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Abstract

We prove a weak upper bound on the coarsening rate of the discrete-in-space

version of an ill-posed, nonlinear diffusion equation. The continuum version

of the equation violates parabolicity and lacks a complete well-posedness the-

ory. In particular, numerical simulations indicate very sensitive dependence on

initial data. Nevertheless, models based on its discrete-in-space version, which

we study, are widely used in a number of applications, including population dy-

namics (chemotactic movement of bacteria), granular flow (formation of shear

bands), and computer vision (image denoising and segmentation). Our bounds

have implications for all three applications. c� 2008 Wiley Periodicals, Inc.

1 Introduction

We prove a weak upper bound on the coarsening rate of a family of discrete-in-

space evolution equations. Although the equations are well-posed, they resemble

finite difference approximations of ill-posed nonlinear diffusion equations, leading

us to call them discrete ill-posed nonlinear diffusion equations in the title. The

equations arise in the study of population dynamics as a class of reinforced random

walks on a lattice [14, 24], and in granular flow as a simplified one-dimensional

model for the formation of shear bands by antiplane shear in a granular medium

[29]. They also have strong connections to an algorithm introduced by Perona and

Malik for image denoising [10, 26]. Our results apply to the Perona-Malik method

in one space dimension.

We study equations that share an interesting phenomenon: a nonlinear insta-

bility leads to the formation of spikes (in the case of reinforced random walks) or

jump discontinuities (in the granular flow and image processing examples). The

spikes and jump discontinuities each have a width of exactly one grid point. After

their initial formation, the features do not move laterally, but either grow or shrink

until they disappear. The average distance between them establishes a length scale

that increases with time at a measurable rate (called the coarsening rate).

Communications on Pure and Applied Mathematics, Vol. LXII, 0057–0081 (2009)
c� 2008 Wiley Periodicals, Inc.
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For typical applications of these systems, the most relevant questions concern

their coarsening behavior; for example, coarsening in the image denoising model

represents a gradual simplification of images by merging neighboring regions. In

this case, one would like the coarsening to occur as quickly as possible, since this

may result in a faster algorithm. In granular flow, the coarsening represents a merg-

ing of shear bands, and in population dynamics it represents collective movement

to population centers. Our contribution in this paper is to show how recently de-

veloped methods for analyzing coarsening rates can be applied to these models to

answer questions raised previously [29].

Although the evolution equations appear to be finite difference approximations

of PDEs, those PDEs are ill-posed, and the schemes do not converge to them in any

obvious way [10]. One could study the PDEs using some type of regularization

[1, 2, 3, 4, 6, 22] or by defining an appropriate weak solution [5, 30], but we take a

different viewpoint here. We consider applications for which the PDEs serve only

as heuristic models for problems that are discrete in nature; for example, digital

images and granular media each have a minimum length scale (pixel and grain

sizes, respectively) that could be represented by the distance between grid points.

In addition, the discrete-in-space equations display all the dynamics essential to the

applications—namely, the nonlinear instability and the subsequent coarsening. In

fact, it turns out that discreteness plays a crucial role in the coarsening process, as

we discuss below. We thus focus our attention on the discrete evolution equations,

not the ill-posed PDEs.

Our analysis closely follows a method introduced by Kohn and Otto in [17] for

obtaining weak upper bounds on the coarsening rates of energy-driven systems.

Given the energy E and a quantity L that describes the system length scale, their

method requires only a dissipation inequality between dL
dt

and dE
dt

and an interpola-

tion inequality relating L to E. These inequalities are then combined with an ODE

argument to prove a time-averaged lower bound on the energy that is conceptually

equivalent to an upper bound on the coarsening rate.

Kohn and Otto first applied the method to Cahn-Hilliard models for the coars-

ening of an equal-volume fraction binary mixture [17], and it has more recently

been applied to both mean-field [8] and phase-field [9] models of phase separation,

in addition to multicomponent phase separation [19], Mullins-Sekerka evolution

of a binary mixture in the small-volume-fraction regime [7], epitaxial growth [18],

and thin-film droplets [23]. Our discrete setting is different from these previous

applications of the method.

In following the arguments of [17] in our discrete setting, we pay close attention

to the dependence of estimates on the grid size. Indeed, the coarsening rates depend

on the uniform grid cell width h for the finite differences involved. Numerical

experiments show that coarsening slows to a halt as h ! 0 [29], so any useful

bound on the coarsening rates must account for this dependence. Although our

results can be stated in arbitrary space dimensions, for clarity we present them
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for one and two space dimensions only, and limit our discussion in the first few

sections to just one dimension.

The remainder of Section 1 describes the coarsening behavior observed in the

discrete-in-space evolution equations (Sections 1.1 through 1.3), and then explains

the overall method of proof and states our main theorem (Section 1.4) for the equa-

tions in one dimension. Section 2 is devoted to establishing some basic properties

of the dynamics. Section 3 notes how the energy dissipation inequality, one of the

ingredients needed in Kohn and Otto’s argument, appears in our discrete setting.

