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Abstract

Ants are important generalist predators that alter both predator and
herbivore communities and can therefore indirectly affect the primary
producers in an ecosystem. In this study, | evaluated whether excluding
ants would change the composition of the arthropod community on 3
different clones of common milkweed (Asclepias syriaca) and whether
these changes would cascade to the plant level and affect herbivory levels
and plant performance. The effect of A. syriaca clone on the herbivore
community and on the impact of ant exclusion was also examined.
Application of a sticky pest barrier around the base of the stem
successfully excluded ants from treatment plants. Total spider abundance
was greatest for ant-free plants. After subdividing spiders into size and
guild groupings, ants reduced the abundances of some groups, while
others showed no difference between treatment and control. Coccinellid
abundance did not respond to the treatment. The presence of ants
increased abundance of the tended aphid Aphis asclepiadis and Lygaeus
kalmii and decreased that of the untended aphid Myzocallis asclepiadis.
On one clone, ants negatively affected Danaus plexippus larvae, while
ants did not affect Liriomyza asclepiadis across all clones. Herbivore
damage, as measured by percent leaf area removed, was affected by ants
and accumulated only on the ant-exclusion plants on two clones and on
both the treatment and control plants for the third. The increase in damage
caused by exclusion of ants did not significantly affect the measures of
plant performance assessed, relative growth, leaf loss, and fruit
production, across all clones. Ant exclusion did reduce fruit production on
one clone. These results provide evidence for the importance of ants to
the structure of the milkweed community through direct and indirect
interactions, although further long-term research is necessary to accurately
assess cascading effects on the plant.

Introduction

The scientific community still does not fully understand the mechanisms that
control terrestrial ecosystems and allow the persistence of a “green world” and
coexistence of thousands of organisms. This is true in spite of years of research
investigating the importance of “top-down” compared to “bottom-up” controls since
Hairston et al. published their “green world” hypothesis nearly 50 years ago (Hairston et
al. 1960). In a strictly “top-down” controlled world, predators keep herbivore
populations in check and are themselves regulated by density-dependent prey availability
and competition (Hairston et al. 1960). On the other hand, in a “bottom-up” controlled



world, nutrient availability and other environmental components vary the quantity and
quality of food available to successive trophic levels, which in turn control herbivore and
predator populations (Sinclair 1975; White 1978).

In reality, nature cannot be divided into ecosystems under top-down or bottom-up
controls. Instead, it is likely that in most ecosystems, there exists a balance between the
two types of controls and both can coexist. However, the balance is dependent on
temporal variation as well as variability in abiotic conditions and different trophic levels
(Leibold 1989; Hunter and Price 1992). The effects of top-down and bottom-up controls
do not operate independently of each other, but rather interact (Moran and Scheidler
2002). This causes different experimental studies to find differing magnitudes of each
type of control in diverse systems (e.g. Roininen et al. 1996; Dyer and Letourneau 1999).
Predators have the potential to indirectly affect primary producers through their effects on
herbivores and numerous studies have found evidence for this (Schmitz et al. 2000; Halaj
and Wise 2000; Terborgh et al. 2001, Trussell et al. 2002). Halaj and Wise (2000) found
that generalist predators initiated many trophic cascades, although omnivory by
generalists has the potential to dampen trophic cascades into more of a trickle, enhancing
the importance of bottom-up effects (Dawes-Gromadzki 2002).

