
in the larger instance, it takes a very long time (independent
of CPLEX parameter settings, of which we tried many com-
binations) to find the first integer-feasible solution. However,
once this solution is found, it is typically close to optimal and
the tree converges soon thereafter.

Thus, we decided to introduce a new step to the process—
identifying an initial integer-feasible solution to use as a
starting upper bound. To do so, we made the following sim-
ple yet powerful observation: if we relax the integrality of the
double empty pup clusters and solve the problem (while still
requiring all other clusters to take on integer values), then
the solution can easily be converted to a feasible one—the
only caveat is that in those locations where half of a double
empty pup cluster has been assigned, this actually corre-
sponds to a single empty pup cluster and thus the cost has
been underestimated. Therefore, we can solve this relaxed
problem, re-compute the accurate (and therefore higher) cost
of this solution, and use it as an initial upper bound to enhance
performance of TALMREB.

We implemented this and made two exciting discoveries.
First, the relaxed version of the problem (again, where only
the integrality of the double empty pup clusters has been
relaxed and all other cluster variables are still restricted to be
integer) solves very quickly. Second, the objective value of
this problem is far better than we had expected—in some
cases, we find a berter solution (i.e. one with a smaller
optimality gap) and in far shorter run time.

In retrospect, the high solution quality makes sense for
a number of reasons. First, the data instances are relatively
balanced—that is, empty balancing plays a somewhat lim-
ited role (on the order of 10%) in the solution cost. Second,
not all arcs have odd numbers of empty pups assigned to
them—those arcs with even numbers of pups are feasible in
the relaxed version of the problem and the cost of these arcs
are not under-estimated. Third, when there are large numbers
of empty trailers on an arc, at most one of the clusters will
be under-priced. For example, an arc with seven empty pups
will have 3.5 double configurations in the relaxed version
whereas the actual values would be three doubles and one
single. As the number of empties gets larger, the impact of
these remainders dilutes further.

These observations are supported by the results shown
in Table 5. These instances were run on the same machine
as those in Table 3 and using the same CPLEX parameter
settings. The three gaps are the following: set gap is the
CPLEX parameter set for the stopping criterion. Realized gap
is the gap of the solution at termination. True gap is based
on recomputing the solution value to take into account the
inaccuracies in cost associated with half double empty pup
clusters. For data sets 3 and 4, we considered multiple set
gaps to demonstrate the trade-off between solution quality
and run time.

The most important observation is the dramatic reduction
in run times—for the largest instance, instead of failing to
solve after 2 days, the solution can now be found in just a
few hours! We also note that, for small instances, the original
model actually performs better. This is because the empties
play a proportionally larger role in the objective value (e.g.
arcs might have one or two empties moving across them,
rather than seven or eight in a larger network, and so the
inaccuracy of a single empty that must be re-cost for a given
arc carries greater weight). Finally, we point out that the

Table S. Revised TALMREB computational results.

ID No. of Comm. No. of Clusters Time (s) Nodes Set gap (%) Real. gap (%) True gap (%)
1 1,257 19,308 7 0 1 0.95 2.64

2 2,426 25,950 68 270 1 0.93 1.48

3 6,394 228,484 189 0 5 4.36 4.71

3 6,394 228,484 3,141 975 1 0.99 1.36

4 12,404 608, 640 885 0 5 4.74 4.97

4 12,404 608, 640 5,086 491 2.5 2.5 2.72
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number of clusters in the model decreases, because there is
no point in including clusters for single empty pups, as they
will never be used in the optimal relaxed model.

We conclude this section by observing that the largest data
set still poses some computational challenges, due to its size.
Specifically, we ran out of memory when trying to reduce the
optimality gap further. This was not because of the size of the
branch-and-bound tree (with regards to number of nodes) but
rather due to the size of the individual LPs within the tree.
Clearly, running on a machine with more than 3.5 GB of real
memory could help to improve performance. We also suggest
that delayed column generation, in which not all clusters are
stored initially, but instead are generated at each node of the
branch-and-bound tree as needed, might improve memory
utilization.

4.4. Value of Integration

We conclude our computational experiments with a brief
exploration of the value of integration. Specifically, we also
solved each of the four instances by breaking the problem into
three steps—first trailer assignment, then load matching and
routing (based on the loads constructed in trailer assignment),
then empty balancing (taking advantage of the existing loads
for matching opportunities). Note that it is still necessary to
solve the load matching and rounding problem heuristically
(i.e. with our cluster-based approach), as even for this sin-
gle problem, a true optimal solution cannot be found for the
reasons discussed in Section 3.

