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In this paper an abstract, deterministic, discrete kinematic
automaton system for expressing machine computation, construction, and
self-inspection has been designed. Burks's conjecture that a machine
can by self-inspection obtain its own complete structural description
and store the information sufficient to recover this description,
within a proper part of itself is confirmed. We also exhibit a
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tion of itself, can reproduce itself, thus providing a counterexample

to a conjecture of von Neumann and confirming a conjecture of Arbib.
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Chapter One. Introduction

1.1 Background

In this paper we consider what a discrete, deterministic system
can come to know of itself. The line between what a system can come
to know of itself, and what it cannot come to know, has never been
precisely and completely drawn.

There are of course many important partial results, among them
that a mathematical machine can read and interpret descriptions of
machines, yet there is no machine which in all cases can tell what
a described machine wou'ld do, (Turing, 1936), and that a mathine
capable of constructing other machines can construct all '"passive"
machines, but not necessarily all active machines (von Neumann, 1966;
Moore, 1970).

A machine examining itself to discover its own complete descrip-
tion would seem inevitably to entail an instance of an active machine
acting upon an active machine. For this reason von Neumann (1966,

p. 122) conjectured, that a machine could not obtain its own complete
description. He also believed that for a machine to reproduce (in the
sense intended by him} it would require a complete description of
itself. Thus, he further conjectured (op. e¢it.) that no system
(machine or organism) not initially supplied from the outside with a
description of itself, could reproduce. Burks (1961), on the other
hand, conjectﬁred that a machine could by self-inspection acquire

its own complete structural description (and furthermore could store
this information within a proper part of itself). Since a complete

structural description would be sufficient information for construction



of any (passive) machine, self-reproduction in the sense of von
Neumann would then be possible, despite the initial absence of a
complete self-description. This conjecture, that self-reproduction
would be possible sans possession of an original complete self-

description, was made explicit by Arbib (1966, p. 217).

1.2 Principal Results
The principal results of this paper are the proof of Burks'

conjecture that a machine system can unaided obtain its own complete

structural description and store within itself the information
sufficient to recover the description of itself, and the consequent
disproof of von Neumann's conjectures that a machine cannot obtain
its own description and thus cannot reproduce if not initially
equipped with a complete description (and thus a confirmation of

Arbib's conjecture contra von Neumann).

More specifically, the main results of this paper are the
following:

1) The design of an abstract, deterministic, discrete kinematic
automaton system (KAS) for expressing machine computation,
construction, and self-inspection.

2) Given any Turing machine there is a KAS machine which can
simulate the computation of the Turing machine.

3) Given any Turing machine, there is a KAS machine which can
simulate the computation of the given machine and moreover, such
a KAS machine can in addition produce a complete structural

description of itself.

4) There is a KAS machine which given the description of any



(passive) KAS machine can construct the described machine.
5) There is a KAS machine which can reproduce itself.
6) There is a KAS machine which given any (single string, passive)

KAS machine can read the machine and produce a description of it.
7) There is a KAS machine which by self-inspection can obtain its

own complete structural description and store the information

sufficient for recovery of the description within a proper part
of itself.
8) There is a KAS machine which, though not initially equipped with

a description of itself, can reproduce itself.

(Of these results, 2) is a direct consequence of the design of
the KAS, a design which incorporates the ''prograrmed Turing machine"
concept of Wang (1957) for which the universality of computation
results have been shown; 3) is a direct translation of results by
Lee (1963) and Thatcher (1963) into this new KAS format; 4) is a
translation of von Neumann's result (1966) on universal construction
to this KAS format; 5) follows directly from the von Neumann results
on self-reproduction as modified by Thatcher (1970); 6) is an
essentially new result, viz. a sort of universal reading of machines
by machines is possible; 7) our principal result (section 4.15) is
a counter-example to von Neumann's conjecture on obtaining self-
descriptions by self-inspection, and a confirmation of Burks'
conjecture (1961) to the contrary; 8) is a counter-example to von
Neumann's conjecture (1966) on self-reproduction gans description,
and a confirmation of Arbib's surmise (1966).)

Comment. A machine is composed of a finite number of primitive,

activatable components drawn from a fixed finite number of primitive



component types interconnected in a specific manner. A structural
deseription of a machine will be any fixed finite object composed of
a finite number of primitive component types which bears sufficient
information to specify the type and position of each primitive
component of the machine to be described.

Thus, a description of a machine could take the form of a
passive "blueprint'" specifying the type and location of each primitive
component of the described machine, or it could take the form of a
set of instructions for the identification and placement of each
primitive component of the described machine. The notion of
description, in its full generality, can take on many other guises.
Thus, a description of a machine could be an exact duplicate of the
machine, or a description of a machine could itself be an activatable
machine which constructs as output the machine described, or which
produces the '"blueprint' giving the location and type of all
primitive components of the described machine, or produces the set of
instructions for the assembly of the described machine. Note also
that a machine which describes or constructs any of these machines can
in turn also be considered as a description of the original machine.
Thus, for example, a machine M might be said to have as its descrip-
tion, a machine A which produces the constructor B of a machine C
which lists the instructions for constructing M.

That a description of a machine can take so many forms, some of
them quite cryptic, is important to the understanding of our central
results. For the essential logical difference between our results
and those of von Neumann (1966) and of Lee (1961) and Thatcher (1963,

1970) is that their construction and description processes require



the initial presence, in some form, of a different structural
description of each different machine which is to reproduce or to
describe itself, while the principal results to be presented here

do not require such a different initial description of each new
machine. To distinguish our results from those of von Neumann, Lee,
and Thatcher, we must convince the reader that there are no essential
structural descriptions of each new proposed self-inspecting machine
available in concealed form somewhere in the machine itself. We will
try to secure this conviction by carefully spelling out and fixing
the properties of all the sub-machines of which a rachine is composed
and then always permitting the machine to be augnented by an
arbitrary finitely large additional submachine, which will clearly
have no counterpart elsewhere in the initial machine.

(It should perhaps be explicitly pointed out that in none of
these cases of the use of descriptions by machines is it intended or
implied that a machine requires or possesses knowledge of the meaning
or use of the primitive components described, or any information on
the conventions which are assumed in the operation of the system as a
whole. The capacity of a system to secure and employ this sort of
information about itself, though of great interest and importance,
is not treated by von Neumann, or by Lee or Thatcher, and is not

explicitly treated in this paper.)

1.3 Organization of the Paper
In the next chapter (Chapter Two) we describe the KAS in terms
of its primitive constituents, their properties, and the general

organization of the constituents into activatable strings. In



Chapter Three, we show how we may compose our primitives to produce
the repertoire of particular basic KAS machines and routines we

shall employ in obtaining our principal results. In.Chapter Four

we present our major results on sclf-description (4.15) and reproduc-
tion (4.21) in machines; in Chapter Five: we.outline some additional

results and indicate some directions for further research.



Chapter Two. The Kinematic Automaton System

and its Primitive Constituents

2.1 Background

In this paper, the general problems raised (automaton descrip-
tion, construction, self-reproduction, etc.) and the strategies which
might be employed in attacking these problems have their origin in
von Neumann's work on machine self-reproduction (von Neumann, 1966)
in a cellular automaton regular array format. As to the particular
machiné system in which our results will be exhibited, the KAS,
it has its origin in part in von Neumann's (never completely
explicated) kinematic machine system (von Neumann, 1951) and in my
own notion of generalizing the concept of a Turing machine to permit
machine construction and analysis (Laing, 1975).

A Turing machine is usually conceived of as an abstract, discrete,
deterministic information processing device consisting of a finite-
state read-head mounted on an indefinitely extendible tape marked into
squares, each square capable of containing one of a finite number of
tape symbols. The read-head may, as a function of the state it is in
and the tape symbol under scan change the tape symbol (or leave it
unchanged), move one square to the right or left (or remain in place),
and change internal state (or remain in the same state). It is
generally agreed that such an information processing system captures,
in precise terms, the intuitive notion of an algorithm or effective

calculation.

In this paper, the ''classical' Turing machine format is exten-

sively modified.



2.2 Kinematic Automaton System

More particularly, a KAS machine will consist of basic simple
finite state automaton primitives, organized into cirings. These
strings will be finitely long, but may be indefinitely extended. The
primitives (and consequently the strings) possess a forward and
backward direction. The specific machines used in this paper consist
of at most twe separate strings of interacting primitives. In the
way we shall use them, at any one time at most ozz of the two possible
strings will possess an active primitive. That the active and passive
roles of strings may be exchanged is an important feature of this
machine system. (An ordinary Turing machine in this system would
appear as a two string machine, one string of which consists
entirely of "tape'" primitives and always remains passive; see Figure
1. Figure 2 shows a KAS machine in which both strings contain non-
tape primitives.) 1In operation, the two strings are always in
sliding contact at a single point. One typical action is for the
activated primitive of the active string to act u@on the contacted
passive primitive so as to change its state, and then (automatically)
relinquish activation and contact to its own next neighbor primitive
in the forward direction of the active string. (The required
changing of local relationships between the contacted primitives can
be taken as a basic assumed property of the system in the same manner
in which implementation of the details of tape positioning in a
conventional Turing machine are taken as unanalyzed basic operations.
In order to make clear the actions required however, we, in Figure 3,

describe in detail the changing of activation and contact.)



Figure 1. A Turing machine in the Kinematic Autonaton System (KAS)
format. The lower string plays the role of the finite state read-
head (in the Wang program form) while the upper string plays the

role of the Turing machine tape.
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Figure 2. A KAS machine in which both strings contain activatable
primitive constituents, and the roles of read-head and tape can be

exchanged.
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2.3 Primitive Constituents

The primitives of which our machines are composed possess
stmple, local automaton properties. Employing these primitives we
show how various routines, organs, etc. can be designed. We then
combine these routines and organs to exhibit machines capable of

sophisticated analysis and construction behaviors.

2.3.1

Three primitives N (Mull), 0 (Zero), 1 (One) will principally
be employed in the passive recording of information. (In an ordinary
Turing machine, these primitives would play the part of the tape
symbol alphabet.) If in the present system an N, 0, or 1 should be
part of an active string and undergo activation, it will merely
pass activation and contact to its next forward direction neighbor,
thus behaving as a '"no operation' primitive. The N or null primitive
has some special properties. It is assumed to be a basic unit freely
available in the environment. The construction process assumes that
primitives can be recruited for use at the construction site (usually
at the ends of passive strings) and the construction process may
assume (in the absence of a specific test) that the recruited type
is an N. Thus the N plays a role similar to that of a '"blank"
square in an ordinary Turing machine tape.

We will also adopt the convention that an N which is at the
end of a string and is not specially marked, and is not in contact
with a primitive of the opposing string will automatically be detached
and thus be returned to the environment of the syvstem. (See 2.3.8 for

discussion of the use of this property in end locating and place
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holding.)

2.3.2

The three primitives PN (Print Null), PO (Print Zero) and Pl
(Print One) will principally be employed in acting upon N, 0, and
1 primitives, to change their states. A PN will act upon an N, 0,
or 1 to make it an N; a PO will act upon an N, 0, or 1 to make it
a 0; and a P1 will act upon an N, 0, or 1 to make it a 1. After
completion of this action, a PN, PO, or Pl will automatically
relinquish activation and contact to its next neighbor primitive in
the forward direction in its string. Thus the PN, PO, Pl primitives
play a role similar to the print and erase operations of an ordinary

Turing machine.

2.3.3

The two primitives F (Forward) and B (Backwarz) cause the active
string to slide to the next primitive of the passive string in the
forward or backward direction, respectively. If application of an
F or B primitive would result in a physical disengagement by
"running off the end" of the passive string, an N primitive is by
convention assumed to be automatically attached to the end of the
passive string. This is analogous to the automatic addition of
blank squares to a Turing machiﬁe tape. The F and B primitives thus
play the part of the "move right' and "move left' operations of an
ordinary Turing machine. After completion of the move action, an F
or B primitive automatically relinquishes activation to its next

neighbor primitive in the forward direction in the active string.
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Figure 3. Action between Strings Illustrated. There are two basic
forms of shift of string contact and activation: one in which,
after characteristic primitive action the activation and contact is
shifted to the next neighbor primitive in the active string (as in
the action of a Pl primitive) and one in which not only is activa-
tion and contact shifted to the next neighbor but an adjacent
primitive of the passive string must have first been accessed (as

in the action of a F primitive). 1. An activated Pl in contact
with a 0 changes the 0 to a 1 and then passes activation and contact
with the new 1 to its next neighbor Tl. ii. An activated F in
contact with a passive primitive shifts contact to the next primitive
of the passive string and concludes by shifting activation and

contact to its own next neighbor.
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2.3.4

The primitive H (Halt), if activated, terminates all activity.
(Basically the H primitive is included to establish an analogy to
certain related computational systems where an explicit signal of

completion of the computational activity may be desirable.)

2.3.5 Transfers

There are three Conditional Transfer primitives TN, TO, TI1
(where contact with an N, {i, or 1, respectively, is the condition to
be satisfied) and one Unconditional Transfer primitive T. 1In a
machine, each of the transfer primitives will immediately be followed
by a fixed finite sequence of all PP (Print plus) primitives or all
PM (Print minus) primitives (to be defined below), the number of PP
or PM primitives in the sequence being used to specify the location
of the primitive in the active string to which activation is to be
shifted. In operation, if the transfer primitive is activated and
is an unconditional T, or if in the case of a TN, TO, Tl the conditio
is satisfied, then the transfer primitive specially activates the
initial primitive of its associated PP or PM string of primitives.
The string of PP or PM primitives then superimposes (in the forward
direction) upon successive primitives of the passive string a fixed
finite numﬁer of special plus or minus marks. These marks in no
essential way alter the basic passive primitive types upon which
they are temporarily superimposed. They do cause ordinary (non-PP
or PM) activated primitives which come in contact with them to behave
in a special fashion. An active primitive in contact with a special

marked passive primitive will suspend its usual actions and instead
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will remove one of the special superimposed marks from the passive
string, move backward in the passive string to the next special
marked passive primitive, and relinquish activation and contact to
its own next neighbor (in the forward direction if the sequence of
special marks consists of pluses, and in the backward direction if
the marks are minuses). Thus, while detecting the special plus (or
minus) marks, and removing them one by one while shifting activation
in a forward (or backward) direction through the ordinary primitives
of the active string, the usual active string action is suspended
until all the superimposed marks have been removed from the passive
string. At that time, the first active primitive ready to cesume
normal computational action will be a number of ordinary primitives
distant from the site of the original transfer primitive and the
newly activated primitive will be in contact with the passive
primitive'which was the occasion for the transfer in the first place.
Thus, any transfer primitive need only have an appropriate length
string of PM or PP primitives associated with it, to be able to shift
activation to any desired ordinary primitive in the forward or
backward direction on the active string.

