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ABSTRACT

DEVELOPMENT AND ANALYSIS OF
A GLOBAL COMPACTION TECHNIQUE
FOR MICROPROGRAMS

by
Jehkwan Lah

Chairman: Daniel E. Atkins

The need for a better microprogramming tool has increased considerably as
increased demand and support of computer technology has brought about wide
use of microprograms. The eventual goal of microprogramn:ing tool development
would be to make a high level microprogram language and a compiler to generate
minimal-execution-time microcode for a variety of machines. In generating
minimal-execution-time microcode, one aspect that differentiates microprogram-
ming languages from macroprogramming languages is the need for compaction in

highly horizontal microarchitecture.

Among the proposed microprogram compaction methods, the trace schedul-
ing is the most general and appears to give the fastest execution of compacted
microcode. However, the growth of memory size by extensive copying of blocks
can be enormous, exponential in the worst case, and the complicated bookkeeping

scage of the trace scheduling has been an obstacle to implementation.

A technique called beta compaction, based on trace scheduling, is proposed
to mitigate the drawbacks of trace scheduling. Basically, it identifies the junction
blocks ( the blocks beginning with a join and ending with a conditional branch )
as the major source of complication, and cut traces at those junction blocks. It
achieves almost all the compaction of the trace scheduling except that which
causes copying of blocks. Memory size after the beta compaction is usually

smaller than the original. Even when the memory size grows in rare instances, it



is bounded by O(n®) in the worst case. And the bookkeeping stage is very much
simplified. The compacted microcode size variation as the source microcode

changes is also very small.

A loop-free version of both beta compaction and trace scheduling has been
implemented. Comparison between the two was done using artificially syn-
thesized microcodes and the above properties of the beta compaction was con-

firmed.

A simple microprogrammable machine based on AM2900 components was
designed and simulated with an interactive user-friendly interface. A realistic
application program was written and hand-compiled into microcode. The micro-
code was executed on the simulator both before and after compaction, which
demonstrated the applicability of the compaction technique and the correctness

of the implementation.
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CHAPTER 1

INTRODUCTION

Since Maurice Wilkes first introduced the concept of microprogramming in
1951 [WIL51], the use of the microprogram has increased continuously as the
demand for and support of computer technology have increased. Increasing com-
plexity of digital systems requires more complex microprograms. Decreasing high

speed memory cost and emerging development tools help meet the requirement.

However, until recently microcode was produced with little help of develop-
ment tools. The only practical tool available to many microprogrammers was an
assembly-like bit stuffer using mnemonics. The microcode was written by some-
one who had a thorough knowledge of the machine to be programmed. The
microprogramming was considered a part of the hardware design and so it was
often done by the hardware designer. And once developed, the microcode was
not touched except to fix bugs. Those microcode developments were manageable
by a few specialists with little help from development tools, mainly because the

microcode was relatively small in size and less complex.

However, things have changed. With the introduction of writable control
store and user microprogramming, the need for better microprogramming tools is
higher. And increasingly complex digital systems and the advent of VLSI are
increasing the use of microprograms. Design time for VLSI systems depends on
sophisticated design aids for hardware and microprogramming. VLSI hardware
and microcode design problems are large and technology-dependent; humans

alone cannot handle the detail and explore all the alternatives involved in correct



optimal design [PAR81]. VLSI technology has also reduced the cost of high-speed
memory available, so the size of micromemory has become less of a constraint
and the microprogramming of some special purpose processors involves larger
microcodes than conventional macro instruction emulation. All these changes are

making it more critical to have better tools in microprogramming.

The eventual goal of microprogramming tool development would be to make
a high level language and a compiler to generate minimal-execution-time micro-
code for a wide variety of machines. There have been various attempts to design
and implement higher level languages for microprogramming but none of these
has resulted in the production of a generally available compiler. Several proposed
high level microprogramming languages are reviewed in [SIN80]. Even though
the same pressure that has led to the widespread acceptance of conventional high
level languages now applies to microprogramming [DAV78], the development of
microprogramming languages lags far behind that of macroprogramming
languages. There are a couple of factors which complicate compilation to micro-

code.

First, the structure of horizontal' microcode is much more complicated than
that of conventional machine code. In horizontal microarchitecture, a microin-
struction contains several microoperations which directly control parallel
hardware resources. The microoperations contained in one microinstruction are
executed at the same time. Accordingly, the detection of available parallelism
and scheduling microoperations are very difficult. Timing can be very compli-
cated. Certain microoperations require different clock phases than others or
might take more than one clock cycle. If some degree of ( if not total ) machine
independence is sought, generating equally fast-executing microcode for different

machines is an extremely different task.

Second, in most microprogramming environments, minimal-execution-time

microcode is very important. In particular, when the microprogram is used to

! See the definition in chapter II.



emulate macroarchitecture, the efficiency of the whole systems ultimately
depends on the efficiency of the microprograms implementing the instruction set
of the macromachine. The user microprogram ( of non-emulation application )
may allow less strict efficiency requirements. But the only reason that a user
would want to write microcode is to gain speed. If the compiler cannot generate

sufficiently fast-executing microcode, it is of no use.

One of the critical issues in developing a high level microprogram language is
how to generate minimal-execution-time microcode. As machines have more con-
currency available in datapath at the register transfer level, it is particularly
important to efficiently control all the available parallel resources. It is a com-
mon belief that microcode generated by a machine ( or a compiler ) cannot be
executed faster than one written by a highly skilled microprogrammer, but as the
size of microprograms grows, it becomes beyond human intelligence to handle all

opportunities to optimize a microprogram [PAT76].

In generating minimal-execution-time microcode, one aspect that differen-
tiates microprogramming languages from macroprogramming languages is the
need for compaction in highly horizontal microarchitecture. Microprogram com-
paction Is the process of exploiting parallelism to combine microoperations ( MO's
) into microinstructions ( MI's ) to reduce the time and/or space needed for the
execution of a microprogram. In solving microprogram compaction problems,
optimality is pursued but not necessarily arrived at, since the microprogram
optimization ( optimal compaction ) problem has been proved to be NP-complete

both in microword dimension [DEW76] and in bit dimension [ROB79].

The microprogram compaction problem has been approached in two ways:
local compaction and global compaction. Local compaction deals only with a
straight line microcode ( SLM ) section also known as a basic block. A SLM is a
sequence of MO's with no jump into the microcode except at the beginning, and
no jump out except possibly at the end. Global compaction deals with micropro-

grams which have more than one basic block with conditional jumps, joins, and



loops.

Several methods have been proposed to solve the local compaction problem,
and they are reviewed in an article by Landskov et al [LAN80]. The same group
of people ran some experiments with the methods and reported the results in
[DAVR1] and claimed that the local compaction problem is considered to be
essentially solved. However, Vegdahl presented an algorithm in his thesis
[VEG&3] which showed that the classical compaction problem, which does not
consider reordering of source MO's, can be solved in O(n'), where v is a bounded
number of registers in the machine. And so, Vegdahl conjectures, the problem of
finding a semantics-preserving partial ordering which yields optimum compaction
is a more difficult problem, because the general compaction problem - that is, the
problem that considers all semantics-preserving partial orderings - is still NP-
complete even with the bounded-register assumption. Here we are dealing with
the classical compaction problem and do not consider reordering of source MO's.
Even though the problem can be solved in polynomial time, the order which is
equal to the number of registers in the hardware is, in most cases, so high that
one is justified in using heuristies, which has low order ( usually O(»%) ) polyno-
mial time complexity. Several methods to solve the local compaction problem,

including Vegdahl's thesis results, are reviewed in section 3.1.

Four methods have been proposed to solve the global compaction problem
[DAST9. WOO79a, TOK78, TOKS1, FIS79, FIS81a] as summarized in [FIS&1b].
Also. a recent paper by Isoda [ISO83] has proposed another approach, which uses
a generalized data dependency graph.

The trace scheduling by Fisher [FIS79, FIS81a] is the most general method
and appears to give the fastest execution of compacted microcode. Although
Fisher's trace scheduling procedure for global compaction may produce significant
reduction in execution time of compacted microcode, the growth of memory size

by extensive copying of blocks can be enormous. In the worst case, the memory



size can grow exponentially® [FIS81a), and the complex bookkeeping stage of the

trace scheduling is an obstacle to implementation.

In [FIs®1a), Fisher suggests modifications to mitigate the memory growth
effect. These modifications are based upon selection of a probability threshold
below which ( with some exceptions ) MO's are not allowed to move across block
boundaries. Both memory size and execution time appear to be very sensitive to
changes in the source microcode. See section 3.2.3 for further discussion of the
modifications. A few methods to solve the global compaction problem are

reviewed in section 3.2.

In this dissertation a technique called beta compaction, based on trace
scheduling. is proposed to mitigate the drawbacks of trace scheduling. Basically,
it identifies the junction blocks ( the blocks beginning with a join and ending
with a conditional branch ) as the major source of complication, divides traces at
those junction blocks, and compacts each divided trace separately. It achieves
almost all the compaction of the Fisher's trace scheduling except that which
causes copying of blocks. An earlier effort to correct the drawbacks of trace

scheduling called tree compaction is reported in [LAH83].

A loop-free version of both beta compaction and trace scheduling has been
implemented. Comparison between the two was done using some synthesized
microcodes and it was confirmed that the beta compaction generates almost as

fast-executing microcode as the trace scheduling but with much less memory.

A microprogrammable machine based on AMD2900 components was
designed and simulated with an interactive interface. A realistic application pro-
grams was written and hand-compiled into microcode. The microcode was exe-
cuted on the simulator both before and after compaction, to demonstrate the

applicability of the compaction technique and the informal correctness of the

implementation.

2 One such example is shown in section 5.6.1.



Chapter II presents a simple microprogram model and definitions of the
terms which are used throughout the thesis. Chapter III reviews some work done
previously in the area of microprogram compaction including local compaction
and global compaction. Chapter IV and Chapter V are the core of this thesis.
Chapter IV presents a detailed description of the beta compaction which are
developed to solve the global compaction problem. It also gives one illustrative
example to show the actual working of the heuristic. Chapter V reports two
experimental results. First, the comparison of beta compaction against the trace
scheduling using an artificial microcode model is presented. Second, compaction
of an application program and its execution on a simulated machine is described.
At the end of the chapter, exponential memory growth of the trace scheduling
and the worst-case space complexity analysis of the beta compaction are shown.

Chapter VI summarizes the dissertation and suggests some future research.

Throughout the dissertation a few abbreviations of terms are used to make
sentences short and clear. The abbreviations are listed at the beginning of this

document.



CHAPTER 11

A MODEL OF A MICROPROGRAM

The purpose of this chapter is to present a microprogram model which will
be used in later chapters of the thesis. A part of the model is based on D.
Landskov et al [LAN80]. The model is to satisfy the minimum requirement of
allowing presentation of the essential concepts of the microprogram compaction
heuristics with clarity. Since this is the basic model, many extensions are possi-

ble. Some of them will be discussed along with the basic model.

Definition: A microinstruction ( Ml ) is an ordered set of all control signals in a

machine at a given ( quantized ) time.
Definition: A microprogram is a time-ordered sequence of MI.

Definition: Each separate machine activity specified in an MI is called a

microoperation ( MO ).

Thus an MI can be characterized as a set of MO's and the MO is the basic
unit of operation that we are dealing with. In some literature [MAL78 LANSO],
microbundle ( MB ) is defined as a set of MO’s, all of which are coupled to one
another. Thus every MO in an MB must go into the same MI. The concept of
bundling can be useful in dealing with MO’s which operate on transitory data

storage.

The most common classification applied to microinstruction formats is to
describe them as horizontal or vertical [SAL76]. The horizontal and the vertical

are relative terms used to indicate the degree of encoding in microinstruction



formats. There are two extremes, totally horizontal and totally vertical, and
many variations in between. The highly horizontal microinstruction format
would have a sufficient number of separate control fields to exercise simultaneous
control over all independent hardware facilities, with encoding limited to mutu-
ally exclusive control signals. The highly vertical microinstruction format, on the
other hand, would have a high degree of encoding and, in many ways, resembles
conventional machine instruction. We will use the terms horizontal and vertical
to indicate highly horizontal and highly vertical, which include not only extremes

but some neighborhood of the extremes.

Definition: Microprogram compaction is the process of exploiting parallelism to
combine MO's into MI's to reduce the time and/or space needed for the execution

of a microprogram.

The vertical MI's, in a strict sense, specify only a single MO to be performed
in each MI. Therefore vertical microprogramming allows no room for micropro-
gram compaction. Horizontal microprogramming is implied throughout the dis-

cussion of microprogram compaction.

Definition: A straight line microcode ( SLM ) is an ordered set of MO’s with no

entry point, except at the beginning, and no branches, except possibly at the end.

Microprogram compaction which deals only with a single SLM at a time is
called local compaction. Microprogram compaction which deals with more than
one SLM. where SLM's are connected with each other through conditional
branches, joins or loops, is called global compaction. In local compaction, the
execution time of compacted microcode is reduced by reducing the number of
compacted MI's. However, in global compaction, simply reducing the total
number of compacted MI's does not necessarily reduce the execution time of the
compacted microcode because the probabilities of SLM’s being executed are dif-
ferent. It is possible, in global compaction, that a microcode with larger size is

executed faster than a microcode with smaller size for some data set.



2.1. Data Dependency Analysis

In the process of microcode compaction, a given sequence of MO's are placed
into a sequence of MI's where an MI may contain one or more MO’s. Although
the original order of MO's is invariably changed, we want the original semantics
of the microcode retained and the data integrity not violated after the compac-

tion. To accomplish these we need to analyze data dependency between MO's.

The following definitions about data dependency are made only with respect
to a SLM or a trace. A trace is a sequence of blocks and MO’s in the blocks are
treated as if they form a SLM for the purpose of data dependency analysis. The
trace will be defined in sec. 2.3. The definitions of data dependency can be

extended to include any program structure [ISO83].

Definition: In a given sequence of MO's mo,, mo,, ..., mo,, ..., mo;, ..., Mo, we

1’ 1

say mo, and mo; have a data tnteraction if they satisfy any of the following con-
ditions.

(1) An output resource of mo, is also an input resource of mo;.

(2) An input resource of mo, is also an output resource of mo.

(3) An output resource of mo, is also an output resource of mo,.

To maintain data integrity, the order of any two MO's cannot be changed if
they have a data interaction. Using the definition of data interaction, we can

define a partial ordering over the MO's.

Definition: Given two MO's mo, and mo,, where mo, precedes mo; in the original
SLM, mo, is directly data dependent on mo, ( written mo, — mo; ) if the two MO's
have a data interaction and if there is no sequence of MO's, mo, ,, MO, ..., MO,

n>1. such that MO; — MO, |, MO, — MO, ..., MOy, ) = MOy, MOy — mo;.

The second part of the definition ensures that two directly data dependent

MO’s will have no other chain of directly data dependent MO's between them.
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Data dependency is the transitive closure of the direct data dependency relation.

Definition: The partial ordering over MO’s defined by direct data dependency
can be represented by a directed acyclic graph. We call this the data dependency
graph ( DDG ). Each node on a DDG corresponds to a MO. An edge on a DDG

from a node 1 corresponding to mo, to a node j corresponding to mo, indicates

that mo, is directly data dependent on mo,.

Vegdahl adopted the definition of data antidependency from Banerjee et al.
[BANT9] and used that as a basis for his analysis.

Definition: If MO may destroy data that is required by another MO, the former

is said to be data antidependent on the latter.

This is the case (2) of our definition of data interaction. For further discus-

sion of data antidependency and Vegdahl's analysis, see section 3.1.5.

2.2. Host Machine Description

Besides data dependency among MO's, there is another restriction that has
to be considered in microprogram compaction which is imposed by the host
machine itself. If two MO’s require exclusive use of a single resource, they cannot
be placed into the same MI. The situation is called a resource conflict. To han-
dle the resource conflict, we need a model to describe the host machine resources
seen by the microprogram. Even though two MO's require separate resources,
they may not necessarily be placed in the same MI because, as a result of partial
encoding. the two MO's use the same MI field. The situation is called a MI field
conflict. In the case of totally horizontal microinstruction, the Ml field conflict
does not exist because each resource in the hardware has its own control field in
the MI. Therefore, the resource conflict and the MI field conflict are equivalent in

totally horizontal microcodes. To simplify the discussion, we will assume a
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totally horizontal MI format without losing generality. It would then be straight-
forward to extend our discussion to handle partially encoded microcodes. We
now present a model of a machine control word which includes a simple descrip-

tion of the host machine resources.

Definition: An MO is represented by a six-tuple ( label, instruction, next-
address, destination-registers, source-registers, resource vector ). The label is a
number to identify each MO, the instruction is a command to the microsequencer
( microaddress controller ), for example, CONT, CJMP, GOTO, etc., and the
next-address is a target address for a branch. The destination-registers and the
source-registers are the registers written and read respectively in a given MO. A
resource vector is a vector in which each component corresponds to an individual
resource available in the hardware. The value of each component is either 1 or 0

depending on whether the corresponding resource is used in a given MO.

The resource vector gives a necessary description of the host machine

resources to detect and resolve the resource conflicts.

Other models used in the literature [LAN80, DAV81, TOKS81], which were
intended for local compaction, do not have sequencer instructions and branch
addresses. On the other hand, they have a set of clock phase required for MO
execution and a set of all MI fields required by the MO. It would be straightfor-

ward to add these attributes to our model as necessary.

Defirition: A register is alive at some point in a program if its contents will be

read in the future prior to being overwritten. Otherwise, the register is dead.

2.3. Microprogram Description

A loop-free program can be represented as a connected directed graph with
one node of in-degree zero ( entrance ) and one node of out-degree zero ( exit ).

For programs with multiple entry points, a dummy entry block from which
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execution is branched to the actual entry points, is added to comply to the above
rule. Similarly, a dummy exit block is added for programs with multiple exit

points.

Definition: A frace is a set of blocks which forms a path of execution and has
higher probability of execution than any other path in a given microprogram or a

part of it.

Definition: A weighted execution time of a microprogram is the sum of execution

time of each block multiplied by the probability of that block executing.



CHAPTER 11

PREVIOUS RESEARCH

Previous research attempts to solve the microprogram compaction problem
has been approached in two different ways: local compaction and global compac-
tion. Earlier attempts concentrated on what is now known as local compaction,

which schedules MO's within block boundaries. First, it was attempted to find

an optimal solution® [YAU74] only to find out that the algorithm was exponential
in complexity. So efforts were directed to finding reasonable heuristics. It was
later proved that the microprogram optimization ( optimal compaction ) problem
is indeed NP-complete both in microword dimension [DEW76] and in bit dimen-
sion [ROB79]. Four different heuristics have been proposed to solve the local

compaction problem and are reviewed in [LANRO].

