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Introduction

[This paper was presented at the Coral Gables Conference on the
Physical Principles of Neuronal and Organismic Behavior, December 1970.]

Automaton theory is the study of all effective (machine-like)
procedures,

Much of the original impetus for automaton theory research came from
biology. For example, most of the early algebraic treatments of finite
state machine theory have their ultimate origin (by way of Kleene (1956))
in the attempts of McCulloch and Pitts (1943) to use mathematical logic
to define precisely the capabilities of idealized nerve nets; the theory
of tessellation automata has its origin in von Neumann's demonstration
(1966) of a means by which the process of self-reproduction can be carried
out by a machine.

[This result by von Neumann was obtained (following some suggestions
of Ulam) in 1952].

To many researchers, however, automaton theory's relevance to biology
seemed difficult to demonstrate, and there appeared to be no reasonable
hope of any practical applications. In contrast, the relevance of automaton
theory to problems of the design and use of computing machines has always
seemed quite obvious.

With the tremendous growth of the computing machine field, there was
a concomitant huge growth in automaton theory research.

The result has been that there now exists a vast body of automaton
theory results (which is being augmented constantly) but the potenfial
relevance of this material for problems of biology has largely been ignored.

In this paper we attempt to show how some of the results of automaton
theory can now be brought fruitfully to bear on problems of biology.

In particular we propose that formal grammar theory and automaton



theory can be employed in the creation of a theory of biological development

of form,

[In Arbib (1967) an approach to this problem is made, employing an

automaton system based on the von Neumann cellular system.]

Formal Grammar Theory

[Formal grammar theory is a part of automaton theory. Formal grammar
theory (in this sense) has its origin in Chom§ky's program to change the
direction of contemporary American linguistic theory. Good surveys of formal
grammar theory can be found in Chomsky (1963) and in Hopcroft and Ullman
(1969)].

A formal grammar is usually defined as consisting of:

1) a finite set of symbols which can be rewritten; these are called

the nonterminal symbols.

2) a finite set of symbols which can not be rewritten; these are

called the terminal symbols.

3) a finite set of production rules, which express the conditions

under which nonterminal symbols may be rewritten,

4) a (usually) single distinguished symbol (which is in all interesting

cases one of the nonterminal symbols) called the initial (or
"start") symbol.
For example, a formal grammar might consist of the single nonterminal
symbol S (which will also serve as our initial symbol), the two terminal
symbols a,b, and the two production rules: 1) S + aSb, 2) S + ab.

Starting with the initial symbol S, we may apply rule 1) and by this



means replace S with aSb. We might then apply rule 2) and by it convert
aSb to aabb. At this point no further rule applications are possible,

for aabb contains no nonterminal symbols (it contains no symbols appearing
on the left hand side of a production rule). The generative process thus
stops at this point. Note however, than we could have repeatedly applied
rule 1) before applying rule 2), It will be seen then, that this formal
grammar defines the (infinite) set of finite strings of the form a™p"
(that is to say, the strings composed of initial segments of any number

of a's followed by a final segment of the same number of b's).

Types of Formal Grammars

Several types of such formal grammars have been defined.

If we allow arbitrary replacement of one string by another, (an
"unrestricted re-writing system") we get a type 0 grammar.

If we impose the requirement that the string on the right hand side
of the rule always be at least as long as the string on the left hand
side (that is, that the application of the rule never shortens the resulting
string) we get a type 1 grammar. (If we restrict a type 0 grammar by
employing production rules which call for replacing of only one symbol
at a time by one or more symbols and the applicability of the production
rule may be conditioned by the presence of strings of symbols adjacent to
the symbol to be re-written, we again get a type 1 grammar. This alternative
definition motivates the alternative name context-semsitive, for type 1
grammars. )

If we impose on a type 1 grammar the requirement that at the application
of a production rule precisely one nonterminal is to be replaced by one

or more symbols (and the context of the replaced symbol does not condition



the applicability of the production rule) we get a type 2 grammar. Type
2 grammars are often called context-free grammars, (Note that our example
in the last section is a context-free grammar,)

If we further impose the requirement that every production rule must be
one of the two forms A - aB or A + a (where capital letters denote nonterminals
and lower case letters denote terminals) then we get a type 3 grammar.

Type 3 grammars are sometimes called regular grammars or finite state
grammars. (The names '"'regular" and "finite state" reflect associations
which can be made between these grammars and the properties of finite state

automata.,)

Discussion

We now discuss the use of these grammars in linguistics and introduce
a biological interpretation of formal grammars.

[A biological interpretation of formal grammars has also been made by
Lindenmayer (1971) and is being further developed by him and his colleagues
at the Rijksuniversiteit at Utrecht, Lindenmayer had earlier (1968) suggested
a biological interpretation of some finite automaton concepts.]

In a formal grammar we are usually given a single initial 'start"
symboi. For linguistics this is usually interpreted as the unanalyzed
"sentence" symbol, A production rule defines the '"re-writing" of the initial
symbol, The resulting symbol string may then be further re-written by
use of production rules. Eventually a string is produced, the symbols
of which express in detail the structure of a sentence.

In a biological interpretation of formal grammars we begin with a
single initial entity one interpretation of which would be a fertilized

cell. Production rules (rules of growth and development) permit us to replace



this initial entity with other entities, If the rules genuinely mirror
biological "mules" of development, then the successive entities produced
will represent successive stages of organism development.

