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Abstract: In this article, we consider a classic dynamic inventory control problem of a self-financing retailer who periodically
replenishes its stock from a supplier and sells it to the market. The replenishment decisions of the retailer are constrained by cash
flow, which is updated periodically following purchasing and sales in each period. Excess demand in each period is lost when
insufficient inventory is in stock. The retailer’s objective is to maximize its expected terminal wealth at the end of the planning
horizon. We characterize the optimal inventory control policy and present a simple algorithm for computing the optimal policies
for each period. Conditions are identified under which the optimal control policies are identical across periods. We also present
comparative statics results on the optimal control policy. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 758–768, 2008
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1. INTRODUCTION

The majority of the current literature on inventory man-
agement ignores financial status of a firm and assumes that
the firm is able to implement any replenishment and order-
ing decisions, see, [2, 14, 15, 19]. On the other hand, it is
well-known that cash flow is one of the key reasons for
the bankruptcy of small- and medium-sized companies. For
example, Bradley [5] surveys 531 businesses in the South-
west United States that went bankrupt during the calendar
year 1998, and the study suggests that inadequate financial
planning, especially operating capital for the early months of
the operation, is a most evident factor for bankruptcy. Another
study was conducted by a research group in the Development
and Research Center of State Council of China, see Chen and
Zhang [7], where similar findings are reported.

In this article, we consider a classic dynamic inventory
control problem of a self-financing retailer who periodically
replenishes its stock from a supplier and sells it to the mar-
ket. Excess demand in each period is lost when insufficient
inventory is in stock. The demands for different periods are
independent and identically distributed random variables.
The retailer’s operational decisions are constrained by its cash
flow, which is updated periodically following purchasing and
sales in each period. We seek to gain understanding on how
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operational decisions interact with and are affected by cash
flows in a dynamic setting. The objective of the firm is to
maximize its expected wealth level at the end of the planning
horizon. We obtain the explicit structure on how the opti-
mal inventory control strategy depends on the cash flows. We
also study the relationship between the optimal control pol-
icy and the system parameters, e.g., purchasing price, interest
rate, savage value, and selling price. Conditions are identi-
fied under which the optimal control policies are identical
across periods. A simple algorithm is developed to compute
the optimal inventory control policy for each period. Though
in the article we focus on lost-sales model, similar result can
be obtained for the backlog case.

There are several papers that deal with budgetary con-
straints. By assuming the availability of market hedges, Birge
[4] adopts option pricing theory for incorporating risk into
planning models by adjusting capacity and resource levels.
Rosenblatt and Rothblum [16] treat capacity as a decision
variable in their study of multi-item inventory systems under
a single resource capacity constraint. Li et al. [13] consider
a single-product firm that makes production decisions, bor-
rowing decisions and dividend policies for each period while
facing uncertain demand. The firm maximizes the expected
present value of the infinite-horizon flow of the dividends
subjecting to loan size, production size, and liquidity con-
straints. The firm can obtain an unbounded single-period
loan with a constant interest rate. The authors derive the
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optimal myopic policies and study their structural properties.
Archibald et al. [1] consider a start-up firm facing discretely
distributed demand and the objective is to maximize the
long-term survival probability instead of average profit per
period. The authors conclude that start-up firms should be
more cautious in their component purchasing strategy than
well-established firms. They also show that the strategy is
not monotone in the amount of capital available. Babich
and Sobel [3] study the coordination of financial decisions
(loan size) and operational decisions (production and sales)
to maximize the expected discounted proceeds from an ini-
tial public offering (IPO). They model the IPO event as
a stopping time in an infinite-horizon discounted Markov
decision process. Furthermore, they characterize an optimal
capacity-expansion policy and obtain sufficient conditions
for a monotone threshold rule to yield an optimal IPO deci-
sion. Hu and Sobel [12] study a dynamic newsvendor model
with the criterion of maximizing the expected present value of
dividends, and examine the interdependence of a firm’s capi-
tal structure and its short-term operating decisions concerning
inventories, dividends, and liquidity. They obtain interesting
results on the interaction between firm’s capital structure and
operational decisions. The work that also addresses the inter-
face of inventory management and finance is Buzacott and
Zhang [6] who analyze a Stackelberg game between the bank
and the retailer in a newsvendor inventory model. Buzacott
and Zhang consider a single period inventory management
problem where the bank’s decisions include the interest rate
to charge and the loan limit, and the retailer needs to decide
the amount to borrow within the loan limit and the amount of
inventory to order from suppliers. Both the bank and retailer
maximize their expected returns. Other related work in this
area includes Xu and Birge [18], and the references therein.
In contrast to Buzacott and Zhang [6], in this article we con-
sider a multiperiod dynamic model. However, we only focus
on the retailer and do not consider the game between the bank
and the retailer.

In a sense, financial constraint in inventory management
can be considered as a supply capacity constraint on ordering
quantity. Production-inventory problems with supply capac-
ity constraints have received a great amount of attention since
the work of [9,10], see, e.g., [8, 17] among others. The main
result for such systems is that the optimal control strategy is
a modified base-stock policy. That is, there exists an optimal
base-stock level, which is greater than or equal to that for
the case without capacity constraint, and the optimal policy
always tries to bring the inventory to the base-stock level; in
case that cannot be achieved due to capacity constraint, then
order as much as possible. The major difference between
these two classes of models lies in the fact that in inven-
tory control problems with supply capacity constraints, the
constraints are given externally, whereas in inventory mod-
els with financial constraints, the financial constraints are the

result of the firm’s past decisions. Therefore, the financial
constraints are themselves decisions. As a result, in making
inventory decisions, its impact on future financial flows has
to be taken into consideration.

The rest of this article is organized as follows. Section
2 presents the model and results. Some numerical studies
are also included in Section 2. The article concludes in
Section 3 with some remarks and some possible extensions.
Throughout the article we use “increasing” and “decreasing”
in nonstrict sense, i.e., they represent “nondecreasing” and
“nonincreasing,” respectively. For convenience, for any real
number x, we denote x+ = max{x, 0}.