Section 4 is devoted to establishing the second ingredient, namely, the relevant in-

terpolation inequality for our problem. Numerical experiments corroborating our

bounds follow in Section 5. Finally, Section 6 shows how to extend the interpola-

tion inequality of Section 4 to two space dimensions, allowing us to generalize our

main theorem to two dimensions.

1.1 The Scheme
We will work with uniform grids on Œ0; 1� in one space dimension and on Œ0; 1�2

in two dimensions. In both cases, let h D 1
N

denote the uniform grid size. The

one-dimensional scheme that we study is

(1.1)
dvi

dt
D DC

h
D�

h .R .vi // ; i D 0; : : : ; N � 1;

where

(1.2) DC
h

vi D viC1 � vi

h
;

(1.3) D�
h vi D vi � vi�1

h
;

are forward and backward difference quotients. Periodic boundary conditions will

be used, which are common and natural in many applications of these models; thus,

when i D 0 or i D N � 1 we set

(1.4) vi D vj ; j D i mod N; when i ¤ 0; : : : ; N � 1:

Requiring (1.4) ensures that the dynamics of (1.1) leave the total mass

(1.5) � WD 1

N

X
i

vi

unchanged. This property and all subsequent results also hold when Neumann

boundary conditions are imposed.

System (1.1) has a nonincreasing energy, given by

(1.6) E.v/ D
N �1X
iD1

f .vi /h;
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where

(1.7) f .s/ D
Z s

0

R.�/d�:

For smooth, strictly convex functions f , the scheme (1.1) gives a convergent (as

h ! 0) finite differences approximation of the parabolic PDE

(1.8) vt D .R.v//xx D R0.v/vxx C R00.v/v2
x

on the interval Œ0; 1� with periodic boundary conditions. Such systems are well

understood; in this paper we are concerned instead with a special class of noncon-
vex functions f that are convex on some interval Œa; b/ but concave on .b; 1/. In

that case, R0.s/ < 0 whenever s > b, so that equation (1.8) becomes backwards

parabolic wherever the solution v is large enough.

More precisely, we will make the following assumptions on R, a, and b:

(1.9)

(1) R W R ! R is smooth,

(2) R0.s/ > 0 whenever s 2 .a; b/,

(3) R0.s/ < 0 whenever s 2 .b; 1/, and

(4) R.a/ � lims!1 R.s/.

The switch of sign in R0.s/ at s D b corresponds to the switch from convexity to

concavity in f .

In applications, one of the most important examples of such a nonlinearity R

is the original choice made by Perona and Malik [25, 26] in the context of image

processing, namely,

(1.10) R.s/ D s

1 C s2
;

a primitive for which is

(1.11) f .s/ D 1

2
log .1 C s2/:

In this case a D 0 and b D 1. (This nonlinearity also turns out to be relevant in

granular flow models, as explained in the next section.) We also refer the reader

to [20], where coarsening is examined for a model of epitaxial growth that has

an energy similar to (1.11). Other choices for R that appear in image processing

literature and respect the properties listed above include

R.s/ D ps

.1 C s2/.2�p/=2
with p 2 .0; 1/;

a primitive for which is

(1.12) f .s/ D .1 C s2/
p
2 :

Figure 1.1 shows f; R; and R0 for f given by (1.11). The bounds we obtain in

this paper apply to all these choices; the downside is that our bounds are not sharp

enough to distinguish between different choices of nonlinearities.
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FIGURE 1.1. The functions f , R, and R0 for f .s/ D 1
2

log.1 C s2/.

1.2 Applications of (1.1)
Using f defined by (1.11), system (1.1) describes a reinforced random walk on

a lattice and is used to model the movement of biological organisms affected by

some external field that is in turn affected by the organisms’ presence [14, 24]. Ex-

amples of such organisms include ants, which create and follow ant trails, and the

bacteria Myxococcus xanthus, which glides along a substance produced by other

members of the population. Denoting population density by v; (1.1) arises for

external fields proportional to the number of entities present.

The dynamics of (1.8) share many qualitative features with an ill-posed nonlin-

ear PDE that arises in image processing [25, 26] and granular flow [28, 29]:

(1.13) ut D .R .ux//x :

These similarities should be expected, since (1.8) can be derived from (1.13) by

letting v D ux and taking a spatial derivative of (1.13). For functions f such as

(1.11), which have the additional properties of being nonnegative and even with

f .0/ D 0;

equation (1.13) is a one-dimensional restriction of

(1.14) ut D r � .R.jruj/ru/;

which was introduced by Perona and Malik to denoise digital images represented

by the function u [25, 26]. Intending to smooth noisy regions of the image without

blurring edges (object boundaries), they required that f , the primitive of R; satisfy

exactly the conditions discussed above.

Equation (1.13) has also been studied as a simplified one-dimensional model

for the formation of shear bands in a granular medium [29]. In this case, f is
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FIGURE 1.2. Comparison of R and R0 when f is defined by (1.11) (left)

and (1.15) (right).

defined by

f .s/ D sin ˛ sin � log
ˇ̌̌
cos � C s C

q
1 C 2s cos � C s2

ˇ̌̌

C cos ˛

q
1 C 2s cos � C s2;

(1.15)

with 0 < ˛ < �
2

and 0 � � � �: This choice for f has a D �1 and

b D �sin .˛ � �/

sin ˛
:

See [29] for an explanation of the parameters ˛ and � in relation to granular flow.

