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ARTIFICIAL ORGANISMS AND AUTONOMOUS-CELL RULES

Abstract

Developmental rules in which a cell may differentiate or propagate
as a consequence of its internal state only are shown to be sufficient
to produce any given organism cell-structure. Rules in which a cell may
differentiate or propagate as a consequence of its internal state and
the number of other cells impinging on it, are shown to be sufficient

to produce an organism possessing universal computational behavior.



ARTIFICIAL ORGANISMS AND AUTONOMOUS-CELL RULES

1. Introduction

Although it is certain that the cells of developing biological organisms
are in fact capable of considerable amounts of intercommunication, it is
not at all clear how much intercommunication is actually employed in producing
organism form. It is therefore an interesting theoretical problem to estab-
lish first how much cell intercommunication is necessary in order to achieve
certain organism forms.

The structures of simple organisms can be represented by finite graphs
of points and lines where the points stand for cells and the lines stand
for contiguity relationships between cells. The points and lines of such
graphs might be labelled to represent respectively the internal states of
cells and the presence of specific kinds of contiguity relationships to
other cells. In a formal approach to biological development we can then
consider how, starting from a single initial cell, complex cell-contiguity
graphs reflecting organism structure, might be produced by systems of simple
rules of growth. Autonomous-cell re-write systems (in part akin to the
context-free grammars of the formal linguist)vhave sometimes been suggested
for this purpose.

In autonomous-cell rules (as we shall employ them here) the condition
of a given cell may be re-written as a consequence of local characteristics
of the cell (such as the internal state alone of the cell, or the internal
state along with certain local contiguity properties) and not (for example)
as a direct consequence of the internal states of neighboring cells. Thus,
autonomous-cell rules reflect a minimum of intercellular communication:

a cell may act upon the knowledge that it has some number of



neighbor impinging on it but it does not know directly anything of the
internal condition of cell-neighbors.

One result of applying an autonomous-cell re-write rule is merely to
change the state of a given cell.' We will call such a rule a differentiation
rule. Another result of a rule application can be to produce one or more
new cells (in specified states); we will call such a rule a propagation
rqle. In addition to specifying the states of existing and newly created
cells, differentiation and propagation rules must also implicitly or explicitly
specify what connections to other cells are to be retained or lost. These
connections to be revised are restricted to those 31ready locally present
at the cell to which the rule was applied. Thus, é (binary fission)
autonomous-cell propagation rule applied to a cell c;;verts it to two successor
cells; the possible connections which these two new cells may make to other
cells are restricted to a connection to each other and connections, by each
of the new cells, to any or -all of the cells the parent cell was connected
to. In tﬁe case 6f a differentiation rule (as we define it here) some of
the existing coﬁhections may be lost, but there is no creation of new connections.
Notice that the rules doAnot permit the dissolution of a cell, although
the rules will permit the complete detachment of a cell.

We now define some even more limited autonomous-cell rules.

A restricted autonomous propagated rﬁle will produce any number of
new cells with prescribed connections, only one-of which new cells is in a
state which can result in the‘gropagation of further new cells. A
restricted autonomous différenfiation rule will never place a non-propagating
cell in a propagating state. An autonomous cell system of rules in which

both the propagation and the differentiation rules are of the restricted

sort we will call a restricted autonomous system.



The autonomous and restricted autonomous systems we have outlined above
may seem to possess quite modest powers. It is therefore interesting to

see whether such rules are sufficient to account for the forms and behaviors

assumed by biological organisms.

2. Construction of Arbitrary Cell Structures

Autonomous—-cell rules can be employed, starting from a single initial
cell, to construct, in deterministic fashion, any single specific (finite)
organism cell-contiguity structure whatsoever.

One way in which this may be achieved is the following: to construct
any given finite cell-contiguity structure of n points we first construct
a uniquely labelled completely connected cell contiguity structure of n points.
This is done by applying a set of unique propagation rules, beginning with
the given initial cell, n-1 times. At each application of a propagation rule
a uniquely labelled cell (to which the propagation rule applies) is
re-written as two, uniquely-labelled cells. These daughter cells are, at each
rule application connected to each other and to each cell their parent cell
was connected to. For notational convenience onfx unique labels are also given
to the contiguities as they are created.

