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Abstract 
 
The fate of inputs of organic matter from individual watersheds to the Great Lakes is 

poorly known. The goal of this study was to track the delivery of organic matter from the 

Muskegon River Estuary System (MRES) into nearshore Lake Michigan through a stable 

isotope analysis of water, sediment, and sources of primary production. The MRES is 

comprised of the lowest 90 km of the Muskegon River watershed from Croton Dam and 

includes Muskegon Lake, a drowned river mouth lake. Nutrients, total suspended 

material (TSM) and particular organic matter (POM) were measured from water samples 

collected monthly from May through October at five stations from Croton Dam to 

nearshore Lake Michigan, and carbon and nitrogen stable isotope signatures were 

analyzed. Sediments were collected at several sites in Muskegon Lake and nearshore 

Lake Michigan in May and September, and their grain size compositions and isotopic 

signatures were characterized. Values of TSM were significantly higher at the mouth of 

the Muskegon River (average 9.14 ± 1.67 mg/L) than in nearshore Lake Michigan 

(average 1.40 ± 0.17 mg/L), suggesting that much of the suspended material from 

Muskegon River was retained within Muskegon Lake. Isotopic signatures of POM 

collected in Muskegon Lake were depleted in δ13C (-30.8‰) relative to the isotope 

signatures of POM from Lake Michigan (-26.2 ‰) or the mouth of the Muskegon River 

(-28.1 ‰), suggesting an additional source of depleted carbon was present in Muskegon 

Lake, likely biogenic methane. Sediments in Muskegon Lake were characterized by fine 

grains (< 63μm) with depleted δ13C signatures (-28.9 ‰) compared to Lake Michigan 

sediments which were characterized by larger grains (>210 μm) with enriched δ13C 

signatures (-24.1 ‰). Sediment δ15N signatures increased on a strong east-to-west 
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gradient within Muskegon Lake itself, indicating significant microbial processing of 

nutrients occurring within the lake. Additionally, the west end of Muskegon Lake was 

characterized by sediment with higher levels of organic carbon and lower C/N ratios than 

measured either in Lake Michigan or Muskegon River, indicating an area of extensive 

aquatic production. The extent of nutrient uptake occurring in Muskegon Lake may have 

completely altered the chemical and isotopic characterization of organic matter flowing 

into the lake from Muskegon River. As such, there was no traceable impact of the carbon 

and nitrogen content of organic matter from Muskegon River to nearshore Lake 

Michigan. 
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Introduction 
 
Organic matter (OM) is a mix of plant, animal, and microbial material in a dissolved or 

particulate state, and in various forms of decomposition, that serves as the base of food 

webs in aquatic ecosystems. OM in aquatic ecosystems can be derived from terrestrial 

(autochthonous) or aquatic (allocthonous) production. Tracing the delivery and fate of 

OM provides a critical means of understanding the linkage between terrestrial and aquatic 

systems. Since aquatic ecosystems are classified as “open” systems, they must have a 

continuous supply of new organic matter to satisfy the metabolic needs of that system 

(Wetzel 2001). As such, some scientists have argued that understanding and mapping the 

fate of organic matter in aquatic food webs is as critical as measuring biodiversity when 

evaluating the overall health of that system (Bunn et al. 1999). Many studies have 

examined the fate of riverine organic matter in estuaries and oceans (Eadie et al. 1984, 

Peterson and Howarth 1987, Canuel et al. 1995, Middleburg and Nieuwenhuize 1998, 

Alliot et al. 2003). However, virtually no studies have looked at the fate of riverine 

organic material from individual watersheds in the nearshore zone of the Laurentian 

Great Lakes.  

 

Sources of organic matter can be differentiated using elemental and/or isotopic analyses, 

provided there has been little degradation of the source material (Middleburg and 

Nieuwenhuize 1998).  Stable isotopes are increasingly being used to measure energy 

sources and transfers within aquatic food webs. This methodology measures natural ratios 

of heavy to light isotopes of a given element, expressed as δ values in units “per mil” or 
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‰. Increasing (enriched) δ values denote a greater presence of the heavier isotope. 

Multiple isotopes with different properties are often used to study energy sources and 

trophic levels of an ecosystem (Peterson and Fry 1987). Depending on the element, the 

isotope may change (fractionate) regularly with increasing trophic levels. Carbon 

isotopes are measured as the ratio of 13C to 12C, and have an average fractionation of 0 to 

1‰ per trophic level (DeNiro and Epstein 1978). Given this small rate of fractionation, 

carbon is used as a means of tracing original energy sources in an ecosystem when there 

are at least two different sources of organic carbon with distinct isotopic signatures, such 

as terrestrial plants and phytoplankton (Peterson and Howarth 1987, Hamilton et al. 

1992). In addition to tracing energy origins, carbon isotopes have also been successfully 

used to trace primary productivity and the effect of the phosphorus abatement program in 

the Great Lakes (Schelske and Hodell 1991, Hodell and Schelske 1998). 

 

 Nitrogen isotopes are measured as the ratio of 15N to 14N, and are assumed to fractionate 

regularly with increasing trophic position, with an average fractionation of 3.4‰ per 

trophic level (Minagawa and Wada 1984). However, this assumed fractionation can vary 

widely depending on nitrogen availability in food sources (Adams and Sterner 2000). 

Nitrogen isotopes are primarily used to assign trophic position to food web biota, 

although they are generally more difficult to interpret than carbon isotopes because the 

nitrogen cycle is more complicated than the carbon cycle (Bernasconi et al. 1997). 

Nitrogen isotopes are useful in identifying anthropogenic influences, which are typically 

enriched in 15N (Cabana and Rasmussen 1996, Harvey and Kitchell 2000). In addition, 

previous research has shown that the process of denitrification results in nitrate that is 
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highly enriched in 15N, and high levels of denitrification often occur in oxygen-depleted 

waters. This enriched 15N gets incorporated into the food web, leading to higher δ15N 

values for all food web components (Michener and Schell 1994). Increased δ15N values 

in organic matter can reflect extensive degradation of the source material (Owens and 

Law 1989). 

 

The Muskegon River is one of Lake Michigan’s largest tributaries, and serves as a critical 

spawning and nursery area for many Great Lakes fishery species including walleye 

(Sander vitreus), Chinook salmon (Oncorhynchus tshawytscha), and steelhead 

(Oncorhynchus mykiss). This watershed also has recently been highlighted as an area 

where urban land usage is projected to significantly increase in the coming decades (Tang 

et al. 2005). The Muskegon River estuary system (MRES) includes the lower 90 km of 

the Muskegon River and the drowned river mouth, Muskegon Lake. The general purpose 

of this study was to trace the ecological “footprint” or signal of the MRES on nearshore 

Lake Michigan in an attempt to quantify contributions of riverine nutrients to nearshore 

Lake Michigan. The study sought to trace the delivery of nutrients (C, N, and P) from 

terrestrial/riverine habitats to nearshore Lake Michigan, and to use carbon and nitrogen 

stable isotopes as a means of characterizing MRES organic matter to determine the 

delivery and impact of this material on the coastal ecology of nearshore Lake Michigan. 

