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Introduction

R. P. Isaacs formulated and solved" the game of pursuit outlined
below. In it the probabilities pertaining to the chance outcomes are assigned
definite values (a probability of 1/3 to each outcome). The purpose of the
present work is to assign to these probabilities values depending on one para-
meter a , to study the effect of this on the.game, and to obtain a solution
(as far as is possible) in terms of a. The problem is not completely solved.
Most of the features of the sclution which are direct extensions of the case
a = 1/3 (the game of RM-791), are obtained together with others. There are
still others whose treatment requires a deeper analysis. These were foregone
for lack of time. I have tried to indicate where the gaps lie, unless they
seem quite evident. Following is an outline of the original game. For
further details, see RM-791.

It is a two-person zero-sum game. One player is called the pursuer,
P; the other, the evader, E, Both move in a discrete lineal set. This set
may be denoted by the sequence of integers ..., -2, -1, 0, 1, 2, ... At each
move, if E is at point i, he can meke any of three moves, to i+ 1, i -1,
or remain stationary. If P is at point 1 , he can make any of four moves,
toi+ 1, toi-1, toi+ 2; or to 1 - 2, He may not remain stationary.
E is completely informed of P's position, and P's state of information, On
the other hand, P's information about E's position is incomplete. After
each one of E's moves, there is a signal indicating E's positicn to within
three points (each with probability 1/3). P's information

L I I e I I A e R e e e )

# R. P. Isaacs, A Pursuit Game with Incomplete Information, Project RAND
Research Memorandum RM-791. Constant reference will be made to this
paper which is my sole direct source, and throughout this report it
will be referred to as RM-791,
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is based entirely on all signals given., The cycle of moves is as follows:
1. E moves.
2, Signal
3. P moves,
A description of a signal is as follows: If E is at point n one

of the following mignals may occurs

™y = (n-2,n-1, n)

(n=1,n, n+ 1)

W)

63 = (n, n+1, n+2)
each with probability 1/3. Each signal contains the information that E is
at one of the points indicated in it.

Capture occurs when P and E are at the same point. The payoff to
E is the number of cycles before capture.

After several moves P can come and maintain himself within at most
two moves of E. When this occurs two configurations can describe the relative
positions of E and P. These two configurations (Configuration I and Configura-
tion II) are shown respectively in Figures 1 and 2.

Each represents the given configuration and P's knowledge of it,

The point marked with a squere indicates the position of P, E may be at either
of the 2 points marked with probabilities S and 1 - S in Figure 1, Tand 1 - T
in Figure 2. For example in Configuration I (Figure 1), S is the probability
that E is at 3; and 1 - S the probability that E is at 2, Now if E moves,

a signal is given., The figures also give the set of all possible signals

for each configuration, denoted by the (¢ 's.
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These two configurations have the property that starting from either,
P can move in such a way as to establish one of them, or capture, regardless
of what E does. That 1s, for the rest of the game one of these two configura-
tions will prevail at any time if P sovchooses, regardless of E's strategies,

Suppose the game has been played up to the time when one of the
configurations has been established, and that E is to move next. Cohsider
the following new game. It consists of 3 moves as follows: (1) E moves,
(2) A chance move consisting of a signal, (3) P moves. The payoff is the
expected number of cycles before capture counting the cycle of the new game,
assuming P and E behave optimally for the rest of the game. So for each con-
figuration and each value of S and T correspondingly, we have one of these
games, Solving the larger game is equivalent to solving these games for each
value of S and T. Isaac's paper presents such a solution of the game. The
value for configuration I with probability S is denoted by éi(s), that for
configuration II with probability T is denoted by‘ézr(T). The notaticn used
here is that of the above-mentioned paper whenever possible, For values of
E.(S) and ;zr(T), and for method of solution refer to RM-791,

A Generalization

As described above, each one of the signals Ojl, G"z ’ 5—5
has probability 1/3. It may be desirable to consider the problem in which
the relative probability of each signal may vary. For instance, a
detecting instrument (like radar), may point to a region around & point of
probébility higher than the neighboring points. Or vice versa, to a circle of
points of high probability around a center of relatively low probability.

Therefore consider a case in which a probability a ; 0 a1

is assigned to ¢ , (E in the middle point), and equal probabilities
2



5
%a‘ to ¢~ and O'E Then & (8) and?(T) can be evaluated in terms of
the parameter a,

It is sometimes desirable although not done here, to compare pure
strategies with the optimal mixed strategy obtained.here. For that purpose
it is convenient to allow P to remain stationary if he so chooses, contrary
to the rules of the game in RM~791. It turns out that this does not alter
the optimal strategies since one is found in which this choice of P is pre-
cluded. Whenever a method of reasoning (or a proof) is a mere repetition
of a method (or proof) in RM-791, it will be omitted, or simply sketched.
Only when a modification is required or a simplification possible, will de-

tails be given.

Expressions for the Payvoff Functions.

Configuration I.

The mixed strategies for P are given by the following table:

1 p
O—i 1 0
s p,(8) S 1-p,8)
g p,(5) 1 - py(s)
™~ 0 1
a5 0 1

TABLE I
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The subscripts on the left hand side from 1 through 5 indicate each
of the signals shown in Figure 1. The numbers 1, 2 on the top indicate P's
moving 1 or 2 to the right, Here P has nothing to gain by standing still, so
this alternative is precluded. The entries in the boxes indicate the probab-
ility of P's moving 1 or 2 points given each signal. P determines these
probabilities.,

It is shown in RM-791 that the mixed strategies for E can be given
in terms of the numbers A, B, C; the probabilities of E's finishing at the
end of the game (the little game) at points 2, 3, 4 correspondingly.

