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realizing in real-time the events denoted.

For further information: The complete report is available in the major

Navy technical libraries and can be obtained from the Defense Documenta-

tion Center., A few copies are available for distribution by the author,






Realization and Complexity of Commutative Events

In the first section we indicate how from any commutative regular
expression a tape machine realization may be obtained, (Most of these
results have already appeared, albeit implicitly and piecemeal in [L-W]
and [L], and will be presented here rather informally.) In addition we
indicate how from any machine realizations of the sort considered above
a commutative regular expression which denotes the machine behavior can
be obtained. The second section of this paper considers the degree of
complexity counter tape machines must attain in order to realize various
classes of commutative regular events,

I would like to thank Donald Stanat of the Logic of Computers Group
whose careful criticism of early drafts of this paper has led to the
elimination of many of my rambling inaccuracies. That the present
version of this paper is still so untidy is the result of my impatience

and not of any failure on his part to point out my remaining lapses.,

I
The use of regular expressions (RE) to denote the behavior of finite
automata is now well known (see [K], [C-E-W], [M-Y]). Commutative
regular expressions (CRE) are less well known, CRE are closely related
to RE, If RE denotes a regular event (an event realizable by a finite
automaton) then CRE denotes the event (set of sequences) consisting of
the set of sequences denoted by RE and in addition all the sequences

obtained by all possible permutations of the letter tokens of the sequences



of RE. Fundamentally then, CRE determine numbers of kinds of letters
in a string; the position of the letters in the string is, essentially,
of no consequence,

Despite the "weak" structure of these events, investigations of
them have proven interesting and fruitful in several respects., The CRE
constructed on an alphabet of a single letter always denote finite
automaton behaviors, and these single letter, ''naturally" commutative
events have been employed to show that the (ordinary) language of regular
expressions is not finitely axiomatizable (using only simple substitution
as a rule of inference. This problem was posed implicitly in [K], and
solved in [R]; for successful "finite" axiomatizations employing more
powerful rules of substitution and inference, see [S] and [A].)

The algebraic properties of CRE have been considered in [L-W], and
in [G], and recently in [P]; they have also been mentioned briefly in
[B]; the relation of CRE to formal languages has been touched upon recent-
ly in [G-S].

As is noted in [L-W] and in [G-S], a CRE may denote the behavior
of an infinite state automaton; i.e., it is not the case that for every
CRE there is a RE denoting the same event, (For a simple proof, consider
the event denoted by C[(ab)*] (C is the commutative closure operator;
C[(ab)*] thus denotes the set of all strings in a,b, in which the number
of a's is the same as the number of b's.); the intersection of this event
with the (genuinely) regular event (a*b*) yields anbn, which is known
to be nonregular; but regular events are closed under the boolean opera-

tions; assuming C[(ab)*] is regular leads to a contradiction.)



In [L-W], a method is presented by which, given any CRE it can be
decided whether or not the CRE denotes the behavior of a finite automaton;
if the CRE does denote a finite automaton behavior, then there is an algo-
rithm for finding the automaton. In [L-W], and in [L], informal techniques
are developed for the construction of state diagram representations of
minimal (finite or infinite) automata having as behavior any CRE event,

For the infinite state automata, the constructing of infinite counter-
tape realizations (finite state automata to which are appended one or more
infinite counter tapes) is discussed.

The CRE which denote the behaviors of infinite state automata, and
their realizations by infinite counter machines are the principal consider-
ation of this present paper, As will be seen below, the CRE and the
events they denote are, intuitively, of varying complexity, In this paper,
a natural ranking of the CRE is given, and this classification shown to
parallel a natural ranking of machine realizationms.

From [L-W], any RE has a related CRE (throughout this paper, unless
otherwise specifically noted, all expressions will denote commutative
events); the CRE can be put into a '"quasi-normal form" consisting of
a disjoint union of constituent CRE's (CCRE), (Every CCRE is also, of
course, a CRE,) Each of the CCRE will consist of a concatenated sequence
of words, some of which may be starred. For example (aab (aa)* (aab)*)
might be a CCRE, These CCRE are always of star-height 1 (i.e., no star
operator need ever act over another star operator since the commutativity
property assumed always breaks down the effect of star-height). The

"star-length'" of a CCRE can however be indefinitely large. Star-length



is the number of concatenated starred words in a CCRE, Star-length of
CCRE is closely bound up with the cardinality of the alphabet upon which
the CRE are constructed, From [L-W] (in its general form, the result is
by Give'on) any CRE over an alphabet of k letters can be written in the
form of a union of constituent CRE in which the events denoted by the con-
stituents are disjoint, and where the maximum star-length of any CCRE is
k. This can be seen from a consideration of vector independence in
k-space, each of the concatenated starred words determining a vector,

This suggests that a complexity ranking of CRE and their related
events can be constructed on the (inter-related) measures of alphabet
cardinality and star-length,

Definition: The alphabetic complexity of any unstarred word (regard-

less of number of kinds of letters) is 0. The alphabetic
complexity of a starred word of a CCRE is k-1 where k is
the number of different kinds of letters of which the
starred word is constructed,

Definition: The expression complexity of a CCRE is the sum of the

alphabetic complexities of the starred words of the CCRE.