More recently, in an effort to get more efficient microcode, the compaction
was tried not only among MO’'s within each block boundary but also among
MO's bevond block boundaries. This is now known as global compaction. The
global compaction of microprograms has been an active research area for the last

five vears or so and several heuristics have been proposed.

.3Note that in a straight line microcode, getting the minimum microcode size is equivalent to
getting the minimum execution speed of the microcode.

13
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3.1. Local Compaction

In [DAV8I], the same group of people who reviewed four local compaction
heuristics in [LANRO] reported the experimental result on these heuristics and
claimed that the local compaction problem was essentially solved. Based on the
experimentation, they recommended first-come first-serve ( see Section 3.1.1 )

with some modification and list scheduling ( see Section 3.1.4 ).

However, Vegdahl revisited the local compaction problem again in his thesis
[VEGR3] and proved that the classical local compaction problem, which does not
consider reordering of source MO'’s, is not NP-complete, but polynomial in com-

plexity. He presented such an algorithm.

In this section, four local compaction heuristics are briefly reviewed and
Vegdahl's thesis results are discussed. In describing the heuristics, we will use
one simple example to enhance understanding. The DDG of the example micro-

code is shown in Figure 3.1. The circled numbers represent microoperations.

O micro operation

— direct data dependency

cmamun resource conflict

Figure 3.1 Data dependency graph of example microcode
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The arrows indicate the direct data dependency relation between MO's. The dot-
ted lines are used for convenience to indicate resource conflict between MO's.
We will show the working of each heuristic on the same sample microcode along

with the description of the heuristic itself.

3.1.1. First-Come, First-Serve

The first-come first-serve heuristic described by Dasgupta and Tartar
[DAS76] operates on a straight line microcode ( SLM ) which is in the form of a
list of MO’s. MO's from the SLM are added, in the order in which they appear

on the list, to an initially empty list of MI's. Here is the outline of the heuristic.

for each MO do
{
Determine the rise imit of the MO by searching MI's

from bottom to top using data dependency.

Place the MO in the first Ml which has no resource
conflict with the MO, starting from the rise limit
to the last Ml

if the MO is not placed, create a MI at the bottom
to hold it.

The detail procedure follows.

The search for an existing MI to which the current MO can be added begins
with a data dependency analysis. Starting at the bottom of the MI list and
proceeding upward, examine each MI if the MO under current consideration is

not data dependent on any MO in that MI. If the current MO is data dependent
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on an MO in the ¢ th MI, the current MO cannot be placed in any MI earlier
than 7 or 1 itself. The object of this search is to find the earliest ( highest ) MI in
which the new MO can be placed without violating the ordering imposed by the

data dependencies in the SLM. This Ml is called the rise limit.

The next step in the search for an existing MI is the examination of resource
conflicts. To be placed in a MI, the current MO must not conflict with any MO
already in that MI. Assuming that a rise limit ¢+ was found, search downward in
the list, starting with Ml ¢, for some MI in which the new MO can be placed.
When such a MI is found, add the new MO. If no such MI is found, add the new
MO to the end of the MI list, thus forming a new MI containing only one MO.

If no rise limit was found, then the current MO was not data dependent on
any MO in the MI list, and the MO can be added to any MI with which it has no
conflicts. In this case begin the downward search at the top of the MI list. If

MO 1 MO 2 MO 3 MO 4 MO S MO 6
1 1 1 1 1 1
rise limit=1 2 2 2 2 2
rise limit=2 3 3 3 3
rise limit=2 4 4.5 4,5
TESOUICE  1ise limit-a  rise limit-a 6
conflict
between rise limit=5
2 and 3

Figure 3.2 The working of first-come first serve
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there are no MI's to which the MO can be added without conflict, use the MO to
form a new MI at the top of all the other MI's. Placing this MO at the top will
Keep it from blocking any new MO's that depend on it.

Figure 3.2 shows the working of the first-come first-serve heuristic on the
sample microcode. Each column shows the placement of one MO as indicated on
top. The boxes represent MI's. The rise limit is shown for each MO. After MO
1 is placed, the rise limit for MO 2 is 2 because of data dependency. Even
though the rise limit of MO 3 is also 2, it can not be placed in the same MI with
MO 2 because of resource conflict between MO 2 and MO 3. The remaining

MO's are placed similarly and the result is five MI's.

3.1.2. Critical Path

The critical path heuristic for microcode compaction was introduced by
Ramamoorthy and Tsuchiya [RAM74]. This critical path heuristic attempts to
identify MO’s that must be executed at a certain time in order for the list of MI's
to be optimal. The MO's chosen are those which are on a longest path ( the crit-
ical path ) through the DDG. As noted, the minimum possible number of MI's is

Just the length of the longest path. Here is the outline of the heuristic.

Determine early partition
Determine late partition
Determine critical partition
Revise the critical partition

Place non-critical MO's

The detailed description of each step follows.

The first step is to create an early partition ( EP ). Each time frame of the

EP contains those MO's that can be executed in that time, at the earliest. So
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starting from the first time frame, fill in each time frame with all executable
MO's and if there is no more executable MO’s, then go on to the next time
frame. A MO must be placed in the time frame of the EP after the frame of its
latest ancestor. Data dependencies alone determine the placement of MO's in the
EP. Conflicts will be resolved later. The early partition of the sample microcode

is shown in Figure 3.3(a). Each different shading indicates a separate time frame.

The next step is the creation of a late partition ( LP ). In the LP the latest
possible timings of the MO’s are considered. Each time frame of the LP contains
those MO's that can be executed in that time, at the latest. It starts from the
MO for which no other MO is data dependent and goes on to the one earlier time
frame and fills it with all MO’s for which no other MO is data dependent but
those which are in the later time frame. If the data dependency graph is
represented by a matrix, the LP can be created by applying the EP algorithm to

the transpose of the graph matrix. The construction of the LP resembles the

(a) early partition (b) late partition (c) critical partition

Figure 3.3 The working of critical path
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construction of the EP in reverse. The late partition of the sample microcode is

shown in Figure 3.3(b).

The construction of these partitions facilitates the identification of MO’s on
the critical path of the DDG. These MO’s, called critical MO's, are just those
with the same timing in both early partition and late partition. It is called a
critical partition ( CP ). The critical partition of the sample microcode is shown

in Figure 3.3(c) by the shaded nodes.

Since the CP was constructed by considering only data dependencies
between MO's, two MO’s in the same frame of the CP may conflict. And since
the frames of the CP will serve as a basis for MI's in the list of MI's, conflicting
MO’s in a frame must be separated. The result of separating all the conflicting
MO’s in each frame is called the revised eritical partition ( RCP ). The separated
frame forms subframes. The revised eritical partition of the sample microcode
happens to be the same as the critical partition shown in Figure 3.3(c). In other
words, in this particular example, the critical partition contains no time frame

which contains two conflicting MO’s.

4,5

2,6

Figure 3.4 Result of critical path
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The next and final step of the heuristic is to add the noneritical MO's to the
RCP, forming the final list of MI's. For each noncritical MO, we search the RCP
from the frame containing the MO in the EP to the frame containing the MO in
the LP for a MI to which the noncritical MO can be added. If the MO cannot be
added to any of the frames within this range, a new subframe is created. The
final result of critical path heuristic on the sample microcode is shown in Figure

3.4 after placing non-critical MO’s 2 and 5.

3.1.3. Branch and Bound

The third method of solving the local compaction problem is branch and
bound ( BAB ), a general class of tree-searching scheduling algorithms. Yau,
Schowe and Tsuchiya [YAU74] were the first to describe the application of this

technique to microcode compaction.

In BADB. a tree is built, the nodes of which correspond to microinstructions.
A path from the root of the tree to a leaf is an ordering of MI's, and thus a list of
MI's. The tree will branch whenever there is more than one MI that can be
placed at a point in the list of MI's. A complete tree represents every possible MI

ordering.

There are two variants of this algorithm. The first is BAB exhaustive, in
which every branch of the tree that can possibly lead to an optimal MO ordering
1s explored. The other is BAB heuristic, in which pruning is done to the tree.
BAB exhaustive is an optimal algorithm, and running in exponential time, while
BAB heuristic is not guaranteed optimal and can be made to run in polynomial

time.

The growth of the tree can be bounded even in BAB exhaustive. As in the
other algorithms, calculate the lower bound on the number of MI's in the best

possible ordering. ( Remember that this is the longest path through the DDG. )
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A path through the BAB tree of this length represents an optimal ordering, and
the algorithm can stop once such a path is obtained. The growth of the tree can
be further bounded by remembering the length of the best ( shortest ) path found
so far. If the length of an incomplete list of MI's is greater than or equal to this

length, the current path needs no further consideration.

Definition: data ready set ( DRS ) is the set of all unplaced MO's that are not
data dependent on any unplaced MO.

Definition: complete tnstructions ( CI's ) is defined as an instruction to which no
other MO’s in the DRS can be added. Thus a CI is not a subset of any other
legal MI given a DRS.

The outline of the BAB exhaustive algorithm is presented here using a recur-

sive function.

form initial data ready set;

call FormCl;

procedure Form(C1

{
form all possible Complete Instructions;
for each Complete Instruction do
{
form new data ready set;
if data ready set is not empty
call FormClI,
}
}

A more detailed description of the algorithm follows.



Like the critical path heuristic, the BAB algorithm gets its information on
the data dependencies of MO’s of an SLM through a DDG. The first step of the
BAB exhaustive algorithm is the construction of a DRS. The contents of the
DRS change as execution of the algorithm progresses. The initial DRS contains

just those MO’s not data dependent on any other MO.

DRS~{1)
1 DRs={2,3]
2 | DRS=[3} 3 | DRs=2a5)
3 | DRS={a5) 2,5 | DRS={t} | a5 DRS={2.6}
]
8,5 | DRS={6} 8 | DRs=f6} 2, 6
6 6

Figure 3.5 Working of branch and bound exhaustive
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The next step is to form MI's from the MO’s in the DRS. We wish to form
only the largest possible MI's. These are called CI's. CI's make up the nodes of
the BAB tree so that a path through the tree is a list of CI's or a list of MI's.
For the detailed algorithm of forming CI's, see [LAN8O] Sec. 3.

Now, for each Cl, compute a new DRS and form the next CI's which will
make branches from the previous node ( or CI ). Repeat this for all the branches

until there is no more MO'’s left.

Figure 3.5 shows working of the BAB exhaustive algorithm on the sample
microcode in Figure 3.1. It starts with the initial DRS which contains just MO 1.
So there is only one CI with MO 1, which is shown in the box. The next DRS
after the CI is shown on the right side of the CI box. From the DRS of { 2, 3 },
two CI's are formed; namely one with MO 2 and the other with MO 3. The two
CI's make two branches in the graph. The process continues similarly until all
possible branches are considered. The shortest path from the node to a leaf,

which is indicated with thick lines, represents the optimal solution.

3.1.4. List Scheduling

The list scheduling can be considered a special case of the BAB heuristic but
1t is important in its own right. The heuristic used in the list scheduling is as fol-

lows.

Instead of examining every complete instruction generated from a DRS,
examine only the best CI, where the best CI is-determined by some metric. The
outline of the list scheduling, shown below, is very similar to that of the BAB

exhaustive shown in Section 3.1.3.
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form initial data ready set;
call FormCl,

procedure FormCl
{
form best complete instruction;
form new data ready set;
if data ready set is not empty
call FormClI;

The only difference is that inside the procedure FormCI, one best CI is formed
and considered instead of examining all possible CI's. This heuristic requires only
an amount of time that grows polynomially with the number of MO’s in the
SLM. The metric used in forming the CI affects the optimality of the compac-
tion. Extensive test of different metrics were reported by Fisher [FIS79]. In the
test, the metric used by Wood [WOO78] was shown to be one of the best and is

presented here.

Assign a weight to each MO in the DDG. The weight of an MO is the
number of levels of descendants of that MO in the DDG. The execution of the
heuristic proceeds as follows. Compute a DRS from the DDG. Find the MO in
the DRS with the highest weight. Add it to the MI, which is initially empty.
Then find the MO with the second highest weight in the DRS. If this MO does
not conflict with any MO already in the MI, add it. Otherwise, consider the MO
with the next highest weight. Repeat until all the MO’s in the DRS have been
examined. The resulting MI is the CI with the highest weight. Add this MI to
the list of MI's and compute a new DRS. Repeat until all of the MO’s in the
SLM have been placed.

Figure 3.6 shows the DDG of the sample microcode with the weight of each

MO indicated outside of circles. The working of the list scheduling is the same as
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Figure 3.8 Weight of MO's for list scheduling

the optimal path of the BAB exhaustive shown in Figure 3.5 with dark lines.
From the DRS of { 2, 3 }, MO 3 is selected since its weight of 2 is higher than
the weight of 0 of MO 2. From the DRS of { 2, 4, 5 }, MO 4 is selected for the
same reason. Then MO 5 is placed in the same MI while MO 2 is not because of

resource conflict with MO 4. The forming of the last MI is obvious.

One last note on this example microcode. Keep in mind that this is just one
very specific example. The fact that the first-come first-serve heuristic did not
get the optimal solution while the others did does not necessarily indicate inferior
performance of first-come first-serve or superior performance of the others. As
noted at the beginning, the test result by Landskov et al. [LAN80O] recommended

first-come first-serve with some modification and list scheduling.
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3.1.5. Vegdahl's Thesis

One of the contributions of Vegdahl's thesis is that he has shown that the
classical microprogram compaction problem, which does not consider semantics-
preserving reordering of source MO's, can be solved optimally in time O(n’),
where v is the number of registers in the hardware, instead of in exponential

time, although the order v of the polynomial may be very high.

Definition: A MO may require data that is produced by another MO. If this is

the case, then the former is said to be data dependent on the latter.

Definition: A MO may destroy data that is required by another MO. If this is

the case, then the former is said to be data antidependent! on the latter. [BANT9]

Vegdahl recognized that data antidependency should not be treated as data
dependency in solving microprogram compaction problems, as demonstrated by
the following example [VEG&2]. Figure 3.7(a) shows an example, where register x
is twice used as a temporary. Figure 3.7(b) shows one valid partial ordering of the
MO's with data dependency and data antidependency among them. However,
Figure 3.7(c) shows another valid partial ordering of the MO’s with the same
data dependency but different data antidependency. Clearly, the partial ordering

shown in Figure 3.7(c) can yield less number of MI's when compacted.

Vegdahl contended that the problem of optimally ordering the MO’s - and
thereby determining the data antidependencies - is a more difficult problem than
compaction. He then presented an algorithm, called a chain-matrix compaction
algorithm, to optimally solve the compaction problem, once data antidependen-
cies are specified. He concluded that the determination of data antidependencies
is likely the more difficult problem, because the general compaction problem is

NP-complete.

4 Note that data antidependency was defined as a part of data dependency in chapter I1.
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MO1: b< a
MO2: X< b
MO3: c<¢ X
MO4: x<d
MOS: e <X
MO6: f<-e

@

¢ data dependency

* data antidependency

®) ©

Figure 3.7 MO's with different data antidependencies

We now present a summary of the chain-matrix compaction algorithm from

[VEGR83]. For a complete description with an example, refer to [VEG82].



The MO's are first divided into v chains, each being placed in the chain
corresponding to the register it writes. There is a strict ordering on the MO's in
any chain - namely the order in which they appear in the source program. Each
chain defines one dimension of a directed acyclic graph that is shaped as a
dimensional matrix. The edges of the graph correspond to MI's; missing edges
denote conflicting MI's. Each node in the graph represents a set of MO's; the
node corresponding to matrix element <1,2, ... > represents the set of MO's con-
taining the first MO of chain 1, the first two MO’s of chain 2, etc. Any node
whose MO's violate a data dependency is removed. At this point, the problem is
reduced to a single-source shortest path problem that can be solved using

dynamic programming in time that is linear in the number of nodes.

3.2. Global Compaction

While the local compaction problem is concerned only with possible MO
movements within each block boundary, methods for solving the global compac-
tion problem attempt to achieve even more compaction by moving MO's over the
block boundaries. This widened scope opens up a whole new set of issues. To
name a few: When is it legal to move a MO to another block? What kind of pro-
visions have to be made? How far can a MO move: just to adjacent blocks only,
or further to over several block boundaries? How do we optimize overall perfor-
mance, given that some blocks are more frequently executed than others? How

much extra space is needed?

The global compaction problem is still considered an active research area.
We present some of the previous works here and propose some improvements in

the next chapter.



3.2.1. Wood [WOO79a, WOO79b)

This is one of the earlier attempts to compact MO’s beyond block boun-
daries. It is an elegant and clean method even if somewhat restrictive. The basic
idea s to allow MO movements among the same block level in a block structured

microprogram.

The big precondition of this work is that the source microcode has to be
written in a block structured fashion, i.e., only if-then-(else) and (nested) loop
structures are allowed. Given a block structured source microcode, the goal is to
allow MO's to migrate over a conditional block, but not to let them land inside

the block nor to allow any MO to migrate beyond the confines of its own block.

To achieve the goal, a concept of a hierarchy of levels of MO's within the
microprograrﬁ is introduced. MO’s may be of two basic types: a primitive MO
which is an atomic entity, or a block-type MO which may be expanded at one
level lower to a set of component MO’s. These component MO's may, in turn, be

either primitive or block type. A block-type MO represents a whole block of
MO's which may be an if-then-else block or a loop block.

Using the MO’s of these types, data dependency is defined between MO's at

the same level as follows.

Multi-level dependency rule: If A and B are primitive MO’s with A data
dependent on B, then the outermost block containing A but not B should

be marked as dependent on the outermost block containing B but not A.

The basic structure of the heuristic can be best described by Wood's own
diagram [WOO79a], which is reproduced in Figure 3.8. In the figure, the term
DAS ( data available set ) is used which has the same meaning with the DRS (
data ready set ). In selecting MO from DRS, block type MO’s are selected first
before primitive MO's are selected. So, the compaction starts at the lowest level

block and works its way up. A separate DRS and waiting list is maintained for
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Figure 3.8 Wood's compaction heuristic [WOO79a]

each level of MO's. The waiting list is a list of the MO’s at that level which have
not yet been made available for packing.
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Even though this is a nice clean way of solving the global compaction prob-
lem, 1t 1s too restrictive and may not perform as well as the other methods. It
does not allow many of the legal MO motions which will be discussed in the fol-

lowing sections.

3.2.2. Tokoro [TOKS81]

Tokoro's approach to solving the global compaction problem is based on his
identification of a set of rules of legal MO motions over the block boundaries. It

i1s sometimes referred to as automated menu method. Even though the set of

rules is very comprehensive and almost complete,® the proposed heuristic pro-

cedure to utilize these rules is rather ineffective.

