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SUMMARY

The turbulent fields outside of the boundary layer near the
noses of axially symmetric bodies with hemispherical noses have been
studied by means of the hot-wire anemometer. Measurements in a low
turbulence wind tunnel over a range of Reynolds numbers show that the
rms streamwigse fluctuations in the nose region are largéer than in the
free stream. large negative spatial correlation factors between stream-
wise fluctuations at 170 from the axis at low speeds and in a supersonic
tunnel at Mach 2.45 indicate that the fluctuations in the nose region
are coupled with a random motion of the stagnation point. The normal-
ized energy spectra of the fluctuations at 7° are found to scale with the
free stream wave number n/qx), where n is the frequency of the fluctuations,
over a ten-fold range in model diameter and a forty-fold range in
Reynolds number. These normalized spectra also show a shift toward
lower frequencies compared with free stream turbulence. Possible
connection between these phenomena and heat transfer measurements from

bodies as affected by turbulence are pointed out.
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INTRODUCTION

2,3,4,5

-Several invegtigators have reported anomalous effects
of stream turbulence on the measured heat transfer near the forward
stagnation point of blunt two-dimensional bodies. The integrated heat
transfer rates, as well as the local values throughout the region of
laminar boundary layer, showed large increases when the turbulence level
in the stream was increased, even when the Reynolds number was well
below the critical value for the rearward motion of the flow separation
point.

p)

A connection has been conjectured” between these measurements
and the relatively high turbulence level near the stagnation point of
a blunt two-dimensional body, as discovered by Piercy and Richardsoné.
They found in a wind tunnel of high turbulence level that the amplitude
of the fluctuations near the nose of a streamlined strut reached a
value about 4.5 times that in the free stream, and that the region of
increased turbulence extended about 1/4 chord ahead of the body.

A detailed study of the boundary layer near the nose of blunt
bodies of revolution, particularly with regard to transition at hyper-
sonic speeds, is being undertaken at The University of Michigan. During
the course of the preliminary low speed phase of the investigation, it
was observed that velocity fluctuations greater in magnitude than those
in the main stream occurred near the stagnation point.

Accordingly, the fluctuation field in the vicinity of the nose
was studied in some detail.  While the measurements of Piercy and Richardson6
concerned two-dimensional bodies, the measurements reported here represent

features of the three-dimensional counterpart of the fluctuation field

they observed.



EQUIPMENT

The experimental results were obtained in the 5 x 7 feet low-
turbulence tunnel and in the 8 x 13 inch supersonic tqnnel at the
University of Michigan.

The low-turbulence tunnel is of the closed return type with
dimensions shown in Fig. 1. The air speed range is 0-270 ft/sec.

The supersonic tunnel is of the intermittent blow-down type;
dry air at atmospheric pressure, stored in a collapsible container, dis-
charges through the test section into manifolded evacuated tanks. The
Mach number range is 1.4 to 5 with a maximum run duration of about 20
seconds. The measurements described here were made at a Mach number of
2. Lk,

Three axially-symmetric bodies, shown in Fig. 2, were used for
the subsonic tests. They have hemispherical noses with diameters 20, 11.7,
and 2 inches and fineness ratios 5.2, 6.3, and 17, respectively. The
nose of the 20 inch model is of aluminum, the 1l.7 inch is of wood and
the 2 inch is of plastic. The afterbodies were fabricated of sheet
metal and wood with steel re-enforcing. For the 20 inch model a heating
coil was installed so that the forward 10° could be heated to a few
hundred degrees above room temperature.

The supersonic measurements were made with the same 2 inch
sphere which had been faired for the subsonic measurements. The sphere
was mounted on a sting 0.875 inches in diameter.

A Shapiro and Edwards model 50 four channel hot-wire anemometer

system was used throughout the program for measurements of the mean and



fluctuating velocities, The amplifier has nearly constant amplification
in the range 1 to 20,000 cps.

