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SUMMARY

Cure models have been developed to analyze failure time data with a cured fraction. For such data,
standard survival models are usually not appropriate because they do not account for the possibility of
cure. Mixture cure models assume that the studied population is a mixture of susceptible individuals,
who may experience the event of interest, and non-susceptible individuals that will never experience it.
Important issues in mixture cure models are estimation of the baseline survival function for susceptibles
and estimation of the variance of the regression parameters. The aim of this paper is to propose a penalized
likelihood approach, which allows for flexible modeling of the hazard function for susceptible individuals
using M-splines. This approach also permits direct computation of the variance of parameters using the
inverse of the Hessian matrix. Properties and limitations of the proposed method are discussed and an
illustration from a cancer study is presented. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Models for survival analysis typically assume that everybody in the study population is susceptible
to the event of interest and will eventually experience this event if the follow-up is sufficiently long.
However, in some diseases there is strong biological evidence that, when considering endpoints
other than natural death, the event would never occur for some fraction of the subjects. The
assumption that some individuals will never experience the event may also be based solely on
empirical considerations, such as the presence of a large number of long-term survivors. The
presence of ‘non-susceptible’ individuals (or ‘immune’ or ‘cured’ regarding the event of interest)
is suggested by a Kaplan–Meier plot of the marginal survival distribution function, which shows a
long and stable plateau with heavy censoring at the right extreme. In recent years, there has been

∗Correspondence to: Fabien Corbière, Department of Large Animals Medicine, National Veterinary School, 23 Chemin
des Capelles, 31076 Toulouse, France.

†E-mail: f.corbiere@envt.fr

Received 12 April 2007
Copyright q 2008 John Wiley & Sons, Ltd. Accepted 17 September 2008



A PENALIZED LIKELIHOOD APPROACH FOR MIXTURE CURE MODELS 511

an increasing interest in modeling survival data with long-term survivors. Failing to account for
such cured subjects would lead to overestimation of the survival of susceptible subjects. Mixture
cure models assume that the studied population is a mixture of susceptible (uncured) individuals,
who may experience the event of interest, and non-susceptible (cured) individuals, who will never
experience it. This approach allows us to estimate simultaneously whether the event of interest
will occur, which is called incidence in the related literature, and when it will occur, given that it
can occur, which is called latency.

An important issue arising from mixture cure models is estimation of the baseline survival
function for uncured individuals. Fully parametric distributions were first proposed, including
exponential [1–3], lognormal [4, 5], Weibull [6], Gompertz [7, 8] and Burr XII [9]. However, fully
parametric mixture cure models may not be flexible enough when analyzing biological data, since
they involve strong assumptions about the survival function of uncured patients. The generalized
F distribution was proposed by Peng et al. [10], which makes less distributional assumptions, but
computational difficulties may arise. Another approach is based on a non-parametric estimate of
the survival function of uncured individuals, and this defines the area of semiparametric mixture
cure models. However, unlike the standard Cox proportional hazards (PH) model [11], the baseline
survival distribution function in semiparametric PH mixture cure models cannot be eliminated as
a nuisance parameter in the likelihood function and an estimation method more complicated than
maximizing the partial likelihood is needed. A semiparametric PH specification for the time to
recurrence of the disease was proposed by Kuk and Chen [12], but a Monte Carlo approximation
of the likelihood was required, which complicates parameter estimation. Assuming no covariates
affect the latency, Taylor [13] used a weighted Kaplan–Meier estimator to estimate the failure
time distribution and proposed an EM-algorithm. Peng and Dear [14] further extended this work
by allowing the failure time distribution to depend on explanatory variables, but Monte Carlo
techniques were still required to estimate the variance of the estimates. In the same way, Sy and
Taylor [15, 16] use the EM-algorithm to estimate the parameters, but proposed to estimate the
asymptotic variance of the estimator by the inverse of the observed information matrix, based
on the observed marginal likelihood function using the discrete PH model. Methods based on
the EM-algorithm adopted the zero-tail constraint proposed by Taylor [13] to avoid identifiability
problems. This constraint states that the conditional survival function is set to zero for censored
times greater than the largest uncensored event time, which ensures a proper estimate. However,
it implies that individuals with survival times greater than the last event are all considered as
non-susceptible or cured, which may appear to be a strong assumption, especially in the case of
poor follow-up beyond the period when events occur or in the case of heavy censoring. Peng [17]
further proposed different tail-completion methods to allow the conditional survival estimate to
decrease slowly to zero after the largest event time. Based on simulation studies, he also showed
that the zero-tail constraint could lead to an overestimated cured fraction.

