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Abstract

Although it is now clear that reproduction and other complex devel-
opmental processes can be modelled by mathematical automaton systems
(such as von Neumann's tessellation automata) such systems must be re-
focussed and augmented if they are to express clearly and directly more
of the reality of developmental processes. An automaton modelling system
is presented in this paper which permits the easy expression of biological
developmental hypotheses and the deduction of the consequences of those
hypotheses.

The modelling system has three principal parts: an algorithmic
re-write system, an incarnation system, and a simplification system.

In this paper the algorithmic rewrite system is described at length and
numerous examples of the consequencesof particular developmental hypotheses
are given. Hypotheses are embodied in the modelling system by specifying
particular initial biological components (for example, cells, or tissues,
or organs) and particular re-write rules which say how a biological com-
ponent may be altered in the course of development, and a control conven-
tion which specifies the conditions under which the re-write rules may

be applied.

The incarnation system (which specifies the spatial properties of the
biological components) and the simplification system are discussed
briefly and in so far as they are necessary for the expiication of the
example developmental hypotheses. (The incarnation system will be des-

cribed and discussed further in Part III of this paper.)



Automata Theory and Development: II

1. Introduction

The success of the digital computer has destroyed the belief that
complex chains of arithmetic calculation require the intervention of
some mysterious mentalistic force. In Part I of this paper (Arbib 1967)
we showed how the work of von Neumann (1966), Codd (1965), Thatcher (1964)
and Arbib (1966) could be placed in a biological framework, and thus
clinched the argument of von Neumann that reproduction was explicable as
a computational process without the intervention of some mysterious
vitalistic force. But just as the success of the computer at arithmetic
calculation has forced students of Artificial Intelligence to seek models
more akin to the reality of psychological processes, so must we - confident
that a process of development such as reproduction can be captured
in automata theory - now seek to evolve new theories which can capture
more of the reality of embryological processes.

If automata theory is to be a useful tool forAthe theoretical embry-
ologist, it is crucial that it be seen as an evolving discipline. It is
not enough to ask '"How much of embryology can be captured in the language
of finite automata, Turing machines, and tessellations?" but we must
further ask "Wﬁat new concepts must be injected into automata theory in
response to the need to capture essential properties of embryological
processes?" In Part I we emphasized answers to the first question; in the
present paper we shall also attempt to do justice to the latter.

Since Part I of this paper appeared, there has been a considerable
amount of further research bearing on the problems of formal approaches

to the study of biological development. This work includes (especially)



the papers by Lindenmayer (1971) and llermann (1969, 1970) in this
journal, in which string re-writing systems were employed in the modelling
of developmental processes, and the paper by Laing (1970).

Related formal work includes the graph re-writing systems proposed
by Pfaltz and Rosenfeld (1969) and Montanari (1970), and the tessellation
automata and tessellation re-writing systems discussed by Smith (1971a,
1971b) and by Milgram and Rosenfeld (1970). Earlier work on nets of
automata (Rosenstiehl, 1966) is also relevant here.

In this present paper we attempt to unify these approaches and
techniques as we &ork toward providing a general framework for the

modeling of biological (and other) developmental processes.

2. Goals for Models of Development

We begin by discussing what properties of model systems for development
are desirable.

In order to be useful, a model system must be capable of embodying
interesting, explanatory and predictive hypotheses about the biological
systems it purports to represent. It is helpful if the model system
permits the precise expression of theories of development, so that techniques
of mathematical deduction can be employed. It is useful if such a model
system also permits the convenient generation of the consequences of those
theories. This means that the model must also make possible the com-
parison of its postulated consequences with the putative parallel empir-
ical consequences of the (biological) systems under study.

In addition to the above very important properties, certain addi-
tional properties are also desirable; for example, the model system

ought somehow to be so simple and direct that investigator intuition



is not unduly inhibited by gratuitous complications and so that opportunity
for mathematical generalizing (i.e., statement and proving of theorems)
is thereby enhanced. In this paper we shall strive to meet the above
criteria, including the last mentioned one of simplicity and directness.
Unfortunately, in the course of designing a model system it is very
easy to obscure the relationship between the model and the empirical
system represented. Before commencing detailed presentation of our system
for modelling development, we here discuss briefly some problems of the

relationship between a model system and the empirical systems represented.

3. Relationships between Models and Empirical Systems

In modelling or simulating any process (in our case, the process of
biological development) we usually need not (indeed, generally can not)
provide a representational system capable of expressing every known
characteristic of the real process. We need of course model only those
characteristics of the real system which are relevant to the problem we
are studying. Often however we can not be certain, beforehand, of every
relevant characteristic of the system and we often therefore strive to
construct model systems which permit the representation of all those
characteristics which within reason, seem to bear on the problem.

In the course of its construction the model may also often come to
possess features not intended to be interpreted; that is, it will come to
possess features which though present in the model system, have no assign-
able counterpart in the empirical system under study. For example a
(mathematicized) model may come to include an apparatus of special symbols
or notations or punctuation introduced in order to assist the experimenter

in his understanding of the model and in the orderly and correct operation



of the model; this "bookkeeping" apparatus may have no simple or direct
relationship to the system under study. This non-interpretable apparatus
is even more striking and evident in the case of simulation (generating
one-by-one the temporal stages of a dynamic model); here (especially with
computer simulation) often the (programming) apparatus for running and
controlling the model will be considerably larger than the interpretable
part of the model itself. The interpretable part of the model we will call
the model proper.

The model proper usually has more flexibility than the real systems
to be represented, for the model must permit the expression and exploration
of several alternative possible explanations of the empirical evidence.
In expressing development, for example, the model should be flexible
enough to permit the generation of "abnormalities'" (which of course are
just as '"'real" as normal development). Just as deformities give clues
to the understanding of biological development, so might we expect to
gain insight from the "monstrous" (or even biologically impossible)
arrays which a modelling system can produce, in addition to the balanced
or symmetric forms which are the likely product of 'mormal' genetic
potential under normal environmental conditions.

Thus systems for modelling biological development though they will
on the one hand be composed of abstractions and simplifications of some
features of real systems (both normal and "abnormal') on the other hand
may permit the expression of "pseudo-empirical" behaviors possibly not
exhibited in any known real system. Rarely do we achieve model systems
which permit in their models proper merely "all and only" the represen-
tation of some class of real systems under study. (Indeed, a model

developmental system which fitted its real systems so exactly that it



accounted for all and only the members of the real class of organisms,
would be more a particular theory of development of the members of the
class, than a general modelling system.)

Modelling systems tend,by design, to fall short by abstraction and
simplification of features, and to over-shoot by the considerable speculative
freedom permitted in the ways in which the features may be interrelated.

Since some particular interpretations of the developmental stages
expressed in model may reflect closely the empirical systems under study
and some not it is often useful to distinguish various degrees of fidelity
with which the model proper might reflect real systems.

In employing artificial organism systems (as we will do here) in the
modelling of development, we might ask only that the artificial organism
system be able to produce the same ultimate forms as that possessed by
the real organism system. On the other hand we can impose the very much
more stringent requirement that an artificial organism system step-by-step
mirror every significant developmental feature and every significant |
stage of development of the real organisms under study.

We might call the less stringent modelling (in which only the final
outcome may correspond to the real system) a weak simulation, and the
more stringent modelling (which feature by feature and stage by stage
corresponds to the real system) a strong simulation. It should be clear
that there are also many other kinds of simulation corresponding to many
other kinds and degrees of fidelity that might be defined.

Of the two sorts of simulation focussed on above, a strong simulation
seems clearly the more desirable goal; however the weaker forms of simu-
lation can nevertheless still be extremely useful. Weak simulations are

in effect alternative solutions to the same developmental problem. They



therefore implicitly pose the question: why does the real organism take
its particular course of development? This problem is especially inter-
esting when it appears that the real organism does not follow the most
efficient or elegant developmental route. (Such questions may of course
force us to examine the evolutionary history of the real organism.)