These objectives were designed to test two hypotheses. First, riverine inputs of nutrients 

and carbon to Lake Michigan had strong and measurable effects on the coastal ecology of 

nearshore Lake Michigan. Second, that carbon and nitrogen stable isotopes could be 
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successfully used to quantify these riverine nutrient contributions to nearshore Lake 

Michigan.   

Methods 
Site Description 
 
The Muskegon River watershed (Figure 1) has the second largest catchment in Michigan 

with an area of ~5,900 km2, and encompasses a 370 km-long river that terminates in 

Muskegon Lake.  Mean annual discharge of the Muskegon River measured near the town 

of Newaygo is 55.8 cms, with average gradient of 0.49 m/km (O’Neal 1997). River 

habitat is varied, and warm, cool, and coldwater fish species are found throughout the 

mainstem of the Muskegon River (O’Neal 1997). The watershed predominately consists 

of forested (53.2%) and agricultural lands (23.0 %), with only a small percentage of 

urban land cover (4.2%). However, the Muskegon watershed is predicted to become 

significantly more urbanized, with the proportion of urbanized land potentially increasing 

to 11.5% by the year 2040 (Tang et al. 2005).  

 

The study focused on the MRES. Riverine habitat in the upper portion of the study area 

(Croton Dam to Newaygo) is characterized by moderate-to-high water velocity, hard 

bottom substrates, and moderate river gradients (O’Neal 1997). This is one of the prime 

recreational fishing areas in Michigan, and supports the largest population of natural 

reproducing Chinook salmon in Michigan (Carl 1980). River habitats change 

dramatically downstream of Newaygo, with water velocity decreasing and bottom 

substrates becoming softer. The Muskegon River terminates in Muskegon Lake at one of 

the largest (40 km2) wetlands in the Great Lakes region (O’Neal, 1997). 
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Muskegon Lake is a drowned river-mouth lake, with a mean depth of 7.1 meters,  a 

maximum depth of 21 meters, and an estimated volume of 119 million m3 given a low 

water datum mark of 173.35 m above sea level for Lake Michigan (Evans 1992). The 

mean hydraulic residence time in Muskegon Lake is 23 days (Carter 2002). Residence 

time can vary seasonally over a range of fourteen to seventy days, depending on 

discharge from Muskegon River (Brian Eadie, NOAA- Great Lakes Environmental 

Research Laboratory, personal communication). Muskegon Lake has been heavily 

impacted by industrial and human waste since settlement, prompting the Environmental 

Protection Agency to list it as an area of concern (AOC) in 1985 (US EPA 2007). 

Recently, water quality in Muskegon Lake has improved and the lake may be removed 

from the AOC listing within the next decade (Alexander 2005).  

 

Lake Michigan is the third largest of the Laurentian Great Lakes, with a surface area of 

57,800 km2, a total volume of 4,920 km3, and a hydraulic residence time of 62 years 

(Eadie 1997). The lake is divided into a northern and southern basin. Lake Michigan is 

oligotrophic, and productivity in the southern basin is higher than in the northern basin 

due to differences in geology and consequent nutrient supply from the respective 

drainage basins (Mackin et al. 1980, Meyers and Eadie 1993). Circulation in Lake 

Michigan is almost entirely wind-driven and consequently is extremely episodic (Kerfoot 

et al. 2004). Northerly winds in winter result in the formation of two counter-rotating 

gyres: a clockwise gyre in the northern portion of the lake, and a counter-clockwise gyre 

in the southern portion of the lake (Beletsky and Schwab 2001). Turbidity plumes have 
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been documented along the southern coast of the lake during high wind events in late 

winter and spring, re-suspending sediments for up to six weeks at a time (Schwab et al. 

2000). Summer circulation patterns in Lake Michigan are also characterized by formation 

of a counter-clockwise gyre which can encompass the entire southern basin of the lake 

(Beletsky et al. 2006). 

 

Sampling and Analysis 
 
Measurements of average daily flow in Muskegon River were recorded by a USGS 

stream gage beneath Croton Dam. Whole water samples were collected for nutrient and 

particulate organic matter analysis monthly from March through October 2003 at five 

fixed stations (Figure 1). Two stations were located in the Muskegon River; at Pine Street 

boat launch near Croton Dam and in the North Channel at the Highway 120 Bridge 

(where the Muskegon River flows into Muskegon Lake). One station was located in 

Muskegon Lake, another in the shipping channel connecting Muskegon Lake to Lake 

Michigan, and the final sampling station was in the nearshore zone of Lake Michigan, 0.5 

km directly west of the shipping channel. The Muskegon Lake, Lake Michigan, and 

North Channel stations were sampled using Niskin bottles to collect water samples from 

a depth of three meters. Samples were then transferred to acid-washed 4 L polyethylene 

bottles. At the Pine Street station (near Croton Dam), the sample was obtained by wading 

approximately 7 m into the river channel and collecting water directly in the polyethylene 

bottle. All samples were stored on ice until they could be processed within 24 hours of 

collection.  
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Water samples were processed by filtering whole water samples to prepare the following 

components for measurement: dissolved organic carbon (DOC), particulate organic 

matter (POM), total suspended material (TSM), total dissolved phosphorus (TDP), and 

nitrate (NO3). Total phosphorous (TP) concentrations were obtained from un-filtered 

water samples. DOC samples were obtained by filtering 50 ml aliquots through pre-

combusted 25 mm diameter Whatman GF/F filters and collecting the filtrate into Kimble 

amber glass vials (Fisher Scientific, Chicago, IL). The vials were then frozen and sent to 

G.G. Hatch Isotope Laboratories (Ottawa, Ontario, Canada) for analysis of DOC 

concentration (mg/L) and δ13C signatures. POM samples were obtained by filtering 300 

ml of whole water through pre-combusted 25 mm diameter Whatman GF/F filters (Fisher 

Scientific, Chicago, IL). POM filters were acidified with 2 N HCL and dried in an oven 

overnight at 60 ºC. The filters were then placed in Vycor tubes which had been pre-

combusted at 900 ºC. Pre-combusted Cu powder and CuO wire were added to these tubes 

which were then evacuated and flame sealed. The samples were combusted at 650 ºC for 

10 hours. Gases were purified by cryogenic vacuum distillation; H2O was frozen into a 

dry-ice 2-propanol trap (~80 ºC), CO2 was frozen into a sample tube and then immersed 

in liquid nitrogen and frozen into a sample bulb containing silica gel at liquid nitrogen 

temperature (approximately -195 °C). Stable isotopes of carbon and nitrogen were 

analyzed using a VG PRISM mass spectrometer. TSM samples were obtained by filtering 

500-1000 ml of water (depending on turbidity of the sample) onto pre-weighed 47 mm 

diameter Whatman GF/F filters (Fisher Scientific, Chicago, IL). Filters were then stored 

frozen until they could be dried and weighed (0.1 mg) to determine TSM concentration 

(mg/L). TP samples were obtained by pouring 50 ml of whole water into acid-rinsed 
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Pyrex tubes and refrigerating the samples. TDP samples were collected by filtering a 20 

ml aliquot of whole water through a 0.2 µm nylon syringe filter into an acid-rinsed Pyrex 

tube and refrigerating the sample. TP and TDP samples were digested in an autoclave 

after addition of potassium persulfate (5 % final concentration) and then measured for 

soluble phosphorus (Menzel and Corwin 1965). Nitrate concentrations (NO3 +NO2) were 

determined by the cadmium reduction method based on an azo dye reaction. Nutrient 

concentrations were measured using standard automatic colorimetric procedures on an 

Auto Analyzer II (Davis and Simmons 1979).  