2. MODEL AND RESULTS

We consider the periodic-review inventory control prob-
lem where a self-financing retailer sells a single product to
the market. The risk neutral retailer faces random demand and
makes replenishment decisions over a finite planning horizon
of N periods. The periods are numbered 1 to N , i.e., the first
period is 1, and the last period is N . The successive periods’
demands Dn, 1 ≤ n ≤ N , are independent and identically
distributed nonnegative random variables, with f (·) and F(·)
being their probability density and cumulative distribution
functions, respectively. We focus on a lost-sales model in
this article, that is, unmet demand in each period is lost when
insufficient inventory is in stock. The ordering lead time is
zero.

Let p be the unit selling price, and c the unit ordering cost.
Any inventory left at the end of the planning horizon has a
salvage value γ per unit. Surplus capital in each period is
deposited in a savings account to earn an interest rate d per
period. To avoid triviality we assume

−∞ < γ ≤ c < p, (1)

with a negative value of γ representing disposal cost. We fur-
ther assume (1 + d)c < p. If this condition is not satisfied,
then the firm would always prefer to have all its capital in the
banking account.

The sequence of events in each period is as follows. At the
beginning of each period, the retailer places an order with its
capital on hand, and deposits the surplus capital in the sav-
ings account. During the period demand is realized. At the
end of the period the retailer receives its revenue from sales
and savings interest.

Let Sn be the capital level at the beginning of period n,
let xn and yn be the inventory levels, before and after the
replenishment decisions respectively, at the beginning of
period n, and let SN+1 be the terminal wealth at the end of
the planning horizon.

Because the firm is self-financed, the ordering decision
satisfies the cash flow constraint c(yn − xn) ≤ Sn, and
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the remaining capital in period n, Sn − c(yn − xn), is
deposited in the savings account to generate an interest of
d(Sn − c(yn − xn)). The revenue from sales in period n

is p min{yn, Dn}. Hence the total capital level at the end of
period n, which is also the capital level at the beginning of
period n + 1, is

Sn+1 = p min{yn, Dn} + (1 + d)(Sn − c(yn − xn)),

n = 1, 2, . . . , N . (2)

Because we consider lost-sales model, the inventory level at
the beginning of period n + 1 is

xn+1 = (yn − Dn)
+, n = 1, 2, . . . , N . (3)

Therefore, the decision problem of the retailer is to decide
an ordering policy to maximize the expected terminal wealth
at the end of the planning horizon, given initial inventory
level x1 and initial capital level S1, subject to the cash flow
constraint in each period. That is, the decision problem is

max
y1,...,yN

E[SN+1],

subject to (2), (3), and

0 ≤ yn − xn ≤ Sn/c, n = 1, 2, . . . , N .

Denote by Vn(x, S) the maximum expected terminal
wealth given that the inventory level and capital level at
the beginning of period n are x and S, respectively. The
optimality equation is

Vn(x, S) = max
x≤y≤x+S/c

E[Vn+1((y − Dn)
+,

p min{y, Dn} + (1 + d)(S − c(y − x)))], (4)

with a boundary condition

VN+1(x, S) = S + γ x.

The trade-off in the dynamic programming equation above
is between ordering inventory (and therefore earning profit
from sales) and putting cash in savings account (and earn-
ing interests). When inventory is ordered, the retailer runs
the risk of not selling the inventory and therefore loses the
opportunity of earning an interest. Note that the problem in
the final period is effectively a newsvendor problem with
order quantity limit.

To derive the optimal control strategy, several lemmas are
needed. The first lemma follows immediately from induction.

LEMMA 1: For any period n and fixed x, Vn(x, S) is
increasing in S.

Lemma 1 is intuitively clear: The more initial capital the
firm has, the better it is toward the firm’s terminal wealth
level.

To establish a second-order property of the value function
Vn, we need the following result.

LEMMA 2: For any n, Vn(A − z, B + pz) is increasing in
z for fixed A and B.

PROOF: Note the relationship

Vn(A−z, B+pz) = max
A−z≤y≤A+B/c+(p−c)z/c

E[Vn+1((y−Dn)
+,

p min{y, Dn} + (1 + d)(cA + B + (p − c)z − cy)].

It follows from Lemma 1 that the function being maxi-
mized above is increasing in z. Because the feasible region
A − z ≤ y ≤ A + B/c + (p − c)z/c is also increasing in z,
Vn(A − z, B + pz) is increasing in z. �

Lemma 2 is essential in proving the second-order property
of the value function. The lemma says that it is better to keep
cash than having inventory in stock at the beginning of the
period. This can be intuitively explained as follows: Capital
at the beginning of a period is more flexible than inventory
in stock because the firm can always convert it to inventory
by placing an order. However, the reverse is not true. In par-
ticular, if the on-hand inventory is higher than necessary, it
would have been better to have part of that inventory in the
form of cash to earn interest.

LEMMA 3: For any n, Vn(x, S) is jointly concave in x

and S.

PROOF: We prove the lemma by backward induction.
Clearly, VN+1(x, S) = S + γ x is jointly concave in x and
S. Assume that Vn+1 (x, S) is jointly concave in x and S. We
now prove the property for n.

We firstly prove Vn+1((y − Dn)
+, p min{y, Dn} + (1 +

d)(S − c(y − x))) is jointly concave in (y, x, S). For any
(y1, x1, s1) and (y2, x2, S2) and 0 ≤ λ ≤ 1, we need to prove

Vn+1((λy1 + (1−λ)y2 − Dn)
+, p min{λy1 + (1−λ)y2, Dn}

+ (1 + d)(λS1 + (1 − λ)S2 − c(λy1 + (1 − λ)

y2 − λx1 − (1 − λ)x2)))

≤ λVn+1((yi − Dn)
+, p min{y1, Dn}

+ (1 + d)(S1 − c(y1 − x1)))

+ (1 − λ)Vn+1((y2 − Dn)
+, p min{y2, Dn}

+ (1 + d)(S2 − c(y2 − x2))).
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Note the relationship (y − Dn)
+ = y − min{y, Dn}. For

convenience let

ȳ = λy1 + (1 − λ)y2,

ỹ = min{λy1 + (1 − λ)y2, Dn}
ŷ = λ min{y1, Dn} + (1 − λ) min{y2, Dn}.