In many terrestrial ecosystems, ants are key generalist predators that can have
profound effects on lower trophic levels, including herbivores (Holldobler and Wilson
1995). The majority of studies examining the direct and indirect effects of ants
investigate mutualistic systems in which ants are attracted to plants by the presence of
extrafloral nectaries, nest sites, and/or honeydew-producing homopterans (Messina 1981;
Whalen and Mackay 1988; Michelangeli 2003; Styrsky and Eubanks 2007). In each
situation, the availability and magnitude of benefits for ants can increase their presence
on foliage and their foraging activity, but the strength and direction of the effect on the
plant host depends on the trade-offs between costs and protection (Bentley 1977; Way
and Khoo 1992; Strysky and Eubanks 2007, Grover et al. 2008). By protecting aphids,
ants could increase the amount of herbivory a plant experiences (Way 1963). Therefore,
ant-attendance of aphids can lead to either positive or negative indirect effects on the
plant (Styrsky and Eubanks 2007). Ants can directly affect other invertebrates by preying
on them, or they can cause other members of the community to alter their behavior when
ants are present, both of which can indirectly affect primary producers (Stamp and
Bowers 1996; Rudgers et al. 2003). In the absence of these incentives, ants can also have
important indirect interactions in food webs simply because of their abundance and
foraging strategies (Way 1963, Atelgrim 2005, Sanders and Platner 2007).

As well as indirectly affecting plants by altering rates of herbivory, predators can
induce chemical responses in plants through their effects on herbivores (Stamp and
Bowers 1996). Common milkweed (Asclepias syriaca L.) is useful for studying chemical
responses Vvia indirect effects because of its latex and cardenolide based chemical
defenses, which can respond to herbivory (Zehnder and Hunter 2007). These traits and
other measures of plant quality vary among different genotypes in plants, altering plant
quality and affecting the herbivore and predator community on the milkweed and
interactions between the two (Agrawal 2005).

The goal of this study is to determine how ants influence the milkweed arthropod
community and how these effects cascade to impact herbivory on the plant and plant
performance. | compare the effects of ant exclusion on 3 different genotypes of A.



syriaca. The different plant clones provide genetic and environmental variability, which
may interact with the top-down effects of the ants. | hypothesize that excluding ants will
alter the arthropod community by reducing abundances of other predators and of some
herbivores while also indirectly benefiting populations of other herbivores. This effect
may vary by clone. In addition, | hypothesize that these changes will indirectly reduce
herbivory on the plants, which could cascade to affect plant performance.

Methods and Materials

Study Site and Organisms

The experiment was performed at the University of Michigan’s Biological Station
in northern Michigan (45°33'31.10"N, 84°40'40.56"W). The study site consisted of an
open field with well-drained sandy soil of glacial origin. Caretakers at the station
periodically mow and burn the field to prevent succession. Over fifty different clones of
A. syriaca grow in the field, although the number of ramets per clone varies greatly. A.
syriaca is a perennial that spreads asexually via rhizomes, producing many genetically
identical plants, or ramets, around the center of the clone.

Although milkweed possesses significant chemical defenses, arthropods
communities inhabit the patches of milkweed. Some of these are host-specific herbivores
of the plants. Several significant herbivores that feed primarily and/or specifically on
milkweed are Rhyssomatus lineaticollis Say, a weevil (Coleoptera: Curculionidae);
Tetraopes tetrophthalmus Forster, the red milkweed beetle (Coleoptera: Cerambycidae);
Aphis asclepiadis Fitch, an ant-tended aphid (Hemiptera: Aphididae); Myzocallis
asclepiadis Monel, an untended aphid (Hemiptera: Aphididae), Lygaeus kalmii Stal, the
small milkweed bug (Hemiptera: Lygaeidae); Danaus plexippus L., the monarch
(Lepidoptera: Nymphalidae) and Lyriomyza asclepiadis, leaf mining flies (Diptera:
Agromyzidae). A number of predators spend at least part of their time foraging on
milkweed. These include reduviids (Hemiptera: Reduviidae), lacewing larvae
(Neuroptera: Chrysopidae), syrphid fly larvae (Diptera: Syrphidae), insidious flower bugs
(Hemiptera: Anthocoridae), ladybird beetles (Coleoptera: Coccinellidae), spiders
(Arananae) and ants (Hymenoptera: Formicidae)