Let us now try to make clear some of the differences in point of view
between the linguistic and the biological interpretation of formal grammars.

In formal grammars there is the assumption that the entity being produced
is a string of symbols. In biological production systems we may also wish
to produce entities which are strings of cells. It is clear thbugh that a
biological formalism ought to permit the production of entities which are
conjoined in other than a linear fashion.

Our formal biological production systems will thus contain production
rules for the direct formation of entities other than the linear.

[Lindenmayer (1971) accepts the constraint that his production rules
directly yield only linear entities. This means that in his accounting
for tree-like and other non-linear graphical structures a string (which
might include both symbols for cell-states and symbols for "punctuation'
signifying, for example, branch points) is first produced, and then is
"decoded" to yield the final multi-dimensional structure. By this means
Lindenmayer is able to produce (among other phenomena) the alternate side
branching structure of the red alga Callithamnion roseum.

There has been some research on "grammars" for other than linearly
connected graphs. See Pfaltz and Rosenfeld (1969) and Montanari (1970)].

From the linguistic point of view (as customarily enunciated) the
formal grammar is a machine-like system which is operated "from the outside".
That is, the system is viewed as a device which (often in a rather weak

sense) ''accounts" for the generation or analysis of sentences. Generally



no claims are made that the brain or the language faculty of the mind

must handle its sentence creation or analysis in precisely this fashion.

A formal grammar which satisfactorily accounts for a body of actual linguistic
data may be assumed to be a posstble way in which the linguistic faculty
provides its services to us, but only the most daring psycholinguist or
neurophysiologist would at present assert that the specific processes of

a formal grammar constitute firm evidence for the 'real" operation of the
human linguistic faculty.

Under the biological interpretation we wish to pursue here, our
organism system can bé viewed not as merely "accounting for" biological
phenomena or as being a system manipulated by an outside faculty. Instead
we can view it as biologically "real" and as self-operated. That is, we
can view the initial symbol and the symbols of all the succeeding assemblages,
not as letters being written and re-written (possibly by an outside intellectual
faculty) but as (finite automaton) cells capable of being in various states,
and capable themselves of carrying out the operations (change of state,
reproduction) that the production rules define,

We will generally think of each finite automaton cell of our formal
biological system as having an identical state transition system (the same
genetic system); although we will generally think of the state transition
systems of each automaton of a single organism as being identical we
generally will not require all the separate cell automata constantly to
remain in the same internal state. We will also want our cell automata to
possess as primitive properties such capabilitieé as self-reproduction,
and the creating and dissolution of communication and connection to other
cells,

A major consequence of this biological interpretation is that not



vy adees (he ultimate assemblage (in the linguistic case, the actual
terminal sentence with its dictionary words inserted) have a '"real' inter-
pretation as a physical object, but each of the successive intermediate
objects produced also has a useful interpretation as a physical biological
object,

Thus our goal might be to define organism grammars having the property
that the initial objects have a direct physical correlate in biology,
and that the production rules mirror biological rules of development so
that each successive stage of development of the model corresponds to a
stage of development of the real organism.

More precisely, we might ask that our model be a homomorphic image of
the real biological system, This means that for every present developmentally
significant state of the real system,if we proceed to the next developmentally
significant state of the real system, and then find the counterpart state:
in the model, we will arrive at this same model state if we were to go
from the present developmentally significant state of the real system,
to the corresponding state of the model, and then calculate the next state
of the model.

This idea is expressed graphically below where the path across and down
takes us to the same point as the path going down and across. (See Zeigler
and Weinberg (1970) for a more complete discussibn of the modelling

criterion.)

Present State Next State

1 |

Real Organism:

Model:



[This "strong'" accounting for the development of a biological organism
should not be taken as an absolutely necessary goal of our system. As
in linguistics a less complete accounting might still be very useful.

In a "weak" accounting, we might be able to show how, given certain initial
conditions and rules of procedure we could ''calculate' an organism, in the
sense of produce a description of the structure of a complete organism.

In this "weak'" accounting, it might be that none of the intermediate
stages of calculation would correlate in any very direct fashion with a
particular stage of the physical development of the organism. Although a
"strong" accounting would be the ideal (and more difficult) result, even
the "ultimate calculation">of an organism would be a worthwhile goal.]

In the formal grammars as so far described, the production rules may
be employed freely, at any time and place they may apply; this means, that
in general the systems are polygenic rather than monogenic; each system
defines the generation of a set of entities, not merely a single entity.
Thus, under the linguistic interpretation, a generative grammar produces
a set of sentences, the language defined by the grammar; under the biological
interpretation such a generating system produces a population of related
organisms (one interpretation of which is the set of possible phenotypic
consequences of a single genotype).

In the linguistic instance,.any particular sequence of application
of production rules, yields some particular single sentence. In the
biological interpretation, any particular sequence of application of
production rules yields some particular single organism. The optionality
of the production rules, reflects the physical potential of the organism
sysfem (which includes both the organism per se, and the pertinent features

of the organism environment). The '"environment" of the organism can often



be viewed as the selector of those growth rules which are actually applied
among the many growth rules which at any moment might be applicable.

What we have just described is a very general view of our formal
biological systems for development. By modifying this general definition,
we can produce other formal systems which may have biological relevance.

