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Abstract: Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and
probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total
quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the
total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed-integer linear programming
formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm
based on the L-shaped method for two-stage stochastic programming as well as a heuristic method. We also extend our solution
approach to account for piecewise-linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation
indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state-of-the-art commercial
solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly.
Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances.
© 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 769-784, 2008
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1. INTRODUCTION

A well-known phrase in the service industry is that the
“customer is always right.” Many service-oriented businesses
live and die by this motto, and they ensure that their customers
receive quality service in hopes of building customer loyalty.
Although this offers many advantages to consumers, it poses
several logistical problems for producers and manufactur-
ers of goods that have any significant amount of product or
part lead time. Often, the manufacturer must make produc-
tion and inventory decisions based on anticipated demand in
future periods, and a proper understanding and treatment of
the demand source information becomes essential.

The problem that we will study in this article is motivated
by observations at a large manufacturer in the telecommu-
nications industry. This manufacturer’s sales teams attempt
to secure orders for low-volume telecommunications infra-
structure equipment. Unsecured orders are scheduled for a
specific period of time into the future, with little knowledge
about whether or not they will actually materialize. These
orders are customized, but only at a certain (relatively late)
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point in the production process. Therefore the manufacturer
can, in fact, begin procuring and assembling materials that are
noncustomized, and then customize the product for individ-
ual customers once orders come in. In our setting, a customer
is typically not an end-user and, moreover, is the dominant
supply chain player who can therefore influence the manu-
facturer’s production timeline. It is due to this imbalance in
power that the manufacturer may allow customer orders/due
dates within the procurement lead times for the product.
Each customer has unique qualities, and some customers will
invariably play a more dominant role in the industry. There-
fore, the negotiated price of the product will be unique for
each customer, and the salesforce allocation to each customer
will also be unique.

In a more general context, we consider a firm that offers
a product with uncertain demand. When the procurement
lead time for this product is long, the firm needs to deter-
mine the procurement quantity (in a single-period setting) or
sequence of quantities (in a multiperiod setting) in advance
of the selling season. If the demand distribution is fixed and
cannot be influenced, a standard newsvendor model can often
be used to represent this problem and determine the opti-
mal procurement quantity. We allow for demand flexibility
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by modeling the random demand as consisting of a set of
potential demands (e.g., customer orders), each of which
will materialize at a particular known level or not materi-
alize at all. In addition, to maximize expected profit, the firm
is able to not only choose the procurement quantity but also
select the set of potential demands that it will actively pursue
(where we assume that demands that are not actively pursued
are essentially lost). Once the actual materialized demands
are known, the firm must satisfy all pursued demands. In a
single-period setting, underages are accounted for through
an expediting or outsourcing cost; in a multiperiod setting
we allow for backlogging at a cost. Overages in the single-
period setting can be salvaged; in a multiperiod setting any
overage can be held in inventory for use in subsequent
periods.

Demand flexibility allows the firm to decide whether
highly profitable, yet risky, orders are worth pursuing over
less profitable, but possibly more predictable, orders. In
contrast with the standard newsvendor problem, we allow
the manufacturer to choose which orders to include in its
“demand forecast,” i.e., the manufacturer can shape the
demand distribution for which to prepare by judiciously
selecting which orders to actively pursue. Note that we allow
the manufacturer to prepare for the orders that it wants to pur-
sue by ordering materials and beginning a pre-customization
phase of the production process (e.g., assembly). In many
settings the manufacturer can customize its inventory within
a short leadtime to meet the orders that materialize.

Inventory control and, more specifically, newsvendor prob-
lems have been actively researched. In addition to the sum-
mary by Porteus [13], Tsay et al. [20], and Cachon [2]
provide reviews of research directions concerning supply
chain contracts and competitive inventory management in
single-period newsvendor settings. While product ordering
decisions in many newsvendor problems typically assume a
fixed demand distribution, papers that do address stochastic
demand selection are Carr and Lovejoy [4] and Taaffe et al.
[17,18]. Carr and Lovejoy [4] examine a so-called inverse
newsvendor problem, in which an optimal demand distrib-
ution is chosen based on some predefined order quantity or
capacity set by a supplier. The demand distribution is selected
from a set of feasible demand portfolios and based on an a
priori ranking of several customer classes. Taaffe et al. [17]
introduced the so-called selective newsvendor problem. With
aset of independent markets, the problem is to simultaneously
select the markets to supply as well as the appropriate order
quantity to request from the supplier. Both Carr and Lovejoy
[4] and Taaffe etal. [17,18] assume that the demands of differ-
ent customer classes or markets are independent and normally
distributed. This is a realistic assumption if the demand of
a customer class or market consists of demands of many
independent customers. In contrast, in this paper we con-
sider individual potential demands that cannot be modeled

Naval Research Logistics DOI 10.1002/nav

using normal random variables but, instead, are governed by
Bernoulli distributions.

Our research is related to two classes of order manage-
ment: (1) admission control and sequencing problems, and (2)
multiproduct/multiperiod newsvendor problems. The former
class of models focuses on developing rationing policies for
distributing the product to a subset of customer demand (or, in
effect, selecting only certain demands to fill). These models
employ queueing theory and Markov Decision Processes in
analyzing the admission policies (see, e.g., Carr and Duenyas
[3], Gupta and Wang [6], Ha [7], and De Véricourt et al.
[5D). In the latter class of models, which is more closely
related to ours, methods have been proposed for dealing with
a product that is offered at several price (or demand) levels as
well as across multiple periods. In Shumsky and Zhang [16],
the firm must purchase its capacity for each demand level
before the first period and cannot request any further replen-
ishments. Demand flexibility is obtained by incorporating
product substitution, or shifting product from one demand
class to another. Other research has allowed additional quan-
tities to be procured during the selling season. That is, as
demand information is revealed, the manufacturer can make
procurement decisions for the next period (see, e.g., Shen and
Zhang [15], Monahan et al. [12], and Kouvelis and Gutierrez
[9D.

In Section 2, we will present our single-period model,
which we will call the selective newsvendor problem (SNP)
with all-or-nothing orders. We develop an algorithm based
on the L-shaped method (see, e.g., Van Slyke and Wets [21]
and Laporte and Louveaux [10]) that is tailored to our prob-
lem. We close this section with a generalization of the cost
and revenue structure by allowing the end-of-period short-
age cost function to be piecewise-linear and convex and the
end-of-period revenues from salvaging any overages to be
piecewise-linear and concave. In Section 3, we formulate
and analyze a multiperiod demand selection problem, gen-
eralizing the solution approach to the multiperiod case. In
Section 4 we provide computational results for each of the
three problem classes, and compare and contrast the solution
times obtained for each problem with results obtained by a
commercial solver.

2. SINGLE-PERIOD ALL-OR-NOTHING DEMAND
SELECTION

2.1. Problem Formulation

Consider a set of n potential orders that a supplier can serve.
Let D; denote the random variable representing the magni-
tude of orderi(i = 1, ..., n) and assume that these order sizes
(or demands) are statistically independent. As mentioned ear-
lier, in this article we consider a situation where an order may
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either come in at a predefined level or not at all, i.e., demand
i is governed by a Bernoulli distribution:

1 — Di ifx=0
Pr(Di = x) = {pi ifx =d,,
where p; represents the probability that order i will materi-
alize. The firm must decide, in advance of the selling season,
both the orders it will pursue and the total quantity Q it will
procure from its supplier to maximize its expected profit.
Note that the model can allow for booked or firm orders by
setting p; = 1 for a specific order i.