A low-frequency wave analyzer with frequency range 1.6 to 160
cps, developed by M. S. Uberoi at the University of Michigan, was used
for spectrum analysis of the hot-wire signal. For a few of the measure-
ments the equipment was modified to reduce the frequency range by a
factor of 10.

The hot-wires used had diameters of 0.0002 to 0.000% inches
and lengths 0.015 to 0,03 inches. Platinum wires were used during the
early tests, but because of their short life at the higher subsonic and
at the supersonic speeds, tungsten wires were used in the later phases.

Measurements of the turbulence in the nose region were made for
the most part by means of a traversing unit shown in Fig. 3. The position
of the wire could be adjusted in the radial, meridional, and azimuthal
direction. The motion of the wire in the azimuthal direction was limited
to about one inch, that in the meridional direction from near o° to 630,
and that in the radial direction was +0.05 inches about a pre-set posi-

tion.

RESULTS

Pressure Distribution. The pregsure distribution was measured

in the nose region of the 20" body and cempared with that for an inviscid
incompressible flow. The plot of the pressure coefficient is shown in

Fig. L.



Turbulence Contours. Contours of constant u's/u&) , the ratio

of the rms streamwise velocity fluctuations in the nose region of the 20"
diameter body to that in the free stream, are shown in Fig. 5 for two
Reynolds numbers.

Relatively high fluctuation levels were measured within 1° of
the model axis ahead of the stagnation point. These higher levels close
to the axis are believed to have been caused by interference from the
probe support. This conclusion is based on the sudden violent change in
signal from a supplemental hot-wire located near the model surface at
@ = -7° when the primary survey hot-wire was brought within +1° of the mo-
del axis. The validity of the data near the axis is therefore considered
doubtful and the turbulence contours in this region are shown as dashed

lines in Fig. 5.

Turbulence near Surface at g = 70° Meagured values of u'S/UC')o s
the relative rms streamwise fluctuations, the surface of the three
bodies at ¢‘= 70 are shown in Fig. 6*. The positions of the hot-wires in
terms of radius of the body and boundary layer thickness are shown in
Table 1.

The normalized‘energy spectra of the fluctuations at the
positions designated in Table 1 and in the free stream are shown in
Fig. 7. These were measured by the harmonic analyzer and used a constant
bandwidth of 0.8 cps. The spectra at extremely low frequencies were

measured with a much narrower band width but were corrected to 0.8 cps

*
These data and some of the spectrum and spatial correlation data given
in the following paragraphslavwe  been previously reported in reference 7.



bandwidth. The individual distributions were normalized so that
@

[j d (nfuy) =1 .1
where the‘%elative energy in a given frequency band per unit n/Ugbis
j u}SQ/UK,E, with u‘SE/Ua? given by Fig. 6.
These spectrum measurements were supplemented by measurements
of the spatial correlation factors between the speed fluctuations at
¢ = iTO with both wires at the radial positions given in Table 1. . The

results are shown in Table 2 where
R = ujup/up 'u,’

is the correlation factor. The subscripts refer to the responses of
the respective wires. Most of the measurements were made with the fre-
quency band Og3<r1<20,OOO cps, but for a few of them the upper cut-off
was changed to 10, 100, or 1000 cps.

In addition to the subsonic tests, measurements of the correla-
tion factor were made on the 2" sphere at Mach 2.44 in the supergonic tunnel.
When the hot-wire response over the range 10 to 20,000 ¢ps was used, the
correlation was near zero. However, when those components with
frequencies above 50 cps were suppressed, the correlation factor was

=0.4, This result is entered in Table 2.

Effects of Model Mounting and of Flow over Afterbody. To
determine if the high velocity fluctuation levels at the nose were
influenced by the hot-wire support or by the model after-body configura-
tion, a number of changes were made sequentially. Alternate hot-wire

supports with widely different interference to the flow over the body



gave no significant chgnge in the fluctuation level, For purposes of
reference, the 7° station on the 20-inch diameter model (see Table 1)
was used for all speed conditions. Fluctuation levels and spectral
energy densities of the velocity were measured at this point as changes
were made to the model and its support system.

