
Combinatorial Compressive Sampling with

Applications

by

Mark A. Iwen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2008

Doctoral Committee:

Assistant Professor Martin J. Strauss, Co-Chair
Associate Professor Jignesh M. Patel, Co-Chair
Professor John P. Boyd
Associate Professor Anna Catherine Gilbert
Professor Robert Krasny

c© Mark A. Iwen 2008
All Rights Reserved

Acknowledgements

I would like to start by thanking Martin Strauss, Jignesh Patel, and Anna Gilbert

for giving me loads of advice and guidance over the last several years, and for toler-

ating my sometimes overly willful behavior. In addition, I would like to thank them

(along with Graham Cormode, Piotr Indyk, Willis Lang, Michael Lieberman, G. S.

Mandair, Michael Morris, Muthu Muthukrishnan, Holger Rauhut, Craig Spencer,

and Lisa Zhang) for deciphering my often confusing and too hastily composed e-

mails, commenting on preprints, and answering questions. I would also like to thank

all the other faculty members who talked with me and answered questions over the

past 5 years. In particular, I would like to thank John Boyd, Andrew Christlieb,

Charles Doering, Robert Krasny, Peter Miller, Karen Rhea, and Peter Smereka.

Thank you helpful and friendly office staff! — Tara McQueen in particular. With-

out her help I’m not sure I would have made it through the process.

My life in Ann Arbor would have impoverished without Dom’s Bakery, dodge

ball, ultimate frisbee, late night departmental ping pong, snowball fights, summer

cookouts, and walks in the arboretum: I thank everyone who ever collaborated with

me in any of these. In particular, I thank Hualong Feng, Joel Lepak, and Craig

Spencer for letting me crash at their houses more or less at will throughout my time

here. I’m likewise still in Sourya Shrestha’s debt for feeding me more times than

I can count first year. I have many fond memories of biking all over Ann Arbor

and the surrounding country side with Dave Allen, Joel Lepak, Mike Lieberman,

ii

Diane Vavrichek, and Craig Spencer. My running partners - Dave Anderson & Mike

Lieberman - were very kind in not ditching me over the years, and for being gentle

with me the (many) times I got even more out of shape than usual. Katka Bodova

gets a thousand thanks for teaching me how to throw a frisbee properly second

year. Finally, special thanks to my roommates Heather Adams, Hualong Feng, Jen

Kostrzewski, and Maneesh Sharma for their companionship over the years.

Wendy Grus: Expressing my appreciation for her in such a small space is difficult.

Her practical advice, generosity, comforting sense of humor, and irrepressible cuteness

earn her a gold medal! Her presence in my life has improved its quality in every

respect.

Slight variants of some thesis chapters have been published previously. Chap-

ter II appeared in “Communications in Mathematical Sciences” in 2007 [66] and

was joint work with Anna Gilbert and Martin Strauss. Chapter III appeared in the

proceedings of the ACM-SIAM Symposium of Discrete Algorithms (SODA’08) [65].

Chapter IV appeared in the proceedings of the Conference on Information Sciences

and Systems (CISS’08) [69] and was joint work with Craig V. Spencer. Chapters V

and VI have been submitted. Chapter VI is joint work with Craig V. Spencer. Ap-

pendix A appeared in the proceedings of the The 24th International Conference on

Data Engineering (ICDE’08) [67] and was joint work with Jignesh Patel and Willis

Lang. Appendix B appeared in the proceedings of the 2007 International Conference

on Acoustics, Speech, and Signal Processing (ICASSP’07) [68] and was joint work

with G. S. Mandair, M. D. Morris, and M. Strauss.

iii

Table of Contents

Acknowledgements . ii

List of Algorithms . vi

List of Figures . vii

List of Tables . viii

List of Appendices . ix

Chapter

I. Introduction . 1

1.1 Example: Sub-Nyquist Single Frequency Acquisition 1
1.2 General Problem Setup . 3
1.3 Compressed Sensing . 5

1.3.1 Linear Programming . 6
1.3.2 Greedy Pursuit . 8
1.3.3 Combinatorial . 9

1.4 Thesis Outline . 10
1.4.1 The Appendices . 12

1.5 The Fourier Case . 12
1.5.1 The Discrete Fourier Transform . 13
1.5.2 The Fast Fourier Transform . 15

II. Empirical Evaluation of a Sublinear-Time Sparse DFT Algorithm 19

2.1 Introduction . 19
2.2 Preliminaries . 22

2.2.1 FADFT-1 Algorithm . 25
2.2.2 FADFT-2 Algorithm . 26

2.3 FADFT Implementation and Evaluation . 30
2.3.1 Empirical Evaluation: Run Time and Accuracy 31
2.3.2 Empirical Evaluation: Noise Tolerance and Sampling Complexity . 37