To summarize, a real system under study will generally be more complex -
than its model; the model being first an abstraction of those characteristics
of interest, and secondly frequently given additional simplification for
both theoretical and practical reasons. Modelling systems however will
usually permit the exhibition of features beyond those possessed by the
real systems to be represented. The constraints imposed in the modelling
system so that the modelling system describes only a certain class of
real systems, constitute a theory of the real systems expressed in the
model system. In employing a model system we must distinguish sharply between
features of the model system intended to be interpretable in terms of the
systems represented and those which are merely ancillary '"artifactual"
or computational features of the modelling or simulation process. We
may distinguish varying degrees of fidelity to the real systems; some
models represent the real systems strongly, some weakly; both notions
are useful.

[The mathematical foundations of modelling and simulation of systems
are discussed in Kalman, Falb, and Arbib (1969) and Zeigler and Weinberg
(1970).]

Finally let us note in passing that our long range goal is not
merely to model the development of form in individual organs or organisms
per se, but rather the understanding of the development of functional

systems which involve the whole organism. We have to think of the nervous
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system, for example, not in terms of anatomically defined lumps of tissue,
but rather in terms of an interacting overlapping collection of systems
for carrying out biologically important functions. Thus, our task becomes
even more complicated when we realize that it is not enough to look at
one small part of the organism and explain how it grows, but we have to
explain the sort of synchrony which allows‘functioning systems of various
kinds to be available at birth and at later stages of maturation. At
the moment, we hope to be able to look at one organ in a system and try
to explain what sort of cellular interaction can give rise to its shaping
We may hope that, later on, when we understand this, we will have the
intellectual apparatus in place to combine together our models of several
systems to understand what sort of overall synchronizing mechanisms
allow the orderly coordination of their development.

We will next describe and discuss our proposed automaton system for

modelling biological development.

4, A System for Modelling Development

Our proposed model system has three main parts;

(1) an algorithmic apparatus which operates on initially given
developmental structures (composed of labelled points (standing for
physical developmental components and their states) and lines connecting
the points (standing for contiguity relationships among the components).

(2) an "inearnation" or "picturizing" apparatus which takes inter-
pretable stages of the relational structures produced by the algorithmic
apparatus and yields a '"picture" of the physical-spatial properties of

that model developmental stage. Thus, on the one hand (a) the incarnation
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apparatus assists in the comparison between model consequences and the
empirical systems purported to be represented, and on the other (b)
permits the introduction into the relational structure (of the algorith-
mic apparatus) those revisions of elementary component contiguities
which are a consequence of the changing spatial properties of the system
under study.

(3) a stmplification apparatus which provides techniques for the
repeated introduction of new elementary components (e.g., aggregations
of the previous elementary physical components) and an associated new

algorithmic apparatus, which is to act upon the newly defined components.

The Algorithmic Apparatus. The algorithmic apparatus of our proposed
modelling system for biological development is essentially a precise
mechanism for generating representations of successive stages of growth

of an organism. The algorithmic apparatus can be divided into two parts:
(1) re-write rules, (2) a control which tells when, and where the individual
re-write rules of (1) are to be employed.

The re-write rules operate on labelled relational structures consisting
of individual elementary components (usually standing for organelles, cells,
tissues, organs, individuals, etc. although they may also stand for
components of the external environment). The re-write rules may be
applied to any initially given relational structure of elementary com-
ponents. An initial situation of especial interest for developmental
studies is that of a single elementary component, standing for a single
fertilized cell.

The components in the structure are re-written so as to change the
state of components, to create or destroy components, or to create or

destroy relationships among components. Two examples of re-write rules
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would be: (1) @ + @® , (which says that a developmental component

in state a may be re-written so as to be in state b) or (2) @ -
(which says that a component in state a may be re-written as two connected
components, one in state a and one in state c).

In employing rules such as the above, in the representation of
developmental processes, we might for example be thinking in terms of
an interpretation of the symbols of the rules as denoting the states of
multi-cell <ndividuals, (in which case the first rule might be taken as
representing a stage in the process of maturation and the second rule
as representing reproduction (such as budding-off); we might instead
interpret the symbols as the states of organs (in which case the first
rule might be taken as representing a stage in the development of that
organ and the second rule as representing the appearance of a new major
growth process on the organ). In this paper we shall very often be employ-
ing an interpretation of the symbols of our rules as denoting the states
of individual biological cells. Under this interpretation our first rule
above might be taken as representing a stage in cellular differentiation,
and the second rule as representing binary fission of a cell in which one
daughter cell is immature while the other is immediately prepared to
again divide.

Our two example rules produce gtrings of elementary components, but
multi-dimensional regular patterns of components (tessellations such as
those of von Neumann (1966) or Arbib (1967)) or even arbitrary graphical
structures are also produceable by such rules.

[Laing (1970) suggests the use of arbitrary graphical re-writing but
largely restricts himself to string examples; Lindenmayer (1971) restricts
himself to string production but in some cases includes in the string

ancillary symbols indicating how the strings may be re-written as other
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structures, such as trees.]

A set of such re-write rules in themodel defines all the potential
developmental routes of the organism system. This full potential is
narrowed if we require that the rules be used only in certain specified
ways. This is the control part of our algorithmic system. The ways we
allow the rules to be used can be interpreted in several ways: as a
function of intrinsic control mechanisms of the organism, as a function of
the impact of the extrinsic environment, or as some combination of these
two.

If a system of re-write rules along with conventions of use of the
rules retains some optionality (if the system is polygenic rather than
monogenic) then the system will define not solely the course of develop-
ment of a single individual but of a class. Thus, for organisms, this
optionality could be interpreted as defining all possible phenotypic con-
sequences of a single genotype.)

The properties of a system for modelling development will thus be
affected by both the particular set of re-write rules permitted, and the
uses of the rules permitted (in particular, specification of the time
and place of application).

In order to attempt to generalize about what rules along with what
rule-use conventions might be adequate to account for developmental processes,
we might try to define whole classes of kinds of rules and conventions
of rule uses. For example, we might consider rules which permit the re-writ-
ing of developmental components as a consequence of the states of those
components alone (and not, for example, also taking into account the states
of adjacent developmental components). Such kinds of rules (which we here
call autonomous-component rules) might be contrasted with rules which

do take into account the states of adjacent units. These latter we here
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call sensitive-component rules. Other conditions may be imposed to
create other rule types.

We may also vary the way the defined rules may be employed. One
common convention is to allow at most one component at a time to be re-writ-
ten, employing freely any applicable rule for this purpose. (This is the
"tra&itional" convention in formal grammar theory.) A polar convention
requires that every component must be re-written "simultaneously' at
each step. (This is the 'traditional" convention in most of cellular
automaton theory. Von Neumann (1966) employs this convention, as does
Lindenmayer (1971). Some flexibility can be gained by permitting compon-
ent re-write rules of the form x > X, so that the rule use convention
can be satisfied, while at the same time no change is produced at this
point.)

Other conventions might call for the ord:ring of the rules into a
list (and possibly also specifying an order in the developing entity)
and then imposing temporal priorities of rule application (and possibly
also priority of place of application). Still other conventions employ
computer-like programs to define what rules should next be employed.

(Different combinations of permissible re-write rule types and use
conventions can result in quite different models with quite different
powers; transferring results from one model system to another is therefore
not always straightforward. For example, employing autonomous-component
rules under the convention of simultaneous application of rules permits
the controlled production of organism symmetries which are quite impossible
with autonomous-component rules employed in the "one-rule-at-a-time"
convention.)

Although fundamentally all that is required of rule-use conventions,

is a clear, implementable statement of how the rules are to be used,
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we will want the rule-use convention (as well as the rules themselves)
to reflect basic biological processes, known or postulated.

For example, the assumption of no structuring of the rule usage at
all will often define multiple outcomes, namely, the full range of develop-
mental potential inherent in the rules and initial conditions. On the
other hand, the explicit specifying (by a complete listing, say) of unique
time and place of rule application will define a single course of develop-
ment, while the assumption of simultaneous rule application at every
component at every stage would reflect the assumption of a uniformity
of (intrinsic and extrinsic) environmental impact on the course of development.

Other control conventions can define differential growth rates for
separate parts of the developing organism, can require obligatory rule
applications over-riding all other applications, can define whole ordered
rule sequences to be applied, can define conditions (e.g., of components
or of environment) which will change whe course of development by directing
the selection of one rule (or sequence of rules) over another.