We might for example require that some rule must always be applied
to each and every cell simultaneously, If this requirement is imposed,

a different set of organisms is usually thereby defined.

[Lindenmayer (1971), for example, limits his formal dévelopment systems
in this manner,]

We might wish to consider deterministic formal organism systems.

In these systems there would be no optionality of rule application; this
would signify that there are no alternative pathways in the developing system
at all (this might be interpreted to mean that there is no point where

the environment can enter and participate in determining the direction of
growth of the organism, or that the organism and the environment are together
so completely defined as to bar optionality). In other cases we might

wish to make the application of production rules probabilistic, allowing

a specified element of chance to enter into the determination of the
particular production rule to be appliédu

Of course we may very well wish to consider mixed systems for which
at some points in time and place of development there are alternative
rules (indeterministic or probabilistic) which can be applied (and which
may be intended to reflect ways in which the environment can affect the
developing organism at that time and place) and at other times no option

is possible and the organism, if it continues to survive at all, must

follow a pre-determined path.
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Environmental Structure

A vast number of developmental phenomena can be described in terms of
production rule systems. In expressing these phenomena, we often need not
Jistinguish those rules and rule applications which reflect properties
of the organism from those rules and rule applications which reflect
properties of the environmment of the organism.

Two points should be made however. The first is that the organism
versus environment distinction is repeatedly made and humans find this
natural and useful., Secondly, the very phenomena of interest may require,
for their proper explication and ultimate explanation, that the
organism-environment distinction be made explicit. The observation that
patterned (structured) light must fall on a kitten's eyes during a critical
period of growth, if proper vision is to be attained, is perhaps an example
of this.

We shall therefore want to explore ways of partitioning the rules and
their uses to reflect the organism-environment distinction, and to explore
ways of expressing, in informative fashion, the '"structure" of the environmental
rule application system, and the "structure" of the organism rule application
system.

One thing we would undoubtedly want to do is to see if by giving complete
environmental histories (complete rosters of the time and place of application
of rules) we could produce some particular organism forms of interest.

Such simple listings of rules with their time and place of application is
not likely to be very informative though., We will want some more compact
and revealing way of describing environmental histories. This means that
we will want to develop precise ways of expressing when and where the growth

rules are to be applied.
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Very little formal work has been done in this area: there have been

some schemes for establishing priority among rules, and the notion of a

"programmed" or "controlled" production rule system has been introduced.

These notions may be of some interest since the form a program or a control

unit takes could be said, in our treatment, to reflect the form the

environment takes. (For a discussion of rule selection systems, see Salomaa (1970).)
We would also want to correlate properties of envirommental histories

with characteristics of real organism environments. (Certainly we will

need to make this correlation if we ever hope to subject our theory to an

empirical testing.)

Production Rules for Formal Organisms

In order that we not merely beg the question of how development takes
place, we can not merely have rules which, in a "single leap'" take an initial
fertilized cell and produce from it a completed organism. Ouf formal
biological systems will be informative and explanatory only if our rules
are quite simple and local and reflect simple and local real biological
processes, A fundamental problem of interest is how simple local rules
of growth and development produce the global properties of organisms.

[For a discussion of the importance of local representations in
biological modeling see Zeigler and Weinberg (1970).]

In our discussion it will be useful to distinguish two kinds of growth
rules: difféfentiation rulee and propagation rules, Differentiation rules
cause the state of a cell to be changed. Propagation rules may cause the
state of a cell to be changed but always change the number of cells or of

cell connections of an organism. If the propagation rule causes the number
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of cells or of cell connections to be increased, we call it a progressive
propagation rule; if the propagation rule causes the number of cells or
cell comnections to be decreased, we call it a regressive propagation rule.
Thus a rule falls into exactly one of the differentiation, progressive, or
regressive rule categories, Some examples are given in Table 1. These

represent a very few among the many rules which might be employed.
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Linear Tip Growth

COOTO—C ©

Medial Splitting

Medial Splitting (with Daughter Cell Adhesion)
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Bifurcation of Growth Tip

OO— 0@

Cell Deletion and 'closing up"

OGO—00 ©

Cell Deletion and Consequent 8eparation

COO—00 O

Contiguity Deletion

Some Formal Organism Growth Rules
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Types of Production Systems for Organisms

Formal linguists, by specifying different kinds of production rules,
have distinguished several kinds of grammars; we have earlier noted that
the mepioan, the context-free, the context-gensitive, and the unrestricted,
are the principal grammar types distinguished.

As we also have already seen, many of the general characteristics of
formal grammars and their languages may be given a biological interpretation.
We now suggest that the principal types of linguistic production rules
can also be given reasonable biological interpretation.

The regular production rules correspond to the biological case where
a propagation rule causes single new (non-propagating) cells to be "budded-off"
by a propagating cell, as for example, at a growing tip; the context-free
rules correspond to the biological case where the application of a propagation‘
rule is contingent upon the state of the parent cell only (that is, there is
no inter-cell communication, the cell is autonomous); the context-sengitive
rules correspond to the case where propagation may depend on the states of
cells adjacent to the parent cell; and unrestricted rules correspond to the
case where regressive propagation rules (that is, rules for the death
or dissolution of cells or of cell connections) are permitted.