In implementing our technique of transfer it should be noted that
PM or PP primitives which are not specially activated by a transfer
primitive take no part in ordinary computational action or in transfer
counting: activation and contact is merely passed through them (in
the forward or backward direction) to the next ordinary primitive. It
should also be pointed out that if the passive string has insufficient
numbers of primitives to accomodate the complete PM or PP marking,

the forward moves off the end of the passive string will result in
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Figure 4. 1Illustration of the Transfer Implementation. i. A
“"transfer on one" primitive has its condition satisfied‘by contact
with a one primitive of the passive string. The transfer primitive
passes activation and contact to a length 2 sequence of PM (print
minus) primitives with which it is associated. The PM primitives
mark two successive primitives with '"minuses'. When activation and
contact is shifted to the next (non-transfer marking) primitive, one
mark is removed and activation and contact is routed backward
completely through the entire transfer region of PM primitives, the
remaining special marks not being altered. The Tl removes the (in
this case) sole remaining special mark and passes activation and
contact with the next backward direction passive primitive (the
originally contacted primitive) to its back direction active string
neighbor. Regular computation now proceeds with the new active
primitive in contact with the passive primitive which occasioned the
transfer in the first place. A transfer n places backward from the
transfer point in an active string can thus be irplemented by a

n+l sequence of PM primitives.
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ii. A "transfer on one" primitive has its condition satisfied by
contact with a passive one primitive. The transfer primitive passes
activation and contact to a length two sequence of PP (print plus)
shift mark primitive. These two primitives place plus marks on the
next two successive passive primitives. Activation and contact is
then passed on to the next forward direction primitive of the active
string. Each primitive of the active string removes a plus mark,
shifts contact backward in the passive string, and passes activation
and contact in the forward direction in the active string. Ordinary
operation resumes with an active primitive which is 3 places forward
in the active string; thus activation can be transferred to a
primitive n places forward in the active string by a n-1 long
sequence of PP primitives (none being required if the transfer

primitive and its target primitive are immediately adjacent).
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the recruiting and marking of additional N primitives at the end of
the passive string. When the active transfer process retreats from
these newly created N primitives, removing the transfer marks, the
recruited Ns will be detached. (See 2.3.1) The transfer technique
is illustrated in Figure 4.

This technique for transfers has been adapted from one suggested
by Wagner (1967) and is also closely related to the technique of
transfers designed by Arbib (1966) in which a separate third string
of modules is employed in implementing the transfer shift count.
Additional transfer implementation techniques for kinematic machines

are discussed in Laing (1975) and Laing (1976).

2.3.6 Activation Primitive

The A or activation primitive will, when itself activated by a
neighbor in its own string, produce an activation in the passive
primitive with which it is in contact. (We will at times actually
employ severél variant kinds of activation primitives. These include
a primitive which will produce an activation in the passive primitive
with which it is in contact and an immediate loss of activation in
itself. The effect then of this primitive is to produce an exchange
of the active and passive roles of the strings. Another activation
primitive will activate the passive primitive with which it is in
contact and also bring about a separation between the originally
active and newly activated strings; thus the effect would be to

create newly independent activated strings.)
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2.3.7 Conversion

In our system we will want to take recruited N primitives and
convert them to any other specific primitive type; this is the basis
of construction. In our system we will also want to take any
arbitrary primitive type and be able to reduce it to an N; this
is the basis of our destruct as well as our analysis procedures.
(A destruct procedure takes any given primitive or string of
primitives, and reduces it to the N status. An analysis procedure
takes any given unknown primitive or primitive string and identifies
the primitive types. The analysis procedure, which is at the heart
of our principal results, is Jdescribed in section 3.7 et seq; the
destruct procedure is described in section 3.11 et seq.) The C
(Conversion) primitive is at the heart of these procedures. C
primitives can be used to convert any passive primitive (including
even another C primitive) with which it is in contact into another
(passive) primitive type. The steps by which this is carried out are
set forth in Table 1. For example (beginning at the top of the table)
an activated C applied to a (passive) N converts it to a 0; if a 0
is subjected to an activated C primitive, the 0 is converted to a 1,
etc. Notice that the conversion sequence forms a closed loop: some
sufficient, specific number of activated C applications will convert
any primitive type to any other type (including returning a primitive
back to its original type). (This information could also be expressed
as an automaton state transition diagram in which an input of repeated
contacts with activated C primitives, produces a closed cycle of
automaton state changes.)

Comment. The conversion primitive is meant to stand for a
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process (perhaps very much more complex than that set forth in
Table I) by which, starting with one or a few available primitive
types, the system could produce primitive constituents of the sort
it itself was composed of, and which, starting with more complex
entities, could reduce them to the basic type or types once more.
This synthesizing and decomposing could take many forms, and what
we have presented here is, designedly, especially simple.

In the von Neumann system, special signals are employed to
convert a recruited quiescent cell to any other cell type; any cell
type can be subjected to a sequence of special signals which will
reduce it once more to the quiescent state. The von Neumann synthesis
procedure is not backwards traceable in the strong sense in which
ours is, so that it is not possible immediately to enlist von Neumann's
procedure in our analysis process (spelled out in Section 3.7). It
seems likely though that a regular cellular array system could be
designed to possess the desired analysis as well as synthesis
properties.

It is also possible to divorce the synthesis and analysis
procedures. We might create desired primitives by the C conversion
or the von Neumann special signal processl and analyze primitives
in an entirely different fashion. For example, we might employ the
notion that each primitive type possesses a distinct "signature",
an aspect or aspects which can be read and thus permit identification.
In molecular biology, the anti-codon region (Watson, 1976, p. 306)
of a tRNA molecule can for example be looked upon as the signature
for the attached amino acid, or the variable region in an antibody

molecule for the type (or class) of antigen with which it reacts.
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TABLE I

C Conversions

CN) » 0

c(o)y ~» 1

v

c(1) PN
C(PN) » PO
C(P0O) » Pl
C(P1) » F
C(F) » B
C(B) ~» H
C(H) ~ TO
c(To) » Tl
C(T1) » 1IN
C(TN) » T
C(T) ~» PP
C(PP) >~ PM
oM > A
C(A) » C

c(c) » N
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In our system, we could thus agree that each primitive type has a
distinct code word composed of discernible a and b characters exposed
in it. Among our primitives would be Ta and Tb primitives which
would detect a's and b's oﬁ the surfaces of primitives, and, by

a series of transfers, '"decode' the names of types, reaching a
distinct region of the machine for each type decoded, a region

"standing" for the knowledge of the primitive type examined.

2.3.8 Place Holders and End Markers

In our system we must make use of the notion that the system can
remember what primitive in a passive scring was being read, and that
the system can return to that primitive after an interlude of compu-
tation elsewhere. In the Turing machine notion this usually means
the use of a special tape symbol (by itself or superimposed on any
ordinary symbol) or the use of coded blocks of the ordinary symbols.
In our system we have already introduced the notion of special marks
produced by the PP and PM primitives, and to which the ordinary
activated primitives are sensitive. This notion could be used to
implement the ''mark and return' process we will require. Such a
system could be made explicit by means of a fixed finite set of M
(mark) TM (test for mark) and DM (delete mark) primitives. 1If a
certain location is to be 'remembered" it is given a mark by an M
primitive, and location is tested for by a TM, and restored to
usual status by a DM action.

Detecting the end of a passive string poses similar difficulties.
We have introduced the notion that if an F or B action should threaten

to bring about disengagement of the active and passive strings, a N



primitive will be recruited to the end of the passive string. (This
is of course analogous to the addition of blank squares at the end

of the Turing machine tape.) We could make the detection of end of
the passive string more explicit by having a special TE (test for

end) primitive which behaved differently when the passive primitive
in contact was the last (ordinary) primitive or was a spectal end
marker primitive. Alternatively we could have any ordinary

primitive behave in a special fashion in the presence of either an
(ordinary) last primitive, or a special end marker primitive. Note
that in the case of a special end marker primitive, it would have

to be converted or detached if the passive string was to be extended
from that point, and then would have to be re-attached or constructed,
or recruited again to serve its end mark function (or could be assumed
to do so automatically). The general point to be made is that any

of several augmentations of the system would serve the purpose of
implementing desired actions at the end of the passive tape.

Since however, in the results of importance in this paper, our
requirements for end markers and place holders will be quite modest,
we will not augment our present repertoire of primitives but will
instead employ the following strategy. Since an N will be attached
to the end of a passive string whenever an F or B action would carry
us off the string, we can devise a ''search for end" routine in which
we shift in the F (or B) direction and test (by means of a TM) for the
arrival of the final N. It should be pointed out that use of the newly
recruited N as an end marker obliges us to constrain carefully the
creation and use of N primitives within the string. This will pose

no problem however in the cases with which we are here concerned.
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In addition, as to place holders, we can, in the following fashion,
again make use of the N primitive. 1In all the cases considered in
this paper we must 'remember" at most two places within a passive
string. (Place holders are usually required when the machine must
at one site sequentially read information, one primitive or one

code block at a time, and must then move and locate another distinct
site (possibly indefinitely far removed) where the information
acquired at thé first site is to be acted upon. Thus, we may have
to have a place holder at each of the two distinct indefinitely
separated internal sites.) We can mark an internal reading site,

as we leave it, by making the last read primitive an N (and since
the system can always be designed to remember a jixed finite amount
of information, it can, upon return to this N, restore the primitive
to its original status). Similarly, the site of distant activity
can also be marked by an N replacing the original primitive at that
point, while the system "'remembers' the status of the original
primitive at that site. (Notice that in the special case where the
marked primitive is at the end of the string, converting it to an N
will result in its detachment. In returning to this location however,
seeking for the (now missing) N, the N will "automatically'" be

restored.)

2.3.9 Transfers of Activation Between Strings

We shall frequently have occasion to transfer activation from one
of the two possiblé strings of our machines to the other string, thus
exchanging the active and passive roles. The activation itself is

produced by means of the A primitive. It is also important that the
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to-be-activated string receives its activation at the appropriate
location; that is, the initial primitive of the proper sub-routine

of that to-be-activated string must be locatable by processes within
the presently activated string. It will often be the case that at
most one distinct sub-routine of the to-be-activated string must be
located; in some cases it can be arranged that the target sub-routine
is at the "top" of the passive string or in some other distinct
spatial position; in such cases the active string need only seek out
the spatial location of the passive string and relinquish activation
to it,

Since however we may wish to be able to activate any finite
number of different sub-routines of a passive string, we will describe
two general methods for carrying out the locating and activating
process.

One way in which this communication of activation to specific
location can be handled is to arrange that the passive string possess
a serieé of transfer points at distinguishable locations (successive
primitives at the head of the passive string, for example) and that
the active string locate the first, second, third, etc. transfer
point, as necessary, from which the relinquished activation and
contact would be carried to the desired location within the newly
activated string. A second way in which the activation can be
communicated to a specific location is by means of an "address". Each
routine which must be specifically activated will be prefaced by a
unique 0, 1 address. The address in the passive string will be
located by the active string beginning at the head of the passive

string and searching for the desired address (by means of TO, TI,
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tests and transfers). When the desired address is reached, the
discovered location is activated.

An important consideration which must be kept in mind in
implementing such exchanges of activation, is that the locating
routines of the active machines depend on some prior knowledge of the
structure of the passive string. In most cases this knowledge can
be made available because the active string itself will have been
the creator of the passive string (and since activation may have to be
returned to the originally active string, the original string must

design the offspring string to implement this also).



Chapter Three. Some Basic Kinematic Machines

3.1 Introduction

In this chapter we describe some basic kinematic mechanisms and
routines. In Chapter Four we will combine these mechanisms and
routines in various ways to exhibit our principal results for self-

description and self-reproduction.

3.2 Fixed Sequence Emitter
A fixed sequence emitter is a string consisting entirely of PO,
P1, and ¥ primitives. When activated, such 1 string of primitives
(acting on an existing string consisting entirely of N, 0, or 1
primitives or recruiting N primitives one-by-one with each F applica-
tion) will produce a particular sequence of 0 and 1 primitives
(possibly with some N primitives interspersed). In this paper we
shall usually consider only standard emitters in which single POs
or Pls are prefaced by single Fs. Clearly for any particular fixed,
finite passive sequence of 0 and 1 primitives desired, there is a
standard emitter which can be designed to create the desired sequence.
Example: The standard emitter F-P1-F-PO-F-P1 would (beginning

its action upon an empty string) yield the sequence of primitives

1-0-1.

3.3 Descriptions
Since our kinematic machines are composed of a fixed finite
number of primitive types, we can assign a unique fixed finite length

code word of zeroes and ones to each primitive type. For example,

34
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if we had 16 different primitive types, we might assign N = 0000,

0 = 0001, 1 = 0010, PO = 0011, Pl = 0100, F = 0101, etc. The
explicit description of a kinematic machine will be a string of

0 and 1 primitives standing for the successive code words of each
primitive of the machine string in 6rder (starting with the primitive
which has a successor but no predecessor); the explicit description
of a machine composed of more than a single string, will consist

in the descriptions of each of the separate strings. The description
of a multiple string wachine can be a single 0,1 string, providing
we introduce a code word signalling the end of one string description
and the beginning of the next. For any (fixed finite) machine, a
fixed sequence emitter can be designed which will print out the
explicit, 0,1 description of the machine.

Comment. Although by description we shall usually mean the 0,1
string of agreed upon code word equivalents for each of the successive
primitives of a machine, our discussion in the Comment of Section 1.2
should be kept in mind: the information sufficient to specify the
sequence of primitives of a machine can be carried in many forms,
and the description in an agreed upon uniquely decipherable 0,1 code

is only a very explicit and obvious form of description.

3.4 Emitter Inferrer

An emitter inferrer is an active string which can examine a
passive zero-one description (a sequence of zero-one primitives) and
infer the composition of the standard fixed sequence emitter which
(could have) produced it. The inferrer works as follows. It reads

the first primitive of the passive description string (by means of



TO and T1 primitives which can detect the presence of 0 and 1
primitives, respectively). If for example the first primitive is a
one (as in the string produced in the example above) the inferrer
"knows' that it had to have been produced by a Pl primitive present
as the first significant primitive of a standard enitter. (Similarly,
if the first description primitive was a zero it must have been
produced by a PO, as the first significant primitive of the emitter.)
If the description continues (there is a second zero or one) it

must have been a consequence, first, of the application of an F
primitive, followed by a PO or a Pl according as the second descrip-
tion primitive was a zero or a one. Proceeding in this fashion the
inferrer can deduce the complete sequence of primitives of the
standard emitter which could produce the description sequence of

primitives.