Then in the same way as is done in RM-791, the payoff function is
computed to be:

(1) g = 1+_1£_&(A+ °)§’(A"+§‘a)+ (aA+l.ﬂ'2—£ 0) & (0)
+ D, (l_:_a B - aA/)cf:(Cn

2

+p3E1£a(A+c)§(r%E)+(aB+_L:2:_.a_C)£(§_E~6)J

Configuration II

The strategies for E are given by the following table:

-1 0 1
2 0 1l- ql ql
0 1 - 0
] 9,
TABLE II

The numbers 2, O on the left indicate the position of E at the beginning of

the game (Figure 2). The numbers -1, O, 1 indicate one move to the left,
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standing still, one move to the right respectively. The numbers in the boxes
indicate the probabilities assigned to each combination (mixed strategy).

The strategies for P are given in the table below:

-2 -1 0 1 2
ci 1 0 0 0 0
65 1~ p2 p2 0 0 0
6—3 1l- p3 p3 0 0 0

0 1-p, -pt ' 0
6 | L *4
Ts 0 0 0 Ps 1- P,
Gy 0 0 | 0 Py 1-p
'R 0 0 0 0 1

TARLE III

The entries on the left hand indicate the signsls in Figure 2. The numbers
across the top have an explanation similar to those on Tablé IT. The entries
in the boxes have a similar explanation,

Notice first of all that (¢ 2 and 0‘? are not equivalent any
longer*, since they occur with different probabilities. The same can be said
of G~é and G-g. Also notice that O on top indicates that P is allowed to
stand still, but only under Ggia does it seem advisable to do so, His
probability of standing still under a given mixed strategy is denoted by
P'A-

In a manner similar to that employed for @, the payoff function for

configuration II is found to be:

e e tm o e e we am B W GRS e s s e e M e e A mm MR e e ke e sme e s e e s e dee e e A

* As in RM-791,



2  W=1+ £ [(14){;&%—& agp, +Lz2 (1 -py - ay)

+ -l—zL% q_y45 + &(1 - py - q_l)} +T {1; 2 9P,

—q - 1 1 - - a. -
+ a(l %y p5)+ ;aq1p6+ 2a (1 q pé)}J

+ L‘g_ﬂ p'Af(T) [(:l -1) (1 -q4)+ (- qlﬂ
+ l—g——i & [(l -7 p(l-ay)+TQ-p -p'))01- qu,

Optimal strategies and values of & (s) and f (T) are obtained

by solving the functional equations:

(3) E(s) = max min ¢ =  min max
A,B,C P5sP Pys P A,B,C
MBiC=1 2 O 2773 mBrc=1
c=s C£8

1}

(4) f (T) max min }0

1
q""l’ql p22p3’p4’p 4’ p5’ p6
= min max 50
'
p2’p3’ pA’ p 4’p5,p6 q_l,ql
The last part of each equation (max min = min max) represents an assumption.
Solutions of equations (3) and (4), together with strategies which give rise

to those solutions represent a solution to the game.

The Value of & (0)
Theorem 1. The value of s (0) and the corresponding strategies

are given as follows:

2> 1/3 () = 2

1+a ’

with strategies:A and B arbitrary in the set of values defined by A + B =1,

l-~-a 2
l4+a

€A < :G=O:P2=1,P3=0a

l+a



a =1/3 (cf. RM-791, p, 8)
& (0) = 3/2, with strategies & = 1/2, B = 1/2, G = 0, p, and py arbitrary

among the values Py + Py = 1.

a<1/3
£ (0) = I 1l | with strategies!A and B arbitrary among the values A + B = 1,
- a
2a l-a - -
~L£2 2 A =0 =1.
T+a $17a’f277 P

Remarks The method of proof for the three cases mentioned is essen-
tially the same trial and error procedure. Therefore the proof will only be
given for a »1/3. Furthermore a complete proof is quite lengthy, so it will

only be shown that for a > 1/3, £ (0) = T-%"Z .

Proof: The problem is to evaluate £(S) for S = 0. In this case
_ _ 7/ A _ _ c _ . .
C=0and B=1 - A, AlsodL (A T G) _f(O) —f m)-— 6(0). Substituting

these values in (1) and simplifying we obtain
(8) g=1+ £ (o)o(, where

(9) OCZ‘:‘L‘%‘EA"'I’Z(Iga‘lga‘Q +p3(”1§“)’

and from (3) we have

(10) E(0) =14 6(0) max min oC
P5sP
2
We show that max minoé‘ = l..g.é . This establishes the value of 5 (0),
b 9P
since E (0) =1+ (0) 1 5 & , and then solving for 5 (0) we obtain

(11)
E© = -2 .
l4+a
Now let 1/3. This is equivalent to L1.— & 8 and —22 l-a,
v a)/ a 2 < 1+a<1+a

(12) mzx mino(g min E—%‘—iA+p2(1£a—l'£a)+ pBé-‘l_'%__él. A)—]

Pz;PB PQ’PB
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where on the right hand side, A is chose to lie in the interval

Ll-8a_.) ¢ 2 _ | Byt in this interval the coefficient of p  is € 0 and
l+a l+a 2

that of P is 2 0. So the values p, = 1, p3 = 0 are minimizing values and
the expression on the right of (12) becomes equal to l-a,

2
On the other hand:

(13) max ming(é- max[.l._'_t_&iA+ 1—a—ngA-]
2 2 2
A P29P3 A

(setting py = 1, Py = 0) or

mex min of ¢ 153.
A PysP3

This completes the proof,
The Value of F (T)

In the proof of the following theorem it will be assumed that
1) @ (T) = 7 € (1) 2 0. The negation of this assumption leads to a
contradiction. For a proof of this see the appendix,
2) Fm=L0a-n-= £ (min (T, 1-1)). Since min(T, 1 - 1) s 3,
the value of the function need only to be given for T £ 4. This assumption
is evident from its interpretation in terms of configuration,

Theorem 2. The value of & (T) for T£ 3, and a set of optimal
strategies are given as follows.