Let the per unit procurement cost from this supplier be
given by c. Furthermore, let r; be the per unit revenue associ-
ated with order i. We can assume without loss of generality
that r; > ¢, otherwise we could immediately eliminate order
i from consideration. We also include a fixed cost of S;, which
would account for the dollar value of the time and resources
spent by the firm in trying to secure order i. This has been
described as salesforce allocation costs in Section 1.

Given a set of selected orders, the firm must ultimately
satisfy all realized ones. In situations when the customer can
influence when an order should be delivered, the firm may
be required to outsource production if the in-house quantity
is not sufficient to meet demand by the contracted date. We
assume a high-cost domestic supplier exists from which the
firm can expedite units of the good (after observing demand)
at a per unit cost of e, where e > c. Any unsold items can be
salvaged for v per unit, where ¢ > v. The customer has no
obligation to the firm until the customer places a contracted
order (i.e., there is no penalty cost for not placing an order.)

We model the fact that the firm can select the orders to
pursue by introducing binary demand selection variables
yii = 1,...,n), where y; = 1 corresponds to the selec-
tion of order i and y; = O to the rejection of order i. The total
expected profit can then be written as:

G(Q.y) =) (rid;p;i — Si)yi — cQ

i=1

+vE |:max (0, 0- XH:D,.y,ﬂ

i=1

ek [max (ozpy - Q)]

The newsvendor problem with all-or-nothing demand [AON]
is now given by

maximize G(Q,y)
subjectto Q >0
yle{071} i=1,-..,n.

We obtain a more explicit formulation of the profit function
by defining aset I, C {1, ..., n} which contains those orders
realized in demand scenario w. Note that there are a total of
Q = 2" potential scenarios. Furthermore, let

Po=[]pi- [0 -0

iel,  igl,

denote the probability that demand scenario w is realized.
The expected profit function then reduces to

G(Q.y)
= Z(ridipi - S)yi—CQ
i=1

Q
+ZP“’ v max O,Q_Zd[yi
w=1

iel,

—e max O,Zd[yi -0

i€el,

n Q
=) (idipi = S)yi—CQ+vY P, | Q=) diyi
i=1

w=1 iel,

Q
—(e—v)ZPwmaX O,Zdiyi -0
w=1

iel,

=Y (idipi = S)yi — (c—v)Q —v Y _dipiyi
i=1 i=1

Q
—(e—v)ZPwmax O,Zd,-y,- -0
w=1

iel,

=Y (i —dipi = $)yi — (c —v)Q
i=1

Q
—(e—v)ZPa,max O,Zd,-yi -0
w=1

iel,

Itis easy to see that, by introducing artificial variables u,, rep-
resenting the shortage in scenario w(w = 1,...,<2), [AON]
can be formulated as a mixed-integer linear programming
problem (MIP):

maximize Z((ri —v)dipi — Si)yi —(c—v)Q

i=1

Q
—(e=v) Y Py,
w=1
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subject to uszdiy,-—Q o=1,....Q (1)
iel,
Uu,>0 w=1,...,Q
0=>0
v €{0,1} i=1,...,n.

Clearly, the number of variables and constraints in this prob-
lem grows linearly in the number of scenarios, and there-
fore exponentially in the number of orders. Although a 10-
order problem has approximately 1000 decision variables and
constraints, for a 20-order problem this increases to about
1,000,000. Even the construction of problems of this size
becomes intractable. In the next section, we therefore develop
an alternative, tailored solution approach that does not, in
general, require all scenarios to be enumerated.

A potential solution approach would be to deal with this
issue by using a cutting plane approach for constraints (1).
In particular, we could define a master problem in which the
constraints in (1) are imposed only for some subset of sce-
narios w € W C {1,..., Q}. Clearly, in an optimal solution
of this master problem we would then have u = 0 for all
w € {l,...,2}\ W so that the master problem is tractable for
relatively small sets W. If the optimal solution to the master
problem satisfies all constraints (1), it is clearly optimal to
(MIP). Otherwise, we would add one or more of the violated
constraints and resolve the master problem. Now suppose,
for ease of exposition, that the optimal solution to the full
problem (MIP) is unique and equal to (Q*, y*). Then this
procedure will need to generate at least all constraints for sce-
narios w for which } ., d;y > Q*. Since for the optimal
order selection vector y* the value Q* is the (e — ¢)/(e — v)
quantile of the distribution of the aggregate demand in the
selected orders, the number of constraints that this procedure
can be expected to generate is on the order of

e—c L),
e—v

where n(y*) = Y_"_, y} is the number of orders selected in
the optimal solution. In cases where the number of attrac-
tive orders is substantial, this means that even such a cutting
plane approach will quickly become intractable. In the next
section, we therefore develop an alternative, tailored solution
approach that, as we will show empirically, in general does
not require the solution of a large-scale integer programming
problem.

2.2. A Cutting Plane Algorithm

The MIP formulation of [AON] can be viewed as a two-
stage stochastic programming problem with simple recourse,
where the first stage decisions are the procurement quantity
Q and the demand selection variables y, and the second stage
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decisions are the shortage variables u. In particular, [AON]
exhibits simple recourse, a problem well-studied in stochas-
tic programming. In this section, we develop a cutting plane
algorithm for solving [AON]. Our method is based on the
idea of the so-called L-shaped method (LSM) (see, e.g., Birge
and Louveaux [1]), which applies Benders decomposition to
a suitable reformulation of a linear two-stage stochastic pro-
gramming problem with fixed recourse. However, we will
employ the specific structure of [AON] to more directly derive
our algorithm. Introducing a new decision variable 6, we can
formulate [AON] as

maximize Z((ri —v)dipi—Si)yi—(c —v)Q — (e —v)O

i=1

Q
subjectto 6 > Z P, max | 0, Zdiyi -0 2
w=1 iel,
0>0

yvi€{0,1} i=1,...,n.

It will be convenient to associate a binary vector £€“ € {0, 1}"
with each scenario w by letting §” = 1ifi € [, and §” =0
otherwise. We next replace constraint (2) by the following 2
linear constraints, parameterized by a set of unique binary
vectors 8 € {0, 1} representing every possible choice in the
maximum in the right-hand side of (2):

Q n
6=3"P, (Zdiyiéf’ - Q) S sl ()
w=1 i=1

Because w = 2", the number of constraints in the resulting
formulation of the problem is far too large for practical pur-
poses. Therefore, our approach will be to include only a few of
these constraints and add additional constraints as needed. In
particular, after solving an approximation of [AON] in which
only a subset of the constraints on 6 are included, we deter-
mine whether there exists any omitted constraint on 6 that is
violated. If so, we add such a constraint to the formulation
and re-solve the problem.

A crucial observation is that, for a particular solution (Q, y)
to [AON], the constraint for which

it X divi>0
S0 = {0 otherwise wo=1,...,Q (4)

is most restrictive in the sense that it achieves the maximum
constraint violation among all constraints (3). (Note that set-
ting §, = 1 for some or all ® € €2 such that Zielw diyi=0Q
would yield a constraint, that achieves the same violation
for (Q, y). However, because it is not possible to say which
of these will yield the strongest constraint, we will in most
cases use constraint 4 and refer to it as “the most restrictive
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constraint” despite the fact that it is not necessarily the only
constraint that has this property.)

Therefore, suppose that (0, v, 6) is the optimal solution of
the current approximation of [AON], and denote the indica-
tor variable of the most restrictive constraint corresponding
to (Q,7) by 8. If the corresponding constraint is satisfied,
the current solution is the optimal solution to [AON]. Other-
wise, we may strengthen our approximation by including the
constraint corresponding to 3. Given that the total number of
constraints is finite, it is guaranteed that this procedure will
converge.