Experimental Setup

In early July 2008, 120 plants were chosen from 3 different clones in the field:
clones 15, 26, and 46 (as demarcated by Mark Hunter), henceforth referred to as clones 1,
2, and 3. Forty ramets from each clone were selected based primarily on isolation from
other plants and similar flowering phenology. Plants were used that were not or were
barely touching other plants, which helped limit ant access to the plants. To limit ant
access, | clipped all vegetation within 30 cm of the plants and any vegetation outside of
this cutoff that could potentially form bridges. Ramets adjacent to the focal plant were
not clipped, but were instead held back from the experimental plant with flags.
Vegetation was clipped when necessary over the course of the experiment. Plants in each
treatment did not differ in beginning (day 7) height (U=1550.0, n=115, P=.568),
beginning number of leaves (U=1461.5, n=115, P=.354), or number of umbels




(U=3250.5, n=115, P=.569), or maximum number of flowering umbels (U=1553.5,
n=115, P=.986).

On July 5 (set as day 1), | applied Tanglefoot® (Tanglefoot Co., Grand Rapids,
Michigan, USA) to the base of ant-exclusion plants (20 plants per clone) to create a
sticky barrier to ant movement onto the plants. | reapplied Tanglefoot as needed
throughout the course of the experiment to maintain ant exclusion. Initially, the
experimental plan was to investigate the effects of the ant-aphid mutualism using a full
factorial design. To attempt this, aphids were added to half of the Tanglefoot plants and
to half of the Tanglefoot-free plants on July 6 (day 2). About twenty aphids of various
life stages were added by hand with a paintbrush to the uppermost leaves of each plant.
The tops of the plants were then bagged to protect them from predation. | removed the
bags two days later and added enough aphids to obtain at minimum twenty aphids per
plant. Preliminary observations suggested extremely high mortality and an inability of
many of the colonies to persist and grow. Due to this difficulty, I did not supplement
aphid populations after this point. Log transformed total observations of A. asclepiadis
were increased by the aphid application treatment (U=2794.0, n=115, P=.003)

Arthropods
On July 13 (day 9), arthropod data were collected for the first time. Many of the

herbivores were classified to species, such as R. lineaticollis, L. kalmii, T.
tetrophthalmus, A. asclepiadis, M. asclepiadis, and D. plexippus. | recorded whether or
not the aphids were tended by ants. Leaf miner damage was used as a proxy for the
presence of leafminers. This damage was marked with a permanent marker to avoid
recounting. Predators were grouped into coarser taxonomic groups. | noted abundances
of ants, chrysopid larvae, coccinellid adults and larvae, and spiders. Spiders were divided
into different functional groups and were recorded as web-building, jumping, or crab
spiders. They were also size-classed into small, medium, large (<2 mm, 2-10 mm, >10
mm). After these initial surveys, data were collected every three days with two
exceptions, one in which data were taken again two days later and one in which three
days elapsed before data collection. This amounted to a total of 8 days of arthropod
censuses on days 9, 11, 14, 17, 21, 24, 27, and 30.

Plant effects

On 11 July (day 7), plant morphology, flowering phenology, and herbivore
damage were measured. For morphology and phenology, | recorded height of plant,
number of leaves and umbels, and the flowering status of the umbels. To quantify
herbivore damage, the leaf damage was divided into 0-5, 5-30, 30-50, 50-70, 70-90, or
90-100 percent categories. Whether or not the top had been browsed by deer and the
presence of weevil damage by oviposition in the stem was also recorded. Deer-browsed
plants were not included in any analyses, reducing sample size to 115 plants overall with
n=56 for the control and n=59 for the ant-exclusion treatment. | marked weevil damage
with a permanent marker to avoid recounting. Plant and herbivory data were collected
every three days, except for one instance in which data were collected four days after the
previous sampling. Data were collected on 8 different days (days 7, 10, 13, 16, 19, 22,
26, and 29).



Statistical analysis

Arthropod data were collected on 8 different days, but statistical analyses were
performed on the sums for all sampling dates for each plant due to low numbers of
observations per sampling date. Each arthropod or grouping of arthropods was not tested
for an effect of ant-exclusion if the number of plants that had observations was below 10.
Aphid data were log transformed to reduce the variance resulting from a few very large
values for total observations on one plant. Ant effects were examined using Mann-
Whitney U tests across all clones because of non-normally distributed data with ant
treatment as the grouping variable. The data file was then split by clone to individually
examine each clone for ant effects with Mann-Whitney U tests. Clone effect was tested
with a Kruskal-Wallis one-way analysis of variance. All statistic analyses were
performed using SPSS, version 15.0, for Windows (2006).