For a 2 1/3:

2
(14) f (1) = 2 + T & (1) {(d-2)_ ang optimal strategies are
l+a 2(1 + a)

= - = - 1- =p' = =q =2
P, =0, py=1,p, =0,p = 1+ .235(1),1)4—13' =0,q =9 =—28_.

4 l1+a
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For a = 1/33

2
(15) (1) = 1 +7 £(1) { -2a)" and optimal strategies are
f l1-a 2(1 + a) F ;

2
= = =p! = = l-a = = =
1, 0, P4 P 0, P5 L—Efzfgf- Z (l): P6 1, q*l q

Pa P3 4 1

28
l+a*”

Only part of the proof of this theorem will be given here., We will only
refer to the case a £ 1/3, since the other case follows exactly the same method.

The proof again consists in showing the two inequalities

16)  Fme_1 .1 e d-a’

1-a 2(1 + a)

+7 £ (D1 =8),

- Fmzg 2(1 + a)

The proof of (16) is almost a step by step repetition of the proof of the
corresponding inequality.for a = 1/3 given in RM~791, Theorem 2, P, 12,
Therefore it will not be given here. The proof of (17) goes as follows:

= _28  we obtain:

Substituting the values 4, =9 T2

(18) \’72(‘1') = max min }U
q_l!ql p2’p3’p4)p‘4’p5)p6

> min {(1—T)£(0)(a-l—’2'-—f*)p
= 1
PZ:PB’PAQP 4,p5’p6 2

2
+ TE(O)(a~lga)p6 +(1~2T)£(1)é%-ffi7 17
2
+ %(?(T)-T E(l))p'4+1
2
+1=2 £(0) +1 5(1)&I'—)‘71-aa } .

Now a - -1-—;:—?: & 0 for a €1/3 so that the coefficients of P, and p, are

nonpositive, and therefore the minimizing values of P, and Py are p, = p6 =1,
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Again, the coefficient of 1% is nonnegative since T € 5. Also the coefficient
of p'4 is nonnegative since Z(T) =T £ (1) was assumed to be nonnegative.
This fact will be shown in the details in the appendix, Therefore the minimiz-

ing values of 1 and p'/+ are p4 = p'4 = 0. Thus we have:

(29) ?(mzu-m5(0)(-.1._5..@)”5(0)(_15a)
+l+lza £(0)+1 (1 L-2)?

2(1 + a)

g(o)é-i_g._@)+g(o).l__-___a_ + 1 4

l-az_ 1 -
T 5(1)é"('1'1—3')‘ - 1+&£(O>+T€(1)L_f_;7

2
1l -
1_5,5+Tg<1>g.(ﬂ%

i

which was to be shown.

Here as in the previous proof the values pertaining to optimal
strategies seem to come out of the air, Therefore for the sake of completeness,
I would like at this moment to indicate a procedure for computing them# This
is merely an outline, and no proofs are given,

The procedure is to assume that the optimal values of q . and q1

-1
are interior to the interval of definition of these variables. Therefore for

these values we have & P a }b = 0O, This gives two relations binding
q -1 6 a5
P,s P,» P, D'

27 737 T4 4
P, s p3, pA, p'A, ps, P achieving their optimal values at points interior to

s ps, Pge From these relationswe can find those variables among

their intervals of definition., By setting the partial derivatives of 9”1With
respect to these variables equal to zZero, we compute a4y and q_qe From all

relations involved, the values of Pys p3, pA, p'A, p5, P can be obtained.

e e e v e e me e me A e e G S e we e e G e mm e me e e e e Gee G e e ke e M e me e e

®* Suggested by R. M., Thrall,
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Proof. Setting p, = Py = 0 in (1) and noting that for S = 1,
C can range over the whole interval 0 € C £ 1 we have

20 1) 2 n 1+l-a A+ C
(20) £ (1) Agxc{ (a+0) F A+c)
A+B+C—l
c< 1l

+(aA+-1-—‘é*——’=‘-C) C(o)‘}

Now it can be verified from Theorem 1 that & (0) < T 2 for all a, and
+ 8

from Theorem 2 that ﬁ (1) € 2+ L,E__&_ £ (1) forall a and T.

Substituting these estimates in (20) s

(21) 5(1)521?::! {l+l-§-—§-(A+C) [2+-1-7‘2'—i E(lﬂ
Cel
A+C=1

l+a
+ (ad + C
( ) )l+aj

The maximum occurs at A =0, C = 1, Sos

P 2
(22) 5(1)51+(1-a)+(..1_.£_%)5(1)+1=3-a+L1.-:4~_&Lg(1),

(23) (1+ ,5)4(3..- 2) EMW £3-a,
e
(24) Q) < — Q. E. D.
Lemma 2.
1+

J1-a 2(1 + a)
-1 -a) & 1-a)
8(1L +a '
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2
Proof:s Combining the two inequalities: 2 =28 ¢ 1, (1l -28)" <1, the

2 l+a
2
following relation is obtaineds {1 =2)" (2 - a) & 1. From this
2(1 + a)
3 2 2
5(1-8)” 4, B+a)(1-a) . (1-2a) (2-a8) 1, or
8(1 + a) 8(1 + a) 2(1 + a) =
(1-0a)’ Gia) Q-8 (1-2)°
—a) + 8 = < 1- —8)_ , and finally:

2(1 + a) 8(1 + a) 8(1 + a)

-

4(1 - a) ( 2

- a 2(1 4+ a

1 - (1 - a23 = (1-2)
- 8(1 + a)

Theorem 3. The value of E: (1) and corresponding strategies are

1 +

l

given as followss A = B = 0, C=1, P2 =

(25) EQ) = 1+ £(0)

Remark: The proof of this theorem for a & 1/3 is a paraphrase of
the corresponding proof in RM~-791, with lemma 1 here used in place of lemma /
there, However most of the proof for the case a < 1/3, although following
a similar pattern, is essentially different. This proof will be given here,

Proof: (for a & 1/3)

We set & (0) = 1 in d.
l-a

1) £ (1) 2 l+1la =14+ £(0).