3.5 Emitter Describer

As an emitter inferrer deduces each of the emitter primitives
in turn (by examining the sequence of zeroes and one primitives
produced by the emitter) a transfer can be made to a location where
the PO, P1, or F deduced can have its description spelled out by a
special-purpose emitter. For example, if the inferrer detects a
one it could only have been produced by a P1; a Pl is described by

0011 and this can be produced by an emitter F-P0-F-P0-F-P1-F-Pl.

3.5.1 A Detailed Example of the Inference and Description Process
Since the inference-description routine is important to the Lee-

Thatcher result and in turn to the form of presentation of our central
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description by self-inspection result, we will present a detailed
explication of the procedure.

The inference and emitter-description routine will operate
under the assumption that the 0,1 string presented to it was produced
by a standard emitter operating on an initially empty string; the
job of the inference and description routine is to produce, beginning
at the end of the presented 0,1 string, a string of additional 0,1
primitives which is the description (in the agreed upon 0,1 code)
of the successive primitives of the assumed standard emitter of the
presented string.

The inference routine begins by seeking out the first primitive
of the submitted 0,1 string. It does this by moving in the backward
direction, testing for the arrival of an N primitive. (This N will
be produced by the first B application which would otherwise have
disengaged the active string from the top of the passive string.)

The inference routine now moves forward one primitive, and reads that
primitive (the first of the submitted 0,1 string). (The forward move
will result in the detachment and loss of the newly acquired final N
whose presence marked the front end of the original string.) The
routine now makes the newly read primitive of the 0,1 string an N,
and the routine moves to the opposite end of the submitted 0,1
string. (The 0 or 1 which was converted to an N will be detached

and lost as soon as contact with it is abandoned, but it will be
restored upon return to the location.)

The routine, bearing the identification of the first primitive,

determines the bottom end of the submitted stringe

o

moves back one

primitive to ascertain what the last primitive of the 0,1 string is,
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and notes this for later use; it then changes this last primitive to
an N, and moves forward (recruiting an additional N). The inference
routine now enters into its deseription sub-routine. It transfers
to an emitter which produces (in 0,1 code) the code word (in zero,
one primitives) for an F and the code word for the PO (or P1)

which (under the standard emitter assumption) nust have producea the
first primitive.

The routine now searches in the backward direction, for the
second N (the first N encountered in the backward direction will mark
the end of the originally submitted string; the second N encountered
will mark the location of the last read primitive of the original
string). When the second N is encountered, it is converted back to
its original 0 or 1 status, and the next 0 or 1 is read and replaced
by an N.

The routine, bearing the identification of the second primitive
of the submitted string, now searches for the szcond N in the forward
direction (the first N to be encountered marks the last primitive of
the original string, a primitive whose actual 0 or 1 identificétion
we continue to preserve). Encountering the second N (at the open
bottom end of the passive string) the routine emits the code word
of primitives for an F and a code word for the PO (or Pl) which
produced the second primitive of the submitted string.

This process continues until in the reading of a "next"
primitive, it is identified as an N (rather than as a 0 or 1). This
signifies that the Zast primitive of the original string has been
reached. At this point the N is restored to its original 0 or 1

status (we have been retaining this piece of information) and in a



final excursion to the bottom end of the passive string the code
word for an F and the required PO or Pl is produced. This completes
the process of inference and emitter description. Beginning with a
0,1 passive string we end with the original string having been
augmented with a 0,1 string which describes the successive Fs and
POs or Pls which, under the standard emitter assumption, could have

produced the originally submitted string.

3.6 Special-Purpose Constructor

Beginning with '"null" primitives recruited from the environment,
or assuming a passive string of all null primitives, a '"standard”
active program string consisting of proper sized (of length 0 to 16)
blocks of C primitives prefaced by single F primitives can be
designed to construct any fixed finite string.

Example. The constructor F-C-C-C-C-C-F-C-C-C-C-C-C-F-C-C-C-C-F
C-C-C-C-C-C-F-C-C-C-C-C will, starting with a string of N primitives
produce the sequence P1-F-P0-F-P1 (ie. the emitter of the earlier
example).

Comment., Notice that both fixed sequence emitters and special-
prupose constructors make the assumption that their action is directed
only toward certain forms of strings. The emitter action is taken
toward an empty string or one consisting of N, 0, and 1 primitives
only, and the constructor action is assumed to be directed toward
an empty string.

If an emitter begins to work on a string which is not all 0 or 1
primitives, then the desired sequence may not actually be produced in

the passive string. However every emitter action could be prefaced by
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a destroyer action (see 3.11 and 3.12) reducing all primitives of
the passive string to N, and thus dispersing them, so that emitter
action would begin by recruiting new N primitives. Similarly for a
constructor; a constructor assumes that it starts with N primitives.
If the passive primitives in contact are not N primitives, then an
"incorrect" (though systematically related) string will be produced.
This difficulty also can be obviated by prefacing the constructor
with a destroyer which reduces all primitives to N and (with the

exception of the single contacted N) disperses them.

3.7 Analyzer

An analyzer is an active string which presented with any
(passive) string can analyze and identify the primitives of the
passive string one-by-one, and produce a description of the passive
string. An analyzer will consist of a series of C primitives, each
C followed by a TN primitive. For each primitive type there is
(according to the C-conversion table) a unique number of C stimula-
tions which will reduce the type to an N. Converting the unknown
primitive one step at a time and each time testing (with a TN) for
the arrival of the N status, the machine can determine what the type
was before the test began. Once knowing the type, the machine can
transfer to a routine for emitting the description of that type.
(This analysis process 'destroys' the analyzed string, by reducing
it to all N status; but see 3.9 below.)

Example. In the analyzer segment TN-C-TN-C-TN-C-TN-C-TN...
(with associated PP or PM primitives omitted) the first TN will detect

if the unknown primitive was an N to start with, the second TN will
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detect if the unknown primitive was a C, the third TN will detect

if the unknown was an A, etc. (See the conversion table.)

3.8 Analysis and Universality

The notion of analysis is an extremely powerful one. Turing
showed that a special computing machine (a "universal" machine)
could read and interpret a description of any computing machine of
the whole class. J. von Neumann showed that in a system in which
construction of machines was possible there is a universal constructor
which, given a description of any (passive) machine in the class
under consideration, can construct that machine. Our analysis
result says that there is an analyzing machine such that given any
(passive single string) machine of the class under consideration,
the analyzer can '"'read" the machine and produce its description (and
can, as we shall see, if properly equipped, go on to interpret the
description or construct a copy of the machine, etc.). It should also
be noted that as a machine is analyzed the structural information
obtained can be acted upon immediately; an explicit intermediate
description composed of zero-one primitives is not always required,
since the information, embodied in terms of an activation at a

location can be converted directly into a course of action.

3.9 Analyze and Restore

After having been analyzed to determine its type the originally
unknown primitive will have been reduced to the N type. It may be
useful or important to restore the analyzed primitive to its pre-

analysis type. This can be carried out by stimulating the primitive
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with the appropriate number of C conversions actions to convert an

N back to the original type. This process can be carried out because
the system will know what the primitive now is (an N), what it was
and should be restored to (it has just discovered this), and the
number of C stimulations necessary to convert an N to any desired
primitive type. (This information is displayed in the C-conversion
table and can be embodied in the machine structure.)

Example. If the analyzer has just established that the unknown
primitive was an A (ie. exactly twe C stimulations have converted
the unknown to an N), then the TN which detected this N status can
route activation and contact co a restore routine C-C-C-C-C-C-C-C-C-
C-C-C-C-C-C (fifteen C stimuli).which will convert the presént N

back to the A it was before the analysis of it began.

3.10 Inferrer of Special-Purpose Constructor

As with the standard emitter of a 0,1 description, whose
structure can be inferred from the resulting description, so can the
structure of a standard special-purpose constructor be inferred from
the machine constructed. The procedure is as follows. Recall that
a standard special-purpose constructor consists of an initial F
primitive (which will recruit an N) followed by a sequence of C
primitives of the length required to convert the N to the desired
primitive, followed by a seﬁond F (to recruit the next N to be acted
upon) followed by the next block of C primitives, etc. In the
inference process, such a machine constructed by a standard special-
purpose constructor is analyzed, primitive-by-primitive.

The analyzer knows that every special-purpose constructor begins
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with an F. When the analyzer determines what the first primitive of
the constructed machine is, it knows how many C stinulations were
necessary to convert an N to the discovered primitive type, thus it
knows how many C primitives there must have been in the first special-
purpose constructor block of C primitives. Similarly for the next
primitive: there is a unique number of C stimulations which produced
it. By this means, an inference routine can by examining a machine,
determine the structure of the standard special-purpose constructor

which produced the machine.

3.10.1 Infereace and Description

Once the inference routine has analyzed a primitive and estab-
lished the number of C primitives required to produce that primitive
from an initial N, the inference routine can make use of this infor-
mation immediately or can produce a 0,1 descriptior of the C
primitives which were inferred. By alternating the analyzing and
inferring with describing, a machine can be examined, and a descrip-
tion of the standard special-purpose constructor which produced the
machine can be set down.

Example. Suppose an inference machine is given the string
P1-N-PO and is to infer the (standard) special-purpose constructor
which (could have) produced it. The analyzer determines that the
first primitive is a Pl and (from the conversion table) this means
that five C stimuli are required to produce a Pl from an N. The
description (in the agreed upon zero-one code) of Zve successive
C primitives is then set dowh. Attention then shifts to the second

primitive, N. The analyzer would immediately (upon the first TN test)
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determine that this is an N, and, since the construction process
begins with the assumption of an N, the action of no C primitives
is required and so only the description of the F primitive necessary
to bring about the constructor shift of attention to the next
primitive is required. Following analysis of the PO primitive,
the F (required in the constructor to move to the next N primitive
to be converted) is described, thén the number of C primitives
necessary to convert an N to a PO is described, etc. The constructor
of P1-N-P0O is thus F-CCCCC-F-F-CCCC, and can be converted into a
zero-one description.

Comment. As nnted the inferrer of a special-purpose constructor
assumes that the constructor is of the "'standard" form of blocks of
C primitives (including blocks zero in length) separated by F
primitives. There are of course many other ways in which strings
could be constructed, and for some of these other methods inferences

could be designed.

3.11 Special-Purpose Destroyer

For any particular passive string, an active machine string can
be designed which will reduce each primitive of the passive string
to an N primitive.

Example. Given the passive string T-A, it can be reduced to

N-N by the active string CCCCC-F-CC.

3.12 General Destroyer
Any string can be reduced to all N primitives by subjecting each

primitive to a succession of stimulations and testing for the arrival



of the N status.

3.13 Dispersion

Recall that by convention any N primitive which is unmarked by
any transfer symbol, is not in contact with the active primitive of
the opposing string, and is at the end of a string, will be detached.
Thus, destroyer action which reduces primitives to the N status, also

automatically can produce the dispersal of the resulting N primitives.

3.14 Loop Transfer Constructor

An active string can be designed which will take as input a
string which is any program, and will append to the bottom of it,
a transfer to the top. It does this by first constructing a transfer
primitive at the end of the string, then examining the string over
its whole length (distinguishing PP and PM primitives from ordinary
primitives) and by this ascertaining the number of PM primitives
necessary to transfer control to the primitive at the top of the
program; the transfer constructor then appends to the transfer this

number of PM shift mark primitives.

3.15 Review of Some General Properties of the Kinematic Machine System

1) The tape-like primitives and the program-like primitives need not
be permanently segregated in separate strings. The active and
passive roles of the strings can be exchanged. (This contrasts
with the usual Turing machine system with its fixed roles for
automaton and tape.)

2) The major components of our system being connected strings of
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simpler primitive automata, one string can, by its primitive
automata shifting contact to successive next neighbors, obtain
direct access to any primitive of another string. (This contrasts
with von Neumann's two-dimensional "checkerboard" cellular
automaton system, where access to interior cells could be gained
only by penetrating intervening exterior cells of the machine.

It should be mentioned that by employing a third dimension, a
two-dimensional regular cell-space could be explored without
disrupting intervening machine structure. In effect the KAS
system employs a two-dimensional space to explore one-dimensional
machines.)

At any one time only a single primitive automatoh need be
activated in order to carry out the actions necessary for obtain-
ing the results to be presented. (This restriction to a single
activation site (in the Turing machine manner) again contrasts
with the von Neumann cellular system where although the general
course of system action (in, for example, the process of self-
reproduction) is sequential, in implementing many sub-processes,
activation is sometimes simultaneously present at many separated
locations.)

The assumption is made that available to the system is a popula-
tion of passive null primitive automata. These null or N
primitives are recruited at the open ends of passive strings.
(This property is analogous to the "automatic' addition of blank
squares at the ends of a Turing machine tape, and related to the
notion in the von Neumann cellular system of a machine being

surrounded always by an environment of quiescent cells available
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for exploitation.)

By a series of actions directed at null primitives, these
primitives can be converted to any of the other primitive
constituent automaton types. (This is analogous to the capacity
for systematic conversion of quiescent cells of the von Neumann
cellular system to any cell type whatsoever. This contrasts
with the usual Turing machine notion in which capacity to alter
the status of recruited blank tape squares is restricted to a
special tape square symbol set.)

The process by which a null primitive can be converted to any
other primitive type, including returning to the null type
itself, can be employed to ascertain the type of any unknown
primitive of the system. (This contrasts with the von Neumann
29-state cellular automaton system where although any quiescent
cell can be converted to any other cell type and thence back to
a quiescent type, the particular transformation process adopted
by von Neumann does not in all cases permit deduction of unknown

cell-types.)



Chapter Four. Kinematic Machines and Their Behavior

4.1 Universal Computation

A kinematic machine consisting of two stfings of primitives (a
"program'" string composed of F, B, PN, PO, P1, TN, TO, T1, PP, PM
and H primitives and a '"tape'" string composed of N, 0, 1 primitives)
can be designed to carry out any Turing machine computation. This
follows from the fact that we can design a kinematic machine to
carry out the computations of any Wang (1957) programmed Turing
machine, a class of machines which Wang showed capable of carrying
out any ‘furing computation.

Comment., The computational primitives of our system have been
defined to exhibit the same computational properties as the Wang
system basic program instructions. In the Wang system, the basic
constituents are imstructions which are to be implemented on a
computer. In the kinematic system, each primitive element is itself
a small machine, not merely an instruction, and must not only specify
an operation, but must also <mplement the operation specified. There
is some slight difficulty wifh the transfer operation. In the Wang
system an unseen control and supervisory system of the assumed
computer notes whether the transfer condition has been satisfied and
if so, transfers control attention to the line of the program given
by the transfer instruction. This instruction thus has a non-Zocal
effect; a change of state at the site of the transfer may in a single
act, bring a change at a site far removed from the transfer. In the
kinematic system, this complex global process has been implemented by

a series of local actions of the simple primitive machines (see 2.3.5).