With the model mounting struts attached directly to the wood
floor of the tunnel test section, a coupling between the tunnel and the
model was first considered a likely cause of the high fluctuation levels
near the nose. Therefore, the model mounting system was radically
changed. A structure of steel 6" x 6" I-beams was fabricated to serve
as the support for the model mounting struts. This I-beam structure was
placed beneath the tunnel test section and supported on wood pads laid
on the concrete floor of the wind tunnel building. This floor serves
as the building foundation and is isolated from the tunnel structure.

The streamlined model mounting struts passed from the support structure
through holes in the test section floor to the model. The clearance
between the struts and the floor was sealed with rubber sheeting.

Additional support was provided the tip of the model tail
cone by three cables, one secured to the concrete floor and the other
two to the steel beam structure of the wind tunnel building through shock
cord links. These cables passed through holes in the test section walls
without contact to form a "Y" support structure in a plane normal to the
flow direction.

Test runs of the velocity fluctuations at the reference position
with the new model mount gave velocity fluctuation levels essentially the

same as those with the initial mounting system.
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The possibility was next investigated that these fluctuations
might be the result of aerodynamic feed-back from turbulent flow over
the surface and in the wake of the model to the flow near the nose.

To determine whether the unsteadiness could be caused by un-
steadiness of the laminar separation point near ¢J = 800, fluctuations with
the model in the "clean" configuration were compared with those utilizing
a boundary layer trip wire extending peripherally around the nose
surface at an angle ¢ of 60°, Velocity fluctuations were not signifi-
cantly affected.

The possibility that fluctuations at the nose were being trans-
mitted through the potential flow from the aft region of the model was
explored with a major change to the model configuration. An annular
metal shroud with a 12-inch chord and no camber was mounted with its
trailing edge 3 inches ahead of the tip of the tail cone (see Fig. L),
Velocity fluctuations at the nose reference position were then measured
with fhe shroud open and also with its annular opening completely
closed. The latter configuration gave a bluff body type of wake visually
shown by the violent action of wool tufts located on the rear part of
the tail cone and the outside surface of the shroud. The effect these
configuration changes had on the fluctuation level at the reference
position was not significant.

Table 3 summgrizes the velocity fluctustion levels for thege
changes in configuration. The variations in data for all configurations
and velocities are within the range of reproducibility of the fluctuation
level data.

The spectral energy distribution of the velocity fluctuations

was also measured for the various configurations at three nominal free-

11



stream velocities -- 50, 100 and 200 ft/secu The results, shown in
Fig. 8, show close similarity between the spectral distributions for the
Melean" model, for the model with boundary layer trip and for the model

with the different shroud configurations.

DISCUSSION

The first question to be answered with regard to the velocity
fluctuations in the nose region of a body is: To what extent is
their origin associated with the model mounting, with unsteadiness of
the boundary layer transition point, or with the unsteady wake? The
data given in Table 3 and in Fig. 8 demonstrate that the effects of
these influences are within the experimental scatter of the hot-wire
measurements. We therefore conclude that the characteristics of the
turbulence field described by Figs. 5, 6, and 7 and Table 2 depend on
the turbulence in the main flow, as influenced by Reynolds number and
the nose shape.

Comparison of results given in Fig. 5 for two Reynolds numbers
shows that the region in which the turbulence exceeds the free stream
value extends considerably farther out from the body for the lower
Reynolds number than for the higher.

It is interesting to interpret these regions of relatively
high turbulence in terms of boundary layer thicknesses. The calculated
boundary layer thicknesses, given by 9 §/R=2.26 [V /U, B (almost
constant over the range O <¢ <2‘50) are 0.0022 and 0.00155, respectively,
for the lower and higher Reynolds numbers. The magnitude of the

turbulence exceeds the free stream value in the layer out to about

12



y/R = .0k at ¢ = 70 at both Reynolds numbers. Thus, at §§ = 70 the
region of excess turbulence extends to 188§ and 26§ , respectively,

at the lower and higher Reynolds numbers. At ¢ = 200 the region of
excess turbulence extends to 55§ (y/R = 0.12) and 40§ (y/R = .06),
respectively, at the lower and higher Reynolds numbers. This latter
comparison is probably significant, but at the 70 position the contours
are so close together that the difference between 188 and 268 is
probably within the experimental error.