Definition: The expression complexity of a CRE is the sum of

the complexities of its components,
Definition: A CRE having complexity m will be called an m-CRE,
For example, the CCRE (aab)* has complexity 1 (and is thus a 1-CRE);
the CCRE (abbc)* has complexity 2; the CCRE (aabb)* (abc)* has complexity

3; the CRE (aab)* (aabb)* (abc)* has complexity 4, (abb)* U (aa) (aab)*



is a 2-CRE,
Since the alphabet cardinality and star-length of CRE are inter-

dependent, the maximum complexity for CCRE on k letters is k(k-1) (thus

the maximum complexity for CCRE on a one letter alphabet is 0, on a two
letter alphabet is 2, on three is 6, four 12, etc.).

This ranking scheme gives complexity 0 to commutative expressions
realizable by finite automata and complexity 1 to the CRE (ab)*, (this is
the "simplest' non-finite state commutative event). The scheme assigns
(abc)™® the complexity 2, while the "most complex' events on two letters
(those with two concatenated starred words, each word in two letters,
e.g. (ab)*(aab)*) also have expression complexity 2,

We wish now to show that this complexity ranking of CRE and CCRE
has a counterpart in a complexity measure for the ''simplest'" machines
realizing the CRE and CCRE, Potentially, there are many ranking schemes
we might employ: number of states, number of feedback loops in logical
network realizations, graphical-topological properties of state diagrams
(accessibility, connectedness, planarity, etc.) speed of acceptance by
linear bounded automata, tape direction reversals, number of tape sweeps,
algebraic properties of the underlying group and semigroup structures, etc,

The classificatory characteristic we employ here is number of tapes. Now

since a (single tape) Turing machine can be constructed so as to compute

any recursive function, and since CRE events are safely within the recur-
sive sets, severe additional restrictions must be imposed on our tape
machines before they begin to reflect, with much fineness of discrimination,

the complexity differences among CRE. The first restriction we impose is



that our machines not be allowed to write on or to erase their tapes;

that is we restrict ourselves to machines with infinite counter tapes

(indefinitely extendible tapes, blank except for a single marker, called
the zero, or "start' marker; these tapes can be viewed as counters capa-
ble of storing the positive and negative integers, and zero, the machine
able to change the contents plus or minus one at each '"atomic move', and
capable of distinguishing only between blamk squares standing for a pos-
itive or for a negative integer, and the marked square standing for the
number zero).

(This restriction to counters is not a particularly strange choice
for the events under consideration; the commutative property destroys
most of the significance of order in the events, so that the problem of
acceptance of elements of the events is reduced to distinguishing complex

conditions for numbers of occurrences of letters,)

That this restriction to counters is in itself not very useful is
seen clearly from [M] where it is shown that a machine with two (single-
ended) counter-tapes can compute any recursive function, We must there-
fore impose an additional condition on our machines. This is the condi-
tion of "real-time' acceptance of events., We require that the machine
signal its acceptance or rejection of an input sequence immediately upon
reading and acting upon the final symbol of the sequence,

The machines we thus arrive at are finite state control automata to
which are appended infinite counters, and which accept or reject in real-
time,

Relating the capabilitess of these infinite state machines (taken

together with finite state commutative machines) to commutative regular



expressions is the principal subject of this paper. We will show that
any m-CRE can be realized as the union and intersection of behaviors of
commutative finite state machines and at most m infinite counter-tape
machines.

We begin by making more precise our notion of finite state commuta-
tive machine and infinite state commutative counter-tape machine,

Each CFSM (commutative finite state machine) is of the form C(k,p)
where k is the length of a linear ''lead-in" of states, and p is the length
of a cycle of states, The CFSM can receive input sequences composed of
a single letter and accept all and only sequences of length = k + n.p,
where k,p are the '"lead-in" and cycle lengths as above, and n = 0, 1, 2, ... .
(That is the CFSM is a counter with index k and period p and accepts all
sequences of length k mod p.)

A 1-CTM (a counter-tape machine with a single counter tape) receives
input sequences constructed on a 2 letter alphabet, Each 1-CTM is

an ordered quadruple <ﬁl‘ Gz, CT, Aj> consisting of Gl' €., each a cyclic

2
counting transducer for one of the two kinds of input letters; (T,
a counter-tape; and A, a finite set of acceptance conditions,

A € of a 1-CTM is completely specified by assigning values to the
quadruple: € = <3:; k,p; €>~ where 3 is one of the (2 kinds of) input
letters; k,p, are index and period of the counter (as above for the CFSM
and take positive integers or zero as values; and s is +1 or -1 (these
are signals to move the counter-tape one square in a positive or negative
direction), Theos and s of El, €, of a 1-CTM are constrained in that

2
El, CZ must have differents , as well as having s of opposite sign,



The counter-tape CT is a (doubly) infinite tape, ruled into squares,
but completely blank except for a single distinguished square, the ''zero"
square or empty counter symbol, The zero square is to be under scan
initially,

The acceptance conditions A are of three sorts Z, P, N (for zero,
positive, negative). The precise specification of acceptance conditions
will require some preliminary definitions,

Consider the cycles of states Pp» Py (which are the periods of

G,, L, respectively) and consider the set of all pairs of states where

1?2

the first member of the pair is a state of the Py cycle, and the second

member of the pair is a state of the P, cycle, We partition the state

pairs into three sets:

A) The singleton set consisting of the final state of the 1 cycle,
and the final state of the P, cycle,

B) The set of state pairs in which the ratio of the (partial) period
achieved in p, to the (partial) period achieved in P, exceeds
the ratio Py to D,

C) The set of state pairs in which the ratio of the (partial) period
achieved in py» to the (partial) period achieved in P, is less
than the ratio of P, to p,.

Let us call these above three conditions state conditions A, B, C

respectively,

Acceptance Conditions

Z : Z-acceptance in a 1-CTM takes place if the counter is at zero and

state condition A obtains (otherwise non-acceptance).