2.4 Conclusion . 44

III. A Deterministic Sparse Fourier Algorithm via Non-adaptive Compressed
Sensing Methods . 46

3.1 Compressed Sensing and Related Work . 47
3.2 Preliminaries . 49
3.3 Construction of Measurements . 50
3.4 Signal Reconstruction from Measurements 54

iv

3.5 Fast Fourier Measurement Acquisition . 57
3.6 Conclusion . 59

IV. Improved Bounds for a Deterministic Sublinear-Time Sparse Fourier Al-
gorithm . 61

4.1 Introduction . 62
4.2 Preliminaries . 63
4.3 Required Lemmas . 65
4.4 Runtime and Measurement Bounds . 67
4.5 Sampling: Empirical Evaluation . 69
4.6 Sampling: Improving DSFT’s Performance 71
4.7 Conclusion . 75

V. Combinatorial Sublinear-Time Fourier Algorithms 77

5.1 Introduction . 77
5.2 Preliminaries . 81

5.2.1 Compressed Sensing and Compressibility 81
5.2.2 The Fourier Case . 82

5.3 Combinatorial Constructions . 83
5.4 Superlinear-Time Fourier Algorithms . 87
5.5 Sublinear-Time Fourier Algorithms . 92
5.6 Discrete Fourier Results . 98
5.7 Conclusion . 99

VI. A Note on Compressed Sensing and the Complexity of Matrix Multipli-
cation . 101

6.1 Introduction . 101
6.2 Preliminaries and Related Work . 102

6.2.1 Compressed Sensing . 105
6.2.2 Complexity of Matrix Multiplication 106

6.3 Approximating Matrix Products . 107
6.4 Discussion . 110

Appendices . 112

Bibliography . 156

v

List of Algorithms

1.1 Greedy Pursuit . 8

1.2 Fast Fourier Transform (FFT) . 16

2.1 FADFT-1/2 Algorithm . 25

3.1 Sparse Approximate . 55

3.2 Fourier Measure . 57

5.1 Superlinear Approximate . 88

5.2 Sublinear Approximate . 93

A.1 Create-BST: The BST Creation Algorithm . 121

A.2 BSTRowBAR: Constructing BST Gene Row BAR 123

A.3 BST Cell rule quantized Evaluation (BSTCE) 128

A.4 The BSTC Algorithm . 129

B.1 Plan: Plan Detail Imaging . 151

vi

List of Figures

2.1 AAFFT Run Time Vs. Signal Size . 32

2.2 AAFFT Run Time Vs. Superposition Size . 34

2.3 AAFFT Error Vs. Parameters . 36

2.4 Probability of Hidden Signal Recovery for AAFFT 0.5 (top) and AAFFT 0.9 (bottom) 40

2.5 AAFFT 0.9’s Probability of Hidden Signal Recovery from Signals with Various
Noise Levels . 41

2.6 Probability of Hidden Signal Recovery Vs Signal Size for AAFFT 0.9 42

2.7 Signal Samples for Sparse Superposition Recovery via AAFFT 0.9 43

4.1 Empirical Test of Theorem IV.7. 70

4.2 Maximum B Value Yielding Less Than N Samples. 71

4.3 Fraction of Bandwidth Sampled for Various B Values. 72

A.1 Example BST for the Cancer Class . 120

A.2 Gene Row BARs with 100% Confidence Values. 124

A.3 BSTC cell rule Evaluation Example . 131

A.4 ALL Holdout Validation Results . 136

A.5 LC Holdout Validation Results . 136

A.6 PC Holdout Validation Results . 137

A.7 OC Holdout Validation Results . 137

B.1 An Example Problem, The Problem’s Related Scan Graph, and a Scan Graph
Solution . 149

B.2 Test Image Along with the Number of Rows+Columns Required to Cover Its Light-
est Pixels . 152

B.3 Bone + PMMA Image, and The Total Time Required to Image Its Boniest (Light-
est) Pixels . 153

vii

List of Tables

1.1 RIP Measurement Operator Constructions . 7

1.2 Fourier CS Algorithms . 11

2.1 Algorithms and Implementations . 21

A.1 Running Example of Microarray Data . 114

A.2 Gene Expression Datasets . 132

A.3 Results Using Given Training Data . 133

A.4 Average Run Times for the PC Tests (in seconds). † indicates nl was lowered to 2. . 138

A.5 Mean Accuracies for the PC Tests that RCBT Finished. 139

A.6 Average Run Times for the OC Tests (in seconds). † indicates nl was lowered to 2. . 140

