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COMMUTATIVE MACHINES

In this paper certain commutative automata and their behavior are
discussed. We begin with characterizations of the class of machines under
consideration, We then go on to show several associations between this
class of machines and a set of words, and a set of points, We then show
an association between a language for the set of words and the set of points,
Some results about this language are presented, after which we show how
machines can be constructed which realize the behavior expressed in this
language. We conclude with results and comments on the characteristics of

commutative machines and their transition systems,

I. BASIC TERMINOLOGY

A machine M is a quintuple M = < S, so, fa fb, T > in which S is

a (finite or infinite) set of states of M; s € S is the initial state of
- 0

M; fa, fb are the (direct) transition functions of M which take elements

of S into elements of S; T is a (finite or infinite) subset of S, called

the terminal state(s) of M.

When for every s ¢ S, sfafb - sfbfa, then M is a commutative machine

(c-machine).

We associate with each M a set of words., Let W be the set of all words
in a and b (and including A, the null word). There is a useful association
between the words in W and the states s € S of machines M, For any w ¢ W
and any s € S in a machine M, w = s will mean that if the functions fa, fb
are applied to M in the sequence indicated by the word w (reading from
left to right) and starting in s0 (and A applied to so results in so), then

the result will be s,



The behavior of a machine M is the set of all words w such that w = s
for some s € T,

W is the free algebra, where W = < W, A, fa, fb > and where (as
before) W is the set of all words in a and b, and A is the empty word, and
where wfa = wa, wfb = wb, for all w ¢ W, Whenever we have M = < §, so, fa, fb, T >
consider a mapping H(w) : W~ S, If H(w) = s, then s is the state into which
M is taken by the input sequence w beginning in state so. H(w) is a homo-
morphism between (U and M,

We now introduce the c-machine L which plays for commutative machines
a role analogous to that of W for the class of all M, L = <L, A, fa, fb >
where L is the set of points in the plane with non-negative, integral coordinates
(i.e., the lattice-points in the first quadrant) and where XA ¢ L is the origin.

For every p ¢ L, pi2

pfb is to mean the point one unit above p, The functions fa, fb commute so

is to mean the point one unit to the right of p, and

that for every point p ¢ L, pfafb = pfbfa. L may be viewed as a commutative
machine (without final states) where the p € L are the states of L.

Consider & and an M, If M is a c-machine then we can interpolate L
between (U and the c-machine M, Consider the mapping P : W » L which for any
word w associates a corresponding lattice=point p; P(w) = p, such that starting
at A and moving right one unit for each a in w and upward one unit for each b
in w, we arrive at p, For any p ¢ L, h(p) = s is to mean that if a c-machine
is placed on A ¢ L while in state s , and moves right one unit under fa, and
upward one unit under fb, then M will be in state s when resting on p € L.
(Alternatively, h(p) = s can be interpreted '"s is the state into which M is
taken by a word w, where P(w) = p, with M started in s0 ."") Because the
machine M is a c-machine, the point p it reaches in L is independent of the

path it follows to p.



Consequently h is a well-defined, single-valued function. H(w) = h(P(w)).
Note that h is a homomorphism,
W, L, and an M, where M is a c-machine, are related in that if we
apply the mapping from W - M, it is the same as if we go from W - L -+ M,
Thus the study of commutative machines is the same as studying all homomorphic

images of L .

II., A LANGUAGE FOR DENOTING POINTS OF L .

The behavior of any machine is a set o of words w such that w = s for
some s ¢ T. In addition, if M is a c-machine then M has associated with its
final states a set of points of L such that h(p) € T. Regular expressions
(see [1, 2]) have frequently been used to denote the set of words a which
is the behavior of a finite machine. Under a different usage we can employ
regular expressions to denote the behavior of a c-machine,

If B is a regular expression denoting a set of words, then let c(RB)
be the commutative closure of the words of B. c¢(B) is the behavior of a
c-machine, If a c-machine M has a behavior c¢(8) then P(c(B)) is the set of
lattice points of L corresponding to the final states of M, Note that P(B) =
P(c(B)). Regular expressions can thus be employed to denote the points of
L which are associated with the final states of certain c-machines,

The use of regular expressions in denoting points of L is shown in the

following figures.
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If a set of points P contained in L is denoted by a regular expression

of the form w wl* or w wl* w * (where w may be A) then P is a fundamental
0 0 2 0 -

set. (Also w 1is called the origin of the fundamental set, and w *, w * are
—_— 0 e 2

called the axes of the fundamental set.) If P is denoted by w0 wl* w *, where

the points denoted by wl, w2 along with the point A, are not collinear, then

P is a planar fundamental set., If P is denoted by w0 wl* and w1 # A, then

P is a linear fundamental set. (Thus the arrays of points shown in figures

3, 4, 7, 8, 9 are planar fundamental sets, and the points of figure 2, 5, 6
are linear fundamental sets.)