The data im Figs. 5 and 6 indicate that the amplitudes of low
frequency components near the stagnation point are considerably higher
than in the free stream turbulence. Further, the correlation factors
given in Table 2 show that the major portion of the turbulent energy at
¢ = 70 is identified with a random motién of the stagnation point,
Peterson and Hortonlo also identified random motion of the stagnation
point on the basis of pressure measurements at the nose.

The coupling of the fluctuations with the motion of the
stagnation point was further demonstrated by another observation. When
a cruciform arrangement of two perpendicular plates was fitted to the nose,
thus fixing the stagnation point, the fluctuations at the 70 position fell
to a very low value. However, when new nose shapes, pointed or rounded,
were fitted to the region -2 <¢<:2°, the magnitude of the fluctuations
at the 70 position -was not substantially altered.

The data of Fig. 6 show that the rms value of the streamwise
fluctuation at ¢ = 70 is a function of the wvelocity and of model size.
The fact that the magnitude of u'y is greater than ube for all of the
measurements is not significant because the lateral components in the

free stream, V&) and WZD are each about twice gé and, further, near

13



the nose there is a good possibility that energy transferred from
Véo and wéo accounts for part of u'g. For instance, a lateral
component, if its scale is large enough, in effect tilts the inc¢ident
alrstream establishing a new stagnation point and thus changing its
location relative to the hot wire; in this way energy is transferred
from véo or w;o to u'g,

The inverse relationship between model size and u*s shown in
Fig. 6 agrees with that expected, since small scale turbulence will
influence the flow over small diameter bodies to a greater extent
than over large. In other words the flow field over a body of given dia-
meter would be insensitive to small scale eddies in the incident flow
but would approach that corresponding to a change in Ud: for large
scale eddies. We find, for instance, that the data given in Fig. 6 can

be expressed by the relation

ug' o1 1
— D* =1.85 (ims) "
%D‘

with an rms deviation of 4.5%. The scale of the free stream turbulence
as shown by the spectra of Fig. 7, is independent of wind speed, and
so does not occur in the above expression. More observations with
different magnitudes and scales of free stream turbulence will be nec-
essary to identify a quantitative description of the relationship.

The spectra of Fig. 7 indicate two interesting features. First,
the normalized spectra near the nose sgcale with n/qn, (n is the
frequency in cps), that is, with free stream wave number, independent of

Reynolds number and relative scale of the turbulence. - Second, the

1k



observations near the nose at a given Uy show a higher relative
concentration of energy at low frequencies, compared with the free
stream turbulence. The existence of this spectrum shift is consistent
with the rationalization given above for the variation of the rms
fluctuations with relative scale.

The correlation factor of -O.4 at +7° on the 2" sphere at
Mach number 2.44 (Table 2) was measured only after all frequencies above
50 cps were suppressed. This result indicates the presence in
-the supersonic airstream of relatively high frequency, positively corre-
lated fluctuations, probably pressure waves. The negative correlation
indicates that at supersonic as well as at subsonic speeds a random
low frequency motion of the stagnation point occurs.

This stagnation point motion could be expected to influence
the average heat transfer near the stagnation point. As was pointed out
in the Introduction, measurements in several laboratories show that
the local heat transfer rate to blunt bodies in supersonlc flow reaches
a maximum value a short distance from the stagnation point of the main
flowa. It is to be expected that the rate would be nearly constant on
the portion of the surface covering the excursions of the stagnation

point, though why it should reach a maximum off the axis is unclear.

RESULTS
1. The turbulent field cutside of the boundary layer near the
nose of a blunt body in a low turbulence incompressible flow exhibits the
following characteristics.
a) The rms streamwise velocity fluctuations in the nose region
are larger than those in the free stream, The region in
which the ratio of the two rms values exceeds unity extends

15



many boundary layer thicknesses out from the body.