From this uniquely labelled complete contiguity structure of n cells
we now wish to create the final desired labelled structure of n cells.

First (in any manner) determine an association between each unique cell
label and the corresponding cell and label of the desired final structure.
Then empioy unique differentiation rules (applicable one each to each of the
uniquely labelied cells) that will re-write the unique cell label to the
desired final cell label and at the same time specify the selective deletion

of any superfluous connections to other cells. The result will be the



desired cell contiguity structure.
As an "explanation" of development such a scheme leaves a great deal
to be desired. The qotioniof creating a completely connected prcto-organism
cell-contiguity graph, and then severing the non-organism contiguities
hardly reflects the course of most real biological develcpment and there
are of course other objections which might be made to this scheme, as an
explanation of development. (See the critique in Laing and Arbib (1972)).
Is there a way of employing autonomous-cell rules so as to produce
a desired n-cell organism contiguity structure without the course of

development passing through the n-cell completely connected stage?

Theorem: For every given finite cell-contiguity structure of n cells,
there is a system of autonomous cell rules which will deterministically
yield precisely the given structure. Moreover, this can be done

1) starting from a single initial cell,

2) using restricted binary fission propagation rules only,

3) without (for a desired structure of n cells) during development
producing a completely comnected structure of n cells (which is
not also the desired final structure),

4) employing only "pure' differentiation rules (in a pure differen-
tiation rule only state change can occur; there are no deletions
of cell contiguity relationships); indeed separate differentiation

rules may be dispensed with entirely.

Note that 1) taken with 2) means that there need never be more than a
single propagationally active’cell in the developing organism structure
graph.
Proof: Given any finite cell structure:

1) Uniquely label each of the cells and (again for notational convenience)

the connections and introduce inivo the autonomous re-write system



2)

3)

4)

one differentiation re-write rule for each of the unique cell
labels such that where A is an original cell-state and K is

its new unique label, there is a differentiation rule K -+ A.

(We shall later see agreeing with condition 4) of the theorem,
that this set of differentiation rules is eliminable.)

The given cell structure may consist of isolated cells and

one or more connected components. Choose any isolated cell and
merge it with any other isoléted cell. Uniquely label the new
combined cell and introduce into the autonomous system of rules

a propagation rule which has as its antécedegg the new uniquely
labelled cell and as its consequent the two original, properly
labelled cells. Since the cells were origfhally isolated, the
newly introduced propagation rule will not preserve the éonnectivity
be;ween the two consequent cells. Continue in this fashion until
there is only one isolated cell. If there are no further organism
components go to step 6).

If there are further connected organism components, merge the
remaining isolated cell with a cell of any connected organism
component. Uﬁiquely label the newly formed merged cell and introduce
a propagation rule which completely severs the connections to the
cell which will be isolated, and retains the appropriate
connections to the cell which is in the’connected component.

Take the newly merge& cell (call it D) of the connected
component and merge it with any other cell (call it E) of the
component to which it is directly connected. Uniquely label this
new merged cell (call it C). In the cell structure, connect all

of D's connections to C. Introduce a propagation rule in which



the rule will also specify the connections D and E and which
the rule will also specify the connections D and E had to other
points before the latest merging into C.

5) Continue in this fashion in the connected component and (as in 3))
with any remaining connected components. Eventually a single
cell will remain.

6) Introduce the final single cell itself into the autonomous cell

system as the desired initial fertilized cell.

This completes the main parts of the proof. 1In the procedure outlined
abo?e we have employed only pure differentiation rules along with propagation
rules in which only one of the two offspring points or cells is free further
to propagate; that is, all of our propagation rules have been of the binary
restricted sort. Also, since the system we have produced begins with a
single initial cell capable of propagating, and our restricted rules preserve
this property, we have employed only a single "live" propagating cell in the
developing structure. Notice also that development proceeded by a more
"natural unfolding" than by the "completely connected contiguity structure
followed by deletion'" technique outlined earlier.