Results

Impacts on Arthropods

The ant-exclusion treatment successfully reduced the presence of ants on
treatment plants (U=33.5, n=115, P<.000), with only 4 ants observed on treatment plants
compared with 1035 ants on control plants. Ants and clone had varied effects on
different groupings and individual species of arthropods (Table 1). Ants nearly affected
total arthropod abundance significantly across all clones (U=1311.5, n=115, P=.056).
This total did not include aphids because their very high counts would dominate the total.
Arthropods were grouped most basically into the guilds of predators and herbivores.
Ants did not have a significant effect on either of these groupings, although the negative
effect on predators was nearly significant (predators: U= 1317.0, n=115, P=.060,
herbivores: U=168.0, n=115, P=.729). The herbivore guild included L. asclepiadis, L.
kalmii, T. tetrophthalmus, and D. plexippus, but this guild, as with total arthropods, did
not include aphids.




Table 1. Mean number of observations (x1SE) for arthropods and groupings of

arthropods. Means are averages per plant summed over all censuses (days 9, 11, 14, 17,

21, 24, 27, and 30). Ant effect P-values are represented by x=P<.05, xx=P<.01,
xxx=P<.001. Clone effect P-values are represented by y=P<.05, yy=P<.01,
yyy=P<.001. For individual clones, ant effects are represented by a,b=P<.05,

aa,bb=P<.01, aaa,bbb=P<.001.

Clone 1 Clone 2 Clone 3
Arthropod or group Ant + Ant - Ant + Ant - Ant + Ant -
Antstotal ®* ________1_ 10.06+2.67*% | 0.05+0.05" | 13.37+10.40%% | 0.05+0.05™ | 31.3746.19* | 0.11+0.07°" |
Coccinellid larvae ¥ 0.50+0.512 0.20+0.21° 0.11+0.11° 0.00+0.00? 1.58+1.27° 0.74+0.54°
Coccinellid adults 0.28+0.11° 0.60+0.16* 0.36+0.132 0.45+0.22° 0.37+0.12° 0.79+0.35°
Anthocorids 0.44+0.25° 0.15+0.08* 0.05+0.05* 0.00+0.00? 0.11+0.11° 0.26+0.17°2
Web spiders small. ¥ 2.00+0.55° 2.95+0.65° 0.74+0.25% 1.65+0.36° 2.63+0.72° 3.58+0.68°
Web spiders medium ¥ 1.39+0.38° 1.85+0.42° 1.58+0.46° 0.85+0.28° 0.84+0.32° 0.53+0.26°
Web spiders total ¥ 3.39+0.81° 4,95+0.90° 2.32+0.56° 2.50+0.56° 3.47+0.84° 4.11+0.71°
Crab spiders small Y 0.11+0.08? 0.60+0.20° 0.05+0.052 0.65+0.39° 0.53+0.18° 1.58+0.42°
Crab spiders medium Y 0.06+0.06* 0.15+0.08* 0.21+0.13% 0.20+0.12° 0.16+0.09° 0.84+0.26°
Crab spiders total > 0.17+0.09° 0.750.26° 0.2620.15° 0.85+0.44% | 0.68+0.19% | 2.42+0.53™
Small spiders total * ¥¥Y 2.11+0.58° 3.55+0.66° 0.84+0.26° 2.40+0.67° 3.21+0.72° 5.16+0.82°
Medium spiders total 1.44+0.37°% 2.00+0.41°2 1.79+0.52% 1.05+0.35% 1.11+0.35°% 1.37+0.36°
Spiders total * ¥ 3.56+0.85° 5.75+0.87° 2.63+0.66° 3.45+0.93° 4,32+0.89° 6.53+0.92°
Predators ™ |~ 4.89x1.107_ | 685:092" | 32130787 | 4.05:L067 | 832:2287 | 8531167
L. kalmii * 0.22+0.13 %2 0.05+0.05? 0.37+0.14°2 0.15+0.08°2 0.21+0.13°% 0.11+0.11°
T. tetrophthalmus ¥’ 0.33+0.20° 0.40+0.16°2 0.21+0.13°% 0.30+0.15°2 0.79+0.20° 0.58+0.162
L. asclepiadis 0.72+0.20° 0.60+0.22°2 0.16+0.092 0.70+0.21°2 0.84+0.28°2 1.26+0.33%
D. plexippus” 0.11+0.11° 0.65+0.19° 0.05+0.05% 0.05+0.05°2 0.32+0.22°2 0.16+0.162
M. asclepiadis (log) ™Y 1.74 +0.12° 1.48+0.13% 0.74+0.11°2 0.34+0.10° 0.42+0.08°2 0.25+0.10°
A. asclepiadis (log) * 0.38+0.18° 0.80+0.21°2 0.66+0.222 1.06+0.21°2 0.84+0.25°2 0.84+0.23°
Herbivores (aphids) ____|_ L44£035° | 1758028° | 079%0207 | 125:0.337 | 2160507 | 237:049°
Arthropods total (-aphids) 6.33+1.27°2 8.60+0.95% 4.00+0.87°2 5.30+1.25°2 10.47+2.42° 10.89+1.25°2
yyy

