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SUMMARY

Consider two survivor functions F and G with proportional mean residual life, we iden-
tify classes of life distributions and conditions such that properties of F' are inherited by
G and vice versa. The statistical tests for certain life distribution properties of a systen
with finite identical components connected in series are now reduced to the corresponding

statistical tests for the same properties of life distribution of the individual components.

Some key words: Harmonic new better than used in expectation; Increasing failure rate:
Increasing failure rate average; Mean residual life; New better than used; New better than
used in expectation; New better than used of specified age; Superposition of independent

renewal processes.



1. INTRODUCTION

Let Co be a set of life distributions such that F € Cy if and only if it is a probability
distribution function of a continuous nonnegative random variable and F(0) = 0. Let
F =1-F. Forall z > 0, the mean residual life of a continuous nonnegative random

variable with survivor function F and finite mean puy is given by

. - {f(x)}‘l/:of(u)du F(z) > 0
0 F(z)=0

From Cox (1962), p. 128, we can recover F from e by the inversion formula

F(a) = {er(O/er(@}exp |- [ ferlw))™ du]. (2)

Given F,G € Cy, the two survivor functions F and G are said to have proportional mean
residual life if and only if for all z > 0, ex(z) = pes(z) where p > 0. From Oakes and
Dasu (1990) Equation (6), F' can now be expressed in term of G and vice versa. More

specifically,

=
~
2]
N—
]

B | [ (Cw)no) du] e

and

S = Fo)[ m{f(u)/up}du]p—l .

where pr = ep(0) and pg = eg(0). Note that when p > 1, given any survivor function £, (;

defined in (4) is always a survivor function. From Oakes and Dasu (1990), a necessary an



sufficient condition for G to be a survivor function for all p > 0 is that e is nondecreasing.

Similar results hold for Equation (3).

Conversely, suppose that Equation (4) holds for two survivor functions F and G, using

the equality

(@]}
—

[Tewar = e[ {Forne} ) <

it is easily verified that for all z > 0, eg(z) = ep(z)/p and hence Equation (3) also holds

for the two survivor functions F and G. We now have the following characterization.

THEOREM 1. Given p > 0 and F,G € Cp eg(z) = ep(z)/p for all z > 0 if and only if

(4) holds. Furthermore, we can invert F from G using Equation (3).
Theorems 2 and 3 below are immediate from Theorem 1.

THEOREM 2. Given p > 0, F,G € Cp and they are related by (3) or (4), F has
nonincreasing (nondecreasing) mean residual life if and only if G has nonincreasing (non-

decreasing) mean residual life.

A life distribution F' is new better (worse) than used in expectation if and only if

er(z) < (2)er(0).

THEOREM 3. Given p > 0, F,G € Cy and they are related by (3) or (4), F is new
better (worse) than used in expectation if and only if G is new better (worse) than used in

expectation.



Given p > 0, F,G € Cy and they are related by (3) or (4) (F and G have proportional
mean residual life), it is natural to ask if G inherits other properties of F' and vice versa.

In §2, we identify some of these properties. In §3, we discuss our results.

2. OTHER CHARACTERIZATIONS

A life distribution F' is said to have increasing (decreasing) failure rate if and only if
F(z | t) = F(z + t)/F(t) is decreasing (increasing) in t > 0 for each z > 0. (6)

When the density of F' exists, (6) is equivalent to the failure rate r(t) = F'(t)/F(t) is
increasing (decreasing) in t > 0. Using (1), inversion formula (2) and (4), it is easily

verified that for all p > 0,
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Gle 1) = Fa | tyexp [~(p=1) [ {enu)) ™ da]. (
Note that F' is an increasing (decreasing) failure rate distribution implies that e, is a

decreasing (increasing) function. We now have the following result.

THEOREM 4. If p > 1, F € Cp and it has increasing (decreasing) failure rate, then ¢

defined in (4) also has increasing (decreasing) failure rate.
If the density of F exists, then G defined in (4) is differentiable and for all z > 0,

ra(z) = re(z) + (p - 1)/er(2).

Obviously, for p > 1, if rr is increasing (decreasing) in z > 0, then e is a decreasing

(increasing) function and rg is therefore increasing (decreasing).



A life distribution F is said to be increasing (decreasing) failure rate average if and only
if —(1/z)log F(z) is increasing (decreasing) in z > 0. Put ¢t = 0, take natural log on both

sides of (7) and then multiply the equation by —(1/z), we have for all p > 0,

—(1/2)10gG(z) = —(1/2)log F(z) + {(p - 1)/2} /0 “fer(w) " du.
Let
6(t,z) = /t T ler(w]) du

and §(z) = 6(0,z). The following two theorems are now immediate.