P : P-acceptance in a 1-CTM takes place if the counter is at zero and
state conditions A or B obtain, or the counter is positive (other-
wise nonacceptance).

N : N-acceptance in a 1-CTM takes place if the counter is at zero and
state conditions A or C obtain, or the counter is negative (other-
wise nonacceptance).

(Notice that the acceptance characteristics for any given 1-CTM
impose only a fixed and finite number of conditions. Notice also that we
assume that knowledge of CT being to the right or to the left of the zero
mark is always available, although we do not explicitly discuss how we
might employ machine states to record this parity.

One way to handle the matter explicitly is to enlarge the definition
of CT (the counter-tape) to include a tape-state monitor, When CT is
zero the monitor observes this directly and registers zero; as soon as
a +1 move signal is received, the monitor registers positive, and continues
to register this until the zero count again appears on CT, at which the
monitor registers zero; similarly for -1 and the negative region of
the tape,

Yet another way in which the acceptance activity might be carried
out is given in the example of machine construction in the final pages of
[L].)

A 1-CTM operates in the following fashion. With each of the El, Gz
finite counters beginning in its initial state, and with the infinite
counter CT set at zero, input sequences on two letters are received,

each finite counter, undergoing transitions independently counting its



own kind of letter token. Every time a final state is reached in either

)

can thus be viewed (taken together) as transducers from the input alpha-

of the finite counters an output move signal is sent to CT, (The €

bet of two letters, to an output alphabet of +1, -1, 0 according as CT
is to move right (positive), left (negativq, or not at all,)

After receipt of each input symbol, the state pair of the finite
counters together with the state of CT will determine acceptance or not
of the input sequence so far received,

An m-CTM will consist of m 1-CTM operating synchronously, and will
possibly include any number of CFSM (also operating in synchrony). That
is, the behavior of a m-CTM is composed of unions and intersections of
behaviors of constituent CFSMs and m 1-CTMs,

When an m-CTM is displayed as the synchronous behaviors of separate
machines (CFSMs and 1-CTMs) combined by union and intersection symbols,

we will call this the Decomposed Form of the m-CTM and may abbreviate it

as an m-CTM-DF,

That every m=-CRE can be realized by an m-CTM is the first result
to be shown,

The description of the construction of m-CTM from m-CRE will be
presented very informally, (The notions are genuinely very simple, but
unfortunately any attempt to be formal produces a cloud of subscripts
and superscripts, etc, which wholly obscures this simplicity.)

Let us exclude from our attention for the moment those events which
are realizable by CFSMs (by results in [L-W] we can always distinguish

these and obtain these required finite state zero-complexity automata).

10



We concentrate first on the constituent expressions of CRE. These
constituent CRE have two parts, a prefix part (possibly absent) consist-
ing of an unstarred word, and a body consisting of zero or more concate-
nated words, each of which is starred, If the CCRE is constructed on
an alphabet of n letters, then the number of different kinds of letters
in the prefix word or in any single word of the body is of course at most
n. In addition the number of words in the body need be at most n (this
is the star-length). The event denoted can be expressed as an (infinite)
set of points in an n-dimensional integer lattice coordinate system.

The body of the expression denotes an infinite oblique process of points
in the lattice system; the prefix (if it is present) determines a relative
origin at which the infinite oblique process denoted by the body is
initiated,

Ke now make the following assertion: any constituent m-CRE event is
realized by the intersection of the behaviors of a (possibly compound)
finite state machine with the behaviors of zero or more 1-CTM, where
the number of 1-CITM employed is m. That is, the m-CRE can be realized
by a special form of m-CTM-DF,

We now briefly discuss further the prefix part of the CRE and explain
why we are free to exclude consideration of it from much of what follows.
The prefix denotes a finite set of conditions which must be satisfied
along with the (infinite set of) conditions of the body of the expression,
In the set of sequences in the event the expression prefix merely imposes
the requirement that the ultimately accepted sequences contain at a min-

imum a certain fixed number of certain kinds of letters, In the inter-

11



pretation by n-dimensional coordinate system, the expression prefix
merely translates, from the origin of the n-dimensional system to

a relative origin, the initiation point of the infinite processes.
Graphically, the prefix imposes ''lead-in arrays' of states on machine
state diagram realizations, The essential point is this: the conditions
imposed by prefixes can always be realized by a single finite state
machine a copy of which can be "prefaced" to each of the machines we
require to realize the body of the expression., (The specific construc-
tion of these prefix, lead-in arrays is given in [L-W].)

We come now to the body of the expression., Each of the words of the
body of the expression determines an oblique infinite process of points
in n-space where n is the number of different kinds of letters in the
word, Each of the words of the body can be viewed as a vector of points
in n-space, all vectors having in common the origin point (or a relative
origin point imposed by the prefix), The event denoted by the body, is
given by all of the points determined by all sums of the vectors with non-
negative coefficients, This therefore includes those which are in the
periodic process on each of the vectors themselves, certain points which
lie on the planes defined by each pair of vectors, and certain points
which lie in the '"volume" defined by the vectors (the volume bounded by
the planes formed by vector pairs).