For these four instances, the benefit ranged from 1 to
3% percent (with the disaggregated solutions being found
in under an hour of run time). The majority of this benefit
comes from improvements in empty balancing costs (which
were on the order of 10% of total system costs). The reason
for this is that the link between trailer assignment and load
matching and routing in and of itself does not cause real ben-
efits. For example, if the demand on a lane is small enough to
fit into a single pup, then there is no value in assigning it to a
van, which has higher per-mile cost and decreases the poten-
tial opportunity for matching loads. Similarly, if the volume
fits in a single van, there is no benefit in assigning it to a set
of two pups, because this double configuration will be higher
cost and will not yield matching opportunities (as the loads
are already matched). It is only when the interaction with
empty balancing is incorporated that all three pieces of the
problem become tightly connected.

Itis interesting to note that the data sets that we considered
came from a fairly balanced network and thus the improve-
ments in empty balancing cost have somewhat limited impact
on overall system cost, as empty balancing does not dom-
inate cost. We observe that as the network becomes more
imbalanced, the benefits of integration grow substantially.
For example, we considered a variation of the original data

sets in which each node was earmarked as either predomi-
nantly outbound or predominantly inbound (which is the case
in many networks). In this case, the impact of aggregation was
a savings of almost twenty-eight percent of total system cost!

Thus, this seems to suggest that for certain networks, the
disaggregated approach can yield very high quality solu-
tions in short run times. For those networks with less sys-
tem balance, on the other hand, the integrated approach can
yield substantial benefits. In these cases, the disaggregated
approach may also provide benefits in terms of providing
initial integer-feasible solutions.

5. CONCLUSIONS AND FUTURE RESEARCH

In this article, we show how a novel modeling approach
(which embeds much of the system complexity within the
variable definition, rather than capturing it through con-
straints), in tandem with the use of templates to construct
candidate variables, can enable us to address many of the
challenges found within express package carrier planning.
In particular, we show how the load matching and routing
problem, which is intractable using a MCF approach, can be
solved through the use of variables that represent clusters of
loads. In addition to achieving tractability, this cluster-based
approach also allows us to pose a more realistic version of
the problem (for example, including allowances in time cal-
culations, and incorporating additional trailer configurations
and transportation modes).

Perhaps more importantly, we show that this approach
not only enables us to solve one challenging planning prob-
lem that is intractable under more traditional methods, but
can actually be extended to simultaneously solve three such
problems (trailer assignment, load matching and routing, and
empty balancing), which under certain network configura-
tions can lead to substantial savings in cost. This integrated
formulation is simply a minor modification of the original,
single-problem model, rather than an explicit linking of three
individual large-scale mathematical programs.

In our approach, the cluster-based variables, representing
groups of interacting loads, are designed to target sources of
intractability in a more traditional MCF approach—the large
time-space network needed to capture timing constraints and
the weak LP relaxation associated with linearizing the objec-
tive function. Although this cluster-based formulation has a
theoretically exponential number of variables, we show that
a much smaller number of variables, derived from promis-
ing templates, can be used to achieve high-quality solutions
for real-world problem instances in acceptable run times.
These templates are developed to exploit operational con-
siderations and in recognition of the difficulties posed by the
more-typical approach of column generation, in which the
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pricing problem would suffer from the same difficulties as a
MCEF approach to the original problem.

We suggest that a cluster-based approach, in conjunc-
tion with a template-based solution methodology, may have
applicability in other freight transportation problems as
well—one area of future research is to investigate this hypoth-
esis. For example, the LTL industry has many structural
similarities to the express package industry, and also faces the
problems of trailer assignment, load matching and routing,
and empty balancing, albeit with different operational factors
heavily influencing the decision-making process. Within the
express package industry, other outstanding research ques-
tions include: further integration to include load planning
and/or driver scheduling decisions; the development of new
templates to improve solution quality (or tighter lower bounds
to improve the optimality gap of existing solutions); and
the inclusion of variability within the planning process to
improve solution robustness. Finally, we note the outstanding
question of how to address memory issues for large instances;
delayed column generation (in which not all clusters are
stored explicitly in the LP’s) could potentially improve the
performance of the integrated model.
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