Then by ỹ ≥ ŷ, we have

Vn+1((λy1 + (1 − λ)y2 − Dn)
+,

p min{λy1 + (1 − λ)y2, Dn}
+ (1 + d)(λS1 + (1 − λ)S2 − c(λy1 + (1 − λ)y2

− λx1 − (1 − λ)x2)))

= Vn+1(ȳ − ỹ, pỹ + (1 + d)(λS1 + (1 − λ)S2

− c(λy1 + (1 − λ)y2 − λx1 − (1 − λ)x2)))

≥ Vn+1(ȳ − ŷ, pŷ + (1 + d)(λS1 + (1 − λ)S2

− c(λy1 + (1 − λ)y2 − λx1 − (1 − λ)x2)))

= Vn+1(λ(y1 − Dn)
+ + (1 − λ)(y2 − Dn)

+,

λp min{y1, Dn} + (1 − λ)p min{y2, Dn}
+ (1 + d)(λS1 + (1 − λ)S2 − c(λy1 + (1 − λ)y2

− λx1 − (1 − λ)x2)))

≥ λVn+1((y1 − Dn)
+, p min{y1, Dn}

+ (1 + d)(S1 − c(y1 − x1)))

+ (1 − λ)Vn+1((y2 − Dn)
+, p min{y2, Dn}

+ (1 + d)(S2 − c(y2 − x2))),

where the first inequality follows from Lemma 2 and the
second inequality follows form the concavity of Vn+1(x, S).
Hence Vn+1((y−Dn)

+, p min{y, Dn}+(1+d)(S−c(y−x)))

is jointly concave in (y, x, S), and so is its expected value.
Finally since

C = {(x, y) : x ≥ 0, y ∈ [x, x + S/c]}
is a convex set, applying Proposition B-4 of Heyman and
Sobel [11] we conclude that Vn(x, S) is jointly concave in x

and S. �

We find it convenient to study the value function in terms
of x and R = S + cx. Define

πn(y, R) = E[Vn+1((y−Dn)
+, p min{y, Dn}+(1+d)(R−cy))].

Then, the optimality equation (4) can be rewritten, after
introducing a new function Ṽn, as

Ṽn(x, R) = Vn(x, R − cx) = max
x≤y≤R/c

πn(y, R).

Note that πn(y, R) is jointly concave in (y, R). For given R,
let y∗

n(R) be the maximizer of the unconstrained optimization

problem maxy πn(y, R). Then the optimal inventory policy is
given in the following result. Its proof follows directly from
Lemma 3 hence it is omitted here.

THEOREM 1: When the state is (x, S) at the beginning
of period n, a capital-dependent base stock inventory policy
y∗

n(R), where R = S + cx, is optimal. More specifically,

(i) if x ≤ y∗
n(R) − S/c, it is optimal to order up to R/c;

(ii) if y∗
n(R) − S/c < x < y∗

n(R) then it is optimal to
order up to y∗

n(R);
(iii) if x ≥ y∗

n(R), then it is optimal not to order anything.

We refer to y∗
n(R) as the optimal base-stock level for

period n. Hence, for each state (x, S) with R = S + cx

there is an order-up-to level y∗
n(R). Because of the con-

straint y ≤ R/c, the base-stock level may not be achieved.
The optimal achieved inventory level is min{y∗

n(R), R/c} if
x ≤ y∗

n(R), and it is x otherwise. This is similar to the inven-
tory control problems with finite supply capacity, for which
the optimal strategy is to make the inventory level, within the
supply capacity, as close to the order-up-to level as possible.
In the following, we let

ŷ∗
n(R) = min{y∗

n(R), R/c}

and refer to ŷ∗
n(R) as the optimal replenishment level of

period n. Therefore, if x ≤ y∗
n(R) then the inventory level

at period n is replenished to ŷ∗
n(R), and no order is placed

otherwise. Thus, if the state of the system at the beginning of
period n is (x, S), then the optimal inventory level for period
n after replenishment decision is min{ŷ∗

n(S + cx), x}.
The optimal strategy could still be complicated because

y∗
n(R) is a function of R. In the following, we show that for

large R, the value function πn(y, R) can be decoupled into
two separate functions of on-hand inventory level y and R.
This result will simplify the optimal policy significantly for
large values of R. To that end, we introduce a sequence of
concave functions Gn(y) as follows: GN+1(y) = (γ − c)y

and for n = 1, . . . , N ,

Gn(y) = (1 + d)N−n((p − c)E[min{y, Dn}] − dcy)

+ E[Gn+1(max{a∗
n+1, (y − Dn)

+})], (5)

where a∗
N+1 = 0 and for n = 1, . . . , N , a∗

n is the maximizer
of Gn(y).

The number a∗
n will play a central role in determining the

optimal control policy. The following result establishes some
properties satisfied by a∗

n , n = 1, . . . , N .
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LEMMA 4: The following relationship is satisfied:

F−1

(
p − (1 + d)c

p − c

)
≥ a∗

1 ≥ a∗
2 ≥ · · · ≥ a∗

N

= F−1

(
p − (1 + d)c

p − γ

)
, (6)

where F−1 is the inverse function of F .