Another drawback of semiparametric approaches is that a smooth estimate of the hazard function,
which often has a meaningful interpretation, is not available. An alternative approach is to define the
estimator of the conditional hazard function non-parametrically as the function, which maximizes
a penalized likelihood. The solution is then approximated using splines [18]. Such an approach
has been proposed in standard survival models and multi-state models under the PH assumption
for right-censored and left-truncated data [19, 20]. In this paper we shall apply the penalized
likelihood approach to mixture cure models. This method allows us to obtain flexible and smooth
estimates of the conditional and marginal hazard and survival functions and does not require a
tail constraint. The asymptotic variances of the estimators are obtained using the inverse of the
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information matrix. The model is presented in the next section. The penalized likelihood approach
and the estimation procedure is described in Section 3. In Section 4 a simulation study is shown.
An illustrative example is provided in Section 5.

2. THE MODEL

2.1. Mixture cure models

Let U be the unobserved indicator denoting whether an individual is susceptible (U =1) or non-
susceptible (U =0) to the event of interest and T is a non-negative random variable denoting the
failure time of interest. Taking into account the possibility that a fraction of the population can be
considered as immune or cured, the marginal, population-based survival and probability density
functions are given by

Spop(t |x,z) = �(z)S(t |U =1,x)+1−�(z) (1)

fpop(t |x,z) = �(z) f (t |U =1,x) (2)

where Spop(t |x,z) and fpop(t |x,z) are the unconditional (marginal) survival and probability density
functions of T for the entire population, respectively. S(t |U =1,x)= P(T>t |U =1,x) is the
survival function for susceptible individuals given a covariate vector x=(x1, . . . , xp)′, and �(z)=
P(U =1|z) is the probability of being susceptible given a covariate vector z=(z1, . . . , zq)′, which
may include the same covariates as x. Mixture models assume that S(t |U =1,x) is proper (i.e. total
mass equals 1), so that limt→∞ S(t |U =1,x)=0 and limt→∞ Spop(t |x,z)=1−�(z). The zero-tail
constraint proposed by Taylor [13] assumes that there is a t∗ such that for all t�t∗, S(t |U =1,x)=0.
Usually one takes t∗ = t�, where t� is the last observed failure time. When �(z)=1 for all z, i.e.
when there is no cured fraction, the mixture cure model reduces to the standard survival model.

The proportion of cured patients can be modeled by the usual binary regression models.
Farewell [6], Kuk and Chen [12], Peng and Dear [14] and Sy and Taylor [15] all used a logistic
regression model with logit link, logit(�(z))=b′z, where b is the vector of regression parameters
associated with z, including an intercept. Other regression models include the probit link and the
complementary log–log link [21].

In parametric mixture cure models, S(t |U =1) is specified by a few parameters, whereas in
semiparametric mixture cure models it is left arbitrary. In PH models, the conditional distribution
of T is modeled by

S(t |U =1,x) = S0(t |U =1)exp(c
′ x)

= exp

(
−exp(c′x)

∫ t

0
�0(v|U =1)dv

)
(3)

where S0(t |U =1) and �0(t |U =1) are the baseline conditional survival and hazard functions,
respectively. The marginal, population based, hazard function is then given by

�pop(t |x, z) = fpop(t |x,z)
Spop(t |x,z)

= �(z)�0(t |U =1)exp(c′x)S0(t |U =1)exp(c
′x)

�(z)S0(t |U =1)exp(c′x)+1−�(z)
(4)
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From (4) it can be seen that at the population level, the PH assumption no longer holds. If
S0(t |U =1) is left arbitrary, the model is the semiparametric Cox PH mixture cure model as
described by Kuk and Chen [12], Peng and Dear [14] and Sy and Taylor [15].

2.2. Likelihood function

Suppose the data are of the form (ti ,�i ,xi,zi), i=1, . . . ,n, where �i is the censoring indicator
with �i =1 if ti is uncensored and �i =0 otherwise. It follows that, if �i =1 then ui =1, and if
�i =0 then ui is not observed, where ui is the value taken by the random variable Ui . Under the
assumption of type I censoring, the likelihood contribution for individual i is �i (zi) f (ti |ui =1,xi)
for �i =1 and 1−�i (zi)+�i (zi)S(ti |ui =1,xi) for �i =0. The observed full likelihood is given by

L(c,b)=
n∏

i=1
{�i (zi)�0(ti |ui =1)ec

′xi e−�0(ti |ui=1)exp(c′xi )}�i

×{(1−�i (zi))+�i (zi)e−�0(ti |ui=1)exp(c′xi )}(1−�i ) (5)

where �0(t |U =1)=∫ t
0 �0(v|U =1)dv is the conditional cumulative hazard function.