The four types of grammars we have introduced define a hierarchy of
languages. That is, the regular languages are properly included in the
context-free, the context-free are properly included in the context-sensitive
and the context-sensitive are properly included in the unrestricted. This
classifying and ranking of languages has been useful in attempts to distinguish
adequate from inadequate models for natural languages. This determination
of adequacy is genérally done by first establishing empirically a character-

istic of natural languages, and then showing that the characteristic can
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adequately be expressed by a model (a language) possessing some particular
ranking in the hierarchy, but not by any language ranking lower in the
hierarchy.

It would be useful to be able to classify formal biological organisms
on the basis of their allowable production rules, and to rank the classes
of organisms obtained. If we can then bring to bear some facts about real
biological systems we might then perhaps be able to speak of adequate or
inadequate models for classes of real biological organisms.,

Our first step in doing this will be to try to make a more precise
association between the formal linguistic and formal biological entities.
If we do this, many of the mathematical results already obtained for formal
linguistics (and automaton theory) would become immediately available to

us for use in formal biological theory.

Organism Systems

O0f the vast numbers of kinds of organism systems which can be defined
by varying the growth rules we will select several systems for further
discussion, trying to ascertain their properties and limitations, and
trying to rank them. We will begin by introducing some terminology and
definitions,

The organism system composed of autonomous-cells only, which permits

differentiation rules and in which all of the propagation rules are progressive,

and in which new cells are created from existing cells by 'budding off"
(especially at ''growth tips') only, we call the regular organism systems.
If such a regular organism system produces organisms consisting of

strings of cells, only, we call it a linear regular organism system.
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The sets of organisms produced by regular organism systems we call
the regular organisms.

The scts of organisms produced by linear regular organism systems we
call the linear regular organisms.

A system in which all the propagation rules are progressive, and in
which differentiation and propagation rules are applicable to any existing
cells as a consequence of the state of that cell only (i.e., all cells are
autonomous-cells) is an autonomous-cell organiem system. If any autonomous-cell
organism system produces organisms consisting of strings of cells only, we
call it a linear autonomous-cell organism syetem.

The sets of organisms produced by an autonomous-cell organism system
are the autonomous-cell organisms.

The sets of organisms produced by a Iinear autonomous-cell organism
system are the linear autonomous-cell organiems.

A system in which all propagation rules are progressive, and in which
the differentiation and propagation rules are applicable to an existing
cell possibly as a function of the states of other cells is a sensitive-cell
organism system.

If a sensitive-cell organism system produces organisms consisting
of strings of cells only, then we call such a system a linear sensitive-cell
organism system.

The sets of organisms produced by a sensitive-cell organism system are
called the sensitive-cell organisms.

The sets of organisms produced by a linear sensitive-cell organism
system are called the linear semnsitive-cell organisms.

A system which permits the application of differentiation and propagation

rules to an existing cell to be mediated by the states of other existing
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cells, and in which regressive propagation rules may be employed, is called
a general-cell organism system.

If a general organism system produces organisms consisting of strings
of cells only, then the system is called a linear general-cell organism
system.

The sets of organisms produced by a general-cell organism system
are called the general-cell organisms.

The sets.of organisms produced by a linear general-cell organism

system are called the linear general-cell organisms.

Some Theorems of Formal Organism Systems

The theorems listed in this section are mostly rather straightforward
translations of results well known in recursive function theory, automaton
theory, or (especially) theory of formal grammars.,

[See Hopcroft and Ullman (1969)].

In many cases no formal proof is called for; the associations are
usually quite obvious.

[The results in this section have, in themselves, almost no significance
for biology; they ﬁerely tell us the power and properties of the biological
formalisms we are constructing., In the next section, however, we begin
to relate our formal organism systems to the properties of real organisms;
by this link, the contents of the present section can be brought to bear
on problems of genuine interest.,]

Theorem: Given an organism system with no regressive propagation

rules, and given an organism, there ekists an algorithm by
which we can always tell if the organism is a consequence

of the system,
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(Since only regressive propagation rules decrease the size of the organism
being produced, we need only generate all organisms which have as many
cells as the given organism and check if our given organism is in this
(finite) set of organisms,)

Theorem: The regular grammars and the linear regular organism

systems define the same sets.
(All regular languages are sets of linear regular organisms; this is so
because all the regular grammars are linear regular organism systems.

Also all the linear regular organism systems are regular grammars.
Although the regular linear organism systems have the additional property
that differentiation rules may be employed (cell-states may be."re-written"
without propagation) this additional property does not take us outside the
regular, for for every differentiation rule that might be applied to change
the state of a cell, the (regular) propagation rule which originally gave
rise to this cell could have placed the cell in the post-differentiation
state in the first place.)

[Actually, for most of our applications in this paper we can define
the sets of states into which cell may differentiate (without propagation)
as terminal classes of states, each class equivalent to individual terminal
symbols of formal grammars. ]

Theorem: The linear regular organisms are accepted by nondeterministic

(or determiniétic) finite-state automata.
An automaton accepts the strings of a set by examining the symbols of a
string one-by-one, and upon completion of the examination goes into an
acceptance or a rejection state; in effect the machine sorts objects into
members and non-members of a given set. The regular sets (finite state

languages) are accepted by finite-state automata (known result); we have
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already shown (above) that the regular sets and the sets of linear regular
organisms are the same.)