The issue that remains to be addressed is: given the large
number of scenarios, can we efficiently construct constraint
(3) for § without enumerating all scenarios? To this end,
let us reformulate the constraints of [AON] to highlight the
coefficients of the decision variables:

Q n
0 > ZP‘U (Zdiyisiw - Q) 8(0

i=1
7 Q
=> ( Pws;"aa,) diy; — Q (Z Pw6w> 8 € {0, )%
i=1 1 w=1

Therefore, the problem is in fact to determine the coeffi-
cients & = Yo, P,d, (for Q) and & = Y7 | P,E°5,
(ford;y;, i = 1,...,n). While in the worst case the compu-
tation of these coefficients may take O(2") time, we propose
algorithms that can be expected to run much faster in general.

Note that the approximations of [AON] that only contain
a subset of the constraints on 6 are still MIPs that may be
hard to solve. (Therefore, this approach is often referred to as
the integer L-shaped method, ILSM.) As an alternative, we
could apply the same approach to the LP-relaxation of [AON]
and embed this algorithm in a branch-and-bound algorithm
to solve the actual MIP. Interestingly, some researchers have
found applications of the LSM where the former approach is
much more efficient in practice than the second. Intuitively,
this may be due to the fact that in the former approach, even
if each approximate problem is a MIP, only one application
of the ILSM is required. This is in contrast with the alter-
native, where numerous applications of the LSM may be
required as part of a branch-and-bound scheme (see, e.g.,
Laporte and Louveaux [10], Laporte et al. [11], and Schaefer
et al. [14]). In other words, the ILSM provides an immediate
solution to [AON]. In our experiments we will compare the
efficiency of solving [AON] using the ILSM versus solving
its LP-relaxation using the LSM.

Q

w=

2.3. Coefficient Generation

It is easy to see that the performance of our algorithm for
[AON] depends heavily on the computational effort that is
required to find the coefficients of the cutting plane. We can

compute the n + 1 coefficients of this constraint by travers-
ing a binary tree whose leaves represent all potential demand
scenarios. We will develop algorithms that attempt to com-
pute the coefficients without explicitly having to enumerate
all 2" leaves of this tree. In particular, we will describe two
algorithms, each one performing best for particular values of

Q and y.

2.3.1.  Forward Algorithm

Let (0, 7,0) be the solution to the current approximation
of [AON]. We then construct a binary tree that represents all
scenarios as follows. At the root node we start with an empty
scenario. Then, at a node at level k, we construct two child
nodes that correspond to the scenarios where order k is real-
ized or not, respectively. At a given node at depth k of this
tree, we keep track of

1. the probability, say p, associated with all scenarios
that are leaves of the corresponding subtree, i.e., the
joint probability of the k — 1 order realizations corre-
sponding to the unique path from the root of the tree
to the current node;

2. a lower bound on total demand, say A, associated
with all scenarios that are leaves of the correspond-
ing subtree, i.e., using a demand for order i of
diyi(i = 1,...,k), the total demand of the k order
realizations along the unique path from the root of
the tree to the current node.

We can now avoid searching the entire binary tree using
the following observation. Suppose that, at some node, we
have that A > Q. We then know that for all scenarios that
are leaves of the current subtree the total realized demand will
be no less than Q and we can prune the binary tree after updat-
ing the values of the constraint coefficients appropriately. In
addition, note that A+ ", +1 diyi is an upper bound on the
total demand associated with all scenarios that are leaves of
the current subtree. We can thus also check whether this upper
bound on realized demand exceeds Q; if not, we can prune
the binary tree (without updating the values of the constraint
coefficients) and exclude all scenarios that are leaves of the
current subtree. The Forward Algorithm can be stated more
formally as follows (where, at any stage of the algorithm, the
vector & denotes the binary vector representing the current
partial scenario):

Constraint Generation Algorithm—Forward
0. Initialize the n+ 1 constraint coefficients: {; = 0 (i =
0,...,n).Setk=0,p=1,A=0,and & = 0.
1. (Branching Step - Orders Realized) While A < Q <
A+ Z?:IH—I d;iyi:
—setk=k+1;

Naval Research Logistics DOI 10.1002/nav
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— add the next order: & = 1;
— update the node probability: p = p - py; and
— update the total realized demand at the current
node: A = A + di yi.
2. If Q < A the current scenario subtree should be
included in the coefficients:

Cl—l-p fori=0,
{,’: §,+p§, fOI'i:l,...,k,
CGi+p-pi fori=k+1,...,n.

Otherwise, 0 > A + X', d; and the subtree
should not be included in the coefficients.
3. (Backtracking Step) While &, = O:
— update the node probability: p = p/(1 — pr);
—setk=k—1.
4. (Change to Unrealized Order) If £k = 0, stop...all
constraint coefficients are computed. Otherwise:
— remove order k : & = 0;
— update the node probability: p = p - (1 — pi)/pk;
and
— update the total realized demand at the current
node: A = A — di yx.
Return to Step 1.

For the first violation in Step 1, no backtracking will occur
in Step 3 (because all orders are included in the current sce-
nario), and the order at current level k£ will be flipped to “not
realized.” We continue to traverse the tree of scenarios, prun-
ing the tree by flipping orders from realized to unrealized, and
backtracking when the current level order is unrealized. Note
that, when we use the ILSM rather than the LSM, the vector
y is binary. In that case, we can simply remove all orders for
which y; = 0 from consideration and sort the selected orders
in non-increasing order of d;.

The algorithm, which is based on a scenario tree that starts
with no orders realized, can be expected to work well if the
value of Q is relatively small or relatively large (i.e., when
Q is either close to 0 or close to the total potential demand
in the current solution, Z;’Zl d; y;). In these cases, either one
of the two bounds will be violated more quickly than for
intermediate values of Q

In the next section we will construct an algorithm that
instead builds the scenario tree by starting with all of the
orders realized. While similar in structure to the Forward
Algorithm, that algorithm may provide reduced coefficient
construction times for certain types of problems or for spe-
cificiterations in a problem, depending on the current solution
information, Q and Yo diFi.

2.3.2.  Backward Algorithm

The Backward Algorithm considers a binary tree that rep-
resents all scenarios as follows. At the root node we start with

Naval Research Logistics DOI 10.1002/nav

a scenario in which all orders are realized. Then, at a node at
level k, we construct two child nodes that correspond to the
scenarios where order k is removed from the root scenario or
not, respectively. At a given node at depth k of this tree, we
keep track of

1. the probability, say p, associated with all scenarios
that are leaves of the corresponding subtree, i.e., the
joint probability of the k — 1 order realizations corre-
sponding to the unique path from the root of the tree
to the current node;

2. an upper bound on the total demand, say A’, asso-
ciated with all scenarios that are leaves of the cor-
responding subtree, i.e., using a demand for order i
of d;y;(i = 1,...,k — 1), the total demand of the
k — 1 order realizations along the unique path from
the root of the tree to the current node as well as all
remaining demands.

Itis clear that this scenario tree is equivalent to the one used
in the previous section, and we can again avoid searching the
entire binary tree. Suppose that, at some node, we have that
A’ < Q. We then know that for all scenarios that are leaves
of the current subtree the total realized demand will be less
than Q and we can prune the binary tree after updating the
values of the constraint coefficients appropriately. In addi-
tion, A’ — Z?:k 1 di y; is a lower bound on the total demand
associated with all scenarios that are leaves of the current
subtree. We can thus also check whether this lower bound
on realized demand is still less than Q; if not, we can prune
the binary tree (without updating the values of the constraint
coefficients) and exclude all scenarios that are leaves of the
current subtree. The Backward Algorithm can be stated more
formally as follows:

Constraint Generation Algorithm—Backward
0. Initialize the n + 1 constraint coefficients: §; = 1
and §; = p;(i = 1,...,n). Setk =0, p = 1,
A = Z?:l d,&,‘, and Eo =1.
1. (Branching Step - Orders Not Realized) While A" —
Yicep dii < Q < A
—setk=k+1;
— remove the next order: & = 0;
— update the node probability: p = p - (1 — p;); and
— update the total realized demand at the current
node: A" = A" — di yi.
2. If 0 > A’ the current scenario subtree should be
excluded from the coefficients:

C,‘—p fori=0,
é‘i: Ci—P'Ei fOI'i:l,...,k,
Gi—p-pi fori=k+1,...,n.
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Otherwise, Q < A — Z?:k 4 d;y; and the subtree
should not be excluded from the coefficients.
3. (Backtracking Step) While &, = 1:
— update the node probability: p = p/p*;
—setk=k—1.
4. (Change to Realized Order) If k = 0, stop...all
constraint coefficients are computed. Other wise:
— add order k: & = 1;
— update the node probability: p = p - pr/(1 — pi);
and
— update the total realized demand at the current
node: A" = A" + di yx.
Return to Step 1.