The pictorial representations of Tokoro's MO movement rules are repro-
duced from his paper [TOKS&I] in Figure 3.9. Note that the MO's in these figures
are drawn at the edges of the blocks just to make the explanation of the concept
simpler. In fact, MO's can be transferred from the inside of blocks and/or into
MI's within blocks as long as data dependency relations are maintained. In Fig-
ure 3.9, A, B and nop ( no operation ) are MO's and S, represents a source block
and S, represents a destination block. MO's are transferred from source blocks to

destination blocks.

The simple transfer type optimization shown in Figure 3.9(a) and the com-
mon MO type optimization shown in Figure 3.9(b) are obvious and self-
explanatory. A redundant MO is one in which all resources written by the MO
are never referenced afterwards. The redundancy reduction type optimization
shown in Figure 3.9(c) simply eliminates a redundant MO to save a eycle. The
redundancy insertion type optimization shown in Figure 3.9(d) actually adds a

redundant MO to one path without adding a cycle to make it possible to save a

®Since Tokoro's rules deal only with MO motions between adjacent blocks ( he calls it con-
tiguous segments ), MO movements over several blocks, the kind of MO migration described by
Wood [WOOT79b] ( see sec. 3.2.1 ) for example, are not allowed.
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Sd Sa Ss I Ss l
A_|nop A|B A _|nop
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nop| B nop| B A
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(a) Simple transfer type optimization
sd sd Ss1 Ss2 | st || ss2 |
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#
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(c) Redundancy reduction type optimization
sd Sd Ss1 Ss2 sst || ss2 1
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Sst ' Ss2 l ‘ Ss1 |
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Sd

(d) Redundancy insertion type optimization

Figure 3.9 Tokoro's MO movement rules
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cycle at the other path.

The detailed procedure to apply these rules, which will not be repeated here,
is basically as follows. For each MO in each block, search for a possible move
which can save a cycle by checking against all the rules. If such a move can be

found, move the MO, otherwise select the next MO and repeat the entire search.

This automated menu method appears to suffer from the following
shortcomings [FIS81a]. Fach time a MO is moved, it opens up more possible
motions. Thus, the automated menu method implies a massive and expensive
tree search with many possibilities at each step. Evaluating each move means
recompacting up to three blocks, an expensive operation which would be repeated
quite often. To find a sequence of very profitable moves, one often has to go
through an initial sequence of moves which are either not profitable, or, worse
still. actually make the code longer. Locating such a sequence involves abandon-

ing attempts to prune this expensive search tree.

3.2.3. Fisher [FIS79, FIS81a)]

The trace scheduling appears to be the best proposed method to solve the
global compaction problem. Its basic concept is nice and elegant and the avail-
able indications show that it gives good speed-up of execution time of compacted
microcodes. However, in actual realization of the elegant concept, it gives some
undesirable side effects which need to be corrected. And it is this correction pro-

cess, called bookkeeping, that is nontrivial and complicated as will be described

later.
In brief, trace scheduling proceeds as follows.

To schedule a given MO, we repeatedly pick the most likely trace from
among the uncompacted MO’s, build the trace DDG, and compact it.

After each trace is compacted, some duplication of MO's into locations off
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the trace is done to keep the semantics of the original microprogram un-

changed. When no MO's remain, compaction has been completed.

Figure 3.10 shows the basic steps of the trace scheduling. The figures are
redrawn from [FIS82] with additional labeling to make it easier to explain. In
Figure 3.10(a), each box represents a block of MO's and the lines between blocks
indicate possible execution path. So the blocks with more than one line at the
bottom are the blocks which end with a conditional branch. In Figure 3.10(b),
the blocks covered by the shaded area are assumed to form a path with the

highest probability of execution. In other words, the blocks form a trace. In Fig-

ure 3.10(c), after some preprocessing,® the MO's in the trace are treated as if they
belong to a single block and compacted using list scheduling. After the list
scheduling is done on the trace, bookkeeping is necessary, which possibly includes

massive copying of blocks.

First, let’s consider repairing rejoins. Rejoin is a join in a trace to which an
execution flow from a non-trace block is reached. When there were joins fo the
trace, we now must find a location in the new sequence of MI's to join to. MO's
may have moved above and below the old join. We may only rejoin to places
that have no MO’s at or below them which had been above the old join, since we
don't want to execute such MO’s. When the highest point for rejoin is found, all
MO’s which had been below the old join but are now above the new rejoin have
to be copied into the joining block. In Figure 3.10(d), blocks denoted by "R™ are
the blocks which contain the copied MO's because of repairing rejoins, and A,

and N, are two newly found rejoining points.

Second. consider conditional jumps. Some MO'’s which were originally above
a conditional jump on the trace may have been scheduled in an MI below the
conditional jump. We must copy these MO's to the blocks that the conditional
jump jumps to. If all registers written by the MO are dead at the beginning of

®See conditional source registers
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the block, then the MO does not need to be copied. In Figure 3.10(d), blocks
denoted by "S” are the blocks which contain the copied MO's because of condi-

tional jumps.

Up to this point, the bookkeeping stage is not overly-complicated. But here

is the big question.

What if the rejoin N, happens to be below the conditional jump M, in Fig-
ure 3.10(d)?

In the original source microcode, the conditional jump was below the join but if
the conditional jump is above the join, for the execution flow coming from the
block B, the conditional jump does not exist any more. So the execution path of
block B, block F and block H or the semantics of that path of the microprogram
cannot be realized after the scheduling. To solve this problem, instead of rejoin-
ing block B to the trace, the blocks F, G, H and I are duplicated after the block
B, as shown in Figure 3.11. This kind of block copying is the major source of

complication and possible memory explosion.

To prevent possibly exponential growth of memory size, Fisher suggested

modifications of trace scheduling [FIS81a].

(1) If the block ends in a conditional jump, we draw a DDG edge to the jump
from each MO which is above the jump on the trace and write a register

alive in the branch.

(2) If the start of the block is a point at which a rejoin to the trace is made, we
draw DDG edges to each MO free at the top of the block from each MO
which is in an earlier block on the trace and has no successors from earlier
blocks.

Fisher recommended the above be used if the expected probability of a
block’s being reached is below some threshold. However, we suspect that there

are some difficulties. First, the major source of extensive copying of blocks is
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F.

Figure 3.11 Copied blocks in the trace scheduling

from initial long traces which therefore have higher probabilities of being exe-
cuted. Thus, fixing blocks with lower probability of being executed, after possi-
bly extensive copying has already been done, helps relatively little. If, however,
the threshold is raised to include blocks of high probability of execution, then it
becomes close to compacting each block separately. Second, in long traces, the
memory size growth is so sensitive to minor changes in source code that it is pos-
sible for one small change in source code to almost double the size of compacted
code. The example microcode in section 5.6.1 has such sensitivity. Third, the

bookkeeping stage which is the major source of complication remains to be the

same.



CHAPTER IV

BETA COMPACTION ALGORITHM

Chapter III has reviewed several local compaction and global compaction
techniques for microprograms. It is clear that global compaction gives better per-
formance than local compaction, since some extra compaction over the block
boundaries is done. Among the heuristics to solve the global compaction prob-
lem. trace scheduling appears to be the best proposed method so far. However,
the trace scheduling has some serious drawbacks, as described in section 3.2.3. In
particular, the kind of block copying shown in Figure 3.11, which can possibly
cause memory explosion, may be unacceptable in many applications. Also, the
bookkeeping stage of the trace scheduling is so complex that Fisher avoided a for-
mal deseription of it in his paper [FIS81a] and later found a major bug during
verification [NIC&4].

In Figure 3.10 of previous chapter, it can be seen that the reason for all the
block copying is the fact that the rejoin N, happens to be below the conditional
jump M. after the compaction of the trace. This can happen only around the
block which has a join at the beginning and a conditional jump at the end, as
shown in Figure 4.1. We call such block a junction block. Having recognized that
junction blocks can cause the serious complication, we propose a modification on
the trace scheduling to avoid the complication. The modification is to cut traces
at each junction block. By making this modification, we not only prevent the
kind of block copying shown in Figure 3.11, but also simplify the bookkeeping
stage tremendously. Also, the worst case memory growth is reduced from

exponential to O(n?). We call this improved trace scheduling a beta compaction.

38
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conditional

Figure 4.1 Junction block

The beta compaction has all the above nice properties with very little trade off in
compaction. It performs all the compaction that the trace scheduling does except
that it does not allow MO movement across a junction block. MO’s may still
move into and out of junction blocks but MO’s may not migrate across junction
blocks. We conjecture that this kind of MO movement, which is allowed by
trace scheduling, occurs very rarely, as will be shown experimentally in the next

chapter.

4.1. Algorithm Description
Informally. the beta compaction algorithm proceeds as follows.

An entry block with highest probability is selected. Starting from the
block, a trace is selected by following its descendant block of highest pro-
bability until it reaches an exit block or a junction block or an already

compacted block. The blocks in the trace are treated as if they are a sin-
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gle block, and compacted using list scheduling with copying of MO's as

necessary. This process is repeated until all blocks are compacted.

A more detailed description follows. In Section 4.2, a working example of

beta compaction is given.

Input:
Sequence of MO’s ( label, instruction, next address, destination registers,

source registers, resource vector ).
Output:

Sequence of MI's where each MI contains one or more MO's.
Procedure:
(1) Initialization and preprocessing

(2) Repeat until all blocks are compacted

{
Pick trace
List scheduling
Bookkeeping

}

During the initialization and preprocessing, dummy blocks may be inserted
wherever a conditional branch and a join directly meet as shown in Figure 4.2.
These points are the only places where extra blocks may have to be created to
hold copied MO’s in the bookkeeping stage. Insertion of dummy blocks at the
beginning totally eliminates the need to create blocks later. Empty dummy

blocks after the compaction will simply be deleted.

Loops are handled the same way as they are in trace scheduling. The inner
most loop is compacted first and the compacted loop is represented as a pseudo

MO which contains all the data dependency information and serves as a MO in
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points where
®  aummy biocks
are inserted

Figure 4.2 Insertion of dummy blocks

the compaction of outer loop. Fisher proposed unwinding of loops in [FIS82] as a
way to compact loops. In the beta compaction, similar loop unwinding is possible

but, except for small inner loops, is probably too costly in space.

The next few sections will describe in detail the major steps of the beta com-
paction, including live register analysis. Here are a few definitions to help the

description.

Definition: A tracehead set is a set of blocks in which each element of the set

will make the beginning block of a trace.

Definition: Off-the-trace blocks are non-trace blocks which are the targets of

conditional branches.
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4.1.1. Live register analysis

The live register analysis is the process of determining which registers are
alive at some point in a program. This information is necessary to allow as much
compaction as possible without allowing illegal MO movement. Here we are
interested in the live register information at the beginning and at the end of each
block. The live register analysis is done once at the beginning as a part of the
preprocessing and after new block boundaries are identified in the bookkeeping
stage. It is also done every time a MO is copied from one block to another in the

bookkeeping stage. The following summary is taken from [AHO77].

Definition: The depth-firsi-ordering of the nodes of a graph is the reverse of the
order in which we last visit the nodes in the preorder traversal. Depth-first-
numbers DFN(n) assigned to each node indicate the depth-first-ordering of the

nodes.

Definition: IN/n] is the set of registers alive at the point immediately before

block n and OUT[n] is the same immediately after the block.

Definition: DEF/n] is the set of registers which are assigned values in block n
prior to any use of that register in the block n, and USE[n] is the set of registers

used in block n prior to any definition thereof.

Input:

A set of blocks each containing a sequence of MO's.
Output:

A list of live registers at the beginning and end of each block.

Procedure:

(I) Compute a depth-first ordering of the nodes. Let the nodes be n.n
such that DFN[n] = i.

91 s HN,
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(2) begin

fori:=1to N do

begin
IN|[n] := USE|[n};
OUT|n] := empty;

end

while changes occur do
fori:=ntolby-1do

/* in reverse depth-first order */

begin
OUTn) := U IN[s]:
8 a successor of ni
IN[n] := ( OUTIn] - DEF{n] ) | J USE[n];
end

end

4.1.2. Pick Trace

The pick trace routine determines the next set of trace blocks to be com-
pacted. It selects the highest probability block among non-compacted blocks and
iteratively selects the highest probability descendant block until it reaches an exit
block. or a junction block, or an already compacted block. After selecting the
trace blocks, all the MO's from those blocks are converted to a form acceptable

to the list scheduling routine which performs local compaction regardless of block

boundaries.

Input:
A set of blocks where each block is a 2-tuple. The first element is the pro-

bability of execution and the second is a flag indicating if the block has been

compacted.
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Output:

The set of blocks which forms an execution path.

Procedure:

(1)
(2)
(3)

(4)

(5)
(6)

Delete empty blocks from the tracehead set.
Initialize the conditional source registers of each MO to empty.

Select a block with the highest probability of execution in the tracehead set.
Call the selected block the current block and add it to the trace.

Repeat until the current block is an exit block, a junction block or an

already compacted block

{
Update the current block with a block of the highest
execution probability among its descendant blocks.
If the new current block is not a compacted block,
mark it as compacted and add it to the trace.

}

Update the tracehead set.

Convert the MO's in the trace to the appropriate format for the list schedul-
Ing.

The first step of the pick trace procedure is to delete empty blocks from the

tracehead set. It is possible that some of the blocks in the tracehead set became

empty in the previous bookkeeping procedure. So it is necessary to delete them

from the tracehead set and instead add their descendent blocks to the tracehead

set.

Search through the blocks in the tracehead set to pick up a block with the

highest probability of execution among them. The selected block ( call it start
block ) will be the first block in the trace selected.
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Starting from the start block, repeatedly select the next block in the trace
by picking the block with the highest probability among the descendant blocks of
the current trace block. Mark all the blocks selected as trace blocks. The selec-
tion is stopped when a program exit block, a junction block or a marked block (
already compacted ) block is encountered. A program exit block or a junction
block is included as a part of the trace but not a marked block. In the process,
the descendant blocks of any trace block except the next trace block is collected
as the off-the-trace blocks for that trace block. These off-the-trace blocks are
necessary to update the tracehead set and to make some necessary copies of MO's

in the bookkeeping stage.

Delete the start block from the tracehead set and add all the off-the-trace

blocks of each trace block to the tracehead set.

Convert the MO's in the trace to the appropriate format for the list schedul-
ing. Note that the list scheduling does not know about the blocks and our imple-
mentation of the list scheduling requires a slightly different MO format, e.g.
sequential numbering of MO’s.  Also, add the live registers at the beginning of
the off-the-trace blocks as the conditional source registers of the conditional
branch MO in the trace for those off-the-trace blocks. Add a dummy register to
all the conditional branch MO’s as a conditional source register and destination
register to establish a DDG edge between the conditional branch MO’s, and thus
keep the order of those MO's.

Figure 4.3 shows an example of selecting traces throughout the course of the
beta compaction. Each box in the figure represents a block of MO’s. Each sub-
figure shows the result of a call to the pick trace routine, Figure 4.3(a) being the
first and Figure 4.3(e) being the last. It is assumed that the execution probability
of blocks A, F. C, G, B, D and H are from high to low in the order of listing.
Trace blocks are indicated with dark lined boxes and compacted blocks are indi-

cated with shaded boxes.
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4.1.3. List Scheduling

The list scheduling routine does just local compaction on the list of MO's

without any knowledge of block boundaries and generates a list of compacted
MI's.

Input:
The sequence of MO's in a basic block or in a trace

Output:

The sequence of compacted MI's
Procedure:
(1) Build DDG on MO's starting from the first MO.
(2) Assign priority value ( number of levels of successors in DDG ) to each MO.
(3) CYCLE =0
(4) Data Ready Set ( DRS ) is formed from all MO’s with no predecessors on the
DDG.
(5) While DRS is not empty, DO
d

CYCLE = CYCLE + 1

The MO's in DRS are placed in iteration CYCLE
in order of their priority until DRS is exhausted

or no more resources are available for CYCLE.
All MO’s so placed are removed from DRS.
All unscheduled MO's not in DRS whose

predecessors have all been scheduled are added
to DRS.
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The above procedure may be seen as three stages, i.e., build DDG ( step 1),
assign priority ( step 2 ) and schedule MO's ( steps 3, 4 and 5 ). A more detailed

description of each step follows.

(A) Build DDG

Given a sequence of MO's, a DDG is built based on source and destination

registers of the MO's.

Starting from the second MO ( the first MO forms a single node DDG by
itself ), add one more node for the MO on the partially built DDG. The DDG is
a directed acyclic graph with a set of source nodes and a set of sink nodes as

shown in Figure 4.4. The source nodes are the nodes with in-degree zero and the

7 source node vl sink node

/7 /7

% both source and sink node

Figure 4.4 Sample data dependency graph
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sink nodes are the nodes with out-degree zero. A single node not connected to
the rest of the graph is considered to be both a source node and a sink node. Let
us call the MO to be added the current MO, and the set of nodes being con-
sidered in the partially built DDG the current node set. At first the elements of
the current node set are the sink nodes of the partially built DDG and are

updated as the algorithm progresses.

Now take the current MO and see if there is any data interaction between
the current MO and the MO's represented by the current node set. If there is
any data interaction, i.e., the current MO is directly data dependent on some
MO's represented by the current node set, draw edges from the corresponding
nodes in the current node set to the new node representing current MO. Note
that since we handle MO's in sequence, the current MO may be data dependent
on the MO's of the current node set but the MO's of the current node set can not
be data dependent on the current MO. Conditional source registers are used
when considering data interaction between a conditional jump MO and the MO's
that follow but not the MO’s that precede. This constraint is to prevent move-
ment of MO's above a conditional jump which may overwrite live registers at
off-the-trace blocks but still allow movement of MO’s below a conditional jump.
In the case of a join, list scheduling is done on a trace with no constraint and

new joining points are identified at the bookkeeping stage.

For all the MO’s of the current node set on which the current MO is data
dependent, tag all their ancestor nodes so that those ancestor nodes may not be
included in the updated current nodes. When all the elements of the current
node set are considered, update the current node set and repeat the process until

the updated current node set is empty.

To update the current node set, consider each node of the set at a time.
First, delete the node from the current node set. If the deleted node is not the
source node, add the untagged ancestors of the node to the current node set.

And delete any element of the current node set if it is an ancestor of another
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node.

An example of building DDG is shown in Figure 4.5. The figure shows the
change of the current node set and how edges are drawn to the newly added
node. The black circle is the newly added node and it is assumed that one data
dependency has been found between the node and current node set in Figure

4.5(a). The node labeled P is tagged because it is the ancestor node of the node

©

Figure 4.6 Example of building DDG
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that the newly added node is data dependent upon. Another data dependency is
assumed to be found in Figure 4.5(b) and there are two tagged nodes labeled P
for the similar reason. In Figure 4.5(b), the node labeled A is not included in the

current node set because it is an ancestor node of another element of the current

node set.