 

In May and August of 2003, samples of dominant aquatic, emergent, and terrestrial plants 

from Muskegon River were collected to characterize sources of organic carbon inputs 

into Muskegon Lake and nearshore Lake Michigan. Samples were collected at every boat 

access point in the lower Muskegon River between Croton Dam and Muskegon Lake. 

When possible, three types of vegetation (terrestrial, aquatic, emergent) were collected at 

each location. Common plants collected included: Salix nigra (black willow), Acer 

saccharum (sugar maple), Typha latifolia (cattail), and Elodea canadensis (waterweed). 

All plants were stored in plastic bags on ice, transported to the lab, and rinsed with 

distilled deionized water. Plants were identified to the lowest possible taxonomic level 

and freeze dried. Dried samples were then ground with a mortar and pestle and weighed 

into aluminum boats for isotope analysis by species.  

 

A ponar with a sampling area of 0.047 m2 was used to sample sediments from five 

stations within Muskegon River and 25 stations along a transect in Muskegon Lake and 
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Lake Michigan in May 2003. In September 2003, 38 stations were sampled along a 

transect in Muskegon Lake and the nearshore zone of Lake Michigan with the same 

ponar. Ponar samples were carefully placed in a tub and emptied slowly to preserve the 

top layer of the sample. When possible, this top layer (encompassing several centimeters) 

was scraped from the ponar sample and placed in a plastic bag to isolate the most recently 

deposited materials. Samples were transported to the lab on ice where they were passed 

through a 500 µm screen to remove invertebrates and large debris. Samples were 

transferred into pre-weighed acetone rinsed containers and allowed to settle in a 

refrigerator for 24 hours, before the overlying water was siphoned off. Samples were then 

freeze-dried and sieved once again to isolate three size fractions: fine material (<63 µm), 

a mid-size fraction (63-210 µm), and a large size fraction (>210 µm). All visible particles 

of shells were removed and samples were ground into homogenized powder with a 

mortar and pestle and weighed. Carbonates were removed from sub-samples of 

approximately 0.2 g of sediment by adding several milliliters of 2 N HCL and mixing on 

a shaker table overnight. The sub-samples were then dried for 24 hours at 60ºC and 

ground once again with a mortar and pestle before analysis for organic carbon and 

nitrogen content (Carbo Erba elemental analyzer model 1110). Aliquots of acidified 

sediment were weighed into aluminum tins. Due to problems with lab processing, results 

from most of the May sediment samples collected from Lake Michigan and Muskegon 

Lake could not be used for this analysis.  

 

Sediment contour plots were created using the natural neighbor gridding function of the 

Surfer 8 software for Windows (Golden Software Inc). This function enables the user to 
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generate a 3-dimensional continuous fit to irregularly spaced data. To create the fit, 

Surfer generates a grid of X (latitude), Y (longitude), and Z (data) values. Z values are 

interpolated or extrapolated for each grid node based on the existing data. The natural 

neighbor function uses a weighted average of the neighboring observations to generate 

the Z grid values, but does not extrapolate the Z values beyond the scope of the existing 

data. 

 

Stable isotope analyses for carbon and nitrogen of plants and sediments were conducted 

by the Terrestrial Ecosystems Laboratory at the University of Michigan. Samples were 

converted to CO2 or N2 gas and analyzed for percentage of 15N and 13C atoms on a Delta 

Plus isotope ratio mass spectrometer with a Conflo II interface (Thermo Finnigan, San 

Jose, CA). The coefficient of variation for all replicate isotope samples was 

approximately 0.2 ‰ for δ13C and 0.3 ‰ for δ15N. Stable isotope ratios were calculated 

using the following equation: 

 δX= {(Rsample/ Rstandard)-1} x 103 

Where X is 13C or 15N, and R is the ratio of heavy to light isotope 13C/12C or 15N/14N. The 

standard reference materials used to complete these calculations were PeeDee limestone 

for carbon, or atmospheric nitrogen gas for nitrogen (Peterson and Fry 1987). 

 

All statistical analyses were run on SigmaStat Version 3.1. Differences in water 

chemistry concentrations (DOC, TSM, TP, TDP, POM, and NO3) among sites and 

months were evaluated with two-way ANOVAs. Post-hoc pairwise comparisons of these 

two-way ANOVAs were made with Holm-Sidak tests. Differences among δ13C and δ15N 
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signatures of sources of primary production in Muskegon River were analyzed with one-

way ANOVA when the data were equally distributed, and a non-parametric Kruskal-

Wallis ANOVA on ranks when the data were not normally distributed. Sediment samples 

were either analyzed with t-tests or Mann-Whitney tests on ranks to examine differences 

between transects from Muskegon Lake and Lake Michigan, depending on whether the 

equal variance assumption was met by the data. Results of statistical tests were 

considered significant at the α= 0.05 level.  
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Results 
 
Discharge of the Muskegon River at Croton Dam in 2003 was typical of river discharges 

during the 5-year period from 1999 to 2004. Discharge ranged from a low of 21.2 cms 

recorded on 11 September 2003 to a high of 115.2 cms on 5 November 2003, with a 

spring peak of 90.3 cms occurring on 21 April 2003 (Figure 2). Sediment values varied 

among sites (Two-way ANOVA: F = 16.057, df  = 4, p < 0.001) but not among samples 

dates (Two-way ANOVA: F = 0.810, df = 7, p = 0.586) (Table 1 and Table 2). Average 

TSM at the North Channel site was much larger than that measured in Lake Michigan (p 

< 0.001), with concentrations at the North Channel ranging from 3 to 18 mg/L (Figure 3). 

A dramatic peak in TSM occurred in April at the North Channel when sampling 

corresponded with a spring flood event. TSM at other stations ranged between 1 and 5 

mg/L. 

Water chemistry values varied among sites and sample dates. Total phosphorus (TP) 

concentrations were significantly different among sites and months (Two-way ANOVA: 

Site F = 11.177, df = 4, p < 0.001; Month- F = 3.493, df = 7, p = 0.008) (Figure 4). TP 

was lower in Lake Michigan compared to other sites, and lower during April through 

August than in September and October. However, the highest TP concentration was 

measured at the North Channel site during a spring flood in April. Total dissolved 

phosphorus concentrations also varied significantly among  months and sites. Lowest 

concentrations were found in Lake Michigan compared to other sites, and during April 

through July before increasing in late summer and fall (Two-way ANOVA; Site F = 

7.736, df = 4, p <0.001; Month- F = 3.261, df = 7, p = 0.012) (Figure 5).  
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Concentrations of dissolved organic carbon followed explicit temporal patterns, peaking 

at most sites in June or July and dramatically decreasing in late summer and fall (Figure 

6). A two-way analysis of variance revealed that differences in DOC concentrations were 

statistically significant among sites and months (Two-way ANOVA Site: F = 15.114, df 

= 4, p < 0.001; Month- F = 7.540, df = 7, p < 0.001).  In contrast, δ13C isotopic signatures 

of DOC did not vary significantly among sites or months (Tables 1, 2) (Two-way 

ANOVA Site: F = 2.521, df = 4, p = 0.063; Month- F = 1.511, df = 7, p < 0.204).  