Conjecture: The regular organisms can be 'checked" by finite-state

automata.
(We have used the term '"checked" rather than '"accepted" since the notion
of a device receiving as input an entity which is not a string does not
have a generally understood meaning, We here mean by it that a discrete
device could, givenva set of regular organism rules, be employed to check
whether the production of organism could be a consequence of the rules.
Our claim is that the checking device needs only a fixed finite number of
states to carry out its job,

The recently developed notion of '"tree automata" -- automata which
accept tree-shaped symbol structures, not just symbol strings - will
undoubtedly be useful in defining appropriate checking devices. For a
review of this new field see Thatcher (1969).)

Theorem: The context-free grammars and the linear autonomous-cell

organism systems define the same sets,
(This follows from the way we have defined the linear autonomous-cell
organism systems.)

Theorem: There are sets of linear autonomous-cell organisms which

can not be accepted by finite state devices.
(There are context-free languages which can not be accepted by finite
state devices; this is a known result)

Theorem: The sets of linear autonomous-cell organisms are accepted

by non-deterministic push-down store automata.
(The context-free languages are known to be accepted by non-deterministic

push-down store automata.)
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Conjecture: The sets of autonomous-cell organisms can be checked
by (non-deterministic) push-down store automata.
(Here again we have the notion of generalizing automaton behavior to
include the idea of checking a graphical structure which is not necessarily
a simple string. I conjecture that a push-down store memory system wouldv
be sufficient for the device to check whether an organism is a consequence
of a given set of autonomous-cell rules.)
Theorem: The sets of linear regular organisms are properly contained
in the sets of linear autonomous-cell organisms.
Theorem: The sets of regular organisms are properly contained in
the sets of autonomous-cell organisms.
(By definition any linear regular organism is also a linear autonomous-cell
organism; to show that the inclusion is proper, we must exhibit a set of
autonomous-cell organisms which is not also a set of regular organisms.
It is known that the "a™b™ set of linear autonomous-cell organisms is not
also a set of regular organisms. Again by definition a regular organism
is also an autonomous organism. We shall show that the set of organisms
which is produced by the autonomous-cell system illustrated on the next

page is not a regular set of organisms:



A Simple Organism System
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These rules will produce "Y'" shaped organisms where branches of the
"Y' are of cqual length and will be composed of cells in the states C and
B and where the C,B pattern will be the same in both branches, and where
the branches may be indefinitely long.

This precise set of organisms cannot be produced by a regular organism
system. Although regular organism systems can yield "Y' shaped organisms
the growth of the organism can take place only at the tips of the "Y".

Since the cells are autonomous there is no way to '"synchronize'" the actions
at the growth tips so as to insure that the branches will be the same

length and possess the same pattern of cell states., The consequence will

be that any regular organism system which produces the 'symmetric" organisms,
will necessarily produce numerous non-symmetric organiéms also.

[In an autonomous-cell system (such as in the above example) the
growth rules are applied as a function of the states of cells only (and
not for example as a function of the states of contiguous cells). Thus,
above, a cell in‘state A will as a consequence of internal conditions
only, produce paired cells (both either in state C or in state B) and they
will be generated at specific locations, viz. "upper right, and upper left
corners'", In this simple example the diagrammatic présentation of the
production rules suffices to make clear the intended process. There will
of course, be cases where more detailed and specific description of the
intended effect of growth rules will be necessary; the precise location
and orientation of new cells may have to be given; in regressive rules, the
post-deletion contiguities may have to be explicitly defined. Most of these
issues do not arise in ordinary formal grammar theory, for there the "string"
nature of the structures is always assumed, a symbol having at most two

neighbor symbols. ]
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Theorem: Given two autonomous-cell systems, it will be impossible
to tell in general whether the sets of organisms produced
by the two systems have any organisms in common.

(This follows from results in theory of context-free languages, and the
associations we have already made between autonomous-cell systems and
context-free grammars. The result can also be obtained directly by the
following: take as the first autonomous-cell system the system producing
the set of "Y" shaped organisms of the last theorem. Take as the second
autqnomous-cell system a system, similar to the above but in which at every
step a string of cells in states C and D is produced up the left hand
branch, and a string of cells in states C and D is produced up the right
hand branch. For every Post correspondence system (Minsky, 1967), there

is such a system, The organisms of the first system will define every
successful correspondence, If we could tell of every such given set of
organisms of the first sort whether it had any members in common with the
organisms of the latter sort then we could solve the Post correspondenée
problem, which is known to be unsolvable. Thus the sought for intersection
algorithm does not exist.)

Theorem: Given two autonomous-cell systems, it is not possible to
tell in general if the same set of organisms is produced
by both systems.

(This follows from the last result and some additional constructions. It
also follows as a direct translation of analogous well-known results for
context-free languages.)

Definition: If a cell system can produce an identical organism in

two different ways, the system is said to be ambiguous.

(Here '"identical" means that the cell graphical structures are the same
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and the states of cells at corresponding positions are the same. 'Different"
means not just derivable in some alternative chronological order, but

that similarly positioned cells in the two identical final organisms will
have developed from different ancestor cells in a derivation tree.)

Theorem: There is no algorithm which will tell of an arbitrary
autonomous-cell system whether it is ambiguous.

(This follows directly from results in context-free language theory.)

Definition: An inherently ambiguous set of organisms is one in which

every organism system generating that set of organisms
is ambiguous.