Figure 1.2 includes a comparison of (1.11) with (1.15) for ˛ D �
4

and � D �
8

.

It is important to note that the behavior of the granular flow nonlinearity (1.15)

at infinity is essentially the same as that of the Perona-Malik nonlinearity (1.11).

Indeed, up to subtracting off a linear term in s (which makes no difference in the

resulting flow according to (1.13)), the function (1.15) has logarithmic growth at

infinity just as (1.11) does.

Much attention has been devoted to ill-posed equations such as (1.8) and espe-

cially (1.13). In particular, there is a lot of recent effort that concerns developing

an existence theory [5, 11, 12, 13, 15, 16, 30]. Another topic of research has been

appropriately regularized versions of the PDEs [1, 2, 3, 4, 6, 22]. But some work
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regarding the two PDEs has actually focused on discretizations like (1.1) and the

similar discretization of (1.13),

(1.16)
d

dt
ui D D�

h .R.DC
h

ui //:

We may derive (1.1) from (1.16) by letting

(1.17) vi D DC
h

ui

and applying DC
h

to (1.16).

Although the limiting behavior of (1.1) and (1.16) as h ! 0 is unclear for non-

convex f (see [10] for a particular scaling limit), the schemes have nonetheless

been studied in relation to each of the above-mentioned applications. In image

processing, the discretization is actually more important than the intended PDE

model, as applications of the model on digital images involve only discretizations

of (1.13). In population dynamics, (1.1) may be thought of as an example of a re-

inforced random walk on a lattice. The authors of [28, 29] pointed out that discrete

models like (1.1) are of interest in granular flow, which is inherently discrete with

minimum-length scales determined by the grain sizes.

1.3 Coarsening Behavior
The one-dimensional system (1.1) under study is a gradient descent for energy

(1.6) with respect to the discrete H �1 norm, which can be expressed by duality as

(1.18) kvikH �1 WD sup
�i

�
1

N

NX
iD0

.vi � �/�i

ˇ̌̌ 1

N

NX
iD1

Œ.�iC1 � �i /N �2 � 1

�
:

If the initial data vj .0/ of (1.1) satisfies vj .0/ 2 .a; b/ so that it lies completely in

the forward parabolic regime, the evolution proceeds as a typical parabolic smooth-

ing.

If, on the other hand, the initial data’s mean value � satisfies

(1.19) � > b;

then part of the mass of the data always lies in the ill-posed regime .b; 1/ due

to conservation of mass. In this case, the evolution creates a more interesting be-

havior: The conserved total mass of the data quickly aggregates into a terrain of

spikes. These are locations on the grid where the solution exceeds the parabolicity

threshold b; i.e., we adopt the following terminology:

(1.20) There is a spike at the j th grid point if vj � b:

Each spike appears to be supported on a single grid point and does not move;

however, the heights of the spikes can change. During subsequent evolution the

concavity of f .s/ on .b; 1/ encourages accumulation of mass into fewer and big-

ger spikes. As a result, smaller spikes get absorbed into larger ones until only a

single spike containing most of the mass remains (see Figure 1.3). The growing

distance between spikes establishes a system length scale that coarsens.
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FIGURE 1.3. The dynamics of (1.1) for N D 200 and vi .0/ D 3 C �i

with a random perturbation j�i j � 10�5: The vi quickly aggregate to

spikes that decrease in number until a single spike contains most of the

mass.

Possible stationary states for the system can easily be worked out by noting that

at equilibrium

(1.21) R.vj / D C

for all j for some constant C . Concentrating on solutions vj with vj � a for

all j , we see from the assumptions on R that (1.21) may assume one of two dis-

tinct solutions, which we denote v� and vC, with the assumption that vC > b >

v� � a. Under assumption (1.19), there is at least one j at which vj D vC.

Concavity of f .s/ at s D vC implies that stable stationary states contain ex-

actly one spike. (See [24, 29] for a full discussion of stability, but note that since

2f .vC/ � Œf .vC C h/ C f .vC � h/� � 2f 00.vC/h2

2
< 0; there exist arbitrarily

small perturbations of multiple-spike steady states with a lower energy.)

Hence at .N � 1/ grid points the solution has value v�, and at one grid point it

has value vC. Conservation of mass implies

(1.22) vC C .N � 1/v� D N�:

Together with

(1.23) R.vC/ D R.v�/;
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FIGURE 1.4. Shear bands in granular flow. The dynamics of (1.16) for

N D 200 and f given by (1.15). Thicker lines denote later stages of the

evolution.

these two conditions now suffice to solve for vC and v� given �. For example, if

f is given by (1.11), then (1.23) implies

vC D 1

v�
:

Combining this with (1.22) gives

v˙ D N� ˙ p
.N�/2 � 4.N � 1/

2
:

This formula shows in particular that most of the mass is indeed concentrated in

the single spike. The gradient descent structure of (1.1) drives the vi to this energy

minimum and may be stopped only by the possible interference of a saddle point

corresponding to another stationary state of (1.1). However, such interference is

rare, since the single-spike solution is the only stable steady state solution for ini-

tial data satisfying (1.19). A complete study of all steady state solutions of (1.1),

including an investigation of stability, may be found in [21, 24, 29].