It should also be noted that some components (either present initially
or produced by developmental rules) might be interpreted as serving as
"ports'" for the entrance of external environmental influence. It would
then be 'natural" to think of such components being "re-written" (differ-
entiating, or reacting) under the influence of uniform, or patterned, or
experimentally controlled environmental input, the changes in such "in-
put'' components being transmitted (by repeated application of sensitive-com-
ponent rules) throughout the organism.

Indeed one way in which the effect of external environmental influence
can be incorporated formally into the proposed modelling system is to

permit the introduction (initially,or later - as a consequence of rule action)
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of distinct spatial envirommental compoments relationally associated with
organism components (for example, associated with the components on the
periphery of the organism). Just as with organism components, such
environmental components would be subject to modification by appropriate
re-write rules employed under some control convention.

(For a review of some of the results on alternative control conven-
tions for re-write systems, see the papers by Rosenkrantz (1969), Fris
(1968), Ginsburg and Spanier (1968), and especially Salomaa (1970).)

We have pointed out that a modelling system may go through stages
which are not stages of development of the model proper; that is, they
are not stages which are to be interpreted as standing for stages of
development of the real system under study.

We can of course strive to set up algorithmic re-write systems having
the property that we begin with an interpretable structure, and each re-
write rule is so fashioned that its application always results in a new
interpretable structure. This ideal situation may not always be possible,
and we must therefore be prepared to introduce into our modelling system a
way of distinguishing the interpretable from the non-interpretable stages
of model development.

In the modelling of grammars, one way in which this is handled is
by "terminal symbols''. These terminal symbols may be produced by the
re-write rules, but are themselves not subject to any further re-writing.
When by their presence throughout the developing entity (in formal
grammars, the entity would be a sentence form) no further re-writing is
possible, an important stage in linguistic generation is thus signalled.

In modelling biological development we can also employ such methods
of distinguishing important or interpretable stages from unimportant or

uninterpretable stages of development in the model. That is, we can
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designate certain sets of states of components as important, interpretable,
or (perhaps, temporarily) "final", and so distinguish stages of interest
from those which are merely by-products and way-stations of the modelling
technique. It should also be mentioned that the control component of the
modelling algorithm might embody conditions for specifying the important
or interpretable stages of the modelling process.

In later pages, we shall employ various kinds of rules and rule
conventions, and discuss their relevance in modelling biological develop-
ment.

As we have pointed out above, specifying the precise rules and conven-
tions of use of rules defines an algorithm (which may be monogenic or
polygenic--in the first case there always being at most a single next step,
where in the second case there may be alternative next. steps and ultimate
outcomes, thus defining a set of organism courses of developments).

This notion of an algorithm or program or routine, Or recipe lies at the

heart of our proposed modelling systems. The basic justification for this

is that by this means many complex information-processings can be specified
effectively in a way which is much more compact than any actual 'run' of

the process. That is, an algorithm can provide a concise, economical,

and revealing specification of a process. To see this, consider the following
algorithm (in the form of a computer program) consisting of four instructions:

1. Set n equal to zero.

2. Print out n.

3. Replace n by n+l.

4. Return to the second instruction.

If you observe a computer executing this program, it will emit a
stream of numbers which is endless - at least till you have exhausted the

capacity of the computer.
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Let us tie this point to our concern with embryology by seeing that
the precise connections of an animal's nervous system can be specified
far more economically than by explicitly listing for each pair of cells the
manner and distribution of synaptic connections, if any, between them.
Arguments that a comparison of the number of DNA bases with the number
of connections in the brain shows that the brain must be a random network
are as naive as comparing the four instructions of the above program
with the number of positive integers and concluding that the sequence of
positive integers, since it has more than four elements, must be a random
sequence|

From programming computers then, we know the flexibility of programs
having loops within them which are hierarchically structured to provide
for a great deal of economy in the way we specify processes. As a biologi-
cal example of a plausible '"use' of such '"mested subroutines", interneurons
of the frog retina's second layer and the ganglion cells have schematized
the dendrites of the ganglion cells as falling into two or three segregated
layers. A plausible wiring scheme would then prescribe that certain types
of axons from the interneurons terminated in one layer and so are highly
likely to connect one level of the dendrites of the ganglion cells while
other types of axons bearing different transforms of the visual input would
terminate in the other layer thus hitting other parts of the ganglion
cell dendrites. By this means, one can very simply specify how to get
a retina that would function perfectly for the frog trying to snap flies
in its world, without having to specify point-by-point interconnections.
Hence, a sort of '"nested subroutine'" approach could probably explain a
great deal of the specificity of the nervous system without requiring an
immense investment in genetic material. In short, hierarchical structures

of nested subroutines in genetic programs provide the right framework to
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replace a one-gene one-character view and allow an economy of description
without any imputation of randomness. Such economy of genetic descrip-
tion augurs well for economy of functional description when we come to
describe organizational principles for neurophysiological processes.

(For the organization of frog retino-ganglion connections, see

DeLong and Sidman (1962)).

The Incarnation Apparatus. The algorithmic apparatus produces representa-
tions of connected aggregates of developmental components (such as, e.g.,
cells). Although the states of the components may carry all the required
information as to the size and shape of the components, and the components'
spatial relationship to neighboring components, the physical resemblance
to the empirical systems being studied may be only very weakly apparent

(or even indiscernible).

A function which allows us to compare the status of predictions in
the model, with putatively parallel empirical consequences is of crucial
importance in making the model work and provide explanation.

In some cases the required association is quite simple and direct,
and the notion of a separate function relating the model realm and the
empirical realm does not even explicitly arise.

In other cases, a distinct apparatus for displaying the spatial
consequences of the algorithmic apparatus is extremely useful. Indeed,
there will often be cases where the 'skeleton'" graphical structure produced
by the algorithmic apparatus can give rise to markedly different three-
dimensional spatial forms depending on the labelling and interpretation
of the states of components. An example is given in Figure 1.

In many cases the incarnation function need be applied but once;



Figure 1:

The algorithmic re-write apparatus of A), if given a single
initial a-state component will permit the production of the
labelled relational structure B). C) and D) (by assigning
different spatial properties to the components) show two
possible alternative spatial consequences of the relational
structure of B).

In E), the developing structure, shown embedded in
a tesselldation space, could have many alternative spatial
interpretations, among them F) nnd G).
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that is, at the completion of the process of generating the ultimate
consequences of theory in the model. In the developmental modelling sys-
tem we propose here however, it may be necessary to apply an incarnation
function repeatedly in the course of calculating intermediate interpretable
stages of the model.

Although we usually need not apply the incarnation function after
every applicatim of the re-write rules, we must, (especially in model
systems in which the rules are sensitive both to the states of components
and the states of contiguous neighbors) be prepared to apply the incarnation
function frequently enough always to detect any spatial changes which
could'cause different (contiguity sensitive) re-write rules to be brought
into operation.

For example, re-write rules applied repeatedly might step-by-step
change the states of components (e.g., cells in a strip of tissue) so
that use of the incarngtion function would reveal that the tissue had
rolled up into a cylinder, bringing many previously distant cells into
contiguity. The incarnation function would have to be applied frequently
enough to detect the newly arisen contiguity relations, so that the re-
write component of the model could take them into account.

Thus, in the system for modelling development we propose, an incarna-
tion function which not only gives us an understandable picture of the
model consequences and its relation to the empirical data but also serves
to introduce modifications into the algorithmic apparatus as required.

[This aspect of our model will be further discussed in Part III of

this paper.]

The Simplification Apparatus. As long as the organisms whose developmental

processes we are observing and whose outcome we are calculating have



only a few structural components (for example, if the oréanisms consist of
only a few scores of cells) it is possible that our algorithmic apparatus
would yield dynamic stages of growth which are clearly 'graspable'" by the
mind. At low.levels of combinatorial complexity, the effect of repeated
application of various sorts of local rules on global form can often be
intuited. We may even possess or acquire enough analytic insight into

the processes to enable us to express and pro?e generalizations (theorems)
about rules and their processes and their consequences. By such means

we often can extend our intellectual grasp beyond what can be seen immed-
iately and directly. Usually however our analytic insight begins to fade
swiftly in the face of increasing combinatorial complexity.