Theorem: There exist inherently ambiguous sets of organisms. (In
particular, there exist inherently ambiguous sets of linear
autonomous-cell organi§ms.)

(The common cxample (translating from results in formal linguistics), is
the set of tripartite '"linear organisms" aibjck where i = j or j = k (that
is, where the number of a-cells and b-cells is the same, or the number of
b-cells and c-cells is the same,))

Theorem: The sets defined by linear sensitive-cell organism systems
jnclude the sets defined by the context-sensitive grammars.

Conjecture: The sets defined by context-sensitive grammars and the

linear sensitive-cell organism systems are the same.

Corollary conjecture: The sets of linear sensitive-cell organism

systems are accepted by linear bounded automata.

(It is clear that the sets generated by sensitive-cell organism systems

include the sets generated by the context-sensitive grammars; this follows

from the way these systems are defined. The organism sets may, however,
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possibly produce sets which context-sensitive grammars do not; the
Jiccerentiation of cells may change the context of other cells, permitting
propagation rules to be applied. It is not clear whether this will produce
any fundamental differences in the systems, I conjecture not.)

Theorem: The setsvof autonomous-cell organisms are properly contained
in the sets of sensitive-cell organisms,

(This follows of course from results for the linear cases of formal linguistics.]

Theorem: The sets of organisms produced by general organism systems
can be generated by a Turing machine.

(With appropriate coding, and accepting the Church-Turing thesis, a Turing
machine can carry out all the effective procedures, including, in this case,
applying a finite set of rules in all possible allowable ways.)

Theorem: There is no uniform algorithm which will decide, given an
arbitrary general organism system and a particular organism,
whether the organism is a consequence of the system.

(General formal organism systems (which allow regressive rules) will permit
the expression of formal systems known to have universal computational
properties. Systems with these universal computational properties possess
various unsolvable decision problems. One of these is the derivation
problem. Another unsolvaBle decision proﬂlem in such formal systems is
that of foretelling whether a particular '"word" or putative theorem will
ever be a consequence of the system.)

Theorem: The sets of sensitive-cell organisms are properly contained
in the sets of general organisms.

(The derivability problem is always solvable for the sensitive-cell systems.
This means that the sensitive-cell systems produce only recursive sets.

The general organism systems produce the recursively enumerable sets. (It
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is known that there are recursively enumerable sets which are not recursive.))
Theorem: Given any general organism system, there is no algorithm
which will always decide if tho organism being produced
by the system will ever stop growing.
(In particular there exist deterministic general organism systems (defining
the growth of single organisms) for which the "halting" problem of Turing
machine theory is not decidable.)
Theorem: Among the general organism systems are systems which can
reproduce themselves.
(We already have some sorts of reproduction present in our weaker organism
systems: we have taken the act of a cell producing a cell as a primitive
operation in our system. With general organism systems, however, reproduction
of a complete multi-cellular organism is clearly possible. (Indeed, in a
sense, the reproduction of any and all multi-cellular formal organisms
is possible, since the general organism systems can express any effective
procedure,)
More particularly, since general organism systems permit the application
of regressive rules, we can cause a cell to be separated from an organism.
If the released cell is in the initial fertile state, then if the cell
is subject to the identical or a similar environmental history as the parent,
an identical or a similar offspring organism results.
Also, for some sufficiently complex general organisms, an offspring
can be created piecemeal under complete control of the parent organism,
the child organism taking on much or all of the adult form of the parent
before separation takes place. This is so because the general organism
systems have been designed to allow the embedding of such systems as Turing

machines, Post Normal Systems, (Tag systems, Lag systems, etc.) and the
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von Neumann cellular system, all of which have long been known to possess
universal computational properties, universal description properties,
and (with varying degrees of expressive power) universal construction
properties (and many concomitant unsolvable properties, in particular,
unsolvable halting and derivability problems)).

There are numerous further results from automata theory and formal
linguistics which could be easily translated to our organism systems.
Some of these results may have some bearing on real biological problems;
most, however, would not, and so there is no pressing need to re-phrase
them in a biological terminology.

We will now try to exploit what we have so far established, trying to
get some results of consequence to biology.

Notice that the series of proper inclusions among organism systems
we have pointed out, gives us a hterarchy of increasingly more powerful
systems: the regular organisms are contained in the autonomous-cell organisms,
the autonomous-cell organisms are contained in the sensitive-cell organisms,
and the sensitive-cell organisms are contained in the general organisms.

We are now in a position to consider particular real biological systems

and to try to decide where they fit in this hierarchy.

General Considerations

We have so far discussed some of the relationships that exist among
our classes of formal organisms, and between our formal organisms on
the one hand and formal languages on the other. We have discussed only
briefly the relationship between our formal organisms and real organisms.
This is the relationship of most interest to us here, and will be considered

in this section.
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A form of question we shall repeatedly ask is: can all and only the
forms assumed by a certain class or species of biological organisms be
accounted for by a particular formal organism system? A rather cosmically
vast form of this question is to ask whether we can get all (and only)
forms of living organisms by means of formal organism systems. Even
attacking this problem would first of all require sufficient insight into
the structure of organisms to provide a satisfactory formal definition of
the notion of "all organism forms". This is a very complex and at best,
only intuitively grasped concept. (At times it almost seems that the
vast variety of forms of living things would make it impossible to bar
anything with finality.)