Substitute the values A=B =0, C =1 in (1), and the following

results:

(26) E (1) ?.p:ir;B [1 + l_'é'..%f(l) +_J_.___§___a_ £(O) + P, (—_1_,.2':._4. @(1)

+l-—£-a- E(l))j



)]

Since \¢(1) = 5-' (0) = £(0» The minimizing value of Py is either O or 1

- min 1+ 1 1—8.+ 1+a +1—ap
D.sD l-2a 2 2 2

2°%3

according as the quantity - I

1 - + £(1) is positive or negative (p3 is
arbitrary if the parenthesis is 0).

If - + £(1) € 0 then 5(1)<1E

, and the minimizing
l-a a

value of Py = 1. Then

1 _1 l-a 1
(27) 5(1)21+1_a >+ f(l)>1_a:

a contradiction. Therefore & (1) 2 + € (1) 20 and

= 0 is always a minimizing value., Then

P3

EWz1+ L =1+&0

1) £ (1) & 1+ 11 .

- 8

Set p, = p3 =0 in (1), to obtain

1l ~ 1
(28) E (1)$Arf§>,cc [l+ a(A+C‘¢(A+o> (aA+ +ac)l_aj

(o (35 # () w9004
g (c, 4)

We propose to evaluate maxp (C, A). The set A 4+ C €1 can be

n

]

A+C¢- 1

represented as in Figure 3, by the area enclosed by the line A + C = 1 and

the coordinate C-axis, and A-axis. Consider the following two subsets:
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(1) Those points for which C < A, lying above the line A = C, indicated
by the horizontal lines. (2) the complementary set for which A =C, below

and including the line A = C, indicated by the verticals.

N
=

Al

KM

0 o / C

et (C, A) lie on set (1). Then C < A, Using the value of
Theorem 2 we have
2

1+ (&+C) [I;a(l%a+ AEC E (1) L2l

2(1 + a)

(29) ,6 (c, 4)

i

1+ (A+0) (% + l‘f_a>+ l:-%- 4%1-+&a) EW) ¢
It is evident from (29) that the coefficient of C is greater than that of A,
Therefore a maximum cannot occur on set (1), since for any pair (GO, Ao) such
that CO +4, = land G, < A, , we can (properly) increase the value of
142(00, A,) by increasing slightly C, and decreasing A,, without violating the
above inequalities.
We conclude then that any maximizing pair (C, A4) of f3 must lie

on set (2). In this set A € C and



(30) A (C, 4)

I
b
+
~~
b
+
Q
N
‘ —
Nj 1
fe-}
/‘\
-
1
®
o
+ >
Q
v
ji

"
-]
+
VS
I
+
—~
>~
|-
HI
+
™
™
-

)...l
[t
{_/

=

2
+ [ + —2_ 4+ Lc
2 l1-a 2
=1+ kA + k,C .
Here again the argument must be divided into two parts according as
a) kl > k2, or b) kl [ k2 .
a) Assume ky > k,. Then from this follows

(31) £q) L=2 > o

4(1 + a)
(32) @ > 2ltea)
1 -a)3

But then the maximizing pair of /8 (C, A) is (5, 3) and then:

(33) Mgl ); 5<1)L(1'+a5 i +%+1ia+%J

l-a
1
1+ 755y 4( 5 (2) 8(1 + a
from which finally results:
(34) (1) e
_ (- a)
8(1+ a)

but this by lemma 2, contradicts (32).
S0 we conclude kl S k2’ from which it follows that the maximizing
pair is (1, O) and

(35) max,ﬁ (C, 4) = 2+ =14+

8
l -2 1

L, &) & 14+ 2
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With £ (0) and £ (1) evaluated, all the unknown values in the ex-

pression for :;ZQT) are obtained, and therefore the function J;TIT) is known.
Furthermore, with this function known too, all the unknown symbols in the
expression for @ in (1) may be replaced to obtain a function of A, B, C,

Pys P3s linear in any of these variables, A summary of these values follows,

Summery of Result Obtained and General Remarks.

A1l values and strategies obtained to this point are collected in
Table IV. For all functional values, the values of a are split into two
overlapping sets a & 1/3, a 21/3, and this is the way that the computations
were performed except for the case of & (0), where the case a = 1/3 is
treated separately. This is not shown in Table IV, but a glance at Theorem 1
will show that there is some arbitrariness in the choice of strategies, even
though the value of E:;(O) = 3/2 conforms to the two general formulas given§

1 and 2

l-a l+a
It is also opportune to observe that the point of view of the proof

.

of Theorem 1 is to start with the function ¢ with S = O and to set out to find
in a direct way the optimal value of this function and all the sets of values
of 4, B, C, py, Py that provide this optimal value. In this sense theorem 1
completely solves the problem. This approach is in contrast with that of
Theorems 2 and 3. There specific strategies are shown to yield the optimal
value of the payoff function, without a claim that those are a2ll the optimal
strategies (they are probably not). Also in the last two theorems, no indica-
tion is given of how these strategies are obtained. As a matter of fact the
strategies presented are generalizations (with the parameter a worked into

them) of strategies given in corresponding theorems in RM-791.
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As already stated, E1) =1+ & (0), for all a. From this and
from an inspection of Table IV or Theorem 2, for that matter, the following

general expression forﬂ (T) is obtained.