When no cured fraction is assumed, i.e. �(zi)=1 for all zi, the likelihood function (5) reduces
to the likelihood of the standard survival model.

3. THE PENALIZED LIKELIHOOD APPROACH

3.1. Penalized likelihood function

Most often the conditional hazard function can be expected to be smooth. A possible means to
introduce such a priori knowledge is to penalize the likelihood by a term, which takes large value
for rough functions. We choose the roughness penalty function to be the L2 norm of the second
derivative of the conditional hazard function. The penalized likelihood function is then given by

pl(c,b)= l(c,b)−�
∫

�′′
0(v|U =1)2 dv (6)

where l is the full log-likelihood given in (5) and �>0 a positive smoothing parameter, which
controls the trade-off between the fit to the data and the smoothness of the function. Maximization of
(6) in the desired class of function defines the maximum penalized likelihood estimators (MPnLE)
�̂0(.|U =1), b̂ and ĉ.

3.2. Approximation by splines

The estimator �̂0(.|U =1) cannot be computed explicitly but can be approximated by a linear
combination of m cubic M-splines, which are normalized B-splines. An M-spline of order k is
defined as

Mj (x |k)=

⎧⎪⎨
⎪⎩
k[(x− t j )Mj (x |k−1)+(t j+k−x)Mj+1(x |k−1)]

(k−1)(t j+k− t j )
, t j�x<t j+k

0 elsewhere
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with

Mj (x |1)=

⎧⎪⎨
⎪⎩

1

(t j+1− t j )
if t j�x<t j+1

0 elsewhere

where t1, . . . , tm is a sequence of increasing knots. Each Mj (x |k) is zero outside the interval
[t j , t j+k] and hence is non-zero over k intervals, and over each interval there are k non-zero
M-splines. We use splines of order 4 (also called cubic splines). To each spline, we associate an
I-spline, i.e.

I j (x |k)=
∫ x

0
Mj (u|k)du

Each Mj is a piecewise polynomial of degree k−1 and each associated I j is a piecewise
polynomial of degree k defined as (for t j�x<t j+1)

Ih(x |k)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if h> j

j∑
l=h

(tl+k+1− tl)
Ml(x |k+1)

k+1
if j−k+1�h< j

1 if h< j−k+1

Note that M-splines are non-negative and I-splines are monotonically increasing. The monotonicity
constraint for a function represented on a basis of I-splines can thus be fulfilled by constraining the
coefficients to be positive. The estimator �̂0(.|U =1) can be approximated by a linear combination
ofm I-splines �̃0(.|U =1)=∑m

j=1 g(h j )I j (.) where g(h j )�0 ∀ j . In practice we use g(h j )=h2j . By
differentiating, we get the conditional baseline hazard function with the same vector of coefficients
h=(�1, . . . ,�m)T, such that �̃0(.|U =1)=∑m

j=1 g(h j )Mj (.). The resulting function is a smooth
positive function, defined on the positive real line and has continuous second derivatives. A spline
function is completely defined by a sequence of increasing knots (t1, . . . , tl) and the coefficients h.
The first knot is set at 0 and the last knot is set at the last (possibly censored) follow-up time point,
so that the hazard function is defined on the whole follow-up period, including censored times
greater than the last observed event time. Other knots can be either put equidistantly between the
first and last one, or can be defined taking into consideration the observed times. Therefore, we have
m= l+2 parameters to estimate the conditional hazard function. Theoretically, the more knots, the
better the approximation. Increasing the number of knots does not deteriorate the MPnLE: this is
because the degree of smoothing in the penalized likelihood method is tuned by the smoothing
parameter � and not by the number of splines. On the other hand, once a sufficient number of knots
is established, there is no advantage in adding more. Moreover, the more knots, the longer the
running time, especially if the method involves a search for the smoothing parameter. Furthermore,
some numerical problems (slow convergence or failure to invert the Hessian matrix) can arise,
particularly for a large number of knots. Generally, we found that a good choice for the number
of knots is between 7 and 20.
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3.3. Estimation procedure