 

Nitrate concentrations exhibited a general decline at all sampling stations throughout the 

sampling period (Figure 7). Though the nitrate data for the September sample date were 

lost, the general declining trend continued on through October.  Differences in nitrate 

concentration were significant by site and month (Two-way ANOVA Site: F = 5.745, df 

= 4, p = 0.002; Month- F = 27.676, df = 6, p < 0.001). From March to June, nitrate 

concentrations were highest at North Channel and lowest in Lake Michigan. However, 

nitrate concentrations in Muskegon Lake and at Croton Dam fell below those measured 

in Lake Michigan beginning in July, and remained lower through the end of the sampling 

period. 

 

Organic matter samples collected at the five water stations were characterized by clear 

site-specific patterns in the isotope data. A two-way ANOVA revealed no statistically 

significant pattern in monthly δ13C signatures of POM (F = 0.697, df = 7, p = 0.674), but 

differences were statistically significant across sites (Two-way ANOVA; F = 13.227, df 

= 4, p < 0.001) (Figure 8). Multiple comparison tests between sites showed that δ13C  
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POM differences were significant between Muskegon Lake and Lake Michigan ( p < 

0.001), and between Muskegon Lake and North Channel and Croton Dam ( p = 0.003), 

but not between Croton and North Channel (p = 0.216). δ15N POM values varied 

significantly among months (Two-way ANOVA; F = 4.744, df = 4, p = 0.001) and sites 

(Two-way ANOVA: F = 13.979, df = 4, p < 0.001) (Figure 9). Multiple comparison tests 

revealed significant differences in the δ15N of POM collected in March through July 

when compared to August (p = 0.001), September (p < 0.001) and October (p < 0.001). 

Site comparisons demonstrated a significant difference between δ15N POM samples from 

Muskegon Lake and Lake Michigan (p < 0.001). However, differences in δ15N of POM 

between Croton Dam and Muskegon Lake (p = 0.078) and Croton and North Channel (p 

= 0.216) were not significant. When δ13C and δ15N POM signatures were averaged by 

site for the entire sampling period, Lake Michigan POM was characterized by depleted 

δ15N and enriched δ13C relative to Muskegon Lake. POM δ13C signatures for Muskegon 

River at Croton Dam and North Channel were intermediate between Muskegon Lake and 

Lake Michigan (Figure 10).  

 

Isotope signatures of POM were compared with those of several different types of 

primary producers collected in the Muskegon River including aquatic plants, emergent 

vegetation, and terrestrial plants. Each plant type was characterized by a distinct isotopic 

signature within the Muskegon River (One-Way ANOVA: δ13C H = 25.791, df = 5, p < 

0.001; δ15N H = 35.294, df = 5, p < 0.001). Generally, terrestrial plants were 

characterized by lower δ13C and δ15N signatures than aquatic vegetation, with POM 

having an intermediate value between the two types of vegetation. A single sample of 
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periphyton collected in the upper reaches of the lower Muskegon River had a high δ15N 

and a low δ13C signature (Table 3, Figure 11).  

 
Surficial sediment samples from Muskegon River, Muskegon Lake, and Lake Michigan 

were analyzed to determine the fate of organic matter coming from Muskegon River. Size 

fractionation of surficial sediment samples showed that Muskegon Lake had a high 

proportion of fine (<63 μm) sediment, with most of the samples consisting of more than 

60% fine grain (Figure 12). In contrast, surface sediments in nearshore Lake Michigan 

were primarily comprised of mid-size grains (63-210 μm), which were not prevalent in 

Muskegon Lake (Figure 13). Localized areas of coarse (>210 µm) sediment were present 

on shelf areas in both nearshore Lake Michigan and Muskegon Lake (Figure 14).  

 

Stable isotope analysis of the fine-grain sediment revealed extensive differences in the 

isotopic carbon signature of surface sediments collected from Muskegon Lake and 

nearshore Lake Michigan. Fine sediment δ13C signatures in Muskegon Lake were 

significantly lighter (-29 to -30‰) than those found in nearshore Lake Michigan (-23 to -

26‰) (Mann-Whitney test on ranks, T = 472.0, n = 16, 21, p < 0.001) (Figure 15). 

Differences in δ15N signatures between fine sediments from Muskegon Lake and Lake 

Michigan were not statistically significant (p = 0.427). However, sediment δ15N values in 

fine sediments clearly increased along a gradient from east to west within Muskegon 

Lake (Figure 16). The eastern end of Muskegon Lake was characterized by significantly 

lighter δ15N signatures (around 4‰) than the western end (maximum δ15N values of 6‰), 
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reflecting the input of sediment from Muskegon River (t-test, t = -6.586, df  = 19, p < 

0.001).  

 

Levels of organic carbon in surficial sediments (Figure 17) were significantly higher in 

Muskegon Lake compared to nearshore Lake Michigan stations (t-test, t = -12.923, df = 

34, p < 0.001). C/N ratios of fine grained sediment in Lake Michigan were considerably 

lower than those measured in Muskegon Lake (Mann-Whitney test on ranks, T = 159.00, 

n = 16, 20, p < 0.001), although there were localized areas where low C/N ratios occurred 

in the surficial sediments of Muskegon Lake (Figure 18).  
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Discussion 
 
The purpose of this study was to track the flow of nutrients and particulate organic matter 

(POM) from the Muskegon River Estuary System (MRES) into the nearshore zone of 

Lake Michigan. Peaks in TSM and TP concentrations at the mouth of the Muskegon 

River were associated with peaks in river discharge, but were not associated with 

corresponding peaks in either Muskegon Lake or Lake Michigan. Stable isotope ratios of 

POM samples collected from Muskegon River, Muskegon Lake, and Lake Michigan 

were all unique to these areas. POM collected at the mouth of the Muskegon River 

appeared to consist of a mixture of terrestrial and aquatic material, lacking in significant 

seasonal variation. In contrast, POM samples collected in Lake Michigan were defined by 

an enriched δ13C signature relative to the MRES, which became more enriched in the 

summer during periods of high primary productivity. Muskegon Lake appears to be a 

sink for materials coming from Muskegon River, and as such, the POM isotope signature 

was highly depleted in δ13C relative to either Muskegon River or Lake Michigan. This 

depleted POM δ13C signature likely reflected the amount of nutrient processing occurring 

within the lake, and the resulting production of biogenic methane. No evidence of 

terrestrial organic matter was detected in nearshore Lake Michigan, indicating that 

organic matter originating from the MRES either doesn’t reach nearshore Lake Michigan 

in significant quantities, or if it does, is quickly advected away. 

 

TSM concentrations in nearshore Lake Michigan were consistently one tenth of those 

measured at the North Channel of the Muskegon River, indicating that either the vast 

majority of riverine material was either retained in Muskegon Lake or was advected out 
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of nearshore Lake Michigan. TSM concentrations at Croton Dam remained relatively 

constant, while TSM concentrations near the river mouth fluctuated in synchrony with 

peaks in river discharge, but these peaks were not evident in either Muskegon Lake or 

Lake Michigan. An examination of Muskegon River flow data measured between 1999 

and 2004 indicates discharge during 2003 was typical until November when river flow 

dramatically increased after sampling had already ended. If sampling occurred in a year 

characterized by an atypical discharge pattern (either increased or decreased river 

discharge), there may have been corresponding changes in the amount of suspended 

material or total phosphorous measured at the mouth of the Muskegon River, but it is 

unlikely these changes would have been evident in Muskegon Lake or Lake Michigan. 