(B) Assign priority

There are many ways to define priorities on nodes in DDG. Here we adapt
the best known scheme [FIS79] which is the level of descendants in DDG. The
algorithm to assign priorities to nodes has a flavor similar to building the DDG
algorithm. Basically, assign priority 0 to the sink nodes and priority 1 to their

immediate ancestors and the like, up until all the nodes are assigned priorities.

Let us eall the set of nodes which have the same priority the unipriority
node set. The algorithm starts by assigning the set of sink nodes to the uniprior-
ity node set. Then assign priority 0 to all the nodes in the unipriority node set.
Repeat updating the unipriority node set and assign the priority one higher than
the previous one until the unipriority node set becomes empty. Note that some
node may be a member of several consecutive unipriority node sets and be

assigned the priority associated with the last unipriority node set.

After assigning the priority to each of its elements, the unipriority node set
is updated. The node which has no descendant is tagged and deleted. The node
whose descendant nodes are all tagged is also tagged and deleted. All the ances-
tor nodes of the deleted nodes are added to the unipriority node set. Note that if
a node in the unipriority node set has a descendant node which is not tagged, the
node is neither tagged nor deleted nor its ancestor nodes added to the unipriority

node set. Such a node will be assigned a higher priority next time.

An example of assigning priority is shown in Figure 4.6. The figure shows
the change of the unipriority node set. Note that some nodes belong to more

than one unipriority node set and get the priority of the last unipriority node set.
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Figure 4.6 Example of assign priority
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In Figure 4.6(d), the final priorities are shown on each node.

(C) Schedule MO'’s

This step actually places MO’s into MI's using data dependency, resource
usage and priority of MO’s. Let us call the Ml where MO's are being placed as

the current MI. New MTI's are created as necessary.

Let us start from the first MI which is the current MI. The initial data
ready set ( DRS ) contains all the MO’s of source nodes of DDG. DRS always
contains those MO’s which can be placed into the current MI without data
dependency. But some of the MO's in the DRS may require the same resource, in

which case we have to choose one MO over the others, using their priority.

Pick MO's from the DRS in the order of their priority and place them in the
current MI until any of the required resources of an MO to be placed is used by
an already placed MO in the current M. When this process of placing MO’s into
the current MI is stopped because either there is a resource conflict or all the

MO’s in DRS are placed, DRS is updated.

To update DRS, all the MO's which have been placed in the current MI are
first deleted. Then all unplaced MO’s not in DRS whose ancestors in DDG have
all been placed are added to DRS.

There is one exception in updating DRS. When the trace ends with a condi-
tional branch MO, we want to keep the conditional branch MO in the last MI
after the scheduling, which is not guaranteed by the above procedure. To ensure
that such conditional branch MO stays in the last MI, we put all the other MO's
in DRS before we put the conditional branch MO when we update DRS.

There is another way of handling the placement of such a conditional branch
MO. Just schedule MO's without any exception and if the conditional branch
MO happens not to be in the last MI, then the MI's below the MI which contains

the conditional branch MO will form new blocks in each branch. Using this
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method, we may be able to save a cycle in some rare cases at the expense of some
space. However, we chose not to use it because it changes the structure of the

program, which we are against.

When DRS is updated, another Ml is created to hold some MO'’s in DRS and
the process is repeated until all the MO’s are placed.

An example of straightforward list scheduling was shown in section 3.1.4.
For an example of list scheduling of a trace, which involves conditional source

registers, see the beta compaction example in section 4.2.

4.1.4. Bookkeeping

The result of liSt scheduling is a list of compacted MI's. And we know the
list of blocks to which those compacted MI's belong; the blocks are the trace
blocks selected at the pick trace stage. The task of this bookkeeping stage is to
put the Ml's into appropriate blocks and, if necessary, make some copies of MO's
to off-the-trace blocks to keep the original semantics of the microprogram

unchanged.

Input:
A program in which a trace has been compacted into a sequence of MI's.
Output:
A program in which the given trace is partitioned into blocks and the rest of
the program modified to maintain the original semantics.

Procedure:

(1) Identify the MI's which contain conditional branch MO's as block boundaries

for the first part of the trace.

(2) For the last part of the trace, find rejoining points such that below the new

rejoin there is no MO's which were above the old join.
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(3) Do necessary copying of MO's for the first part of the trace.

(4) Do necessary copying of MO's for the last part of the trace.

The bookkeeping stage is divided into two major parts. The first part maps
MTI's into blocks; the second part makes appropriate copies of MO’s. Each part
handles the first half and the second half of the trace blocks separately.

Because of the way that the traces are picked, there is no junction block in
any trace and all the traces in the beta compaction has certain forms. The traces
are composed of three components, as shown in Figure 4.7. First, there are zero

or more blocks which have conditional branch MO's at the end. Then there is

one’ block with one entry point and one exit point. Last, there are zero or more

blocks which have a join at the beginning of them. Depending on a trace, some

C
N
c “type c" boundary c
N ¢
m m'
\/ '
) "type J* boundary ¥
S

Figure 4.7 Components of trace

" If the dummy blocks are not inserted where a conditional branch and a join directly meet.
this block may not exist sometimes.
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of the above three components may be empty. However, the order of the com-

ponents, when they exist, does not change.

The first part of the bookkeeping stage is to map compacted MI's into
blocks. In other words, since the MO's may have been moved across the block
boundaries during the list scheduling, we need to find out the new block boun-
daries. For the c-type boundaries shown in Figure 4.7, the job is very simple.
The MI's which contain conditional branch MO’s form natural block boundaries.
For the j-type boundaries shown in Figure 4.7, the job is not as easy. We need
to find new rejoining points as follows. Below the new rejoin, we want to have
no MO's which were above the old join before the list scheduling. We want the
earliest possible point which satisfies the above condition to be a new rejoining

point.

The same order of the original joins are kept among the new joins except
possibly two or more adjacent old joins become the same point when new rejoin-
ing points are found. This order-preserving property does not apply to c-type
boundaries in general. It is possible that the order of two conditional branch
MO's may change after the local compaction. We do not allow this to happen by
drawing artificial DDG edges between conditional branch MO'’s before local com-
paction, because allowing a change of order of conditional branch MO's, we
believe, would complicate the heuristic unnecessarily with very little or no gain.

There is a recent study of some possibilities by allowing such change of order
[LINR3].

The second part of the bookkeeping stage is to copy some of the MO’s to
off-the-trace blocks to keep the original semantics of the microprogram
unchanged. The copying MO's is done again in two parts; first for c-type boun-

daries, then for j-type boundaries.

Let us first consider c-type boundaries. Recall that MO’s are not allowed to
move above conditional branches if they write any conditional source registers (

live registers at the beginning of off-the-trace blocks ). And MO's which are
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moved above conditional branches either write no register or dead registers for
the off-the-trace blocks. So such MO’s are not candidates for copying. The
MO's which need to be copied are the ones which were above conditional
branches but are below them after the local compaction. These MO’s need to be
copied to the beginning of the off-the-trace blocks for each conditional branch
which the MO’s have moved below. However there is an exception, as shown in
Figure 4.8. Suppose a MO has been moved from block A to block H as a result of
the local compaction. The MO would have been copied to both block C and
block E because block C and block E are off-the-trace blocks. But since the
block E is in the same execution path with the block H, the MO needs not be
copied to block E. So the MO is copied only to block C. To do this systemati-
callv, for each MO which needs to be copied, form a target block set ( block C

=
4

Figure 4.8 Copying MO's




58

and block E in the above example ). Then subtract® all the blocks that can be
backtraced starting from the block that the MO has been moved to ( blocks H,
D, E. B and A in the above example ). Then copy the MO only to the resultant

target block set, which is just the block C in the above example.

The copying of MO's for the j-type boundaries works much the same way as

for the c-type boundaries.

4.2. Simple Illustrative Example

Here is an example of how the beta compaction algorithm works. Figure 4.9
is a microprogram with 21 MO’s in 7 blocks. The letters A through G are
assigned to each of the 7 blocks and the numbers 1 to 21 indicate MO's. Figure
1.10 shows a list of the MO's represented by the six-tuple model of Chapter II.
MO 3 and MO 12 are conditional jumps. It is assumed that the probability of
block B executing is 0.7 and that of block E is 0.6. Accordingly, the probability
of block € executing is 0.3 and that of block F is 0.4. The probability of blocks

A, D and G executing is all 1's, naturally.

The first step of the beta compaction algorithm is to perform live register
analysis and the result is shown in Figure 4.11. The first trace blocks are A, B
and D. and they are compacted together as if a single block. The compaction is
done first by building a DDG with MO’s in the blocks considered. When build-
ing DDG, the live registers at the beginning of block C or IN[C] are assumed to
be read at MO 3, which is a conditional jump. In other words, registers in the set
IN[C] are conditional source registers of MO 3. However, those registers are used
only when considering data interaction between MO 3 and the MO’s in block B,
but not between MO 3 and other MO’s of block A.

f set subtraction
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1
A 2
3
V 0.3
[ 1 7
B 5 C 8
6 9
10
D 11
12
0 /\:, 4
15
13
E 16
14 F 17
\‘/18
19
G 20
21

Figure 4.9 Sample microprogram

The DDG is shown in Figure 4.12(a). Note that, even though conditional
source register 10 of MO 3 is also a destination register of MO 2, no edge is
drawn between MO 2 and MO 3 to allow possible movement of MO 2 below MO
3. Also note that conditional source register 8 of MO 3 and destination register 8
of MO 4 makes an edge between MO 3 and MO 4 which prevents the movement
of MO 4 above MO 3. Next, list scheduling is done on the MO's in the trace and

the result is shown in Figure 4.13(a). Now, necessary bookkeeping is done on the
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block name inst next_addr dest_reg src_reg resource_vec

1 CONT 1 2, 3 01 1 0

A 2 CONT 10 1. 5 00 1 0
3 CJMP v 2 3, 4 10 10

4  CONT 8 9, 5 01 0 0

B 5  CONT 2 2, 5 00 0 1
6  GOTO 10 15 4, 8 0 1 0 0O

7  CONT 9 8., 8 010 1

C 8  CONT 1 1, 5 0 1 0 O
9  CONT 8 11, 12 0 0 0 1

10 CONT 14 2, 13 01 0 1

D 11  CONT 7 3, 5 0 1 0 0
12 CIMP 15 6 4, 10 1 0 0 O

E 13 CONT 9 3, 4 1 01 0
14 GOTO 19 6 3, 6 0100

15  CONT 2 6. 8 00 0 1

F 16  CONT 7 2, 14 0 1 0 1
17 CONT 4 2, S 0O 1 0 O

18  CONT 14 11, 12 0 0 1 0

19  CONT 9 6. 10 0 0 0 1

G 20 CONT 13 7. 3 0 0 0 1
21  STOP 3 4, 11 01 1 0

Figure 4.10 List of MO’s

sequence of MI's. The point right after conditional branch MO 3 is the boundary
between block A and block B. The rejoin from block C is made right before the
last MI which contains no MO which were above the old join. Since MO 2 is
scheduled below conditional jump MO 3, MO 2 is copied to block C. Note that
MO 11 has been moved from block D to block A and is not copied since block A

and block D are on the same execution path.



61

inreg[A] =2 34589111213
outreg(A] =12 34589101112 13

inreg(B] =2 3459 10 11 12 13
outreg[B] = 2 3 458 10 11 12 13

inreg[C] =12 345810 11 12 13
outreg{C] =2 345810 11 12 13

inreg(D] = 2 3458 10 11 12 13
outreg[D] = 3456 78 10 11 12 14

inreg[E] =346 7 10 11
outreg[E] =346 7 10 11

inreg[F] = 356 8 10 11 12 14
outreg[F] = 3 4 6 7 10 11

inreg[G] =346 7 10 11

outreg[G]

Figure 4.11 Live registers

Similar compaction is done for the next trace of blocks D, E and G. The
DDG is shown in Figure 4.12(b) and the result of list scheduling is shown in Fig-

ure 4.13(b). Since MO 20 is above the new rejoin from block F, the MO 20 is
copied to the block F.

The third trace contains a single block C. It is compacted using straightfor-
ward list scheduling. The DDG is shown in Figure 4.12(c) and the result of list
scheduling is shown in Figure 4.13(c). The last trace is also a single block which

contains block F. The DDG is shown in Figure 4.12(d) and the result of list
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Figure 4.12 Data dependency graphs

scheduling is shown in Figure 4.13(d).

The final result of the beta compaction done on a given example micropro-

gram Is shown in Figure 4.14. Execution time of the trace blocks A, B, D, E, G

is 7. and weighted execution time is 7.8. 12 MI's are used to hold the compacted

microcode.
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MO's in cycle 1 = 1 block A'
MO's in cycle 2 = 3 11
MO's Incycle 3= 2 4 5 block B'
MO's in cycle 4 = 6
MO's in cycle 5 = 10 12 block D’
(a)
MO's in cycle 1 = 10 12 block D'
MO's in cycle 2 = 13 14 20 Dblock E'
MO's in cycle 3 = 19 21 block G'
(b)
MO's iIn cycle 1 = 2 7 block C'
MO's in cycle 2 = 8 9
(c)
MO's in cycle 1 = 15
MO's in cycle 2 = 16 block F'
MO's in cycle 3 = 17 18 20
(d)

Figure 4.13 Intermediate results

The trace scheduling done on the same example is briefly described in Figure
1.15. Figure 4.15(a) shows the state after the list scheduling and bookkeeping on
the first trace ( blocks A, B, D, E, G ) is done. Since MO 6 has been scheduled
below conditional branch MO 12, the join from block C to block D had to be
moved down with blocks D, E and F copied, as shown. The second trace of
blocks €. D" and E' is compacted and some more copying is done, as shown in
Figure 4.15(b). Next the remaining single blocks F’ and F” are compacted. The
final result is shown in Figure 4.15(c) and it is redrawn in Figure 4.15(d) in a

more conventional form. Compare the result of trace scheduling in Figure 4.15(d)
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Figure 4.14 Final result

with the result of beta compaction in Figure 4.14 and note the change in program

structure.

After the trace scheduling, the execution time of the trace blocks A, B, D, E,
G is 7 and weighted execution time is 8.1, which is about the same’ as the
weighted execution time from the beta compaction. However, space used is 21

MI's, a 759 increase. The space time product of the trace scheduling result is

® In this particular example, it just happened that the weighted execution time from the beta
compaction is slightly faster than the weighted execution time from the trace scheduling. Gen-
erally, we expect the trace scheduling gives slightly shorter weizhted execution time than the beta
compaction as will be shown in the next chapter.
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Figure 4.15 Trace scheduling on the example
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Figure 4.15 Trace scheduling on the example ( cont'd )
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about 80¢ bigger than that of the tree compaction result. These are summarized

in Figure 4.16.

This specific example shows the potential advantages of the beta compaction
algorithm, i.e., it saves memory space with similar speedup in execution time.

More analysis and experimentation are described in the next chapter.

time in | veighted | space space
time
trace time needed product
beta 7 7.8 12 93.6
compaction ) )
trace 7
scheduling 8.1 21 170.1

Figure 4.18 Comparison summary




CHAPTER V

EXPERIMENTATION AND ANALYSIS

5.1. Purpose

A new technique to solve the global compaction problem has been developed.
It is called beta compaction and is based on Fisher's trace scheduling. The pur-
pose of this experimentation is to demonstrate its feasibility and practicality as

well as to empirically verify its effectiveness.

For the experimentation, two separate approaches have been taken. First,
some artificial microcodes are synthesized in a controlled environment by a
microcode model, and are compacted using list scheduling, trace scheduling, and
beta compaction. The purpose is to compare the performance of the beta com-
paction against that of the trace scheduling and the list scheduling. Second, an
application program written in Pascal are hand-compiled into microcode and
compacted using the same three methods. Both uncompacted and compacted
microcodes are run on the software simulator for a two ALU AMD2900-based sys-
tem. The purpose is to demonstrate that the beta compaction performs well in
compacting real application programs as well as to informally show that the

implementation of the three compaction methods is correct.
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5.2. Hypothesis

Fisher's trace scheduling seems to be the best proposed heuristic so far for
solving the global compaction problem in reducing the execution time of the com-
pacted microcode. However, it has some serious drawbacks. First, the resultant
microcode size can grow rapidly because of the extensive copying of blocks neces-
sary, exponentially in the worst case. Second, the bookkeeping phase of the
heuristic is very complicated and thus has been an obstacle to implementation.
Third, the resultant microcode size can change significantly by a small change in

source microcode.

The beta compaction is basically a careful limitation of trace scheduling.
With this new heuristic, we claim to achieve almost the same level of execution
time reduction, with much less memory required than the trace scheduling. The
bookkeeping phase of the heuristic is very much simplified. Also, the size varia-
tion of the compacted microcode is much less sensitive to changes of the uncom-

pacted source microcode.

Comparing against the local compaction technique ( list scheduling ), the

beta compaction should perform better in both execution time and memory size.

5.3. Implementation

A loop-free version of both beta compaction and trace scheduling has been
implemented. Implementation of loop handling has been omitted because it is

not critical in comparing the two methods, since both methods handle loops the

same way.

Standard Pascal was used to implement these global compaction heuristics
on a VAX-11/780 running Unix 4.1bsd. Pascal was chosen over C to implement

the compaction heuristics mainly because it is generally safer and it has built-in
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set operations. However, it turned out that the set operations available in stan-
dard Pascal are so minimal that they were not as useful as expected. The most

needed construct in dealing with sets was something like:

for all the elements of this set, do

statement;

Since such a construct is not provided in standard Pascal, what we had to do

Was:

for all the elements of universal set, do
if it is an element of this set
then

statement;

And it was not very efficient.

Implementation of list scheduling and beta compaction is very close to what
was described in Chapter IV. The list scheduling is implemented as a part of the
beta compaction. The source code size of the beta compaction is about 80k
bytes, including some comments. Parts of the beta compaction has been rewrit-
ten to implement trace scheduling. Major differences are pick trace and book-

Keeping routines.

5.4. Comparison against trace scheduling

Performance of any compaction method depends on so many variables that
it is virtually impossible to accurately model them all. For example, the perfor-
mance depends on the architecture that the microcode is compacted for, i.e., how
much hardware resources are available, what kind of restrictions ( timing, encod-

ing ) are imposed on using the resources, and what kind of parallelism is available
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in the uncompacted source microcode, and how much of such parallelism is avail-
able over block boundaries, etc. Hence, we have developed an artificial micro-
code model where parameters are kept constant whenever possible or are other-

wise random. This artificial microcode model is described in Section 5.4.1.

Since we are dealing with the global compaction problem, i.e., programs may
contain several conditional jumps, joins, and/or loops, we need a way to
represent program structure. In the absence of any available model to represent
program structure, we have developed a simple program structure model to be
used for our purpose of comparing two heuristics. We chose to restrict our pro-
gram structure model to represent if-then-else structure only. There is no loop or
multiway branching. This is sufficient for our purposes and at the same time

easy to implement. The program structure model is described in Section 5.4.2.