Let us call the volume defined by the vectors along with the planes
formed by vector pairs, the region of the event,

The event forms, within the region, periodic patterns of points in

the space., (The event does not necessarily include all the points in

12



the region,)

Imagine the pattern of points (denoting the event) which lies in
the region to be extended throughout the whole n-dimensional integer
lattice space, Let us call this set of points the Extension (abbrev, Ext)
of the event, This set of points (the Ext of an event) itself denotes
an event, From results in [L-W] and [L], the Ext event is always a finite
automaton event, and the desired finite automaton is readily obtained.
In particular if E is an event, then Ext(E) is the smallest finite state
event which satisfies E C Ext(E). (Consider the following example in
two-space, Take as CCRE body the expression E = wl*wz*, each word being

in two letters and, to avoid co-linearity, the ratios of the two kinds of

letters different for W E, by itself, denotes an oblique, fan

2
shaped pattern of points in two-space (in the first quadrant). In the
expression Ext' = m(wl) + n(wz) let m,n run over the positive and negative
integers, and zero., The "event" denoted, if expressed in two-space,
extends the pattern of points denoted by wl*wz* over the whole four
quadrants, If we take only those words of Ext' which have positive value,

we get Ext E, the Extension of w *wz* throughout the first quadrant.

1
(Ext of an event as we are using it here might therefore be more accurate-
ly called Pos(itive) Ext,))
Lemma 1: a., Ext of a CCRE is a regular event,
b. Any Ext event is realizable by a finite state commu-
tative machine (in the sense of [L-W]).

c. Any commutative finite automaton can be expressed as

product of n finite counters (CFSM) (one counter for

13



each of the n orthogonal directions of the space).
(These results are contained implicitly or explicitly in [L-W].):
The Ext result gives us a machine which defines a pattern of points

throughout our discrete descriptive space; in the region of the event
(denoted by the body of the expression) the Ext event is precisely the
event desired, The problem now is to show how (infinite) machines, having
the desired complexity properties, can be employed to limit the acceptance
space of the Ext event to the region of the event, That is we wish to
intersect the behavior of our finite Ext machine with a k counter-tape

machine (or with k 1-CTM) where the k-CTM will accept only in the region

of the event, (From this point on it may be easier to think of the desired
event as including all the lattice points in the region; this is of course,
not always the case, but the functions of the infinite counters in realizing
CCRE may be easier to understand if this nicety is temporarily ignored;
the essential problem is seeing how counter-tape machines can be used to
restrict acceptance behavior to the region of the event.)
Statement 1: The region is defined by the (2) planes determined by
the n '"vectors" of the body of the CCRE,
Statement 2: Each of the "vectors' is completely determined by one
of the separate words (of the CCRE "body"); (these
words are each of the form (agaqar...az)*.

273

r...aﬁ)* can be realized by

Statement 3: Any word of the form (agaga3

an (n-1)-CTM,
Statements 1 and 2 are obvious. In Statement 3, the first 1-CTM

checks p 2s off against q 2,5, the second 1-CTM checks q 3,8 off against

14



T a.s, etc, Altogether (n-1) 1-CTM are required. An input sequence is
in the event if and only if each of the separate n-1 tapes simultaneously
read zero (and the n-1 control automata are in the proper internal states).

Lemma 2: The region of any event which has expression complexity m

can be realized by an m-ClM,

Combining Lemmas 1 and 2 we get:

Theorem 1 (Construction): a. An m-CTM can be constructed to realize

any m-CRE in real-time,

b. The maximum expression complexity for events in n letters
can be realized in real-time by n(n-1) 1-CTM behaviors
intersected with the behaviar af w (luite , single (fSky,
cyclic counters (CFSM),

(Note that (despite (a) above) we have not provided a complete
algorithm for the desired machines, although such an algorithm clearly
exists., The obtaining of the prefix machines and the obtaining of the
Ext machines can easily be made algorithmic, The obtaining of the desired
1-CTMs is also possible, although calculations would surely get laborious.,
Employing techniques of analytic geometry, take the vectors, pair by pair,
obtain the plane defined, and find the intersection this plane will make
with two of the coordinate system planes, Lach of these two intersections
of the plane of a vector pair with coordinate planes determines a line in
the two respective coordinate planes. The total number of these lines in
the coordinate planes will be n(n-1) where n is the number of vectors,
These lines in the coordinate plane are each realizable by a 1-CTM; when-
ever the 2 1-CTMs determined by a pair of vectors are at zero count, the

input sequence is denoting a point on the plane defined by the vector pair;

15



whether the next input letter leaves us in the plane defined by the vector
pair, takes us further into the region of the event, or takes us out of
the region, can be recorded internally, (The machines are assumed to be
able to remember whether CT is at zero, is in its positive part, 0, or

in its negative part.) Similarly for all other vector pairs, etc., the
n(n-1) 1-CTM being sufficient to define the region of the event,)

The results outlined above, showing how, from any CRE a machine realiz-
ing the event denoted can be obtained, suggest the following converse prob-
lem: from any CTM, obtain a CRE such that the event denoted by the CRE is
the behavior of the CTM,

Any m-CTM can be decomposed into CFSMs and 1-CTMs,

Lemma 3: From any m-CTM the (behaviorally) equivalent CTM-DF con-

sisting of CFSMs and m 1-CTMs can be obtained,

This is a consequence of the definition of a m-CTM from constituent
machines; an m-CTM is merely a congery of CFSMs and m 1-CTMs all acting
in parallel, the m-CTM behavior being unions and intersections of behaviors
of synchronously operating CFSMs and 1-CTMs,

Definition: If in the CRE language we allow the use of the inter-

section symbol N, we will call the resulting language
CRE- N, and expressions in this language we call CRE-N
expressions,