In condition 4) of the theorem we noted that we can eliminate diff-
erentiation rules entirely. This is accomplished by having the appropriate
cell states assigned step-by-step in the course of applying the propagation
rules. The only problem that arises in this is a notational one. By
assigning unique labels to the cells and retaining these labels until all
propagation is completed we can in our proof, use them to name the contiguities
that are to result from rule application. If we should, in the course of
propagating new cells, place cells in their final differentiated state

however, we may lose this notational convenience. For it is quite possible



that many cells may ultimately come to be in the same final differentiated
state. Thus using these states to name contiguities may produce ambiguity.

Note however that rule application and contiguity assignment does not
depend on knowing which cells are adjacent tc the cell under consideration.
An autonomous rule merely assigns contiguities from those connections
locally present; the rule is indifferent to the ulzimate destination of
the connection.

‘We now given an example of obtaining a set of autonomous rules for
constructing a given cell contiguity structure. In this example we employ
the notational convenience of specifying connections (labelling lines) by
éiving the labels of the contiguous cells. Thus, 6' + 6(5'), 5'(6) means
that cell 6' is to be re-written as two cells, 6 and 5' and that they are to

be connected to each other (6 is connected to 5' (and 5' is connected to

6)).



Example

1. Given the cell-contiguity structure:
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2. We uniquely label the cells and set down the (pure differentiation)

rules which will enable us to recover the original structure.
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3. We merge the two isolated cells and set down the rule which will
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enable us to recover them. (and thus restore the structure of 2.).

1' » 1,2

4, Continuing:
3' + 3(5,4),1'
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5)

6)

7)

The single initial cell

the label 6'.

4' + 4(5,3'),3'(5,4)

5' + 5(6,4'),4'(5)

6' > 6(5'),5'(6)

of our autonomous cell system is to be given



3. Universal Artificial Organism Behavior

We have shown (in Section 2) that any single particular artificial
organism cell-structure (finite point-labelled graph) can be constructed
using only simple (restricted autonomous-cell) re-write rules. 1In these
organisms only one cell at a time was capable of propagating new cells,
and indeed in this formulation no cell once having ceased to be a propagating
cell ever regains this pfoperty. We need not however have restricted ourselves
to such special organism systems. Indeed it is biologically more interesting
(though also perhaps mathematically less challenging) to consider organisms
which can possess numerous active cites (or even multiple simultaneously
active sites). For a living organism (even an artificial one) need not consist
of a mere static’structure of cells. We should therefore like to consider
not only what structures but what behaviors are possible for artificial
organisms growing and changing according to simple rules.

What we will show in this section is that employing only autonomous-cell
rules of differentiation and propagation we can produce an artificial
organism in whose dynamic behavior any effective‘computational process can

be represented.

Theorem: Employing autonomous-cell rules only, an artificial organism can
be construcfed whose growth and change simulates the computation of any Turing
machine.

A Turing machine (Turing (1957)) is an abstract computing device
consisting of a finite-state '"reading-head" mounted on an indefinitely
extendible tape marked into squares. A Turing machine operates by examining
the symbol on the tape square under the reading-head and then, as a consequence
of the state of the reading-head and the particular tape symbol being read,

may change the tape symbol under scan, change internal state,



move one square right or left. A Turing

machine computes functions by acting upon the argument of a function inscribed
initially on the tape, and printing out the value of the function on the tape.
It is generally accepted that a Turing machine can carry out any effecfive
procedure: that is, that any calculation that intuitively can be carried

out in rote fashion is computable by Turing machine.

It is known that "universal" Turing machines exist: Turing machines
which when presented on their tapes with both an argument of a function
and the description of a Turing machine which computes the function, will
proceed to carry out the computational task for the given argument by
following the instructions implicit in the ﬁachine description given on the
tape.A Such universal "simulating" machines need not be terribly complex;
universal computational behavior is possible for Turing machines having
fewer than 10 reading head states and 10 different tape symbols. (The
present minimum state-symbol product is 28: 4symbols, 7 states (Minsky (1961)).