If the pattern of points of a planar fundamental set is extended beyond
its axes over the whole first quadrant, then we will speak of such a set of
points as the extended fundamental set of the given fundamental set,

When a fundamental set is described by an expression wl* w2*, where
w1 and w2 are mixed words (in both a and b) then the lines of points wl*, wz*
are oblique, and we will speak of such an expression as wl* w2* as describing
an oblique planar fundamental set (and similarly for linear fundamental sets),
When an expression is of the form wl* wz* where one of the two words wl, w2

is in a's alone and the other in b's alone we will speak of the set as orthogonal,

Theorem: Every extended fundamental set derived from an oblique funda-

mental set is a union of orthogonal fundamental sets.

Two fundamental sets, w wl* w*andw w*w * are said to be conjugate
0 2 3 4 5 E—
if c(wl* w*) = c(w*w *), Thus two fundamental sets are conjugate if, when
2 L 5
they are given the same origin, they coincide. If two fundamental sets have

their respective axes parallel they are called similar,



Theorem: If two fundamental sets are similar but not conjugate, they

can be made conjugate by use of the Key Identity.

Lemma: Key Identity: Where x is a regular expression,

x*= (A v x)k'1 (xk)*

The Key Identity allows infinite periodic sets of points in a line
or in a planar array to be represented as a finite union of conjugate sets
of the same kind. This changing of the period of the representation of an

infinite set facilitates the comparison of infinite processes.

Theorem: Quasi-Normal Form. Where wo, wl, w are any words of W, then
—_— 2
any regular expression for denoting points of L can be put in
the form of a finite union of constituents of the following

kinds: w, w*, w w*, w w*w?*
o o o 1 o0 1 2

The following identities are employed in obtaining this result.
Where x, y are regular expressions:

Universal Identities

I (x vy)* = (x* y*)*
2, x*=(Av x)k‘l (xk)* (Key Identity)

Commutative Identities

1. xy = yx
2, (x vy)* = x* y*
3. (x*y)*=Auwx*y*y

This last identity allows the reduction of star-height of commutative

regular expressions so that no star operates over a star,



Proof: [Note: X* = A uXUuUXXU...]

(x*y)*=Av (x*y)v x*y)2v...
=AvX*Yy)v(x*x*yy)v. ..
=Av (x*y)v x*2y2) v, ., ., (x*nyn) , .,

[Note: x*% = x* x* = (x v x)* = x* (and likewise for the nth pcwer)]
=Aux* (yuvyloyd.,..y"., ..

= A vuXx*y*y

Thus, beginning with an arbitrary regular expression, and employing
in particular the commutative identities 2 and 3 above, an expression is obtained
composed of a union of constituents within which there are no unions and having
no stars operating over starred expressions, Some of the resulting constituents
may, however, contain long concatenations of starred words. Constituents of

this sort may be brought into the proper form by use of the following result:

Lemma : Star-length Reduction., Any constituent of the formw * w * w *
’ 2

can be placed in the form (A v wo Vw2, v...uwW k)"‘,wl* wr o,
0 0

Thus, beginning with a constituent composed of a concatenation of any
length, of starred words, a portion of star-length three of the constituent
can be reduced to star-length two, This process can be repeated, and, with

law,

applications of the distributive, the whole expression reduced to the desired
PP A p

form,

Proof: Case 1: At least two of wo*, wl*, wz* lie on the same line.

Similar linear fundamental sets are thus established, which by

the Key Identity can be made conjugate, and the result is obtained.

10



Case 2: No two of wo*, wl*, wz* lie on the same line. Because
of the commutativity identity we can assume without loss of

generality that wo* is the line of points lying between wl* and
wr,owo* wz* can be viewed as determining a planar fundamental

2 1
set, and wo* can be viewed as providing an infinite set of
relative origins for wl* wz*, i.e., establishing an infinite
series of conjugate fundamental sets of the form wl* wz*.
0f two conjugate fundamental sets, F, F', if the origin
of F is contained in F, then F' £ F,
A linear fundamental set (an infinite linear periodic set
of points) within a planar fundamental set, and having a point
in common with the planar fundamental set, has an infinite periodic
subset (a linear fundamental set) in common with the planar
fundamental set (from Chinese Remainder Theorem).
Thus since wO* and wl* wz* have the origin in common, an
infinite periodic subset of wo* is contained in wl* w*, In