We implemented the method with a Fortran program. The approximation �̃0(t |U =1) of �0(t |U=1)
is the function belonging to the space generated by the basis of splines, which maximizes pl(�).
The estimate ĥ of h for a fixed � is obtained by maximizing the log-likelihood using the robust
Marquardt algorithm [22], which is a combination of a Newton–Raphson algorithm and a steepest
descent algorithm. This algorithm has the advantage of being more stable than the Newton–
Raphson algorithm while preserving its fast convergence property near the maximum. Convergence
is attained when the difference between two consecutive log-likelihoods is small, the coefficients
are stable and the gradient is small enough. This maximization method performs well in most cases.
To avoid the identifiability problem that may sometimes arise due to the absence of constraint on
the conditional survival function, initial MPnLE values for h and c may first be obtained by fitting
a standard survival model to the uncensored subjects.

The variance of regression parameters are computed using the inverse of the matrix of the
second derivatives of the penalized likelihood.

3.4. Selection of the smoothing parameter �

Because we model the conditional hazard function and we do not constrain the conditional survival
function at the right tail, parameters estimates may be sensitive to the choice of �.

In our estimation method, an empirical estimate of � can be provided or the smoothing parameter
can be chosen by maximizing an approximate cross-validation score [23]

LCVa = l(.)−Tr(H−1
pl Hl)

where l is the likelihood given in (5) with the corresponding Hessian matrix Hl and Hpl is the
Hessian matrix based on the penalized likelihood [19]. In the presence of very late failure times,
the automatic selection of the smoothing parameter may give MPnLE that suggest the absence
of a cured fraction (i.e. �(z)≈1 and Ŝ(tmax|U =1)>0), where tmax is the last follow-up times.
However, the existence of very late failure times may also preclude the application of mixture cure
models because it may indicate the absence of a cured fraction or insufficient follow-up.

4. SIMULATION STUDY

In this section we present the results from two simulation studies to illustrate the performance of
the proposed estimation method.

The first simulation study aims at evaluating the performance of the model in a regression
context. Data were generated from the logistic-Weibull mixture cure model. Specifically, the
cured fraction is modeled through 1−�(z)=[1+exp(�0+�1z)]−1 and the latency part is given
by S(t |U =1)=exp(−(�t)	 exp(
z)). The covariate z was fixed by design and binary, with half
of the individuals having z=1. Censoring times C were derived from an exponential distribution
with censoring rate �c. Each individual was followed for at most �max=10, so that the data were
(t,�, z) where t=min(C,10) when Ui =0 and t=min(T,C,10) when Ui =1. Various values of
�0, �1, 
 and �c were considered.

Values for �0 were either −1.3863,0 or 1.3863, so that the cured fraction was 80, 50 or 20
per cent in the baseline group (z=0), respectively. Values for �1 were either 0 or −1, meaning
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Table I. Simulation results: low censoring (�c=0.05).

MPnLE estimates Semiparametric estimates

Parameter True value Bias Mean var. Emp. var. CR (per cent) Bias Emp. var.

Low cured fraction (20 per cent in the baseline group)
�0 1.3863 0.0548 0.0839 0.0790 95.6 0.0407 0.0814
�1 −1 −0.0073 0.1339 0.1191 95.8 0.0077 0.1223

 0.5 0.0162 0.0383 0.0395 95.6 −0.0021 0.0405

Mild cured fraction (50 per cent in the baseline group)
�0 0 0.0130 0.0486 0.0429 96.8 0.0681 0.0444
�1 −1 −0.0096 0.1075 0.1007 96.4 −0.0019 0.1027

 0.5 0.0587 0.0763 0.0962 95.2 0.0353 0.0935

High cured fraction (80 per cent in the baseline group)
�0 −1.3863 −0.0371 0.0769 0.0748 95.4 −0.0414 0.0764
�1 −1 −0.0014 0.2397 0.2115 97.2 −0.0051 0.2407

 0.5 0.0308 0.2521 0.2651 94.0 0.0435 0.3482

that the covariate z has no effect on the incidence part or that it increases the cured fraction in
individuals with z=1, respectively. In the same way, values for 
 were either 0 or 0.5, meaning
that the covariate z has no effect on the latency part or that it accelerates the occurrence of failure
in susceptible individuals with z=1. We set �=0.3 and 	=2.2. The censoring rate �c was either
0.05, 0.1 or 0.3 representing, low, mild and heavy censoring, respectively (corresponding to an
average 10, 25 and 50 per cent of censored susceptible individuals, respectively).