A Turing machine may be said to distill much of the essence of information
processing, whether in a natural or artificial system. In a rudimentary
but (adequate) fashion a Turing machine receives stimuli from its environment
(tape), selects, records, and transforms the stimuli (at the same time
transforming itself by these actions) and in turn acts upon its
environment.

It has long (at least since the mid-1950's) been common knowledge among
automaton theorists that the action of any Turing machine (including thus |
wniversal Turing machines) could be carried out by an indefinitely extendible
string of finite automata. Each of the automata would embody first of all
the internal finite state structure of the Turing machine reading-head;
each automaton would also possess certain additional storage capabilities

which would allow it to record which tape symbol it would, for its position



;n the row of automata, have under scan; alsc, certain additional capabilities
must be present to allow each automaton to recognize whether it is the
automaton presently playing the role of active Turing machine reading-head
(plus symbol under scan), or whether it is playing the role of passive
reading-head (and tape symbol). Finally each automaton must possess the
inter-communicating capability to cause neighbors to the right or‘left

to change their states and to assume the role of active reading-head, while

at the same time relinquishing the active role itself.

Artificial organism systems composed of cells with the same capabilities
as the automata described above can, in the same fashion, carry out universal
compdtation. In this paper, however we have been restricting our attention
to a very simple sort of organism system in which differentiation and propagation
activity occurs only as a consequence of very local conditions. In these
autonomous-cell systems a cell cannot (for example) communicate a change of
state directly to a neighbor. This limitation and other paucity of means
in autonomous-cell systems will sometimes oblige us to employ a series
of actions to accomplish what, in more powerful systems, would be a single, simple
and straightforward action. An informal proof of the theorem stated at the
beginning of this section (that artificial organisms constructed exclusively
by autonomous—éell rules, are capable of exhibiting any Turing machine
computation, i.e., universal computational behavior) is now given.

Since by our earlier results any single particular fixed configuration
of cells can be constructed employing autonomous—cell rules alone we can
obtain an initial connected chain of cells, of any desired length, the cells
in any desired state. We will want each cell of this chain to be able to
act like a combined reading-head and (possibly marked) tape square of a

Turing machine. That is, the internal state of each cell can be viewed as



falling into two parts: one part records the present state of the reading-head,
and one part stores the state of the tape square which would be under scan
at that point. The argument of the function to be computed will be set in
the tape state portion of successive cells duringvthe initial construction
phase. One of the initially produced cells will be in an "active'" state;
that is, a re-write rule will gé applicable ‘to it. The other cells will be
in quiescent states; that is, no differentiation or propagation rule is
presently applicable to them, but (owing to later changes in their local
conditions) they may yet undergo differentiation and propagationm.

(Note that we no longer have a rggtiricted autonomous-cell system since

the rule that a cell once having ceased to be a propagating cell never
again undergoes propégation, need not be obeyed heré.)

To show how Turing machine behavior (including universal computational
behavior) is possible for this artificial organism, we now concentrate on
the actions of the single active cell. This active cell represents the
Turing machine reading-head actively scanning a tape-square. As in the
Turing machine, the combination of reading-head state and tape state (in
this organism case both internal to the cell) may produce state change,
tape symbol change, and possibly a shift of attention right or left.

If no shift right or left is to be made, then clearly autonomous—cell
differentiation rules will suffice to change the cell internal state (that
is, change the reading-head part of the total internal state, or the tape
square part, or both). Transferring active cell status as well as that
part of the internal state representing reading-head status, to a neighbor
cell poses the only real problem for representing Turing machine behavior
in these limited systems.

Recall that part of what a cell can know and act upon (i.e., what an
autonomous-cell/;;;Tication is conditioned by) is the number of cell connections

impinging on the cell. We employ this property to communicate the desired

information. An active cell in reading-head state k which is to "transmit"



knowledge of this reading-head state to a neighbor cell, (as well as the fact
that the neighbor is also to assume the active rcle) will have a rule applicable
to it which will cause.it to divide intoc a number k+l of new cells.