(36) F

_ 1- a2 . i
&_(O) + £ (1) L——-)-—Z(l +aa) min (T, 1 - T)

_ 2
E(0) + 1+ & (0) %—“‘;%min (T, 1-1),

for all a.

We can now give an expression for @ in terms of all the known
functional values. This we obtain by substituting the value of f (T)

given in (36), in (1). We obtain

(31)  § - 1+%ﬁg(o)(A+c)+£(1)ﬁlﬁ_&§ min (4, C)
+ize Eec + pz(.l_:.éB-aA)&(o)
+ pBL- L2 E(0) (a+0) 1-1—:——a-L E(1) min (4, C)

4(1 +
+(aB+-:-L——g~5-C) C(Bic)

This expression can be condensed by using what will be referred to

in the rest-of the paper as 't-he':,)\ -notation, as followss
(38) g = 14+ )\l(A+ Cc) + >\2 min(A, C) + )\30 + P, >\3B - )\41\.)

+ Py (:- >\3‘(A+ c) - )\Zmin (4, ¢) + ( >\5B+ Xéc)fé——f{—aﬂ

where the values of the >\'s are given by Table V., The expressions of (37)
and (38) are valid for all values of a. This makes them extremely useful
in the treatment of 5(8) below, since the necessary computations do not

depend, as they have until now, on whether a is greater than or less than 1/3.



TABLE V

Values of the ;\'s.

_1l

Value

- Symbol Formula a €1/3 a > 1/3
e ——

’11 : ; A 211‘-: 1

2
a-2? 1-a?(2-a) (L-2) (3+a)

l.‘!., L(1 + a) 6 (1) L(1 + a) 41+ a)2

3 - 1 -

A, e 3 e

| (0 28

:LHf & E: ) 1-a l+a

l{ a a 4

J‘ l-a l-a 1l -2

A 2 2 a
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The last few paragraphs represent an effort to remove the split that
exists at a = 1/3 in the treatment of j/“ (T), and associated values. Some
general expressions were obtained, but still the proofs and computations had
to be separated into two cases. However I camnot help feeling that it must
be possible to bring forth some more general considerations which will bring
the two cases together, but this is all I can say at the moment,

Notice that the split beginswith the values and strategies of E (0),
which exerts such an influence on the remaining computations, that the split
in values of f (T) and 6 (1) are entirely accountable in terms of the differ-
ence iné(O), Not so regarding strategies. In the case of 8(1) there is
no split as can be seen from Table IV. The same table shows however that
strategies vary from the case of a £1/3 to &21/3 for Configuration II
in spite of the fact that the expression of F (T) in terms of & (0) is the
same in both cases.

One final remark before we plunge into the computation of £(S).
It.was pointed out at the outset that P will be allowed to stand still, at

variance with RM-791. This is represented by p', in Configuration II. From

4
Theorem 3, it turns out that there is an optimal strategy for which p! L= 0,
which constitutes some evidence that Isascs' prescription that P stand still

constitutes no essential restriction, Notice, however, that Theorem 3 does

not show that p! 4= 0 for all optimal strategies,

Determination of 8 (s).

In this section I have extended (as far as has been possible) the
computations appearing in RM-791 for 5 (S) to the general case treated here.
Very, few things are proved, since proofs for them do not exist to the best of

my knowledge. It is merely shown that if the computations for a = 1/3 are
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repeated for an arbitrary a the given results are obtained. Therefore, the
formal approach of the previous sections will be abandoned. A few computations
and several remarks will be given instead of lemmas and theorems.

The fact that a = 1/3 is an exception will become still more evident,
since it turns out that EE(S) is not composed of linear pieces for the general
case as it is for a = 1/3.

We first transform § from (38) into a more suitable form for the
purpose of computation. We first substitute the value of Bas 1 -4 - C

and obtain:

(39) g = 1+ >‘1(A 4+ C)+ ,\2min (4, c)+)30 3 p2[>\3(1 -C) - (>\3+ AA)'J

+p3{- /\3(A+C)—)\2min (a, c)+[ /‘\5(1—A)

r g hp o] 5(33")}

Thens
(40 (8) = (c h
) E ) Osmgxss/‘( ) where

41 c) = 1 c g, c

(@ M@=+ (hyr hpor  mx 6,0

and

(42) O(a, ¢) = AlA + )zm(a, c)
+ min{ Py [}\3(1—0) - ()\34’X4)g + P3 .X(A’C)
Pp,P3

and finally

(43) \a, c) = '-/\B(A +C) - >\2min(A, c) + [)\5(1-- A)

kel
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The first step is computing /«( (C). This is done following the same
steps described in Isaacs' paper.
/\2 + )\ 3
Axt A€W

that this number is > 4 by substituting the values of the /\ 's from the

Consider the number 01 = . It can be shown

second column of Table V, and the formula £ (1) = 1 + £ (0), and noticing
that . £ (0) = 1.

Then for C in the interval C,e C €1 the value of /‘( (C) is given
by:
(44) /{(C)=1+z\1+)2— )\4+()\3+)\4-—,\2)C
and the strategies are:

A=1-0CG, = 0, p2=l.