PROOF: We prove the result by induction. Clearly

GN(y) = (p − c)E min{y, DN }−dcy+GN+1((y−DN)+)

= (p − c)E min{y, DN }−dcy+(γ −c)(y − DN)+,

is concave in y, its maximizer

a∗
N = F−1

(
p − (1 + d)c

p − γ

)
≤ F−1

(
p − (1 + d)c

p − c

)

is the newsvendor solution. Assume that we have proved the
result for n + 1, i.e., Gn+1, . . . , GN are concave and

F−1

(
p − (1 + d)c

p − c

)
≥ a∗

n+1 ≥ a∗
n+2 ≥ · · · ≥ a∗

N

= F−1

(
p − (1 + d)c

p − γ

)
,

we proceed to prove n. Taking derivatives of Gn(y) with
respect to y yields

G′
n(y) = (1 + d)N−n[(p − c)(1 − F(y)) − dc]

+ E
[
G′

n+1(y − Dn)1
[
Dn ≤ y − a∗

n+1

]]
, (7)

G′′
n(y) = −(1 + d)N−n(p − c)f (y)

+ E
[
G′′

n+1(y − Dn)1
[
Dn ≤ y − a∗

n+1

]]
. (8)

Hence it follows from the induction assumption that (8) is
nonpositive and Gn(y) is concave in y.

Substituting y = a∗
n+1 in (7), the second term on the

right hand side of (7) is 0, and the first term is nonnega-
tive. Thus G′

n(a
∗
n+1) ≥ 0 and a∗

n ≥ a∗
n+1. Furthermore, note

that the first term on the right hand side of (7) vanishes at

y = F−1
(

p−(1+d)c

p−c

)
, while the second term

G′
n+1(y − Dn)1

[
Dn ≤ y − a∗

n+1

]
= G∗

n+1(y − Dn)1
[
y − Dn ≥ a∗

n+1

]

is always nonpositive because a∗
n+1 is the maximizer of Gn+1.

This shows that a∗
n ≤ F−1

(
p−(1+d)c

p−c

)
. �

The value a∗
n will serve as the ideal order-up-to level for

period n. We note that, the problem in the final period is

essentially a newsvendor problem with capital constraint, its
optimal order-up-to level is well-known and is given by the
last number in (6). This gives us the lower bound in Lemma
4. The most desirable situation for the firm would be to have
the option of returning whatever is left to the supplier at the
price paid, c, and in this case there would be no risk and
the optimal inventory level can be set aggressively, i.e., set
the inventory level to the first number in (6). This explains
the upper bound in Lemma 4. In general, when there is more
period remaining to go, then it is more likely that the on-hand
inventory can be successfully used to satisfy future demand,
and this explains why the optimal level a∗

n is decreasing in n.
The following decomposition result enables us to obtain an

extremely simple form, as well as a computational algorithm,
for the optimal replenishment level ŷ∗

n(R). More specifi-
cally, we will eventually show that ŷ∗

n(R) can be completely
determined by the single parameter, a∗

n .

THEOREM 2:

(i) For any period n, when R ≥ ca∗
n+1 and y ≤ R/c, the

objective function can be decomposed as

πn(y, R) = (1 + d)N+1−nR + Gn(y).

(ii) If R ≥ ca∗
n , then the optimal order-up-to level is

y∗
n(R) = a∗

n , and if R < ca∗
n , then y∗

n(R) ≥ R/c.

Theorem 2 states that, for large R and small inventory level
y, the value function πn(y, R) can be decomposed to concave
functions of R and y alone. This is not true, however, for small
R or large y. Indeed, in general we would expect the value
function πn(y, R) to be a complicated function of (y, R), and
the separability comes as a surprise. It is this separability
result that enables us to significantly simplify the optimal
inventory control strategy. Note that y∗

n(R) is the optimal
solution for miny πn(y, R), which is the desired inventory
level for stage n without the capital constraint, whereas a∗

n is
a constant that is the maximizer of concave function Gn(·).
Part (ii) of Theorem 2 states that y∗

n(R) becomes flat and
equal to a∗

n on R ≥ ca∗
n .

The proof of Theorem 2 is lengthy thus it is provided in
the Appendix. Intuitively, it says that when the capital level
is low, then it is not sufficient to satisfy the desired order-
up-to level, or mathematically y∗

n(R) ≥ R/c; on the other
hand, when the capital level is large, then it does not affect
the optimal operational strategy, i.e, the ordering quantity
y∗

n(R) = a∗
n is a constant. The cutting point for these two

regions is a∗
n which is the maximum point of the concave

function Gn defined by (5).
The following is the main result of this article. Its proof

follows directly from (ii) of Theorem 2 and ŷ∗
n(R) =

min{y∗
n(R), R/c}.
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Chao, Chen, and Wang: Dynamic Inventory Management 763

THEOREM 3: Suppose that the state at the beginning
of period n is (x, S) and let R = S + cx. The optimal
replenishment level for period n is

ŷ∗
n(R) =

{
a∗

n , if R ≥ ca∗
n ,

R/c, if R ≤ ca∗
n .

That is, for any period n with state (x, R), the optimal
inventory control policy is to,

(1) replenish the inventory level to R/c if R/c ≤ a∗
n;

(2) replenish the inventory level to a∗
n if x < a∗

n < R/c;
and

(3) do not order anything if x ≥ a∗
n .

Therefore, for each period n, the optimal replenishment
level first linearly increases with the wealth level R at rate
1/c until ca∗

n and then it becomes flat from R = ca∗
n . This

gives us an exceedingly simple inventory control policy: The
inventory control policy is determined solely by a capital-
independent level a∗

n , at the beginning of period n, the firm
replenishes its inventory level to a∗

n as long as there is suffi-
cient capital available; if there is no sufficient capital, then it
replenishes as much as possible - that is, it uses up all of its
capital.

The optimal replenishment level ŷ∗
n(R) is determined by

a single parameter a∗
n , and the computation of a∗

n is straight-
forward. A nested algorithm is summarized as follows.

Algorithm:

Step 1. Set a∗
N+1 = 0, and compute GN by (5).

Set n = N .
Step 2. Computed a∗

n via concave function Gn(y) of (5).
Step 3. If n = 1 then stop. Otherwise set n := n − 1

and repeat Step 2.