5.4.1. Artificial Microcode Model

The purpose of this model of a microprogram is to empirically compare the
performance of the beta compaction against the trace scheduling. It has been

developed to make this comparison as fair as possible.
Each MO is represented by a six-tuple as described in chapter II.

( label, sequencer command, jump address, destination registers,

source registers, resource vector )

The purpose of the label is just to distinguish one MO from the others. The
sequencer command and the jump address determine the block structure of
microprograms. It is not a simple task to generate all possible configurations of
microprograms. A somewhat simplified but still systematic way of generating
block configurations is presented in the next section. The number of destination

registers and the number of source registers are kept constant respectively and so
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are the number of resources. Each block contains a constant number of MO’s
described above and the number of blocks, which is a constant, and the relation-
ship among them is determined by the program structure model described in the

next section.

The selection of register usage and resource usage is done randomly as fol-
lows. One register is selected randomly out of a available register set and
assigned as a source or destination register. It is repeated as many times as there
are source and destination registers. For resource selection, the probability of
each resource being used in a MO is preset. Whether or not each resource is to be

used is determined independently using the assigned probability.

It is presumed that by using the above random selection of registers and
resources, the hard-to-grasp parameters like parallelism in microcodes and
resource conflict are kept random. In the experiment, many number of micro-
codes are synthesized for each set of constant parameters and the results are

averaged.

5.4.2. Program Structure Model
In this model, we have made several assumptions:

(1) only two way branching ( if then else ) is allowed
(2) only two way join is allowed

(3) no loop

(4) no goto

Multi-way join can be achieved by allowing some blocks to be empty but we
are not concerned about the size of blocks here. We are only interested in the
topology of block structure, which is represented as a graph where a node is a

block and an edge is a possible path of program execution.
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(a) 0 conditional branch (b) 1 conditional branch
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(c) 2 conditional branches

Figure 5.1 Program structure model

First, consider a case where there is no conditional branch. There is only
one possible configuration in this case, which is just a single block or a node in
graph representation. It is shown in Figure 5.1(a). If there is one conditional

branch, the possible configuration is still unique, with 4 blocks, and is shown in
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Figure 5.1(b). If there are two conditional branches, the number of possible con-

figurations becomes three, as shown in Figure 5.1(c).

There i1s another way of representing these configurations by using strings.
In the string representation, each letter corresponds to a block. The blocks which
end with conditional branches are represented as letter ¢ and the other blocks are
represented as letter j. The order of these letters is similar to that of the
preorder traversal of a tree. String representations are shown below each graph

representation in Figure 5.1.

If we see the string representation in Figure 5.1(c), we can see a pattern.
The first letter is always ¢ and the last three letters are always j's. The location
of the ¢ in the middle three letters determines three different configurations.
Note that for each ¢ in a string, there cannot be more than two j's until the next

¢ comes except the last ¢ in the string. This rule is accumulative, i.e., if there

cjje jje jijj cjejjje jij cedjiie i
cjje jej jij cjejjej jij cejj jej ji
cjic €jj jiiJ cjej ejjii cejl ejj Jij
cjee jij iij ceje jil Jij
ceej Jjii iy

(a) string representations of 12 possible configurations

Figure 5.2 Program structure model for 3 conditional branches
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c lic Jc 1) ¢ iic icj iij ¢ Jic cij iij ¢ icj iic iij
3
- -
¢ kj Jcj Ji ¢ i cij Ji ¢ joc Jij Jij o cll e Jj
c cfj kej 1y c cfj cjj Jij ccjc 1 1 ¢ ccj Jij 1}

(b) graph representation

Figure 5.2 Program structure model for 3 conditional branches ( cont'd )
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are two consecutive ¢'s, then four j's may follow before another ¢. Described dif-
ferently. for any letter in a string except the last j, if its prefix contains less than
twice as many j's as ¢'s, the letter can be a either ¢ or j. If its prefix contains
exactly twice as many j's as c’s, the letter has to be a e. If its prefix contains
more than twice as many J's as ¢’s, then the prefix contains a letter j which

represents a premature exit block.

Now we can represent all the configurations for the case of three conditional
branches using the above rules, which is shown in Figure 5.2(a). For each string

representation, corresponding graph representation is shown in Figure 5.2(b).

5.4.3. Procedure
The experiment was done using the following parameters:

The number of registers: 16

The number of destination registers: 1
The number of source registers: 2

The number of resources: 4

The probability of each resource used: .25
The number of blocks: 10

The number of MO’s in each block: 3

The above parameters are chosen based on the system simulated in Section
5.5.1 and the program structure model in Figure 5.2.‘ For each MO, one register
among 16 is selected randomly and assigned as a destination register and two {
possibly the same ) registers are selected and assigned as source registers. For
each MO, it is assumed that the probability of each resource being used is 1/4.
So it 1s possible that all four resources are used in a particular MO with the pro-
bability of 1/256, or no resource is used again with the probability of 1/256.

With 10 blocks, there exist 12 possible configurations as described in previous
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c 1 1 2 15 1 0 0 O 1.000000
c 2 2 4 12 0 1 0 0 1.000000
3 7 12 11 10 0O 0 1 0 1.000000
c 4 7 13 S5 0 0 1 0 0.800000
c 5 7 6 4 0O 0 1 O 0.800000
g 10 8 3 8 0O G0 O 1 0.800000
c 7 9 10 10 0 1 0 O 0.200000
c 8 14 5 7 1 0 O 0 0.200000
c 9 12 10 S 0O 1 0 0 0.200000
c 10 11 2 4 0O 0 0 1 1.0000G0
c 11 10 3 0] 0O 0 1 0 1.000000
3 16 S5 1 13 0 0 0O 1 1.000000
c 13 5 13 S 0 0 1 0 0.800000
c 14 0] 8 14 1 0 0 0 0.800000
g 28 6 11 4 1 0 0O O 0.800000
c 16 3 9 11 0O 0 O 1 0.200000
c 17 5 0 0 0O 0 1 0 0.200000
3 22 15 14 4 1 0 0 O 0.200000
c 19 13 2 3 0 1 0 0 0.160000
c 20 4 2 12 0O 1 0 0 0.160000
g 25 5 2 11 0 0 1 0 0.160000
c 22 15 3 14 0 0 1 0 0.040000
c 23 7 7 13 0O 1 0 0 0.040000
c 24 11 12 12 0 0 0 1 0.040000
c 25 8 3 10 0 0 0O 1 0.200000
c 26 2 8 9 0 0 1 O 0.200000
c 27 13 8 7 0O 0O O 1 0.200000
c 28 10 7 8 1 0 0 O 1.000000
c 29 13 10 9 0 0 O 1 1.000000
c 30 4 5 13 0 0 1 0 1.0000060

Figure 5.3 Example of an artificially synthesized microcode

section. For each configuration, 20 microprograms are synthesized and com-

pacted using list scheduling, beta compaction, and trace scheduling.

An example of microcode synthesized using the models described in the pre-

vious two sections is shown in Figure 5.3.
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5.4.4. Result and Discussion

The result of the experiment described above is summarized in Figure 5.4 in
terms of number of junction blocks. We are particularly interested in the perfor-
mance of the beta compaction compared to trace scheduling as the number of
junction blocks varies, since handling of the junction block is the key in beta
compaction. Figure 5.4(a) shows weighted execution time of compacted micro-
code and Figure 5.4(b) shows control memory size of compacted microcode. Since
there are 5 configurations with no junction block, 6 configurations with one junc-
tion block, and 1 configuration with two junction blocks, as shown in Figure
5.2(b). the numbers in Figure 5.4 for the zero junction block case represent the
average of 100 microprograms, the numbers for the one junction block case
represent the average of 120 microprograms, and the number for the two junction

block case represents the average of 20 microprograms.

As shown in Figure 5.4(a), the weighted execution times of the beta compac-
tion result and the trace scheduling result are almost the same regardless of the
number of junction blocks. The weighted execution times of the global compac-
tion result { beta compaction and trace scheduling ) are about half of original
weighted execution time and about 25% less than the local compaction result (

hist scheduling ).

The memory sizes of the beta compaction result and the trace scheduling
result are almost the same for the zero junction block case. However, the
memory sizes of the beta compaction result are about 15% less than the memory
sizes of the trace scheduling result for the one and two junction block cases. The
memory size difference between local and global compaction results is not as
large as the weighted execution time difference between local and global compac-
tion results. Note that the memory sizes of the trace scheduling result for one
and two junction block cases are actually larger than the memory size of the list

scheduling result.
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original 22.6
list
15.6
scheduling
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list
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Figure 5.4 Summary of experimental result
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Figure 5.5 Distribution of the two junction block case
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The distribution of 20 microprograms for the two junction block case is
shown in Figure 5.5. Figure 5.5(a) shows the distribution for weighted execution
time and Figure 5.5(b) shows the distribution for memory size. In the distribu-
tion for execution time, a bar of height N above execution time T is interpreted
to mean that N microprograms out of the 20 tested had weighted execution time
T. The interpretation is similar for the memory size distribution. It is clear that
the distribution of weighted execution time is almost the same for the beta com-
paction and the trace scheduling, as shown in Figure 5.5(a). However, the distri-
bution of memory size is quite different between the two. While most micropro-
grams yielded the memory size of between 16 and 20 in the beta compaction, the
trace scheduling result showed a wide distribution, ranging from 16 to 31. This

implies the high sensitivity of memory size in the trace scheduling for the changes

of source microcode.

5.5. Simulator of an AMD2800-based system

The previous section described the comparison between the trace scheduling
and the beta compaction using synthesized microcodes and confirmed the claimed
properties of the beta compaction. However, we are interested in the perfor-
mance of the beta compaction not only on the synthesized microcodes but also on
some real application programs. Since we do not have access to a micropro-
grammable machine with parallel resources, we decided to simulate one.
Microprogrammable hardware based on AMD 2900 components is designed and
simulated to test both uncompacted and compacted microcodes. The simulator is
based on Glenford Myers" paper[MYE81| and has most of the nice menu driven
human interface described in the paper and more. The simulation is done at the
register transfer level which is seen by a microprogrammer. The simulator is

written using C' and the curses screen drawing package on VAX-11/780 running
UNIX 4.1bsd.



5.5.1. System description

The block diagram of the simulated system is shown in Figure 5.6. It is a
simple system using the AM2903 ALU and the AM2910 microprogram controller.

The system has two ALU's ( AM2903 ) to provide parallel resources for com-
pacted microcodes. In the experment, an application program is hand-compiled
for the target system assuming there is just one ALU, then compacted for the

target system with two ALU's.

To make the register file accessible from both ALU’s, the internal registers
of AMD2903 are ignored and external registers are used. Each ALU has its own
register file and they always have the same value in order to allow parallel access
to the registers. So up to four registers can be read by two ALU’s at the same
time, addressed by a and b addresses of each ALU. Any register write operation
will write both register files the same value. Since b address is used for register
write operation the proper b address among two is selected in the hardware and
fed to the register files. All the non-ALU registers including pipeline registers
and status registers are latched at the rising edge of each clock or at the begin-
ning of each clock cycle. Therefore, micro memory fetch, main memory fetch

and ALU operation are done at the same cycle.

Since CPU and main memory are the only things that are on the system
bus, no bus arbitration is necessary, except the DOUT register should not be
writing onto the data bus in memory read cycle. Main memory is assumed to be
fast enough to allow access in a single microcycle. However, the wait states can

be inserted if necessary.

When two ALU's are utilized, some values to be loaded in non-ALU registers
may be lost by other operation before they are actually loaded. For example, an
address calculated by ALU 0 on its y bus may be changed by the next ALU 1
operation before it is loaded into memory address register ( MAR ), since MAR

load operation is not guaranteed to follow the address calculation immediately.
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Figure 5.8 Block diagram of the simulated system
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Special buffers are built in to mar, din, dout and status registers. These buffers
are loaded at the end of micro cycle controlled by pipeline register signals syn-
chronized with a sub-micro phase clock for the purpose. These buffers will hold

correct values until they are loaded into corresponding registers.

The micro instruction format is shown in Figure 5.7. The width of the MI is
96 bits ( 3 double words ). For one ALU application, only 2 double words ( 64
bits ) are necessary. Note that the selection between register and external data
for ALU input is controlled ordinarily using ea/ and oeb/ signals when internal
registers are used, but for this simulator the selection is controlled externally

using da_mux and db_mux when external registers are used.

5.5.2. Functions and human interface

The simulator is an interactive menu driven software package and all its
functions are controlled by selecting appropriate entries in its menu window. All
the internal states are displayed and can be modified. Control store can be
loaded from a file and saved to a file. The user program can be executed either
in a free run mode of in a single step mode. Break points can be set and the
trace is collected. There are many more useful functions and human interface

features and Appendix A contains a detailed description.

5.5.3. An Application Program

The insert operation to 2-3 tree was chosen to be used as an example pro-
gram to be run on the simulator because it contains many decision makings, i.e.
conditional branches. It is hypothesized that programs with many conditional
branches, i.e. many blocks have more parallelism over the block boundaries which
can be exploited in global compaction. The more conditional branches, the more

chances are there for global compaction.



86

The program was written in Pascal and hand compiled into microcode. The

Pascal program source listing is attached in Appendix B and a part of AMDASM!
listing of hand compiled microcode is in Appendix C. During the hand compila-
tion, all the variables were preassigned to registers, since the number of variables
was small. The Pascal program of the insertion algorithm is written using a
recursive procedure. So the recursive procedure is implemented on the microcode
using a simple stack in main memory to save and restore local variables. Argu-
ment passing on procedure calls is done using call by reference, so the same regis-
ters are used to represent argument variables inside procedures. The program
builds its 2-3 tree data structure in main memory. A simple get-space routine is
written in microcode to allocate the main memory space. The program was first
compiled into microcode for the simulated system assuming there is one ALU and
then compacted for two ALU system using list scheduling and beta compaction.
Since the compaction program requires data format different from the microcode
generated by AMDASM, a conversion program was written which finds out all
the register and resource usage of each MI. After compaction, the result was con-
verted to a format acceptable to the simulator by another conversion program

which also calculates new branch addresses and determines multiplexer controls.

To demonstrate that the compaction procedure has generated correct micro-
code, both uncompacted and compacted versions of the program has been run on
the simulator and give the same result as the compiled object code of the original
Pascal program on VAX-11/780.

For a data set which builds a 2-3 tree with 5 leaf nodes, weighted execution
time and space needed are summarized in Figure 5.8 for both before and after
compaction. The probabilities for calculating weighted execution time were
measured from a pascal program execution profile on a large data set. Even
though the result confirmed the general properties of three compaction tech-
niques, the difference between beta compaction and the trace scheduling is small.

The main reason is that the program has little parallelism over the block

1 AMDASM is a trademark of Advanced Micro Device, Inc.
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wveighted | space space
time (# of words) | (# of bits)
original 75.15 238 14042
list
. 83.86 159 13356
scheduling
trace
8077 155 15020
scheduling
beta
12600
compaction 40.83 150

Figure 5.8 Summary of 2-3 tree insertion program execution

boundaries because main memory read and write operations impose very heavy
local data interactions between MO's and therefore very small number of MO's
can be moved to different blocks without violating data integrity. It would be
possible to relieve some of these data interactions due to main memory access by

having dual port memory with separate address and data bus.

5.6. Space Complexity Analysis

Space complexity of compacted microcode size is analyzed for both trace
scheduling and beta compaction. For the trace scheduling, one microprogram is
analyzed to show that the memory size can grow exponentially after the compac-

tion. For the beta compaction, the worst case microprogram is presented and
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informally proved. The worst case space complexity of the beta compaction is
O(n®).

5.6.1. Trace Scheduling

One microprogram shown in Figure 5.9 is analyzed to demonstrate that the

memory requirement of trace scheduling can grow exponentially.

For the purpose of the analysis, it is assumed that each block contains a
large  unspecified but equal npumber of MO’s and the blocks
Ay, B, A;, By, - - A, B, A, form a trace. Furthermore, it is assumed that, after
the trace blocks are compacted, one MO from each blocks B, B, --- |, B, has been
combined with MO’s in block A, so that it is necessary to make copies of blocks
as shown 1n Figuré 5.9(b). Since it is assumed that the number of MO’s in each
block is equal and larger than one, and the only over-the-block-boundary move-
ments of MO's are the ones from blocks B, B, --- , B, to A,, it is reasonable to
assume that the size of each block does not change. Let the size of each block be

unity for convenience.

Now the rest of the microprogram except the first trace has to be compacted
and it is assumed again that similar situations arise as the first trace and copies

are made.

Let f(n) be the size of the microprogram shown in Figure 5.9(a) after com-

paction in terms of number of blocks. n is the number of conditional branches.

fn)=2n+1+fir-1)+14+An-2)+1+ - +A0)+ 1

=3n+ 1+ fin-1)+ An-2)+ - -+ + f0)

It 1s obvious that fo) = 1.
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Figure 5.9 Exponential memory growth in trace scheduling
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fin)=3n+1+ An-1)+ An-2)+ - - + f0)
N A1) =3(n-1)+ 1+ + An-2)+ --- + f0)

fin) = Ain-1)=An-1)+ 3
Therefore,

fin) = 2fn-1) + 3
This and f0) = 1 give

finj=2"2_3

l.e., f(n) is the exponential function of n, or the number of conditional

branches in the microprogram shown in Figure 5.9(a).

This is of course a pathological case which is not likely to happen in real
microcode. However, the implication that movements of MO’s below joins cause
extensive copying of blocks is serious. In real microcode, it is possible that move-
ments of MO's below joins happen frequently enough to increase the memory size
forbiddingly. Note that a single movement of an MO from block B, to A, would

approximately double the memory size.

5.6.2. Beta Compaction

In beta compaction, the worst case in memory space growth happens when a
given microprogram has the structure shown in Figure 5.10(a). It is assumed that
in any conditional branch, the left branch has higher probability of execution
than the right branch for convenience. An informal proof by induction that this

microprogram gives the worst space complexity follows.

Starting from a single block or a SLM, adding one conditional branch to it

vields 4 blocks A, A, B, and A’ - the only case, thus the worst case. Since we

are concerned only about the topology of the microprogram, the size of each
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Figure 5.10 Worst case in beta compaction




block is assumed to be unity and blocks newly created by adding a conditional
branch are still assumed to be of size unity. Let us assume that the set of blocks

shown in Figure 5.10(a) except the 3 blocks A, Bn, A’ ,, with block A_, con-
nected to block A’ ,, gives the worst space complexity with respect to n-1 condi-

tional branches.