A.7 Mean Accuracies for the OC Tests that RCBT Finished. 141

viii

List of Appendices

A. Scalable Rule-Based Gene Expression Data Classification 113

A.1 Preliminaries . 118
A.1.1 Boolean Association Rules . 119

A.2 BSTs and BARs . 120
A.2.1 Boolean Structure Tables . 121
A.2.2 BST Generable BARs . 122
A.2.3 BARs Relationships to CARs . 124

A.3 BST-Based Classification . 126
A.3.1 BSTC Overview . 127
A.3.2 BST Cell Rule Satisfaction . 128
A.3.3 BSTC Algorithm . 129
A.3.4 BSTC Example . 131

A.4 Experimental Evaluation . 132
A.4.1 Preliminary Experiments . 133
A.4.2 Holdout Validation Studies . 134

A.5 Related Work . 142
A.6 Conclusions and Future Work . 144

B. Fast Line-based Imaging of Small Sample Features 146

B.1 Introduction . 147
B.2 Background and Methodology . 148
B.3 Optimal Column/Row Scanning . 149

B.3.1 Push Broom . 150
B.3.2 Optimal Columns . 150
B.3.3 Optimal Rows + Columns . 150

B.4 Empirical Evaluation . 152
B.5 Generalizations and Future Work . 154
B.6 Conclusion . 155

ix

Chapter I

Introduction

This thesis is concerned with quickly finding sparse representations of signals

(e.g., vectors of data, periodic functions, etc). Traditional applications of sparse

signal representations include image, video, and music compression (see [85]). Com-

pactly representing such signals is generally a good idea for the sake of minimizing

both communication and storage costs. Our additional interest in quickly determin-

ing compact representations is (hopefully) self-explanatory: we seek to reduce the

computational costs associated with obtaining sparse signal representations as much

as possible. To better understand the types of problems we are interested in here

we will next consider a simple application-based example in which the FFT can be

replaced by faster sparse Fourier methods.

1.1 Example: Sub-Nyquist Single Frequency Acquisition

Let f : [0, 2π]→ C be a non-identically zero function of the form

f(x) = C · eiωx

consisting of a single unknown frequency ω ∈ (−N,N] (e.g., consider a windowed

sinusoidal portion of a wideband frequency-hopping signal [77]). Sampling at the

Nyquist-rate would dictate the need for at least 2N equally spaced samples from f

1

2

in order to discover ω via the FFT without aliasing. Thus, we would have to compute

the FFT of the 2N -length vector

A(j) = f

(
πj

N

)
, 0 ≤ j < 2N.

However, if we use aliasing to our advantage, we can correctly determine ω with

significantly fewer f -samples as follows:

Let A2 be a 2-element array of f -samples with

A2(0) = f (0) = C, and A2(1) = f (π) = C · (−1)ω.

Calculating Â2 we get that

Â2(0) = C · 1 + (−1)ω

√
2

, and Â2(1) = C · 1 + (−1)ω+1

√
2

.

Note that since ω is an integer, exactly one element of Â2 will be non-zero. If

Â2(0) 6= 0 then we know that ω ≡ 0 modulo 2. On the other hand, Â2(1) 6= 0 implies

that ω ≡ 1 modulo 2. In this same fashion we may use several potentially aliased

Fast Fourier Transforms in parallel to discover ω modulo 3, 5, . . . , the O(logN)th

prime. Once we have collected these moduli we can reconstruct ω via the famous

Chinese Remainder Theorem (CRT).

Theorem I.1. Chinese Remainder Theorem (CRT): Any integer x is uniquely

specified mod N by its remainders modulo m relatively prime integers p1, . . . , pm as

long as
∏m

l=1 pl ≥ N .

To finish our example, suppose that N = 500, 000 and that we have used three

FFT’s with 100, 101, and 103 samples to determine that ω ≡ 34 mod 100, ω ≡ 3

mod 101, and ω ≡ 1 mod 103, respectively. Using that ω ≡ 1 mod 103 we can see

that ω = 103 ·a+1 for some integer a. Using this new expression for ω in our second

3

modulus we get

(103 · a+ 1) ≡ 3 mod 101⇒ a ≡ 1 mod 101.

Therefore, a = 101 · b + 1 for some integer b. Substituting for a we get that ω =

10403 · b+ 104. By similar work we can see that b ≡ 10 mod 100 after considering ω

modulo 100. Hence, ω = 104, 134 by the CRT. As an added bonus we note that our

three FFTs will have also provided us with three different estimates of ω’s coefficient

C.

The end result is that we have used significantly less than 2N samples to determine

ω. Using the CRT we required only 100 + 101 + 103 = 304 samples from f to

determine ω since 100 · 101 · 103 > 1, 000, 000. In contrast, a million f -samples

would be gathered during Nyquist-rate sampling. Besides needing significantly less

samples than the FFT, this CRT-based single frequency method dramatically reduces

required computational effort. Of course, a single frequency signal is incredibly

simple. Signals involving more than 1 non-zero frequency are much more difficult

to handle since frequency moduli may begin to collide modulo various numbers.