REMARK 1: Note that, though the optimal base-stock
level y∗

n(R) is a constant a∗
n on R ≥ ca∗

n , it can be a very
complicated function on R ≤ ca∗

n . As a matter of fact, y∗
n(R)

may not be even monotone on R ∈ [0, ca∗
n]. See the numerical

example at the end of this section. Nevertheless, Theorem 3
states that this does not complicate the optimal replenishment
level ŷ∗

n(R): On R ≤ ca∗
n , the optimal replenishment level is

R/c, i.e., simply use up all the capital. Hence, in implement-
ing the optimal policy, the complicated optimal-up-to level
y∗

n(R) on the range R ≤ ca∗
n is not used.

The following theorem presents the comparative stat-
ics results for the optimal policy on the selling price p,
purchasing price c, salvage value γ , and interest rate d.

THEOREM 4:

(i) The optimal control policy parameters a∗
n , n =

1, . . . , N , are increasing in γ and p, and decreasing
in c and d.

(ii) As γ increases from −∞ to c, a∗
n increases from 0 to

F−1
(

p−(1−d)c

p−c

)
. In particular, as γ = c, the optimal

inventory policy is the same for each period and is
given by

a∗
1 = a∗

2 = · · · = a∗
N = F−1

(
p − (1 + d)c

p − c

)
.

PROOF: (i) We first prove the result on γ , p, and c.
Because a∗

n is the maximizer of Gn(y), it suffices to prove
G′

n(y) is increasing in γ and p, and decreasing in c.
By induction. First notice that

G′
N(y) = [(p − c)(1 − F(y)) − dc] +

∫ v

0
(γ − c)dF (z),

which is clearly increasing in γ and p, and decreasing in c.
Suppose G∗

n+1 is increasing in γ and p and decreasing in c,
then we have

∂G′
n(y)

∂γ
=

∫ (y−a∗
n+1)

+

0

∂G′
n+1(y − z)

∂γ
dF (z),

∂G′
n(y)

∂p
= (1 + d)N−np(1 − F(y))

+
∫ (y−a∗

n+1)
+

0

∂G′
n+1(y − z)

∂p
dF(z),

∂G′
n(y)

∂c
= −(1 + d)N−n(c(1 − F(y)) + d)

+
∫ (y−a∗

n+1)
+

0

∂G′
n+1(y − z)

∂γ
dF (z).

Hence ∂G′
n(y)/∂γ ≥ 0, ∂G′

n(y)/∂p ≥ 0 and ∂G′
n(y)/∂c ≤

0 follow immediately from the induction hypothesis.
To prove a∗

n is decreasing in d, by Lemma 4 it suffices to
show that ∂G′

n(y)/∂d ≤ 0 for n = 1, . . . , N on the range

y ≥ F−1

(
p − (1 + d)c

p − γ

)
. (9)

This is again proved by induction and it is trivially true for
N . Suppose it has been established for n+ 1. Then, on range
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Figure 1. Optimal base stock policy for period 3.

(9) we have

∂G′
n(y)

∂d
= (1 + d)N−n−1[(p − c)(1 − F(y)) − dc

− (1 + d)c] +
∫ (y−a∗

n+1)
+

0

∂G′
n+1(y − z)

∂d
dF (z)

≤ (1 + d)N−n−1[(p − c)(1 − F(y))

− dc − (1 + d)c]
≤ (1 + d)N−n−1

[
(p − c)

(1 + d)c − γ

p − γ

− dc − (1 + d)c

]

= (1 + d)N−n−1

p − γ
[−(c − γ )(1 + d)c

− (p − c)γ − (p − γ )dc]
≤ 0,

where the first inequality follows from induction hypothesis,
the second inequality follows from (9), and the last inequality
follows from (1).

(ii) If γ = c, then it follows from Lemma 4 that all a∗
n are

equal, completing the proof of Theorem 4. �

As mentioned earlier, the number a∗
n is basically the ideal

order-up-to level for period n. When the salvage value or the
selling price is higher, it is more profitable to keep a higher
inventory thus a∗

n is increasing in γ and p. The same argu-
ment shows that when the purchasing price c is higher, it is
better to reduce the inventory level thus a∗

n is decreasing in c.
When d increases, savings account becomes a more attrac-
tive option hence the firm will be willing to invest more in
the banking account than in the inventory, explaining why
a∗

n is decreasing in d . Finally, when the salvage value is the

Figure 2. The optimal control strategy a∗
n on γ .

same as the ordering cost, then there is no risk associated with
salvaging the inventory at the end. Therefore, the problem in
each period is a newsvendor problem with capital constraint.
This explains part (ii) of Theorem 4.

We present numerical examples to demonstrate the opti-
mal inventory policy and its dependency on wealth level R,
salvage value γ , and interest rate d. The model parameters
in all these numerical examples are p = 1.3 and c = 1. In
Fig. 1 the interest rate is set at d = 0.1 and the savage value
is γ = 0.5; in Fig. 2 the interest rate is set at d = 0.1; and in
Fig. 3, the savage value is γ = 0.5. The demand has truncated
normal distribution with mean 10 and variance 10. Assume
there are totally N = 4 periods.

First compute the optimal policy parameters a∗
n for n =

1, 2, 3, and 4 via optimizing concave functions Gn(y). Notice
that the upper and lower bounds for a∗

n are given by

Figure 3. The optimal control strategy a∗
n on d.
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F−1
(

p−(1+d)c

p−c

)
= 15.8151 and F−1

(
p−(1+d)c

p−γ

)
= 6.6547.

Figure 1 demonstrates how the optimal inventory policy
depends on the wealth level R. The numerical results are
for period 3. It shows that when R ≥ ca∗

3 , y∗
3 (R) = a∗

3 ; and
when R < ca∗

3 , y∗
3 (R) > R/c. Note that the minimum of the

dotted line and the solid curve is ŷ∗
3 (R).