2
particular there exists a number such that woraised to that number

is an element of wl* w2*. Let k be that number. As long as woi,
i < k, then the relative origin chosen from wo* does not satisfy
the hypothesis that the origin of F' is in F. When i reaches Kk,
at that point and beyond (because of the periodic nature of the

process) every element woi, for i 2 k is an element of

(A vw k)’\w LRI
0 1 2

Given any planar fundamental set F, there can be, in L, only a finite
number of zero intersection fundamental sets conjugate to F. Given any linear
fundamental set, there can be on a line in L only a finite number of zero-

intersection fundamental sets conjugate to the given set. The number, £, of

11



possible conjugate fundamental sets of a given kind F, (including F itself)

under the above conditions will be called the index of F. Note that in the

Star-length Reduction the index of wl* wz* is a bound on k.

As will be seen in the section on construction, certain classes of
commutative machines realizing behaviors expressed as the points of funda-
mental sets will prove to have minimal numbers of states related to the index

of the associated fundamental sets.

Lemma : Given two regular expressions E and E' in quasi-normal form,

denoting points of L, it can effectively be decided whether
E = E', i,e., whether E and E' denote the same points of L.

Detailed proof will not be given,

Proof is obtained by first applying techniques for determining coincidence
in the constituents within E and within E', After this redundancy in E and E'
separately has been eliminated, E and E' are examined together for coincidence
and difference. Important tools in facilitating the making of these comparisons
are results in elementary number theory such as the Euclidean Algorithm, the
Chinese Remainder Theorem, and such intermediate results as the Key Identity
and the fact (already mentioned) that if a planar fundamental set and a linear
fundamental set lying wholly between the axes of the planar fundamental set
have a point in common, then they have a linear fundamental set in common,
and a regular expression for this set can be obtained.

Note also that if E is any regular expression in quasi-normal form,

with constituents e , e , e , . . . e ,thenc(E) =c(e ) vc(e) v... vc(e) .
0 1 2 n 0 1 n

Theorem: Given any two regular expressions, E and E' it can be decided
whether c(E) = c(E')., This follows from the last Lemma, and from
the earlier result that any regular expression can be put into

quasi-normal form.
12



III. CONSTRUCTION OF COMMUTATIVE MACHINES

We have shown how regular expressions can be employed to denote points
of L, our lattice-point model. These points of L in turn are employed to
denote all the legitimate paths to the points. The words which are associ-
ated with these paths are the behavior of the commutative machines under
consideration.

We will consider in some detail the construction of machines which
realize the behavior denoted by certain expressions in quasi-normal form,
Some of these machines will prove to be finite state devices, and some of

- them will be infinite state devices.

The use of the lattice-point model L as a guide to the constructing
of state-diagrams for both finite and infinite machines is central to our
discussion. Any commutative event can be represented in a set of lattice
points a of L., The process of producing a machine M consists in merging
points of L relative to a and o' (complement of a) to form states of M, Con-

sider an operator u (merge) which is to be applied to sets of points of L

Definition: u(a) is a c-machine,
Definition: Let x ~ y mean X and y can be merged; then x ~ y if and

only if for all u's,x u € o is equivalent to y u ¢ o , where x,

y, u are elements of L, ~ is thus defined.

Definition: u(a) = L (mod ~) (the quotient of the free algebra L where
we factor out ~) with the X designated an output if and only if

X & o (x is the set of all points related to x by -).

15



Lemma : ~ is an equivalence relation on L and is a right congruence.

(It is in fact a bi-congruence.) Thus: the two input operations
of L induce operations on the equivalence classes by choosing
representatives and the result is independent of the choice

of these representatives. Every equivalence class is either
entirely in or entirely out of a .

Since we wish to take the equivalence classes as states we must show
the transitions between these states. From the Lemma it is apparent that
the next state under an a-transition for example, can be obtained by taking
a representative of X (x itself perhaps) and finding the point one unit to

the right, The ~-class of this point is the state sought under an a-transition.
Similarly for a b-transition.

Theorem: The machine u(a) is the minimal machine having behavior a.

Certain points cannot be merged. Consider o and any merging relation
~ for which L (mod ~ ) has behavior a. Given a, x ~ y implies x u ¢ o if
and only if y u ¢ a . Thus: If a u can be found such that x u ¢ a and y u ¢ a',
then x, y cannot be merged.