Analysis of organisms consisting of several thousand cells (or other
basic components) usually places a severe burden on our intuition and it
often becomes difficult even with computer simulation and electronic
visual display facilities, to '"see'" what the effect of local developmental
rules is. That is, it becomes difficult to grasp significance, as opposed
to merely observing that changes are taking place. When this happens, it
is a clear signal that if our modelling system is to continue to be explan-
atory it must be simplified.

We have been considering rules of development whose immediate range

23

of communication and effect is a single component (usually, in our examples,

a single cell) and its immediately contiguous neighbors. That is we have
been considering rules whose ''meighborhood" (region of communication with
other units) is of fixed, finite (and rather small) scope. Computation-
ally speaking there is nothing inherently limited in Such Tules. Indeed
there are theorems to the effect that any effective computational process

can be expressed in such systems. If the system ceases to communicate to
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us any sense of what is taking place developmentally, it is not an inherent
failing of the system, but rather a sign of the limitations of the powers
of the human mind in the face of great combinatorial‘complexity. If we
wish, then, to understand complex developmental processes, our model must
undergo simplification.

In simplifying there are several techniques we may employ. Suppose
we have a small aggregate of some specific number of structural components.
For each component there is a rule of development applicable. If we wish
to express the next stage of development of this clump of components, we
apply our "micro'" rules, one-component-at-a-time. It might be possible
however to define a new '"macro'" rule which takes the original clump, and
in a single rule application gives us the next state of the entire clump.
If the "macro" is obtained by merely compounding éxactly what the sequen-
tial piecemeal application of fhe original rules would have produced any-
way, then such macro rules are'clearly a legitimate simplification of the
rule system. If any criticism is levelled against such a macro rule (as
perhaps leading to false conclusions) reference can always be made to the
micro rules of which the macro rule was compounded.

In simplifying our system, we may wish to search our developing
organism model for other such '"clumpable'" aggregates of components. We
may even wish to convert the entire developing system into a number of
such clumped entities, not concerning ourselves further with the histories
of the original individual components, but only of the new individuals
consisting of clumps of the old components. In such a case, we might thereby
be purchasing rule simplification (and thus explanation) at the cost of
loss of information about the fate of individual original components.

Notice also that (depending on the way the original micro rules were

tp be applied) we may also simplify the time-scale (and thus the number of



25

separate developmental stages we are able to express). That is, some macro
rules may by such as to cause the system to reflect every stage of devel-
opment that was reflected in the original micro system, while other macro
rules might operate so as to omit some stages of development. The micro

rule time scale and a macro rule time scale may differ. Clearly this sim-
plification (coarsening) of time scale will result in a system simplification.
Thus, just as we must be aware that in our spatial lumping (our lumping

of cell-components) we may lose micro size physical properties of interest,
we must be aware that in our temporal lumping we may be omitting develop-
mental staggs of interest.

As an example, let us consider a small fixed aggregate of cells which
behaves in the following fashion: if one of the cellsrin the aggregate
receives a stimulus from the outside, then, by means of inter-cell commun-
ication within the aggregate, there is a later time (a fixed number k of
steps later) in which all the cells in the aggregate simultaneously '"diff-
ferentiate" thereby assuming some particular state or form. Clearly we
can define a macro rule which operates upon the clump at time n and at
time n+k produces the differentiated aggregate. Such a macro will express
precisely the fate of the cell aggregate; such a rule will not however tell
us anything about the stage-by-stage development of the separate cells of
the aggregate. If it is this micro-time, micro-component information we
seek, then clearly the macro rule omits it;‘if however, we are trying to
understand the more global course of development, then such macro rules
may be very valuable tools.

In our examples'of si%plification we so far have limited ourselves
to cases where the new macro re-writing rule was applicable only to a

fixed finite number of cells. In such cases, several micro rules might
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be reduced to a single macro rule and in turn the new macro rules combined
to form yet higher level macros. By this means considerable system simpli-
fication can be achieved.

Let us now consider a more complex issue,

Suppose (as in our last example) that an aggregate of cells is such
that if one of its members is stimulated in a certain fashion then after
a certain amount of time all the cells of the aggregate assume the same
differentiated state. Contrary to the earlier example however, the number
of cells in the aggregate is not fixed. Thus any macro rule whose condition
for application is the state of a fixed finite aggregate of cells (a rule
of fixed finite scope) will be insufficient. Indeed because of (in general)
the indefinite size of cell aggregates, either an indefinite number of
finite scope rule applications will be required to handle all the cases
which might arise, or (since all of our re-writing rules have been of the
finite scope type) instead of achieving instant simplification of our rule
system, we may be forced, ad hoc to augment or revise indefinitely (and
trivially)‘the set of developmental rules, so as to accomodate each larger
aggregate which may arise. Thus, our very attempt to'simplify our system
by substituting macro rules operating on cell clumps for micro rules operating
~on individual cells, may be foiled.

One solution to this is to employ a new form of re-writing rule:
the transformation rule.

A transformation rule need not operate over a fixed finite region of
the developing organism. Let us explicate further by means of an example.
Let us suppose that in a developing organism there is a region of cells which
is producing some hormanal substance. This substance produced at site A will

bring about changes in distant region B of the organism. Intervening between
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regions A and B there is a region C, through which the hormonal material
can be transported, but (for purposes of this example) is not itself
otherwise affected by the hormonal substance. Let us also assume that
Regions A, B, and C have an indefinitely large number of cells. (That is,
although at any moment these regicns are composed of a finite number of
cells it is not reasonable to assign any specific bound to the number

of cells they may be composed of.)

Employing our earlier "immediate cell neighborhood rules', we can
represent the cell-by-cell transmission of a hormonal substance arising
in the cells of A, passing through the intervening cells of C, and causing
changes in the cells of B. If the numbers of cells of A, B, and C are large,
then step-by-step cell-by-cell changes (even though precisely modelling
real organism changes) may be difficult to follow, and their significance
obscured. If we successively increase the scope of the rules (while each
time keeping that scope fixed and finite) we will only superficially
improve the situation. If the organism with its A, B, and C regions can be
indefinitely large, then we will be adding new rﬁles (and new complexity)
to our descriptive system. Such new rules will be no more enlightening
than the old rules, and, since the organism can be indefinitely large, new
rules of &ef larger scope may have continually to be introduced.

What is required is a rule (a transformation) which will operate on
the entire regions A, B, and C, and will, from the state of region A at
time t assign the state of region B at time t+k. Such a transformation
rule clearly cannot be limited to affecting a fixed finite number of organ-
ism cells, It must operate on the regions regardless of sizes and distances
involved.

This brings into focus a critical problem of this simplification
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process (and of many simulation and modelling simplification processes):
how do we determine and define aggregable entities such as A, B, and C
which are to become the new basic components manipulated by our revised
and augmented re-write and transformation rules? ' In particular how do we
find the '"natural" multicell aggregates which become the basic units to be
manipulated by "higher" level systems of rules" A technique of automatic
hierarchy generation in developmental theory would be very‘useful, but

at present does not exist. One very suggestive prospective element in such
a theory is to consider as candidates for aggregation cells which have
elements of common history (a technique which has long been employed by
developmental biologists in distinguishing biological structures). One
such common element would be possession of the same ancestor cell.

This is illustrated in the derivation tree shown in Figure 2.

Of course, cells of common ancestry need not be the only guide to
aggregability.

[The ideas on transformations and aggregability criteria by derivation
history are of course adapted from aspects of the contemporary linguistic
theory of N. Chomsky (1963 , 1965). It should also be pointed out that in
part our finite scope rules parallel the grammarian's constitutent structure
or phrase-structure rules, while our incarnation function is related to
the linguist's lexical or Rhonological insertion, and our simplification
transformations parallel Chomsky's grammatical transformations. There
are differences however, between the biological-developmental and the
grammatical situations, which are worth bringing out.  Among the very strong
reasons for introducing transformations into grammatical theory is that
there may be relationships tetween indefinitely separated parts of sentence
forms and these parts determine new sentence forms. The new forms usually

cannot conveniently be produced by constitutent structure rules alone. For
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Proto-B .