It is interesting to observe that the optimal order-up-to level
y∗

3 (R) is complicated and is not even monotone in R on the
range R ≤ ca∗

3 . The optimal replenishment level ŷ∗
n(R) is,

however, always extremely simple, as we noted earlier.
Figure 2 presents the optimal policy in terms of savage

value γ on the range [−1, 1]. It demonstrates that a∗
n is

decreasing in n and increasing in γ .
Figure 3 presents the optimal policy in terms of interest rate

d on the range [0, 0.3]. It demonstrates that a∗
n is decreasing

in n and d.

3. DISCUSSION

In this article, we study a dynamic inventory control prob-
lem with financial constraints. We derive the optimal inven-
tory policy for each period, and characterize the dependence
of the firm’s optimal operational policy on its financial status.
We also analyze the relationship between the optimal control
parameters and system parameters.

Many interesting issues remain to be investigated. For
example, if there is a holding cost rate h and shortage cost
rate b for each period, then the optimality equation becomes

max
y1,...,yN

E[SN+1],

subject to

0 ≤ yn − xn ≤ Sn/c, n = 1, 2, . . . , N ,

where

Sn+1 = p min{yn, Dn} − h max{yn − Dn, 0}
− b max{Dn − yn, 0} + (1 + d)(Sn − c(yn − xn)),

and, as before, xn+1 = (yn − Dn)
+. Note that Lemmas 1,

2, and 3 continue to hold, thus Theorem 1 also holds and
the optimal inventory control policy is a capital dependent
base-stock policy. As a matter of fact, Theorem 1, as well as
Lemmas 1, 2, and 3 hold true under much more general set-
tings, e.g., under general revenue function, and under utility
function optimization, etc. However, for Theorems 2 and 3,
the objective function can no longer be decomposed, and the
control parameters of the optimal base-stock policy are com-
plicated and state-dependent. The problem will be even more
complicated if we allow the selling price p to be a decision

variable when the demand Dn depends on the selling price in
period n.

The setting used in this article assumes that the demands
over periods are independent and identically distributed. We
point out that the results Lemmas 1–3 and Theorem 1 hold
true as long as the demands over periods are independent
and they do not need to be identically distributed, and other
results can be extended too to the non-identically distributed
demand case.

The firm considered in this article is self-financed, a natural
extension of the model is to allow the firm to borrow from
the bank or other lenders. One can even impose an upper bor-
rowing limit, which is typical in many applications. Some
other interesting issues to consider include delayed payment,
and risk-averse retailers. We find that for most such exten-
sions, the results in Lemmas 1–3 and Theorem 1 can still
be obtained. However, more precise structure of the optimal
control policies beyond the “capital-dependent base-stock,”
such as Theorem 3 in this article, is difficult to obtain without
imposing further structure in the model. These are just a few
possible extensions and it appears that each of these varia-
tions will lead to different optimal solution structure that is
worthy of study.

APPENDIX: PROOF OF THEOREM 2

The proof is by induction. By the definition of Gn(y) and Lemma 4 we
have

πN(y, R) = pE min{y, DN } + (1 + d)(R − cy) + γE(y − DN)+

= (1 + d)R + GN(y)

hence y∗
N(R) = a∗

N for all R.
Assume that the results have been proved for n+ 1, i.e., when R ≥ ca∗

n+2
and y ≤ R/c, πn+1(y, R) can be decomposed as

πn+1(y, R) = (1 + d)N−nR + Gn+1(y) (10)

and that if R ≤ ca∗
n+1, then y∗

n+1(R) ≥ R/c; if R ≥ ca∗
n+1, then

y∗
n+1(R) = a∗

n+1.
To simplify the proof it is convenient to define a new function

Ṽn(x, R) = Vn(x, S)

= Vn(x, R − cx)

= max
x≤y≤R/c

πn(y, R)

= max
x≤y≤R/c

E[Ṽn+1((y − Dn)
+, (p − c) min{y, Dn}

+ (1 + d)R − dcy)].

From Lemma 3 it is straightforward to prove that Ṽn(x, R) is jointly concave
in x and R. From Theorem 1 we have

Ṽn+1(x, R) =



πn+1(R/c, R), R/c ≤ y∗
n+1(R)

πn+1(y
∗
n+1(R), R), x < y∗

n+1(R) < R/c

πn+1(x, R), x ≥ y∗
n+1(R)

(11)
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On the other hand, by the induction assumption and Lemma 4, the following
observations are made:

(a) If R ≤ ca∗
n+2 ≤ ca∗

n+1, then y∗
n+1(R) ≥ R/c, hence Ṽn+1(x, R) =

πn+1(R/c, R).
(b) If ca∗

n+2 < R ≤ ca∗
n+1, then y∗

n+1(R) ≥ R/c and πn+1(y, R) can
be decomposed as (10), and hence

Ṽn+1(x, R) = (1 + d)N−nR + Gn+1(R/c).

(c) If cx < ca∗
n+1 < R, then y∗

n+1(R) = a∗
n+1 and hence x <

y∗
n+1(R) < R/c. In this case πn+1(y, R) can be decomposed as

(10), thus

Ṽn+1(x, R) = (1 + d)N−nR + Gn+1(a
∗
n+1).

(d) If a∗
n+1 ≤ x ≤ R/c, then y∗

n+1(R) = a∗
n+1 and hence x ≥

y∗
n+1(R). Further πn+1(y, R) can be decomposed by (10) as

Ṽn+1(x, R) = (1 + d)N−nR + Gn+1(x).

The structure of the proof is divided into the following two propositions.

PROPOSITION 1: If R ≥ ca∗
n+1 and y ≤ R/c, then

πn(y, R) = (1 + d)N+1−nR + Gn(y).

PROOF: We can rewrite (11) as

Ṽn+1(x, R) =




πn+1(R/c, R), R ≤ ca∗
n+2

(1 + d)N−nR + Gn+1(R/c), ca∗
n+2 < R ≤ ca∗

n+1
(1 + d)N−nR + Gn+1

(
a∗

n+1

)
, cx < ca∗

n+1 < R

(1 + d)N−nR + Gn+1(x), x ≥ a∗
n+1

(12)

The last two cases show that if R ≥ ca∗
n+1, Ṽn+1(x, R) can be rewritten as

Ṽn+1(x, R) = (1 + d)N−nR + Gn+1
(

max
{
a∗

n+1, x
})

.