P3

The proof of this will only be sketched, since it again represents
2 repetition of the proof for a = 1/3, and since it rests on a principle which
hes been used over and over in this report.,

By setting p, = 1, p3 = 0 in (42), we see that the maximum for this
particular set of values of P, and P3 occurs at A = 1 -~ C and the value obtained
in (42) is
(45) A+ A,-Apa-o
This is obtained using the fact that C 2 % which is equivalent to 1 - C <€ C,
So we see that max & (&, C) = this value,

On the other hand substituting A = 1 - C in (42) and (43), we see
in (43) the v
(43) EC_A

>\ (1~ Cié,())) 0, and the minimizing p3 in (42) is 0. On the other hand,

) becomes &.(1). Then for C in the above interval,

the coefficient of Py € 0 and Py = 1 is the minimizing value, and so the value
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obtained is (45), which then must be equal to max #(4,0). Substituting this
value in (41) we obtain +the value (44).

To perform the evaluation of /((C) in the next interval, applying
the method described by Isaacs; it is necessary to make the following
assumptionss

1) M (C) is increasing everywhere and therefore & (8) = M (s).

2) For every value F in the interval C;€ F € 1, there is a pair

of values A and C such that F=..C .., A& C, and
1-4

M) = 14 )\1+)‘3)c+ é (4, ).

It might be possible to prove the validity of these assumptions by
a more detailed analysis of A (C), but I know of no way of doing it. They
are not shown to my satisfaction in RM-791,

However, by using them we can show that there is a 1-1 correspondence
between the values of F and those of C defined in assumption 2) and that
while F describes the interval Gls F £ 1, C describes an interval 02 €ce¢C

1

and it is possible to compute C Also the A discussed in assumption 2) can

e
be computed as a function of C.

In what remains of this section, it will be assumed that a & 1/3,
The whole argument that follows is valid for an arbitrary a, except for the
assumption that expression (51) & O. This inequality is valid for a21/3,
but not for an arbitrary a, and the main conclusion depends on this
assumption. So the assumption that a 2 1/3 may be replaces by.the assumption
that the expression (51) < 0.

Consider a peir of values A, C for which Cl"- ']'.—-(—LE € 1, Then
by assumption 1), )\ (A, C) assumes the form:
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(46) A4, €) = - ) (a+0) - ) nin (4 C)

+[‘>&5(1—A)+(>\6—>\5) CJ

14 +), - + +A, - —C
[( Ath A+ (s, AT
Consider a fixed value of C and an arbitrary value of A satisfying

the inequality

G -
(47) C’.‘l $ 2 21 .

If for that value, N (&, C) > 0, then it is clear from (42) that the min-
imizing value of P3 is O0,. and then é_(A, C) is an increasing function of
A, This is clear if p, =0 (minimizing value) , since then @ (4, C) =
/\ 14+ X 5 min (4, C) an increasing function of A. If the minimizing P,
is 1, then & (4, C) = ()\1 - )\3— M)A + min (4, 0) = min (&, C), an
increasing funection of A,
On the other hand, if )\ (A, C) & 0 for the prescribed values, then

the minimizing P3 is 1 and the terms involving A ares
R T W WS WS VD Y P U O WD W R
- - c
+ ( A’é )\5> (N + A - N

2
l1-4
or

(49) -pz()\3 +,>\4) A+[>\1 - )\ 3 )5(1 +\1 +)\2 -XA)J A
+ g Ny Dyt dy, - Ap) =L

1-4

Plainly the first term is a decreasing function of A, It is my
purpose to show that the last two terms form a decreasing function of A, and

therefore @ (A, C) is decreasing.
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Taking the derivative with respect to A of these two terms

we get

(50 A -hmAs @adiedy -2 e Q- M) (A N - A A)
CZO VD WED W EV IR WY WEAC WEDWES S5 YRS W

2

This is so because C & 1,
is so beca T €

The right hand member becomes

(51) )\l+ >\6(,\3+ )\4- >\2) -/\3— /\5(l+/\1+ /\3) .

It can be shown (See appendix) that (51) is £ 0. Then, this shows that (49)
is a decreasing function of A, and so is & (4, C).
To summarize if /\(A, c) > 0, @ (4, C) is increasing with A, and if
,\(A, C) € 0, 4 (4, C) is decreasing with A, It follows that if >\(A, C)

vanishes at all for values of A, for which A £ C, Cl & —i-Q—A— €1, (assuming
C fixed), then any such value maximizes & (4, C) and /{(C) =1+ ()\1 + ,\B)C
+ 4 (A, C), for that value of A, Our next task is determining for what values
of C, the corresponding values of A exist, and to compute them, We start by

setting (46) equal to zero.

To simplify the computations let us introduce the following notations:

(52) @) Uy= 1+ N+ Ny- N,
b) C{2=)\3+>\4
IV Uy = Nt A,
DUy, = Nt

Then with this notation, (46) equated to zero becomes
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(53) )(A+®~ XA+[X u-M+q_][ét+q2 J 0.
1 -
Also the fact that A £ C is used., Multiplying and regrouping we get

(58) = YA (Y Yy kg U= Ados A, W (-a)

o2
1-4

= O"

U, Uy

This is clearly a quadratic equation in both A and C. At this point a change

of variables will simplify matters. We replace the variables A, C by

C _,c. Solet
1-4
(55) F = ._.._C._.._ °
1-4

With this substitution (54) becomes

(5 - U0+ (U U d Uy AR Ay,

3
oy ., w0 = 0,
2 3
which is evidently linear in C. Accordingly, we can solve for Cs
GF

(57) C= ,
€y € F+ (U, Wt huy- WP+« 4}, 4,

Finally we introduce a notation to replace the >\ - notation and the ¢ -nota-

tion. It will be referred to 7z -notation,

(58) ) Y= U= A Lt N,
B ,m Uy MmN -k Bye h -0
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) N T “1‘<B+’\5((2”>‘3
SOVEDVNEED WD WD W
1D WD WD W WD W
4t Aoy
AatAst ALTed e A=A

1

VA,

1

Then (57) becomes

(59) . . 27(15' |
7(21? + 7(3F+7(4

This gives C as a function of F in the interval C; &€ F < 1, From (55)

we obtain A as a function of F, thus:

(60) A=1- %l

N, = s,

It would be desirable at this point to show that A £ C. This is impossible,

since it can be shown that there are values of a for which this is not so. To
see this,notice that the 7Z 's are algebraic expressions in a. So for a fixed
F, A, C are continuous functions of a, Now for a = 1, by substituting from
Table V and from (58) we get:

(61) C=0, A=1, A > C.