Proto-A ’
Proto-C ()

Figure 2: Illustration of possible determination of aggregable structures by
means of ancestry. In the general case, there might be an indefin-
ite number of rule applications between an "ancestor" cell and
the structure to be aggregated, so that a structure might be
indefinitely large, or indefinitely far from some other structure

affecting it.
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what would seem to be required is some sort of communication-interaction
between distantly separated sentence elements, and there is no reason to
view the intervening sentence elements as a communicating medium trans-
mitting the interactions. In the biological case the absolute necessity
of transformation rules is not, on the face of it, so compelling, because
here there is a communicating medium, albeit of indefinite extent, and
phrase-structure rules could, piecemeal, transmit the desired effect. A
clear reason for their adoption is, as we have indicated, their simplify-
ing-explanatory power (which is also a compelling reason for their use
in grammatical theory) as we try to define new combined biological units

and to define the nature of the interaction of these units.]

5. Discussion and Formal Results

We have outlined our modelling system for development above. The
system has great flexibility and, as we have pointed out can serve as
the representing vehicle for "impossible" as well as ''real" organisms
and organisﬁ courses of development.

We now wish to discuss which among the formally definable possible
accountings for development expressible in our modelling system, might best
explain real biological development. That is, which theories of develop-
ment expressible are good, fruitful, revealing, informative, and which
are not.

It is clear that some theories, expressible in this system, of how
development takes place, are clearly inadequate. For example, one theory
might declare that all development is properly accounted for by employing
only two re-write rules: 1) a binary fission developmental rule, appli-

cable to any cell, in which the original cell is split into two daughter
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cells; these in turn are to be connected to each other and to all the cells
the original cell was connected to, and 2) a connection deletion rule
applicable to any connection between cells, so as to remove that connection.
With this pair of rules any graphical cell structure can be formed. For
example, to create the cell structure of a hippopotamus, we start with a
single initial cell and employ the binary fission rule to produce a
completely connected mass of n cells (where n is at least as large as the
number of cells in the hippopotamus we desire; some simple calculations
on hippo volume and minimum cell size, plus a generous safety factor
will yield n, the number of cells required). The growth rule applied at
least n-1 times will yield the desired cell mass. We next (employing
the connection deletion rule) selectively disconnect all non-hippo ceil-con-
tiguity relationships and also setting aside any excess non-hippo material.
The hippopotamus cell structure will gradually unfold.

This hippopotamus recipe is on the face of it absurd, but let us
take the time to be very explicit about some of its failings. First of
all, in the above 'theory" of development, the time and place of appli-
cation of each developmental rule is completely controlled from the outside.
In effect, a highly structured and intrusive "environment' (the clever
hand and mind of the hippo designer) controls each step of organism de;elop-
ment, while the organism proper plays no important part in the process.
But in any adequate theory of development we take it as essential that
development as an interaction between organism and environment be expressible,
and that in most interesting and revealing cases the rules of development
of the organism itself will exercise considerable control over the course
of development.

Secondly, in the above scheme, the developmental process (as outlined)

does not step-by-step mirror the significant stages of development of a
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real organism. That is, it is not a '"strong representation" of the develop-
mental processes of an organism. (Of course, as we have pointed out
earlier, it may be useful or informative at times to produce a "weak repre-
sentation" of the development of an organism, but here even the weak
representation embodied is really a vast class of alternative courses of
development.)

We therefore seek theories which of themselves contain the features
which explain how organisms might be formed.

Such theories of development can be expressed in our modelling system.
(For simplicity in explicating our ideas we will frequently restrict
our examples to linear structures even though in most cases the results
are applicable to more complex graphical structures of Physical components.)
That any
Kfixed, finite, linear) array of cells can be produced by an autonomous-
component (context-free) system is an immediate consequence of the following
lemma:
LEMMA 1: For every string 233y +++ 34 there exists a ‘eontext-free grammar
(autonomous-component organism system) with at most 2[1°g2n] nonterminals
which produces it.
Proof: Let M = [logzN]. We introduce one nonterminal © for each binary
string of length j, 0 <j <M. Let 0 be the number whose binary expansion
is ©. Then a suitable grammar has initial symbol7f'and‘productions

©>8001 for 2(0) <M-1

and 0 ~+ 330 21 for 2(0) = M-1

it being understood that a = A for k > n.

EXAMPLE: The string a4a,a,343,3¢ would be generated as follows:
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00 01 10 11

aoal 3233 343.5

Thus, we can grow any pattern of cells if we allow ourselves an indefinite-
ly large number of component states and corresponding rules.

In this scheme every cell, save those in the final stage, bears
within it its complete history - the prefixes of its state tell it what
cells it is descended from, and the complete string tells the cell its
precise coordinate in the linear (or arbitrary) cellular array. Thus, when
the cell stops dividing it can unambiguously 'interpret' this "positional
information" (cf., Wolpert, 1969) to differentiate into epidermis, or
patella, or what have you.

Note also that an even more elementary system of autonomous component
productions, employing only restricted autonomous productions, could also
yield any particular array of cells. (In restricted productions, when a
cell divides in two, one of the resulting pair of cells is no longer capable
of further @ivision.) Using restricted rules only, any particular speci-
fied linear array can be produced, moving from left to right (or alterna-
tively from right to left). The following example set of example rules
should make the process clear.

A, -~ BA

0 01

Al > BlAZ

AZ > B2A3
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At each step a new B cell is produced and the "master" A cell goes
into a new state which defines the production of the next cell to be
produced. The master cell can thus have '"packed up'" inside it, in a
very simple fashion, (a backwards and forwards deterministic loop-free
path of states) complefe instructions for the growth of any particular
(in the example, linear) array of cells.

Although by the use of the above kinds of production rule systems
we can produce any particular finite organism array whatsoever, such a
scheme clearly is not completely satisfactory in accounting for the
development of organisms. Where our "hippopotamus' growth was completely
under the control of the environment, here the organism development is
completely determined by the system itself. This in itself is welcome,
but unfortunately it does not express the complex organism-environment
interaction we know exists. Such systems of complete organism specifi-
city of the process of development undoubtedly have a role in explanations
of development; they may be useful in the description of some particular
developmental sub-processes; they cannot however be the general mechanisms
either actually employed in development nor can they, in this‘form, serve
as adequate basis for a useful explanatory or predictive model of develop-
ment. In these particular systems, the final organism cell organisation
must be known beforehand and the production system would have to be de-
signed to "spew out" the pre-recorded form; in general nothing is revealed
of the real processes of development by which a single cell becomes an
organized multicellular organism.

Also, in such systems, the numbers of re-writuble symbols must be
in the same range as the numbers of cells in the entire completed organism.

If the final organism form has billions of cells then there must be a
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comparable number of re-writable symbols (and rules for them). The complex-
ity of the developmental system becomes thus purely a function of the
numbers of celle of an organism, rather than of the complexity of the
structure of the organism. For any very large organism the sheer size

of the production system required to model it, may make it impossible

for the mind to grasp, and thus useless as an explanatory model of develop-
ment.

In addition, there are other very particular objections to this use
of production rule systems for explaiﬁing development. This scheme cannot
be generally applicable, for example, since if we take a cell from a 4-cell
sea urchin embryo, we know it may develop into a complete, though small,
animal, not into a quarter urchin as the above scheme (the process explicated
in Lemma 1) would imply. That is, such a developmental scheme cannot
account for specific known biological developmental phenomena.

We may of course not limit ourselves to accounting for biological
development of form by this simple-minded '"absolute-addressing' use of
autonomous-component rules.

Autonomous-component systems (with context-free rules of growth and
development) can be made considefably more sophisticated. Unfortunately,
there is still a very definite limit to the complexity of structure
produceable by autonomous-component systems, as a lemma of Bar-Hillel,

Perles and Shamir (1961) shows.

LEMMA 2: Let p be the length of the longest string that can be derived
in a context-free grammar G using a tree of height at most n, the number
of non-terminal symbols in G. Then there exists a number q < p such

that every sentence z of L(G) with (z) > p can be decomposed into the form
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Z = XUwvy withu#A, v#A and 2(uwv) <q
such that K Kk
Z, = XUwW'y is in L(G) for k = 1,2,...
In effect, what the Bar-Hillel et al. result says for biology is

that for an algorithmic re-write system (in which the use of the rules

is not structured by the environment) the complexity of structures produced

by context-free rules alone is still closely bound to the numbers of

significant cell states of the developing organism. Thus, there can be

no very compact algorithms for development if only autonpmous—componenf

re-write rules are employed.