Predators included reduviids, chrysopid and syrphid larvae, anthocorids,
coccinellid adults and larvae, and spiders. However, only coccinellid adults and larvae
and spiders, including all sub-groupings by size and guild other than jumping and large
spiders, were sufficiently abundant for analyses. Ants did not significantly affect
coccinellid larvae or adults across all clones (larvae: U=1634.0, n=115, P=.829; adults
U=1434.5, n=115, P=.143), although coccinellid larvae abundance varied by clone (Fig.
1a). All groupings of spiders analyzed, except for medium spiders, varied by clone.
Small web, small crab, total crab, total small, and total spiders were significantly reduced
by ants (small web: U=1196, n=115, P=.009; small crab: U=108.5, n=115, P=.034; total
crab: U=85.5, n=115, P=.005; total small: U=1090.5, n=115, P=.001, total spiders:
U=1231.5, n=115, P=.018) and the reduction of medium crab spider abundance was
nearly significant (U=1427.0, n=115, P=.066) ( Fig 1b,c). Ant presence did not
significantly reduce medium web spiders, total web spiders, and total medium spiders
(medium web: U=1532.0, n=115, P=.470; total web: U=1388.5, n=115, P=.136; total
medium: U=1624.0, n=115, P=.870) (Fig 1d).
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Fig. 1. Effects of ant exclusion on predators. Mean number of observations (x1SE) for
a) coccinellid larvae, b) small web spiders, c) total crab spiders and d) total medium
spiders. Means are averages per plant summed over all censuses (days 9, 11, 14, 17, 21,
24, 27, and 30). Overall ant and clone effects across all clones are indicated above the
legend. P-values are represented by ns= P>.05, *=P<.05, **=P<.01, ***=P<,001. P-
values for individual ant effects on each clone are represented above their respective bars.