At this point, let us consider a microprogram shown in Figure 5.10(b).
Given such a program, the beta compaction result which would give the largest
memory is shown in Figure 5.10(c). First, the trace of blocks a, b and d was
compacted. Since we are trying to maximize the resultant memory size, we want
all MO’s in block a to be copied to block ¢, which may be caused by the move-
ment of MO’s in block a into block b. The MO’s moved to block b do not
increase the size of block b, however, because they are moved only when they are
combined with the MO’s in block b to form new MI's. Therefore, the attempt to
make MO's in block a copied to block ¢ did not increase the overall size. It is
assumed that a MO from block b has been moved to the bottom of block d as a
result of compaction of the trace. So MO’s in block d is copied to the end of
block ¢, as shown in Figure 5.10(c). Figure 5.10(d) shows a compacted microcode
without copying of MO’s in block a and its size is the same as the size of the
microcode in Figure 5.10(c). So we will use the kind of transformation from the

microcode of Figure 5.10(a) to that of Figure 5.10(d) in our discussion.

Now we need to find out to which block we should add the n th conditional
branch in order to maximize the resultant microcode size. We claim that adding

one more conditional branch to either block A | or B, increases the space the
most. If the conditional branch is added to one of the blocks Ay, A,, ..., A_, or

A" o A’ 4 .y Ay, then a junction block is introduced and so the traces become

shorter, therefore reducing space increase. If the conditional branch is added to

one of the blocks B,, 1<k<n-1, then the increased size of the microprogram is

4+2k-k which becomes a maximum of n+3 when k = n-1. Or, if a conditional

branch is added to block A_,, then the increased size of the microprogram is
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Figure 5.11 Calculation of memory size increase

n+3, which is the same as for block B_ ..

To calculate these size increases, refer to Figure 5.11. It shows the case
where the n th conditional branch is added to one of the blocks B, 1<k<n-1.
Similar to what is shown in Figure 5.10(d), four blocks are added, and the blocks
which follow block B, are also attached at the end of each branch. So the total
size increase is 4+2k minus k, because k blocks were there before the conditional
branch is added. Similarly, the total size increase when the n th conditional

branch is added to block A_ | is 442(n-1)-(n-1), as shown in Figure 5.11(b). So
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the size increase is maximum when the conditional branch is added to either

block A_, or block B |. Therefore, a microprogram with the topology shown in
Figure 5.10(a), where the n th conditional branch is added to block A_,, requires

the largest possible memory space after the tree compaction is performed. If the

conditional branch is added to block B_,, the topology of the microprogram is

different, but the size increase is identical.

The size of the whole microcode after the compaction is

S=14+2n+n+ Yk
=1

=3n+1+"("—2+1)

= 0()



CHAPTER VI

CONCLUSION

6.1. Summary

The need for a better microprogramming tool has increased considerably as
increased demand and support of computer technology has brought about wide
use of microprograms. The eventual goal of microprogramming tool development
would be to make a high level microprogram language and a compiler to generate
minimal-execution-time microcode for a variety of machines. In generating
minimal-execution-time microcode, one aspect that differentiates microprogram-
ming languages from macroprogramming languages is the need for compaction in

highly horizontal microarchitecture.

Among the proposed microprogram compaction methods, the trace schedul-
ing 15 the most general and appears to give the fastest execution of compacted
microcode. However, the growth of memory size by extensive copying of blocks
can be enormous, exponential in the worst case, and the complicated bookkeeping

stage of the trace scheduling has been an obstacle to implementation.

A technique called beta compaction, based on trace scheduling, is proposed
to mitigate the drawbacks of trace scheduling. Basically, it identifies the junction
blocks { the blocks beginning with a join and ending with a conditional branch )
as the major source of complication, and cut traces at those junction blocks. It

achieves almost all the compaction of the trace scheduling except that which

05



causes copying of blocks. Memory size after the beta compaction is usually
smaller than the original. Even when the memory size grows in rare instances, it
is bounded by O(n®) in the worst case. And the bookkeeping stage is very much
simplified. The compacted microcode size variation as the source microcode

changes is also very small.

A loop-free version of both beta compaction and trace scheduling has been
implemented. Comparison between the two was done using artificially generated

microcodes and the above properties of the beta compaction was confirmed.

A simple microprogrammable machine based on AM2900 components was
designed and simulated with an interactive user-friendly interface. A realistic
application program was written and hand-compiled into microcode. The micro-
code was executed on the simulator both before and after compaction, which
demonstrated the applicability of the compaction technique and the correctness

of the implementation.

6.2. Future Research

The first immediate tasks are to implement loop handling in beta compac-

tion and to test it with more programs of various kinds.

To improve the beta compaction, it might be possible to incorporate Isoda’s
extended data dependency graph [ISO83] into the basic scheme of the beta com-
paction. This may serve as a more elegant solution to the global compaction

problem.

In this broad area of research toward developing better microprogramming
tools, more work is called for in the area of microprogramming language design,
the code generation problem including resource allocation, microcode verification,

and the integration of available knowledge.
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APPENDIX A

THE SIMULATOR FUNCTIONS AND HUMAN INTERFACE

The simulator is an interactive menu driven software package and all its
functions are controlled by selecting appropriate entries in its menu window. So
the best way to describe the simulator function is by describing entries in the

menu windows.

The menu system has 5 major frames where you can move from one frame
to the other freely and one of the 5 frames ( Alter and Display frame ) has 5 sub-

frames of its own.

Processor initialization frame ( Figure A.1)
trap/trace frame ( Figure A.2 )
Alter/display frame
Datapath subframe ( Figure A.3 )
Pipeline register subframe ( Figure A4 )
Control store subframe ( Figure A.5)
Main store subframe ( Figure A.6 )
Trace table subframe ( Figure A.7 )
Recording frame ( Figure A.8 )

Performance frame ( Figure A.9)

Each frame has a one-line title on top of the screen and a menu and data
display area in the middle. At the lower part of the screen, there are the one-line
error message display field, the function field and the frame select field. And in
the same line with the function field, there may be either the file name field or
the address field depending on the frame selected. The last line is used to display
the status of clock, stop, cycle, lesar ( last control store address register ) and

csar ( control store address register ). The clock field displays whether internal
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clock is running or has stopped. The stop field displays the reason of a stopped
clock. e, if the clock is stopped because of error, break point encountered, single
step, microprogram exit, or time out. The cycle field indicates the time limit in
terms of number of cycles which can be easily changeable. The lesar displays the
address of control store which contains the micro instruction which has just been
executed. The csar displays the address of control store which contains the micro

instruction which is to be executed at the next cycle.

Whenever a new frame is displayed, the cursor is located at the function
field. The cursor can be moved around using either four arrow keys ( up, down,
left and right ) or h( left ), j( down ), k( up ), I right ) keys which are UNIX vi

convention.

The cursor can be moved only to those fields where a user is allowed to
change its value. Trying to move toward the wrong direction will yield a 'beep’.
The fields where the user is allowed to change its value are indicated by '=>’

and those which are mere display of something are indicated by ->".

The following keys are not displayed on the menu but are available

throughout the simulator and could be very useful.

h or left arrow Move cursor to next allowable field to the left

j or down arrow Move cursor to next allowable field to downward
k or up arrow Move cursor to next allowable field to upward

| or right arrow Move cursor to next allowable field to the right
"L ( control-L ) Redraw the screen

“Z ( control-Z ) Suspend the program and go back to UNIX

( Execution can be resumed by shell
command 'fg’ ( foreground ) )
break key Stop the program and go back to UNIX
( equivalent to function 'q’ )
: ( colon ) Move cursor to function field

+ ( plus ) In numeric field, increment the value by 1
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- ( minus ) In numeric field, decrement the value by 1
. { period ) In numeric field, reset the value to zero
? { question mark ) Help command. Displays the above info.

A.1 Processor Init Frame

The processor initialization frame is shown in Figure A.1. This is the first

frame a user will see when he starts the simulator. Here he can load the control

store and main store from appropriate files. To do this, first move the cursor to

file name field and type the file name followed by <carriage return> which

makes the cursor go back to the function field. Then type function selection

character. The files are required to be in a certain format. One way to make the

Fct Description Hardware Timings
¢ Load Control Store Machine Cycle Time => 200 nS
m Load Main Store Memory Read Cycle Time => 350 nS
q Quit and Return to UNIX Memory Write Cycle Time => 350 nS
X Exit to Selected Frame
i Processor Initialization
Alter/Display Note: Above numbers are in decimal
Traps/Traces

e -

Recording Functions
Performance Data

---> Control Store has been loaded from amdasm/cs.tree
Function => Filename => amdasm/cs.tree

Frame Select =>
Clock -> STOUPPED Stop -> NONE Cycles => fff LCSAR -> 0 CSAR => 0

Figure A.1 Processor initialization frame
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files with a right format is to store default values ( all zeros ) of the memories in

files using store functions in recording frame ( Section A.4 ) and edit the files.

Basic hardware timings can be set up. Currently settable parameters are

machine cycle time ( micro-cycle time ), main store read cycle time and main

store write cycle time. If either read or write cycle time is greater than machine

cycle time, proper wait states are generated and added to total elapsed time. See

the Section A.5 for performance data frame.

A.2 Trap/Trace Frame

The trap/trace frame is shown in Figure A.2. Here traps ( break points )

and trace can be set up or cleared. Trace can be turned on or off and the trace

7
1a

t e T Traps/Tr‘aCeS S S S SN S s SRSz Co=Ss S-Sz =D== =
Fct Description Control Store Traps ::::::::::::
n Csar Trace ON Trap => a From => 6e To =>
f Csar Trace OFF Trap => x From => 0 To =>
e Empty Trace Table Trap => x From => 0 To =
q Quit and Return to UNIX Trap => x From => 0 To =
x Exit to Selected Frame Trap => x From => 0 To =
i Processor Initialization
d Alter/Display a-Active  x-Off
t  Traps/Traces
r  Recording Functions Main Store Traps :::::zirizii:icc:
p Performance Data
Trap => r From => 4 To =>
Trap => s From => la To =>
Trap => x From => 0 To =

CSAR Trace -> ON
f-Fetch s-Store r-Reference

Function =>

Frame Select =

0

x-0ff

Clock -> STOPPED Stop -> NONE Cycles => fff LCSAR -> 0 CSAR =>

Figure A.2 Trap/trace frame

0
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table can be emptied using appropriate functions. There are two different kinds

of traps. One for the control store and the other for the main store. For the

control store traps, a user can activate of deactivate the traps. For the main

store traps, he can activate the traps for three different ways: fetch, store and

reference ( fetch and store ). All traps have their ranges. So, for example, any

attempt to execute the micro instruction of an address between the range will

make the execution of the user microprogram stop. Assigning the same values for

both lower and upper limits is equivalent to setting up just one trap ( break

point ) in the conventional way.

A.3 Alter/Display Frame

X0 SV a3 OT A

Function =>

===z=z=z=z=z=zz===================== Alter/Display

Description xm03r -> 0000
xm03s -> 0000

16-bit Datapath xm03y -> 0078

Pipeline Registers xm03qreg => 0000

Control Store

Main Store xreg cout => 0

Csar Trace Table xreg sign => 0

Store PL Reg in CS xreg ovr => 0

Single Step Processor xreg_z = 0

Free Run Processor

Quit & Return to UNIX sreg cout => 0

Exit to Selected Frame sreg sign => 0

i Processor Init sreg ovr => 1

d Alter/Display sreg z = 1

t  Traps/Traces -

r Recording Function amlOcc =0

p Performance Data -

Address => 0
Frame Select =>
Clock -> STOPPED Stop -> QUIT Cycles => eb63

Figure A.3 Alter/display frame ( datapath subframe )

TSRSz SszTIz==s

am03y -> 0000
am03qreg => 0000

mar => 00f0
ir => 0000
din => 0004
dout => 0004

amlOreg => 000
amlOuPC => 123
amlOptr => 0
amlOstkl => 122
amlOstk2 => O0f0
amlOstk3 => 03b
amlOstk4 => 03b
amlOstk5 => 000

LCSAR -> 122

RO => 0000
R1 => 0004
R2 => 0014
R3 => ffff
R4 0005
R => ffff
R6 => 0005
R7 => 0001
R8 => 0004
R9 => 0000
R10 => 001c
R11 => 00f0
R12 => 00f0
R13 => 00la
R14 => 0000
R15 => 0004
CSAR => 3ff
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This is considered the major frame of the simulator. It is the only frame

where a user can single step or free run the microprogram. It displays and/or

allows to change values of various parts of the simulated machine. It has five

subframes which are shown in Figure A.3 through Figure A.7. The default sub-

frame is the datapath subframe, which is displayed whenever this alter/display

frame is entered.

For displaying control store, main store or trace table, this frame has an

additional field called address. The address is used to indicate the first entry to

be displayed. The address field is also used to indicate the index of trace table to

be displayed on top. The address ( index ) zero of trace table subframe has a

special meaning ( see the description of trace table subframe ).

Fct Description

X0 =S Vv +3 0T A

T 3 O~

Function =>

Frame Select =>
Clock -> STOPPED

16-bit Datapath
Pipeline Registers
Control Store

Main Store

Csar Trace Table

Store PL Reg in CS
Single Step Processor
Free Run Processor
Quit & Return to UNIX
Exit to Selected Frame
i Processor Init
Alter/Display
Traps/Traces
Recording Function
Performance Data

xrfin mux =>
xlda mux =>
x1db mux =>
xmar mux =>
xdout mux =>

Address => 0

Stop -> QUIT

================== Alter/Display
xm03a = 0
xm03b =>0
xm0318765 => 0
xm03i4321 => 0
xmQ3ea = 0
xm03i0-  => 0
xm030eb =>0
xmO3we = => 0
xm03oey => 0
xm03cn =~ => 0

OCOOOO

Cycles => eb63

am03i8765 =>
am03i4321 =>
am03ea =>
am03i0- =
am030eb =
amQ3we =~ =>
amO3oey  =>
am03cn =~ =

=>
=>

COOOOOOOOO

xO0da mux => 0
x0db_mux => 0

LCSAR -> 122

0
0
1din => 0
ldout => 0

write =>
ir mux =>
aml0i =>

cc comp
cC mux
amlOccen
amlOrlid —

OO O

VR VIR VRS
OC OO

ddata => 0000

CSAR => 3ff

Figure A.4 Alter/display frame ( pipeline register subframe )
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When running ( or single stepping ) through the microprogram, once a run-

time error occurs, the remaining simulation of the cycle is meaningless. So the

simulator returns immediately if a runtime error is detected without going

through the cycle completely.

(1) Datapath Subframe

The datapath subframe is shown in Figure A.3. This displays all 16 registers

in AM2903 and other registers and allows a user to change them. It also displays

input and output of the ALU which are not registers and thus not allowed to be

changed by a user ( indicated by ->’).

(2) Pipeline Register Subframe

O IV 3 OT A

Description

16-bit Datapath

Pipeline Registers

Control Store

Main Store

Csar Trace Table _
Store PL Reg in Control Store
Single Step Processor

Free Run Processor

Quit and Return to UNIX

Exit to Selected Frame

i Processor Initialization
Alter/Display
Traps/Traces

Recording Functions
Performance Data

T St

Function => Address =>

Frame Select =>
Clock -> STOPPED Stop -> SSTEP

Figure A.5 Alter/display frame ( control store subframe )

Alter/Display

Control

addr

T WO~ WN=—O

Cycles => f43

e e o o e e ==t e e e T e

Store

msb

00030300
000e0102
000e0101
020e0100
0080100
00034500
000e0101
0200100
008e0100
000a0500
000e010e
00010300

0010010b
c680ffff
¢3900000
00100000
c1b4000f
00100027
c3900001
00100000
€1340000
00100000
c680000f
00100122

LCSAR -> 71

1sb

CSAR =>

72
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d ================SSESSSSZ====SEs A]ter/D"sp]ay B R S e e e
Fct Description Main Store
d 16-bit Datapath addr  data
p Pipeline Registers 0 000f 0003 000f 0G07
¢ Control Store 4 0Gf0 0000 0002 ffff
m  Main Store 8 0007 0000 000f 0005
t Csar Trace Table c 0000 0000 0000 0000
a Store PL Reg in Control Store 10 0000 0000 0C00 0000
s Single Step Processor 14 0000 0000 0COC 0000
r  Free Run Processor 18 0000 0000 0000 ©00O
q Quit and Return to UNIX 1c 0000 0000 0000 0000
x Exit to Selected Frame 20 0000 0000 0000 0000
i  Processor Initialization 24 0000 000G 0000 00GO
d Alter/Display 28 0000 0000 0000 0000
t Traps/Traces 2c 0000 0000 0000 0000
r  Recording Functions
p Performance Data

Function => Address => 0

Frame Select => )
Clock -> STOPPED Stop -> SSTEP  Cycles => f43 LCSAR -> 71 CSAR => 72

Figure A.8 Alter/display frame ( main store subframe )

The pipeline register subframe is shown in Figure A.4. This displays all the
fields in the pipeline register and allows the user to change them. It is also possi-
ble to load the pipeline register from arbitrary location of control store or to store
the pipeline register to arbitrary location of control store. Loading the pipeline
register can be done by changing CSAR values at the bottom right of the screen.
Storing the pipeline register is done by function 'a’ which stores the current value

of pipeline register in the control store addressed by the address field on the

screen.

(3) Control Store Subframe

The control store subframe is shown in Figure A.5. This simply displays

part of the control store on the screen starting from the address specified by the
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d ====z=s====scz==s=zzzsszz=s===sST==S A] ter/Disp] gy =S=========z=s=ssss=ss=ss=zsssss
Fct Description Trace Table
d 16-bit Datapath index CSAR
p Pipeline Registers b6 6c
¢ Control Store b7 6d
m Main Store b8 be
t Csar Trace Table b9 6f
a Store PL Reg in Control Store ba 70
s Single Step Processor bb 71
r  Free Run Processor bc 72
q Quit and Return to UNIX bd 73
x Exit to Selected Frame be 74
i Processor Initialization bf 75
d Alter/Display c0 76
t Traps/Traces cl 77 <-- last trace
r Recording Functions
p Performance Data

Function => Address => 0

Frame Select =>
Clock -> STOPPED Stop -> SSTEP  Cycles => f3d LCSAR -> 77 CSAR => 78

Figure A.7 Alter/display frame ( trace table subframe )

address ficld on the screen. A user is not allowed to change them on the screen.
But there are two ways to change the contents of control store. Either set up the
pipeline register and store it in the control store as explained above ( this is a lot
more sensible way than dealing with hexadecimal numbers ), or save the contents
of the control store in a file from recording frame, suspend the execution of this
simulator, edit the file, resume execution by 'fg’, and load the file into the control

store.

(4) Main Store Subframe

The main store subframe is shown in Figure A.6. This displays part of the
main store on the screen starting from the address specified by the address field

on the screen. The user is not allowed to change them on the screen. To change
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Fct Description

¢ Save Control Store

m  Save Main Store

f  Save Machine Facilities

g Guit and Return to UNIX

x Exit to Selected Frame

i Processor Initialization
Alter/Display
Traps/Traces

Recording Functions
Performance Data

T S +a -

---> Main Store has been saved in ms.tree
Function => Filename => ms.tree

Frame Select =>
Clock -> STOPPED Stop -> SSTEP  Cycles => fid LCSAR -> 77 CSAR => 78

Figure A.8 Recording frame

the contents of the main store, the latter procedure described in Control Store

Subframe has to be followed.