Though the initial aggregation of system mass to spikes occurs rapidly, the

evolution slows down as the number of spikes (denoted below by K) decrease.

The authors of [29] used numerical simulations of (1.1) to measure this coarsening

rate and observed that the number of spikes scale like

(1.24) K �
�

N

t

� 1
3

:

Despite a remarkable correlation with the numerical data (see [29] or Section 5 of

this paper), this paper presents the first rigorous result indicating this rate.

The physical meaning of the coarsening process of (1.1) depends on the partic-

ular application. For granular flow, where the energy function is given by (1.15),

the coarsening corresponds to a decreasing number of shear bands in the granular

medium (see Figure 1.4). When considering f given by (1.11), the coarsening

represents an aggregation of biological organisms into population centers. For the
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FIGURE 1.5. Perona-Malik equation. The dynamics of (1.16) for N D
200 and f given by (1.11). Thicker lines denote later stages of the evo-

lution.

nonlinearities used in image processing, our analysis applies only to entirely non-

negative data (and may be easily modified for entirely nonpositive data). Since we

study the signal’s discrete derivative, we are examining the coarsening of the ter-

races produced by the Perona-Malik method along a single edge (see Figure 1.5).

This coarsening corresponds to a simplification of the processed image. At early

stages the image is close to the original, perhaps noisy image, while at later stages,

fine structures (including noise) disappear and only the larger features remain. An

accurate understanding of the coarsening speed of (1.16) might be used to estimate

the computation time needed to process an image up to a desired state of complex-

ity.

1.4 Main Result and Method of Proof
Once we choose a measurement L of the system length scale, our analysis

requires two inequalities relating L with the system’s energy E: a decay estimate

bounding dL
dt

by a function of dE
dt

and an interpolation inequality that is a one-sided

version of

(1.25) E � 1

L
:

We must therefore carefully choose L so that it accurately measures the system

length scale while allowing us to prove both required estimates.

Our discussion of the system dynamics suggests choosing L D 1
K

with K

denoting the number of spikes. The interpolation inequality would easily follow

for this choice: since f is an increasing function of v on Œa; 1/; the K spikes

dominate the system energy and

E � K

N
:
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On the other hand, a decay estimate for K would be difficult to prove, since it only

takes on integer values. Instead we pick

(1.26) L D kvikH �1 ;

which is similar to length scales used in [17, 18, 23]. To justify our choice, we

provide numerical evidence in Section 5 that L � 1
K

:

Having defined L; we next state our decay estimate,

(1.27) j PLj � .� PE/
1
2 ;

and our interpolation estimate,

(1.28) EL � C

N
:

Since (1.1) is a gradient descent of E with respect to the discrete H �1 norm, (1.27)

follows from a slight variation of arguments presented in [17]. The proof of (1.28)

is more interesting. The discrete setting of this problem, which is unlike the setting

of other coarsening rate bounds [8, 9, 17, 18, 19, 23], requires that we pay attention

to the dependence of our estimates on the grid size h D 1
N

. Indeed, although our

decay estimate relating E with L does not depend on N , the interpolation estimate

does. We strive for the most favorable dependence we can manage and obtain

precisely the one observed in numerical experiments reported in [29].

We present bounds on the coarsening rate in one and two space dimensions.

First, we prove the following time-averaged lower bound on the energy of the one-

dimensional scheme (1.1); the result in two dimensions is presented in Section 6.

THEOREM 1.1 Suppose a � vi .0/ for 1 � i � N;

(1.29) b < � D 1

N

X
i

vi ;

and vi .0/ > b for at most N
2

values of i: Then there exists a universal constant
C < 1 such that

(1.30)
1

T

Z T

0

E�rL�.1��/rdt � CI

�
.N 2T /� 1

3

�r

for T �
p

3
C

NL.0/3 and for any 0 � � � 1 and r > 0 satisfying

(1.31) r < 3; r� > 1; and .1 � �/r < 2:

PROOF: The decay and interpolation inequalities (1.27) and (1.28) that will

be derived in Sections 3 and 4, respectively, imply the result once we define the

rescaled variables

QE D N
2
3 E and QL D N

1
3 L

and apply to QE and QL Lemma 1.2, which we quote below from [17]. �
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LEMMA 1.2 (From [17]) If 0 � � � 1 and r > 0 satisfy (1.31), then EL � C and
. PL/2 � � PE imply

1

T

Z T

0

E�rL�.1��/r dt � C T � r
3

for T � L3
0:

Remark. Note that we prove a bound on the decay of E; not a bound on the growth

of L: As shown in [17], the interpolation and decay relations between E and L are

insufficient to prove a bound on L: We think of (1.30) as a conceptual bound on L

since NE behaves like 1
L

:

Theorem 1.1 applies to large-time behavior of (1.1), since K � N (and is

certainly less than N
2

) after a transient initial period where the vi rapidly separate

into spikes and background. As discussed in [17], the methods used here will not

provide a lower bound on the coarsening rate of (1.1). Proving a suitable lower

bound would likely be more difficult, since the dynamics of (1.1) may be slowed

by a variety of factors, including the interference of saddle points of the energy;

hence there is in fact no lower bound in the naive sense. On the other hand, a

system cannot coarsen any faster than its energy landscape allows.