48
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4.2 Machine Descriptions and Machines

Turing (1936) showed in his ''universal simulation” result, that
a machine could be supplied with a deseription of a second machine,
and the first machine could then proceed to read the description and
to simulate the action of the second machine. Indeed, the first
machine could be supplied with a description of any of a large
(universal) class of machines, a class including the simulator machine
itself, so that, supplied with a description of <Zs2lf the first
machine could still, without paradox, carry out useful simulations
of the action of the second machine. On this matter Minsky (1963)
remarks that there are machinzs which can answer any question about
themselves that any larger separate machine could answer. In a
later paper (Minsky 1968) he again discusses mechanisms employing
models of themselves and remarks (p. 430) 'while it is impossible
for a machine or mind to analyze from moment to roment what it is
doing at each step (for it would never get past the first step)
there seems to be no logical limitation to the possibility of a
machine understanding its own basic principles of operation, or given
enough memory, examining all the details of its operation in some
previously recorded state". Thus, though there may be limitations
to the practical use of machines which simulate thenselves, there is
no prima facie reason why machines cannot successfully make extensive

use of their own descriptions.

4.3 Descriptions Self-Supplied

In the last section it was assumed that the descriptions upon

which the machine worked, were supplied to the machine from the
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outside ab initio. Any fixed finite description which could be
supplied to a machine from the outside, can be supplied to a machine
by itself. In the kinematic system this can be done by augmenting
the machine with a substring consisting of P1, PO, and F primitives
which, when activated, will print out on the second (passive) string
the desired description.

Example. Suppose we have an active string which has been
initially supplied with a passive string 110 to work upon. The
original active string itself could be augmented with the emitter
sequence F-P1-F-P1-F-P0 which would, upon a "blank" string create the

passive 110 string.

4.4 Self-pescription Self-Supplied

Using the technique of 4.3 it is clear that given any active
string, it can be augmented with an emitter string consisting of PO,
P1 and F primitives only, which would create a 0,1 string of primitives
describing the given active string. The active string could, then,
proceed to read the string describing itself and to simulate what
it would do under various alternative circumstances. Of course the
description in the passive string contains no information on the
description of the augmented emitter and to this extent machine
deductions about itself could be in error. For example, the machine
might attempt to establish how large it is, how many primitives it
itself is composed of. By reading off the code blocks of its des-
cription, it would arrive at a certain number, and could print out
this number. The machine however, if it is "blind" to the fact

that it also contains an emitter of the original description, could
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be very much in error. This would be especially serious if the
machine was attempting to reproduce itself on the basis of the
printed description alone. If however, the machine incorporated

in its structure the information that an initial description of
itself was produced by a part of itself, not included in the explicit
description, it might be able to deduce accurately the actual number
of its primitives. For example, if its structure embodies the
knowledge that the initial description it itself supplied was
produced by a standard emitter sequence within itself, and that two
emitter primitives (a PO or Pl prefaced by an F) were necessary for
every 0 or 1 primitive in the description, it could determine the
number of code blocks in the original description, and add to this
the number of 0 or 1 primitives multiplied by two to get the correct

total number of primitives of which it itself consisted.

4.5 Complete Self-Description

Employing notions such as those suggested in 4.4, C. Y. Lee
addressed himself to the question whether a machine could supply
itself with a complete description of itself, and (Lee, 1963)
proved that this was possible. Thatcher (1963) followed up on this
by exhibiting a specific machine design which would accomplish this.
We now show (largely following Thatcher's strategy) how a kinematic
machine can obtain a complete description of itself. We will present
several versions of this result, differing slightly in detail, in

strategy, and in generality.
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4.6 Complete Self-Description: Essential Process

Self-description of a kinematic machine will take place if
beginning with an active string (either alone or with an all null
passive string) the active string finally halts having created a
separate passive string containing a complete correct description of
itself in an agreed upon (uniquely decipherable) zero-one code of
primitives. The self-describing machine will be an active program
string composed of the following substrings: an emitter inférrer,
and a (standard form) emitter of the description of the emitter
inferrer. We begin by activating the emitter. At the conclusion of
its operation, the newly created passive string will contain a descrip-
tion of the emitter inferrer. Activation is then shifted to the
emitter inferrer. The inferrer examines the passive string and infers
the description of the (standard) emitter which produced it, and
prints out the description of the emitter. This completes the self-

description.

4.7 Complete Self-Description with Arbitrary Substring

In 4.6 we presented thé bare essentials of the complete self-
description process. The only function of the self-describing machine
of 4.6 is self-description. In general however we shall be interested
in machines which in addition to the capacity to obtain their own
complete descriptions are capable of carrying out some other processes
of interest (such as for example reading their own complete descrip-
tions, and from this establishing structural and computational
properties). Such a self-describing machine might consist of the

following substrings: any desired finitely long arbitrary sub-string
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(embodying functions of interest), an emitter inferrer, and an
emitter of the description of the arbitrary optional sub-string and
of the emitter inferrer. We begin by activating the emitter. At

the conclusion of its operation, the passive string will contain a
description of the optional substring and a description of the emitter
inferrer. Activation is then shifted to the emitter inferrer. The
inferrer will examine the passive string and infer the description of
the emitter which produced it, and print out the description of the
emitter. This completes the self-description. Although this self-
description procedure is deficient in some details the essential
features of the process are apparent. (See Figure 5 for an illustra-
tion of this self-description process.)

Note. In Figs. 5 - 11 we attempt to illustrate how the routines

and submachines we have designed (in Chapter Three) can be conjoined
to produce the desired self-description and self-reproduction
processes. In the figures, the following conventions are employed.
The conceptually distinct basic routines and sub-machines are
enclosed in parentheses and connected by plus signs. The present
active site in the machine is marked by a star, and the passive site
being acted upon is marked by an arrow. In the absence of an
explicit transfer, activation proceeds automatically from left to
right; transfers of activation within basic routines or sub-machines
are not explicitly pictured; transfers of activation between basic
routines and submachines or between strings are, in some of the
figures, made explicit. The vertical bar, |, separates the initial
string from the (sole) other string which may be created. For

typographical convenience, the submachines and routines are in some
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Figure 5. Self-Description Process. (i). The initial machine
consists of an emitter, an inferrer, and an arbitrary sub-machine;
initial activation site is at the head of the emitter. (ii). The
emitter has stored in it a description of the inferrer and the arbi-
trary sub-machine; at the conclusion of emitter action the second
string consists of a 0-1 description of the inferrer and the arbi-
trary string. (iii). Activation proceeds to the inferrer, which
examines the second string and infers the composition of the standard
emitter routine which produced the string, and itself produces a
description of the emitter routine. Activation now proceeds to the
arbitrary sub-machine which is free to make use of the description

information.
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(1).
*(Emitter) + (Inferrer) + (Arbitrary) |¢
A B C

(ii).

(Emitter)* + (Inferrer) + (Arbitrary) | (Description of (B) + (C))+
A B C

(iii).

(Emitter) + (Inferrer)* + (Arbitrary) i (Description of (B) + (C)) +
A B C

(Desc of (A))+

Figure 5
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cases abbreviated by capital letters.

4.8 Complete Self-Description with Explicit Transfer Deduction

In 4.6 and 4.7 we have described the simple essential pfocess
of complete self-description. In the process, the machine has employed
first its emitter, and then its emitter inferrer. To go from one sub-
string region to another in an active machine requires the use of a
transfer. Thus a transfer operation and its description must be
incorporated into the self-description process. We now show how this
can be accomplished (see also Fig. 6).

The complete self-describing machine with explicit transfer
deduction will be an active program string composed of four sub-strings.
At the top of the active string will be an emitter inferrer, followed
by a transfer inferrer then by an emitter of the description of the
first two substrings (the emitter inferrer and the transfer inferrer),
followed by an (unconditional) transfer primitive (and its associated
PM string, assuming our machine employs the method of positive or
negative shifts for transfer implementation) which will implement a
transfer to the top of the program (the first primitive of the emitter
inferrer). We begin by activating the third substring, the emitier.
At the conclusion of its operation, the passive string will contain a
description of the first two substrings (the emitter inferrer and the
transfer inferrer) of the active string. Activation is then (by
means of the fourth substring, the transfer primitive) shifted to the
emitter inferrer (at the top of the program string). The inferrer
will examine the passive string and infer the description of the

emitter which produced it, and print out the description of the emitter.
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Figure 6. Complete Self-Description with Explicit Transfer Deduction.
(i). 1Initial situation, with activation at emitter. (ii). Emitter
action produces description of Inferrer and Transfer inferrer.

(iii). Transfer operates to transmit activation to inferrer.

(iv). Inferrer examines the existing description and produces the
description of the standard emitter which produced it; activation
proceeds to the transfer inferrer. (v). Transfer inferrer produces
a description of the transfer primitive and its associated shift
primitives, completing self-description. Note: An arbitrary sub-
machine could have been inserted between the transfer inferrer and
the emitter (and the emitter equipped with the capacity to print out
the description of the arbitrary machine); activation would then pass
to the arbitrary machine, which could make use of the complete

description now available.
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(1).

(Inferrer) + (Transfer Inferrer) + *(Emitter) + (Transfer) |+
A B C D

(ii).

(Inferrer) + (Transfer Inferrer) + (Emitter) + *(Transfer) |

A B C D

(Desc (A) + (B))”
E

(iii).
*(Inferrer) + (Transfer Inferrer) + (Emitter) + (Transfer) ]

A B C D

Y(Desc (A) + (B))
E

(iv).

ES

(Inferrer) + *(Transfer Inferrer) + (Emitter) + (Transfef) |

A B C D

(Desc (A) + (B)) + (Desc (C))
F

V).

(Inferrer) + (Transfer Inferrer)* + (Emitter) + (Transfer) |

A B : C D

Desc((A) + (B)) + (Desc (C)) + (Desc N
F G

Figure 6
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The transfer inferrer (next in line) now takes over and infers and

describes the unconditional transfer and the requisite number of PM
primitives necessary to shift activation to the top of the program

(see 3.14). This completes the complete self-description with

explicit transfer deduction.

4,9 Complete Self-Description: Active Machine in Loop Form

In 4.8 we pointed out that detailed explication of the self-
description process obliges us to considér the transfers between
sub-routines and how these are to be described. The particular issue
raised there (the presence and consequent inference and description
of the unconditional transfer from the end of the emitter routine to
the beginning of the inference vroutine) can be shown to be somewhat
of an artefact of the particular kinematic machine system employed
(in particular, the mode of transfer implementation employed).
Consider a self-describing machine consisting of an <nferrer and an
emitter of the description of the inferrer, in which thealast primitiv
of the emitter is connected directly to the first primitive of the
inferrer (thus, by connecting the active machine in a Zoop we obviate
the requirement for an explicit separate unconditional transfer from
the end to the beginning of the active string). We begin by activating
the emitter, which prints out a description of the rest of the string
(the inferrer). The activation now (owing to the loop structure of
the active string) proceeds "automatically" to the inference routine,
which examines the passive description and deduces and prints out the

description of the emitter. This completes self-description.
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4,10 Construction of Machines from Descriptions

Any of the primitives of which our kinematic machines are
composed can be obtained by means of a constructor acting upon an
initial recruited N primitive. The action of the constructor can
be compounded so that any sequence of primitives can be constructed.
Thus, a machine equipped with an active constructor string can,
given a (passive) description string for any machine (in zero-one
primitive coded form) read the description code-word by code-word,
and then, moving to the end of the description string and recruiting
an N primitive, construct a copy of each described primitive in turn.
After having constructed a copy of the machine described the construc-
ting machine can activate the new machine (after possibly detaching
the new machine from its description, or destroying the description
entirely). It should be explicitly pointed out that the description
given the constructing machine could be a description of the construc-
tor itself; thus we see that a machine can construct a copy of itself.
(Note that this is not precisely reproduction, since, beginning with
two strings, one an active machine and the other a passive descrip-
tion, we ended with two machines ( and possibly the original descrip-
tion): for complete reproduction we should, beginning with a machine

and a description, end with fwo machine-description pairs.)

4.11 Self-Reproduction by Means of Description

We now show how complete self-reproduction in machines can take
place. Since by the Lee (1963) and Thatcher (1963) self-describing
results there exist kinematic machines which can produce their own

complete descriptions, and since given any description a kinematic
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machine exists which can construct the described machine, a machine
consisting of a self-describer and a general constructor provides

the basis for self-reproduction (Thatcher 1970). More precisely

(see Figure 7) our self-reproducing machine will initially consist
of (A) an inferrer, (B) a constructor, (C) a destroyer, (D) emitter
of description of (A)(B)(C). We begin by activating (D) the emitter
of the description of (A)(B)(C). At the conclusion of (D)'s action,
we will have an active string consisting of the original machine

(A) (B)(C) (D) and a new passive string consisting of the description
of the (A)(B)(C) parts of the original string. Activation now passes
to (A) the emitter inferrer, which reads the description in the
second string and infers (and describes) the structure of (D). At
this point we have two strings, one the original active machine and
the other the complete (passive) description of the original machine.
Activation now passes to (B) the constructor. (B) reads the passive
description and constructs.a copy of the machine there d?scribed.
Finally, activation passes to (C) the destroyer, and (C) destroys
the description so that we are left with the original machine, and
its copy, completing self-reproduction.

Comment. Essentially, the result exhibited in 4.11 is a variant
of the original von Neumann (1966) result that an automaton can
reproduce itself if it is supplied with a deseription of itself
(alternatively, if it is supplied with explicit instructions embodying
a description for the construction of itself). It is thus an automaton
model of the logic of biological reproduction as it is believed
actually to take place in living organisms, viz., by means of cell

enzymatic protein machinery acting upon a prior supplied nucleic acid



Figure 7. Self-reproduction Utilizing Prior Description. (i). Initial
machine consisting of an inferrer of the standard emitter of a descrip-
tion, a general-purpose constructor (ie. a constructor which given

the description of a machine will construct the machine), a destroyer
(which will reduce a description to N primitives), and an emitter of
the description of the inferrer, the constructor, and the destroyer.
(ii). The emitter produces the description D of the inferrer,
constructor and destroyer. (iii). Activation is passed to the
inferrer. (iv). Inferrer produces the description of the emitter,
completing the description. (v). Constructor employs the description
to produce a duplicate of the original machine. (vi). Destroyer
reduces the description; final situation consists of two structurally

identical machines.
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¥
(Inferrer) + (Constructor) + (Destroyer) + *(Emitter) |

A B

(ii).
(A) + (B) + (C) + (D)

(iii).

*(A) + (B) + (C) + (D)
(iv).