2.3.3.  Performance of the Constraint Generation
Algorithms

Even with all orders selected (y; = 1 for all i), either
algorithm will not require a complete enumeration of the 2"
nodes in the scenario tree, yet the algorithms are still not
polynomial in n. Through significant experimentation, we
did identify characteristics of the test instances that would
affect constraint generation times. Most notably, the algo-
rithms are affected by the current solution (¥, 0), the crit-
ical fractile (p), and the likelihood (p;) of each order i
occurring.

Note that we can, in principle, apply the Forward and Back-
ward Algorithms using any sorting of the orders. However, to
be able to prune nodes as quickly as possible we will sort the
n orders in non-increasing order of their potential demand.
The following theorem shows that this provides the most effi-
cient pruning and therefore the least number of nodes visited
in the scenario tree.

THEOREM 2.1: Both constraint generation algorithms
will visit the minimum number of nodes if the orders
are sorted in non-increasing order of their potential
demand, d; y;.

PROOF: A tree pruning will occur whenever either bound
on Q is violated (see Forward and Backward Algorithm
descriptions). Consider Step 1 of either algorithm, which
represents the descent into the scenario tree until we can
prune. For the Forward (Backward) algorithm, each time
this step is performed the lower (upper) bound on Q is
increased (decreased) by &.d;yi. Likewise, whenever an
order is flipped, we also have a change in bound value.
For the Forward (Backward) algorithm, Step 4 will cause
the upper (lower) bound on Q to decrease (increase) by
&rdy yi. Therefore, the most significant change in upper and
lower bound values will be for the largest values of &dy yi.
We will cause the condition in Step 1 to be violated most
quickly, thereby minimizing the depth until we can prune

the tree, by sorting the orders so that d;y; > dry, > ---

= dnj}n- O

2.4. Extension to Piecewise-linear Cost Functions

In this section, we examine how [AON] can be general-
ized to allow for more general, in particular piecewise-linear
convex, shortage and overage cost functions (where, for con-
venience, we will in this section refer to the salvage rev-
enue functions as (negative) overage cost functions). In other
words, as the shortage or overage increases, the correspond-
ing marginal unit cost is nondecreasing, representing the fact
that the unit salvage value may decrease as the quantity sal-
vaged increases and, similarly, the unit expediting cost may
increase as the quantity expedited increases. For the sake
of brevity, we omit certain repetitive mathematical steps in
arriving at the problem formulation and constraint generation
functions. Complete details are provided in the Appendix.

Let the marginal shortage costs and salvage values be given
byei(j=1,....,J+Dandv;(j =1,...,J° + 1) where
Vjog] < -+ < V] < ¢ < e < -+ < eyy4. For con-
venience, we will also let eg = vg = 0. Finally, denote
the corresponding breakpoints by s;(j = 1,...,J%) and
0;j(j=1,...,J°),respectively, where 0 =59 < 5y < --- <
s;sand 0 = 09 < 01 < --- < 0y0. (Note that if J° =
J¥ = 0 then we obtain [AON].) For convenience, we will let
J=1+J°+J

After deriving the expected profit equation, we can expand
the formulation used for [AON] to represent the MIP we
call the newsvendor problem with all-or-nothing demand and
piecewise linear costs [AON-PWL]. The dimensionality of
this MIP increases linearly in the number of segments in the
cost functions. It thus suffers from the same drawbacks as the
MIP for [AON].

We can use a similar approach as was used for [AON]
in generalizing the cutting plane algorithm for [AON-PWL].
Now, we introduce three (sets of) decision variables, each
corresponding to one of the expected values in the objec-
tive function of [AON-PWL]: 6, Gf(j =1,...,J9, and
9; (j = 1,...,J%). This results in one additional variable
and constraint for each breakpoint in the overage or under-
age cost function. Using these decision variables, as well as
replacing each single constraint by 2¢ linear constraints, we
reformulate [AON-PWL] as

n

maximize Y ((ri — vi)dipi — Si)yi — (¢ — v1)Q

i=1
Jo

—(er — o) — (v — V)07
=1

JS

— D (ejr1—e))b;

j=1
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subject to

Q n
0'=>"p, (Zdi%'%w - Q) 8
w=1

i=l1

s e {0, 1}¥ (5

Q n
00>y P, (Q — > diyiE’ — 0j> 870
w1 i=1

8 €{0, 1% =1,...,J° (6)

Q n
0i=> P, (Z diyi&? — Q — sj) 8,
w=1 i=1
s Q. . s
8 efo, 1y j=1,...,0° (D

0=>0
yie{0,1} i=1,...,n.

Analogous to [AON], we now identify the most restrictive
constraints with respect to a given solution (Q, y) as those
for which

if Zie]{u diyi > Q

8l =
@ otherwise

1
0 =1,...,Q )
jo = 1A e divi>0=0; o
0 otherwise

j=1,...,J° (9

8 = 1 if Zielwdiyi > Q+Sj

, ! =1,...,8;
Jo 0 otherwise

j=1,...,J% (10)

where the dummy indicator variables S;’ are precisely the
complements of the indicator variables 87 in (6). It is easy to
see that the coefficients in constraints (5)-(7) can be identi-
fied by the Forward and Backward Algorithms described in
Section 2.3, with an appropriate modification of Q and post-
processing for (6) and (7). We thus perform J binary tree
searches to implicitly identify, in each iteration of the cut-
ting plane method, all scenarios that determine a particular
constraint.

3. MULTIPERIOD ALL-OR-NOTHING DEMAND
SELECTION PROBLEMS

3.1. Introduction

We will next consider stochastic order selection problems
in a dynamic environment, i.e., the timing of production and
selection of individual uncertain orders are integrated to max-
imize expected profit. Each order within a multiperiod setting
is considered independent. As introduced for the single-
period model, customer orders are customized for a particular
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installation, and they are somewhat infrequent, which allows
the assumption that each order can be treated individually.
In addition, spreading an order over several periods is not
desirable, and it is preferred to satisfy an entire order in the
period that it is expected to materialize. We develop a basic
multiperiod model that can serve as a proof of concept for
extending the single-period news vendor-based models to a
multiperiod setting. We will show how the cutting plane algo-
rithm that was developed in earlier sections based on the
L-shaped method can be extended to the multiperiod case,
allowing us to solve problems to optimality for reasonable
sets of orders and time periods where standard solvers fail to
be able to do this.

3.2. Problem Formulation

We now consider a multiperiod nonstationary newsven-
dor problem where the planning periods are denoted by
t =1,...,T.Inperiod ¢, we have a set of n, potential orders
that a supplier can serve in period z. Let D;; denote the ran-
dom variable representing the magnitude of order i in period
t. As before, we assume that these order sizes are statistically
independent Bernoulli random variables:

1—p; ifx=0

Pr(Dil - X) - {pit ifx = di

i=1,...,n5t=1,...,T.