2 Preliminaries

We consider only initial data satisfying vi .0/ � a: The following lemma shows

that the vi retain this lower bound at all later times.

LEMMA 2.1 Suppose vi solves (1.1) for t 2 Œ0; T / and satisfies

vi .0/ � a

for i D 0; : : : ; N � 1: Then a solution vi exists for all later times and

vi .t/ � a

for i D 0; : : : ; N � 1 and all t � 0:

PROOF: Our assumptions on the function R (Section 1.1) imply it is globally

Lipschitz on Œa � 1; 1/. Standard ODE theory implies the existence of a T > 0 so

that solutions to the following ODE systems can be found on Œ0; T �:

dv�

dt
D R.v�

iC1.t// � 2R.v�
i .t// C R.v�

i�1.t//

h2
C �;(2.1a)

v�
i .0/ D vi .0/;(2.1b)

under the hypotheses on vi .0/. Also, v�
i ! vi uniformly on Œ0; T � as � ! 0,

provided that T > 0 is small enough. We show that for small enough � > 0,

v�
i .t/ > a � � for all i and t 2 Œ0; T �.

Fix an � > 0 and assume not. Let t� 2 .0; T � be the first time there is a j such

that v�
j .t�/ D a � �. The whole point is

R.s/ � a for all s � a
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according to the assumptions (1.9) on the function R. Hence, we must have

d

dt
v�

j D 1

h2

�
R.v�

j C1/ C R.v�
j �1/ � 2R.a/

� C � � � > 0

for all t 2 Œ0; t�� close enough to t�. This is a contradiction since a � � is the strict

minimum of vj .t/ on t 2 Œ0; t��. Taking � ! 0 now proves

vi .t/ � a

for all t 2 Œ0; T �, which in turn implies that the solution extends to all t � 0 and

remains above a for all time. �

We next separate the vi into spikes and background. Recall that we call vi a

spike if vi > b; where b is the parabolicity threshold discussed previously. By

selecting b as the dividing value, we ensure that the number of spikes does not

increase:

LEMMA 2.2 If
vi .t0/ � b

for some i and some t0 � 0; then

vi .t/ � b

for all t � t0:

PROOF: The same argument from Lemma 2.1 can be applied, but now the es-

sential fact is that R.s/ achieves its maximum at s D b. Indeed, we can consider

the system

d

dt
v�

i D R.viC1.t// � 2R.vi .t// C R.vi�1.t//

h2
� �:

Assuming that the conclusion is false for some grid point j , one sees that at the

first time t� at which v�
j .t�/ D b, it has to be the case that

d

dt
v�

j D 1

h2

�
R.v�

j C1/ C R.v�
j �1/ � 2R.b/

� � � < 0;

which leads to a contradiction as before. �

3 Decay Relation

LEMMA 3.1 j PLj � .� PE/1=2:

PROOF: Our selected length scale (1.18) allows a simple application of the

proof of lemma 2 in [17] to this discrete setting. We provide the details for the

reader’s benefit. From (1.6), we have

� PE D �
N �1X
iD0

R.vi / Pvih D �
N �1X
iD0

R.vi /D
C
h

D�
h .R.vi //h:
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Summing by parts and using the boundary condition (1.4) gives

(3.1) � PE D
N �1X
iD0

ŒD�
h .R.vi //�

2h:

Pick t1; t2 with 0 � t1 < t2, and let � be the optimal test function in the definition

of L.t2/ (see (1.18) and (1.26)) so that

L.t2/ D kv.t2/kH �1 D
N �1X
iD0

.vi .t2/ � �/�ih

and
N �1X
iD0

jDC
h

�i j2h � 1:

Then we have

L.t2/ � L.t1/ �
N �1X
iD0

.vi .t2/ � vi .t1//�ih

D
Z t2

t1

N �1X
iD0

Pvi�ih dt

D
Z t2

t1

N �1X
iD0

DC
h

D�
h .R.vi //�ih dt

D �
Z t2

t1

N �1X
iD0

D�
h .R.vi //D

�
h �ih dt

�
Z t2

t1

� N �1X
iD0

jD�
h .R.vi //j2h

� 1
2

dt:

Repeating the above with � 0
i optimal in the definition of L.t1/ gives

(3.2) jL.t2/ � L.t1/j �
Z t2

t1

� N �1X
iD0

jD�
h .R.vi //j2h

� 1
2

dt:

Combining (3.2) with (3.1) shows that L is an absolutely continuous function of t

satisfying (1.27). �

4 Interpolation Inequality

In this section, we establish the second ingredient necessary for applying Kohn

and Otto’s technique to our problem: an interpolation inequality between the sys-

tem’s energy (1.6) and length scale (1.26). The following lemma establishes the
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required inequality in one space dimension; we present the two-dimensional ver-

sion in Section 6.1.