Ants and clone variably affected different herbivores. Several herbivores, L.
kalmii and M. asclepiadis, were more abundant on ant-present plants and there was an
overall ant effect on each (U=1436.5, n=115, P=.239 and U=1262.5 , n=115, P=.028)
(Fig 2 a,b). Ants reduced densities of A. asclepiadis when combining clones (U=1309.0,
n=115, P=.046), while they only reduced densities of D. plexippus when comparing
treatments on individual clones (U=1492.0, n=115, P=.136) (Fig 2 c,d). There was no
ant effect, but there was a clone effect on T. tetrophthalmus (U=1623.0, n=115, P=.841,
v*>=9.552, P=.008) and neither a clone or ant effect on L. asclepiadis (U=1465.5, n=115,
P=.242; v%=5.272, P=.072). Ants tending A. asclepiadis were observed at some point
during the experiment on 10 of the 66 plants that hosted A. asclepiadis. T.
tetrophthalmus was the only herbivore significantly affected by plant height group and
were most common on tall plants (3 height groups; small: 36-53cm, medium: 54-64, and
large: 65-103) (x%2=9.367, P=.009) . Plants on which tending occurred had more A,
asclepiadis and total ants than untended plants (A. asclepiadis: U=90.0, n=115, P< .001;
ants U=97.5, n=115, P< .001).
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Fig. 2. Effects of ant exclusion on herbivores. Mean number of observations (x1SE) for
a) L. kalmii, b) M. asclepiadis, ¢) D plexippus, and d) A. asclepiadis. Means are
averages per plant summed over all censuses (days 9, 11, 14, 17, 21, 24, 27, and 30).
Overall ant and clone effects across all clones are indicated above the legend. P-values
are represented by ns= P>.05, *=P<.05, **=P<.01, ***=P<.001. P-values for individual
ant effects on each clone are represented above their respective bars.

Impacts on Milkweed

The change over time in herbivore damage differed between ant treatments for 2
of the 3 clones (see Fig.). Damage was adjusted to starting levels by subtracting starting
levels of herbivore damage from every subsequent measurement. Any positive value for
damage after this adjustment represented new damage, although herbivore damage
measurements could decrease as leaves, both damaged and undamaged fell off. The
exclusion of ants caused damage to significantly increase over the course of the
experiment for clones 1 and 2. On clone 1, damage accumulated on ant-free plants at a
rate of .076% leaf area removed per day (r?=.897, df=7, P< .001). Damage accumulated
at a rate of .041% leaf area removed per day on ant-excluded plants on clone 2 (r’=.838,
df=7, P=.001). Herbivore damage on control plants in clone 1 and 2 did not significantly
change over the course of the experiment (1: r’=.127, df=7, P=.387; 2: r’=.103, df=7,
P=.439). In contrast, both ant-excluded and control plants accumulated damage over the
course of the experiment in clone 3, with ant-excluded plants accumulating damage at a
rate of .072% leaf area removed per day (r?=.700, df=7, P=.010) and plants with ants
accumulating damage at a rate of .057% (r’=.900, df=7, P<.001).
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Fig 3. Change in herbivory over time for a) clone 1, b) clone 2, and c) clone 3. Damage
is adjusted 0% on day 7. Subsequent measurements were taken on days 10, 13, 16, 19,
22, 26, and 29.

Ant exclusion minimally affected plant performance. When compared across all
clones, ants did not affect relative growth rates (U=1559.5, n=115, P=.605) (Fig 4a). An
ant effect on relative growth did not show up on individual clones (1: U=154.5, n=38,
P=.460; 2: U=181.5, n=39, P=.813; 3: U=169.0, n=38, P=.751). In addition clone did
not affect relative growth rate (y%=3.933, P=.140).

Ants also did not affect net leaf loss over the course of the experiment (U=1610.5,
n=115, P=.816) with clones combined or on individual clones (1: U=159.5, n=38,
P=.553, 2: U=161.5, n=39, P=.428, 3: U=150.0, n=38, P=.385) (Fig 4b.). Net leaf loss
was calculated by subtracting end leaf counts from the first leaf count data available for
each ramet (day 7). This was then adjusted for the total number of leaves per plant by
dividing by the average number of leaves, resulting in the units of net leaves lost per leaf.
Clone affected net leaf loss (y%=12.634, P=.002).
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Fig. 4. Effects of ant exclusion on plant performance, as measured by a) relative growth
rate, b) net leaf loss, and c) fruit production. Bars are means (£1SE) for each
measurement of plant performance. Means are averages per plant for days 7, 10, 13, 16,
19, 22, 26, and 29. Overall ant effect across all clones and clone effects are indicated
above the legend. P-values are represented by ns= P>.05, *=P<.05, **=P<.01,
***=pP<,001. P-values for individual ant effects on each clone are represented above
their respective bars.