THEOREM 5. If p > 1, F € Cq, F has increasing (decreasing) failure rate average
and (1/z)8(z) is increasing (decreasing) in z > 0, then G defined in (4) also has increasing

(decreasing) failure rate average.

THEOREM 6. Given 1 > p > 0, F,G € Cp and they are related by (3) or (4), if F
has increasing (decreasing) failure rate average and (1/z)0(z) is decreasing (increasing) in

z > 0, then G also has increasing (decreasing) failure rate average.

A life distribution F is new better (worse) than used if and only if F(z | t) < (>)F(z)

for all z,t > 0. From (7), we have the following characterizations.

THEOREM 7. If p > 1, F € Cy, F is new better (worse) than used and 6(¢,z) > (<)f(z)

for all z,t > 0, then G defined in (4) is also new better (worse) than used.

THEOREM 8. Given 1 > p > 0, F,G € Cy and they are related by (3) or (4), if I

is new better (worse) than used and 8(t,z) < (>)8(z) for all z,t > 0, then G is also new

(<))



better (worse) than used.

Note that er(z) is decreasing (increasing) in z > 0 is a sufficient condition to ensure
that (1/z)8(z) is increasing (decreasing) in z > 0 and 6(t,z) > (L)0(z) for all z,t > 0 in

Theorems 5 to 8.

From Ebrahimi and Habibullah (1990), a life distribution F is new better (worse) than

used of age to > 0 if and only if for all z > 0,
F(z | to) < (2)F(2). ()

From (7), it is obvious that if p > 1, F € Co, F is new better (worse) than used of age
to > 0 and 6(to,z) > (<L)6(z) for all z > 0, then G defined in (4) is also new better (worse)
than used of age to. Similarly, given 1 > p > 0, F,G € Cj and they are related by (3) or
(4), if F is new better (worse) than used of specified age to > 0 and 8(to,z) < (>)8(z) for

all z > 0, then G is also new better (worse) than used of specified age t,.

For each to > 0, let Cy(to) = {F : F(z + to) = F(z)F(to) for all z > 0}. Cy(to) is
therefore the boundary class of members of the new better than used of age to obtained by
insisting on equality in (8) above. Hollander, Park and Proschan (1986) showed that the

following distributions are the only distributions in C(%o).

F(z) =Y _{Hr(to)Y Hr(z - jto)Ijjto,(j41)t0)(2)

j=0
where Hp is a distribution function defined for z > 0 and Ijjy (j+1),)(z) = 1 if z €

[jt0,(j + 1)to) and 0 otherwise. Note that (i) if H(z) = exp(=Az), z > 0 and A > 0, then
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F(z) = exp(-Az), (ii) if Hp(to) = 0, then F is a distribution function with F(t5) = 0. The

following theorem can be verified easily.

THEOREM 9. Given p > 0, F,G € Cp and they are related by (3) or (4), F € Cy(to) if
and only if G € C1(to) with

p-1

Hole) = To(a) [ [ (o) e + Tt

forall 0 <z <t and

e = /0 Te(u) du/{1 - He(to)}.

A life distribution F is harmonic new better (worse) than used in expectation if and
only if

[ Fwdu < prexp(=a/r)

for every z > 0. Using equality (5) and note that pg = pr/p, the following theorem is

immediate.

THEOREM 10. Given p > 0, F,G € Cp and they are related by (3) or (4), F' is harmouic
new better (worse) than used in expectation if and only if G is harmonic new better (worse)

than used in expectation.

Consider the family of distributions with survivor functions

[Br/(Arz + Be)[YAHY if Ap # 0,47 > —1

exp(—z/Br) if Ap =0



for all z > 0. From Hall and Wellner (1981) or Oakes and Dasu (1990), F belongs to the
family (9) if and only if ep(z) = Apz + Bp for all z > 0. Using Theorem 1, we now have

the following characterization.

THEOREM 11. Given any p > 1, F € Co and G as defined in (4), F is a member of
the family (9) if and only if G belongs to the same family of distributions with Ag = Az /p

and B; = Br/p.

Note that when 1 > p > 0, if FF € Cp and it is a member of the family (9) with
Ar/p < -1, then G calculated from Equation (4) is no longer a distribution function.
A necessary and sufficient conditions for Theorem 5 to hold for all p > 0 is that ef is

nondecreasing.
3. DISCUSSION

Given any positive integer valued p, Equation (4) can arise in the following situation. Sup-
pose that there are p independent ordinary renewal processes in operation simultaneously,
all with the same probability distribution F(z) of failure time. From Cox and Smith (1954).
it is well known that when the superposed process is in equilibrium, the survivor function
of the interval between successive events in the superposed process is given by Equation ()
above. The superposed process described here can be used to model the following system.
The system consists of P component positions in series, each containing a component. Each

failed component is immediately replaced. All life lengths are mutually independent and



identically distributed. Theorem 1 tells us that the survivor function of waiting times be-
tween failures of this series system and the survival function of failure times of components
have proportional mean residual life. This means that we can estimate the mean residual life
of a system with identical components connected in series by estimating the mean residual
life of the individual component and vice versa. Estimation of er on the basis of samples

from F were studied by Yang (1978).

