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PREFACE

The objective of this report is to study power- or
energy-measuring devices operating with a steady input of band-
limited white Gaussian noise, and possibly a signal added to the
noise input. The intent of this report is to evaluate the per-
formance of such devices in detecting signals or in discriminat-
ing between signals with slightly different energies.

Common examples of energy-measuring devices are (1)
radar receivers with square-law second detectors that average
over a number of pulses from the same range, (2) broadband super-
heterodyne and crystal-video receivers with square-law detectors,
used for intercepting radar pulses or for receiving ordinary AM
modulated communications signals.

The relevant statistical distributions, the central
chi-square and the noncentral chi-square, have been calculated
and approximated by a number of authors for various purposes.
The interest in this report is in approximations that will allow
a comparison of the central versus the noncentral distributions
to be used in the detection of the signal-and-noise versus noise-
alone problem, and in comparing two noncentral distributions for
the increase-in-signal-power problem.

The authors' original interest in this problem stemmed
from observing the "suppression effect" in square-law detectors
in communication and radar receivers. This is an effective loss
of detection efficiency as the signal-to-noise ratio into the
detector decreases. Although this effect has been extensively
studied for special narrowband and broadband cases, the authors
feel that the present treatment of the loss of efficiency in
energy-measuring devices forms a broad general basis for under-
standing the suppression effect.
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ABSTRACT

Closed form and tabular approximations for the central
and noncentral chi-square distribution are reviewed and compared,
and an approximation suitable for application to signal-detection
problems chosen. This approximation is used to evaluate the ef-
ficiency of energy-detecting devices masked by white Gaussian
noise to detect signals, and to discriminate between signals with
slightly different energies.






APPROXIMATIONS TO THE NONCENTRAL CHI-SQUARE DISTRIBUTIONS

WITH APPLICATIONS TO SIGNAL DETECTION MODELS

1. INTRODUCTION

The central X? distribution has been widely investigated and
because of its use in statistical applications has been tabulated in more
or less detail in a variety of places; see, for example, Pearson and
Hartley (Ref. 1). Such a table can give complete coverage of the non-
linear part of the function since it depends on a single parameter. The
noncentral X? distribution, which has general utility in many applica-
tions, depends on two parameters and, for this reason, would require much
more space for tabulation. Such tables are not generally available. The
usual procedure is either to reduce the problem to one that requires the
central chi-square, or to compute the required percentage point or prob-
ability level from other tabulated functions.

An approximation to the noncentral Xg distribution proposed by
Patnaik (Ref.2) is recommended by Pearson and Hartley (Ref. 1). However,
the error in the approximation is not stated.

The purpose of this report is to examine various approximations

to the noncentral X? and to arrive at some conclusion as to their utility.

2. OBSERVATIONS FROM POPULATIONS HAVING EQUAL VARIANCES

It X is a randomly selected variate from a normally distributed

population with zero mean and unit variance [xi = N(O, 1)], the probability



distribution of x; is given by
|
P{xs = — : (1)

The sum of the squares of n randomly selected variates from the population

follows the X? distribution with n degrees of freedom:

F X N
) o)

Suppose now that x, is drawn from a normal popuwlation with unit

i
variance but with an arbitrary mean: x =N (ai, 1). The distribution of
xi is given by
)_<I_EL
(3)
P{xsX}= /—27 dy, -

For n randomly-selected variates from the same or from different popula-

tions, the distribution function of the sum of squares is

Pa=P{Zx X}
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and I is the Bessel function of the first kind with imaginary argument.
The distribution function of X'2 is called the noncentral Chi-square
distribution with n degrees of freedom and parameter c2.

The noncentral.xg distribution function cannot be evaluated
directly, nor are tables available which are adequate for most applications.

Fisher (Ref. 3) has given expressions for the exact computation.
The complexity of the computations increases rapidly with increasing de-
grees of freedom. For general use, the computational work is excessively
long.

An alternative is to approximate the function by expanding it
in an Edgeworth seriesl, using enough terms to reduce the maximum error

to some specified size., Coefficients of the series depend on the

1 The Edgeworth series is an expansion in terms of the normal distri-
bution and its derivatives., See Cramer (Ref. 17), p. 227-231.



cumulantsl of the distribution, which can be determined from the charac-
teristic function of Eq. (4). Marcum (Ref. 4) and Patnaik (Ref. 2) use
this method. For small values of n and c2 the convergence is slow, but
it becomes more rapid as either n or c2 increases.