Fruit production per plant was corrected for the number of umbels per plant by
dividing fruits per plant by umbel counts, yielding fruit/'umbel as the units for fruit
production. Ants did not significantly affect fruit production across all clones
(U=1601.0, n=115, P=.767) (Fig. 4c). Ant exclusion did decrease fruit production on
clone 3 (U=102.5, n=38, P=.022), but not clone 1 or 2 (1: U=178.0, n=38, P=.965; 2:
U=147.5, n=39, P=.235). Clone affected fruit production (x%=22.975, P< .001).

Discussion

Overall, the ant-exclusion treatments substantially affected the arthropod
community on milkweed, supporting the evidence that ants can be important predators
that structure arthropod communities and also supporting the hypothesis that ants would
alter the arthropod community (James et al. 1999, Fernandes et al. 2005, Mooney and
Agrawal 2008). Not all arthropods responded similarly, which is consistent with other
studies and expectations based on different strengths of direct and indirect interactions
(Altfield and Stiling 2006). Clone affected both overall abundance and the result of ant
exclusion on arthropods. This could result from morphological differences among clones



such as number of leaves, height, flowering phenology, or chemistry (e.g. Osier et al.
2000; Mooney and Agrawal 2008) or it could result from extra-plant biotic and abiotic
environmental factors.

The most profound result of ant exclusion on predators was on spiders. Intraguild
predation is widespread and commonly occurs between spiders and ants in a diverse set
of ecosystems (Polis et al. 1989; Halaj et al. 1997; Sanders and Platner 2007), although
this interaction is not universal (e.g. Karhu 1998). Analyzed across clones, ants reduced
spider densities in the majority of guild and size groupings, although differences did arise
between some groupings. For instance, ant exclusion did not significantly affect medium
spiders as a whole, while ant presence decreased small spider abundance, which is a
tendency found in another study (Halaj et al. 1997). Spider body size and the
susceptibility of different sizes to predation or disruptive interactions may largely
determine the interaction between spiders and ants. Grouping spiders into guilds
revealed other differential responses of predators to ants. Ants reduced total abundance,
including all size classes, for crab spiders while they did not for web-building spiders.
Other studies have found both negative and neutral effects of ant exclusion on web-
building spiders (Halaj et al. 1997; Sanders and Platner 2007). Web building may reduce
the impact of predation by ants on these spiders when compared to other types of spiders,
such as crab spiders.

Habitat choice by spiders may also explain differences between guilds. Crab
spiders are sit-and-wait predators that inhabit inflorescences and feed on arthropods
attracted to the flowers (Morse 1981, De Souza and Martins 2004). The habitat
preferences of crab spiders expose them to more encounters with ants compared to other
guilds of spiders that do not rely almost exclusively on inflorescences for habitat. This is
because floral nectaries on plants, including milkweed, frequently attract large numbers
of ants (Fernandes et al. 2005; personal observation). Floral foraging by ants could also
explain the magnitude with which ants reduced total spider abundance. Inflorescences
attract potential prey and provide refuges from predators, making them attractive to many
different types of spiders, although this could enhance conflicts with ants (De Souza and
Maddena 2004). Although one study did not find a significant effect of inflorescence
presence on web-building spiders (De Souza and Martins 2004), another study found that
ants expelled the majority of spiders from inflorescences (Faria and Lima 2008). Many
web spiders occupied inflorescences during the course of my experiment, suggesting that
foliar foraging by ants could negatively influence all spiders and enhance the negative ant
effect.

Ants negatively affected herbivores less than predators and positively impacted
some herbivores, suggesting the presence of indirect interactions of ants on herbivores
mediated by reductions of predators. Both L. kalmii and M. asclepiadis abundances were
greatest in the presence of ants. This may be an indirect effect of ants reducing predator
populations. For M. asclepiadis, small web-building spiders are likely one of the most
important predators counted based on predator and prey size and habitat usage. Ant
presence significantly reduced M. asclepiadis population individually by clone only on
clone 2, which was mirrored by a very significant increase in M. ascelepiadis abundance
on clone 2 in the presence of ants. Ants did not significantly affect any other arthropods
individually on clone 2, except for total small spiders, making this the most likely
mechanism that can be suggested from the data collected. The increase in abundance of



L. kalmii in the presence of ants may be evidence of an indirect effect, but care must be
taken in interpreting these data because the Tanglefoot treatment could have impeded the
movement of L. kalmii individuals, despite the fact they fly and did occur on Tanglefoot-
treated plants.