Note that if F is an oblique fundamental set and X, y are two points,

then if the line through x, y is not parallel to F, we cannot merge x, Yy.

Regularity Criterion

If a set of words is non-regular, the set will not be '"acceptable"
by the finite machine, All finite sets of words are regular., An infinite
set o is non-regular if there is an infinite set B with an infinite sub-set
such that if you can find two elements (words) of B such that when you add
a word to one of the elements then the resulting word is in a, but when you
add it to the second element of the pair then the result is not in a.

If such a B cannot be found, then the set o is regular,

1h



Corollary: The set of words associated with any oblique fundamental set

is non-regular.

Corollary: The set of words associated with any oblique fundamental set

is not acceptable by a finite automaton,

We now apply these results to construct machines realizing various
behaviors., The behaviors first considered satisfy the Regularity Criterion

above and thus prove to be realizable by finite machines,

Finite state machines.

The state diagram for the behavior denoted by c(w) where w is an
unstarred word can be easily obtained. The method to be employed will be
made apparent by use of example. Let us attempt to realizec(aa) and also

c(aabb), (Figure 1 shows the points denoted by these expressions.)

Example 1: c(aa): The commutative closure of aa is again aa, A state
diagram is to be obtained of a machine which will "detect'" or 'accept' the
word aa and no other words, in the sense that application of the sequence
aa will place the machine in an s ¢ T, and no other word will place the machine
in an s € T,

Using L as a guide, and identifying A of L with the initial s0 of a
machine M, then s i Sl’ s1 5 s2 (read "s0 by a takes M to 51" etc.). This

0
is the only acceptable path (word), and 52 e T.




No other words are to result in placing M in an s ¢ T. In this
particular M, receipt of any b whatsoever, or any number of a's greater than
two, will take the machine into a "limbo'" state: a state which is not an

s ¢ T, and which the machine can never leave. In this case s is a limbo

state,

83 83 83
b b
N 7

Thus all points of L other than so, sl, 52 are limbo states. Since
all limbo states have the same behavior, viz. upon receipt of either a or b

the machine remains in the limbo state, all limbo states may be merged into

a single state. The state diagram for an M realizing c(aa) is:

16



In order to indicate an s € T we will often mark the state with an
X. Also, to secure neatness of state diagrams we will often abbreviate the

transitions to limbo by ——» S

Lo

Thus the machine M = < so, S, £, f

s €S, S
0

are:

Example 2:

{s,s,s, s} T={s}, and the transition functions f f
0 1 2 3 2 a

or (alternative notation)

2

b)

T > realizing C[(aa)] is:

s fa = 2
0 1 0
s b o ~bes
0 3 0
s fa - N
1 2 1
s fb = -2
1 3 1
fa a
s = s —
2 3 2
s b - ¢ b,
2 3 2
s fa . —~2.
3 3 3
b b
S = s B
3 3 3
c[(aabb)]:
b b b
a a a
A ’Ir
b b b
a | = a
i -
b b b
a a a

17
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Lattice Model (aabb)

c-machine c(aabb) (s8 e T)

This machine accepts aabb, abab, abba, bbaa, baba, baab, and no other words.

Example 3: c(aa v aabb):
In realizing the behavior of a finite union of unstarred words, the

resulting machines can always be at least partly combined.

By distinguishing both s2 and 58 as elements of T we can realize c(aa)

and c(aabb) in the ''same' machine.

18



Example 4: c(aa)* (See Figure 2):

Note: (1) The index of (aa)* is 2., If the points (states) on the a-axis

are numbered respectively 0, 1, 2, ,,., etc,, then all the even numbered states
can be merged into the single state so, while all odd numbered states on the
a-axis can be merged into the single state sl. (2) As before, the remaining
states (points) of L are merged in the single limbo state 52. (3) Since A

is an element of c(aa)* the machine, in s initially, also is '"on'", initially,

under receipt of A,

19



Example 5: c(abb’\(aa)*):

b b b
a a
| A\ |

\\EJ
b b b

b b b
a
A
SO\E—;\}
a

But note that parts of the above machine can be merged reducing the

machine from 10 states to a 7 state minimal machine for c(abb’\(aa)*).

20



Example 6: c((aa)*(bb)*) (See Figure 3):




There are four fundamental sets conjugate to A (aa)*(bb)*:
A" (aa)*(bb)* itself, a” (aa)*(bb)*™>(aa)*(bb)*, and (ab)” (aa)*(bb)*,
All the points of L which are "output' points, viz, A" (aa)*(bb)* are merged
into s0 ¢ T; all the points of L which we denoted by the other three funda-
mental sets are merged to form states 51' 52, 53 respectively,

Note that the index, £, of the fundamental set (aa)*(bb)* is 4, and
that this is the minimal number of states for the machine realizing this
behavior. This is true in general of planar fundamental sets which denote
the behavior of finite machines. For linear fundamental sets, because of

the limbo state, the minimal machine realizing finite behavior is £ + 1.