In Theorems 2 to 11, we studied conditions such that different properties of F' are
preserved under superposition. Once we test that F’ has the required properties as stated
in the theorem, we can conclude that the distribution function G defined in (4) also has
the same properties. Statistical tests on monotone increasing failure rate, increasing failure
rate average, new better than used, new better than used in expectation and decreasing
mean residual life properties of life distributions have been investigated in the literature.
Tests for monotone increasing failure rate were studied by Barlow and Proschan (1969).
Bickel and Doksum (1969), Bickel (1969), Ahmad (1975), and Gerlach (1987). Deshpande
(1983), Tiwari, Jammalamadaka and Zalkikar (1989), and Gerlach (1989) investigated tests
for increasing failure rate average distributions. Hollander and Proschan (1972), and Chen,
Hollander and Langberg (1983) proposed tests for new better than used for life distributions.
New better than used in expectation and decreasing mean residual life tests were presented
in Koul (1978) and Hollander and Proschan (1975) respectively. Statistical tests for survival

distribution is new better than used of specified age were studied in Hollander, Park and



Proschan (1986), and Ebrahimi and Habibullah (1990). These test procedures can now
be applied to either a random sample of F' or G. The results in this paper are especially
useful since the collection of a random sample from G may be difficult for the following
two reasons. (i) The interevent times of the superposed process is not independent and (ii)
in testing a relatively new system of components in series, each with large mean life, the
duration of the test may not be great enough to allow the assumption that the system age

is relatively large to the system mean life.

REFERENCES

AHMAD, J. A. (1975). A nonparametric test for monotonicity of a failure rate function.

Commun. Statist. 4, 967-74.

BARLOW, R. E. and PROSCHAN, F. (1969). A note on tests for monotone failure rate

based on incomplete data. Ann. Math. Statist. 40, 595-600.

BICKEL, P. J. and DOKSUM, K. A. (1969). Tests for monotone failure rate based on

normalized spacings. Ann. Math. Statist. 40, 1216-35.

BICKEL, P. J. (1969). Tests for monotone failure rate II. Ann. Math. Statist. 40,

1250-60.

CHEN, Y., HOLLANDER, M. and LANGBERG, N. A. (1983). Testing whether new is

better than used with randomly censored data. Ann. Statist. 11, 267-74.

10



COX, D. R. (1962). Renewal Theory. London: Chapman and Hall.

COX, D. R. and SMITH, W. L. (1954). On the superposition of renewal processes.

Biometrika 41, 91-9.

DESHPANDE, J. V. (1983). A class of tests for exponentiality azainst increasing failure

rate average alternative. Biometrika 70, 514-8.

EBRAHIMI, N. and HABIBULLAH, M. (1990). Testing whether the survival distribution

is new better than used of specified age. Biometrika 77, 212-5.

GERLACH, B. (1987). Testing exponentiality against increasing failure rate with ran-

domly censored data. Statistics 18, 275-86.

GERLACH, B. (1989). Tests for increasing failure rate average with randomly right cen-

sored data. Statistics 20, 287-95.

HALL, W. J. and WELLNER, J. A. (1981). Mean residual life. In Proceedings of the
International Symposium on Statistics and Related Topics, Ed. M. Csérgd, D. A.
Dawson, J. N. K. Rao and A. K. Md. E. Saleh, pp169-84. Amsterdam: North

Holland.

HOLLANDER, M,, PARK, D. H. and PROSCHAN, F. (1986). A class of life distributions

for aging. J. Am. Statist. Assoc. 81, 91-5.

HOLLANDER, M. and PROSCHAN, F. (1972). Testing whether new is better than used.

Ann. Math. Statist. 43, 1136-46.

11



HOLLANDER, M. and PROSCHAN, F. (1975). Tests for mean residual life. Biometrika

62, 585-93.

KOUL, H.I. (1978). Testing for new is better than used in expectation. Commun. Statist.

A 7, 685-701.

OAKES, D. and DASU, T. (1990). A note on residual life. Biometrika 77, 409-10.

TIWARI R. C., JAMMALAMADAKA, S. R. and ZALKIKAR, J. N. (1989). Testing an

increasing failure rate average distributions with censored data. Statistics 20, 279-86.

YANG, G. L. (1978). Estimation of a biometric function. Ann. Statist. 6, 112-6.

12



UNIVERSITY OF MIC

i il

04733 7954