And although we exclude a = 1, there must be values of a close enough to 1

for which A > C holds., 8o we only deal with those values of a for which A € C,

What those values are however, I have not been able to determine.
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The next task is to show that as F describes the interval Gl € Fg 1,
C describes some interval, For this cal: the function to the right of (59)
L(F). We first show %FL, S 0, and then evaluate L at the end points. We first
consider the function }1 R 4+ 7( 3F + 714 = F( 7{2F + 7’( 3) + 7(_ i
If 12F + 7? 3 & 0, then the function 2 7{ >\ + >\

+ )\ (1 + }\ + )\ >\ ) It is easy to see from Table V that this
expression is posi'oive for values of a # 1. Again if ﬁ r+ 7{ <0
then the function & 7[2F + U5+ N, 7{ , & 0 then this in turn is

Z 7{ 3 ?{ L Again by substituting in the values of ;( and 7’(
we can see that ”F + 7(3:? 7’( 4, 0. Finallyif?_ € 0, then

2 24 :
’?[2F+7131'+‘}z4- 7{24-)(3 _7(4_:)\ >(1+>\ +>\)
> 0 for a#l. Summarizing then, 7[21?2 + N F F + 714 S 0 for all F and
all a # 1, Therefore L(F) is well defined, and therefore the corresponding
values of € and A are also well defined,

We now show % » 0.

R 7/ (Ea
daF [71 F2s: 7’( F+7Q

The denominator is positive as we have shown, If 7{2 € 0 then the numerator

s > 7/ 4o end e saw 7( to be positive, On the other hand if 7(

thei the numerator >W 7( o Nowe
(6] 724-7{2: >\2_+ >\3+>\’5(1+ >\1+ >\3)
- Rt A, )jz;“ Ao Ao

It 55 evident that to show that . >\ LT >\ 5 >, 0, it suffices to show that

T >\,6(>\3*’\A) > o
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2

(64) XB-,\6<A3+>\4>=[:1-a-15a1;a]5<o>

> 1;&_1;& 5(0):0

for a &« 1, Therefore 41 > 0,
dF
Let
C
(65) G, = L(Cy) = 46l

2 5
NLy + 500 774

Let us examine L(1) more closelys

_ (&
(66) L(1) = o Mo T
We have already seen that the denominator of (66) equals
Xz-!- /\6(l+ >\1+ )\2)° From Table V we ses that 1 + A 1+ /\ 3
=& (). So
o A,
Aot he W 1’

Thus we see that as F describes the interval cls F <1, C describes

(67) L(1) =

the interval C, = C £ Gy, and the maximizing values of A are given by (60).
It remains to compute 4 (C) and this will give us the value of E(S) in

this interval, since we are assuming that & (8) = /»((S) We evaluate A (c)

by turning back to (41) and (42). There are two cases to distinguish: (a)
AD> 2 (L -¢)and (b)) < 3 (1-C). In the first
JPEDY NS
3 4, 3 4
case we see from (42) that the minimizing value of p, = 1, and

(6) A ()= L® =1+ Ayt Ro® + (Ay+ - N5 A
where A(F) and C(F) are given by (60) and (59) respectively.
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In the second case /L((C) is given
(69) A (©) = UE) =1+ (Ap+ AAE) + (Ng+ A0
Both cases (a) and (b) occur for suitable values of a. A precise determination
of these values has not been possible. It is even possible for the same
value of a to have both cases,depending on the value of F. Thus (68) and (69)
give the value of LL(F) in the interval cls Fe 1 or what is the same,
//((_C) in the interval C, € C £ Cy. We have thus succeeded in evaluating
A{ (C) and therefore & (S) in the interval [ G,, 1] .

To summarize, & (8) in the closed interval from C, to 1 is obtained
by setting & (8) =M (S) and is given in the interval [02, Cq ] in case (a)

by (68), and in case (b) by (69).
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Supplements Some Proposed 2-dimensional Extensions of Isaacs' Game,

The following is a brief account of several extensionsto the plane
of the pursuit game of RM-791, proéosed in Project M720-1, It represents
partly.my own work, but mostly that of persons whose names are attached to the
specific games. The brief attention given to these games was mostly of a
descriptive non-quantitive nature.

The first attempts, proposed by R. M. Thrall, consisted in subdividing
the plane by a system of congruent regular polygons, and having E move from one
polygon to an adjacent or remain stationary, and P move from one polygon to an
adjacent polygon, to one adjacent to an adjacent polygon, or remain stationary.
A signal would consist of a polygon and those adjacent to it, with a set of
numbers indicating the conditional probability that E be at each one of thenm,
given that E is at one of them.