Patnaik has made use of the Edgeworth expansion to produce a
rapidly converging series approximation. He obtains the Edgeworth series
expansion of the best fitting central X? distribution and subtracts it
from the Edgeworth series expansion of the noncentral distribution. The
first approximation for the noncentral case is a central X?, and the
second and following terms are correction terms. This method produces
high accuracy but requires the use of tables of derivatives of the nor-
mal distribution function or tables of the Hermite polynomials. In gen-
eral, interpolation in these tables is required. The computations are
still laborious, but convergence to three significant figures is usually
obtained with seven terms, the greatest errors occurring with small n and c2.

To investigate the possibility of finding simple approximations
we consider the limiting distributions of X?.

As c2 approaches zero it is clear that the distribution of X'2
approaches that of X?. For constant values of c2 and increasing values
of n, the distribution of X'2 approaches normality, a consequence of the
central limit theorem. It will appear later that as the effective number of
degrees of freedom of the best fitting central X2 distribution increases
with increasing c2, the distribution also approaches normality.

To find the best fitting X? distribution, we consider the

1 Cumilants, often called semi-invariates, are coefficients in the series
expansion of the log of the characteristic functions, hence the nth
cunmulant of the random variable which is the sum of several independent
variables is the sum of the nth cumulants of these several variables.
See Cramer (Ref. 17), p. 187-192.



characteristic function of Eq. (4),

Ait
I-2it

blt)-&

(I-2it)

Y=

The formal power series expansion of the logarithm of this

characteristic function is

log ¢(t) x'zt,, — 2 log(l—2it)

SOy

The definition of the cumulants kr in terms of this series is

From this we obtain the cumulants
k, =n+ X\
k, = 2(n+2X\) (6)

o o o (o]

r-|
k =2 (r=Dn+rX) .
If only the first two cumulants are used to determine an approximating

distribution, and we restrict ourselves to Pearson type III distributionsl,

1 Cramer (Ref. 17), pp. 248-2L9; type III distributions are a generali~
zation of the X distribution.



we obtain the density function

e
f(y) - yy 5 (7)
2: T ()
where /2
_X _ n+2c?
Y= P P = n+c?
(8)
2
U=(n+c2)
n +2c?

2
]
Thus we are approximating the distribution of 2%;— by the central X?

distribution with v degrees of freedom, V¥ being in general a fraction.
The normal approximation can be developed independently, but
the same formulas are obtained by taking the limiting normal distribu-
tion to the X? approximation. It is clear that in the limit the X'2
distribution and the X? distribution tend to the same normal distri-
bution, since they have the same first two moments, and the limiting
normal distribution is completely determined by the first two moments.
As Patnaik has shown, the distribution of X' approaches normality fas-

ter than that of X'2, an analogous property to that enjoyed by the

X? distribution. We may expect, therefore, that

2y —/2v —I (9)

2 x' n+ c?) 2 (n+ &) 10)
nt2cz | n+2¢? -

or

is approximately normally distributed with zero mean and unit wvariance

for sufficiently large values of n and 02. This is based on Fisher's



2
well-known approximation for the X2 distribution that A/ 2X  tends to
N(+/2n-1, 1) as n increases.

A faster converging normal approximation due to Wilson and

Hilferty (see Ref. 5) is that

2
X 2 on (11)

tends to N(O, 1) with increasing n. Accordingly, we may take
1 l

3 2
($) +&-1|(%) =

to be N(0, 1) for v sufficiently large.

To get some idea as to the accuracy of simple approximations,
the probability of exceeding X? was calculated by various methods. In
each case the values of y and vV were computed from the parameters n and
¢® and the observed X?, using formulas (8). The first two approximetions
are based on the central X? distribution, the first being obtained by
linear interpolation in central X? tables and the second by exact inter-
polation. The remaining two approximations are based on the normal approx-
imation, using Fisher's approximation in one case and Wilson and Hilferty's
in the other. These are shown in Table I. The exact value shown was
taken from Patnaik (Ref. 2). The values of Xéz are shown to the number
of significant figures used in the computation. These values were taken
mostly from Patnaik's paper, although some which Patnaik had taken from
Fisher (Ref. 3) were obtained from Fisher to one more decimal place.
Some accuracy in the exact value of the probability was lost by Patnaik

in the rounding off of Xé2.