Example 7: c(ab(aa)*(bb)*):

Compare Example 6, By designating a different initial state the behavior is
modified without additional states. Note that by thus choosing alternative

initial states the behavior denoted by each of the conjugate fundamental sets

can be obtained.

22



Example §: c(aaabbb™ *(aa)*(bb)*):

This additional behavior cannot be directly realized by merely re-labelling

the initial state as in Example 7., Additional machine states are required,

23



Theoren: If a planar fundamental set is extended over the first quadrant,
then the minimal c-machine having the behavior denoted by the
set of points has a number of states equal to the index of the
extended fundamental set, In some cases the minimal machines
associated with extended fundamental sets may be 'skewed" as in

the following figure.

Example 9:¢ c((A v aabb v aaaab)” ‘(aaaaaa)*(bbb)*)
This machine realizes the behavior denoted by the oblique fundamental

set (aabb)*’\(aaaab)* extended over the first quadrant, Recall from Section II:

Theorem: For every fundamental set with oblique axes, there is a union of
fundamental sets with orthogonal axes (axes in a's alone and b's
alone) such that this union is just the points of the oblique

fundamental set extended over the first quadrant,

24



Corollary: For every minimal machine which is skewed, there is an
"orthogonal' machine with the same behavior, (having usually
several s ¢ T).
Thus the behavior of a minimal skewed machine can be realized

by a direct product of counters,

The "orthogonal" (18-state) machine realizing the same behavior as

the minimal (6-state) 'skewed' machine of the last example, is shown below,

25



Since the machines of Examples 1-9 are all finite, there exist ordinary

regular expressions [1] denoting their behavior, thus:

Comment: Where B is a regular expression in quasi-normal form, and where
c(B) denotes the behavior of a finite c-machine, then for every
c(B) there is a corresponding Kleene regular expression for the

behavior of the machine.

For example, Lawrence Eggan has shown that an ordinary regular

expression for c((aa)*(bb)*) is (aa v bbu (ab v ba)(aa v bb)*(ab v ba))*,

An ordinary regular expression for the behavior of a c-machine can
be obtained by the Analysis technique applied by Kleene. This technique,
however, does not guarantee any minimality properties of the expression, In
particular, the star-height of the resulting ordinary regular expression may

not be minimal,

Comment : Where the behavior c(g) requires an infinite c-machine there can

be no ordinary regular expression for this behavior,

Comment : For any regular expression, it can be decided whether it denotes
the behavior of a c-machine. (Using the Kleene Synthesis result,
construct the machine realizing the behavior denoted by the
regular expression., Minimize the resulting machine [3]. Test

each of the states of this machine for the commutativity condi-

tion, sfafb - sfbfa.)

26



Infinite Commutative Machines

Some behaviors describable by employing the c-operator on regular
expressions in quasi-normal form cannot be realized by finite machines.

This will be indicated by means of the following examples: Consider
the following set: c(ab)*na*b*., a*b* is regular, and if c(ab)* is
regular, then the intersection of the two sets should also be regular. The
intersection consists of all sequences in equal numbers of a's and b's inter-
sected with all sequences in which a's precede b's, That is to say, all

NpM ) (where n ranges over all positive integers and

sequences of the form a
zero). In order to detect the sequences of this set, the machine will be
required to register the receipt of am and upon the receipt of bM indicate
acceptance of the sequence. But n can be indefinitely large, and indeed
an n can always be found which will exceed the registering capacity of any

given finite machine. Thus, to realize the behavior c(ab)* a potentially

infinite machine is required, and c(ab)* is not regular.

ExamplLe 10: c(ab)*:




A1l of the points which lie on the line (ab)* can be merged into the
single origin point (state so, which is also the output state., In addition,
all of the points on lines parallel to (ab)* can be merged with their
respective origins on the a and b axes.

The state diagram for the infinite machine realizing c(ab)* can be

set down in a linear fashion,

Example 11: c(aab)* :

28



Example 12: c(aabb)*

In this case alternate points on the main diagonal and on lines parallel
to the main diagonal map into upper and lower rows of points (states). The
number of rows of points is equal to the index of the linear fundamental set

which denotes the behavior of this machine.