As a result, if R ≥ ca∗
n+1 and y ≤ R/c, then (p − c) min{y, Dn} + (1 +

d)R − dcy ≥ ca∗
n+1, and hence πn(y, R) can be expressed as

πn(y, R) = E[Ṽn+1((y − Dn)
+, (p − c) min{y, Dn}

+ (1 + d)R − dcy)]
= (1 + d)N+1−nR + (1 + d)N−n((p − c)

× E min{y, Dn} − dcy)

+ EGn+1
(

max
{
a∗

n+1, (y − Dn)
+})

= (1 + d)N+1−nR + Gn(y). �

Therefore, when R ≥ ca∗
n+1 and y ≤ R/c, the maximizer of πn(y, R),

y∗
n(R), is equal to a∗

n , the maximizer of Gn(y). Furthermore, when R ≥
ca∗

n ≥ ca∗
n+1, y∗

n(R) = a∗
n , and when ca∗

n+1 < R < ca∗
n , y∗

n(R) = a∗
n >

R/c.

PROPOSITION 2: If R ≤ ca∗
n+1, then y∗

n(R) ≥ R/c.

PROOF: For notational convenience in what follows we use Ṽn,1(x, R)

and Ṽn,2(x, R) to represent the partial derivatives with respect to x and R

respectively, and Ṽn,12(x, R) the cross derivative. From (12), taking partial
derivatives of Ṽn+1(x, R) yields

Ṽn+1,1(x, R) =
{

0, x < a∗
n+1

G′
n+1(x), x ≥ a∗

n+1
(13)

and

Ṽn+1,2(x, R) =



dπn+1(R/c, R)/dR, R ≤ ca∗
n+2

(1 + d)N−n + G′
n+1(R/c)/c, ca∗

n+2 < R ≤ ca∗
n+1

(1 + d)N−n, R > ca∗
n+1

(14)

Note that Ṽn+1,2(x, R) is independent of x, hence Ṽn+1,12(x, R) = 0. By

πn(y, R) = E[Ṽn+1((y − Dn)
+, (p − c) min{y, Dn}

+ (1 + d)R − dcy)], (15)

taking derivative of πn(y, R) with respect to y yields

πn,1(y, R) =
∫ y

0
[Ṽn+1,1(y − z, (p − c)z + (1 + d)R − dcy)

− dcṼn+1,2(y − z, (p − c)z

+ (1 + d)R − dcy)]dF(z)

+ (p − (1 + d)c)(1 − F(y))Ṽn+1,2

× (0, (p − (1 + d)c)y + (1 + d)R).

Because y∗
n(R) is the maximizer of πn(y, R), to prove y∗

n(R) ≥ R/c when
on R ≤ ca∗

n+1, it suffices to prove πn,1(R/c, R) ≥ 0 on R ≤ ca∗
n+1. Noting

Ṽn,1(x, R) = 0 when x ≤ R/c ≤ a∗
n+1, we have

πn,1(R/c, R) = (p − (1 + d)c)(1 − F(R/c))Ṽn+1,2(0, pR/c)

− dc

∫ R/c

0
Ṽn+1,2(R/c − z, (p − c)z + R)dF(z)

≥ (p − (1 + d)c)(1 − F(R/c))Ṽn+1,2(0, pR/c)

− dcF (R/c)Ṽn+1,2(R/c, R), (16)

where the inequality follows from the concavity of Ṽn+1(x, R) in R:

Ṽn+1,2(R/c − z, (p − c)z + R) ≤ Ṽn+1,2(R/c − z, R)

and that Ṽn+1,12(x, R) = 0 is independent of x:

Ṽn+1,2(R/c − z, R) = Ṽn+1,2(R/c, R).

Since R ≤ ca∗
n+1 ≤ cF−1

(
p−(1+d)c

p−c

)
, we have

(p − (1 + d)c)(1 − F(R/c)) ≥ dcF (R/c). (17)

To prove that the right hand side of (16) is nonnegative, we consider two
ranges of R separately.

CASE 1: ca∗
n+2 < R ≤ ca∗

n+1. By (7) we have

G′
n+1(y) ≤ (1 + d)N−n−1((p − c)(1 − F(y)) − dc,

and since Ṽ ′
n+1,2(x, R) is decreasing in R, it follows from (14) that

Ṽn+1,2(0, pR/c) ≥ lim
y→∞ Ṽn+1,2(0, y) ≥ (1 + d)N−n.
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Hence applying these inequalities and (14) on the interval ca∗
n+2 < R

≤ ca∗
n+1 yields

(p − (1 + d)c)(1 − F(R/c))Ṽn+1,2(0, pR/c) − dcF (R/c)Ṽn+1,2(R/c, R)

≥ (p − (1 + d)c)(1 − F(R/c))(1 + d)N−n

−dcF (R/c)[(1 + d)N−n + G′
n+1(R/c)/c]

≥ [(p − (1 + d)c)(1 − F(R/c)) − dcF (R/c)](1 + d)N−n

−dcF (R/c)(1 + d)N−n−1[(p − c)(1 − F(R/c)) − dc]/c
= (1 + d)N−1−n[1 + d(1 − F(R/c))]

×[(p − (1 + d)c)(1 − F(R/c)) − dcF (R/c)]
≥ 0,

where the last inequality follows from (17). Therefore, πn,1(R/c, R) ≥ 0 in
this case.