"This suggests the following:

Observation: When the number of different developmentally significant
states of components of an organism structure is much less
than the number of components in the structure, only limited
organism structures (e.g., simple tissue) can be grown without

inter-cell communication.

There afe‘also some sound empirical biological reasons which will
preclude the use of autonomous-component systems as models for organism
development in general. For example, embryos often develop correctly
despite damage; this means that cells differentiate not simply on the basis
of their individual past histories (as in autonomous-component systems)
but also on the basis of information on the states of their neighboring
components.

Thus since communication between componentsis necessary (in models

L

of regulating or plastic systems) we have the important observation:

LEMMA 3: Autonomous-component systems (context-free grammars) are

inadequate for representing all developmental phenomena.
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Systems in which the developmental rules are applicable to components
as a function not only of the internal states of the components but also
the states of neighbors of the components we will call sensitive-component
systems. Although generally in sensitive-component systems the neighbors
of a particular component may be components at any fixed finite distance
from the given component, we will here usually employ a neighborhood
consisting only of the immediately contiguous componenté.

[I1t should be noted that the tessellation structures of von Neumann
and our Part I (Arbib, 1967) can be seen as a speciaI case of two-dimen-
sional sensitive component systems. The reader may find it a worthwhile
exercise to replace our rules there for state-change in a fixed array of cells,
all but finitely many of which are quiescent, by rewriting rules acting on
a finite symbol array corresponding to the active part of the tessella-
tion. Of course, the neighborhood dependence of our state transitions
implies that the resulting rewriting rules will not be context-free. Sumar-
izing, then we have the:

FACT: Template-based tessellation arrays are a special case of a sensitive-
component multidimensional rewriting scheme. ]

Sensitive-component systems are sometimes restricted so as to exclude
regressive rules of growth. Such restricted sensitive-component systems
parallel the context-sensitive grammars of the linguist. We will call
such restricted sensitive-component systems, monotonic-systems (since
their developing structures never decrease in size).

Are such monoton;c systems adequate to express all significant develop-
mental phenomena? It is known (from results in formal grammar theory)
that (the parallel) context-sensitive systems have expressive powers not
possessed by autonomous-component (context-free) systems. Yet there are

clearly cases where monotonic systems are not adequate. Monotonic systems,
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since they lack '"regressive'" rules, have no means of expressing the dissolu-
tion of cells or cell connections. But in biological development cells
are released (blood cells, germ cells), cells are dissolved (in shaping

of limbs) etc. .

LEMMA 4: Monotonic systems will in some cases be inadequate to express
all developmental phenomena; in some cases general sensitive-component
(unrestricted re-writing) systems will be required.

[Saunders (1966) has emphasized the importance of cell-death in
embryogenesis, so in simulating "real" growth programs, cell deletions
can be expected to play an important role. However, an interesting two-part
question is: (i) "Are there realistic rules which grow all cell structures
by addition alone (monotonic rules)? (ii) Is there, then, some complexity
result which proves that presence of deletion rules makes for more efficient
growth?"' The result may be evolutionary - i.e., it "pays'" to be able to

evolve in "both'" directions. ]

6. Problems of Spatial Differentiation

In developing organisms, cells which at their time of origin may be
very similar often eventually come to be very different. Cells which
come to lie in distinct spatial locations often take on very different
and specific characteristics. A cell in the head becomes a Purkinje cell,
say, and a cell in the arm becomes striated muscle. The origin of cell
difference and its relation to cell position is the '"problem of spatial
differentiation."

Can we employ our artificial organism systems to explain how this
might come about? Our modellihg system is flexible enough to permit us

to get anything at all in the way of organism development in a single rule
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(e.g., S+ [giraffe]) but the '"pre-knowledge" implicit in such a theory

of development renders it useless for any adequate accounting for the
developmental process. If we limit ourselves to employing only component-by-
component (e.g., cell-by-cell) rules of development in our artificial
organism systems can we account for all the phenomena of biological develop-
ment? We know that the properties of unrestricted string rewriting systems
(which are a subset of our general-sensitive component artificial organism
systems) guarantee that any effective process can be represented. (An
effective process is one that can be stated unambiguously and carried to

its conclusions mechanically.) Thus if we accept that real biological
developmental processes do not go beyond the mathematically algorithmic,

we are assured that these systems can (with an unspecified degree of direct
expressive adequacy) account for any process of real biological development.
It is incumbent on us though to try to be more specific and to try to
isolate and display some of the particular artificial organism processes by
which the spatial differentiation of organisms could be explained.

A developing embryo, early in its life, comes to be composed of
three distinct layers of cells, the endoderm, the mesoderm, and the
ectoderm. Can an artificial organism system produce this tripartite cell
structure?

The problem has been recast in a highly abstract form, the biological
"Fiench flag" problem (Wolpert, 1968). A biological "French flag" is a
connected system of three kinds of cells, "red", 'white", and "'blue",
separated into three distinct bands, each band being equal in size. The
simplest form of the ''problem" is merely to display the developmental rules
which will produce the "flag'".

The problem can be further abstracted into that of displaying the rules

of growth which will yield a string of cells such that the cells of the
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first third of the string are in state a, those in the second third are

in state b, and those of the last third are in state c; that is, the
numbers of the different kinds of cells must be the same or in fixed pro-
portions (the cell strings are of the form a'b'¢" or in general
aknblncmn’ where k,%, and m are fixéd). It is this paradigmatic version
of the embryo cell differentiation (or cell segregation) problem we will
consider in the next pages. The numerous examples which follow are meant to
bring out the capabilities and limitations of artificial organism
systems, and to introduce the notion of multiple formal solutions to a
problem, each of which must be evaluated for its adequacy in explaining
developmental phenomena.

If we wish to produce a string of cells of the form akbkck (where k
is some fixed number) this can be accomplished by a very simple artificial
organism production system: an artificial organism production system all
of whose rules are of the restricted autonomous sort (that is where at
each application one newly differentiated cell is produced). (Indeed we
have earlier seen than any particular string whatsoever can be produced
employing only a restricted autonomous artificial organism system.)

For example, (where k = 2) the highly abstract artificial organism
"embryo' aabbcc can be produced by the following rules (where we assume
throughout the discussion of this section that we are always given an
initial cell S):

S =»> aS

1

S1 -+ a82

S2 > st
S3 > bS4

S4 > ch

S5 +C
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Note that for a six-celled organism six rules are required. If we
do not restrict ourselves to the use of restricted autonomous production
rules we can reduce the number of rules required; we can also employ rules
which may be biologically more '"natural". For example, aaaabbbbccce can

be produced by the following set of rules:

S »-AD
A > AlAl
A, raa
D »-BC
B -+ BlBl

B1 >bb

cC ~» CIC1

C1 +>cCccC

Here, an organism of twelve cells is produced by a system of eight
rules.

We have already pointed out (in Section 5) that even with the numbers
of rules reduced by this means, the number of rules would, for many inter-
esting cases, remain huge. A system of description which requires millions
of distinct statements is extremely difficult to manipulate, even with
computer assistance, and certainly close to worthless as far as explanatory
power goes. The difficulty of course lies in part in the "absolute addres-
ing" autonomous-cell form of rule system which we have been here employing,
in which the state and place of every new cell must be carried explicitly
in separate rules. Although repetition of organism structure allows us
to employ some rules in several places, the number of rules is still a

function of the size of the completed organism. This iron relationship



between number of developmental rules and number of stages of growth,
mechanically "unfolding", requires that we know ahead

of time the type and position of each cell of the organism. Such sorts
of organism developmental system provide little explanation. Absolutely
specified growth may be a good model of some very local morphogenetic
processes but it does not help much in explaining over-all organism
development.

If we are to explicate the developmental processes of organisms,

we must define artificial organism systems in which the number and kinds of

rules is a function of the complexity of the organism developmental process

not just the size of the completed organism. Depending on the control
conventions for the way we use our rules there are many solutions to this

problem.

The rule system below, for example, employs only seven rules, all of

them of the restricted autonomous sort.