Although this study may have been compromised by the lack of replicate samples for 

water chemistry within a location and a month, trends were realistic and variances in 

water chemistry parameters averaged over the course of the study were low. Future 

sampling efforts should collect and analyze replicate water samples in order to ensure 

statistical power/significance.  

 

One of the primary goals of this study was to demonstrate that stable isotopes could be 

effectively used to characterize organic matter originating from the MRES. Due to 

inherent difficulties with separating individual species of phytoplankton and 

characterizing their isotopic signatures, bulk measurements of POM are often used as a 

surrogate for phytoplankton in food web studies (Fry and Sherr 1984, del Giorgio and 

France 1996). This assumption may be problematic, particularly in riverine food webs 

where particulate matter can be a mixture of materials from autochthonous (i.e. 
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phytoplankton and periphyton) and allocthonous (i.e. decomposing tree leaves) sources. 

Indeed, isotopic analysis of several types of primary producers collected in lower 

Muskegon River demonstrated that POM collected at the mouth of the river had an 

isotopic signature intermediate to those of terrestrial and aquatic plants; indicating that 

terrestrial and aquatic plants were source materials for riverine POM. Unfortunately, one 

potential source of error in this study was low sample size of some types of riverine 

primary producers. For example, only one sample of stream periphyton was analyzed for 

the upper reaches of the lower Muskegon River, and no phytoplankton samples were 

collected and analyzed for isotopes. Regardless, it is clear both aquatic and terrestrial 

sources are contributing to the isotopic composition of Muskegon River organic matter. 

Further, this mixture of source materials may also explain the lack of seasonal variation 

in POM isotopic signatures at the river mouth. Future efforts should devote more 

attention to identifying the relative composition of primary producers in riverine bulk 

POM. For example, stream periphyton may contribute more significantly to the 

composition of POM near Croton Dam than in lower reaches of the river, as the reaches 

beneath the Dam are characterized by clear, fast-flowing water and a hard bottom. 

 

In contrast to Muskegon River, POM from Lake Michigan was characterized by an 

enriched δ13C signature that fluctuated seasonally, and a depleted δ15N signature relative 

to the MRES. Over the entire sampling period, the average  δ13C  ratio for Lake Michigan 

POM was -26.2‰, which was enriched compared to either Muskegon River (-28.1‰) or 

Muskegon Lake (-30.8‰). Previous isotopic studies of Great Lakes organic matter have 

demonstrated that algae and other primary producers preferentially use the lighter isotope 
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(12C) during photosynthesis (Schelske and Hodell 1991). During periods of increased 

primary productivity, the 12C in the dissolved inorganic carbon pool may be used up 

faster than it can be replaced, leaving only the 13C to be used for photosynthesis 

(Schelske and Hodell 1991, Leggett et al. 1999). As a result, δ13C signatures of 

phytoplankton become enriched during periods of high primary productivity; as seen in 

Lake Michigan POM samples collected for this study, which were enriched in δ13C 

during spring and summer. 

 

Interestingly, POM signatures measured at the Muskegon Lake station were unique, 

being depleted in δ13C and enriched in δ15N relative to either Muskegon River or Lake 

Michigan. TSM concentrations measured during this study indicated that large amounts 

of material coming from Muskegon River may be settling within Muskegon Lake. The 

fact that POM δ15N was enriched in Muskegon Lake relative to Muskegon River may 

reflect the high amount of material being processed within the lake. In systems where 

high amounts of organic matter are present, microbial processing of this material can lead 

to a shortage of oxygen in sediments and overlying waters (Kiyashko et al. 2004). Low 

oxygen (hypoxic) waters are defined as having oxygen concentrations of less than 3 mg/L 

of dissolved oxygen (ESA, 2008). Dissolved oxygen concentrations as low as 2 mg/L 

were recorded in the bottom waters of Muskegon Lake during a monitoring period of 

2002 thru 2007 (Bopiah Biddanda, Annis Water Resources Institute, personal 

communication). In the absence of sufficient oxygen, methanogenic bacteria process 

organic material, producing methane that is isotopically “light” (-60 to -80‰ δ13C) 

(Kiyashko et al. 2004). This δ13C depleted methane is then oxidized to CO2 in the water 
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column, and eventually makes its way into the food web via primary productivity (Wetzel 

2001). Biogenic methane has been shown to be a critical source of carbon as well as a 

link between benthic and pelagic food webs in aquatic systems (Bastviken et al. 2003). 

Kiyahsko et al. (2004) reported depleted carbon isotope signatures in chironomids 

collected in Lake Biwa, Japan, where oxygen concentrations in the hypolimnion are ~3 

mg/L during stratification.  Through an analysis of the fatty acid compositions of the 

chironomids, these authors were able to determine that a large part of their diets consisted 

methanotrophic bacteria (Kiyashko et al. 2004). Future work should attempt to examine 

the extent of methane production in Muskegon Lake sediments and quantify the impact 

that this source of carbon has on food web.  

 

While these data seemed to indicate the absence of MRES organic matter in Lake 

Michigan, another explanation for the lack of a watershed signal in nearshore Lake 

Michigan may be that materials originating in the Muskegon watershed are advected out 

of the nearshore zone of Lake Michigan into deeper water. Previous studies have 

demonstrated the delivery and use of land-derived organic materials in Lake Michigan. In 

a study of samples collected from a series of sediment traps deployed off the mouth of the 

Grand River in Lake Michigan, Meyers et al. (1984) used C/N ratios, lipids, and various 

other biomarkers to demonstrate the presence of a plume of materials of terrestrial origin 

off the mouth of the Grand River (Meyers et al. 1984). Using the same series of sediment 

traps, Eadie et al. (1984) demonstrated that surficial sediment organic carbon 

concentrations increased along with an increase in percentage of fine sediment with 

distance from shore (up to 35 km offshore), and proposed that terrestrial materials were 
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transported from near-bottom downslope to offshore. Meyers and Eadie (1993) found that 

organic matter δ13C values increased at depth in sediment trap samples collected from a 

trap deployed at a depth of 145 meters. They theorized that lateral transport of organic 

matter from coastal regions with higher levels of productivity was the source of the 

enriched δ13C (Meyers and Eadie 1993). Johengen et al. (2008) used field and laboratory 

experiments to demonstrate that seasonal inputs from the nearby St. Joseph River and 

episodic sediment resuspension events could enhance heterotrophic autotrophic 

production in nearshore Lake Michigan by 3-5 fold.  