Lemma 4: From any CTM-DF a CRE- N expression can be obtained such

that the event denoted by the CRE- N expression is the
behavior of the CTM-DF,

Sketch of Proof: A decomposed form CTM consists of a union and

intersections of machine behaviors. The machines are of

16



two sorts, finite state cyclic counter automata, and
single tape machines with very simple structure, CRE
expressions for the finite state machines can be obtained
by any of several simple procedures. The cyclic portion
of the machine is expressed by a starred word, the word
composed of letters all of the same kind, the number of
them equal to the length of the cycle. In addition there
may be a lead-in to the cycle, This lead-in is given by
an unstarred word in the same alphabet as the starred word,
Thus all CRE for the finite state machines will consist of

expressions of the form w wl*, w,w., being on the same

10
alphabet (and each word possibly absent), e.g. aa(aaa)*.
The 1-CTM expressions can also easily be obtained., They
will be of the form w wl*wz* where w (possibly absent) is

a word in at most two letters, w. is a word in two letters,

1
the exact number of each kind of letter given by the
lengths of the counting cycles within the machine (similar
to the finite case), and W, (possibly absent) is a single
letter, For example ab(aabbb)*b), b(aab)*, or (abb)*a*
would be typical 1-CTM expressions. (See Appendices for
further discussion,)

Replacing each of the separate machines by a CRE
expression denoting its behavior, we arrive at a CRE which
is a union of constituent expressions, each of which con-

stituents may contain intersections of separate CRE expres-

sions, Now while union, dot, and star are in the CRE

17



language, intersection is not included in the CRE language
(the original RE language from which the CRE language is
derived does not contain intersection). Thus we arrive at
a CRE-/\ expression, not a CRE expression,

This restriction to the language with intersection can be removed,
From results in [L-W] and in [E] the intersection of the events denoted
by any two CRE can be found, and a CRE expressions for the intersection
event obtained. (That is, taking care to include the empty set, etc,, in
the formulation, CRE events form a boolean algebra.)

Lemma 5: [L-W] For any CRE-/) expression an equivalent CRE expres-

sion can be found,

The question remains whether the conversion to CRE expressions of
members of the particular class of CRE-/\ which are produced from CTM-DFs
preserves complexities,

We must consider CFSMs and 1-CTMs and their corresponding expressions
and events. Recalling from the sketch of proof of Lemma 4 above, the CFSM

expressions are of the form w w * (w, w, in the same letter) while 1-CTM

1 1
expressions are of the form w wl*wz* (w in at most two letters, ) in two
letters, W, a single letter). Unions of the events cause no difficulty

since these have expressions which (owing to the form of the complexity
criterion) are of complexity at most that of the sums of the constituent
parts, We must therefore examine the expression complexities which result
from intersections of CFSM and of 1-CTM events, Intersection of two CFSM
events is again a CFSM event, and thus are always expressible in 0-CRE

form, The source of additional complexity (if any) must therefore lie in

18



intersections involving 1-CTM events,

The intersection of a 1-CTM event with a CFSM event can be empty,
a finite set of sequences, or an infinite set of sequences., The first
two kinds of intersection are expressible by 0-CRE, Intersections of 1-CTM
events and CFSM events which are infinite sets of sequences are themselves
at most 1-CTM events, Thus intersections involving 1-CTMs and CFSMs do
not increase complexity of the CRE which denote these intersections, The
intersection of two 1-CTM events can be empty, a finite set of sequences,
or an infinite set of sequences. Again only the last case is a potential
source of difficulty. The CRE for the (infinite set) intersections can
be 1-CTM events or an event realizable by a CFSM and at most two 1-CTMs,
Each of the two 1-CTMs has 1-CRE complexity, so again the degree of expres-
sion complexity is not increased,

Lemma 6: For any m-CTM-DF an m«CRE which denotes the event which is

the behavior of the m-CTM-DF can be obtained,

Combining Lemma 6 with Lemma 3:

Theorem 2¢ (Machine Analysis and Complexity Preservation): For any
m-CTM an m-CRE which denotes the event which is the behav-
ior of the m-CTM can be obtained.

Note that 1-CTMs, CFSMs and synchronous combinations of them are

the only form of real-time accepting multi-tape commutative machines we
have defined with sufficient precision to warrant speaking of procedures
which from a machine produce a commutative regular expression., It is
possible that an alternative, more natural definition of multi-tape com-

mutative machines can be given, the behavior of this class of machines
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being precisely the class of commutative regular expressions, Among
the characteristics which the 1-CTMs and CFSMs (and synchronous combina-
tions of them) possess and which probably would also be required of any
alternative counter-tape machine formulation are:

1. A particular kind of input letter is assigned a particular counter-
tape move direction, and this correlation is never changed in the
course of the computation (as a function, for example, of receipt
of a special input-sequence symbol).

2. No auxiliary marking on the tape is ever permitted.

3. Although acceptance conditions are a function of (among other
things) the counter tape being in a positive, a negative, or the
zero configuration, no internal state transitions or tape direc-

tional moves are ever a function of tape configuration.