(8) Trace Table Subframe

The trace table subframe is shown in Figure A.7. This displays part of the
main store on the screen starting from the index specified by the address field on
the screen. When the address field is zero, and the trace table is not empty, then
this subframe will display the last entry ( most recently updated entry ) at the
bottom so that most recent 12 entries are displayed. This feature eliminates the

need for a search of the last entry in the buffer of 256 entries. The last entry of

the trace is clearly marked.

A.4 Recording Frame
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p -S4t S 4 S 4 S S  F 3 I - - - 1 Performance Data 4432+ 3 222 PP
Fct Description Measurement
r Reset all Performance Data Elapsed Micro Cycle -> 621
g Quit and Return to UNIX Number of Wait States -> 119
x Exit to Selected Frame Total Elapsed Time -> 148.0 usec
i Processor Initialization

Alter/Display Note: Above numbers are in decimal
Traps/Traces

d

T

r  Recording Functions
p Performance Data

Function =>

Frame Select =>
Clock -» STOPPED Stop -> QUIT Cycles => d92 LCSAR -> 121  CSAR => 3ff

Figure A.9 Performance data frame

The recording frame is shown in Figure A.8. This frame allows a user to
save the contents of the main store and the control store in files. To do this, he

has to type file name first and then type the appropriate function.

A.5 Performance Data Frame

The performance data frame is shown in Figure A.9. This frame displays
statistics collected during the simulation. Currently, elapsed micro cycle, number

of wait states and total elapsed time are displayed. All of these performance

data can be reset to zero.
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APPENDIX B

2-3 TREE INSERTION ALGORITHM

program tree( input, output, data );

type elementtype = record
key : integer;
(* other fields as warranted *)
end;

nodetypes = ( leaf, interior );

nodeptr = "twothreenode;
twothreenode = record
case kind : nodetypes of
leaf : ( element : elementtype );
interior : ( firstchild : nodeptr;
secondchild : nodeptr,;
thirdchild : nodeptr;
lowofsecond : integer;
lowofthird : integer )
end;

var  root : nodeptr;
newp : elementtype;
numofdata, i : integer;
data : file of char;

procedure Printtree( pnode : nodeptr );

begin
writeln;
if pnode” .kind = leaf
then
writeln( 'element = ":10, pnode element.key:3 )
else

begin



end:

end:
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writeln( 'lowofsecond = ':14, pnode”.lowofsecond:3 );
writeln( 'lowofthird = ':14, pnode”.lowofthird:3 );

if pnode” .firstchild <> nil
then
begin
write( 'First child ’ );
Printtree( pnode” .firstchild );
end;

if pnode’.secondchild <> nil
then
begin
write( 'Second child ' );
Printtree( pnode’.secondchild );
end;

if pnode” .thirdchild <> nil
then
begin
write{ 'Third child ' );
Printtree( pnode”.thirdchild );
end;

procedure insertl( node : nodeptr;

var

x : elementtype; (* x is to be inserted into the subtree
of node *)
var pnew : nodeptr; (* pointer to new node created
to right of node x)
var low : integer ); (* smallest element in the subtree
pointed to by pnew x)

pback : nodeptr,
lowback : integer;
child : 1..3; (* indicates which child of node is followed

in recursive call *)

w : nodeptr; (* pointer to the child *)



begin
pnew
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= nil;

if node” kind = leaf

then
begin

end

else
begin

if node” .element . key <> x.key
then
begin
(* create new leaf holding x.key and return this node *)

new( pnew, leaf );
pnew .kind := leaf;
if node” .element.key < x.key

then
begin
(* place x in new node to right of current node *)
pnew .element := x;
low := x.key;
end
else
begin
(* x belongs to left of element at current node *)
pnew .element := node’.element;
node” .element := x;
low := pnew’.element.key;

end;
end;

(* node is an interior node *)
(* select the child of node that we must follow x)

if x.key < node”.lowofsecond

then
begin

child :=1;

w := node " .firstchild;
end

else if (node”.thirdchild = nil ) or
(x.key < node’.lowofthird)
then
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begin
(* x is in second subtree *)
child := 2;
w := node”.secondchild;
end
else
begin
(* x is in third subtree *)
child := 3;
w := node”.thirdchild,;
end;

insert1( w, x, pback, lowback );

if pback <> nil
then
(* a new child of node must be inserted x)

if node”.thirdchild = nil

then
(* node had only two children, so insert
new node in proper place x)
if child = 2
then
begin
node’ .thirdchild := pback;
node” .lowofthird := lowback;
end
else (* child =1 %)
begin
node”.thirdchild := node”.secondchild;
node”.lowofthird := node’.lowofsecond;
node”.secondchild := pback;
node”.lowofsecond := lowback;
end
else
begin

(* node already had three children *)

new( pnew, interior );
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pnew kind := interior;
if child = 3

then

begin

(* pback and third child become
children of new node x)

pnew  firstchild := node".thirdchild;
pnew .secondchild := pback;

pnew .thirdchild := nil;

pnew .lowofsecond := lowback;

(* lowofthird is undefined for pnew x)

low := node".lowofthird;
node’”.thirdchild := nil;

end

else

begin
(* child <= 2; move third child of

node to pnew x)

pnew .secondchild := node".thirdchild:;
pnew  .lowofsecond := node " .lowofthird;
pnew .thirdchild := nil;
node”.thirdchild := nil;

end;

if child = 2

then

begin
(x pback becomes first child of pnew *)
pnew " firstchild := pback;
low := lowback;

end;

if child =1

then

begin

(* second child of node is moved to
pnew; pback becomes second child
of node *)

pnew " firstchild := node’.secondchild,;
low := node’.lowofsecond;
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node”.secondchild := pback;
node”.lowofsecond := lowback;
end;
end;

end;

end; (* insertl *)

procedure INSERT( x : elementtype; var S : nodeptr );
var  pback : nodeptr; (* pointer to new node returned by insertl )
lowback : integer; (* low value in subtree of pback )
saveS : nodeptr; (* place to store temporary copy of ihe pointer S x)
begin
(* checks for S being empty or a single node should occur here,
and an appropriate insertion procedure should be included x)

insertl( S, x, pback, lowback );

if pback <> nil

then
begin ‘
(* create new root; its children are now pointed to by S
and pback *)
saveS ;= §;
new( S, interior );
S”.kind := interior;
S” firstchild := saveS;
S .secondchild := pback;
S”.lowofsecond := lowback;
S”.thirdchild := nil;
end;

end: (x INSERT x)
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115

new( root, leaf ):
root " kind := leaf;

root .element.key := 5;
Printtree( root );

newp.key := 7,

INSERT( newp, root );

writeln( 'INSERT | newp.key );
Printtree( root );

newp.key := 3;

INSERT( newp, root );

writeln{ 'INSERT °, newp.key );
Printtree( root ):

newp.key 1= 2,

INSERT( newp, root );

writeln{ 'INSERT ', newp.key );
Printtree( root );

newp.key := 4;

INSERT{ newp, root );

writeln( INSERT ', newp.key );
Printtree( root )
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APPENDIX C

AMDASM ASSEMBLY LISTING OF
2-3 TREE INSERTION ALGORITHM

The following is a AMDASM definition source listing of 2-3 tree insertion

algorithm.

TITLE Test Program 1 for Microprogram Simulator

WORD 96
WD: EQU B#1 . Write disable

WDDEF: DEF 19X, WD, 12X, 43X, WD, 20X ; Write disable definition
Datapath Control Signals

LMAR: DEF 19X, WD, 12X, 6X, B#1, 36X, WD, 20X ; Load MAR
LIR: DEF 19X, WD, 12X, 7X. B#1, 35X, WD, 20X ; Load IR

LDIN: DEF 19X, WD, 12X, 8X, B#l, 34X, WD, 20X ; Load Data In
LDOUT: DEF 19X, WD. 12X, 9X, B#1, 33X, WD, 20X ; Load Data Out
WRITE: DEF 32X, 10X, B#1, 53X ; Memory Write

IRAM: DEF 19X, WD, 12X, 11X, B#1, 31X, WD, 20X ; IR RAM Select

. Definitions for AM2910 Sequencer

JZ: DEF 19X. WD, 12X, 12X, H#0, 6X, B#1, 1VB#1, 8X, 11X,
WD, 20X : Jump Zero

CJS. DEF 19X, WD, 12X, 12X, H#1, 1X, 1VB#0, 4VH#0, B#0, 1VB#1, 8X, 11X,
WD, 8X. 12V H#000 ; Cond JSB PL

JSB: DEF 19X, WD, 12X, 12X, H#1, 6X, B#1, 1VB#1, 8X, 11X,
WD. &\, 12V H#000 ; Unconditional JSB PL

JMAP: DEF 19X. WD, 12X, 12X, H#2, 6X, B#1, 1VB#1, 8X, 11X,
WD, 20X : Jump Map

CJP: DEF 19X, WD, 12X, 12X, H#3, 1X, 1VB#0, 4VH#0, B#0, 1VB#1, 8X, 11X,
WD, &X, 12VCH#000 ; Cond Jump PL

JMP: DEF 32X, 12X, H#3, 6X, B#1, 1VB#1, 8X, 20X, 12V H#000
: Unconditional Jump PL

PUSH: DEF 19X, WD, 12X, 12X, H#4, 2X, 4VH#0, B#0, 1VB#1, 8X, 11X,
WD, 20X ; Push/Cond Load CNTR

HLC: DEF 19X, WD, 12X, 12X, H#4, 6X, B#1, 1VB#1, 8X, 11X,

WD, 20X ; Push and Load CNTR

JSRP: DEF 19X, WD, 12X, 12X, H#5, 6X, B#1, 1VB#1, 8X, 11X,
WD, 20X : Cond JSB R/PL

CJV: DEF 19X, WD, 12X, 12X, H#6, 2X, 4VH#0, B#0, 1VB#1, 8X, 11X,
WD, 20X ; Cond Jump Vector

JMPV: DEF 19X, WD, 12X, 12X, H#6, 6X, B#1, 1VB#1, 8X, 11X,
WD. 20X ; Unconditional Jmp Vector
JRP: DEF 19X, WD, 12X, 12X, H#7, 6X, B#1, 1VB#1, 8X, 11X,

WD, 20X : Cond Jump R/PL
FCT: DEF 19X, WD, 12X, 12X, H#8, 6X, B#1, 1VB#1, 8X, 11X,
WD, 20X ; Repeat Loop, CNTR <> 0
PCT: DEF 19X, WD, 12X, 12X, H#9, 6X, B#1, 1VB#1, 8X, 11X,
WD, 20X ; Repeat PL, CNTR<> 0
CRTN: DEF 19X, WD, 12X, 12X, H#A, 1X, 1VB#0, 4VH#0, B#0, 1VB#1, 8X, 11X,
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WD, 20X ; Cond RTN

RTN: DEF 32X, 12X, H#A, 6X, B#1, 1VB#1, 8X, 32X : Unconditional RTN
CJPP: DEF 19X, WD, 12X, 12X, H#B, 6X, B#1, 1VB#1, 8X, 11X,

WD, 20X ; Cond Jump Pl & Pop
LDCT: DEF 19X, WD, 12X, 12X, H#C, 6X, B#1, 1VB#1, 8X, 11X,

WD, 20X : Load CNTR & Cont
OOP: DEF 19X, WD, 12X, 12X, H#D, 6X, B#1, 1VB#1, 8X, 11X,
WD, 20X ; Test End Loop
CONT: DEF 32X, 12X, H#E, 6X, B#1, 1VB#1, 8X, 32X ; Continue
TWB: DEF 19X, WD, 12X, 12X, H#F, 6X, B#1, 1VB#1, 8X, 11X,
/ WD, 20X ; Three-way Branch

. Register Load ( AM2910 )
RLD: EQU B#0  Register Load
Datapath Definition

DATAPATH: DEF 19X, WD, 12X, 24X, 4VH#0, 4VH#0, 4VH#C, 4VH#0,
/ 3VQ#0, 1VB#1, 1VB#0, 19X

. Register Definition

RO: EQU H#0
R1: EQU H#l
R2: EQU H#?2
R3: EQU H#3
Ri: EQU H#4
R5> EQU H#5
R6: EQU H#6
RT: EQU H#T
R EQU H#S8
R9: EQU H#9
R10: EOU H#A
R11: EQU H#B
R12: EQU H#C
R13: EQU H#D
R14: EQU H#E
R15: EQU H#F

RX: EQU H#1
RNODE:  EQU H#2
RPNEW:  EQU H#3
RLOW:  EQU H#{
RPBACK: EQU H#5
RLOWBACK: EQU H#6
RCHILD: EQU H#7
RW: EQU H#8
RNODEBEG: EQU H#9
RFREENOD: EQU H#A
RSTKBEG: EQU H#B
RTOPSTK: EQU H#C
RNEWPTR: EQU H#D
RNODETYP: EQU H#E
RSAVE: EQU H#F

Equates for ALU Destination Control

ADR: EQU H#0 ; Arithmetic Shift Down, Results into RAM

LDR: EQU H#1 : Logical Shift Down, Results into RAM

ADRQ: EQU H#2 ; Arithmetic Shift Down, Results into RAM and Q
LDRQ: EQU H#3 ; Logical Shift Down, Results into RAM and Q

RPT: EQU H#4 ; Results into RAM, Generate Parity



118

LDQP: EQU H#5 : Logical Shift Down Q, Generate Parity
QPT: EQU H#6 ; Results into Q, Generate Parity

RQPT: EQU H#7 » Results into RAM and Q, Generate Parity
AUR: EQU H#8 ; Arithmetic Shift Up, Results into RAM
LUR: EQU H#9 ; Logical Shift Up, Results into RAM

AURQ: EQU H#A ; Arithmetic Shift Up, Results into RAM and Q
LURQ: EQU H#RB ; Logical Shift Up, Results into RAM and Q
YBUS: EQU H#C ; Results to Y Bus only

LUQ: EQU H#D ; Logical Shift Up Q

SINEX: EQU H#E ; Sign Extend

REG: EQU H#F ; Results to RAM, Sign Extend

’

; Equates for ALU Functions

HIGH: EQU H#0 ' Fi=1

SUBR: EQU H#1 ; Subtract R from S

SUBS: EQU H#?2 ; Subtract S from R

ADD: EQU H#3 ; Add R and S

PASS: EQU H#4 ; Pass S

COMPLS: EQU H#5 ; 2's Complement of S
PASSR: EQU H#6 ; Pass R

COMPLP: EQU H#7 ; 2's Complement of R
LOW: EQU H#S8 i Fi=0

NOTRS: EQU H#9 ; Complement R AND with S
EXNOR: EQU H#A ; Exclusive NOR R with S
EXOR: EQU H#B : Exclusive OR R with S
AND:  EQU H#C : AND R with S

NOR: EQU H#D ; NOR R with S

NAND: EQU H#E  NAND R with S

OR: EQU H#F :ORR with S

ALU Operand Sources
NOTSQ: EQU Q#5 ;'S = not Q

SQ: EQU Q#7 :S'=Q
XAB: EQU B#00 ‘R=RAMA, S = RAMB
XADB: EQU B#01 'R =RAM A, S = DIN
XDAB: EQU B#10 iR=PLreg, S=RAMB
XDADB: EQU B#11 ; R = PL reg, S = DIN

© AM2903 Control Signals

WE:  EQU B#0 : Write Enable
DISY: EQU B#l  Disable Y

Immediate Data

IMMD: DEF 19X, WD, 12X, 43X, WD, 4X, 16VH# ; Inmediate Data
Load buffers

LMARBUF: DEF 32X, B#1, 63X

LDINBUF: DEF 33X. B#1. 62X

LDOUTBUF: DEF 34X, B#1, 61X

LSTATBUF: DEF 35X, B#1, 60X

; Various Instructions

IMMDLOAD: DEF 19X, WD, 6X, XDADB, 4X, 24X, 4X, 4VH#0, YBUS, PASSR, SQ,
/ WE, B#0, 3X, 16VH#

CALADREG: DEF 19X, WD, 6X, XAB, 4X, 24X, 4X, 4VH#0, YBUS, PASS, NOTSQ,
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/ WD, B#0, 3X, 16X

CALADIMD: DEF 19X, WD, 6X, XDAB, 4X, 24X, 4X, 4VH#0, YBUS, ADD, NOTSQ,
/ WD, B#0, 23X, 16VH#0000

LDNTESTI: DEF 19X, WD, 6X, XDADB, 4X, 8X, B#1, 15X, 4X, 4X, YBUS, SUBR, NOTSQ,
/ WD, B#0, B#1. 2X, 16VH#

LDNSUBR: DEF 19X, WD, 6X, XADB, 4X, 8X, B#1, 15X, 4VH#0, 4X. YBUS, SUBR, NOTSQ,
/ WD, B#0, B#1, 2X, 16X

REGLOAD: DEF 19X, WD, 6X, XADB, 4X, 24X, 4VH#0, 4{VH#0, YBUS, PASSR, $Q,
/ WE, B#0, 3X, 16X

ADDNLOAD: DEF 19X, WD, 6X, XDAB, 4X, 24X, 4X, 4VH#0, YBUS, ADD, NOTSQ,
/ WE. B#0, 3X, 16VH#0000

PASSIMD: DEF 19X, WD, 6X, XDADB, 4X, 24X, 4X, 4X, YBUS, PASSR, SQ,
/ WD, B#0, 3X, 16VH#

PASSREG: DEF 19X, WD, 6X, XADB, 4X, 24X, 4VH#0, 4X, YBUS, PASSR, SQ,

/ WD, B#0, 3X, 16X

PASSDIN: DEF 19X, WD, 6X, XADB, 4X, 8X, B#1, 15X, 4X, 4X, YBUS, PASS, NOTSQ,
/ WD. B#0, 3X, 16X

DINLOAD: DEF 19X, WD, 6X, XADB, 4X, 8X, B#1, 15X, 4X, 4VH#0, YBUS, PASS. NOTSQ,
/ WE. B#0, 3X, 16X

REGTEST!: DEF 19X, WD, 6X, XDAB, 4X, 24X, 4X, 4VH#0, YBUS, SUBR, NOTSQ,
/ WD, B#0, B#1, 2X, 16 VH#0000

: Constants

NOT: EQU B#1
IFZERO: EQU H#1

IFNEG:  EQU H#2

ONE16:  EQU 16H#0001
NEGONED6: EQU 16H#FFFF
ZERO16. EQU 16H#0000
HIGH16: EQU 16H#FFFF
LOWI16:  EQU 16H#0000
NIL: EQU 16H#FFFF
NODETYPE: EQU 16H#0000
ELEMENT: EQU 16H#0001
LEAF.  EQU 16H#000F
INTERIOR: EQU 16H#00F0
FSTCHILD: EQU 16H#0001
SNDCHILD: EQU 16H#0002
TRDCHILD: EQU 16H#0003
LOWOFSND: EQU 16H#0004
LOWOFTRD: EQU 16H#0005
QUIT:  EQU 12H#3FF ; highest legal cs address

END
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The following is a partial AMDASM assembly listing of 2-3 tree insertion

algorithm. AMDASM assembly source code written by hand for each line of Pas-

cal program. For each line of AMDASM source code, the bit pattern is generated

where X indicates a "don’t care”.