CASE 2: R ≤ ca∗
n+2. From (18), we have

πn+1(R/c, R) = E[Ṽn+2((R/c − Dn+1)
+,

(p − c) min{R/c, Dn+1} + R)], (18)

hence

dπn+1(R/c, R)/dR =
∫ R/c

0
[Ṽn+2,1(R/c − z, (p − c)z + R)]dF(z)

+ p

c
(1 − F(R/c))Ṽn+2,2(0, pR/c)

+
∫ R/c

0
[Ṽn+2,2(R/c − z, (p − c)z + R)]dF(z)

= p

c
(1 − F(R/c))Ṽn+2,2(0, pR/c)

+
∫ R/c

0
[Ṽn+2,2(R/c − z, (p − c)z + R)]dF(z)

≤ p

c
(1 − F(R/c))Ṽn+2,2(0, pR/c)

+ p − (1 + d)c

dc
(1 − F(R/c))Ṽn+2,2(0, pR/c)

= (p − c)(1 + d)

dc
(1 − F(R/c))Ṽn+2,2(0, pR/c),

(19)

where the second equality follows from Ṽn+2,1(R/c−z, (p−c)z+R)] = 0
because of (13) and the induction assumptions for n + 2, and the inequality
is based on the following argument. When R ≤ ca∗

n+2 < ca∗
n+1, from the

induction assumption we havey∗
n+1(R) ≥ R/c, and henceπn+1,1(R/c, R) ≥

0, which implies, by (16) for n + 1, that

(p − (1 + d)c)(1 − F(R/c))Ṽn+2,2(0, pR/c)

≥ dc

∫ R/c

0
Ṽn+2,2(R/c − z, (p − c)z + R)dF(z).

For R ≤ ca∗
n+2, applying (16) and (19) we obtain

πn,1(R/c, R) ≥ (p − (1 + d)c)(1 − F(R/c))Ṽn+1,2(0, pR/c)

−dcF (R/c)Ṽn+1,2(R/c, R)

= (p − (1 + d)c)(1 − F(R/c))Ṽn+1,2(0, pR/c)

−dcF (R/c)dπn+1(R/c, R)/dR

≥ (1 − F(R/c))[(p − (1 + d)c)Ṽn+1,2(0, pR/c)

−(p − c)(1 + d)F (R/c)Ṽn+2,2(0, pR/c)]
≥ (p − (1 + d)c)(1 − F(R/c))[Ṽn+1,2(0, pR/c)

−(1 + d)Ṽn+2,2(0, pR/c)],

where the last inequality follows from (p − c)F (R/c) ≤ p − (1 + d)c

because of R ≤ ca∗
n+1 < cF−1

(
p−(1+d)c

p−c

)
.

Therefore, the desired result πn,1(R/c, R) ≥ 0 will follow if we can prove

Ṽn+1,2(0, R) − (1 + d)Ṽn+2,2(0, R) ≥ 0 (20)

for all R. This is again done by backward induction. First we have

ṼN ,2(0, R) − (1 + d)ṼN+1,2(0, R) ≥ (1 + d) − (1 + d) = 0.

Assume Ṽn+2,2(0, R) − (1 + d)Ṽn+3,2(0, R) ≥ 0, we proceed to prove (20).
If R > ca∗

n+2, then by (14) for n + 2,

Ṽn+1,2(0, R) − (1 + d)Ṽn+2,2(0, R)

≥ (1 + d)N−n − (1 + d)(1 + d)N−n−1 = 0.

If ca∗
n+3 ≤ R ≤ ca∗

n+2, then by (7) for n + 2, we have

G′
n+2(R/c) ≤ (1 + d)N−n−2[(p − c)(1 − F(R/c)) − dc], (21)

and by the concavity of G(x, R) in R we have

Ṽn+2,2(R/c − z, (p − c)z + R) ≥ Ṽn+2,2(R/c − z, pR/c), (22)

and since Ṽn+2,2(x, (p − c)z + R) is independent of x when x ≤ ca∗
n+2, we

have

Ṽn+2,2(R/c − z, pR/c) = Ṽn+2,2(0, pR/c). (23)

Applying (14) we obtain

Ṽn+1,2(0, R) − (1 + d)Ṽn+2,2(0, R)

= dπn+1(R/c, R)

dR
− (1 + d)N−n − (1 + d)G′

n+2(R/c)/c

≥ p

c
(1 − F(R/c))Ṽn+2,2(0, pR/c)

+
∫ R/c

0
Ṽn+2,2(R/c − z, (p − c)z + R)dF(z)

− (1 + d)N−n − (1 + d)N−n−1[(p − c)(1 − F(R/c)) − dc]/c
≥

[p

c
(1 − F(R/c)) + F(R/c)

]
Ṽn+2,2(0, pR/c)

− (1 + d)N−n−1
[p

c
(1 − F(R/c)) + F(R/c)

]

=
[p

c
(1 − F(R/c)) + F(R/c)

]
(Ṽn+2,2(0, pR/c) − (1 + d)N−n−1)

≥ 0,
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where the first inequality follows from (19) and (21), the second inequality
is due to (22) and (23), and the last inequality follows from the obser-
vation that, by (14) for n + 2, when pR/c ≥ R ≥ ca∗

n+3, we have

Ṽn+2,2(0, pR/c) ≥ (1 + d)N−n−1.
Finally, if R < ca∗

n+3, then

Ṽn+1,2(0, R) − (1 + d)Ṽn+2,2(0, R)

= dπn+1(R/c, R)

dR
− (1 + d)

dπn+2(R/c, R)

dR

= p

c
(1 − F(R/c))[Ṽn+2,2(0, pR/c) − (1 + d)Ṽn+3,2(0, pR/c)]

+
∫ R/c

0
[Ṽn+2,2(R/c − z, (p − c)z + R) − (1 + d)Ṽn+3,2

× (R/c − z, (p − c)z + R)]dF(z)

≥ 0,

where the first equality follows from (14), the second equality follows from
(19) for n + 2 and n + 3, and the inequality follows from the induction
assumption.

Hence we have proved πn,1(R/c, R) ≥ 0, implying y∗
n(R) ≥ R/c if

R ≤ ca∗
n+1, completing the proof of Proposition 2. �

Theorem 2 follows directly from Propositions 1 and 2.
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