TABLE I

Approximations to the Probability of Exceeding an Observed

Sum of Squares for Various Non-Central Parameters and

Degrees of Freedom Using Patnaik's Transformation

n 2 o x&a Exact . 11° 1113 w
2 1 2.25 .17 .05 0492 ,0860 .0500
2 4 3.6 646 .05 .0329 .0233 .0537 .0313
L 1 4 ,1667 91 .05 .0502 0465 ,0700 .0500
L b 53333 1.765 .05 .0h27 .0387 .0576 LOllh
7 1 7.1111 2.49 .05 .0500 L0489 .0628 .0499
7 4 8.0667 3.66k4 .05 0k62 .OLsl .0580 .0L62
2 16 9.5294 6.322 .05 .0389 .0369 L0483 .0379
In 16 11.1111 7.864 .05 .0406 .0400 .0498 .0L05
T 16 13.56k41 10.257 .05 .0439 ,0k26 ,0512 L0431
2 25 14,0192 12.08 .05 0406 LOLOk .0L87 .0L08
In 25 15,5741 13.73 .05 .0k27 JOLL7 .Ohol .0k21
7 25 17.9649 16.23 .05 0U37 +Oh3h ,050L 0436
16 32 28,8 30.000 .0609 .0594 .0590 .0639 .0590
2k 24 32 36,000 +1567 .1556 1556 .1565 .1553
7 1 7.1111 1,000 .1628 .1635 .1621 1661 .1610
12 18 18.75 24,000 .2901 .2926 .2920 .2863 .2913
L 10 8.1667 10,000 .3148 .3190 .3179 .3085 .3163
16 8 18 20,000 +3369 «3380 .3380 .3304 «3374
24 24 32 48,000 »5296 +5333 .5332 5290 .5332
7 16 13.5641 24,000 .5698 .5943 . 5949 .5827 L5947
I 4 543333 10.000 .7118 .7180 7197 L7062 L7199
16 8 18 30.000 .7880 .7887 L7902 .7858 .7880
12 6 13.5 24,000 817k L8178 .8188 .8162 .8193
16 32 28.8 60,000 8316 .8326 .8329 .8320 .8332
2 1 2.25 8.6k .95 9480 .9581 L9515
2 L 3.6 14,64 .95 L9470 .9488 +9555 9497
4 1 4,1667 11.71 .95 9490 .9500 .9564 .9506
L L 53333 17.309 .95 9478 .9491 .9550 .9496
7 1 7.1111 16.004 .95 .9288 .9298 L9341 .9302
7 L 8.0667 21.23 .95 <9491 9494 .9545 L9497
2 16 9.5294 33.06 .95 9467 JOhTh .9522 LOu78
b 16 11,1111 35.43 .95 JOhTh L9479 .9523 .9480
7 16 13.5641 38.970 «95 R .OL82 .9523 9483
2 25 14,0192 hs,.31 .95 9469 9478 .9515 JI4T6
4 25 15,5741 L7.61 «95 .9Lk67 L9478 .9515 L9478
7 25 17.9649 51,06 .95 9476 .9481 9517 9481
16 8 18 40,000 .9632 .9626 .9626 « 9661 +9626
In L 53333 24,000 «9925 .9909 .9912 9946 .9911

= WP

Linear Interpolation in Table 7 of Pearson and Hartley.
Exact Interpolation Using Pearson and Hartley's Formulas
Normal Approximation Using Fisher's Normal Approximation to the Chi-square Distribution

Normel Approximation Using Wilson and Hilferty's Approximation



The conclusion to be drawn from the table is that no one approx-
imation is superior +to the others over the whole table. In particular,
the more exact approximations (Methods II and IV) are not significantly
better than their more easily computed counterparts (Methods I and III).
For moderately large v (say, V>5) the approximation based on Fisher's
normal approximation gives sufficient accuracy for a large number of
practical applications. For small values of v, the Wilson-Hilferty ap-
proximation is better at lower probabilities, since the Wilson-Hilferty

approximation is more symmetrical.

3, OBSERVATIONS FROM POPULATICNS HAVING UNEQUAL VARIANCES

So far we have assumed that the Xi were selected from popula-
tions having variances equal to one. When both the means and the variances
vary, we write X; € N(bi’ vi); Under these conditions the distribution
function of Wg = ZIxiQ no longer satisfies the conditicns of the central
limit theorem. However, a sufficient condition for the distribution of
¥ to be asymptotically normal is that the set {vi} be bounded. While
this condition is always satisfied in physical experiments, the upper
bound on the vi may be so large that convergence to the limiting distri-
butions is extremely slow., The limiting distributions have the same form

as before, when fitted by the first two moments. We have




where

W2 SVi+23b;
y:—-—' ? P'_' 2 ’
ID ZV,+ Zbivi
(13)
-1\8
S+ 3oy
Tvi+23?