1. S~+A
2. A>aA
3. A>B
4, B>b B
5. B=+C
6. C+cC
7. C~»c

Despite the few rules, and their weakness, this system generates all
the equally tripartite string embryos of any size; unfortunately, the
rules, if applied ad libitwn (which is here the control assumption by

default) also generate all the unequally tripartite string embryos.

42
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An inspection of these rules reveals that the system begins by per-
mitting the generation of any number of a s whatsoever (including none at
all), next generates any number of b s and then any number of ¢ s. There
is nothing in the system which constrains the numbers of the three types
of cells to be the same, or in fixed proportions or even approximately the
same proportion.

If, however, we make the assumption that some timing and switching
control property of the environment of the growing embryo determined that
the rule producing new a-type cells would be applied some particular
number of times, and that then there would be a switch to producing b-type
cells and then to c-type cells, so that each of the three cell-type pro-
duction rules was applied the same number of times, then the above system
would perhaps satisfy our requirements.

This might be imposed by a very highly structured intrusive environment.
(cf. our "hippo' example of Section 5).

For example, the environment might be expressed as a program of instruc-
tions to the developing organism. The rudimentary program of rules to

be applied, given below, will produce the string organism aabbcc.

1. Rule 1.
2. Rule 2.
3. Rule 2.
4, Rule 3.
5. Rule 4.
6. Rule 4,
7. Rule 5.
8. Rule 6.
9. Rule 7.

10. Stop
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The identical environmental instructional information could be expressed

as a simple finite-state automaton sequence generator.

QN OO 0N CEOSONOIOND
1

The same environmental effect could also be expressed as a computer
program flow chart diagram. The examples given of environmental effect
are extremely simple, but very much more complex and sophisticated examples
are possible of (1) tables giving time and place of rule application, or
(2) programs or (3) automata which specify time and place of rule applications.

By such means, the environment effect could be expressed with varying
degrees of specificity (from complete "hands-off'" the re-write rules, to
complete determination of each time and place of rule use ). Thus, the
control might leave alternative developmental routes open, and thus define
a class of consequences, or foreclose all but one developmental route
and thus define a single consequence of the re-write rules.

There are of course many other ways in which the impact of the environ-
ment can be expressed; these would include ordinary natural language
statements of the way the environment affects the organism rule use.

In our example we have had our environment impose the sequential
production of equal numbers of cell types. This particular envircnmental
effect seems a very improbable and ad hoc property however, and a develop-
mental theory which requires this assumption is not likely to survive
empirical scrutiny.

Perhaps more naturally the environment should impose the production
of the three cell types in parallel, thus eliminating the necessity for
separate sequential countings or timings.

We can begin by first creating a string of one each of the three
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cell-types, either directly, in one step.
S+ABC
or (perhaps more naturally) by several steps

S =+ A B1

B1 + B C1

C,+C

1

We then apply three separate growth rules in parallel, to the three
cell-types.

For example,

A-+>aA A>aAa A->AA
B-+bB or B+-bBb or B+ BB
C»>cC C»>cCc cC~>CC

Any of the above sets of three rules, if employed in synchrony, to
all applicable cells, would assure that the numbers of a-type, b-type,
and c-type, cells will remain the same, and that the tripartite embryo
form will be retained. (Notice that the different sets of rules produce
different numbers of new cells per generation and they thus simulate the
developmental process differently.)

To get any particular size "embryo'" we must finally introduce some

sort of '"stop" rule. For example:

A->a A »> aa
B-+b or B+ bb
C—+c¢ C~»>cc

Such "stop rules" produce symbols for which there are no further
applicable rules (and thus might define an interpretable stage or inter-
esting stage of development). Here also we must consider how we want
to apply such rules. We could for example apply these rules simultaneously

to all applicable cells; the equal tripartite form would then obviously be
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retained. A "broadcast'" hormonal signal to all cells would be of the proper
type, and would serve to preserve the cqual number of cell-types. If
however we permitted the piecemeal application of these rules, the equality
of the tripartite partern might be broken up (since some of the cells could
by the earlier rules continue for a time to reproduce their type).

One possible solution to this is to have our control convention single
out obligatory rules which when one cell-type ceases reproduction of
its kind, it affects the others to shut-off their production of their
type, thus bringing this phase of developmént to a close.

For example, if the initial shut-off occurred in the region of a-type
cells the following obligatory rules would cause the complete shut-off
of this growth phase.

aA > aa

Aa + aa

aB > ab

bB + bb
etc.

Notice that in order to produce the desired effect, an obligatory
rule must not only be applied if it is applicable, but it must also be
required that no other rules be applied until the obligatory rule ceases
to be applicable. By such techniques of obligatory rule use, we can, in
a one-rule-at-a-time system get some of the effect of parallel simultaneous
action (Notice that we may by such techniques produce many intermediate
nonsignificant stages of development.)

We may distinguish two facets of this problem: that of the origin
of the '"shut-off" signai, and that of the agent that actually causes the
halt in further increase in cells at this stage and/or the completion of

the tripartite differentiation of cell types.

The origin of the “shut-off" signal (the "condition" satisfied) could
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be outside the developing embryo entirely; it could have its origin in
changes in the maternal organism, or in the larger environment beyond.
Although "insult" intervention from the outer environment might be the
source of the "shut-off" signal (and such phenomena could be expreseed
in these artificial organism systems) such phenomena can not directly

give us the information we desire on '"natural" developmental behavior.
If the origin of the shut-off signal to the embryo is in the maternal

organism, then an adequate explanation of development must incorporate
selected features of the maternal host.

[We can for example imagine a timing apparatus in the mother organism,
runniﬁg separately but parallel to the growing embryo which when it reaches
a certain state, sends a "signal' to the embryo to cease new cell production
and complete the initial differentiation. ]

The condition to be satisfied to initiate the shut-off signal, could
come from the developing embryo itself. The size reached by the embryo
might be the condition (detected by interaction with the maternal organism,
or by the deVeloping embryo alone). The state reached by one or all cells
of the embryo, might be the condition to be satisfied. ‘The cells of each
new generation might differ slightly from the parent cells, aﬁd the embryo
might, by means of a sort of internal counting, determine its own shut-off
time.

This last might be accomplished in the following fashion :

n

+ABC



The "counting structure" of this system is easily understood.

The number of rules is, unfortunately, linked to the number of cell

generations, which may or may not be a desirable condition. (We can for

example imagine that some substance may be accumulating until it reaches

a threshold concentration that inhibits further divisions or otherwise

produces the effect of a "switch",)

Two principal difficulties of the above schemes for producing a tripar-

tite embryo have been the '"synchrony" rule and the '"stop'" rule. We have

discussed the '"stop' rule at some length.

Let us now try to incorporate into the explicit developmental system

the effect of the synchrony rule by which the tripartite form of the embryo

was retained despite its variable over-all size.

The following artificial organism system could be employed:

S+abcsS

S+abc

ba-+ab.

2|l ca—+ac

cb=+bec

(or

la

S +a S1

S+b 82

S2 +cS

82 +c )
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This system produces the infinite set consisting of the equally
tripartite strings of all lengths. In this system the equal numbers
of cell types, and their separation into distinct regions is an inherent
property of the system itself.

Notice that rule-set 1 (or la) consists of autonomous-component rules
(context-free rules); indeed they may be restricted component rules (finite
state rules), which are a subset of the autonomous-component rules. These
rules determine the ultimate size of the embryonic organism (the number of
cells in the "embryo").

On the other hand, the rules of the second part of the system are
sensitive-component rules (more particularly monotonic or linguists'
context-sensitive rules); applicability of these rules depends not only
on the state of a particular cell, but may also depend on the states of
certain neighboring cells.

[The rules in this second part of the system are basically 're-arranging"
or "re-shuffling' rules.

Note that there are two biological interpretations of the function
carried out by these latter sort of rules. They can be interpreted as
rules which have a physical cell transport and sorting effect, i.e.,
morphogenetic cell movement rules; on the other hand, they can be inter-
preted as dual cell differentiation rules in which there is no actual
physical cell movement, but rather the cell on the left differentiates to
take on the characteristics of the cell on its rigﬁt and the cell on the
right takes on the characteristics of the cell on its left. That two
biologically striking different processes might have the same morphogenetic
effect musf be kept in mind when relating artificial organism systems to
possible biological counterf arts.]