Of these the case of triangles, squares and hexagons were considered
specifically. The square and hexagonal variations were abandoned almost im-
mediately because they appeared to be hopelessly complicated. The game with
triangles was considered in slightly more detail, It is to be played on an
infinite arrangement, a portion of which appears in Figure 4. Here E and P
are to move across the sides of the triangles, E across one side, P across
two at most, This is somewhat unrealistic. For example, notice that tri-
angle 38 in Figure 4 is "next" to 39. Yet, neither E nor P can get from 38 to
39. This perhaps could be remedied by prescribing that the players may also
move through vertices as well as across sides. This however has not been con-
sidered. Again, from Figure /, assuming E is at 38, the set of signals may

be represented in Figure 5 below:
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af 32 E 30 +¥

Figure 5’

If we are to search for a closed set of configurations, we find,
contrary to the one-dimensional game, that there is no one such set which is
evidently better than any other. In fact there are many closed sets of con-
figurations, and no way of telling beforehand which one is best. But the
union of closed sets is closed, therefore there is a maximal closed set of
configurations., It is with this set that we must work. An example of a

closed set of configurations ( which is not maximal) is given in Figure 6,



36

T'

Figure 6 has an explanation similar to that of Figures 1 and 2. The
arrow indicetes the position of P; S, 1 - S, T, T', 1 = T -~ T' indicate the
probability of E being at the corresponding triangles.

The following game was suggested by W, Hoffman of Project M720-1,
as perhaps a simpler generalization., It is actually a one-dimensional
arrangement in two dimensions. The board consists of an infinite rectangular

lattice, a portion of which is illustrated in Figure 7,

f ) ] o o ] [ () o [} ] o r
e ) o o o ° o ° o o o o
d ° o ° ° o ° ° ° ° ° ° )
C o o o ) ) ) ° o ° 0 ° b
b ¢ ° ° ° ° ° o o ° ° ° °
a o 0 ° ° ° o ° ° ° ° °

FIG. 7
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Here two points can be defined to be adjacent if they belong to a
square, with sides parallel to the edges of the figure, whose four sides contain
(altogether) only four points. Then, with this definition of adjacent we can
give the usual rules for the movement of P and E from point to point. The
signal given for this game is such that it indicates both the position of E
and the direction of movement. From Figure 7, it can e seen that E can get
to any point from four different directions (along four lines). BEach direction
indicates a set of three signals. So there are twelve possible signals, although
once the direction is determined, only three of them are possible. The sig-
nals may best be described as follows: Given E to be at some point, and the
line along which it moves to it. The points on this line (one of which is the
point at which E is) form a lineal set of the kind used in the main portion of
this report and in RM~791. Then the choice of signals is that prescribed on
that line by the one-dimensional game., If E remains stationary, the direction
is assumed to be that of the previous move, To make the game completely un-
ambilguous, an initial direction maey be determined by a chance device. An
example will serve -to illustrate and clarify this, In Figure 7, suppose b

has arrived at point (d, 6) from (e,5). Then the possible signals are:

SN (AR

(e, ), @, 6, (e, 7]

l:(d, 6), (e, 7), (£, a)j .

If on the other hand, E had arrived at (d, 6) from (e, 6), then the signals

0>

-«

67

would have been
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[(b, 6), (c, 6), (d, 6)J

[:(c, 6), (4, 6), (e, 6)_]
Ed, 6), (e, 6), (£, 6)’-] :

It would appear that this scheme allows E a great deal of mobility.

S

)

It turns out that this mobility lasts only as long as P is not close enough
for capture. As soon as E changes direction it reveals the position from
which such a change occurred (the intersection of the line of the previous
signal with that of the present one); and that two of the three choices for the
present signal reveal his position unambiguously. This property will probably
make a solution simpler, It may even be possible to give the solution in
terms of solutions to one-dimensional games. This possibility has not been
investigated,

Regarding closed sets of configurations, it turns out, as should be
expected, that configurations I and II of the one-dimensional game, form a
closed set here too, But there are others, and something like a maximal set

may be necessary.
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Proof of the inequality f(‘l‘) - 5(1) T 2 0,

This proof is done as a supplement to the proof of theorem 2, So
it will only be done for a € 1/3, Also according to previous remarks. it
can be assumed that T € 3.

Suppose f (1) - s (1) T « 0. Then, going back to the proof
of Theorem 2, and to (18) we see that in that case, the minimizing value of

p[,,' is 1. Then we have:

(70) ?(T)>1+l—;ﬁ5(o>+i.ls_:_@_ﬂw),

2(1

() Fm 3 g/ 1

This gives a lower bound for f (T), and (16) obtained in the first part of the
proof of Theorem 2 gives an upper bound. Turning now to (1) we find, using

(16) thats

(72) E (1) & max {1 + =1—~~‘+-‘?‘-(A +C) [-«—- + £(1) .(..____)___m_ln(A,CI]
A,C A+C

+(aa+ 2E20 E(o)}< 1+1'a[
1-8)° (1 lia) 2
*’au)%1+a(§)+ B ST

__(;1__:_.&).__ 8()+1+3a

2 41 + a) 2(1 - a)
Finally:
(73) 2
-2
5 1 £ (i’ a)?
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It is quite elear that

(74) ,
= Ty > _g_L TP
1~§IH‘+%)‘ 1 %—’f%)- (1‘5("17&57
Therefore
(75) TC(l)_e%é(l)eIfa/ %1-3)4"23'/ =— |e Fo
R A Ry

a contradiction, This establishes

(76) F) -1£@1) 0. Qe d

A similar proof holds for a >1/3.

Proof of the inequality

At Ml As A - XD - M- Aas AjeAp) £ o

This inequality which involves (51), arose in connection with the evaluation
of £ (8) in the interval 02 € C £ Cqo The proof is valid only for a 2 1/3.
Values of a can be found close enough to O for which the inequality runs in

the opposite direction,
By substituting the values of the >\‘s from Table V into (51) and

simplifying, the inequality becomes

(77) .l__é-.é.[:l.g_& & (0) -H 2(1‘)} -2 £ 0,

Now let a 21/3. The 1left hend side becomes

l-2a 1 - 3 a _aéL:'_ﬁ...a < 0
2 v 4(1 + a) 2

which proves the inequality.