The penalized likelihood approach was applied to each sample with seven equidistantly
distributed knots defining the hazard function. The smoothing parameter was chosen automatically
for each sample using the cross-validation method explained previously.

For each configuration, 500 samples were generated, with sample size 200. For each sample,
the value of Ŝ0(tmax|U =1) was recorded, where tmax is the last follow-up time.

Tables I–III present the estimated biases for regression parameters �0, �1 and 
 based on 500
samples. To evaluate the adequacy of estimated variances, we compared the empirical variance, i.e.
the variance of estimates, with the mean of estimated variances. The coverage rates of the normal
approximation 95 per cent confidence interval, based on the point estimates and the estimated
variances are also shown for each regression parameter. Results from the semiparametric mixture
cure model of Peng and Dear [14] and Sy and Taylor [15] applied to the same samples with a
zero-tail constraint are also presented in terms of biases and empirical variance. Results are only
presented here for �1=−1 and 
1=0.5, but conclusions were almost identical for other simulated
values.

It can been seen from Tables I to III that point estimates have little biases in most cases and
that the proposed estimation method performs as well as the semiparametric approach. The biases
on �̂1 and 
̂ are higher in case of heavy censoring, meaning that a reasonable proportion of non-
susceptibles surviving for long enough is needed to ensure a good estimate of the incidence and
latency effect of covariates. Also note that the penalized likelihood approach yields smaller biases
for �̂0 than the semiparametric modeling, due to the absence of tail constraint. In addition, the
empirical variance and the mean of estimated variances agree pretty well and coverage rates are
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Table II. Simulation results: mild censoring (�c=0.1).

MPnLE estimates Semiparametric estimates

Parameter True value Bias Mean var. Emp. var. CR (per cent) Bias Emp. var.

Low cured fraction (20 per cent in the baseline group)
�0 1.3863 0.0337 0.1053 0.1022 94.6 0.0099 0.0987
�1 −1 0.0967 0.1665 0.1490 94.6 0.1134 0.1501

 0.5 −0.0205 0.0455 0.0456 95.6 −0.0371 0.0486

Mild cured fraction (50 per cent in the baseline group)
�0 0 0.0087 0.0589 0.0504 97.2 −0.0034 0.0513
�1 −1 −0.0501 0.1267 0.1111 97.6 −0.0398 0.1142

 0.5 0.0760 0.0946 0.0962 95.2 0.0672 0.1193

High cured fraction (80 per cent in the baseline group)
�0 −1.3863 −0.0413 0.0918 0.0908 96.0 −0.0567 0.0911
�1 −1 −0.0050 0.2771 0.2540 96.4 −0.0023 0.2940

 0.5 0.0720 0.2933 0.3052 95.6 0.1116 0.4482

Table III. Simulation results: heavy censoring (�c=0.3).

MPnLE estimates Semiparametric estimates

Parameter True value Bias Mean var. Emp. var. CR (per cent) Bias Emp. var.

Low cured fraction (20 per cent in the baseline group)
�0 1.3863 0.0322 0.1866 0.1783 97.6 −0.1244 0.1886
�1 −1 0.1250 0.3079 0.2847 96.4 0.1822 0.2933

 0.5 0.0301 0.0904 0.0944 95.4 0.0099 0.0964

Mild cured fraction (50 per cent in the baseline group)
�0 0 0.0299 0.1415 0.1473 97.4 −0.1470 0.1937
�1 −1 −0.1591 0.2474 0.2594 95.2 −0.1624 0.2194

 0.5 0.0529 0.2269 0.2269 92.4 0.0460 0.2608

High cured fraction (80 per cent in the baseline group)
�0 −1.3863 −0.0372 0.1813 0.1776 96.0 −0.1707 0.1683
�1 −1 −0.1788 0.3952 0.3845 97.8 −0.1452 0.4521

 0.5 0.1723 0.5055 0.5194 90.7 0.2023 0.6507

good in most cases with mild censoring, suggesting that the variance estimators perform quite
well. In case of heavy censoring and small proportions of susceptible individuals (�0=−1.3863),
the estimate 
̂ is not stable, due to an insufficient number of observed events, which is reflected by
high observed and estimated variances. However, the variances estimators still perform well and
coverage rates are still reasonable.