Recall that we work on the unit interval Œ0; 1� divided into a uniform grid with

N C 1 points 0 D x0 < � � � < xN D 1, where xi D i
N

. Let fvig be a function

defined on the grid, satisfying the boundary condition vN D v0. As before, K

denotes the number of spikes in v, i.e., the number of indices i 2 f0; : : : ; N � 1g
where vi � b.

LEMMA 4.1 Let L be defined by (1.26) and (1.18), and E by (1.6). Assume that
K � N

2
. Then

EL � C

N

for some C > 0 that depends only on � and b.

PROOF: Since f is a nonnegative function with f .s/ � f .b/ for all s � b, we

have the immediate lower bound

(4.1) E � K

N
f .b/;

and we only need to show that L � C
K

for some constant C depending only on �

and b. It is convenient to establish this using the characterization of the H �1 norm

given in (1.18). In particular, we construct a “test function” f�ig to get from (1.18)

a lower bound on kvkH �1 .

To that end, define the integer ` as

(4.2) ` D
	

N

2K



:

Note that ` � 1 since K � N
2

by hypothesis. It is easy to see that, for the same

reason,

(4.3) ` � N

4K
:

We now partition the grid into 2K adjacent, disjoint intervals Ij , each contain-

ing the indices of ` consecutive grid points, i.e.,

Ij D fi W j̀ � i < `.j C 1/g:
There are exactly 2K such subintervals, I0; : : : ; I2K�1, on the grid. Since there

are only K spikes, we see that at least K of the subintervals must contain no spikes.

Let

S D fj W Ij contains no spikesg
so that

(4.4) #S � K:
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We now define the test function f�ig on the grid as follows: On a subinterval

that contains no spikes, we let �� be the distance function to the boundary of the

subinterval; specifically,

�i D � 1

N
min

��
i � j̀ C 1

2

�
;

�
`.j C 1/ C 1

2
� i

��

if i 2 Ij for some j 2 S:

(4.5)

Everywhere else, we let � � 0, i.e.,

(4.6) �i D 0 if i 62
[
j 2S

Ij :

Then, first of all, according to (4.5) and (4.6), jDC�i j � 1 for all i , so that

(4.7) k�kH 1 � 1:

Second, if I is a subinterval containing no spikes, then

(4.8)
1

N

X
i2I

.��i / � `2

4N 2
;

which is also an easy consequence of our definition (4.5) above.

We can now use the test function � in the definition (1.18) of the H �1 norm.

First, note that due to assumption (1.29), we have

(4.9) vi < b < � whenever i 2
[
j 2S

Ij :

Then,

L WD kvkH �1 � 1

N

N �1X
iD0

�i .vi � �/ (by (1.18) and (4.7))(4.10)

D 1

N

X
j 2S

X
i2Ij

�i .vi � �/(4.11)

� 1

N

X
j 2S

.� � b/
X
i2Ij

.��i / (by (4.6) and (4.9))

� .� � b/
X
j 2S

`2

4N 2
(by (4.5) and (4.8))(4.12)

� .� � b/K

�
1

4N 2

� �
N 2

16K2

�
(4.13)

D .� � b/
1

64K
(by (4.4) and (4.3)):

Combined with (4.1), this establishes the claim with C D .��b/
64

. �
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FIGURE 5.1. After an initial transient period, the jump density K
N

cor-

responds closely with the proved coarsening bound (1.30).

5 Numerical Evidence

We next demonstrate the actual coarsening rate of (1.1) by discretizing in time

and solving numerically. In particular, we show a dependence of the coarsening

rate on N; as our upper bound indicates. We use f defined by (1.11) in all examples

and remark that similar results are discussed in [29] for f given by (1.15).

Let

(5.1) F.vn
i / D R.vn

iC1/ � 2R.vn
i / C R.vn

i�1/

h2
:

We remind the reader that h D 1
N

and note that we intermittently use h instead

of N; since that notation is likely more familiar to those having experience with

numerical PDEs.

We first consider the forward Euler method,

(5.2)
vnC1

i � vn
i

	
D F.vn

i /:

To demonstrate the coarsening rate of (5.2), we use a perturbation of vi D 3 for

initial data:

(5.3) vi .0/ D 3 C 10�6 sin

�
�i

N

�
:

Notice that in a system with N grid points, K D N for (5.3), since b D 1 for f

given by (1.11). Figure 5.1 shows a plot K
N

versus N 2t for the solution of (5.2)

with N D 200; 300; : : : ; 1400; 1500: After a transient initial period, the coarsening

strongly corresponds with the predicted power law .N 2t /�1=3: Our analysis does

not include the early time dynamics, since our results only hold for the later times

when K � N
2

: Figure 5.2 shows a plot of LN versus N 2t: Its correspondence

with the power law .N 2t /1=3 supports our claim that L � 1
K

: The quantity L
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FIGURE 5.2. The length scale behaves like L � 1
K

, supporting our

claim that (1.26) defines a valid measure of length scale.

as given by the H �1 norm (1.18) was computed using the following equivalent

characterization:

(5.4) kvk2
H �1 D 1

N

X
j

.DC
h

wj /2 where DC
h

D�
h w D v

where DC
h

D�
h

w D v with periodic boundary conditions.