One of these cells is to play the role of old reading—head and it

consequently remains connected to the original right and left hand neighbors

and assumes one of the quiescent states, while retaining a record of the

tape status at its location: The remaining k cells are to be comnected to

the neighbor cell and to no other of the p?ssible cells. Whenever a cell,
previously quiescent (having no rule applicable to it) has excess cells appended
to it, there will be a rule applicable to it. Application of the rule will
cause the cell to differegtiate, assuming‘a reading-head state k, and at

the same time sloughing off the k new formed cells attached to it. The cell
will now be in computationally active status and will proceed to act upon

the reading-head state and tape-state information it possesses. (It should

be noted that the number of different reading-head states to be transmitted

is fixed and finite, and consequently no rule propagating an indefinitely

large number of cells at one step (or counting off an indefinitely large number
of repetitions of binary propagations) will ever be required.

Since with the above repertoire of actions the behavior of any Turing
machine can be represented, and since some Turing machines are computational
universal, it follows that there are autonomous-cell artificial organisms
also capable of universal computational behavior.

Although the above remarks constitute the essential features of the
desired proof, we will mention briefly some peripheral matters which must

be taken into account.



In order to carry out the computational activity, the string of cells
may have to grow indefinitely long, and we have not described the conditions
under which the initial string of cells will be extended. This can be handled
in several ways, the simplest of which would be to impose continuous growth at
the two ends of the string: a cell finding itseif with only one neighbor
will grow a neighbor to fill the empty locatioﬁ, this activity proceeding
concurrently with the computational behavior. The rules can also be revised
so that neﬁ growth takes place only when necessary to carry out the desired
computational beahvior. For example, a cell "knows" it is an end cell because
it possesses only one neighbor connection; it therefore can assume a special
status so as to,record'this fact. If it should have control of the computational
behavior transferred to it, its altered state will give it the '"knowledge"
required to take the missing neighbor into account before differentiating
so as to assume the proper internal state. If control is to be transferred
to the (missing) neighbor, the active cell will first construct the required
cell.

That an "organism" is capable of universal computation may not seem
very relevant to problems of biology; the naturally occurring behavior of
organisms may appear to be not at all like mathematical calculation. It is
’generally agreed however that the notion of "Turing-computable" characterizes
precisely the intuitive notion of "effective precedure'. An effective pro-
cedure is one which can be carried out in a purely mechanieal fashion. Thus,
if one believes (as seems reasonable) that it is useful to try to describe
biological phenomena in mechanistic terms, then formal systems such as our
autonomous-cell systems, provide a precise vehicle for so-doing.

Although we have here showed how a very simple formal biological system

can yield any organism form and any organism behavior, it cliearly is not



true that all organism development and all organism behavior have thereby
been explained. In our simple autonomous-cell formal systems we have
merely proffered several (not very convincing) explanations for organism
growth and behavior. In the next section we discuss some of the adequacies

and inadequacies of these systems.



4. Discussion

In formal organism systems such as those we have been discussing here,
there is much which probably will prove inapplicable to naturally occurring
biological systems. The forgal approach to bioiogical theory however does
allow us to deduce the precise consequences of postulating particular rules
of growth, development, and béhavior. Of course the formal representation
may considerably distort a biological organism or process and so we must
evaluate formal systems (such as our autonomous-cell systems) not only for
their adequacy in producing the desired ultimate effects, but also for their
directness and naturalness in representing phenomena of interest.

-In showing that every organism form could be created employing only
(restricted) autonomous-cell rules we surely did not thereby adequately
"explain" the development of form in living systems generally. The scheme
employed there of completely deterministic mechanical "unfolding" may be an
adequate description of some phases of development, but it cannot be the
only developmental process operative in organisms. For the system
employed there obliges a single "master cell" to possess explicitly all the
information on the creation, position, and type of every cell of the organism.
Although this master cell creates new cells and cell connections, its action
is in no way affected by the presence or absence of cells impinging on
it. This means that the system (as there formulated) has no capability
for self-repairg interaction with the larger environment also is not
expressible.