In the second simulation study, we focused on the estimation of the baseline conditional
hazard function. To illustrate the flexibility of the conditional hazard function estimator based
on M-splines, we generated a mixture of two Weibull hazard functions, such that S(t |U =
1)= pS1(t |U =1)+(1− p)S2(t |U =1) where S1(t |U =1)=exp(−(�1t)

	1 exp(
Z)) and S2(t |U =
1)=exp(−(�2t)

	2 exp(
Z)). We set �1=1.0, 	1=1.5, �2=0.1, 	2=5.0, 
=0.5 and p=0.4.
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Figure 1. The simulated conditional hazard functions in simulation 2 and the mean
estimated one (over 500 simulated sets).

The resulting baseline conditional hazard function is shown in Figure 1. The censoring times were
generated using the uniform distribution U [0;20]. A logistic model was used to model the cured
fraction such that 1−�(z)=[1+exp(�0+�1z)]−1, with �0=0 and �1=−0.5.

Under this setting 500 random samples were generated with sample size 1000,400 and 200. The
penalized likelihood approach was applied with an automatic search for the smoothing parameter
with 14 equidistantly distributed knots. The performances of the estimates of the conditional hazard
and survival functions were evaluated in term of biases at different time points, i.e. 0.6,3.5,6.5
and 10. The variance of �̂0(t |U =1) was computed using the delta method, and we compared the
empirical variance, i.e. the variance of estimates, with the mean of estimated variances. The results
are shown in Table IV. With sample size 1000, biases are small at all time points and suggest
good properties of the estimators. Biases increase with smaller sample sizes. Empirical variances
and the means of estimated variances agree in most cases and coverage rates are satisfactory. The
largest variances are observed at time point 10, when the number in the set at risk is reduced.
The good fit between the simulated conditional baseline hazard function and the mean estimated
curves are illustrated graphically on Figure 1.

5. APPLICATION

To illustrate the penalized likelihood approach, we consider the data from a study of patients with
tonsil cancer who received radiation therapy [24]: 672 patients with squamous cell carcinoma
of the tonsil were collected by the investigators. The data have already been explored using a
semiparametric PH mixture model [15] and a semiparametric accelerated mixture cure model [25].
In this example, local recurrence is considered as the event and failure time is time from initial
treatment to local recurrence. After an approximate 15 years follow-up period, 206 events were
observed. The Kaplan–Meier plot of the marginal survival function levels off with a large and
stable plateau at the right tail, ensuring the appropriateness of the mixture cure model approach
(not shown here). Six covariates are considered here, including T-stage, which has four levels
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Table IV. Simulation results: bias, empirical variance (×100), mean estimated variance (×100) and
coverage rate for the estimation of the conditional hazard function.

Mean Empirical
Sample Time True Absolute variance variance Coverage
size point value bias (×100) (×100) rate (per cent)

n=1000 0.6 0.3430 −0.0086 0.1419 0.1655 93.5
3.5 0.0102 0.0096 0.0062 0.0051 95.8
6.5 0.0892 −0.0080 0.0275 0.0277 95.6
10.0 0.5000 −0.0767 0.5604 0.4595 97.5

n=400 0.6 0.3430 −0.0592 0.2399 0.2925 92.5
3.5 0.0102 0.0108 0.0119 0.0087 92.6
6.5 0.0882 −0.0090 0.0590 0.0482 95.5
10.0 0.5000 −0.0906 1.0158 0.7965 98.7

n=200 0.6 0.3430 −0.0959 0.3642 0.4140 90.4
3.5 0.0102 0.0152 0.0324 0.0238 97.5
6.5 0.0882 −0.0146 0.0992 0.0883 96.2
10.0 0.5000 −0.0830 1.7160 1.3645 98.8

(T1;T2;T3;T4), neck node status, which has two levels (negative (N0) and positive (N+)), sex,
and the continuous variables age, total dose and overall treatment duration.

In our application of the penalized likelihood approach, we used 14 knots equidistantly placed
between 0 and the last follow-up time (14.46 years). Adding more knots did not improve the
likelihood significantly and did not result in modifications of the baseline conditional hazard
function (not shown). The results were not sensitive to the location of knots. The smoothing
parameter was chosen automatically based on the cross-validation criterion and was almost similar
for 12 knots or more (about 10−5). Standard errors for the parameter estimates were computed
using the inverse of the second derivative of the penalized likelihood.