Example 13: c(aa™(ab)*)

29



In this case the initial and output states are not identical., The
prefixed word aa can readily be accomodated as can any prefix in a's and
b's alone by displacing the initial state the requisite number of proper

transitions from the output state.
Example 14: c(aabb™ (ab)*)

In order to realize this behavior, a 'feeder'" machine system must

be employed. (See Example 8 for a feeder system to a finite machine.)

30



Example 15:  c((aa)*(ab)*)

This behavior can be realized by distinguishing an infinite number of
states as output states: in this case alternate states to the right of s .
e

This technique can be applied to all cases where a pure word starred is con-

catenated with a mixed word starred.

Example 16:c((aaabbbbb)” (aabb)* (aaab)*)

The only "machine" that realizes this behavior is the machine M whose
state diagram is L and whose output set T is those points of L denoted by
c((aaabbbbb)” " (aabb)* (aaab)*).

Although points in lines parallel to oblique lines of points in a in
L can be merged, since the a of this example is a system formed from two oblique
lines of points, there are no lines of points parallel to both of the two non-

parallel lines of points, Thus no points can be merged.

Comment : For every regular expression a there are machines realizing the

behavior c(a).

Every regular expression can be put in the quasi-normal form, and in the
foregoing examples we have shown how to realize the behavior denoted by any of

the constituent types of the quasi-normal form,

31



IV. A CLASS OF TAPE MACHINES WITH INPUT

The finite and infinite machines described in the preceding section
can be represented in the form of certain tape-machines with input (TM).
These machines have two major components: a finite state reading head, and
an indefinitely expandible tape upon which are a finite number of "marked"
squares, The reading head receives input symbols and upon receipt of such
symbols, the reading head will undergo transitions, andt%%ve a unit distance
right (R) or left (L) on the tape, These moves can be given by state diagrams
or by a finite table (see example below). Whenever the reading head is in
an s ¢ T, and is resting on a marked tape square, the machine has an output.
In all cases under discussion here, the reading head will be a finite state
automaton which is also commutative., Thus the reading heads of these tape
machines with input are precisely the finite devices discussed in the pre-
ceding section of this paper,

For any finite commutative machine there is an associated tape-machine
with input realizing the same behavior,

This follows trivially by setting any finite commutative machine on
the marked square of a tape so that the additional condition "when M is in

an s € T and M is on a marked square of tape there is an output'" is satisfied.

Theorem: For any commutative behavior denoted by an expression of the form
w0 wl* (where wOImay be A) there is a tape-machine which realizes
this behavior. If w1 is a mixed word, then an infinite machine

will be required.

There is a close relationship between the reading head required to

realize this behavior and a class of finite commutative machines.
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The transition structure of the reading head for a tape-machine
with input which realizes the infinite behavior c(akbﬂ)* is identical to
the transition structure for the finite c-machines realizing c[(ak)*(sz*].

To the transition structure so obtained must be appended moves (R,L)

k

so that whenever an input sequence reaches a" then R, and whenever an input

sequence reached bt then L.

If, instead of unit moves of the tape, right or left, we allow moves

of any fixed finite number of tape squares, then the minimal reading head
will have a number of states equal to the index of the linear fundamental

set denoting the behavior.

Example 17: c(aabb)* (See Example 11 for the realization of the infinite
c-machine having this behavior.)
(1) The transition structure of the reading head is obtained by

constructing a finite c-machine realizing c(aa)*(bb)*.
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(2) To the above we append tape-move instructions R and L. !le also
add that the finite reading head is placed on the (single) marked square of
a tape and is in s0 (s0 e T) and is resting on the x-square, then there is

an output (so(x) = 1). Thus the ™ for c(aabb)* is:

The full description of the above tape machine with input may be

presented in tabular form,



Present Input Action Next
State State
s a - s

0 1
s b - s
0 2
s a R S
1 0
s b - S
1 3
s a - s
2 3
S b L S
2 0
S a R S
3 2
S b L [
3 1
Output: so(x) =1
Start: so(x)

Note that if for example the above machine was started on tape square
x-1 rather than on x (M(x-1) instead of M(x)) the machine would realize the
behavior c(aa” (aabb)*) rather than c(aabb)*. Feeder systems to the reading
head may also be employed.