Since the explicit scheme (5.2) restricts time steps to be O.h2/; one might nat-

urally turn to implicit schemes with weaker time step requirements. Surprisingly,

the error caused by taking relatively larger time steps in such schemes significantly

slows the coarsening process.

To demonstrate this phenomenon, we focus on the implicit midpoint method,

(5.5)
vnC1

i � vn
i

	
D F

�
vn

i C vnC1
i

2

�
;

which has less stringent time step requirements than (5.2) and is typically more

accurate than the backward Euler method. Figure 5.3 shows results for (5.5) when

time steps are not taken larger than 10h2: The coarsening occurs significantly

slower, especially for large N (small h). We use Newton’s method to solve (5.5)

at each time step, using explicit time stepping to provide an initial guess for the

Newton iterations. To ensure rapid convergence of the iterations, we use an adap-

tive time step—reducing the time step when many iterations are required and in-

creasing it when only 0–5 iterations are required. We use the Sherman-Morrison

formula [27] and the tridiagonal matrix solver in LAPACK to solve the linear sys-

tems for each Newton iteration. Typically smaller time steps are required only at

the beginning stages of evolution.

We further demonstrate the slowdown due to larger time steps by fixing N D
200 and solving (5.5) to a fixed time t� for a range of maximal time steps. Fig-

ure 5.4 shows a plot of K at t� D 10 as a function of the maximum time step used
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FIGURE 5.3. Evolving length scale (top) and jump density (bottom)

for the implicit scheme (5.5). Although implicit schemes have no time

step restriction for stability, the coarsening rate badly reflects the error

caused by larger time steps.
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)

FIGURE 5.4. Coarsening slowdown. Although implicit schemes have

no time step requirements for stability, errors due to large time steps have

a significant effect on the coarsening rate. Using the initial data given by

(5.3), we set N D 200 and plot K at t D 10 as a function of the maximal

time step used in (5.5) (this is the time step used except at the earliest

stages of evolution, where 	 may be smaller to ensure convergence of

the Newton iterations).

in computation. These results should be of interest to those in the image processing

community—in image processing applications, the length scale is more important

than the actual time, which is in fact artificial. In particular, these results suggest

that while implicit time stepping may remove time step restrictions, little real gain

in processing speed might be made.
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6 Two Dimensions

We easily generalize (1.1) to two dimensions by considering a system vi;j ,

i; j D 0; : : : ; N � 1, satisfying

(6.1) Pvi;j D DC
1;h

D�
1;h.R.vi;j // C DC

2;h
D�

2;h.R.vi;j //

with the rules

(6.2) vi;j D vi mod N;j mod N for i; j ¤ 0; : : : ; N � 1;

and

(6.3) vi;j � a:

Here DC
i;h

and D�
i;h

are the forward and backward difference quotient operators,

respectively, in the i th coordinate direction. This system is a standard centered

differencing discretization of

(6.4) vt D 
.R.v//

with periodic boundary conditions. Although (6.1) has no relation to the Perona-

Malik method for image denoising or to shearing in granular materials, it is a natu-

ral generalization of the reinforced random walk model to a two-dimensional lattice

and has been studied in [14, 24]. The behavior of (6.1) is very similar to (1.1), with

mass aggregating in spikes that coarsen with time. System (6.1) has

(6.5) E.vi;j / D
N �1X
i;j D0

f .vi;j /h2

for an energy. Condition (6.2) ensures that

(6.6) � WD 1

N 2

NX
i;j D1

vi;j

does not change.

We generalize the definition of L to this two-dimensional lattice:

L.vi;j / D kvi;j kH �1

WD sup
�i;j

�
1

N 2

N �1X
i;j D0

.vi;j � �/�i;j

ˇ̌̌

N �1X
i;j D0

Œ.�iC1;j � �i;j /2 C .�i;j C1 � �i;j /2� � 1

�
:

(6.7)

In this case, we expect L � 1p
K

where K is again the number of vi;j > b:

Lemmas 2.1 and 3.1 are easily seen to hold also for (6.1); however, the interpolation

inequality is different as it depends on dimension.
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6.1 Interpolation Inequality
LEMMA 6.1 Let L be defined by (6.7) and E by (6.5). Assume that K � N

2
. Then

(6.8) EL2 � C

N 2

for some constant C > 0 that depends only on � and b.