Table V gives the results from the proposed penalized likelihood estimation method and from
the Cox PH mixture cure model of Sy and Taylor [14]. Parameter estimates are very similar
between the two estimation methods and variance estimates are in close agreement. T-stage acts
significantly on the incidence part, patients with high T-stage being cured less often. The effect
of T-stage is also significant on latency (p=0.003), with patients with T-stage=2 having delayed
recurrences. Node status is found to be significant in the latency part (p=0.012) but not in the
incidence part (p=0.087), with earlier recurrence times for those with positive nodes. The total
dose and treatment duration are highly significant for incidence but not for latency. Higher doses
reduce the recurrence rate while patients with long treatment duration are at high risk to fail. Sex
is not significant on either incidence or latency. While it is not significant for the incidence part,
the effect of age is significant on latency, local recurrence being delayed in older patients.

Figures 2 and 3 illustrate the effect of age and T-stage on incidence and latency. The estimated
conditional and marginal hazard functions and the corresponding survival functions based on the
penalized likelihood approach were computed for a male, node positive patient who received 64Gy
total dose and had overall treatment duration of 45 days. The number at-risk in the susceptible
group, based on the model estimates, was 326.0 at t=0, 158.43 at 6 months, 45.66 at 2 years, 11.20
at four years and only 1.85 after 8 years of follow-up. The effect of age (Figure 1) is computed for
fixed T-stage=2. The opposite effect of age on incidence and latency is illustrated by survival and
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Table V. Estimates from the penalized likelihood model mixture cure model (MPnLE)
and the semiparametric PH mixture cure model.

MPnLE estimates Semiparametric PH mixture model

Estimate SE (p-Value) Estimate SE (p-Value)

Incidence model
Intercept −0.122 0.999 −0.181 1.030
T-stage 0.013∗
T2 0.871 0.354 (0.014) 0.852 0.357 (0.017)
T3 1.608 0.342 (<0.001) 1.655 0.345 (<0.001)
T4 2.192 0.426 (<0.001) 2.198 0.430 (<0.001)
Node 0.304 0.199 (0.087) 0.355 0.204 (0.082)
Total dose (Gy) −0.079 0.018 (<0.001) −0.077 0.018 (<0.001)
Duration (per 10 days) 0.462 0.124 (<0.001) 0.463 0.127 (<0.001)
Sex: male 0.043 0.211 (0.836) 0.116 0.215 (0.590)
Age (per 10 years) 0.109 0.093 (0.243) 0.134 0.097 (0.167)

Latency model
T-stage 0.003∗
T2 −0.707 0.358 (0.048) −0.625 0.365 (0.087)
T3 −0.041 0.341 (0.904) −0.108 0.352 (0.759)
T4 0.415 0.378 (0.272) 0.385 0.383 (0.315)
Node 0.456 0.182 (0.012) 0.339 0.188 (0.071)
Total dose (Gy) −0.005 0.012 (0.673) −0.005 0.014 (0.721)
Duration (per 10 days) −0.031 0.074 (0.675) −0.007 0.078 (0.920)
Sex: male 0.190 0.188 (0.314) 0.065 0.198 (0.743)
Age (per 10 years) −0.253 0.096 (0.009) −0.303 0.097 (0.002)

∗Wald �2 with 3 df.

hazard curves that cross. The effect of T-stage is computed for fixed age=60 years. Similarly the
marginal hazard curves cross after 1 year, illustrating the different effects of T-stage on incidence
and latency.

Because of a very long follow-up period beyond the last failure time, which ensures the appro-
priateness of the zero-tail constraint, the estimated conditional and marginal survival curves from
the Cox PH mixture cure model (not shown here) are similar (although not smooth) to those
obtained with our approach.

The conditional hazard curves for both age and T-stage show a bimodal shape between 0 and 4
years, with hazard peaking first around 0.5 year and then around 2.5 years. This was not modified
by changing the location of knots. The hazard function is not plotted beyond 4 years, because of
the very small number in the risk set beyond this date, but goes to infinity after the last event time
(not shown). Note that this bimodal shape could not be identified using a Weibull mixture cure
mixture model, and illustrates the flexibility of the approximation of the hazard function using
splines. The reason for the two modes in the hazard is unclear. It may be due to scheduling of
the patient’s visits to the doctor’s clinic, at which time recurrences may be first detected. First, the
investigators of the study excluded cases with less than one month disease-free follow-up [24]: this
explains why the estimate of the hazard function starts from zero. Second, it is possible (although
not described in [24]) that the recurrence has been assessed at visit times with similar schedules
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Figure 2. Estimated conditional and marginal survival (left) and hazard (right) functions from the penalized
likelihood approach for four different ages. For each age, the other covariates are fixed at selected values:

sex=male, total dose=64Gy, overall treatment duration=45 days, node positive, T-stage=2.

for most of the patients. This could have been treated by methods allowing for interval censoring
if the visit times had been available.