 

The delivery of terrestrial materials from watersheds into shallow, wide connecting 

basins may be characteristic of Muskegon Lake and other drowned river mouth 

tributaries feeding Lake Michigan, but is likely different in tributaries that feed directly 

into Lake Michigan or other Great Lakes basins. For example, the Grand River is 

characterized by a different geomorphology than the Muskegon River, and culminates in 

a river delta rather than a drowned river mouth lake. One might expect to find higher 

terrestrial signatures in Great Lakes areas such as Saginaw Bay, Green Bay or western 

Lake Erie where discharge from tributaries is high relative to the volume and depth of 

their receiving coastal waters.  More intensive sampling around peak discharge events, 

that includes shorter sampling intervals and sampling at deeper depths in Lake Michigan 

may be needed to definitively answer whether materials from the MRES can be traced 

into Lake Michigan. 
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Whether or not OM from Muskegon River was transported into Lake Michigan, analysis 

of surficial sediment samples in Muskegon Lake indicated that Muskegon River materials 

undergo dramatic chemical alteration within Muskegon Lake. The δ13C of surficial 

sediment in Muskegon Lake, like the particulate organic matter, was depleted relative to 

Lake Michigan, reflecting the influence of methane in this system. Analysis of the DOC, 

C/N ratios and δ15N signatures in surficial sediments of Muskegon Lake supported 

conclusions reached by the δ13C isotope results. The δ15N signatures of surficial 

sediments increased on an east (near Muskegon River) to west (near Lake Michigan) 

gradient within Muskegon Lake, reflecting increasing amounts of microbial processing 

occurring within the sediments. The extent of microbial uptake of nutrients in Muskegon 

Lake was also confirmed by an analysis of organic carbon content and C/N ratios in 

surficial sediments. High levels of organic carbon in Muskegon Lake indicate the highly 

labile nature of the surficial sediments, as opposed to less labile material found in Lake 

Michigan sediments. In addition, higher C/N ratios of sediments in Muskegon Lake 

reflect the influence of terrestrial material being deposited from the watershed. At the 

west end of Muskegon Lake, there was one localized area of lower sediment C/N ratio, 

where coincidentally δ15N signatures of sediments were highest, indicating an area of 

extensive aquatic biological production (Meyers and Ishiwatari 1993). C/N ratios in 

nearshore Lake Michigan were much lower, demonstrating the absence of terrestrial 

influence (Meyers and Ishiwatari 1993).  

 

Stable isotope signatures of sediments estimated for shallow (< 2 m) stations may have 

been biased because these stations were not sampled at the margins of either Lake 
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Michigan or Muskegon Lake. Isotope data for the shallower margins of both lakes 

(Figures 12-18) were interpolated using the SURFER 8 contour plotting program, and 

may not represent actual values in these areas. Nonetheless, isotope values measured at 

nearby stations indicated that material coming from Muskegon River most likely 

underwent extensive chemical alteration in Muskegon Lake. More extensive sampling of 

the marginal areas of Muskegon Lake and Lake Michigan should be included in future 

studies to confirm these initial predictions. 

 

Few studies have tried to track the flow of nutrients from individual watersheds and 

wetlands into the Great Lakes to determine the relevance and impact of these linkages. 

Brazner et al. (2001) attempted to demonstrate a significant linkage between a constricted 

coastal wetland and its corresponding offshore habitat in Lake Superior by tracking the 

fish-mediated transport of nutrients between the two habitats, but found that the flux of 

fish-mediated nutrients from the coastal wetland to Lake Superior was small relative to 

similar wetlands connected to the Atlantic coast. Several other studies have used stable 

isotope technology to study origins of Great Lakes organic matter. Most notably, Keough 

et al. (1996) demonstrated differences in stable isotope signatures of organic matter 

between nearshore and offshore food webs in Lake Superior, where the offshore food 

web was characterized by an enriched δ13C of POM (-27 ‰) relative to the δ13C of POM 

from the wetland (-31 ‰), even though primary producers in both food webs appeared to 

be phytoplankton. Though neither study found evidence of a significant transfer of 

materials between wetlands and the lake habitats to which they are connected, food web 
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linkages demonstrating fish usage of both wetland and offshore waters were identified 

using stable isotopes (Keough et al. 1996, Brazner et al. 2001). 

 

Although stable isotope analysis has improved the ability to elucidate origins of Great 

Lakes organic matter, linkages between coastal wetlands and large lakes, and movements 

and fate of organic matter through these systems are still poorly understood (Keough et 

al. 1996, Brazner et al. 2001, Bouchard 2007). Great Lakes coastal wetlands can have 

multiple sources of energy (i.e. phytoplankton, periphyton, and terrestrial plants) 

depending on nutrient enrichment, hydrology, and wetland type (Kreiger 2003, Sierszen 

et al. 2004, Sierszen et al. 2006). Though coastal wetlands can serve as significant 

sources of organic carbon and other nutrients to nearshore lake zones, the actual transfer 

of material can be difficult to quantify, and can depend on a number of variables 

including the geomorphology, structure, size, and vegetation of a given wetland 

(Bouchard 2007).  

 

The results of this study demonstrated that stable isotopes could be effectively used to 

characterize riverine organic matter as a mixture of aquatic and terrestrial source 

materials. However, the fate of organic matter produced in the MRES is unclear. The 

results of this study suggest that Muskegon River organic matter most likely settled and 

underwent extensive re-processing within Muskegon Lake, and thus was not traceable in 

Lake Michigan. Another explanation for the lack of a riverine signal in Lake Michigan 

may have been the lateral near-bottom downslope transport of materials that has been 

established through previous research on the Grand River. Regardless of the mechanism, 
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the lack of a traceable influence of Muskegon River organic matter on the nearshore zone 

of Lake Michigan was evident.  

 

Though these results provided no evidence that terrestrial organic matter originating from 

the Muskegon River watershed influenced the coastal ecology of nearshore Lake 

Michigan, they do not preclude existence of watershed – Great Lakes connections. Even 

in areas such as Muskegon Lake, watershed interactions may occur primarily through 

biotic pathways rather than physical advection pathways. Many Great Lakes tributaries 

serve as spawning and nursery grounds for adfluvial fishes, which then migrate into 

nearshore waters to feed and grow. The influx of adult fishes from coastal waters to 

forage in Great Lakes tributaries, and the efflux of juvenile fishes such as suckers 

(Catostomidae), walleye and salmonids from watersheds to the Great Lakes are unknown 

for most systems but are likely substantial, and may have a more direct and concentrated 

impact on coastal ecosystems than transport of terrestrial POM.  
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Tables 
Table 1. Measured values for each water chemistry parameter sampled at five sites in the 
Muskegon River estuary and nearshore Lake Michigan, sampled monthly from March to 
October 2003. “NDC” designations indicate no data was collected.  
 