II

In this paper so far, we have indicated how, from any commutative
regular expression with complexity m, we can obtain an automaton, with m
counter tapes, which will realize in real-time, the event denoted by
the expression. Conversely we have indicated how from any commutative
automaton (in a particular form) having m tapes, a commutative regular
expression with complexity m can be obtained, the expression denoting
an event which is the automaton behavior. We have as yet said very
little about the conditions under which a certain number of counter tapes
will not only suffice but is absolutely necessary to attain real-time

realizations. It is this latter problem, that of required number of tapes
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(which provides a measure of underlying event complexity rather than
merely expression complexity) to which we now turn., Let us first review
some of what is known of machine requirements for realizing commutative
regular events, First, events (commutative regular events) on an alphabet
of a single letter are all finite automaton events, Events on alphabets
of more than a single letter may not be finite automaton events, As we
have mentioned, results of Wright [L-W] provide a decision procedure for
distinguishing the finite from the infinite automaton events, and also
obtaining the desired finite automata, Such a decision procedure is
vaiuable, since a commutative regular expression may appear to be an in-
finite automaton event (and could even have arbitrary high expression
complexity) and yet be finite automaton realizable. The reason for this
curious state of affair will be seen by the following: geometrically
speaking, the finite commutative regular events, if expressed in n-space
(n being the cardinality of the alphabet upon which the events are con-
structed) form an orthogonal pattern of points (that is, all of the points

in the event can be generated by perpendicular vectors) throughout the

space of the event; the infinite automaton events form oblique processes

of points in the space, It is entirely possible for 1) an infinite
automaton event to be included in a finite automaton event, or 2) a union
of infinite automaton events to foerm a finite automaton event, For example,
in 2-space (e.g. the first quadrant of an ordinary x,y coordinate lattice)
the event corresponding to all the points lying on or below the main
diagonal is an infinite automaton event; a second event corresponding to

all the points lying on or above the main diagonal is also an infinite
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automaton event; the union of these two events is the trivial commutative
finite automaton accepting any sequence whatsoever,
The principal result of this section will be to show that:
Theorem 3; Where k is the alphabet cardinality, there are expressions
consisting of single words starred, which denote events
of complexity k-1, for all k,
Theorem 4: Where k is the alphabet cardinality, there are expressions,
consisting of concatenations of single words starred,
which denote events of maximum complexity k(k-1), for all k.
As an approach to these general results let us first prove the follow-
ing parallel related special results:
Theorem 3': a) The event denoted by the CRE (ab)* is realized by
a 1-CTM and not realizable by a finite state auto-
maton,
b) The event denoted by the CRE (abc)* is realizable
by a 2-CTM and not realizable by a 1-CTM,
Theorem 4': Any event denoted by CRE of the form wl*wz* (wl, W, in
two letters each, and non-collinear) is realizable by
a 2-CTM (or by 2 1-CTMs) and not realizable by a 1-CTM,
Notice that all of the above assertions agree with the expression
complexity requirements discussed in the first section of this paper,
The event of 3'a) is already known to be non-regular; this was dis-
cussed early in Section I. Therefore a 1-CTM is obviously not only suffi-
cient but necessary. The decision procedure for distinguishing between

finite and infinite automaton events, which in this case gives us our

sought after minimal number of counters is not readily applicable in
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sorting out degrees of infinite machine complexity however, Let us there-
fore, with 3'a) and the other events, establish some numerical measures
of event complexity.,

Where t is the length of an input sequence (and also the number of
atomic moves allowed any realizing tape machine) how many essentially
different sequences relative to the event under discussion, must be kept
distinct (stored separately, coded differently) in order that the realizing
machine be capable of operating properly?

Two finite sequences are essentially different relative to the event

E if there exists a finite continuation sequence which if applied to each
of the two sequences results in combined sequences leading in one case to
acceptance, and in the other case to rejection, (i.e., the two original
sequences can not be put in the same equivalence class vis-a-vis eventual
acceptance or rejection). The relation "essentially different' thus is

a right congruence which induces an equivalence over the set of all
sequences in a natural way.

Lemma (to 3'a): There are at least 2t+l classes of essentially

different sequences relative to the event (ab)* of

length £ t.

2
Lemma (to 3'b): There are at least é&.%é&:& classes of essentially

different sequences relative to the event (abc)* of
length £ t.
The first of these above lemmas can be seen as merely insisting that
there must be at least as many equivalence classes as can be indexed by

employing the following input sequence representatives: A, a, b, aa, bb,
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aaa, bbb, ... etc,, the maximum different classes possible for sequences
< t in length being (2t+l). In effect all pairs consisting of the two
letters, a and b (whenever occuring and in any order) may be deleted,
only the excess of a's or of b's being recorded. Similarly in the second
lemma any abc triples can always be deleted, the resulting number of
classes being the number of sets of t or fewer objects drawn from three

kinds of objects chosen so as always to exclude one kind of object.

t2+3t+2
2

different sequences relative to events of the form

Lemma (to 4'): There are at least classes of essentially

wl*wz* of length s t,
In this lemma, a preliminary result (by Wright in [L-W]) may be use-
ful, Events of the sort considered here have as state diagram realiza-
tions the whole first quadrant integer lattice (with points as states,
the origin being the initial state), No states (points) can be merged.
(If any two first quadrant points are merged, then a continuation sequence
can always be found such that, (although a single state will result), from
one of the original states a final state should have been reached, and
from the other a non-final state should have been reached.) Returning
to the complexity of the event of the third lemma, the input sequence of
no length leaves us at the initial state (origin), an input sequence one
letter long can take us to one of the two states, (0,1) or (1,0), two

long to one of three different states, etc, For t = 0, 1, 2, etc, this

is the suml + 2 +3+4 ,,, . Forn=1, 2, 3, ..., the formula for

- 2
1+2+3...1s Eiﬂfll . Substituting t+l for n we get the~£-:§£13 of

the lemma as the minimum number of right congruence classes,
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These event complexities of the above lemmas must now be related
to machine capacities, Any finite automaton with a fixed number of states
h can distinguish at most h "essentially different' equivalence classes
of input sequences, Since in the events considered here the number of
equivalence classes increases indefinitely, a fixed, finite automaton can
not realize the events in question, If an infinite counter is appended
to the machine, then (for a single counter) by time t the machine can
register (by being in a different tape-count — machine configuration) at
most h(2t+l) distinctions, For a 2-CTM the distinguishing capacity is
h(2t+1)2; similarly a machine with m counters, can by time t have dis-
tinguished at most h(2t+1)m different equivalence classes of imput
sequences,

If a machine, by time t, can not achieve as many tape — read-head
configurations as there are classes of essentially different sequences,
then there are at least two essentially different sequences which will
receive the same coding-configuration, But in that case, a '"falsifying"
continuation input sequence can always be found, and the machine will
fail to operate properly,

By comparing the machine capacities to the event requirements we see
that the special results are proven (h is fixed and t = 0, 1, 2, ... ).