Items can be procured in each period ¢ at a per unit cost of ¢;.
In general, an order-up-to policy is expected to be optimal for
this problem (see Veinott [22]). Here, we consider an alterna-
tive policy that is not only easier to implement in practice but
also lends itself much more readily to a study of the merits of
demand flexibility. In particular, we assume that the supplier
must decide, before the start of the planning horizon, a full
sequence of order quantities and a set or order selection deci-
sions. This then yields a two-stage stochastic programming
model in which the decision variables Q,(t = 1,...,T) and
v = 1,...,n;t = 1,...,T) are determined in the first
stage and the sales and inventory decisions are made after
a random scenario w is realized. This policy can be viewed
as a dynamic version of the stationary periodic review/fixed
order quantity policy that is commonly used when demands
are stochastic but stationary, while a dynamic order-up-to pol-
icy would generalize a stationary order-up-to policy for such
asystem. In each period, any surplus is charged a holding cost
of v, per unit while any shortage is charged a penalty cost of
e, per unit. In addition, the supplier must ultimately satisfy all
realized demand but may sell any overage at a salvage value
at the end of the planning horizon. To this end, we include in
er the unit cost required to satisfy demand that is not satisfied
by the end of the planning horizon and in vy the salvage value
for any remaining stock at the end of the planning horizon.
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As in Section 2, we let r;; be the per unit revenue associated
with order i in period ¢, while we also allow for a fixed cost of
pursuing this order of S;;(i = 1,...,n,,t = 1,...,T). For
convenience, we will denote the total number of potential
orders by N = Zthl n;.

In an analogous fashion to the single-period model, we
represent a particular realization of demands by a demand
scenario in the form of a binary vector £“ € {0, 1}V, where

7 = 1represents that order i in period ¢ will materialize. The
probability that this scenario occurs will again be denoted by
P,,, and the number of scenarios is given by Q@ = 2". The
total demand faced by the supplier in period ¢ given an order
selection vector y is then clearly given by Y ™ di/yi/&%.
Finally, we denote the quantity held in inventory from period
t to period t 4 1 in scenario w by I;” and the quantity back-
logged from period ¢ to period ¢ + 1 in scenario w by B;”.
We can then formulate the multiperiod selective newsvendor
problem with all-or-nothing demands [AON-MP] as a MIP
problem as follows:

T ny
maximize Z (Z(Vitditpn = 8i)yir — ¢ Oy

t=1 \i=I1

Q
_ Z Pw(U,]t‘” + e B?))

w=1

subject to

I’  +B’+ 0, = Zdityizéi? + 1+ B,
i=1
t=1,...,.T;0o=1,...,2 (11)
I’ B?>0 t=1,....Tyo=1,...,Q2 (12)
0,>0 t=1,...,T
vir €{0,1} i=1,....,n5t=1,...,T.

Note that Iy’ = Iy and By = By represent the initial inven-
tory and backlogging levels which are of course independent
of the scenario w and are input parameters to the model rather
than decision variables. It is easy to see that, without loss of
generality, we can restrict ourselves to solutions in which
I? - BY =0fort =0,...,7T and 0 = 1,...,, ie,
we cannot have positive inventory and backlogging amounts
simultaneously. Also, if the salvage value exceeds the holding
cost in period T, then vy < 0 in order to correctly repre-
sent its value in the objective function. Finally, we can easily
represent the case of allowing a single initial order (Q;) to
cover all subsequent demand periods by setting Q, = 0 for
t =2,...,T, which is simply a special case of [AON-MP].
It is important to observe that each scenario w specifies a
demand realization for all orders in all periods. Therefore,
there exists significant redundancy in this problem formula-
tion. In particular, consider two scenarios that coincide for

all order realizations up to period 7. Because the variables
representing the order selection and order quantity decisions
are set in the first stage and therefore independent of the sce-
nario w, the inventory and backlogging variables and flow
balance constraints (11) up to and including period ¢ are
identical for these two scenarios. Explicitly imposing the
(redundant) nonanticipativity constraints that would enforce
this yields that [AON-MP] could be reformulated to eliminate
such redundancies in constraint set (11). For notational con-
venience, however, we will not explicitly provide the reduced
formulation. In either case, the dimensionality of the MIP
increases very rapidly in the number of time periods and
therefore quickly becomes intractable, as we saw for the
analogous MIP formulations of [AON] and [AON-PWL]. We
therefore focus again on developing a tailored cutting plane
method for [AON-MP].

3.3. A Cutting Plane Algorithm for the Multiperiod
Problem

For the purposes of extending our cutting plane algorithm
to a multiperiod setting it is convenient to reformulate the
[AON-MP] in a similar form as [AON] by eliminating the
inventory and backlogging amounts, yielding a nonlinear
formulation where the only decision variables are the pro-
curement amounts Q,(t = 1,...,T) and the order selection
variables y;,(i = 1,...,n,,¢t = 1,...,T).Inparticular, using
constraints (11) and (12) we can express the inventory and
backorder variables as follows:

t t ny
1 = max (0, Iy — By + Z 0. — Z Z%’:%%ﬁ)

=1 =1 i=1
t=1,....T;0o=1,...,Q

ny

' t
B’ = max (0, By — Iy + Z Zdiryirgia; - Z Qr)
=1

=1 i=I

Then, we can substitute into the objective function of
[AON-MP] and reduce the expression to:

T n
Z (Z(ritditpit = Si)yir — ¢ Qz)

t=1 i=1

T Q ,
— Zv,ZPwmaX <O,IO—BQ+ZQT
ITI nw:l o =1
_ Z Zdiryl'ré,‘af) - Z e; Z P, max

=1 i=1 =1 w=1

t n '
X (0, By — Ip + Z Zdi‘ryi‘léﬁ; - Z Qr)
=1

=1 i=1
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— U <IO — By + Z 0. — Z Zdir)’irpir)>

=1 =1 i=1

T Q
- Z(et +v) Z P,, max (0» By — Iy

S gt ZQ )

=1 i=1
This leads to the following formulation of [AON-MP]:

n

T
maximize Z <Z(ritditpit = Si)yir — ¢ Os

<10 _Bo+ Z 0.-%° Zd,,y,rp,,))

=1 i=1

- Z(e, +v,)2P max <0 By — Iy

w=l1

S et ZQ )

=1 i=I
subject to
0,>0 t=1,...,T
yvie €{0,1} i=1,...,n5t=1,...,T.

We next introduce variables 6, corresponding to the expected
product underage (or backlog) level in period ¢t (r =
1,...,T). This leads to

Si)yit — ¢ Qs

T n
maximize E E (riedis pir —

t=1 i=1

(IO_BO+ZQr szltyzrplt)

=1 i=1
— (e, +v,)0;

subject to

Q
6, > P,max (0, By — I

w=1

3 gt ZQ) .

=1 i=1
0,>0 t=1,...,T
vir €{0,1} i=1,...,n;t=1,...,T.
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Comparing this formulation to the analogous formulation of
[AON], it follows that we obtain one additional constraint for
each period. The constraint corresponding to period ¢ can be
replaced by 2 linear constraints, parameterized by binary
vectors §;(t =1,...,T):

Q
EZPw(BO_IO+ZZdITyltEIf ZQ)
w=l1

=1 i=l
8 € {0, 1}

t n; Q Q
(Z Pw";:::—(swt) di‘ryit - (Z Pa)&yt)
w=1

=1 i=1 \w=l1

x(ZQT—BO—i—IO) 8 € {0,112, (13)

=1

Similarly to the previous problems studied in this paper, the
most restrictive constraints with respect to a given solution
(Q,y) in (13) are given by

5 {1 it Y diyicE? > Y O — Bo+ Iy
wt

0 otherwise
w=1,...,2t=1,...,T.