    TSM δ13C POM δ15Ν POM DOC δ13C DOC TP  TDP NO3  
Sampling Date Location (mg/L) (‰) (‰) ppm (‰) (μg/L) (μg/L) (mg/L) 

3/27/2003 Croton 3.38 -27.2 2.63 3.98 -26.49 19.3 11.6 0.79 
 North Channel 9.65 -27.3 4.45 4.20 -27.13 29.5 14.8 0.88 
 Muskegon Lake 2.94 -29.9 3.42 3.03 -29.74 26.3 9.7 0.78 
 Muskegon Channel 2.02 ndc ndc 2.96 -30.47 21.7 6.2 0.72 
 Lake Michigan 1.21 -27.0 2.51 1.88 -33.41 5.8 2.0 0.38 

4/21/2003 Croton 2.91 -29.6 5.12 3.02 -30.54 20.3 4.6 0.74 
 North Channel 18.45 -28.4 5.81 3.83 -25.87 48.0 10.7 0.67 
 Muskegon Lake 2.13 -29.1 6.04 3.03 -30.04 18.3 4.8 0.74 
 Muskegon Channel 1.68 -30.1 5.87 3.94 -26.35 16.8 4.8 0.74 
 Lake Michigan 1.71 -28.2 4.23 1.90 -28.91 7.0 6.4 0.48 

5/19/2003 Croton 1.51 -28.1 4.49 4.97 -27.30 14.0 5.3 0.55 
 North Channel 7.32 -28.6 4.84 5.55 -28.19 24.8 7.6 0.62 
 Muskegon Lake 2.41 -34.0 6.59 5.85 -25.92 23.0 6.5 0.48 
 Muskegon Channel 2.01 -27.4 6.05 4.95 -27.42 19.6 7.6 0.50 
 Lake Michigan 1.51 -25.6 4.31 2.15 -28.85 8.3 2.0 0.42 

6/11/2003 Croton 1.37 -27.4 ndc 6.04 -26.06 11.1 6.1 0.53 
 North Channel 7.77 -28.4 4.52 5.54 -26.64 21.8 7.3 0.64 
 Muskegon Lake 2.23 -31.6 5.03 5.18 -25.41 19.8 6.8 0.43 
 Muskegon Channel 2.11 -30.8 5.75 4.28 -30.56 20.4 6.0 0.43 
 Lake Michigan 2.37 -27.5 4.08 2.61 -33.32 10.9 3.1 0.37 

7/7/2003 Croton 1.36 -29.9 5.68 6.77 -27.40 7.5 8.4 0.30 
 North Channel 13.12 -27.6 4.85 3.24 -30.30 16.0 10.4 0.42 
 Muskegon Lake 2.54 -30.8 5.50 4.95 -25.52 14.1 7.2 0.23 
 Muskegon Channel 2.56 -29.9 5.17 5.97 -24.37 10.0 5.8 0.23 
 Lake Michigan 0.94 -25.2 ndc 2.45 -37.25 2.6 2.1 0.30 

8/26/2003 Croton 1.12 -28.9 5.49 3.82 -30.76 19.9 14.5 0.21 
 North Channel 6.10 -27.8 4.82 3.60 -30.8 23.6 9.7 0.40 
 Muskegon Lake 4.62 -29.4 8.11 3.87 -30.76 36.0 6.0 0.10 
 Muskegon Channel 2.33 -27.7 6.32 3.24 -29.80 23.2 8.5 0.13 
 Lake Michigan 0.85 -24.1 3.61 1.52 -31.50 4.9 2.0 0.26 

9/11/2003 Croton 1.75 -29.7 7.23 3.37 -31.22 42.9 23.3 ndc 
 North Channel 3.17 -28.8 4.92 3.33 -31.26 24.4 8.7 ndc 
 Muskegon Lake 3.12 -30.5 7.24 3.10 -29.06 28.5 7.3 ndc 
 Muskegon Channel 4.20 -30.8 7.70 2.18 -28.64 29.6 6.4 ndc 
 Lake Michigan 1.29 -25.8 3.86 1.43 -28.36 9.4 2.7 ndc 

10/11/2003 Croton 0.79 -28.6 6.68 2.70 -31.41 30.3 26.3 0.20 
 North Channel 7.51 -27.9 4.94 3.48 -32.02 32.2 15.9 0.30 
 Muskegon Lake 2.61 -31.5 8.54 4.09 -30.71 29.7 11.0 0.18 
 Muskegon Channel 1.36 -29.0 ndc 3.08 -31.52 28.0 18.1 0.16 
  Lake Michigan 1.29 -26.2 3.22 1.58 -31.88 10.5 3.2 0.23 
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Table 2. Average values (± 1 standard error) of water chemistry variables at five stations 
in the Muskegon River estuary and nearshore Lake Michigan, sampled monthly from 
March to October 2003.  
 
  Croton North Channel Muskegon Lake Muskegon Outflow Lake Michigan 

TSM (mg/L) 1.77 ± 0.32 9.14 ± 1.67 2.83 ± 0.28 2.28 ± 0.30 1.40 ± 0.17 

δ13C POM -28.62 ± 0.40 -28.10 ± 0.19 -30.85 ± 0.55 -29.79 ± 0.62 -26.20 ± 0.47 

δ15N POM 6.27 ± 0.44 4.89 ± 0.15 6.31 ± 0.60 6.08 ± 0.43 3.41 ± 0.35 

DOC (mg/L) 4.33 ± 0.52 4.10 ± 0.33 4.14 ± 0.38 3.83 ± 0.43 0.43 ± 0.15 

δ13C DOC -28.90 ± 0.81 -29.03 ± 0.83 -28.40 ± 0.84 -28.64 ± 0.86 -31.69 ± 1.06 

TP (μg/L) 21.23 ± 4.02 27.54 ± 3.39 24.46 ± 2.50 21.16 ± 2.19 7.43 ± 1.02 

TDP (μg/L) 12.78 ± 2.94 10.64 ± 1.12 7.41 ± 0.71 7.93 ± 1.51 2.94 ± 0.53 

NO3 (mg/L) 0.47 ± 0.09 0.56 ± 0.08 0.42 ± 0.10 0.42 ± 0.10 0.35 ± 0.03 
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Table 3. Sample sizes (n), means  (+ 1 standard error), and ranges of carbon and nitrogen 
stable isotopes values of plants (sorted by type) collected throughout the Muskegon River 
from March thru October 2003.  
 
    δ13C (‰) δ15N (‰) 

Plant Type n Mean 
Std 

Error Range Mean Std Error Range 
Terrestrial Plant 20 -29.0 0.3 -31.2 to -25.9 1.5 0.6 -3.8 to 9.9 
Emergent (Wetland) 11 -28.4 0.4 -30.5 to -26.5 6.7 0.8 1.0 to 10.4 
Aquatic Macrophyte 10 -25.1 0.7 -27.6 to -22.4 8.4 0.5 5.2 to 10.0 
Periphyton 1 -30.9   8.6   
Particulate Organic 
Matter 17 -28.3 0.2 -29.9 to-26.8 5.0 0.3 2.6 to 6.7 
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Figures 

 

 
 