(A)* + (B) + (C) + (D)
).

(A) + (B)* + (C) + (D)
(vi).

(A) + (B) + (C)* + (D)

C D

D((A) + (B) + (€)F

D)+ (B) + (C))

DCCA) + (B) + (C)) + D(D)*

D((A) + (B) + (C)) + D(D) + (A") + (B') +

) + oY

YAy ¢ (BY) + (C') + (DY)

Figure 7. Self-reproduction Utilizing Prior Description
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description of the cell.

4.12 Another Example of Reproduction by Means of a Description

In close analogy to the logical form of the natural reproduction
process, we might begin with a ma;hine consisting of an active string
and a separate description string. The active string contains a
constructor (that is, a routine which given a description produces
the string described) and a copier (which when given a description
makes a copy of it). The active string, acting upon its supplied
description, produces a duplicate of itself and a copy of its
description, thus completing self-reproduction (beginning with a
machine-description pair, we end with two machine-description pairs).
(Note that this form of reproduction requires the active machine to
direct its attention systematically to a total of Zaree other strings:
its description, its duplicate, and a copy of its description.
Although the capacity to switch the attention of an active string to
several passive strings could be made an explicit feature of our
kinematic system, we have, at this point, not done so. Note the
resemblance of such a multi-string system to multi-tape Turing

machines.)

4.13 Another Variant: Reproduction without Use of Temporary
Description
In the reproduction process descvibed in 4.11 we cmplouyed the
notion of a machine first producing for its perusal its complete
description, employing the description to construct a duplicate of

itself, then destroying the superfluous description. The reproduction
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process can be modified to obviate the need for first producing and
then later destroying a description.

Our initial machine is a string consisting of (A) an Analyzer,
(B) Constructor Inferrer, (C) General-purpose Constructor, (D) Special-
purpose Constructor of (A), (B) and (C). The reproduction process
begins with the activation of the Special-purpose Constructor of (A},
(B) and (C). Activation is then transferred to (A) the Analyzer.
The Analyzer determines each of the primitives of the newly constructed
string in turn. As each is discovered, activation is transferred to
(B) the Constructor Inferrer, which determines the primitives of the
Special-purpose Constructor which could have produced the new string.
For each primitive determined, activation is transferred to (C), the
General-purpose Constructor, which constructs the cetermined primitive.
Continuing thus, the sequence of primitives of (D) is constructed,
and we have reproduced the initial machine without use of a temporary

description.

4.14 Complete Self-Inspection: Background

In all the cases so far considered, a machine has made use of a
description which has explicitly or implicitly, been made available
to it. The question has been raised whether a machnne can by self-
inspection acquire its own complete description. It is often remarked
that no system can comprehend itself completely (since for example,
its organ of comprehension is a part of itself, and the part cannot
comprehend the whole), or examine itself completely (siﬁce, the organ
which examines cannot examine itself). Burks (1961) however has

conjectured that it Zs possible for an automaton to sense its own
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complete constituent structure and construct and store within a
proper part of itself information which can make the complete self-
description available to the machine for its own perusal. We now

show how this can indeed be done.

4,15 Self-Description by Self-Inspection (Principal Result)

We now exhibit a machine which can obtain its own complete
constituent structure description by means of self-inspection. The
machine proper will begin by consisting of a single string (it will
later temporarily consist of two strings). This single string will
consist of the following machine substrings (listed in the order of
their employment).

(A) A special purpose emitter-constructor which can construct a new

temporary separate string, a string consisting of 1) an analyzer

and 2) a constructor which will take as input a description of any

string and will produce an emitter of the description of the string

and 3) a transfer constructor, and 4) a locator and activator
routine which will relinquish activation to (B).

(B) A general or a special-+purpose destroyer which can convert the
separate string constructed by (A) back to null primitives.

(C) A two-part inference routine which applied to a description first
infers the string which emitted the description and second, by
means of a transfer inferrer, appends at the end of the descrip-
tion a description of a transfer to the top of the program.

We may also optionally include:

(D) A general processor substring capablé of‘carrying out some useful

computation. This substring takes no active part in the self-
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analyzing and describing processes.

The creation of a complete sclf-description proceeds as follows.
(See Figure 8.) The machine begins by constructing the new second
string (consisting of an analyzer, a constructor of an emitter, a
transfer constructor, and a locator). At the conclusion of this
.construction, the original machine, by means of an A primitive,
relinquishes activation to the new string (at the 7zzad of the
created string, the analyzer). The new string now proceeds to
analyze the original machine and to construct at the end of the
original machine, an emitter of the description of the original
machine. At the end of this emitter, the transfer constructor present
in the new string constructs a transfer to the inference routine at
the top of the original string.

When the new string has completed this task, it employs an A
primitive to relinquish activation back to the original méchine at
the head of the destroyer routine (which can be at the head of the
original string or separately addressed). The original machine now
employs its destruction sub-program to destroy the second string.

The existing machine now has a complete description (residing in
the newly appended emitter) of what it was initially. Also note we
have in effect re-created the organization of the Lee-Thatcher self-
describing Turing machine (see 4.8 and Fig. 6). That is, the emitter
can be activated to provide the description of ali of the present
machine save the emitter and the final transfer (that is, the complete
deseription of the original machine). 1In addition (employing the
inference routine with its transfer inferrer), the present machine

can provide itself with a description of the appended emitter, and
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Figure 8. (i). Imitial Situation. The initial machine consists

of a single string possessing the following sub-routines: (A), a
special-purpose constructor (of a single second string which will

have the following sub-routines (1) an analyzer, (2) a general-
purpose constructor of an emitter, (3) a transfer constructor,

(4) a locator and activator of the address of (B), the destroyer);
(B), a destroyer (which includes a transfer to the end of (D));

(C), an inference routine; (D), an optional arbitrary routine of any
fixed finite length. (i1). Special Purpose Constructor Action.

(A), the special-purpose constructor is initially activated. (A)
produces a single second string possessing the following four sub-
routines: (E) an analyzer, (F) a general-purpose constructor of an
emitter, (G) a transfer constructor, (H) a locator and activator of
address of (B). At the conclusion of construction (A) will relinquish
activation to (E) the analyzer in the new second string. (iii). The
Action of the Second String. The newly activated second string begins
with (E) the analyzer. The analyzer moves to the top of the first
string, and determines the type of the first primitive. Activation

is then transferred to (F) the constructor of an ernitter. (F),
bearing the information as to the type of the first primitive of the
initial string, constructs at the end the routine which when activated
will emit the description of the identified first primitive. Activa-
tion is then transferred back to (F), and the analysis process
continues. When all of the original string has been inspected and

the emitter of the description of (A)(B)(C) (D) produced, activation

is passed on to (G) the transfer constructor. (iv). The Transfer is

Constructed. The transfer constructor (G) constructs an unconditional
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transfer primitive and an associated number of PM primitives required
to transfer to the top of the original program. It does this by
examining all of the initial string, determining the shift length
required, and constructing the required number of PM primitives.
Activation is then transferred to (H) the locator and activator of
(B). (v). Location and Activation of Destroyer. The locator and
activator routine (H) relinquishes activation to (B), the destroyer
routine of the original string. (vi). Destruction of Second String.
(B) reduces all the primitives of the second string to N (and thus
disperses them). Afterward (B) will transfer activation to the end
of (D), (which is the beginning of I). (vii). Self-describing
Machine. Resulting single string machine now has (in its essentials)
the form of the self-describing machine exhibited in Fig. 6. (That
is, (I) will produce a description of all but itself and (J). (C)

the inference routine will deduce the description of I and add the

description of J, completing self-description.)
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(i).
* (Special-purpose Constructor) + (Destroyer) + (Inferrer) +
A B C
. ¥
(Arbitrary) |
D
(ii).
(Special-purpose Constructor)* + (B) + (C) + (D) | (Analyzer) +

A E
(Constructor of Emitter) + (Transfer Constructor) +
F G

(Locator and Activator of (B))+
H

(iii).
(A) + (B) + (C) + (D) + (Emitter of D((A) + (B) + (C) + (0" |
I

(Analyzer) + (Constructor of Emitter)* + (Transfer Constructor) +
E F G

(Locator and Activator of (B))
H

(iv).

(A) + (B) + (C) + (D) + (I) + (Transfer to (A))Y | (E) + (F) +
J

(Transfer Constructor)* + (Locator and Activator of (B))

G H

Figure 8
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V).

(A) + +(Destroyer) + (C) + (D) + T +J ! (E) + (F) + (G) +
B

(Locator and Activator of B)*
H

(vi).
(A) + (Destroyer)* + (C) + (D) + (I) + (J) |+
B

(vii).

(Special-purpose Constructor) + (Destroyer) + (Inferrer) + (Arbitrary) +
A B C D
*(Emitter) + (Transfer) ]¢

I J
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final transfer, thus making available to the present machine its
present complete description.

Thus we have exhibited a machine which has discovered its own
structure completely, contains this description in a proper part of
its present self, and can make this description available to itself
for its own perusal and calculation, confirming the Burks conjecture
mentioned in 4.14. (For a critique of this self-inspection process

see 5.1.)

Comment. Some remarks on the implementation of transfers of
activation which are required may be useful. We are most concerned
with relinquishing activation from one string to another, aad with
transfer of activation from one sub-routine to another non-contiguous
routine (not to transfers within sub-routines or to next neighbor
routines).

The special-purpose constructor (A) must be equipped with a sub-
routine which implements a relinquishing of activation to the new
analysis routine it has constructed. When the second string has
completed its construction actions upon the original string, it must
relinquish activation to (B) the destroyer of the original string.
For this, the second string must be equipped (by (A) the special-
purpose constructor which produced it) with a routine which locates
the address of (B) and activates (B). When (B) completes its
destruction and dispersal of the second string, activation is trans-
ferred to the end of the original program (ic. to the head of (I)
the newly created emitter). Upon the conclusion of (I)'s action,

a transfer is made to the top of the program. At the top (just

before the beginning of (A)'s construction routine) there is a transfer
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to (C) the inference routine. At the conclusion of the inference
(with its completion of the description of the machine), activation
is allowed to pass to (D) the arbitrary routine, which is free to

make use of the now available complete structural description.

4.16 A Minor Variant

In the self-description by self-inspection result just presented
we had the analyzer of the newly constructed second string inspect
the very constructor which produced the analyzer. This is not strictly
necessary, providing that the original string is properly augmented
with a special sort of inferrer which can analyze the second string
and infer the special-purpose constructor which could have produced
it. Thus the final self-describing machine would have to read the
machine part of the second string to infer the special-purpose
constructor of the first string, then emit the description of the
arbitrary parts, and infer the emitter of the arbitrary part, thus

making a complete description available.

4.17 Self-Inspection: Improved Version

Although the machine of 4.15 satisfies the conditions of the
Burks conjecture on self-description by inspection, the description
(the new emitter) though a proper part of the new total machine,
nevertheless constitutes a large part of the machine: in standard
form it is several times the size of the non-description part of the
machine. We therefore now describe a kinematic system in which a
machine obtains a description of itself, and in which the description

need be no larger than the non-description part of the machine.
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We begin with an initial string which first produces and then
activates a separate analyzer string equipped with a locator sub-
routine. The new analyzer string is to be used to discover the primi-
tives of its "parent" the original striné, one by one, and to disclose
them to the original string. It does this by the following process.
After analyzing and ascertaining the type of a primitive of the
first string, the second string transfers to its locator routine and
moves along the first string to a region which, when activated,
constructs a duplicate of the newly identified prinitive type at
the end of the second string. Activation is then transferred back
to the second string, and the second primitive of the first string
is read. Continuing thus, a complete duplicate of the original
string can be constructed and appended to the second string. At
the conclusion of the creation of the duplicate of the original
string, the first string can destroy the analyzer and locator portion
of the second string, leaving only the duplicate of itself. Thus we
now have two copies of the original string, one active, and one
passively available to be read (by an analyzer contained in the
original string).

If the original string requires a description of itself as it
was when the self-description process began, it can analyze the
passive string to discover this. If it wishes a description of
itself as it now is (consisting of two copies of itself) it can
obtain this by examining its passive copy twice (since it now exists
in the form of two identical strings) or, active and passive roles

can be exchanged between the two copies, so that each can examine

the other in turn.



The "description' we have now produced is precisely the length
of the non-description part of the machine. Can it be reduced
further? Clearly if large sections of the original machine possess
a very regular structure, it may be possible to describe these
sections using fewer primitives than the corresponding part of the
original machine. Two questions remain however. 1) Can the machine
itself examine a copy of itself, detect regularities, and produce
a more compact description? 2) If the description can be so reduced
cannot the machine itself be correspondingly reduced; is there a
shortest machine, and can its description be any shorter than itself?

It will be seen that at chis point our considerations begin to
join with those of Chaitin (1974). 'Small' or smallest machines
needs must possess a ''random' structure, since there can be nothing
redundant (patterned, regular, expected) about such machines (else
they could be made even more compact). Since most machines of a
given length are random, for most machines their minimum description

is a duplicate copy of themselves, a copy obtainable by our strategy.

4,18 A Minimal Self-Inspecting System

The minimal self-inspecting system would perhaps consist
initially of two strings, each an analyzer. The first analyzer
analyzes the second, the second the first. We will of course have
to augment the analyzers with the capacity to relinquish activation
to the other. An even more serious deficiency is the fact that such
a system does nothing but inspect itself (it does not even produce a
distinct description of itself; it merely ascertains its own struc-

ture, primitive by primitive, and moves on). We can of course add
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substrings embodying "interesting'" functions to either or both of

the original strings.

4,19 An "Almost Successful" Strategy of Complete Self-Inspection

Let us consider the extent to which the general Lee-Thatcher
strategy of self-description might be successful in producing a
self-description by self-inspection. The system will consist
initially of two strings. The first string will consist of an
arbitrary machine and an emitter of a description of an analyzer.

The second string consists of an analyzer alone. The original activa-
tion is in the separate analyzer, and we imagine (for concreteness)
that the description is to appear on a third string, accessible to
both of the original two. The analyzer examines the first string,
and produces its description. It cannot produce its own description
though. This deficiency is supplied by activating the emitter of the
first string which prints out its stored description of the analyzer.
Thus an arbitrarily large part of a machine can be self-inspected,
leaving only an analyzer-sized component inaccessible to inspection,
the description of which can however be "pre-packaged" to complete
the self-description.

Comment. It may be useful to set down some of the ways in which
systems can inspect themselves (or other machines). First, a system
may be equipped with sensory organs making it possible for the system
to detect or inspect directly certain sectors or components of the
system. The detectable parts of the system will in general not
include all of the system: parts of the system may be blind to

direct, "at a glance" detection. This will generally be the case with
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the inspecting system itself, for it will require its inspector,

and this inspector, yet another inspector, so that a regress may

be produced. We sce that first of all, the system, to inspect all
of itself, should have the means to detect all of its constituent
parts. The methods for this which have been suggested are analysis,
and "signature" reading.