To compare the fit provided by the two-component mixture cure model against the standard
survival model with no cured fraction, we used the normalized likelihood-based cross validation
criterion (LCV), which is an nearly unbiased estimator of the Kullback−Leibler criterion [23] and
reduces to the normalized Akaike information criterion for parametric models (without penalized
likelihood). According to Commenges et al. [23], a difference less than 10−3 in the LCV values
between two models is considered as ‘negligible’ (i.e. the fit provided by the two models are
comparable), whereas a difference greater than 10−2 is considered as ‘moderate’ to ‘large’. Under
the penalized likelihood approach, the results were LVC=1.5070 for the one component (standard)
survival model and LCV=1.4605 for the two-component mixture cure model indicating that the
introduction of a cured fraction provides a better fit to the data. This conclusion was not influenced
by the number and location of knots. We also used the LCV to compare the fit provided by the
proposed approach and a parametric Weibull approach including the standard Weibull survival
model and the logistic-Weibull mixture cure model. The results were LCV=1.5017 for the Weibull
mixture cure model and LCV=1.7547 for the standard Weibull model. Here again the introduction
of a cured fraction improves the fit to the data. Moreover, it can be concluded from the comparison
of the LCV values that the penalized likelihood approach is preferred to the Weibull mixture cure
model.
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Figure 3. Estimated conditional and marginal survival (left) and hazard (right) functions
from the penalized likelihood approach for four different T-stages. For each T-stage, the
other covariates are fixed at selected values: sex=male, total dose=64Gy, overall treatment

duration=45 days, node positive, age=60 years.

6. DISCUSSION

In this paper we propose a new estimation method applied to mixture cure models. Our work
was mainly motivated by two major issues regarding estimation procedures in this kind of model:
the estimation of the conditional survival/hazard function, and the closely related estimation of
the variance of regression parameters. The proposed approximation of the conditional hazard
function using splines yields a smooth and much more flexible estimate than standard fully para-
metric distributions. Moreover, estimation could be performed by direct maximization of the
full-likelihood function, whereas the EM-algorithm is mostly used in semiparametric mixture cure
models [14–16, 25, 26]. Although this estimation procedure works well without specifying any tail
constraint, we did not completely rule out the identifiability issues commonly met with mixture
cure models. The choice of the smoothing parameter � based on the approximate cross-validation
score may lead to an improper conditional survival estimate in the presence of late failure time.
This issue corresponds, however, to cases where the application of mixture cure models may not be
justified due to insufficient follow-up or because the presence of a cured fraction is questionable.

Alternatively, data can be analyzed utilizing statistical models that account for heterogeneity
among individuals. These models, also known as frailty models, differ from cure models in that they
assume all individuals eventually experience the event of interest with varying risks that are greater
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than zero [27, 28]. The proportion of individuals considered to be cured in the former models are
generally considered as having a low risk of experiencing the event in the latter models. As noted
by Sy and Taylor [15], the mixture cure model is a special case of a multiplicative frailty model, in
which the hazard for an individual, conditional on U , can be written as �(t |U,x)=U�(t |U =1,x).
As a frailty variable,U is not entirely observable since an individual becomes labeled asU =1 if an
event is observed. Usually frailties are assumed to follow a distribution such as the gamma, inverse
Gaussian or positive stable distribution. These frailty distributions do not allow individuals to have
zero risk (i.e. Pr(U =0)=0), and the standard frailty models do not allow a cured proportion. As
an extension of the parametric family, Aalen [29] considered a compound Poisson distribution,
which allows a positive probability for the risk to be zero. A comparison of parametric mixture
cure models, gamma frailty mixture models and compound Poisson models was performed by
Price and Manutunga [30] in a one-sample, no-covariate analysis of a leukemia data set. Their
results suggest that gamma frailty mixture models and compound Poisson models could perform
better than parametric mixture cure models. However, these models only account for heterogeneity
among individuals in the latency part, not in the incidence part. Parametric mixture cure models
with random effects have recently been proposed [31], but the choice of the frailty distribution
and of their covariance matrix may be an important issue. Further work is needed to address these
issues using a penalized likelihood approach.
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