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We deal with reduction of Lagrangian systems that are invariant under the action of the symmetry group. Unlike the bulk
of the literature we do not rely on methods coming from the calculus of variations. Our method is based on the geometrical
analysis of regular Lagrangian systems, where solutions of the Euler-Lagrange equations are interpreted as integral curves of
the associated second-order differential equation field. In particular, we explain so-called Lagrange-Poincaré reduction [1]
and Routh reduction [3] from the viewpoint of that vector field.

1 The Euler-Lagrange equations in an adapted frame

This contribution is based on references [2] and [4]. Let (xα) be coordinates on a manifold M and (xα, uα) coordinates on its
tangent manifold TM . We will assume that the Lagrangian L(x, u) is regular, i.e. that the matrix of functions (∂2L/∂uα∂uβ)
is everywhere non-singular. Then, the Euler-Lagrange equations may be written explicitly in the form of a set of second-order
differential equations ẍα = fα(x, ẋ) and its solutions can be interpreted as integral curves of the second-order differential
equation field Γ = uα∂/∂xα + fα(x, u)∂/∂uα on TM . The Euler-Lagrange equations may then be expressed in the form
Γ (∂L/∂uα) − ∂L/∂xα = 0. These equations, together with the assumption that it is a second-order differential equation
field, determine the vector field Γ.

There are two canonical lifts of a vector field Z = Zα∂/∂xα on M to a vector field on TM . The flow of the so-called
complete or tangent lift ZC = Zα∂/∂xα +uβ∂Zα/∂xβ∂/∂uα consists of the tangent maps of the flow of Z . The vertical lift
ZV = Zα∂/∂uα is tangent to the fibres of τ : TM → M and on TmM it coincides with Z(m). We use these two concepts
to cast the Euler-Lagrange field in terms of a non-coordinate basis. If {Zα} is a basis of vector fields on M , then it can easily
be verified that an equivalent expression for the Euler-Lagrange equations is Γ(ZV

α(L)) − ZC

α(L) = 0.
We will assume throughout that the system is invariant under a proper, free (left) action ψM : G × M → M . Let Xi

be the G-invariant horizontal lifts of a coordinate basis of vector fields on M/G (horizontal w.r.t. a principal connection on
πM : M → M/G). We will also need two sets {Ẽa} or {Êa} of vector fields on M , associated to a basis {Ea} of the
Lie algebra G. The vector fields Ẽa of the ‘moving’ basis are the fundamental vector fields corresponding to the action. If
we set locally πM : U × G → U (and ψM

g (x, h) = (x, gh)), the ‘body-fixed’ basis consists of the vector fields defined by

Êa : (x, g) �→ TψM

g

(
Ẽa(x, e)

)
. Note that the basis {Xi, Êa} is invariant, but the basis {Xi, Ẽa} is not. We can now express

the Euler-Lagrange equations in either one of these two adapted frames. By doing so, we derive in the next sections both the
Lagrange-Poincaré equations [1] and the Lagrange-Routh equations [3] in a relatively straightforward fashion.

2 The mechanical connection and Lagrange-Poincaré reduction

The action ψM induces an action ψTM

g = TψM

g on TM for which πT M : TM → TM/G is a principal fibre bundle. We
assume from now on that the Lagrangian L is invariant under this induced action. Then one can easily show that Γ is an
invariant vector field on TM .

We first recall a well-known method for reducing and reconstructing integral curves of an invariant vector field. Let
π : N → N/G be a principal fibre bundle and ψN : G × N → N the corresponding action. Denote the fundamental vector
field of ξ ∈ G by ξ̃. Assuming that G is connected, the infinitesimal condition for a vector field Γ on N to be invariant is
[ξ̃, Γ] = 0, ∀ξ ∈ G. An invariant Γ defines a π-related reduced vector field Γ̌ on N/G: the relation Tπ

(
Γ(v)

)
= Γ̌

(
π(v)

)
is

independent of the choice of v ∈ N within π(v) ∈ N/G. With the aid of a principal connection Ω on π : N → N/G, we can
reconstruct the integral curve v(t) of Γ through v0 from the reduced data as follows: First find the integral curve v̌(t) ∈ N/G
of Γ̌ through π(v0). Then, look for its horizontal lift v̌H(t) (this is the curve in N s.t. π ◦ v̌H = v̌, v̌H(0) = v0 and Ω( ˙̌vH) = 0)
and find the solution g(t) ∈ G of the reconstruction equation θ(ġ) = Ω(Γ ◦ v̌h) with g(0) = e (θ is the Maurer-Cartan form).
Then v(t) = ψN

g(t)v̌
H(t) is a reconstructed integral curve of Γ.
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The invariant Lagrangian L reduces to a function l on TM/G with L = l ◦ πT M , and the associated Euler-Lagrange field
Γ reduces to a vector field Γ̌ on TM/G. The fundamental vector field ξ̃ of the action ψM on M is the infinitesimal generator
of the 1-parameter group of transformations ψM

exp(tξ). The fundamental vector field of the induced action TψM

g on TM is

the infinitesimal generator of TψM

exp(tξ), and is thus the complete lift ξ̃C. To conclude, for an invariant Lagrangian, we have

ẼC

a (L) = 0 and [ẼC

a , Γ] = 0.
In view of the reconstruction method, we show first that a principal connection Ωm on TM → TM/G is readily available.