On the other hand, we should be able to say that all organism forms
can be accounted for by use of unrestricted re-writing systems (such as
our general organism systems). I believe that all adequate explanations
of growth and development can be given in automaton terms, and unrestricted
re-writing systems can exhibit all automaton processes.

This of course is not very revealing; we should like to know which
sub-classes of all possible re-writing systems produce which biological
forms.

Notice that although unrestricted re-writing systems (of our general
organism systems) can in some sense express everything, including all organism
forms, these systems may fail to be useful to biology because of the
manner in which they express biological phenomena. At any moment it may
be difficult to tell what is going on, or what the biological relevance
may be. Also note that more powerful systems are not necessarily more

desirable. In attaining a particular goal, in general, the weaker the
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assumptions adopted, the more revealing and significant the result. We
should accept the rule of economy and should try to prove as much as

possible employing only the weaker rules, and only grudgingly employ stronger
rules.

One tactic which has been extensively employed in formalizing linguistic
theory, is to try to find the weakest system which can account for some
linguistic phenomenon., If a particular system can be proven to be inadequate,
we then attempt to show the adequacy of the next stronger system in the
hierarchy.

A formal system is shown to bevinadequate if a counter-example can be
found. Thus in formal grammar theory the regular languages were shown
to be inadequate to account for all ﬁatural language syntactic character-
istics, because there is a natural language process which permits inde-
finitely extended 'bilaterally symmetric" sentences, and this process is
not adequately described in terms of regular grammars. To resolve this
difficulty, a broader class of languages, the context-free languages, was
introduced, and it too was examined for adequacy, etc.

Notice that the phenomenon against which regular grammars was tested
(the "extended bilateral symmetry') was arrived at through observational
and intuitive considerations of real language phenomena, that is, by the
processes of empirical investigation,

In the next sub-section we shall examine some of the biological form-
alisms introduced in the last section and try to show the adequacy or
inadequacy of those formalisms for describing the development of real

biological organisms,

Tentative Results for Biology

In this section we set forth our principal results in a skeletal
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form, The statements are labeled Empirical Observation if I believe the
statcment is supported by biological evidence. A statement is labelled
Observation if it states a simple logical conclusion, or if it recalls to
mind a simple fact, or results obtained earlier. The label Theorem is

used if the assertion made has mathematical or logical content and is likely
to be novel or unexpected.

The "weakest'" formal organism system we have defined is the linear

regular organism system,

Empirical Observation: There are some simple plant-like organisms
v(some algae) which are linear and grow only
at the tips.

Observation: The linear regular organism systems may be useful in

describing development of some simple biological organisms.

Empirical Observation: There are some simple branching organisms
with tip growth only.

Observation: The linear regular organism systems are inadequate for

describing the development of branching organisms;

Observation: The regular organism systems can express branching

growth,

Empirical Obsérvation: There are linear and branching organisms which
inherently possess (potential) indefinitely
extendible "internally controlled" bilateral
symmetry.

Theorem: The regular organisms cannot express inherent indefinitely

‘extendible "internally controlled" bilateral symmetry.

Theorem: The regular organism systems are inadequate to eipress

all organism developmental phenomena.
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Observation: The autonomous-cell systems are capable of expressing
indefinitely extended "internally controlled" bilateral
symmetries.,

Empirical Obsorvation 1: '"Communication' between cells is known to
exist: cells are affected by the
electro-chemical and hormonal activities
of other cells,

Empirical Observation 2: Communication between celis must exist to
account for certain phenomena. (e.g.,
gastrulation, or repair of a wound does
occur; the closing tissue stops '"at the
right place". This phenomenon requires
inter-cell communication.)

[I have made two "empirical observations" here in order to bring out
some useful distinctions., It is (abstractly) possible that an organism
system might possess some property (such as cell-sensitivity) but that
the property might not take part in any orgaﬁism process. This property
might be termed a "gratuitous complexity' of the system. (We would of
course, in any real system, try to find out how this property was acquired,
and what purpose it might have served, and whether it really does still
perform some function for the organism.)

It is also possible that an organism system possesses some property,
and that it does make use of this property, but that an identical ultimate
outcome could be achieved even if the propefty were not employed. For example,
a sensitive-cell system might make use of the sensitive cell property in
producing some particular organism forms. It is possible that a much

weaker system (for example, a regular organism system) could also produce
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the same organism form. In such a case, it is clear that the two organism
systems might employ different means to the same end; the only advantage
the stronger system might possess is the ability to produce the organism
faster or more efficiently.

Finally, it is possible that an organism system possesses some property,
and the use of this property is necessary if certain phenomena or organism
forms are to be produced at all, For example, it seems likely that
cell-sensitivity is absolutely necessary to proper wound closure. Another
property of sensitive-cell systems not possessed by weaker systems.is the
ability to generéte certain cell-structures having a fixed tripartite ratio
of separated element kinds, The linear form a"bc" is a simple example.

Many interesting problems arise out of these distinctions. For example,
some organisms achieve their mature form in two stages, a first stage of
largely progressive growth, followed by a largely regressive growth stage
of dissolution of cells and cell connections. A general cell organism
system could be employed to mirror this growth and decay process. Can
these same mature biological forms be produced by direct, progressive growth
rules alone? That is, can sensitive-cell organism systems, with no rules
for dissolution of cells and cell connections, produce the same organism
forms? What is the significance of these alternative routes to the same
phenomena? Since many biological phenomena can undoubtedly be accounted
for by several different formal organism systems, how do we decide which
formal organism system best accounts for the phenomena?]