The increase in abundance of the untended aphid M. asclepiadis and decrease in
abundance of the tended aphid A. asclepiadis in the presence of ants is counter to
previous studies on A. syriaca (Mooney and Agrawal 2008). While the effect on M.
asclepiadis is most likely an indirect effect through changes in predator densities, the
effects on A. asclepiadis probably result from the costs of the mutualism to the aphid.
Ant-aphid relationships described as mutalistic are not always beneficial for the aphid
(Billick et al. 2007). Ant tending of A. asclepiadis is an important interaction in the
milkweed system, large populations of aphids were more likely to be tended than small
populations, and counts of ants were greater when they were tending A. asclepiadis than
when they were not.

Ant effects on the arthropod community on milkweed did translate into changes in
the amount of herbivory experienced by the plants, an effect also seen in other studies
(Mahdi and Whittaker 1993; Gaume et al. 1997; Karhu 1998; Heil et al. 2001; Sipura
2002). However, ant presence does not always reduce herbivory (Whalen and Mackay
1988; Mody and Linsenmair 2004). Ant exclusion did not consistently increase
herbivory across all clones, implicating variable effects by ants among clones on
herbivores as an important determinant of the strength of indirect effects of a predator on
a plant.

Varying ant and clone effects on abundances of a specific herbivore help explain
the accumulation of damage on both ant-present and ant-absent plants in clone 3. The
overall ant effect on T. tetrophthalmus, one of the most important herbivores causing
quantifiable foliar damage, was very insignificant, probably because T. tetrophthalmus
has very few natural enemies (McCauley and Lawson 1986). There was a significant
clone effect and they were much more common on clone 3. Higher abundances of T.
tetrophthalmus therefore had the potential to drive overall trends in herbivore damage for
that clone. The height effect on T. tetrophthalmus may have mediated the clone effect on
T. tetrophthalmus because clone 3 ramets were taller than those of the other clones.
Other explanations of habitat effects could explain the attraction of T. tetrophthalmus to
clone 3, such as differences in the amount of grass around the milkweed plants that the
beetles use for oviposition, although this effect pathway cannot be assessed here
(Agrawal 2004).

A decrease in fruit production on one clone and a possible trend towards
enhanced relative growth in the absence of ants were the only effects on plant
performance witnessed. The lack of many significant cascading effects of ant exclusion
on measures of plant performance could result from a number of factors. Herbivore
damage has been described as a short-term measure of herbivore effects and may merely
reflect an increase in herbivore density that does not translate to changes in growth and
reproduction (Schmitz et al. 2000; Heil et al. 2001). Even if ant absence increases
herbivory, the plant may not respond and no decline in performance is detected (e.g.
Stiles and Jones 2001).

The relative brevity of the study in comparison with the growing season of
milkweed reduced the ability to detect differences in plant morphology caused by



exclusion of ants. Ant absence considerably affected both the herbivore and predator
communities on milkweed. Indirect interactions between ants and other arthropods most
likely mediated some of these effects. The altered arthropod community translated into
enhanced herbivory on several of the clones, although relatively few repercussions for
plant performance accompanied these changes. This suggests that by acting as predators
and foraging on foliage, ants are a key element of the milkweed system that determine the
structure of the arthropod community. Clone affected the arthropod community and the
outcome of the ant-exclusion treatment, emphasizing the importance of considering
environmental and genetic heterogeneity when investigating relationships between
organisms. Further studies that are more extensive and that incorporate a greater number
of precise measurements of plant performance are necessary to fully capture and
understand the significant contribution ants make to ecosystems.
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