PROOF: We proceed in analogy with the one-dimensional case covered in Lem-

ma 4.1. The setting is now the domain Œ0; 1�2, discretized by the uniform grid

.xi ; yj / where xi D i
N

and yj D j
N

. This time, we have the immediate bound

(6.9) E � K

N 2
f .b/

on the energy. Hence it will be enough to show that L � Cp
K

for some C . To that

end, we will partition the grid into disjoint cubes of side length

(6.10) ` D
	

Np
2K



:

Then, ` � N

2
p

2K
. The cubes Qm;n are

(6.11) Qm;n D ˚
.i; j / W `m � i < `.m C 1/ and `n � j < `.n C 1/

�
:

There are 2K such cubes completely contained on the grid. Since there are at

most K spikes, at least K of these cubes contain no spikes at all. Let

(6.12) S D f.m; n/ W Qm;n contains no spikesg:
As before, we define a “test function” f�i;j g on the grid as follows:

(1) If .i; j / 2 Qm;n for some .m; n/ 2 S , then

�i;j D �dist@Qm;n
.i; j /

D min
˚
.i � `m C 1

2
/;

�
`.m C 1/ C 1

2
� i

�
;

.j � `n C 1
2
/;

�
`.n C 1/ C 1

2
� j

��
:

(6.13)

(2) Otherwise, �i;j D 0.

It follows that k�kH �1 � 1. Moreover, if .m; n/ 2 S , then

(6.14)
1

N 2

X
.i;j /2Qm;n

.��i;j / � C
`3

N 3
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for some constant C . Using �i;j in (6.7) to bound L from below, we get

L WD kvkH �1 � 1

N 2

X
i;j

�i;j .vi;j � �/

D 1

N 2

X
.m;n/2S

X
.i;j /2Qm;n

�i;j .vi;j � �/

� 1

N 2

X
.m;n/2S

.� � b/
X

.i;j /2Qm;n

.��i;j /

� .� � b/
X

.m;n/2S

C
`3

N 3

� C.� � b/K

�
N 3

K
p

K

��
1

N 3

�
D C.� � b/p

K
:

(6.15)

Combined with (6.9), this establishes the claim. �

6.2 Final Result in Two Dimensions
THEOREM 6.2 Suppose a � vi;j .0/ for 1 � i; j � N;

(6.16) b < � D 1

N 2

NX
i;j D1

vi;j ;

and vi;j .0/ > b for at most N 2

2
ordered pairs .i; j /: Then for each � 2 .1; 2�;

there exist universal constants C1.�/; C2.�/ < 1 such that for all 0 < T0 � T;

(6.17)
1

T � T0

Z T

T0

E� dt � C1.�/
�
.N 2.T � T0//� 1

2

��

for .T � T0/ � C2.�/N 2L.T0/4: If 1 < � < 2; (6.17) also holds for T0 D 0.

PROOF: The proof may be obtained by setting QE D NE and QL D N 1=2L and

then using inequalities (1.27) and (6.8) to apply lemma 4.2 in [23] (with ˛ D 2 in

the statement of that lemma) to QE and QL. �

6.3 Numerical Evidence for the Two-Dimensional Case
We use forward Euler time stepping (5.2) to solve (6.1). Although we observed

a stability restriction on the explicit scheme of about 	 � h2

4
; standard implicit

schemes provide little speedup due to the computation required by repeated New-

ton iterations and the slowdown of coarsening caused by large time steps (see Sec-

tion 5).

We evolve an N 	 N system with N D 2n 	 10 for 1 � n � 6: Figure 6.1

shows K
N 2 versus Nt compared with the power law .N 2t /�1=2. Each simulation
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FIGURE 6.1. A comparison of the evolving jump density K
N 2 with the

expected coarsening rate (6.17) for the two-dimensional system (6.1).

has the same initial condition

(6.18) vi;j .0/ D 3 C 10�6 sin

�
i�

N

�
sin

�
j�

N

�
:

The results match our proved bound (6.17).

7 Discussion

Our numerical experiments indicate that not only are the upper bounds we es-

tablish attained, but they are in fact generically observed for energy densities with

logarithmic growth at infinity, such as (1.11), which appear in many applications.

Our bounds certainly hold for energy densities that have faster (e.g., power law)

growth at infinity; the hypotheses of our claims clearly allow them. However, nu-

merical experiments indicate that the bounds are not optimal in these cases. It

would be interesting to see how the bounds could be improved for these energies,

since this would help clarify the role of different nonlinearities in models such as

Perona-Malik.

We studied evolution equations that are continuous in time, but those computing

these systems (particularly in the image processing community) also care about

discrete-in-time versions. The two should be closely related for sufficiently small

time steps, but anyone interested in reducing computation time would prefer taking

the largest time steps possible. In Section 5 we discussed a slowdown of coarsening

caused by taking larger time steps in numerical simulations. This leads one to ask

whether a bound on the coarsening rate can be found in terms of the number of time

steps in discrete-in-time systems, possibly indicating the amount of computation

needed to denoise images with the Perona-Malik method.

Our work focuses on problems best described by discrete-in-space evolution

equations, but it would be interesting to see whether our results could be extended

to the notions of solution developed for the related ill-posed PDEs in recent liter-

ature (e.g., [5, 30]). One might also apply these methods to regularized versions
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of the PDEs, such as those analyzed in [1, 2, 3, 4, 6, 22]. In this case, we might

expect to find that the coarsening rate depends on the regularization parameter just

as the coarsening rate depends on grid cell size for the discrete-in-space equations.
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