Thus, for each period 7, we have to find }'_, n, + 1 such
coefficients for Q, and d;, y;; in (13).

Using the same approach to constructing the coefficients as
before, we can search the binary tree representing all potential
demand scenarios. First, consider that a given scenario is no
more than a realization of some subset of orders, for all of the
periods in the planning horizon. However, orders that occur
in any period after ¢ cannot be included in the calculation of
inventory or backlog quantities in period ¢. Therefore, we can
construct the period ¢ constraint using a tree that contains all
selected orders up to and including period ¢, and we would
perform a total of T such binary tree searches. In building
the tree for generating the period ¢ constraint, we can view
the orders independently of the period in which they occur.
From Theorem 2.1, we would rank the orders in nonincreas-
ing order of d;; y;: (t = 1,...,t) to find the most restrictive
period ¢ constraint in minimum computation time. We can
then map the order sizes (d;;) and selection decisions (y;;)
onto one-dimensional arrays (d; and y; fori = 1,...,N)
such that d|y; > d;¥, = --- > dj3yy. Then, we can use
either the Forward or Backward Algorithm from Section 2.3
to determine the coefficients, with an appropriate adjustment
of Q.

Alternatively, we could consider constructing a single tree
search that determines the coefficients of all constraints in
parallel by simultaneously considering all N potential orders.
In this case, we could sort all N potential orders by nonin-
creasing value of d;, y;; or, alternatively, sort all orders within
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Table 1. Algorithm performance for [AON].
Our algorithm
CPLEX LP (LSM) IP (ILSM)

n LP (sec) IP (sec) (sec) No. of cuts (sec) No. of cuts No. of orders selected

5 <0.01 <0.01 0.02 4 0.02 4 2
10 0.07 0.12 0.06 11 0.06 8 5
15 342 12.05 0.12 20 0.08 12 8
20 n/a n/a 0.17 26 0.12 14 12
30 n/a n/a 1.57 56 0.53 26 18
40 n/a n/a 20.67 57 12.36 34 24
50 n/a n/a 2951.00 65 2137.00 37 31

a given period ¢ by nonincreasing value of d;;y;; and con-
sider the periods sequentially from t = 1,...,T. Perhaps
surprisingly, as we will briefly discuss in Section 4.4, the
approach where the constraint coefficients for the different
periods are constructed independently consistently outper-
forms simultaneous constraint construction approach. We
therefore omit the details of the algorithm for simultaneous
constraint coefficient generation.

4. COMPUTATIONAL TESTS AND RESULTS
4.1. Results: Single-Period Model - [AON]

In this section, we will demonstrate the power of our algo-
rithm as compared to solving the MIP formulation of [AON]
using CPLEX Version 10 (from within OPL Studio). All
tests were conducted on a machine with a 2.0 GHz Core
2 Duo processor and 2 GB of RAM. For the implemen-
tation of our cutting plane algorithm, we used CPLEX 10
with Concert Technology to solve all linear (in case of the
LSM) or mixed-integer linear (in case of the ILSM) sub-
problems. We considered problem instances ranging in size
from 5 to 50 potential orders. Unit revenue for the orders
were drawn independently from the uniform distribution on
[275, 325], denoted by U[275, 325], and the production cost,
expediting cost, and salvage values were set to be 200, 500,
and 150, respectively. The fixed costs associated with each
order, which will mainly respresent salesforce allocation, are
drawn from U[2500, 7500]. The potential order sizes (or
demands) were generated from a U[100, 200] distribution,
while the associated probabilities of realization were drawn
from U[O0, 1]. We generated 50 random problem instances for
each problem size.

To identify the critical component of the solution process,
we evaluated the performance of the ILSM applied to [AON]
as well as the performance of the LSM applied to its linear
relaxation. Table 1 presents the solution times required to find
the optimal solution to the problem, along with the average
number of cuts added by the cutting plane algorithm.

A straightforward application of CPLEX is able to solve
both [AONT] and its linear relaxation with up to 15 orders in
reasonable time. However, because a direct solution using
CPLEX requires complete enumeration of all possible sce-
narios, solving larger problems becomes intractable (e.g., for
a 20-order problem there are over one million scenarios, and
the input data file for the corresponding optimization problem
requires 85 MB of disk space). In contrast, our cutting-plane
algorithm can solve [AON] with up to 40 orders (having over
1 trillion scenarios) in about the same time as CPLEX requires
to solve such problems with only 15 orders (with about 32,000
scenarios). It is interesting that, using our algorithm, [AON]
itself is solved more rapidly than its linear relaxation. In addi-
tion, note that the number of cuts required to identify the
optimal solution is quite small. This is important in main-
taining reasonable solution times, since constraint generation
time can be quite long. In fact, the average CPLEX solu-
tion time within our algorithm is practically negligible (less
than one second for the 50-order problems). Thus, the solu-
tion times reported in Table 1 represent almost all constraint
generation time.

The last column in the table shows the average number of
selected orders in the optimal IP solution. This turns out to be
a critical parameter in determining the size of problems that
can be solved efficiently, since the performance of our algo-
rithmis, for large instances, dominated by the time required to
construct the constraint coefficients. In particular, finding the
best cutting plane requires searching a binary tree with depth
equal to the number of selected orders in the incumbent solu-
tion. We performed benchmarking tests to determine when
to use the Forward or Backward Algorithms for constraint
generation. Given a current solution ( Q, y), the longest com-
putation times occurred when Q is at or near Yo divi/2.
As Q increased, the performance of the Forward Algorithm
improved when compared to the Backward Algorithm. In
fact, for Q > >, d;ii/2, the Forward Algorithm outper-
forms the Backward Algorithm. In the Forward Algorithm,
the coefficients are updated when we prune and include the
current subtree. This occurs when the lower bound of A > Q
is violated (see Section 2.3.1). We will prune more often due
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Figure 1. The impact of order characteristics on order selection.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

to this lower bound when Q < ""_| d;¥;/2, which means
the coefficients are updated more frequently across this range
and the Backward Algorithm will outperform the Forward
Algorithm. We will use this current solution information in
selecting the appropriate algorithm to use.

Recall that we were interested in identifying order char-
acteristics that affect the acceptance/rejection decision.
Although unit revenue, fixed sales costs, demand size, and
order likelihood all play a role, the results indicate that
the probability that the order will materialize (or order
likelihood) is the key determinant. Figure 1 presents an
accept/reject classification of all orders for three unique
test instances, where order likelihood is plotted against unit
revenue for each order. In each of the three examples shown,
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there is a definite pattern for choosing orders. Notice, though,
that the pattern changes across the examples, and in some
cases orders with low unit revenue will still be selected if the
order likelihood is high.

4.2. Comparison: Heuristic Approach vs. Optimal
ILSM Approach

As discussed in Section 4.1, the ability to solve [AON] to
optimality is limited by the number of orders selected during
constraint generation, and as problem size grows, this limit
will be reached quickly. To address this, we tested the ILSM
approach against a heuristic approach that first (1) creates a
rough forecast and then (2) builds to the forecast. The steps
are described below.

Heuristic Algorithm to Find (Q, y)

1. Define the set of orders I such that I = {i| S—d +c <
ri}. Pursue all orders in /. Note that includes all
orders in which an approximation of the highest
per-unit cost is less than the per-unit revenue.

2. Set Q by solving the standard newsvendor problem.
We can find the exact value of Q based on the criti-
cal fractile value (e — ¢)/(e — v) of the underlying
demand distribution (see Taaffe et al. [18] and Taaffe
and Romeijn [19] for further discussion). We can
actually describe the cumulative demand distribution
as a convolution of the distributions for the inde-
pendent Bernoulli demands for each order (see, e.g.,
Kaplan and Barnett [8]).