The region extends farther out at Re = 106o However,

the fact that a Reynolds number based on the scale of

the turbulence is different for the two sets of observations
prevents a quantitative conclusion.

b) Iarge negative spatial correlation factors at ¢ = f?o indicate
that the velocity fluctuations near the stagnation point
are closely coupled with a random motion of the stagnation
point.

c) The expression D* u's/uélo = 1,85, with an rmg deviation of
4.5%, describes all of the observations. This result
agrees qualitatively with the expectation that when the
larger scale turbulence elements in the free stream pass
over the body, their effect on the flow will be greater
than for the smaller scale elements.

d) The normalized energy spectra at ¢ = 7° scale with the free
stream wave number. The observations cover a forty-fold
range in Reynolds number and a ten-fold range in body
diameter.

e) The normalized spectra of the fluctuations at 70 indicate
a shift toward lower frequencies, compared with the free
stream turbulence at the same Ugy. This shift is in qual-
itative agreement with the rationalization given under c.

2. A spatial correlation factor of -0.4 at ¢ ='4_—7O on a sphere

in a Mach 2.4k flow indicates a random relatively low frequency motion

of the stagnation point similar to that found at low speeds.

16
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TABLE 1

HOT WIRE POSITIONS FOR

VELOCITY FLUCTUATION MEASUREMENTS

MODEL Uy D
DIAMETER ¢ y y/R Uy S(theory) yif R = 7
INCHES DEGREES INCHES ---- Ft/Sec INCHES --- x 1072
2,0 7° .03+ .03k 50 ,0100 3.k .52
100 L0071 4.8 1.0
200 ,0050 6.8 2.1
11.7 7° .10 ,017 50 024 L2 3.1
100 017 5.9 6.1
200 012 8.3 12.2
20.0 7° .17 .017 50 L031 5.k 5.2
100 022 7.6 10.4
200 016 10.7 20.9
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TABLE 2

VELOCITY CORRELATION FACTORS FOR ¢ = +7° FROM NOSE

D U Band Pass

ins. ft /sec R(up,us) cps{ n<{cps
2.0 125 - .91 1< n <20,000
125 - .94 104 € 20,000
125 - .90 100<n< 20,000

125 small but negative
1,000<< 5,000
M= 2.4k small but positive 10<n {20,000
- ko 1<{n <50

11.7 L8. 4 - 77 1¢ n 20,000
oh. L - .8k 1 {n <20,000
198 - .65 1< n <20,000
20 Yo} - .79 1¢{ n<20,000
98 - .65 1 {n <20,000
206 - .72 1< n <20,000
173 - .75 100<n <20,000
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TABLE 3

EFFECT OF CHANGES IN MODEL CONFIGURATION ON THE VELOCITY
FLUCTUATION LEVEL, ug /U NEAR THE NOSE OF A 20-INCH DIAMETER
HEMISPHERICAL NOSED MODEL AT @ = 7°, y = 0.17".

NOMINAL FREE STREAM VELOCITY

50 FPS 100 FPS 200 FPS
MODEL CONFIGURATION ué/U ul/u ué/U
% % %
CLEAN 033 .059 092
.033 .062 .100
.037 . 06k .110
o O)""E
.073-INCH TRIP WIRE
at ¢ = 60° - .051 102
12-INCH CHORD SHROUD . 037 . 066 .110
OPEN .038
12-INCH CHORD SHROUD .038 061 105

BLOCKED

20
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Fig. 1. Drawing of the Low Turbulence Wind Tunnel at the University
of Michigan. Six screens are located between stations 1k
and 16.
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Fig. 2. Bodies of Revolution used in the Investigation. Details of
the shroud used in attempt to eliminate or intensify move-
ment of the stagnation point. Model at lower right was used
in supersonic test.
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Fig. 3. Photograph of the hot-wire traverse head
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