Once the issue of being able to read all the constituents is
resolved, the problem of a machine having access to all its consti-
tuents must be considered. One aspect of this is spatial. If a
system has interior or inaccessible regions then the system itself
(or another inspecting system) may not be able to bring its detector
units to bear on every constituent., This is especially critical if
the machine or system under inspection is active, since the '"radical
surgery' necessary to attain access to interior constituents may
disrupt or destroy important system activities. In the kinematic
system, this is overcome by making all the components sitrings in
which the constituents are always directly exposed. Use of the
von Neumann two-dimensional cellular space system may require
intrusion into a block of cells and consequent alteration of peri-
pheral cells in the inspection of the interior. If however the
inspected system is passive then an inspection and repair routine
in an appropriately designed two-dimensional cell-space is possible.
(Also we have pointed out that a two-dimensional machine may employ a
third dimension in its analysis process obviating the violation of
machine structure.) Finally, the behavior of the inspector machine
must be complete and thorough. That is, the inspecting system,

whether its actions are directed toward itself or another systenm,
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must behave so as to read all and only the subject system. Correct
such behavior may require an intricate schedule of transfers and
actions, so that all parts are inspected, and no inspection duplication
is inadvertently carried out.

We thus see that among our possibilities are the following.
Systems can behaviorally inspect all regions of a system, or only
some; systems can detect all constituent types of a system or only a
sub-set of them; systems can have access to all regions of systems or
only some of them; systems can inspect only passive systems (or
regions) or may inspect active systems (or regions).

This last point, the capacity of a system to inspect another

active system, remains unresolved.

4.20 Reproduction Without Description: Background

John von Neumann's successful strategy of machine self-reproduc-
tion (von Neumann, 1966) makes use of an active machine reading, and
then employing information obtained from a separate passive "blueprint"
description. (Very roughly speaking we can equate the active compo-
nents 6f von Neumann's machine with enzymatic proteins of the cell,
and the separate passive description with nucleic acids.) At the
same time, von Neumann (1966, p. 122) was aware of altérnative
possible reproductive strategies, including the idea that a machine
might "read" itself directly and act upon the information thereby
disclosed, to reproduce ifself. (In the cell this would mean that
the active protein machinery might somehow analyze itself and use
this information to reproduce, only incidentally if ever being in

possession of a nucleic acid description of the protein machinery.)
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He rejected this strategy however since there were evident practical
difficulties of automaton implementation, and he also feared there
might even be an essential logical paradox inherent in the notion
of a system actively inspecting its acti&e sclf.

Arbib (1966, p. 217) however was somewhat more sanguine, stating
that he was not convinced that there is any logical paradox in a
machine examining itself and thereby obtaining a description it can
use for carrying out complete self-reproduction. Indeed, Burks
(1961) had already conjectured that it is possible for a machine to
inspect all of itself and obtain a complete description of itself
which it can store for its use within a proper part of itseif. We
have shown the Burks conjecture to be true; there <5 a strategy by
which a machine can examine itself to obtain for its use a complete
description of itself.

In the next section, this result is employed to show that self-
reproduction by means of self-inspection is possible. In effect,
there is no logical necessity for the presence of an explicit blue-
print in the reproduction of completely general information transac-
tional systems. Also, since the complete '"mature' original parent
machine serves as the model for the offspring machine, we perforce
have a logically consistent strategy of reproduction in which acquired

characteristics of parent can be transmitted to the offspring.

4.21 Reproduction by Self-Inspection
We are now prepared to show how a machine can reproduce itself,
using itself as model. We begin with an initial single string "parent"

machine consisting of the following substrings.



(A)

(B)
(©)

(D)

A special-purpose constructor which can construct a new second
string. This second string which (A) constructs will consist
of (E) an analyzer and restorer, (F) an irfzrznce routine of the
sort which can take a description and infer the description of
the emitter which could produce the given description, (G) a
general-purpose constructor, (H) a general-purpose destroyer.
A destroyer which can convert strings back to null primitives.
A fixed finitely long optional substring, capeble of carrying
out some desired general behavior; this substring plays no
active role in the self-analyzing and self-revnroducing process.
A general -purpose constructor which takes the description of

any string and constructs the string.

The process of reproduction can be carried out as follows. (See

Figure 9.)

(i)

(i1)

(ii1)

(A) is activated and constructs the new second string consis-
ting of (E) (analyzer-restorer), (F) (emitter inference
routine), G) (general-purpose constructor), and (H) (destroyer).
Activation is relinquished to the new string and the new string
analyzes the original string, and constructs at the end of the
original machine a new substring (I) which is an emitter of the
description of (A),(B),(C), and (D).

The new string now relinquishes activation to (E) of the first
string. (E) then constructs, as part of the second string,
(J), the description of (A)(B)(C)(D).

The first string now consists of (A)(B)(C)(D)(I) and the second of

(E), (F), (G),(H), and (J), the description of (A)(B)(C)(D).
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(iv) Activation is now relinquished to (H) the destroyer, of the
second string. (H) then reduces (I) back to null primitives.

) Activation is now relinquished back to (B) of the original
string which destroys all but (J) the descrintion of the
second string.

(vi) Activation is transferred to (D), the constructor of the figst
string, which using the description (J), of (A), (B),(C), (D)
constructs a copy (A)',(B)',(C)',(D)'.

(vii) Activation in the first string is now passed to the destroyer
(B), which reduces (J) to null primitives, leaving the second
string consisting or the copy of (A)(3)(C)(D) only. This copy
can now be activated and released by application of an AD
primitive.

We thus have reproduced our original machine, by an examination of
its structure. Whatever properties the original possessed at the time
of reproduction are now recreated in the offspring. Roughly speaking,
we have here a model of reproduction in which the use of a distinct
description is not central to the process and in which any acquired
characteristics.of the original parent string would be reproduced in
the offspring string.

Many slight variations of this reproduction by self-inspection
can be devised; the sequence of the 'clean-up' activities can, for

example, be altered. In the next sections we exhibit some more

radical variants of the process.

4.22 Comment on Concealed Descriptions in Self-Inspection

In both the self-description by self-inspection and self-
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Figure 9. Repruduction by Self-Inspection. (i). 1Initial situation.
(A) Special-Purpose Constructor, (B) Destroyer, (C) Optional Substring,
(D) General-Purpose Constructor. (ii). (A) constructs (E) Analyzer,
(F) Inferrer, (G) General-Purpose Constructor, (H) Destroyer.

(iii). Analyzer (E) identifies the primitives of (A), (B}, (C), (D),
and Inferrer (F) uses this information to instruct‘General-Purpose
Constructor (G) to produce (I), the Emitter of a description of (A),
(B),(C), (D). (iv). The Emitter (YX) produces the description (J) of
A),(B),(C),(d). (v). Destroyer (H) removes the Emitter (I).

(vi). Destroyer (B) removes (E),(F),(G),(H). (vii). Constructor
(D), using description (J), produces (A)',(B)',(C)',(D)'. (viii).
Destroyer (B) removes description (J); two structurally identical

copies of the original machine remain.
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Figure 9. Reproduction by Sclf-Inspection

(1).
*(Special-purpose Constructor) + (Destroyer) + (Arbitrary) +
A B C

(General-purpose Constructor) i+
D

(ii).
(Special-purpose Constructor)* + (B) + (C) + (D) I (Analyzer) +
E

(Inferrer) + (General-purpose Constructor) + (Destroyer)¢
F G H

(iii).

(A) + (B) + (C) + (D) + (Emitter of D((A) + (B) + (C) + (0" |

I
(E) + (F) + (G)* + (H)
(iv).
(A) + (B) + (C) + (D) + (Emitter of D((A) + (B) + (C) + (D))* |
I

(E) + (F) + (G) + () + D((A) + (B) + (C) + (M1

J

).
A) + B) + (© + M | (B) + (F) + (G) + (Destroyer)* +
H

D((A) + (B) + (©) + (D))
J



84

vi).
(A) + (Destroyer)* + (D) |¥ D((A) + (B) + (C) + (D))
B J
(vii).
(A) + (B) + (C) + (General-purpose Constructor)* ‘ 3+ W)+
D
)+ (©' + '
(viii).
(A) + (Destroyer)* + (C) + (0) | Y(A)' + (B)' + (O)' + (D)

B
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reproduction by self-inspection results, we can achieve very '"small"
systems exhibiting the desired properties. In the self-description
case the system consists of a pair of analyzer strings, and in the
self-reproduction case, a pair of analyzer-constructor strings. It
had long been believed that for self-description and self-reproduction
some part of the system must essentially be a description of the
remaining part of the system. In this self-inspection case, it
might seem that indeed this is true: that each analyzer (analyzer-
constructor) string serves as the description of the other string.
This is not in fact the case. For example, each string of the pair
can differ structurally, as long as the proper functions are carriec
out; when one analyzer reads the other analyzer, it will not be
obtaining a description of itself, for the two analyzers need not

be identical. The true nature of the relationship is even more
striking when we consider that either or both of the strings could
be augmented with arbitrary additional sub-strings, the sub-strings
not necessarily having any structural or functional relationships
with each other.

In Laing (1975) it had been conjectured that in any system
capable of complete, general self-reproduction there would always be
found "paired organs', such as machine and its description (though
perhaps in very cryptic form). That the relation between the machine
and its description might be quite obscure was evident. For example,
the machine could be in the form of a special-purpose constructor
of a machine, and the description in the form of a series of instruc-
tions, or of an emitter of the description (or instructions), or

the special-purpose constructor of an emitter of the description
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(or instructions), etc. Systems consisting of two such components
could reproduce if the machine or active component could act upon

the description (or instructions) in a dual fashion: first it used
the description (or instructions) to make a copy of the description
(or instructions) and second it used the description (or instructions)
to construct what was there described (or obeyed the instructions to
the same end). The self-inspection results show that such "paired
organs' are not required in the strong sense originally intended:
there need not be a machine and its compiete description present
initially. Our result says that only an analyzer-constructor need be

in "paired" form, the rest can be arbitrary.

4,23 An Improved Result

Although we have just shown that a machine can achieve a complete
reproduction of itself by employing itself as model, the strategy is
not entirely satisfactory, requiring as it does the creation and later
destruction of whole substrings (in particular the creation and
destruction of both a description of the initial machine and an emitter
of this description).

We now show how the self-reproduction by self-inspection can be
simplified. (See Figure 10,) In particular, we re-design our system
so that the information aéquired by the new analysis string need
not be temporarily stored in the description and emitter of a
description, but is acted ﬁpon as it is acquired. In this strategy,

only the analyzer of the second string will prove eventually to be

redundant and thus condemned to dissolution in the final "clean-up".
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We begin with an initial string which first produces and then
activates a separate analyzer string equipped with a locator sub-
routine. The new analyzer string is to be used to discover the
primitives of its "'parent' the original string, one by one, and to
disclose them to the original string. It does this by the following
process. After analyzing and ascertaining the type of a primitive
of the first string, the second string switches to its locator and
moves along the first string to a region which, if activated, will
construct a copy of the newly identified primitive type. 1In effect,
the first string will contain regions for constructing each of the
primitive types, and the second string will locate the proper con-
structor region and transfer activation to it. The now active first
string can construct and append to a reserved part of the second
string a copy of the primitive named. Activation is then transferred
back to the second string, and the second primitive of the first
string is read. Continuing thus, a complete copy of the original
string can be constructed and appended to the second string. At the
conclusion of the creation of the second copy of the original string,
the first string can destroy the originally created locator portion
of the second string, leaving only the copy of itself. This copy
can be activated and dispersed, completing the reproduction by
means of self-inspection.

Here our model effectively dispenses entirely with even the

temporary use of a separate description.

4.24 Simplified Reproduction by Means of Self-Inspection

Although by the construction of the last section, the self-
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Figure 10. Temporary Description Dispensed With. (i). Initial
situation. Initial machine consists of (A), a special-purpose
constructor of an analyzer and a locator, (B), a constructor, (C),

a destroyer, and (D), an arbitrary substring. (ii). (A) constructs
the second string consisting of (E) analyzer and (F) locator.

(iii). Analyzer (E) inspects original machine, primitive-by-primitive,
and communicates identities of primitives to locator (F) which
activates appropriate constructor region within (B). (iv). Construc-
tor (B) produces copies of the newly identified primitives of itself
to form (A)',(B)',(C)',(D)'. (v). Destroyer (C) removes (E) and

(F). (vi). Final situation: two copies of the original machine.
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(1).
*(Special-purpose Const) + (General-purpose Const) + (Destroyer) +

A B C

(Arbitrary) |+

D
(ii).
(Special-purpose Const)* + (B) + (C) + (D) I (Analyzer) + (Locator)+
E F

(iii).

(A) + (General-purpose Const)+ + (C) + (D) l (Analyzer) + (Locator)*
B E F

(iv).

(A) + (General-purpose Const)* + (C) + (D) | (E) + (F) + (A" + (B)'
B

@'+ "
).
(A) + (B) + (Destroyer)* + (D) | Y(A)' + (B)' + (O)' + (D)'

C

Figure 10
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inspection reproduction process can be made considerably simpler,
it remains complex, and also still requires that at each reproduction
cycle an organ be created which is later destroyed. The source of
these characteristics lies principally in the design and ground rules
of our underlying automaton system and in particular in the require-
ment that active strings always have their action directed toward
the (sole) possible other string. By re-designing slightly our
underlying automaton system we can eliminate this need to create and
destroy a subroutine, and can greatly simplify the description of
the reproductive process. (See Figure 11.)

In our re-designed autematon system for exhibiting reproduction
by means of self-inspection, the initial machine will consist of a
pair of associated strings (which need not be identical), and
reproduction will have taken place when there are two pairs of these
associated gtrings. The first string of the initial pair will consist
of an analyzer (with restorer) and a constructor (and may optionally
include some additional string of primitives not directly taking part
in the reproductive process). The action of the analyzer will be
directed toward the second string of the initial pair; the action
of the constructor will be directed toward producing the second
string of the offspring machine pair of strings. The second string
of the initial pair will also consist of an analyzcr (with restorer)
and a constructor. The action of the analyzer will be directed
toward the first string 6f the initial pair, and the action of the
constructor will be directed toward producing the first string of the
offspring pair of strings.