3'a): h < (2t+1) < h(2t+l)

2
3'b): h(2tel) < L ¢ p(ate)?
2
4':  h(2t+l) < .E_tg.t_:'_z. < h(2t+1)2

The above special results in 3' suggest that not only can any expres-

sion consisting of a single word starred always be realized by a m-CTM

25



(where m = k-1, k = cardinality of alphabet on which the word is construct-
ed) but that there are always events denoted by such expressions which
require m-CTM for real-time realization,

Lemma (to Theorem 3): The number of classes of essentially different

input sequences relative to events denoted by
single words starred is given by a (k-1)th
order equation in t (the length of the input
sequences) where k is the alphabet cardinality
of the word.

In particular, let us consider single words of the form

3, 3j3,, 2 (that is, words with single occurrences of each of k

1 1%2%30 o0
letters, for all k), The length & of an input sequence x is &£(x), 2(x) = t,

If P(k,t) is the number of ways of choosing t things from k things (repeti-
tions allowed) in such a way that not all the k things appear, (this
insures the "essential difference' of the sequences) then we want to show

T
that 3 P(k,t) is a polynomial of degree k-1 in T. It is sufficient to
t=1 T
show that P(k,t) is a polynomial of degree k-2 in t, since Ez:tn is a poly-
t=1
nomial of degree n+l in T,

ka1 + t-1

But P(k,t) is just k times ( ¢

), the number of ways of choosing
t things from k-1 with repetitions, since we can delete one of the k things
and choose t to ensure that not all k appear, and do this in k different

ways.,

k(k + : - 2)
_ k(k +t - 2)!
(k-2)1t!
ke(k +t - 2)(k+t-3).., (t +1)t!
(k - 2)!It!

So P(k,t)

:-t-ﬁ-];T-(k*t—Z)(k"'t'S) XK (t*l)
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a polynomial of degree k-2, as required}

IThis form of the proof was suggested by Stewart Bainbridge of

the Logic of Computers Group.

Comparing this result with the distinguishing capacities of counter
tape machines, we have proved Theorem 3, Note that the results of this
lemma apply to starred words having more than a single letter of each kind,
the kinds not the number of each kind of letter determining the complexity.
The (k-1)-CTM required are easily obtained.

We now begin consideration of Theorem 4,

When a starred word is concatenated with one or more starred words
(excluding cases of co-linearity, etc.,) the complexity of the resulting
event increases (up to k words concatenated, k being alphabet cardinality,
after which additional words need not increase the event complexity).

1. Each of the words separately imposes a tk-l order polynomial
number of essentially different input sequences which must be
kept distinct,

2., The maximum k-tk-1 order polynomials distinctions can be realized
by a k(k-1) CTM (from the construction results of Part I).

3. Concatenation does not decrease the number of distinctions required.

This gives us Theorem 4,

Let us briefly summarize by noting that the above results mean that
there are always CRE of complexity m, which require CTM with m infinite

counters for realization in real-time; the CTM can be given very simple
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form:

a union of behaviors of constituent machines, each of which constit-

uent machine behavior is the intersection of behaviors of some extremely

simple kinds of machines:

1)

2)

Infinite counter machines, the algebraic structure of the machine
transition system being that of an infinite (commutative) semigroup
with a sub-semigroup that is the product of the infinite additive
group of integers <<F,+:> with <iCn,?:> , the integers mod n,
Finite machines in a single letter input alphabet, the algebraic

structure being a (commutative) semigroup with a cyclic subgroup Cn'

Graphically, the state diagrams of the transition structures of the in-

finite machines are infinite cylinders (the subgroup), to which 'one-way lead

in'"' arrays of states are attached (the part of the semigroup which lacks

inverses), while the state diagrams of the transition structure of the finite

machines are finite loops of states (the cyclic group) with '"pre-tails" of

states (the essentially '"one-way' semigroup portion).

(Some of these matters are discussed in [L-W].)

Let us conclude by pointing out several of the many problems remaining:

1.

2.

3.

Find a more natural definition for the class of counter-tape

machines which realize all and only commutative regular events,
Obtain precise Synthesis and Analysis algorithms (not merely sketches
of intuitively adequate procedures, as has been done in this paper)
relating CRE and CTM,

Obtain an algorithm which from any CRE would produce the tape-
minimal CTM realization., (This problem might be attacked by

employing generalizations of the decision procedure (of Wright in
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[L-W]) for distinguishing finite state automaton events from
infinite state automaton events, If the CRE can be suitably de-
composed, perhaps multiple testing (by means of the decision pro-
cedure) of combinations of events denoted by the decomposed CRE
would permit the 'maximum' grouping of the finite state machine
realizable portions on the one hand and the "most compact'" grouping

of the infinite state machine portions on the other.)
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2,