If we relax the restriction that only a finite number of squares of
tape be marked, but require that the infinite markings be periodic, we can
readily realize additional behaviors. If it is desired to realize a behavior
such as c((aa)*(aabb)*) then every tape square to the right of the start x
square should also be marked x, If it is desired to realize a behavior such
as c((aaaa)*(aabb)*), then alternate tape squares to the right of the start

should be marked.
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Example 18:  Some behaviors may not be realizable employing minimal state
reading heads. Take for example c((aaa)*(aab)*). c((aa)*b*) is the

behavior of the reading head, and this behavior can be realized by:

so that c(aab)* can be realized by a tape machine with reading head,

where the tape start square is x, and where so(x) = 1,
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c(aa)*(aab)*) for example can be realized by marking all squares to
the right of the start-square with X,

c(a*(aab)*) can be realized by (1) marking all squares to the right
of the start-square with x, and by making both so(x) = 1 and sl(x) =1,

c((aaa)*(aab)*) cannot be realized employing this (2-state) minimal
c(aa)*b* reading head however, For this reading head has an insufficient
number of internal states to distinguish aaa from a,

c((aaa)*(aab)*) can be realized by the following tape machine with
an 18-state reading head. The 18-state reading head is employed in order

to obtain a common cycle with (aaa)* and is obtained by the technique of

the Fundamental Identity Lemma of Section III.

so(x) =] sll(x) =1
ss(x) =1 sls(x) =1
se(x) =1 sls(x) =1
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The above machine is to start on the x square, and all squares to the

right of this are also to be marked x.

Printing Machines

The use of a tape with a potentially infinite number of pre-marked
squares may be found objectionable since under relaxed conditions this
feature may permit the realizing of non-effective behaviors, Since, however,
in the cases under discussion, the squares are to be marked in a periodic
fashion, the marking procedures could be expressed as the behaviors of
rather simple automata, viz. input-free finite automata, These automata
would move the tape, (or move relative to the tape) and periodically print
an x, Once the print machine had begun its action the reading head of the
commutative tape machine proper could be set on the appropriate square
ready to accept inputs,

Both thé move-print and the move-read actions can be combined in a

finite automaton reading head.

Example 19:  cc((a*)(ab)*)

Present Head Tape Input | Action | Action Next Head
State State 1 2 State
s X a R Px ]
0 0
S X b L - s
0 , 0
s - a R - s
0 0
S - b L - s
0 0
Output: so(x) =1
Start: s (x)
0
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Upon receipt of a this machine will, when in s0 and viewing an x, move
right one unit and then print on x, (Px).

The tape-machine concept can be further modified to produce a '"machine"
for realizing the behavior expressed by an oblique planar array of points in
L, (e.g. (aabb)*(aab)*). The lattice-point model is viewed as an infinite
two-dimensional array of tape squares. With each of the points of L denoting
the behavior to be realized is associated an x-marked square of the array of
tape. Since the behavioral properties of the systems are being carried in
the array, the reading head can be of the simplest sort, viz. a one-state
device which under receipt of an a moves right, and under receipt of a b

moves up, and which is 'on'" whenever it is resting on a marked square.

b/t

v, COMMUTATIVE MACHINES AND THEIR TRANSITION ALGEBRAS

We now characterize in a more precise fashion the machines under

discussion.

Lemma : The structure of M = < §, so, fa, fb’ T > uniquely determines
a semi-group operation (denoted by ° ) on S, and such that given

w *=s ,w =s (forallw,w € W, s, s ¢38S) then
2 1 2 1 2
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Definition: A machine M is strongly connected if for every pair of states
W
s, s', there is some word w, such that § «—— s',

Definition: M is homogeneous if every machine obtained by choosing each

s € S as initial state instead of s , is isomorphic to M,
0

The isomorphism intended here is structural and does not take final

states into account.

Definition: A machine M' will be said to be a sub-machine of M, if the
states of M' are states of M, and the transitiions of M' are
the same for M but the initial state of M is not required to be

a state of M' (contrary to conventional usage).

Definition: A machine is backwards-deterministic if its transition

functions form a group,

"The Logic of Automata", A, W. Burks and H. Wang, JACM, 4, 2, p. 286,

Lemma : The following conditions (under the commutativity assumption)

are equivalent:

(1) M is strongly connected.

(2) M is homogeneous.

(3) The semigroup of M is a group.

(4) M is backwards-deterministic,
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Lemma: Every (finite) commutative machine M has a unique homogeneous

sub-machine,

That is, every M consists of a ''feeder" system of states (possibly
absent) and a system of states which is unique and homogeneous. (For
explicit use of feeder systems to homogeneous machines see especially Examples
8 and 14 of Section IV, Note also that the homogeneous sub-machine need not
contain a final state; see Example 3, where the "limbo" state forms the homo-

geneous sub-machine.)