The reproduction process can now be informally described as
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Figure 11. Simplified Reproduction by Self-Inspection. (i). Initial
situation. There are two initial strings each possessing an analyzer-
restorer (Al), (A2), a constructor (Bl), (B2) and arbitrary sub-
machines.(CI), (C2); (Al) and (A2) as well as (Bl) and (B2) may differ
in their structure but carry out the same functions; (Cl) and (C2)

are free to be completely different in both structure and function.
(ii). The analyzer (Al) and constructor (Bl) of the first string of
the initial pair read (A2), (B2), (C2) of the second string of the
initial pair and produce a copy (A2)', (B2)', (C2)' of the second
string. (iii). (A2) and (B2) act on (Al), (B1), (Cl1) and produce

a copy (Al)', (B1)', (C1)'. (iv). Separation of original and new

pair is implemented.
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(1).
*(Analyzer-restorer 1) + (Constructor 1) + (Arbitrary 1) |
Al Bl C1

+(Ana1yzer~restorer 2) + (Constructor 2) + (Arbitrary 2)

A2 B2 c2
(ii).
(A1) + (Constructor)* + (C1) | (A2) + (B2) + (C2) - (A2)' + (B2)' +
B1
2y
(iii).
(A1) + (B1) + (C1) + (AL)' + (B1)' + (Cl)'+ | (A2) + (Constructor)* +
B2
(C2) - (A2)' + (B2)' + (C2)'
(iv).
(A1) + (B1) + (C1) (AL)" «+ (BL)' + (C1)' | (A2) + (B2) + (C2)

(A2)' + (B2)' + (C2)!

Figure 11
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follows. The analyzer of the first string of the initial machine
examines the second string of the initial machine and constructs a
separate copy of the second string. Activation is now transferred
to the second string of the initial machine. This second string noy
examines the first string of the initial machine and constructs a
separate copy of it. This new first string of the (offspring)
second machine is now activated, and the offspring pair of strings
is detached and dispersed (our automaton system provides at present
no explicit implementation of this separation process). This
completes our description of a simplified form of reproduction by
means of self-inspection (and consequent transmission of any acquired
characteristics).

This model of reproduction by self-inspection is more economical
and elegant since we have eliminated the necessity for construction
of temporary substrings and their later destruction. On the other
hand, this model of self-reproduction is more complex in.that actions
must systematically be directed toward several differzr it strings,
and joining and separating mechanisms for associated.pairs of strings
must be employed, properties we have as yet not made an explicit part

of our kinematic system.

4.25 An Alternative Strategy of Reproduction by Self-Inspection

We begin with an original string, which produces an analyzer-
constructor. This newly created analyzer-constructor reads and
analyzes the original string, then constructs a copy of the original
string at the end of the original string. The analyzer-constructor

then activates and detaches the new copy (employing a detach
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primitive). The original string can now (if desired) employ a
destroy routine to dissolve the analyzer-constructor. We thus end
with two independent activated copies of the original string.

(Note: if we allow our analyzer-constructor to persist in a free-
floating form, it will act as a reproducer of whatever strings it
encounters in the system, including copies of itself. Once multiple
free copies of analyzer-constructors exist, there will be no need
for the original strings to possess separate constructors for them;
a population of analyzer-constructors is self-catalyzing or self-
reproducing by itself, but more "interesting' systems would possess
either other strings to be copied or would augment the analyzer-

constructors with additional routines.)

4.26 Reproduction through Construction of Immature Offspring

In the process of reproduction described in 4.11 (as well as
in the process as described by von Neumann (1966)) the offspring is
constructed; in mature form, by reference to a reserved prior descrip-
tion of the initial machine. 1In section 4.21 we showed how a machine
could reproduce a mature form of itself, without reference to a
reserved prior description of the initial machine. This production
under the control of the parent machine, of offspring machines in
mature form (and even identical to the mature parent) contrasts with
the empirical biological situation where an offspring machine is
usually released to assume iﬁdependent existence before it has
attained completely mature status. We now show how, in a machine
system, offspring machines:c¢an be produced which are in immature

form (in the sense that they arc capable of carrying out at least
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some independent developmental or other action before they in turn
reproduce). We show this both for systems in which reproduction

depends on a reserved description, and for systems which it does not.

Thus, the first method subscribes to the presently accepted theory of

reproduction of organisms through use and transmission of reserved

hereditary material, while the second method is a logically consistent

model of something like the now generally discredited notion of

reproduction by reference to the parents' acquired characteristics.

4.27 Rationale of von Neumann's Machine Self-Reproduction
In his theory of self-reproducing automata, von Neumann shows

how a parent machine can construct an offspring machine which is a

copy of itself. Since von Neumann was trying tr =how thid sal
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(He did however suggest that the tape memory of the machine could
store instructions for carrying out some tasks not directly connected
to the reproductive process.) In any case dealing only with the
essential you transmit only the essential and it nust be the same

(at least anctionally). (It should be pointed out that essential
here is not precise, and it is possible that we may be able to
whittle away at what seems to be the essential reproductive system.)

Probably at least as important, von Neumann was explicitly
aware of the informal argument against machine self-reproduction,
that the process is always "degenerate'", that a machine can produce
only a machine less complex than itself. By having his self-
reproducing machine produce a machine which is identicallto its
parent, he confronted this argument directly, in its baldest form.

(He could have had a machine produce a "less" complex offspring,
which then autonomously grows to be its parent's equal, but then a
separate argument and discussion would have been required to show
that the argument from ''degeneracy'" is refuted.)

Comment. It should also be pointed out that a machine can be
designed which will produce offspring possessing all the powers of the
parent and some additional powers not possessed by the parent. Indeed,
the process of producing more capable offspring machines can be
continued indefinitely. This result was shown by Myhill (1970) who
remarks (op. cit. p. 218) that it "suggests the possibility of encoding
a potentially infinite number of directions to posterity on a finitely
long chromosomal tape, a poassibility which seems hitherto to have
escaped the notice of biologists." The key to Myhill's result lies

in the fact that successively '"better'" formalized systems for



arithmetic can be effectively discovered and implemented ("better"
means that more theorems can be proved and also that their already
established theorems may be provable in fewer deductive steps).

Each successive machine acts upon a description of itself, produces
an improved description of itself, produces an improved design, and
constructs an offspring on the basis of the improved design. (Note
that in contrast to our system, Myhill's machines act upon descrip-
tions of their present selves, supélied by their parent machines and

do not inspect or improve themselves directly.)

4.28 Reproduction of Immature Offspring by Reserved Description
We now show how an automaton can reproduce itself by the
construction, activation, and release of an "immature" offspring
machine, a machine which will go on independently to complete
its own development into a copy of its parent.
Our parent machine will consist initially of %o submachine

strings. The first string S., of our initial parent machine will be

1’
composed of two substrings: a duplicator and a constructor. The
second string of our initial parent machine will be composed of four
~substrings: a description of a duplicator, a description of a
eonstructor, a description of an arbitrary submachine, and the
arbitrary submachine itself. (This arbitrary submachine is that part
of the mature machine which will no¢ initially be part of the indepen-
dent immature offspring, and must thus be constructed by the offspring
itself, in order to complete its development into a copy of its mature

parent.)

The process of reproduction is as follows. Activation resides
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initially in the duplicator of the first string. The duplicator acts
upon the second string to produce as part of the offspring machine a
string consisting of a copy of all the descripiicn substrings of the
second string (that is, the duplicator takes no action toward the
arbitrary submachine itself, although it does produce a copy of the
description of this substring). Activation is now transferred to

the construcﬁor of the first string. The constructor reads the first
two descriptions of the second string (the description of the duplica-
tor and of the constructor) and constructs as part of the offspring
machine, a second string consisting of a duplicator and a constructor.
This offspring string is then activated and released in conjunction
with the first offspring string produced, to create the desired
"immature offspring' machine.

At this point the offspring consists of an activated string
containing a duplicator and a constructor, and a second string con-
taining descriptions of a duplicator, a constructor, and an arbitrary
machine substring. The activated constructor of the juvenile machine
now proceeds to read the description of the arbitrary machine sub-
string, and to construct the machine described. At the conclusion of
the construction, the offspring machine will have cémpleted its
development into a copy of its parent machine. (This procedure is
spelled out in Table Two.)

The above procedure is not the only strategy bv which a machine
can produce an immature offspring capable of independently completing
its development. We now describe an alternative strategy in which the
offspring machine is given developmental autonomy even earlier in the

reproductive process.
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TABLE TWO

Parent Machine

51

—

1. Duplicator

2. Constructor

Initial Situation.

N

. Description

. Description

. Description

Offspring Machine

of
Duplicator

of
Constructor

of
Arbitrary
Machine

Arbitrary
Machine

N

52

|-

Step One:

Duplicator of Parent S

acts on 1., 2., 3., of S

to

1
produce offspring Sz.
1. Duplicator 1. Description 1. Description
of of
2. Constructor Duplicator Duplicator
2. Description 2. Description
of of
Constructor Constructor
3. Description 3. nescription
of of
Arbitrary Arbitrary
Machine Machine
4. Arbitrary
Machine

Situation after Step One.
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Step Two: Constructor of Parent S. employs Description of Duplicator

1
and Description of Constructor.(from either parent or
offspring) to produce offspring Sl’ consisting of Duplicator

and Constructor. Offspring Constructor is activated and

the whole offspring machine is released.

1. Duplicator 1. Description 1. Duplicator 1. Description
of of
2. Constructor Duplicator 2. Constructor Duplicator
2. Description 2. Description
of of
Constructor Constructor
3. Description Description
of of
Arbitrary Arbitrary
Machine Machine
4. Arbitrary
Machine

Situation at immediate conclusion of Step Two.

Step Three: Newly activated offspring Constructor employs Description

of Arbitrary Machine to create Arbitrary Machine.

1. Duplicator 1. Description
of

2. Constructor Duplicator

2. Description
of

Constructor

3. Description
of
Arbitrary
Machine

4. Arbitrary
Machine

Situation after Step Three. Parent Machine initial situation has now

been achieved in the offspring machine.
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We begin with the same initial parent machine. The first string
of the parent machine employs its constructor to read the descriptions
of the duplicator and constructor, and to construct an offspring
duplicator and constructor. This offspring machine is activated to
carry out its further development independently. The duplicate
routine of the offspring machine reads the second string of the
parent machine, and copies into a separate string, for its own use,
all the description portions of the parent second string. The off-
spring now consists of a duplicator and a constructor string and a
second string consisting of a description of a duplicator, a descrip-
tion of a constructor, and a description of an arbitrary string.

The offspring constructor can now read the description of the
arbitrary string and produce the submachine there described, completing

independent development into a copy of the parent machine.

4,29 Reproduction of Immature Offspring by Means of Self-Inspection

We now show how an automaton can reproduce itself b& creating an
"immature' offspring whose specificétions are obtained by parent
machine self-inspection (not by employing a prior-existing reserved
description).

We begin with a parent machine composed of two strings. The
first string will contain an analyzer which is equipped with a
constructor and a describer , and a general-purpose constructor. The
second string of the parent machine consists of an analyzer which is
equipped with a constructor, and the finite but arbitrary '"mature"
portion of the parent machine. This arbitrary mature portion of the

parent is that part of the system which will be independently
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constructed by the immature offspring.

The reproduction process begins by the analyzer of the first
string of the parent machine examining its second string and construc-
ting a copy of the analyzer and construction portions, and a deserip-
tion of the arbitrary mature portion of the string.

Activation is now transferred to this newly created string (the
parent machine remaining quiescent). The analyzer and constructor
portions of the new string now examine the parent first string and
construct a copy of it. Upon completion of this action, the new
string re-activates the parent and detaches itself, to complete its
development independently.

The independent offspring now consists of a first string con-
taining an analyzer (along with a constructor and describer) and a
general-purpose constructor ( with a destructive»read out), and a
second string containing an analyzer (equipped with a constructor) and
a description of the '"mature portion of the parent machine. This
‘independent machine can now, autonomously, complete its development
into a copy of its mature parent. It does this by having the general-
purpose constructor of its-first string read the description of the
mature substring and construct a copy of that substring (and, since
the general-purpose constfuctor employs a "destructive'" reading
system, destroying the description in the process). When the construc-
tion is complete we end with an offspring machine which is an exact

copy of the parent at the time reproduction was initiated.
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TABLE THREE
Parent Machine Offspring Machine

i %2 21 %2
1. Analyzer 1. Analyzer
2. Constructor 2. Constructor
3. Describer 3. Arbitrary
4. General-

purpose

Constructor

This is the initial situation.

Step One: The Analyzer of Parent S1 examines Parent 82 and constructs
a copy of the Analyzer and Constructor of Parent 52 and a
description of the Arbitrary portion of SZ' This becomes
offspring SZ'

1. Analyzer 1. Analyzer 1. Analyzer

2. Constructor 2. Constructor 2. Constructor

3. Describer 3. Arbitrary 3. Description

of

4. General- Arbitrary

purpose
Constructor

" This is the

system situation after Step One.

Step Two:

Offspring 82 is now activated. This string now analyzes all
of Parent Sl and constructs a copy of it; this string
becomes offspring Sl‘ Relationship with parent is now

severed.
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System situation after Step Two.

. Analyzer 1. Analyzer
. Constructor 2. Constructor
. Describer 3. Description
of
. General - Arbitrary
purpose
Constructor

Step Three: The General-purpose Constructor of S

] reads the

Description of the Arbitrary substring and constructs

the machine there described, (destroying the description

in the process).

System situation after Step Three.

. Analyzer 1. Analyzer
. Constructor 2. Constructor
. Describer 3. Arbitrary
. General-
purpose
Constructor




Chapter Five. Further Directions

In this chapter we present a critique of our principal results,
indicate some additional results and suggest some directions further

research might take.

5.1 Self-Reference and Self-Exploration: A Critique of our

Principal Results

It has been said that no system can unaided obtain its own
complete description; that some part of a system will always be
inaccessible to inspection from within. We shall evaluate these
assertions in the light of the both new and old results described in
this paper.

The results of von Neumann of self-reproduction and of Lee on
self-description would seem to refute the assertion that a system
cannot obtain its own complete description. For in the yén Neumann
machine-reproduction process, the machine constructs, structural
element by structural element, a duplicate of itself, and in the Lee

)
self-description result, the machine produces a description of all of
the computationally relevant elements of its program.

Now there are senses of which it might be said that von Neumann
and Lee have failed to overcome the claim that no system can unaided
obtain its own complete description. For von Neumann and Lee, by
description is meant a structural description, the information for
specifying the type and location of all of the basic componentry of
the system, and it may be that in the above enunciated putative

constraints on self-description, something different or in addition,
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is meant by description. For example, complete description may be
intended to mean not only a description of structure but of the
activity of that structure, or the possibic behaviors or computations
of that structure. Complete description may even be taken to include
the meaning or significance of the structural or behavioral elements,
or a description of the engineering of some implementation of the
system or even a detailed description of all the physical or chemical
componentry of the system. The von Neumann machine exists in a
supporting carefully contrived artificial regular array medium and
the Lee self-describing Turing machine exists in a supporting world
of assumptions of tape moves and reading, reading, printing, erasing,
state changes, etc. None of these supporting assumptions are
explicitly expressed or acknowledged in the process of self-
description.