In all systems we have so far discussed, the cells, as they were
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created, were assumed already to be distinguishable as a, or b, or ¢
types. There are many reasons why we should not take this to be the
only way in which‘our tripartite embryo could be formed. Indeed, the
"embryological problem" is often posed as the problem of an undifferen-
tiated cell somehow discovering what it should differentiate into. This
is sometimes posed as a problem of differentiating according to spatial
location: how does a largely undifferentiated cell find out where it
is so that it can become the sort of cell appropriate to its spatial
location. The polar point of view, (as taken in some of the above systems)
is that the cell knows where it is (or where it is to go) because of what
it has already become.

Most embryological processes are probably an interaction of those
two situations: a cell knows only what it is and what its local neighbor-
hood is like; but some of what it knows of itself and its local neighborhood
tells it where it is, and what it should further become.

It is quite clear though that the cells of many embryos go through
an uncommitted'" stage, such that if parts are removed prior to the commit-
ted stage, the remaining cells are competent to produce a complete (though
possibly smaller embryo) rather than a structurally incomplete embryo.

How can we express this phenomenon in artificial organism systems?

In a very rudimentary form the artificial organism system below

expresses this possibility.

S-+u
1
u-uu
u-+aB
2 B+bC
C+c
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ba-+ab
3 ca-+ac

cb+*bc

The first set of rules produces some number of undifferentiated cells
(the exact number not inherently controlled within this particular organism
system). The second group of rules converts cach u cell into a triple of
differentiated cells, one of each of the final types. The last set of
rules re-arranges these differentiated cells so that they assume the
correct final tripartite arrangement.

‘Notice that removal of u-type cells will reduce the ultimate size
of the organism but will not affect the development of the proper tripartite
arrangement. Once differentiation has begun however (group 2 rules)
removal of cells may disrupt the equality of the three final cell types.
Notice also that although this artificial organism may not be able to re-
cover from removal of cells at later stages it may still be able to recover
from disruption of cell pattern. If the proper triparfite pattern is
disturbed so that, e.g., a-cells are placed in among b-cells, the appli-
cation of the third group of rules will restore the proper arrangement.
Thus, this artificial organism has some capability for self-repair.

We can express the final loss of this capability by adding the differ-
entiation rules.

a > a*

b + b*

c*+c*
where there are no rearrangement rules for the differentiated a*, b*, c*

cell types.

It is clear that the re-arrangement rules are very powerful (recall



52

also that they are sensitive-component rules; they reflect action as a
consequence of inter-cell communication). Such rules allow us to produce
order among cell types which were produced somewhat chaotically. Is there
a more orderly way of producing the tripartite arrangement of cells? Is
there a way in which the artificial organism goes through an undifferen-
tiated stage, and the final cell types are produced "in place", not produced
scattered and then 're-arranged'?

One system which has the property of possessing a stage at which
removal of cells affects size but not completeness of form, and which does

not employ 're-shuffling" rules, is the following (given in part):

0) S>u
1) u-~=>uu
2) u—+a

5) au-+aa
4) ua+aa
5) #a~>#a
6) a' a-~+aa'
7) aa-+aa'
8) a'#-+ab
9) a'#-+ab
10) 2'b+abb
11) a'b+abb

(etc. for the b to c segment)

In this system, Rule 1 produces any number of u-cells. Rule 2)
initiates a differentiation stage. Rules 3) and 4) are to be interpreted
as obligatory: if they can be applied they should be, until no longer

applicable, no other rule use intervening.  This means that once rule 2)
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is applied production of further u-cells ceases.

Rules 5), 6), and 7) initiate and propagate a growth signal. The
signal starts at the openj(#) left end of thé string of a-cells and
is propagated to the right.

Rules 8) and 9) show the consequences of growth signal: b-cells
are produced to the right.

Notice that each cell growth signal initiates only in a-cells (cells
with an underline); after each growth signal propagation, the signalling
a cell becames an a-cell. Thus the number of growth signals (which deter-
mines the number of b-cells to be formed) is equal to the number of a-cells
converted to a-cells.

At this point (although the required further rules have not been set
down here) the b cells control the production of c-cells;
c-cells (rather than c-cells) can be produced directly since at
this time we do not ask that the c-cells control any further growth.

Notice that any removal of cells up to the time the a-cells begin
the control of production of b-cells will yield smaller but complete tri-
partite "embryos'".

An example of the processes of this system (beginning after the ini-
tial cells have been produced) is given below. Rule 5) is first to be
applied.

taaa

#alaa

# aa'a
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In the last example, we made the assumption that the open left end
of the string made sufficient "environmental" difference, that the initial
(leftend) cell might differentiate and "send growth pulses". (This might
be expressed either by making the end cells sensitive to the absence of
other cells or to the presence of explicit neighbor envirommental components.
The effect of theexternal environment might be introduced by (finite) auto-
maton environment components which feed initial (or perhaps even constant)
pulses to the end cells.

Employing either of these notions, another way in which we might get
the tripartite embryo, is the following.

We begin with an undifferentiated string. Differentiation begins at
both (sensitive) ends, the left end cells becoming a-cells, and the right
end cells becoming c-cells. If differentiation takes place at the same
rate at both ends, then when the differentiation process ''meets" at
the center, equal numbers of a-cells and c-cells will have been formed.

At this point, either the a-cell or c-cell segment could (as in the past
example) control the production of an equal number of intervening b-cells.

In the last two examples, we have produced the tripartite form, by
first producing part of the structure (either the a-cells, or the c-cells,
or both) and then completing the form by producing in addition, the correct
number of required new cells of the correct sort.

Another way of posing the tripartite embryo question, is to ask that
a block of undifferentiated cells be produced, and that all three types

of cells be produced from this block, in blace (without re-shuffling),
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and without producing any additional new cells.

If we permit ourselves a control apparatus imposing some synchronous
rule application, this can be accomplished in the following fashion.

We begin, (as in the last example) by commencing a differentiation
of a-cells from the left end, and c-cells from the right end; the cells
are not as yet committed to their roles however. The "proto-differentiations"
will meet at the center of the segment. We now assume that the "collision
and conflict" interaction of the opposing a-cell and c-cell proto-differ-
entiation initiates the differentiation of b-cells. The differentiation
of b-cells begins to diffuse'" out from the center. If the completion of
differentiation from the ends, and the completion of differentiation from
the center proceed at the proper rates, then the desired tripartite embryo
will be obtained.

Notice first that we can represent different diffusion rates or
communication speed or rapidity of differentiation by sending a cell through
a series of internal states, the first of which represents the onset of
the process or signal, and the last of which represents the completion of
the process or the final onward transmission of the signal. If the process
takes long (or the signal delay is to be lengthy) then the number of inter-
nal transitional states of the modelling component is large; if the process
is quick, then the number of the intervening internal states of the component
will be few.

One way of using such timing techniques to get the desired tripartite
result is the following.

1. Two signals are started simultaneously at the a-cell end, (and

two parallel signals are started at the c-cell end). The first

of these signals is passed along at the fastest rate, i.e., one
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cell each rule application. The first signals meet in the center
of the segment of undifferentiated cells, and initiate the differ-
entiation of b-cells out from the center. Differentiation of b-
cells proceeds at the same rate: one new cell (in each direction)
per rule application.

2) At the same time, the second sort of signal has been proceeding
at the rate of one cell each two rule applications; that is, at
half the speed of the first signal.

The second signal represents the passage of differentiation of a-cells

(on the left) and c-cells (on the right).

3) The differentiating processes from the center and from the ends
will meet one third of the way in from both ends; at the meeting,
the processes stop, and the tripartite form is complete.

The timing scheme (outlined in Figure 3) is not the only one that

might be employed. The same ultimate outcome can be obtained with many

other differentiation and timing schemes (cf. Arbib (1969) and Herman

(1969)).



a-cells———,~b-cell smm——mr

c-cells
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Fractional Time

to completion of

differentiation
First Signal =
1/2
Second Signal >
First Signal
3/4 Second Signal

\4

First Signal
1 r=====‘
Second Signal

Figure 3. Timing Scheme for Tripartite Differentiation.
Only the differentiation of the '"left-hand"
side of the organism is described, the right-

hand side acting symmetrically.
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