1011

1013
1014
1015

1016
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

1028
1029

000EF :procedure INSERT( x : elementtype; var S : nodeptr );

000EF ;

O000EF ;var pback : nodeptr; (* pointer to new node returned by insert] #)
000EF ; lowback : integer; (* low value in subtree of pback *)

000EF saveS : nodeptr,; (* place to store a temporary copy of the pointer S %)
000EF ;

000EF ;begin

000EF ; (* checks for S being empty or a single node should occur here,
000EF and ap appropriate insertion procedure should be included *)
000EF ; (* for our purposes, we assume that S has a 'legal’ 2-3 tree ¥)
000EF ;

000EF ; insertl( S, x, pback, lowback );

000EF

000EF INSERT: JSB , INSERT1
199000000 0000000000¢000000000000000000009 00011
FOXXTT X000 X0OOOXX XXX IXXXX XXXX0000 00000001
000F0 ;

Q00FO0 ; Llnk return argument
000F0
000F0 REGLOAD RPNEW, RPBACK &

000F0 / CONT
AOUNOODOX XA XXX XX01XO00 XXKX000X Xxxx1110
NAXXXXX11 00110101 11000110 11100XXX XOOOOXXX XXX

000F1 ;

000F 1 REGLOAD RLOW, RLOWBACK &

000F1 / CONT
OO X000 XOONXXXX XKX01XO0OXX XAXXXXXXX XXXX1110
AXXXXX11 01000110 11000110 11100XXX 2O003XXXX XKXXXXXXX

000F2

000F2 : if pback <> nil
000F2 .
000F 2 REGTESTI RPBACK, NIL & LSTATBUF &

000F2 /  CONT
XXX XX00XKXX XXX IXXXX XX I0XXXX XXX IXXXX XXXX1110
XXXXXX11 XXXX0101 11000001 101101XX 11111111 11111111
000F3 ;
000F3 CRTN , IFZERO
9900 00.00.0000000000¢00000000000090000000.9e 00
X0000101 XXXXXXKX XXXXXXXX XHX1XKXX XXXKHXXK XXXXXXXX
000F 4

000F4 | then

000F4 begin

000F4 ; (* create new root; its children are now pointed to by S
000F4 and pback *)

000F4 ;

000F4 saveS ;= §;

000F4

000F 4 REGLOAD RNODE, RSAVE &

000F4 / CONT
AOCRNNNX XG0 XXX X0 12000 XXX XXXX1110
XXXXXX11 00101111 11000110 11100XXX XXXXXXXX XXXXXXXX

000F5 ;

000F5 ; new( S, interior );
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1030 000F5 ;
ILINE ADDR META ASSEMBLER ASSEMBLY PROG PAGE 29
1031 000F5 REGLOAD RFREENOD, RNEWPTR &

1032 000F5 / CONT
NGO X000 XOXXIXXX XXo1XXXXX XIXXXXXXXX XXXX1110
XXXXXX11 10101101 11000110 111000XX XXX XXX XX
1033  000F6 ;
1034 000F6 ADDNLOAD RFREENOD, H#0006 & ; increment node storage offset
1035 000F6 [ CONT
XXX XOOOX XX XXX XX 10XXXX XIXXOXXXX XXXX1110
XOOX11 XXXX1010 11000011 10100XXX 00000000 00000110
1036 000F7 ;
1037 000F7 REGLOAD RNEWPTR, RNODE & ; RNODE <- pointer from 'new’
1038 O000F7 / CONT
OO0 X000 XXX TXXXX XX01 XXX X30000XXX XXXX1110
XOOXXX11 11010010 11000110 11100XXX XOOOXXXX X0OXXXXX
1039 000F8 ;

1040 O000F8 ; S” kind := interior;
1041 O000FS8 ;
1042 000F8 PASSIMD INTERIOR & LDOUTBUF & ; DOUT <- interior

1043 000F8 /  CONT
OO X000 XXX TXXXX XX 11X XXX XXXX1110
XXXXXX 11 X0003XXX 11000110 11110XXX 00000000 11110000
1044 000F9 ;
1045 000F9 LDOUT &
1046 O000F9 /  CONT
AOOOOOXX X000 XXX XXX X300 XIXXXXXXX X1XX1110
OXOXX T 000000 X0 XXX OO XAXXOXXX XIXXXXXXX
1047 O000FA ;
1048 000FA CALADREG RNODE & LMARBUF & ; calculate address
1049 OOOFA [ CONT
OO0 XOOOX XX XXX XX 00X XXX 1XX0XXXX XXXX1110
XXOXXXX11 XXXX0010 11000100 101 102X X000 XXX XXXXX
1050 OO00FB ;
1051 O000FB LMAR & WRITE & : write to &RNODE
1052 000OFB [/ CONT
OO OO XXX XXX X300 XXXXXXIX XX1X1110
) 8.0.009451D0000000.8.00000008906)0008.06000009.00000004
1053 000FC

’

1054 OO00FC ; S’ firstchild := saveS;
1055 000FC ;
1056 000FC PASSREG RSAVE & LDOUTBUF & ; DOUT <- save$

1057 000FC /  CONT
XXXX000K XXXXXXKK XXX IXXXX XXOIXXXX XXIXXXXX XXXX1110
XXXXXX11 111XXXX 11000110 11110XXX XXOKXXXX XXXXXXXX
1058 000FD ;
1050 000FD LDOUT &
1060 000FD /  CONT
OO0 0000000 XXX IXXXX X000XXX XXXXXXXX X1XX1110
XXXXXX 1 XXOOXXXX XXX XXX IXXKX XXXXXXXX XXXXXXXX
1061 OOOFE ;
1062 000FE CALADIMD RNODE, FSTCHILD & LMARBUF & ; write to £RNODE
1063 O000FE /  CONT
XXXXXXKX XXXXXXKX XXXIXXXX XXI0XXKX IXXXXXXX XXXX1110
XXXXXX11 XXXX0010 11000011 10110XXX 00000000 00000001
1064 O0OFF
ILINE  ADDR META ASSEMBLER ASSEMBLY PROG PAGE 30

1065 O00FF LMAR & WRITE & : write to &RNODE

1066 O000FF /  CONT
XU XXX XXX 100K X000XXX. XXX X1X XX1X1110
XXXXXX T XXX XXX XXX XX XXXXXXXX XXXXXXXX
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1067 00100 ;

1068 00100 ; S .secondchild := pback;

1069 00100 ;

1070 00100 PASSREG RPBACK & LDOUTBUF & : DOUT <- RPBACK
1071 00100 CONT

{0000 XXX XX XX01XOXX XX 1X000X XXXX1110
XXXXXX11 0101XXXX 11000110 11110XXX XXX XX00XKXX
1072 00101 ;
1073 00101 LDOUT &
1074 00101 /  CONT
OOOOOONX X000 300X 1K X00000KX X00XXXX X1XX1110
XOOOXX11 X00000KX X000000K XXX XXX XKXXXXX XKXXXXXX
1075 00102 ;

1076 00102 CALADIMD RNODE, SNDCHILD & LMARBUF & ; calculate address
1077 OOl(;é.’XL CONT
OOOX XXOOOOX XXX 12X XX 10XXXX 10O XXXX1110

XXX 11 XXXX0010 11000011 10110XXX 00000000 00000010

1078 00103 ;

1079 00103 LMAR & WRITE & ; write to &RNODE

1080 00103 CONT
XOCOOX T X0 XXX 1XX 000000 XXXXXX1X XX1X1110
OO 1T X000GXX XXX XXX XXX XXXXXXXX

1081 00104 ;

1082 00104 : S*.thirdchild := nil;

1083 00104 ;

1084 00104 PASSIMD NIL & LDOUTBUF & ; DOUT <- NIL
1085 00104 CONT

JOOO0OXX OO OO0 XX THOXKX XX 1XXKXXX XXXX1110
JOOXXX11 XOXOXOXXXX 11000110 11110XXX 11111111 11111111
1086 00105 ;
1087 00105 LDOUT &
1088 00105 CONT
OO X000 X0 X003 XO0XXXX X1XX1110
10.090091000000009 06000008 004§0000.00060000608.000.90.00
1083 00106 ;
1090 00106 CALADIMD RNODE, TRDCHILD & LMARBUF & ; calculate address
1091 00106 / CONT
X XXOOOOOX XXX XXX XX 10X XXX IXXXXXXX XXXX1110
AAXXXX11 XXXX0010 11000011 10110XXX 00000000 00000011
1092 00107 ;
1093 00107 LMAR & WRITE & ; write to ZRNODE
1094 00107 CONT
OOOOOOX XX XX OO XD0OOOXXX XXOXXXX 11X XX1X1110
XXX X0 XOOOOOXX XXX X0 XXX XXXXXXXX
1095 00108 ;
1096 00108 ; S “.lowofsecond := lowback;
1097 00108 ;
1098 00108 PASSREG RLOWBACK & LDOUTBUF & : DOUT <- RLOWBACK
1099 00108 / CONT
FXCNOOXX XOOOOOOX XXX IO XX01XOX XXX XXXX XXXX1110
XXXANXNX11 0110XXXX 11000110 117110XXX XXXXXXXX XXXXXXXX

ILINE ADDR META ASSEMBLER ASSEMBLY PROG PAGE 31
1100 00109 ;

1101 00109 LDOUT &

1102 00109 CONT

XXX X0 XXX TXXKK IOOOXKNKX XXXXXXXX X1XX1110
XXXXNNTT X000OXX X00000XKX. XXX TXXXX XXXXXXXX XXXXXXXX
1103 0GO10A
1104 0010A CALADIMD RNODE, LOWOFSND & LMARBUF & ; calculate address
1105 0010A /  CONT
XXXXNKX XXXXAXKX XAXIXXKX XX IOXXXX IXXXXXXX XXXX1110
XXXXXX11 XXXX0010 11000011 10110XXX 00000000 00000100
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1106 0010B ;

1107 0010B LMAR & WRITE & ; write to ZRNODE

1108 0010B /  RTN
OO0 XXX XXX 100K 000000 XIXXXXX1X XX1X1010
)0.0.0.0005:0.0800068.00000008.006)0008.006000008 0000000

1109 0010C ;

1110 00t0C ; end;

1111 0010C ;

1112 0010C ;end; (* INSERT #)

1113 0010C ;

1114 0010C ;

1115 0010C ;

1116 0010C ;

1117 0010C ;

1118 0010C ;

1119 0010C ;begin

1120 0010C ;

1121 0010C ; Initialize 'start node’ address and ’'start stack’ address

1122 0010C ;

1123 0010C START: IMMDLOAD RNODEBEG, H#0000 &

1124 0010C /  CONT
OOUNOOO XOOOOOX XXX XXX XX 1OXKX XO0KXXX XXXX1110
JOOOXX 11 XXXX1001 11000110 11100XXX 00000000 00000000

1125 0010D ;

1126  0010D IMMDLOAD RSTKBEG, H#00F0 &

1127 0010D / CONT
AOOOOOX XXX XXX XXX XXX XXX XX XXXX1110
XOOOMXTT XXXX1011 11000110 11100XXX 00000000 11110000

1128 O0010E ;

1129 0010E IMMDLOAD RTOPSTK, H#00F0 &

1130 0010E / CONT
OO OO0 XX OO XX XXX XXOXXXXXX XXXX1110
AXXXXX11 XXXX1100 11000110 11100XXX 00000000 11110000

1131 0010F ;

1132 0010F ; reset( data );

1133 0010F

1134 0010F ; new( root, leaf );

1135 0010F

1136 0010F REGLOAD RFREENOD, RNEWPTR &

1137 0010F / CONT
AOOOOOX 00000 XOIXXXX XX01 XXX XXXXXXXX XXXX1110
XXXXXX11 10101101 11000110 11100XXX XXXXXXXX XXXXXXXX

1138 00110 ;

1139 00110 ADDNLOAD RFREENOD, H#0002 & ; increment node storage offset

ILINE ADDR META ASSEMBLER ASSEMBLY PROG PAGE 32

1140 00110 CONT
XXX XOO0OOXX XOXXIXXXX XX 10X00XX XIXXXXXXX XXXX1110
XXXXXX11 XXXX1010 11000011 10100XXX 00000000 00000010

1141 00111 ;

1142 00111 REGLOAD RNEWPTR, RNODE & ; RPNEW <- pointer from 'new’

1143 00111 /  CONT
XXX XXX XXX IXXXX XX01 X000 XXXXXXXX XXXX1110
XXOOXXX11 11010010 11000110 11100XXX XOOOKXXX XXXXXXXX

1144 00112 ;

1145 00112 ; root” kind := leaf;

1146 00112 ;

1147 00112 PASSIMD LEAF & LDOUTBUF & : DOUT <- leaf

1148 00112 CONT
AR X000 XXX IXXXX XXX XX XXXXX XXXX1110
AXXXXXNTT XXXXXXXX 11000110 11110XXX 00000000 00001111

1149 00113 ;

1150 00113 LDOUT &
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1151 00113 /  CONT
) 9.0.0.9.00.0.89.00.0.0.000.9.0046)0009 00000008 00000009 600N
) 9,00.0941.0009000.89.0000.00089906).0008900000008.0000080

1152 00114 ;

1153 00114 CALADREG RNODE & LMARBUF & ; calculate address

1154 00114 CONT
RXOOOO XXX XXX IXXXX XX00X0OXX 1X0000XX XXXX1110
XXX X 11 X2XXX0010 11000100 101 10XXX X3XXOOKXX XXX

1155 00115 ;

1156 00115 LMAR & WRITE & ; write to ZRNODE

1157 00115 CONT
XXX X000 XXX 100X X000 XXXXXX1X XX1X1110
)6:6:6:0.06500000000.9.00000008.004800009.00000600.80006900.0.4¢

1158 00116 ;

1159 00116 ; root " .element key := 5;

1160 00116 ;

1161 00116 PASSIMD H#0005 & LDOUTBUF & ; DOUT <-5

1162 00116 CONT

OOOOXX X000 XXX 1XAXXXX XX 1100 XX 100X XXXX1110

XOOOXX 11 XXOOXXXXX 11000110 11110XXX 00000000 00000101

1163 00117 ;

1164 00117 LDOUT &

1165 00117 CONT
X2 XXX XX XXX XXX XO0O0XXXXX X1XX1110
) 9.0:0.0.055.0.0900009.00900008.00600008.000000000000000¢

1166 00118 ;

1167 00118 CALADIMD RNODE, ELEMENT & LMARBUF &

1168 00118 / CONT
XXX XXX XXX IXXXX XX 10XXXX 1IXXXXOXXX XXXX1110
XAXXXAXTT XXXX0010 11000011 10110XXX 00000000 00000001

1169 00119 ;

1170 00119 LMAR & WRITE & ; write to element of X RNODE

1171 00119 CONT
AU OO XXX XXX X300 XXX 1X XX1X1110
) 9.0.0.0.04519.000000.9.00000600809¢)000.0.0000600090000090

1172 0011A

1173 0011A ; Printtree( root );

ILINE ADDR META ASSEMBLER ASSEMBLY PROG PAGE 33

1174 O0011A

1175 0011A :(*

1176 0011A read( data, numofdata );

1177 0011A for i := 1 to numofdata do

1178 0011A ; begin

1179 0011A ; readln( data, newp.key );

1180 0011A ;¥)

1181 0011A INSERT( 7, root );

1182 0011A ;

1183 0011A IMMDLOAD RX, H#0007 &

1184 0011A /  CONT
AODXXX XOOOX XXX IXXXX XX TIXXXX XXXXXXXX XXXX1110
AXXXXX11 XXXX0001 11000110 11100XXX 00000000 00000111

1185 0011B ;

1186 0011B JSB , INSERT
ANOOXX XX XX IXXXX XXX XXX XXX XXXX0001
)%XXXXXII OO XX XXX IXXXX XXXX0000 11101111

1187 0011C ;

1188 0011C INSERT( 3, root };

11890 0011C ;

1190 0011C IMMDLOAD RX, H#0003 &

1191 0011C /  CONT

NN XXX XXX XXX XX TIXXXX XXXXXXXX XXXX1110
XXXXXX11 XXXX0001 11000110 11100XXX 00000000 00000011



1192
1193

1194
1195
1196
1197
1198

1199
1200

1201
1202
1203
1204
1205

1206
1207

1208
1209
1210
1211
1LINE

1212
1213
1214
1215
1216
1217

1218
1219
1220

125

0011D ;
0011D JSB , INSERT
OO0 XDOOOOXX XXX X33O X0000OXX XXXX0001
AOXX 11 X000000X X33O XX X000 XXXX0000 11101111
0011E ;

0011E ; INSERT( 2, root );
0011E ;
0011E IMMDLOAD RX, H#0002 &

0011E / CONT
) 9.6.00.000.8.600000608.006500068045)00080000000.8.00088)1)
XOOOXX11 XXXX0001 11000110 11100XXX 00000000 00000010
0011F ;
0011F JSB , INSERT
KOO XX 001000 X20000000 X300 XXX 0001
KOO TT X000 X3 XXX 1X00X XXXX0000 11101111
00120 ;

00120 INSERT( 4, root );
00120 ;

00120 IMMDLOAD RX, H#0004 &
00120 CONT

OO XXX TXXXX XX 11X X000 xXoxx1110
XXXXXX11 XXXX0001 11000110 11100XXX 00000000 00000100
00121 ;
00121 JSB |, INSERT
XOOOOXX XXX XXX X000 XIXAXXXX XXXX0001

X\)\XXXII 00O XXX XXX XXX XXXX0000 11101111
00122

00122 ;(*
00122 ; writeln; writeln( 'INSERT ', newp );
00122 Printtree( root );
ADDR META ASSEMBLER ASSEMBLY PROG PAGE 34
00122 end;
00122 ;+)
00122 ;
00122 ;end.
00122 ;
00122 JMP  QUIT & WDDEF ; Stop the program
XXX XOOAOX OO EXX XAXAXXXXX XOOXXXXX XXXX0011
XAXXXXTT 2A0O0XX XXX XXX IXXXX XXXX0011 11111111
00123 ; by jumping to the highest address........
00123 ;
00123 ;
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