4y, CONDITIONAL DISTRIBULIONS UNDER LINEAR RESTRAINTS

It is well known that for the central X2 distribution, if the Xy

are subject to s linear restraints, t“en .Z xgi2 follows the X2 distribu~
tion with n-s degree of freedom. The dist;;%ution of X'2 has a similar pro-
perty. Bateman (Ref. 6) gives the genrral proof from which the result given
by Patnaik follows as a special case.

Suppose the xi are subject to s orthogonal linear restraints

n
= (14)
25 %7 8
with
m
2 Cy G = % (25)
where the ¢ ., p, are constants. Let E(xi) =& . Then
n s
5 xi-3 g =
i=

2-1 Q

is distributed as X'2 with n-s degree of freedom and parameter

C&O—( oC) (17)
il Qi

For the conditional distribution of \lr (defined in the preceding

10



section) under s linear restraints, the moments can be determined from
the conditional characteristic function, and the best fitting X2 dis-
tribution can be determined by fitting a Type III curve, using the first

two moments,

5. APPLICATION OF THE NONCENTRAL CHI-SQUARE TO DECISION

MODELS OF SIGNAL DETECTION AND DIFFERENTIAL DISCRIMINATION

A class of decision theory models which has been applied with
some success to both electronic and psychophysical problems (Refs. 7-12,
15, 16) is the following.

A point in a given finite dimensional space is considered to be
an "observation." This point is distributed, if viewed repeatedly, accor-
ding to one of several different possible probability distributions, called
"hypotheses," H. , H

l... .
for deciding which hypothesis holds, on the basis of one "observation."

The decision task is to optimize the procedure

The problems arising in detection always consider two possible alterna-
tives., Whenever all of the parameters of these two distributions are
known, the ratio of the two probability density functions is of particu-
lar importance. It is called the likelihood ratio, and it has been shown
(Ref. 7) that it is the relevant statistic in this decision. That is to
say that optimum decisions assume some critical value of likelihood ratio
and decide for one hypothesis whenever the likelihood ratio of the obser-
vation is greater than this critical value and for the other hypothesis
whenever the likelihood ratio of the observation is not greater than the
critical value.

Two types of problem lead to a consideration of the noncentral

11



chi-square distribution.

Case I: The null hypothesis is that the observations are distributed accor-
ding to a completely symmetric normal (multivariate) distribution. This
is called "white Gaussian noise" in engineering problems. The mean of the
distribution is the origin of the space, and in engineering problems the
variance per coordinate is No/2, i.e., half the noise power per cps. The
"signal" hypothesis is a composite hypothesis: each simple hypothesis is
a simple translation of the null hypothesis, with mean displaced CVGi;EE
from the origin, and these means are uniformly distributed over an n-~1
dimensional sphere about the origin. It should be obvious that the only
relevant coordinates of the observation are those in the n-dimensional
space containing this sphere. Because of symmetry, the radius in this
n-dimensional subspace is monotone with likelihood ratio. If the space

is normalized to have unit variance on each coordinate axis, the sphere
will have radius c. The null hypothesis is now the normalized central
chi-square distribution, and the signal hypothesis is the noncentral
chi-square distribution with parameter c2.

Case II: The null hypothesis is,as in Case I, simple white Gaussian noise.
The signal hypothesis is just a translation of the mean to some point
c~(ﬁ;75 from the origin. A non-optimum decision can be based on the
radius of the observation in some n-dimensional subspace which contains
the translation vector. Although this is a non-optimum procedure, it

does arise when the actual axis on which the signal mean lies is unknown
but can logically be bounded to some subspace. Such is the case when

the signals are sine~wave-like signals with uncertain phase and starting

times, The distribution of the measured statistic, the radius, is the

12



"chi" distribution, central for the null hypothesis, and noncentral for
the signal hypothesis. The parameter c is T where E is the signal
o
energy and No the noise power per cps.
In this latter case it is customary to compute the efficiency
(Ref. 13) of the decision device relative to the optimum device. This

efficiency is the ratio of the energy E.. necessary for the optimum de-

11
cision device to reach the same performance as that achieved by the non-

optimum device which used energy E12

EIl

12

In this, Case 11, when the signal is specified exactly, E,., can be deter-

11

mined as

12
E - éﬂ'QQ NQ (19)
] O'(X’) ?2

where Au(X') is the difference in the means of the two "chi" distributions,
and o(X') is the standard deviation.