Observation: There is no communication between the cells of an

autonomous-cell system.

Theorem: Autonomous-cell systems are inadequate to account for all

developmental phenomena.
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Observation: In sensitive-cell systems there is communication between
cells.
Empirical Observation: Cell dissolution occurs as part of a "normal"
developmental process.v
Empirical Observation: Organisms release cells (e.g., especially germ
cells),
Empirical Observation: Organisms '"bud-off" and release completed (or
nearly completed) organisms.
Observation: The sensitive-cell systems have no ''regressive' rules:
they have no rules of cell dissolution or detachment.
Theorem: The sensitive-cell systems are inadequate to account for all
developmental phenomena.
Observation: The general-cell systems permit detachment and dissolution
rules,
Theorem: The general-cell systems can exhibit all developmental
processes including reproduction and self-reproduction.
This last rather dramatic theorem has less to it than meets the eye.
It merely affirms my contention that all applications of the developmental
processes of real organisms will be mechanistic in nature and that the
general-cell systems can (with varying degrees of naturalness) exhibit
all mechanistic procedures. To exhibit a developmental phenomenon of a
real organism that could not be also exhibited in a general-cell system
would be either to discredit (which is unlikely) the Church-Turing thesis
(which asserts that all such general systems do indeed capture all of the
informal notion of effective) or to show that explanation of development
in biology entails growth rules which are essentially non-machine-like
(non-cffective) in nature. This lattor is possiblo, though I porsonally

doubt it,



35

It should also be remembered that throughout this section we have
been considering the properties of organisms possessing rule application
optionality. If we were to require of our systems that every cell at every
instant have some rule applied to it we would get a different set of
organisms. For example, imposing this requirement, there is a regular
organism system which could yield the ab" organisms, and an autonomous-cell

organism system which could yield the a"bc" set of organisms. ]

Conclusion

We have reached the top of our hierarchy of formal organism systems.
Although what has been presented here has been more of an outline of a
research program than a report of completed research, I hope it is clear
that automaton theory has considerable relevance for biological theory.

(I also hope it is clear that very much more complicated formal organisms
and processes could have been exhibited.) A tremendous amount remains to
be done though,

We must point out once more that while our formalisms may be able,
theoretically, to represent any developméntal process of biology, they may
so distort the picture of these processes that the formalizations will
be worthless as explanatory scientific models, There undoubtedly will
be cases where a general-cell system can indeed exhibit a developmenta;
process, but the picture of it is thereby so distorted as to fail to satisfy
the intuition of the reasonable skeptic.

We should perhaps at this point discuss briefly but more specifically
the expressive capabilities and limitations of the formal organism systems

we have been considering here.
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In this paper we have concentrated on showing how these formal
organism systems might express the morphogenetic processes of differentiation,
and creation and dissolution of cells and cell contacts. The ultimate
form assumed by organisms is also however a function of such physical
properties as the orientation of cells, size and shape of cells, the adhesive
properties of cells, and the movement of cells and cell materials. The
systems we have proposed here can of course express all these processes
computationally; they can also express some of these processes fairly
directly. For example, the state of a cell-automaton in the formal model
could (in addition to recording the internal state of a real cell) record
the orienfation, size and shape, and adhesive properties of the real cell
represented. With this borader interpretation of the state of a cell
we can define production rules which take these additional cell properties
into account when new cells or cell complexes are to be generated.

For example, if the rules say in effect that a cell in a particular
state can have at most five continguous cell neighbors, and the neighbors
must impinge at certain particular surface locations, then such rules
could be said to take into account the particular size and shape possessed
by a cell.

The movements of cells and cell materials can also be expressed by,
for example, employing rules (similar to Chomsky's grammatical transformation
rules) which produce re-arrangements of cells or blocks of contiguous
cells,

A major weakness of these formal organism systems in their present
state of development, then, is not that they can not express the morphogenetic
processes of interest, but that we have not yet developed within these formal
systems adequate ways of clearly specifying and distinguishing the particular

morphogenetic processes.
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If we wish to say something specific about the global effect of
particular morphogenetic processes, then we shall have to somehow clearly
distinguish these processes as they are embodied in the local production
rules,

As we may want to distinguish the rulc uses which reflect the offect
of inherent organism environment from the rule uses which reflect the
effect of the environment external to the organism, we may also want to
distinguish rules which reflect the effect of cell size from rules which
reflect, for example, the cell shape.

Also there is a genuine question whether if we incorporate more and
more features into our organism systems in a more or less ad hoe fashion,
we will not end by blurring much of the direct expressive power of our
systems, and with this any intuitive feeling for the underlying nature of
the processes we are investigating.

For this reason, it is important to explore ways in which these, and
other formal organism systems which might be devised, can express, in an
informative and revealing fashion, specific complex developmental phenomena
of real biological systems of interest, Our "empirical observations"
were of an extremely general and naive sort. Before the resources of auto-
maton theory can be brought fully to bear on problems of developmental
biology, automaton theorists will have to acquire more biological facts,
and more biological sophistication., In continuing this program, the assistance
of interested biologists will not only be very helpful, it will be

absolutely indispensible,
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