Using the same set of 400 test instances as described in
Section 4.1, we recorded the quality of the solutions achieved
by the heuristic. Table 2 presents the number (and percent)
of orders selected for both the ILSM and heuristic, as well
as average and maximum optimality gaps for the heuristic
approach only.

To find the expected profit that results from the heuris-
tic solution for (Q, y), we can use one of two methods. For
heuristic solutions with less than 30 orders, we can fix Q and

Table 2. Heuristic vs. ILSM for [AON].

Orders selected Optimality gap
ILSM Heuristic Average Maximum

n No (%) No (%) (%) (%)

5 19 38 3.0 60 21.0 100.0
10 49 49 6.2 62 13.1 54.9
15 84 56 9.9 66 3.6 13.2
20 11.9 60 13.3 66 1.9 53
25 149 60 17.1 68 1.3 3.8
30 176 59 19.2 64 1.1 6.4
40 241 60 26.1 65 0.6 2.0
50 306 61 32.8 66 0.5 1.6
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Table 3. Heuristic solution quality for test instances with small
fixed costs.

Optimality gap
Average Maximum

n (%) (%)

5 6.7 100.0
10 0.0 0.2
15 0.1 1.3
20 0.1 0.7
25 0.0 0.0
30 0.0 0.0
40 0.0 0.0
50 0.0 0.0

y and solve using the ILSM approach, and this will provide an
expected profit as the objective function. This is very efficient
and quick for problems of this size. For heuristic solutions
with more than 30 orders, we estimate the expected profit
with simulation.

While the heuristic performs poorly for small problems,
it provides a good approximation for the optimal solution in
larger problems (< 1% gap for 40- and 50-order problems). It
is precisely for these problem sizes that the heuristic approach
could be necessary. If over 30 orders are selected in the opti-
mal solution, the exact ILSM approach becomes difficult to
solve in a reasonable amount of time. The heuristic consis-
tently selects between 60 and 70% of the orders, which is
slightly more than the optimal ILSM approach.

Depending on the nature of the firm’s business, it may not
be necessary to allocate large fixed salesforce costs to help
secure orders. Based on the test instances described in Section
4.1, on average, net revenue without setup is $15,000 and the
fixed costis $5000 (or 33% of this revenue). We conducted an
experiment using similar test instances, except now the aver-
age setup cost was reduced to 10% of net revenue. Table 3
presents the solution quality of the heuristic approach using
these new test instances.

From this analysis, we can say that the heuristic error
depends to a large extent on the magnitude of the S; values,
and the heuristic does perform well under certain circum-
stances. Thus, not only can the heuristic be applied when the
optimal ILSM approach reaches computational limitations,
but the heuristic performs extremely well when fixed order
costs are small. It should be noted that there may be other
parameter settings in which the heuristic still has difficulty
identifying high quality solutions, but the results from these
tests are very encouraging.

4.3. Results: Single-Period Model with Piecewise
Linear Costs - [AON-PWL]

We now describe computational tests using CPLEX and
our algorithms to solve [AON-PWL]. For the most part

we used the same order-specific data as in Section 4.1,
but we now include several breakpoints in the underage
cost and overage revenue functions. In particular, when
the procurement quantity falls short of realized demand
by 0/150/300 units, the firm incurs a unit expediting cost
of 350/500/750, respectively. Similarly, when the procure-
ment quantity exceeds realized demand by 0/150/300 units,
the firm can obtain a unit salvage value for the product of
150/100/50, respectively. We again generated 10 random
problem instances for each test case, and Table 4 summarizes
the results.

As for [AON], we cannot obtain an optimal solution to
[AON-PWL] via CPLEX when the number of orders is
greater than 15. Using our cutting plane algorithm, we were
able to solve problems with almost three times as many orders
very efficiently. Note that Table 4 reports the total number of
cuts generated by the algorithm. That is, because 5 cuts are
generated per iteration, the number of iterations is in fact only
20% of the number of cuts generated.

4.4. Results: Multiperiod Model - [AON-MP]

Our final set of computational results summarizes the
effectiveness of our solution approach to the multiperiod
problem [AON-MP]. We used the following parameters to
again generate 10 test instances for each problem size. The
unit revenues and fixed order costs are generated as for
[AON]. Furthermore, in each period, the unit procurement
costs were generated from a U[190,210] distribution whereas
the holding cost and backorder costs were drawn from a
U[3,7] and U[10,15] distribution, respectively. In the final
period, the overage cost was set to 500 and the salvage value
to 100. Table 5 presents the results obtained with both CPLEX
and our cutting plane algorithm.

For [AON-MP], we again need to restrict ourselves to very
small problem instances to obtain solutions via CPLEX. In
fact, we were able to solve problems with a total of approx-
imately N = 12 orders in all periods combined, as com-
pared with instances of [AON] and [AON-PWL] with up to
n = 15 orders. Problem sizes with 15 or more orders could

Table 4. Algorithm performance for [AON-PWL].

Our algorithm

CPLEX P
n 1P (sec) (sec) No. of cuts  No. of orders selected
5 0.02 0.08 25 3
10 1.96 0.27 50 5
15 1794.00 0.38 70 7
20 n/a 0.68 95 11
30 n/a 21.90 320 15
40 n/a 149.40 430 21
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Table 5. Algorithm performance for [AON-MP].

Our algorithm

1P
CPLEX No. of orders
n T 1P (sec) (sec) No. of cuts selected
2 4 0.10 0.11 28 4
2 5 2.46 0.20 45 5
2 6 29.10 0.30 66 7
3 3 0.24 0.10 21 5
3 4 13.42 0.21 44 8
3 5 n/a 0.28 60 9
3 6 n/a 0.58 102 10
4 3 11.82 0.16 30 7
4 4 n/a 0.34 56 9
4 5 n/a 0.32 65 12
6 4 n/a 0.59 76 14
6 5 n/a 1.1 95 18
6 6 n/a 12.4 144 21
8 4 n/a 1.7 76 19
8 5 n/a 17.1 160 22
8 6 n/a 752.0 108 29
10 4 n/a 34.5 108 23
10 5 n/a 2694.0 150 30

not be solved due to insufficient memory. Our cutting plane
algorithm, however, shows about the same performance on
[AON-MP] as on [AON] and [AON-PWL] as a function of
the total number of orders. We also point out that the actual
number of iterations is No. of cuts/T, because our multiperiod
algorithm adds T cuts in each iteration.

5. CONCLUDING REMARKS

In this article, we have introduced a new approach to order
management problems in which each of a collection of poten-
tial orders will either materialize at a known level or not mate-
rialize at all. We presented several models, including a single
period model with linear and nonlinear overage revenues and
underage cost functions as well as a multiperiod model. For
all models we developed a tailored cutting plane algorithm
based on the L-shaped method for two-stage stochastic pro-
gramming. Extensive numerical experiments show that our
algorithm significantly outperforms the CPLEX MIP solver
in the sense that we are able to solve much larger instances
of the problem to optimality in a reasonable amount of time.
In particular, we are able to efficiently solve problems that
contain three times the number of potential orders than the
maximum that can be handled by CPLEX. We also propose a
heuristic approach that provides average gaps of less than 1%
for the largest problems that can be solved exactly. Because
our experiments show that the error gap decreases as the prob-
lem size grows, the heuristic approach can be expected to
work well for large problem instances.

Naval Research Logistics DOI 10.1002/nav

A natural extension of the research presented in this article
would be to develop a heuristic approach to solving problems
with more orders (for the single-period problems) and more
orders and periods (for the multiperiod problem). We could
also extend the algorithm to the case of multiple level orders,
where any order comes in at one of several pre-defined levels
or not at all.