Definition: A state s of a machine is a feeder state if there is no mixed

word w such that s —fe» s .

Definition: A state s of a machine is a homogeneous state if there is a

mixed word w such that s —fea s ,

It is of course possible that a fixed, finite number of a's alone or
b's alone will, for an s, return M to the same s, This is typically the
case in the sort of homogeneous finite machine shown below, which (for s ¢ T)
0

realizes the behavior c((aaa)*(bbb)*)

In this example both the a-cycle and the b-cycle are of finite order.
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Homogeneous Machines

A homogeneous machine M is characterized by there being a mixed word
w, such that s0 -—E—’-so (that is, such that the initial state of M is a
homogeneous state).

When M is.finite and homogeneous there are positive integers i and j
such that s0 u-ﬂi-»so and so —-Ei—>-so. Thus, there is a pure word (other
than A) which is an "identity" word.

When M is infinite and homogeneous then there is a mixed word w such
that s0 -—E—a-so, (that is, there is an identity word which is a mixed word)

and there is no pure word which is an identity word., The points of L associ-

ated with the identity words of an infinite homogeneous machine are collinear.

Observations: (1) Every finite homogeneous machine can be embedded in torus.

(2) Every infinite homogeneous machine can be embedded in an

infinite cylinder.

The finite homogeneous machine (realizing c((aaa)*(bbb)*)) of the last
figure can be embedded in a torus. Note also the 'variants" produced by
"skewing," which, finite and homogeneous, can also be embedded in toruses.

For example:




With any one state designated as both initial and final state, this
system can realize the behavior ¢c((A v aaabb v aaaaaab)” -(aaaaaaaaa)*(bbb)*),

The infinite homogeneous machines which are embedable in infinite
cylinders can conveniently be set down in an array in which a-transitions
take the machine to states to the right, and b-transitions take the machine
to states vertically above, until the top row is reached, at which point the
next b-transition takes the machine to a state in the bottom row of the
array. Repeated b-transitions will always take the machine to states in the
bottom row which are to the left of previous states in the bottom row of the
array.

For example, c(aaabbb)* (where because of the homogeneity property

any state can be chosen as initial and final state);

Thus the machine under repeated a-transition goes to states to the right,

and under repeated b-transitions spirals "backward" around the cylinder to
the left, Note that if the b-returns from the top row of states do not go
to the left then the infinite machine ceases to be strongly connected, and

becomes instead a species of counter,
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APPENDIX

Many of the results given in terms of an alphabet of two letters can

be extended to expressions on larger alphabets.

Lemma : The star-length of constituents of a quasi-normal form can be

made less than or equal to n, where n is the number of letters

of the given alphabet,

This result was obtained by Y. Give'on,

Since the other properties employed in obtaining the quasi-normal

form can be extended directly,

Theorem: There is a quasi-normal form for expressions on alphabets of

n letters.,

An association can be made between commutative regular expressions and
the Presburger number theoretic logical language [4]. Let Ll, L, oce Ln be
2
the lattice point models for languages of 2 letters, 3 letters, n letters,

etc.

Theorem: For every regular expression E in n letters, there is a Presburger
formula Q, having n free variables, which defines the same points

of L .
n

For the case of expressions for the behavior of finite commutative
automata, this was conjectured by M., P, Shutzenberger, ¢ | was later demon-

strated by C. C, Elgot and J. D. Rutledge [5].
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There is a decision procedure for truth of sentences of the Presburger
language. From this fact and the theorem above, the result of Section II
that "for every two regular expressions E and E' it can be decided whether

c(E) = c(E'")" follows directly.

Theorem: The set of regular expressions E such that c(E) is regular

is effectively decidable,

Given a regular expression E on two letters, there is a related Pres-

burger formula Q(x,y). An equivalence relation = on points is introduced:
= = + +v) = Q(x u + Vv
(7)) = (x, y eV, v [Qx +u,y +V) 20w,y + V)]

The above Presburger formula expresses the fact that xl, yl, X , y are
. 2
related by the induced congruence relation [6]. We now incorporate a finite-

ness condition for the number of congruence classes,

Jz Yy, y Ix sy L6 <2,y <) & ((x, 3) = (), )]

This expression asserts that there exists a finite automaton having
the behavior c(E)., By the Presburger decision procedure it can be determined
whether such an expression as the above is true or false, Thus we have an
effective procedure for deciding whether the event c(E) is regular, for any
regular expression E,

From the above two theorems it follows that,

Corollary: For any regular expression E, for which c(E) is regular, we can
effectively construct a finite commutative automaton whose

behavior is c(E).
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