In our example of organism universal behavior we did permit cells
be sensitive to the presence or absence cf impinging cells,

There is thus, in such a system (in
contrast to the mechanical unfolding system first considered) some capa-

bility for self-repair and environmmental interaction. In our universal

behavior organism, we made use of this limited sensitivity to surroundings



to devise a technique for transferring information from one cell to another.
The "crowding effect".employed is not likely to explain all inter-cell
communication. Such a technique, in practical biological terms, would
probably be very error prone, since it is not reasonable to expect that

a cell could always detect on its surface the difference between 9 cells

and 10, or 50 cells and 51. It is also biologically unreasonable to re-
quire the propagating cell to produce large numbers of cells in a single

act of multiple fission. Also, in order to make a cell again receptive to
information from other cells, it must slough off all its appended signalling
cells (which we can then assume to be lost). Transfer of information thus
imposes a considerable metabolic cost on the organism.

All these limitations can be somewhat eased by taking advantage of the
result by Shannon (1956) that only two Turing machine reading-head states
are necessary (with a consequent increase in tape -symbols) to achieve
universal computation. Thus, in our artificial comﬁﬁting organism we could
have the appending of one cell mean state 1 is to be adopted and ﬁwo appended
cells mean that state 2 is to be adopted. (If we have'any fears that a
cell may not be able to digtinguish between the addition of one cell or two,
we could of course signal the contrasting states to be adopted by producing
contrasting propagations of one appended cell versus some number of celils
‘large enough to make the distinction clear. This will exacerbate again the
multiple fission problém;)

We can of course have the propagating cell produce any required number
of new cells by successive binary fissions. With this approach however we
need to insure that the cell receiving the new cells does not begin to
"interpret" the effect upon it until the propaéating cell has completed its
divisions (else the receiving:cell may differentiate prematurely and behave
incorrectly). One solution to this is to impose a (fixed, finite) internal

lag or pause in taking action by any receiving cell long enough so that



the maximum propagating effect of a cell neighbor will have been completed.

There are other results established which permit us to re-design an
organism so as to preserve organism ultimate capabilities while Eringing
the orgahiém more into conformity with known biological reality. For example,
it can be shown that our universal organism will retain its full behavioral
powers even if we impose upon it the requirement that it may extend its
length by adding new cells at one end only. Alsc, as in many other universal
systems, the("halting problem" will be unsolvable for our organisms. That
is, it will in general be impossible to predict ahead of time whether the
growing and state-changing behavior of the organism will ever cease.

Although one of the principal advantages of a formal approach to biology
is that we are able to draw upon the large body of known results and
techniques in automaton theory to obtain new results in biological theory,
we must here proceed very éautiously. For example, it is not true in our
system that if we are given éhe developmental rules and given an
artificial organism, putatively a consequence of the rules, it will be
impossible to tell in general whether the organism ig producible by those
rules. In the system (as we presented it in the last section) the length
of the given organism will enable a bound to be set on the number of times
the rules might have been applied, and thus define the maximum length of an
investigation to establish organism legitimacy or not. We can get the
classic impossibility result if we introduce into our system rules which
always detach any cells which are both end celis and whose tape-state is
blank. In this case, the potential great expansion and contraction of the
organism size would make setting a bound on the length of an investigation
impossible, and the desired result would follow. Note however that we must

assume that the detached cells will have been dispersed (along with the



sloughed-off signalling cells) or else a count of them might be employed
to establish a bound on the past active life of the organism, and from this
determine whether it could be a consequence of the rules.

This perhaps gives some indication of the complex ways in which formal
methods and results on the one hand, and biological phenomena on the other,
can interact.

Despite the inadequacies of one or another formal system in explaining
biological phenomena, abstract automata, the capabilities of which are
very conveniently expressed in the form of re-write rules, seem to provide
an excellent source of models, and it may be very fruitful to view formal
biology as a special branch or interpretation of automaton theory. Formal
biology in this sense would then be seen as a theory of all organisms,

both natural and artificial.
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