The coefficients ∂2L/∂uα∂uβ of the Hessian of L are functions on TM and they form a so-called tensor field g along the
tangent bundle projection τ : TM → M . (If W = Xα(x, u)∂/∂xα + Y α(x, u)∂/∂uα is a vector field on TM , then
τ∗W = Xα(x, u)∂/∂xα is a vector field along τ . The Hessian g acts on 2 vector fields along τ .) We will assume that g is
non-singular when restricted to two fundamental vector fields. A vector field W on TM is horizontal for the ‘mechanical’
connection if g(τ∗W, η̃) = 0, for all η ∈ G. In case of an invariant Lagrangian, also the Hessian g is invariant (under the
appropriate action) and one can verify that the mechanical connection is principal.

To obtain a coordinate expression of the reduced vector field Γ̌, we use the expression of the Euler-Lagrange equations
in the invariant basis: Γ(XV

i (L)) − XC

i (L) = 0 and Γ(ÊV

b (L)) − ÊC

b (L) = 0. The basis {Xi, Êa} defines so-called quasi-
velocities (vi, wa), which are such that vm = viXi(m) + waÊa(m) ∈ TmM . Since Γ is a second-order differential equation
field, it is of the form Γ = waÊC

a + viXC

i + ΓaÊV

a + ΓiXV

i . By expressing [ẼC

a , Γ] = 0, one finds that ẼC

a (Γi) = 0 and
ẼC

a (Γb) = 0 which means that Γi and Γb are invariant functions on TM .
From now on, we use coordinates (xα) = (xi, xa) on M s.t. (xi) are coordinates on U and (xa) are coordinates on a fibre.

The functions xi, vi and wa can be interpreted as invariant functions on TM and induce coordinates on TM/G. Given that
the Lie brackets of the basis vector fields are [Êa, Êb] = Cc

abÊc, [Ẽa, Ẽb] = −Cc
abẼc, [Ẽb, Êa] = 0 = [Ẽa, Xi], [Xi, Xj ] =

Ka
ijÊa (curvature) and [Xi, Êa] = γb

i C
c
abÊc if Xi = ∂/∂xi − γb

i (x
i, xa)Êb, a small calculation reveals that TπM ◦ ÊC

a =

(γc
i C

b
acv

i + Cb
acw

c)∂/∂wb ◦ πM , TπM ◦ ÊV

a = ∂/∂wa ◦ πM , TπM ◦ XC

i =
(
∂/∂xi + (−Ka

ijv
j + γc

i C
a
cbw

b)∂/∂wa
)
◦ πM

and TπM ◦ XV

i = ∂/∂vj ◦ πM . The reduced vector field Γ̌ is thus Γ̌ = vj∂/∂xj + Γj∂/∂vj + Γa∂/∂wa and the above
Euler-Lagrange equations for L = l ◦ πM become the so-called Lagrange-Poincaré equations (d/dt stands for Γ̌)

d

dt

(
∂l

∂vi

)
−

∂l

∂xi
= (Ka

ikvk + γc
i C

a
bcw

b)
∂l

∂wb
and

d

dt

(
∂l

∂wa

)
= (γc

i C
b
acv

i + Cb
acw

c)
∂l

∂wb
.

3 Routh reduction

In this section we use the adapted basis {Xi, Ẽa} and its associated quasi-velocities (vi, va). The Euler-Lagrange equations
become Γ(XV

i (L)) − XC

i (L) = 0 and Γ(ẼV

b (L)) − ẼC

b (L) = 0. From the last equation it is clear that for an invariant
Lagrangian (ẼC

b (L) = 0) solutions lie on a fixed level set ẼV

a (L) = μa of the ‘momentum’ (denoted by Nμ). If we assume
that g is non-singular when restricted to two fundamental vector fields, Nμ is a submanifold of TM and we can rewrite
ẼV

a (L) = μa in the form va = ιa. In that case, there are coefficients Ab
i , Bb

i and Cb
a such that the vector fields X̄C

i =

XC

i + Aa
i ẼV

a , X̄V

i = XV

i + Ba
i ẼV

a and ĒC

a = ẼC

a + Cb
aẼV

b are tangent to each level set Nμ (they are not complete or
vertical lifts). The restriction of the Euler-Lagrange field to Nμ takes therefore the form Γ = ιaĒC

a + viX̄C

i + ΓiX̄V

i . Let
R = L− vaẼV

a (L) be the Routhian, and Rμ its restriction to Nμ. The Euler-Lagrange equation in Xi can be cast in the form
Γ(X̄V

i (Rμ)) − X̄C

i (Rμ) = −μaR
a
ijv

j , where [Xi, Xj] = Ra
ijẼa are components of the curvature. If g is non-singular, then

so is also X̄V

i X̄V

j (R) and the above determines the functions Γi.
The G-action on TM induces only a Gμ-action on Nμ (gμ ∈ Gμ if ad∗

gμ
μ = μ). When restricted to Nμ, Γ is Gμ-invariant

and it reduces to a vector field Γ̌ on Nμ/Gμ. Much as before, we can define a principal connection, this time on the principal
fibre bundle Nμ → Nμ/Gμ, and obtain an expression for Γ̌ and the reduced ‘Lagrange-Routh’ equations.
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