A major focus of our future research will be to enhance
the models by considering the effect that targeted pricing and
advertising has on order sizes and their likelihood of occur-
rence. In particular, we plan to investigate how pricing and
advertising can help shape the demand distribution that the
supplier will face. We will in this context also consider the
effect of limited capacities, which in a manufacturing set-
ting will likely be fixed and cannot be influenced in the short
term, since this may limit the supplier’s ability to increase
profits through demand shaping. Moreover, opportunities for
marketing may be limited by the amount of funds available
for this purpose. An additional consideration in a multiperiod
setting is the possibility that an order could materialize in a
different time period than the one originally prescribed.

APPENDIX

Extension to Piecewise-Linear Cost Functions

In this section, we will examine how [AON] can be generalized to allow
for more general, in particular piecewise-linear convex, shortage and over-
age cost functions (where, for convenience, we will in this section refer to
the salvage revenue functions as (negative) overage cost functions). In other
words, as the shortage or overage increases, the corresponding marginal unit
cost is non-decreasing, representing the fact that the unit salvage value may
decrease as the quantity salvaged increases and, similarly, the unit expediting
cost may increase as the quantity expedited increases.

Problem Formulation

Let the marginal shortage costs and salvage values be given by e;
G=1L....+Dandv; (j =1,...,J°+ 1) where vjo ] < -+ <
V] <c <ey <--- < eysyy. For convenience, we will also let eg = vg = 0.
Finally, denote the corresponding breakpoints by s; (j = 1,...,J%) and
0j (j = 1,...,J9), respectively, where 0 = 59 < 51 < --- < sys and
0=o09 <o0; < -+ < oyo. (Note that if J° = J° = 0 then we obtain
[AON].) For convenience, we will let J = 14+ J? + J5.

The total expected profit can now be written as:

n

G(Q,y) =) (ridipi = S))yi — cQ

i=1

Q Jo n
+ Z P, Z(Uj+[ — v;) max (0, 0 - Zd,-y,— - 0]-)
j=0 i=1

w=1

Q JS n
=Y P,) (ejs1 —ej)max (0, D diyi— Q- Sj)
0 i=1

o=l j=

=) (i —vDdipi — S)yi — (c —v)Q

i=l1
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Q n
—(e1 —v1) ) P, max (o,Zdiyi - Q)
w=1 i=1
Je Q n
=D _(j = vjs1) ) Pymax (0, Q- diyi— o,-)
i=1 w=1 i=1
JS Q n
_ Z(ej+1 —ej) ZPwmax (O,Zd,-y,- -0 Sj) .
i=1 w=1 i=1

We refer to the resulting optimization problem as the newsvendor problem
with all-or-nothing demand and piecewise linear costs [AON-PWL]. As for
[AON], we can formulate [AON-PWL] as a MIP:

n Q
maximize Y ((r; — vi)d; pi — Si)yi — (¢ —v1)Q — (e1 = v1) Y _ Polte

i=1 w=1
7o Q 7 Q
[ s
- Z(U_/ —Vjt+1) Z Pouf, — Z(?/H —ej) Z Pous,
Jj=1 w=1 Jj=1 w=1
Uy = Y diyi —

subject to 0 w=1,...,Q
i€l,
u?’wZQ_Zdiyi_Oj j=L...,J%0=1,...,Q
iely,
W=y diyi—Q-s; j=1....]0=1...Q
i€ly

w>0 w=1,...,Q
]w_O j=1L...,J%0=1,...,Q
W,>0 j=1,.. J50=1,...,9

Ujw =
0=>0
yie{0,1} i=1,...,n.

The dimensionality of this MIP increases linearly in the number of segments
in the cost functions. It thus suffers from the same drawbacks as the MIP for
[AON]. In the remainder of this section, we will generalize the cutting plane
algorithm to [AON-PWL].

A Cutting Plane Algorithm Under Piecewise-Linear Costs

We follow the approach used for [AON] and introduce three (sets of)
decision variables, each corresponding to one of the expected values in
the objective function of [AON-PWL]: 6, 9;’ (G =1,...,J9, and 6%
(j = 1,...,J%).Using these decision variables we reformulate [AON-PWL]
as

n
maximize Z((ri —v))d;pi — Si)yi —
i=1

(c—v)Q — (e1 —v1)O

Js

Jo
- Z(Uj —v+1)07 — Z(€j+1 —e)b]
=1

j=1

Q
subjectto 6 > Y Pymax (0, diy; — Q

w=1 iely,

Q
09> Pomax|0,0—) divi—o; | j=1...,J°

w=1 iely,

8°>ZPmax 0.Y diyi—Q-s;| j=1...I°

iely,
0>0
e{0,1} i=1,...,n.

Comparing this formulation to the analogous formulation of [AON], we
obtain one additional variable and constraint for each breakpoint in the over-
age or underage cost function. Each of these constraints can again be replaced
by 29 linear constraints, parameterized by binary vectors §', 8?, and 8‘;:

Pw (Zdiyisi") - Q) 8 shefo,1)®
- Q
(Z PyES), ) i — (Z Pwaij) 0 sefo,)® (4
w=1
Pw (Q - divig’ -
i=1
n Q
P89 ) CEENEDY (Z Pws;“ayw> diyi

i=1 \w=1

-
<R
%

Il I\/~
HMK) WM ||M:o

)8711) 876{0’1}9;]’:1,...,]0

%L

8 e, j=1,..,J° 15)

Q
03 ZPw<Zd,y, —Q—s_,~>ajiw 8 ef0.)%j=1,....J°

w=1

Q
(Z PLEPSS ) diyi — (Z Pm8§w> (Q+s))
1 \w=1 w=1

8 el % j=1,...,J% (16)

n

i=

Analogous to [AON], we immediately see that the most restrictive constraints
with respect to a given solution (Q, y) in (14)—(16) are those for which

1 if Y., diyi>Q
1 _ iel, %iJi —
b= {0 otherwise o=1....Q an
1 if Yo diyi<Q—oj .
C— i€ly, ©11 4 ..., j=1,...,J° (1
8o {0 otherwise reeei ) 7 a8

5 ={1 I Dier, divi > OFsi )y Qi1 00 (19)

0 otherwise

From these it is easy to see that the coefficients in constraint (14) can be
identified by the Forward and Backward Algorithms described in Section
2.3. Similarly, the coefficients in constraints (16) can be identified by the
same algorithms with an appropriate modification of Q. Now note that we
can rewrite constraints (15) as follows:

67 = (ZP —iPwl—‘so )(Q—o»—Z(ZPwS”

=1 i=1

ﬂ)_
*prém 1*30 )) i Vi 5_';6{0,1}9;1':1,...,]"
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= (1 - iPw -(1 —aﬁw)> (Q—o0j)

w=1

n Q
-3 (p,- = PE(1- aj;w)> diyi 89 €{0.1)%j=1,....J°
w=1

i=1
(20)
or, equivalently, as

Q n Q
09 > (1 -3 PwS,”-w) (B DEDY (m -3 Pws,-wé;'-w> diyi
w=1 i=1 w=1
§7€{0,)%j=1,....,0° ()

where the dummy indicator variables S;’ in (21) are precisely the comple-
ments of the indicator variables 8;? in (20). A most restrictive constraint is
now the one given by

o Loif 3oy, divi > Q —oj _
8jo = {O otherv&elise Pe=1..
where we have used the observation following Eq. (4) to replace the weak
inequality by a strict inequality. The coefficients in constraint (21) can thus
also be identified by the Forward and Backward Algorithms with an appro-
priate modification of Q and post-processing. We thus perform J binary tree
searches to implicitly identify, in each iteration of the cutting plane method,
all scenarios that determine a particular constraint.
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