So far, the use of the chi-square distribution in two specific
detection cases has been discussed. '"Detection" usually carries the con=-
notation in white Gaussian noise that one of the hypotheses has mean at
the origin. When the two hypotheses that are possible on both "signal
hypotheses with different values of the parameter "c", the label "differ-
ential discrimination" is often used. In computing the efficiency for
such a situation and for signals specified exactly and differing only in
amplitude, the "energy" Ell or E12 referred to is the energy of the dif-
ference signal, which is proportional to the square of the difference of

the rms voltages of the signals.

13



5.1 Application in Detection Model

The problem in detection is the comparison of the observation

X' (or X'2) under the two alternative hypotheses H,

that is some specific non-zero value. Clarke, Birdsall, and Tanner (Ref.

that ¢ = 0; and Hc,

14) have suggested that in comparison of two normal but unequal variance

hypotheses, the average measure'vﬁg be used, where

Hec—Ho
d z —_—— (20)
/; v O+ ot

The corresponding efficiency 1 is then

'77 :%ez . (21)

The means and variances are obtained from equation (10):

: _ 2
Hy. o 3n—5 Gy =D,
(22)
H - 2(n+C3°—(n+2C2) . o2 (ntec?)
Cc: c 2(n+C? C-Z(n+C2)
These yield an efficiency of
20N+’ -(n+2¢2) i
n- Li_2n+c? —n+s
c <2n+3c2)
PN
2N+2C (23)

2 2 2
_2n+42¢ J_(ﬂ*n%z*_ N+2¢ m) .

T 2n 302 2 2n+2c2

14



For large n (n > 10) the second term in each radical is small compared to
the first term. If these second terms are ignored, the expression for

efficiency becomes dependent only on the ratio of 02 to n, as follows:
2

7= 2N +2¢? _{Jn Tc? —JA} (24)
2n +3¢? c?
or 2 5 2
2+2%< |+ -i>
M= —F : (25)
2+3|{ n

Equation (25) is plotted in Fig. 1.

5.2 Application in Differential Discrimination Model

The model of differential discrimination is that two hypotheses

1 and 02 are both large

should be large enough so

are compared, Hc and Hc , Where the parameters c
1 2
but approximately equal., Specifically, the ci

that simple detection is nearly perfect. The following eanalysis will as=-
sume that the difference between ¢ values is considerably less than the
smaller ¢ value. The equation for the mean and variance of X' can be

rewritten as
201 n+2c?
o = —
(X ) 2n+2c% !
(26)

e X)=vh 42 50% .

If a small change of ¢ to ¢ + ¢ is made, the variance remains relatively

unchanged, and the mean increases to

Keve (X)2V/N+C2450%+2c€ +€°
(27)

| 2(Cte)e
- 2 2
w/n+C-L50'J |4_n+c2+504 .

15
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Under the foregoing assumption that the difference between the ¢ values
is much less than the smaller, a good approximation to the second radical

is the first two terms of the power series expansion, yielding

_ 2 2 Ce
Fore (X)VN+CH50° 1+ pomome |,
(28)
e (X) ¥, : ’

€eln+c’+.50°?

The discriminability of two such hypotheses (d') is measured by the ratio

of the difference of the means divided by the standard deviation.

C
d= e (29)
cin+ci+ 502

The efficiency of differential discrimination is the ratio of d'2 to 52

c? |

= - —_ . 0
o™ N+ +.502 o2 (30)

This can be further simpdified with very little change by noting that the

range of .502 is from .25 to .50, which is very small compared to 02 + N,
Dropping .502 in the denominator, and expressing 02 in terms of 02 and n,
we obtain

CZ
R TR 1
77 . c4+.5Nn * (31)

This is also plotted in Fig. 1.

6. CONCLUSION

The various approximations to the non-central chi-square dis-
tribution (the distribution of X'2) available in the literature have been

reviewed and compared. It is concluded that for n > 10 the Fisher approxi-

mation 2 2y | 2
72 2n+c3-n+2c” J n+2c 5
X! N<J 2(N+C2) 2n+2C% (52)

is the simplest and quite adequate for use in models of detection and

17



differential discrimination. Based on this approximation the efficiency
of a specific decision device has been determined for detection and dis-

crimination in additive white Gaussian noise,

18
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