In the assertions which head this section, it is also required
that the self-describing process be unaided, and it might be claimed
that despite the putative autonomy of both the von Neumann self-
reproducing’machine, and the Lee self-describing machine, the
"environment of assumption™ of the system in which the machines are
embedded, somehow spuriously, provides crucial information to the
machine. There is also another sense of "upaided” which may be
relevant to the discussion, In both thé von Neumann and Lee cases,

a description of at least some of the system is ab <nitio already a
part of the system. In the von Neumann machine a "tape'" region of
the machine contains (in the form of instructions for construction)
a description of all of the non-tape part of the machine (both parts

which have a role in the reproduction process, and those which carry
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out an arbitrary computation); in the Lee result, the machine contains
a special sub-routine whose output when analyzed in the proper

manner, is not only a description of both the essential self-
describing and computationally arbitrary parts of the machine but

a concealed form of the special sub-routine itself (from which an
explicit description of the sub-routine can be retrieved). Thus, it
might be claimed that in both the von Neumann and Lee cases, important
self-description information was made available to the machine ab
initio and that thus the self-description process cannot rightfully be
spoken of as '"unaided'.

The principal goal of the present paper was to explore the extent
to which this presence of ab initio descriptions could be eliminated.
In the von Neumann and Lee cases each arbitrary part of the original
system (as well as the inferential and other machinery of the system,
including in the von Neumann case, constructional machinery) was
obliged to have a description counterpart present initially (indeed,
von Neumann argued that it was necessary to his process of self-
reproduction). In the principal results of this paper we showed that
there need be no counterpart (and thus no concealed description) for
either the arbitrary part of the system or the inferential parts of
a self-describing system. A part of the initial system produces a
separate analyzer which then examines and provides a description of
all of the original machine. This procedure would seem to eliminate
completely the presence of ab initio concealed descriptions, and thus
also the criticism that the system is (or has been) aided in its
self-description endeavor. Several objections can however yet be

raised. The first is that by constructing a new machine which treats
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the original as object to be analyzed, the integrity of the original
machine has been violated (fwo distinct machines being employed, and
the original machine thus not being of itself self-inspecting and
self-describing). A second objection might be that even if the newly
created distinct analyzer is acceptable as merely an auxiliary part

of the original machine, in a sense the description of the analyzer
itself, is, in Barely concealed fashion, present in the original
machine. That is, it may be claimed that the special-purpose
constructor which produces the analyzer (which can in turn analyze the
entire original machine) is merely a potential form of both an
initially eiisting machine and a description of that machine. Thus
(it may be objected) the procedure has not yet satisfied the criterion
that it, '"unaided" and 'from within" obtain its own complete descrip-
tion. Be that as it may, we have reduced the essential core of the
problem to a fixed finite part (the constructor of an analyzer) of

any otherwise arbitrary and indefinitely large machine.

The (possibly irreducible) "hard core" of machine self-description
or reproduction can thus be expressed in terms of an initial machine
which contains a fixed finite special-purpose constructor of an
auxiliary machine which reads or analyzes the original machine and
then acts to produce a duplicate or other transformation of the origi-
nal machine. (Once a duplicate of the original machine is produced,
the process can repeat itself, more duplicator machines being then
produced to duplicate yet more ''parent'" machines. When this happens,
the nature of the process can be transformed, since, in a population
of such machines, a duplicator can act directly on other duplicators

to reproduce them, directly without the requirement for any intervening
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additional original "parent' machines. In a biological interpreta-
tion, at this point, variations and combinations of parent machines
or duplicator machines can be pictured as proliferating subject to

evolutionary selective pressures.)

5.2 Machine Processes of Regulated Growth and Repair

Most of our results so far have been presented as applications of
a theory of machine construction and self-duplication, that is, as
an analogy to the biological processes of physical growth and reproduc-
tion of individual organisms. In this respect, it is clear that one
direction in which the rescarch might he extended is in the modelling
of regulated growth, development, and repair or regeneration in
individual organisms.

The techniques we described in the last chapter provide a means by
which a machine can acquire a complete description of its present
self, The Lee-Thatcher technique provides a means by which a machine
can acquire a complete "master' original description of itself. Since
a single machine can thus produce for its use a copyv of both its
present and original self and compare them, the basis for a self-
monitoring and self-diagnosing and consequent self-repairing or
replacing system is provided.

We outline the organization and behavior of such a self-

diagnosing machine system. We begin with an initial string consisting

of
(1) an emitter-constructor of an analyzer
(2) a destroyer (of an analyzer)

(3) an analyzer
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(4) an inference routine
(5) (optionally) a general processor
(6) an emitter of a description of (1), (2), (3), (4), and (if

present), (5).

The machine begins by activating the emitter-constructor ond producing
an analyzer capable of examining the original string. This analyzer
is activated and examines the original and prints out its description
in a separate string. Thus the string will contain a description of
substrings (1), (2), (3), (4), (possibly)} (5}, and (6); that is,

the present composition of the original string. Activation is now
relinquished to the destroyer routine of the original string. This
routine destroys the second string (analyzer). The emitter is now.
activated and produces on the external string a description of the
non-emitter part of the original string. Activation is then shifted
to the inference routine, wﬁich examines the emitter output, infers
the structure of the emitter, and prints out its description. The
external string will now contain a description of the machine as
presently constituted, and a description of the machine obtained by
means of the emitter, and these two descriptidns can be compared and
any discrepancies noted and acted upon.

Of course this self-diagnosis scheme may fail if corruptions of
constituents occur in the diagnostic system itself. If however the
sum of parts (1), (2), (3), (4),and (6) is small and infrequently
employed relative to (5), the scheme might still have considerable

utility.,
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5.3 Regulated Growth
Since in our KAS system we can exhibit a machine which possesses

(or which can be designed to possess) a complete description of what

its structure should be and the capacity to inspect itself and produce

a description of what its structure presently is, our system possesses

the logical basis for exhibiting machines possessing regulated

development (since the machine can constantly adjudicate between what
it is (as a consequence of any vagaries in the environment) and what
it "ought'" to be on the basis of its reserved complete description).

The KAS system, as presently formulated, is however completely

deterministic, and thus provides no scope for exhibiting the uncer-

tainties which would make the modeling of regulation, error control,
self-repair, reliability, etc. meaningful.

We will therefore content ourself with suggesting a few very
simple modifications of our KAS system and eXplore briefly some of
the ways in which aspects of regulation of development might thereby
be exhibited.

1. In our present formulation, a machine in the system always assumes
that a primitive newly recruited into the construction process is
always of the N type. We might weaken this assumption of
determinate arrival of N types, making the environment of the
machine less certain, types of primitive other than N presenting
themselves at the construction site. The machine would then
have to "fegulate” its construction action by first subjecting
any recruited primitive to a test, and then either modifying or
rejecting non-N types.

2. We might severely limit the construction capabilities of our
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machines, so that they cannot directly construct some arbitrary
part of themselves called for in their internalized description.
The arbitrary part might be constructed by chance concatenations
of primitive component types from the environment. This chance
construction could be inspected by the machine and its structure
compared with the record of what it ought to be, and either
permitted to stand, or reduced and dispersed, according as the
test is passed or not.

3. Another strategy would lie between these two. In this, the
environment would contain various types of primitives (not
solely N type primitives) and the direct constructing capability
of the machine would be limited to concatenation of the primitive
types as they are encountered. This (in almost all cases)
"incorrect'" structure could then be inspected, compared with the

""proper" description, and set right.

5.4 Some Formalizable Problems

We have so far largely confined ourselves to considering single
machines interacting with their descriptions, their constructed sub-
machines, or their offspring during the process of reproduction.
We now briefly consider some problems which arise when we permit
several possibly different, simultaneously active KAS strings to
interact. A machine can for instance be conceived of as encountering
strings of primitive constituents of the same sort of wnich it is
composed. These strings may be passive strings of 0,1 primitives,
or can themselves be active or passive machines, and the possible out-

comes of their encounters and interactions should be explored.



Can in general a machine presented with a machine and a complete
structural description of a machine tell in fact whether it ¢s a
description of the machine? (We have shown that in the KAS a
machine can analyze a passive machine and can produce a descrip-
tion of it. By slight modification of systen properties we
could undoﬁbtedly arrange for switching of machine attention
between two separate other strings, one a passive machine, one

a description in a known uniquely decipherable code. By this
means it could be estahblished whether or not the given descrip-
tion was of the given machine. The unresolved issues revolve
about cases where the given machine may be ceiZive and thus may
resist or corrupt the analysis process, or even radically
transform itself during analysis, and where the primitives may
possess different relationships than those assumed by the
analyzing machine, and where the coding syster may not be com-
pletely known, or where unique decipherability may not hold.)
Can a machine presented with two strings tell in general if the
strings are machines, whether they are identical machines; if
they are both descriptions, they describe the same machine; if
they are a machine and a description, whether the description
is of the machine? (If two strings have the same sequence of
primitives, then we might be able to assume that, in the same
frame of reference, they have the same significance. If however
two strings differ, they may still bear some very close relation-

ship, a relationship which may be difficult to discern. Two

machines, structurally different, may carry out the same functions

or computations, although their particular courses of action,
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their behaviors, may differ. We have (in Section 1) remarked on
the metamorphoses of descriptions and machines. Agreement
between a machine and its description in understood 0,1 code
words can readily be confirmed; what however if a machine M is in
the form of a constructor of M, or if M's description is in the
form not of its 0,1 code words, but in the form of a standard
emitter of its description, or even of a nczn-siandard emitter of
the description and the explicit form is not known by the
examining machine?)

Can a machine, given any other machine produce a description of
it? (The central issue here is whether a machine can analyze 21l
active as well as passive machines, and whether the active aspect
of a machine, if identifiable, can be appropriately captured in

a description.)

Can a machine given a string tell if it is a description of
itself? (We have shown that a machine can, by several strategies,
produce its own description. We have also noted that a descrip-
tion can have many forms, and this fact will complicate the
comparison. In addition, a machine, in the process of obtaining
its self-description may alter or augment itself, so that the
question of which self, at which time would have to be decided
upon. )

Can a machine given a machine tell if it is a duplicate of
itself? (We have already pointzd out that two machines might be
computationally equivalent, but structurally different. In
addition, if duplicate implies an identical pattern of activity,

then attempts at analysis may produce immediately contradictory
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behavior as each machine tries to move to the top of the
opposing machine program to begin a mutual analysis procedure.)
Can a machine, given a string tell whether it could have con-
structed the string? (A machine can produce its own descrip-
tion and then simulate the actions of the described machine. If
the given string appears as one of the products of the simula-
tion, well and good; if not, the machine may not be able to
decide. This 'paternity' question is clearly related to the
word-problem and other derivability considerations. A simpler,
perhaps tractable form of the question would assume that the
string could be produced only by a standard emitter or construc-
tor within the machine.)

Can a machine, given a machine, tell whether the machine could
have constructed 2t? (This is a more convoluted form of question
6., and it is conjectured that the general problem of "knowing
one's own father" is unsolvable, while special cases where the
offspring is produced in "standard" fashion may be decidable.)
Can a machine given any other (possibly active) machine destroy
it? (The answer here will probably depend very heavily on the
design of the particular machine system.)

Can a machine destroy itself? (A machine actively destroying‘
its active self seems to make it impossible to elude the issue
of active machines clashing. If in a given system it can be
proved that a machine cannot completely destroy itself, then
the issue shifts to producing the smallest or least significant
"residue" machine.)

Can all machines (including active machines) be constructed?



116

(For some systems of constructing automata, eg. von Neumann's
cellular automaton system, it is known that Garden-of-Eden
configurations exist, configurations which can be initially
placed in the system but cannot be produced from within the
system. The question of creating KAS machines with all possible
activated configurations has not been explored.)

In general conclusion, there are probably 'reasonable'" conditions
under which the answers to most of the above questions will be in the
affirmative; that is, if the strings to be examined are composed of
passively analyzable primitives, if the machines are passive, if the
coding employedl in the descriptions is known to the inspecting machine
and is uniquely decipherable, if the question posed relates to the
structure of the string, if two machines are the '"same'' only if they
have identical constituent structure.

If on the other hand, not all the primitives are analyzable as
passive entities but must be identified by their active behavior,
if the machines may be active (and thus possibly alter themselves or
their examiners in the course of inspection), if the coding scheme for
descriptions is not known to the examining machine, or contains
ambiguities, if two machines are to be considered the same if, though
their structure differs, their computation is the same, then many of

the questions posed above may be in the negative.

5.5 Some Problems of Sophisticated Systems
The '"formal" questions posed in the last section have some
considerable bearing on specific problems of complex systems. For

example, the essential problem of the immune system of vertebrate
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organisms is to be able to create a mechanism which will selectively
recognize, disable and expel entities not like the self and at the
same time to tolerate (which is itself a form of recognizing) the
componentry of the self. This basic dichotomy - self vs. not-self -
(and consequent tolerance or elimination) can be further ramified so
that among the self entities those which are to be repaired are
distinguished from those which are to be replaced, etc. and among
those which are not-self whose which are to be clumped and expelled
are distinguished from those which are to be sought out, broken down,
and consumed.

The notion of identifying and behaving differently toward
constituents of self and not-self seems to imply that such a system
must possess internalized descriptions not only of self but also of
the non-self environment of the system. The system must model
within it, not only what it itself should or should not be, but what
its environment should or should not be.

So equipped, it will be seen that such a system will possess the
logical basis for regulating the conditions of its local environment,
viz., the system may possess an internalized standard model of the
desired condition of the system proper and also its environment, its
"external self', the means of generating descriptions of the actual
status of the system proper and its environment, and the means to
alter itself or the environment in ways to move the actual situation
closer to the desired.

It should also be noted that while macro-molecular biochemical
systems provide a very natural interpretation of the systems and

processes we have described here, other interpretations (and thus
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applications) are possible and should be considered. The mechanisms

we have described can readily be interpreted as cognitive or even
social processes. For a system (an individual organism, a family,

a society or nation) to discern, to employ foresight, to plan ahead,
indeed to exhibit many other sophisticated psychological or social
behaviors, it must to some degree have available to itself a model

both of itself and its pertinent relationships to the world about

it, as well as some capacity for comparing models of what Zg with

what should be, and means to affect what is so as to alter it in the
direction of what should be. (For an examination of this notion of

the use of internalized models of self and environment in psychological
and social behavior see Craik (1943), Boulding (1956) and Miller, et al

(1960).)
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