 
Figure 1. A map of the Muskegon River watershed, western lower peninsular Michigan, 
U.S.A. Water sampling stations are noted with open circles. 
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Figure 2. Average daily discharge (cms, Y-Axis) for the Muskegon River beneath Croton Dam as measured by a USGS stream 
gage, 2003. The solid line represents average daily flows measured in 2003, with the dots representing sampling dates for 
water chemistry. The dashed line represents average daily flows (cms) averaged over a period of five years from 1999 through 
2004.
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Figure 3. Total suspended material (TSM) concentrations (mg/L) at five sites in the Muskegon watershed and nearshore Lake 
Michigan, March to October, 2003. A two-way ANOVA using site and month comparisons revealed significant differences 
among sites (p < 0.001), but not among months (p = 0.586). A Holm-Sidak multiple comparison test revealed that the TSM 
concentrations measured at North Channel were significantly higher than at any of the other sites. Statistical significance is 
shown by the following pattern, where underlining indicates a lack of significant difference; NC ML MC CD LM. ‘NC’ stands 
for North Channel, ‘ML’ is Muskegon Lake, ‘MC’ is Muskegon Channel, ‘CD’ is Croton Dam, and ‘LM’ is Lake Michigan.  
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Figure 4. Total phosphorus (TP) concentrations (µg/L) at five sites in the Muskegon watershed and nearshore Lake Michigan, 
March-October, 2003. A two way ANOVA using site and month comparisons revealed significant differences among sites (p < 
0.001) and months (p = 0.008). Holm-Sidak multiple comparison tests were conducted on the data aggregated by site and 
month. The tests showed that TP concentrations measured at Lake Michigan were significantly lower than those measured at 
any other site. TP concentrations in September and October were similar significantly higher than in any other month. 
Statistical significance patterns are as follows, where underlining indicates a lack of significant difference: for site NC ML CD 
MC LM; and for month Sep Oct  Apr  Mar May Jun  Jul.  
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Figure 5. Total dissolved phosphorus (TDP, µg/L) concentrations measured at five sites in the Muskegon watershed and 
nearshore Lake Michigan, March-October, 2003. A two way ANOVA using site and month comparisons revealed significant 
differences among sites (p < 0.001) and months (p = 0.012). Holm-Sidak multiple comparison tests were conducted on the data 
aggregated by site and month. The tests showed that TDP concentrations measured at Croton Dam and North Channel were 
statistically similar, and were significantly higher than at other stations. Statistical significance patterns are as follows, where 
underlining indicates a lack of significant difference: for site CD NC MC ML LM; and for month  
 Oct Sep Mar Aug  Jul Apr Jun May 
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Figure 6. Dissolved organic carbon (DOC) concentrations (ppm) at five sites in the Muskegon watershed and nearshore Lake 
Michigan, March-October, 2003. A two way ANOVA using site and month comparisons revealed significant differences 
among sites (p < 0.001) and months (p < 0.001). Holm-Sidak multiple comparison tests were conducted on the data aggregated 
by site and month. The tests showed that Lake Michigan was characterized by significantly lower DOC concentrations than at 
any other station, and that DOC concentrations were significantly higher in the summer months. Statistical significance 
patterns are as follows, where underlining indicates a lack of significant difference: for site CD ML NC MC LM; and for 
month: Jun Jul May Aug Mar Apr Oct Sept. 
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Figure 7. Nitrate (NO3) concentrations (mg/L) at five sites in the Muskegon watershed and nearshore Lake Michigan, March-
October 2003. Data from September were lost. A two way ANOVA using site and month comparisons revealed significant 
differences among sites (p = 0.002) and months (p < 0.001). Holm-Sidak multiple comparison tests were conducted on the data 
aggregated by site and month. The tests showed that NO3  concentrations were significantly higher at the North Channel than at 
either the Muskegon Lake or Lake Michigan stations.  In addition, NO3 values in March and April were statistically similar, 
and higher than in May and June, or July through October. Statistical significance patterns are as follows, where underlining 
indicates a lack of significant difference: for site  NC CD ML MC LM; and for month Mar Apr May Jun Jul Aug Oct. 
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collected at five sites in the Muskegon watershed and Figure 8. δ13C values for particulate organic matter samples (POM) 

nearshore Lake Michigan, March-October, 2003. A two way ANOVA using site and month comparisons revealed significant 
differences among sites (p < 0.001) but not among months (p = 0.674). Holm-Sidak multiple comparison tests were conducted 
on the data aggregated by site, and showed that Lake Michigan had a significantly enriched δ13C signature compared to the 
other stations, and that the δ13C signatures at both Muskegon Lake and Muskegon Channel were statistically similar. Statistical 
significance patterns are as follows, where underlining indicates a lack of significant difference: for sites LM NC CD MC ML. 
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  Figure 9. δ15N values for particulate organic matter samples (POM) collected at five sites in the Muskegon watershed  

and nearshore Lake Michigan, March-October, 2003. A two way ANOVA using site and month comparisons revealed 
significant differences among sites (p < 0.001) and months (p < 0.001). Holm-Sidak multiple comparison tests were conducted 
on the data aggregated by site and by month. These tests showed that δ15N at the Lake Michigan site was significantly lower 
than at other stations, and that Muskegon Lake and Muskegon Channel were characterized by similar δ15N values. In addition, 
aggregate δ15N values were significantly higher in October, September and August. Statistical significance patterns are as 
follows, where underlining indicates a lack of significant difference: for site ML MC CD NC LM; and for month Oct Sep Aug  
Apr May Jun Jul Mar. 
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  Figure 10. Average δ13C and δ15N isotopic signatures of POM collected at five sites in the Muskegon watershed and  

nearshore Lake Michigan, March-October, 2003. Error bars represent one standard error. A one-way ANOVA indicated 
differences in δ13C signatures among sites were significant (p < 0.001). Multiple comparisons conducted with a Tukey test 
procedure demonstrated the following pattern of statistical significance (underlining indicates non-significance) LM ML NC 
CD ML. The δ15N values were analyzed using a non-parametric Kruskal-Wallis test on ranks, and differences among sites 
were significant (p < 0.001). A Dunn’s method multiple comparison test resulted in the following significance pattern: MC ML 
CD NC LM. 
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Figure 11. Average isotopic signatures of primary producers collected from Muskegon River, March-October, 2003. Error bars 
represent one standard error. A one-way ANOVA test indicated that differences among sites were significant in both δ13C (p < 
0.001) and δ15N (p < 0.001) values. 
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 Figure 12. Contour plot showing percentage of fine-grained sediment (<63µm) throughout Muskegon Lake     
 and nearshore Lake Michigan. Samples were collected in September, 2003. X and Y axes represent longitude     
 and latitude coordinates, respectively. 
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Figure 13. Contour plot showing the percentage of mid-grained sediment (63-210 µm) throughout Muskegon Lake and nearshore 
Lake Michigan. Samples were collected in September, 2003. X and Y axes represent longitude and latitude coordinates, respectively. 
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Figure 14. Contour plot showing the distribution of coarse sediment (>210 µm) throughout Muskegon Lake and nearshore Lake 
Michigan. Samples were collected in September, 2003. X and Y axes represent longitude and latitude coordinates, respectively. 
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Figure 15. Contour plot showing the δ13C values of fine-grained (<63 µm) surface sediments from Muskegon Lake and nearshore 
Lake Michigan. Samples were collected in September, 2003. X and Y axes represent longitude and latitude coordinates, respectively. 
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Figure 16. Contour plot showing δ15 N values of fine–grained (<63 µm) surface sediments in Muskegon Lake and nearshore Lake 
Michigan. Samples were collected in September, 2003. X and Y axes represent longitude and latitude coordinates, respectively. 
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Figure 17. Levels of organic carbon (mg C/g) measured in fine-grained surface sediments collected in Muskegon Lake and nearshore 
Lake Michigan, September 2003. X and Y axes represent longitude and latitude coordinates, respectively. 
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Figure 18. Carbon to nitrogen (C/N) ratios measured in surficial sediments in Muskegon Lake and nearshore Lake Michigan, 
September 2003. X and Y axes represent longitude and latitude coordinates, respectively.  
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