4,

APPENDIX: A Sketch of the Construction of a 2-CTM Given
a 2-CRE

2-CRE = (aabb)+ (abbb)*.(aab)*
Allowing intersection and the Ext operation, 1. can be re-expressed

as:

[(aabb) ]+ [Ext [(abb)* (aab)*]\ [(A U abu abb) (abbb)*a*] n [ (A Uab) (aab) *b*]

The prefix (aabb) is realized by: Ga(Z,O) X Cb(Z,O) =

a-M: H——r30—0
X

b-M: B—s30—0

(In the above a-M is the a input machine, b-M the b input machine.
The product of these is the desired machine. In the state diagrams
above and later o is an ordinary state, éthe initial state,

@ a final state, and@a state which is both initial and final,)
This "prefix" machine will "preface" each of the machine constitu-
ents,
Construction of the Ext machine:
Ext[(abbb)*. (aab)*] = [(A U(aab) U (abb) U (aaaabb) U (aaabbbb))
+ (aaaaa)*s (bbbbb) *]
From methods in [L-W] and [L], an orthogonal finite state machine

for this event is:
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The minimal finite state automaton for the Ext event is:
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The complete decomposed form of the Ext machine (the separate

CFSM) is given under step 6. (M, through MS) below,

1
Construction of a 1-CTM for (AU abUabb)«(abbb)*a*
The 1-CTM will have three parts: an a-cycle part, a b-cycle part,

and an infinite counter along with counter acceptance conditions.,

1) a-M; S

2) b-M: -1
&

3) AP

The above diagram is to be interpreted as follows: the machine
receives input sequences composed of a's and b's; the a-cycle part of
the machine counts single occurrences of a in the input and for each
a sends a move right (positive) instruction to the counter, The b-
cycle counts b's by three in the input, and for each three sends
a move left (negative) instruction to the counter, The a-M and b-M
parts of the machine may be viewed as a transducer which maps sequences
of a's and b's into sequences of 0, 1, and -1, These latter sequences
are inputs to the infinite counter of the machine,

For the machine example above A:P is the acceptance condition.
1-CTM will signal acceptance only when its tape is in a positive

count or when in zero count its C,, €, state pair is also "positive".

17 72

All of the completed constructions are given below.



6. Summary
2-CRE = CRE - N = [E;U E, UE, UE, UE]N [Eg U E,]

a
El = aabb(aaaaa)*. (bbbbb)* = Ml = H-—.)@—;o——;o——m——;o)

a S
E, = aabb(aab) (aaaaa)*+ (bbbbb)* ==y M, = A0 00030

a .
E, = aabb(aaabb) (azaaa)*+ (bbbbb)* = My = A-30—s0—0—s0—F 20—0—0—0"

E, = aabb(abbbb)-.(aaaaa)*.(bbbbb)* = M4

E. = aabb(aaabbbb).(aaaaa)*: (bbbbb)* =y M5

+1
E6 = aabb (Auab)« (aab)*b*= M6 =2 é——x»—p—-)\ﬁ
R |
> g ol
b0

A:N
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E7 = aabb(} U ab Uabb)+ (abbb)*a* = M7 = a-M:

b-M:

AP
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APPENDIX 2: A Sketch of the Method of Obtaining a 2-CRE Given

a 2-CTM (in Decomposed Form)

1. Given:
+1
My o= a-M: ¢ o’
X
b-M: @'1
AP
+1
MZ = a=M:
X
’ -1
c-M: ¢$l~eo~——ﬁ>——ao——ﬂo)
Al
b
MS' 6—1, - )
a

B(M;) UB(M,) UB(M;) = B(2-CTM)

(B(Ml) is the behavior of machine Ml’ etc,)

The desired expressions can be read-off directly.

B(M,)

B(MZ)

B(M

3)

(A Uaab)«(aaabb)*a*

(aacccec)*

a(aaaa)*s (bbb)*

2-CRE = (A U aab).(aaabb)*a* U (aaccccc)* | a(aaaa)*. (bbb)*

35



APPENDIX 3: Construction of a CTM for Expressions
of the Form (w1 Lsz Uoeeo ijn)w*

For simplicity in exposition we have largely restricted our dis-
cussion of constructions to the 'basic" case of a starred word having
a prefix consisting of a single word., In the case of multiple prefix
expressions, the degree of expression complexity can be arrived at solely
on the basis of the complexity of w*, or alternatively, if we distribute
across the unions, as n times the complexity of w* (where n is the number
of prefix words). Obviously this latter case introduces a sort of
spurious degree of complexity., The number of different (non-collinear)
w* words is of course the more fundamental measure, We therefore illus-
trate how a w* (of degree 1) having several prefixes, can be realized by
a 1-CTM having slightly generalized acceptance characteristics,

Example: 1-CRE = (A U aab {y aaaabbb)* (aaabb)*

The starred word w (in this case (aaabb)) is multiplied by an integer
p large enough so that the number of a's in p+w and the number of b's in
pew exceeds the largest number of a's and the largest number of b's of
any prefix word, The cyclic counter read-head of the tape machine is then
constructed on pew rather than on w, The 1-CTM will have a final state
pair for each of the prefix words,

In this example p = 2 is sufficient to enlarge w to include any of
the prefix words, Thus 2(aaabb) = (aaaaaabbbb) can be employed to form
counting cycle bases sufficiently large to implement the desired 1-CTM,
There‘must be a final state pair for (aaaaaabbbb) and also a final state

pair for (aaabb) (for p = 1), for (aab) and for (aaaabbb).
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Acceptance: CT:0 and [(ao,bo) or (az,bl) or (as,bz) or (a4,b3)]
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