However, the take-home lesson is clear: knowledge of inherent signal sparsity can be

taken advantage of to reduce both the sampling and runtime requirements involved

in signal recovery.

1.2 General Problem Setup

More formally, we are interested in the following type of problem. Let X be

a Hilbert space with a countable orthonormal basis Ψ = {ψj}j∈Z. Furthermore,

suppose we are given a signal f ∈ X which is compressible with respect to Ψ.

That is, suppose there exists an ordering

|〈f, ψj1〉| ≥ |〈f, ψj2〉| ≥ · · · ≥ |〈f, ψjl
〉| ≥ . . .

4

such that for some p ∈ R+ we have

∞∑
l=k+1

|〈f, ψjl
〉| = O

(
k−p
)
.

We seek a k-sparse f̃ ∈ X of the form

f̃ =
k∑

l=1

Cl · ψml

which is close to f in an induced norm. For example, in subsequent chapters we will

look for a sparse approximation f̃ to f with

(1.1) ‖f − f̃‖22 = O
(
k−1−2p

)
.

Note that there is potential computational difficulty here. Parseval’s equality tells

us that in order for f̃ to be a good approximation to f as per Equation 1.1 we need

to identify a substantial portion of f ’s most important basis elements (i.e., determine

most of {j1, j2, . . . , jk}). If jmax = max {|j1|, · · · , |jk|} is large, a straightforward cal-

culation of f̃ by computing O(jmax) inner products may be computationally taxing.

This is especially true when the cost of obtaining an inner product is high.

For example, consider medical imaging. Certain imaging procedures (e.g., some

types of MR-imaging [83, 84]) yield compressible patient images (in space). How-

ever, they collect image information in the Fourier domain. Typically each patient

scan yields a small subset of the Fourier transform of the patient image. Thus,

the sparser the patient image, the more patient scans (i.e., Fourier inner products)

generally required by straightforward scanning techniques to identify and properly

render important image pixels. In addition, every patient scan is both time- and

energy-intensive. In such cases it is highly desirable to be able to generate a high

fidelity image of the patient using only a small number of scans (i.e., Fourier inner

products).

5

A natural question arises: Is there a method of determining an f̃ using a number

of inner products determined primarily by f ’s inherent compressibility? For example,

can we determine a valid f̃ using at most

kO(1+ 1
p) · logO(1)

(
max

{
j1, · · · , j

k
O(1+ 1

p)

})
samples (e.g., inner products) from f? The answer (to both questions) is ‘yes’. Meth-

ods concerned with answering this question are collectively referred to as Compressed

Sensing (CS) methods.

1.3 Compressed Sensing

For the remainder of this section we’ll assume our Hilbert space X has a finite

orthonormal basis Ψ = {ψj}j∈ZN
(i.e., when concerned with the approximation of

a compressible signal in a separable Hilbert space we can always project onto a

large finite dimensional subspace). As before, f ∈ X will be a p-compressible signal

that we would like to approximate with a k-sparse f̃ . Note that any optimal sparse

approximation, f̃ opt, will have

‖f − f̃ opt‖q = inf
k−sparse v∈X

‖f − v‖q.

There are generally two components to a Compressed Sensing (CS) method for

approximating f ∈ X.

1. Measurement Operator: A bounded linear operator M : X → C
d where

d = o(N ε) · (k
δ
)O(1+ 1

p), and

2. Recovery Algorithm: an algorithm A which, when given M(f) and δ as

input, outputs an f̃ with

‖f − f̃‖q = (1 + δ)‖f − f̃ opt‖q

6

in NO(1) time.

Note that the size, d, of M’s target dimension is typically more important than

the recovery algorithm A’s runtime. We generally want to gather as little informa-

tion as possible about f . For example, in the MR-imaging example above we are

more concerned with reducing the number of patient scans than we are with the

computational time required to recover the patient’s image from the collected scans.

Of course, CS methods’ operator properties, recovery algorithms, and error guar-

antees vary widely. Most notably there are three general types of recovery algorithms

employed by current CS methods: linear programming, greedy pursuit, and combi-

natorial. In what follows we will briefly survey CS methods subdivided by recovery

algorithm type. In the process we will restrict our treatment to CS methods which are

tolerant to noise (i.e., are capable of approximating compressible signals as opposed

to only recovering exact sparse signals).

1.3.1 Linear Programming

Linear Programming (LP)-based compressed sensing methods were the first to

be developed and refined [41, 40, 39, 19, 18, 13] (see [3] for a more comprehensive

bibliography). These LP methods generally utilize measurement operators with the

property that for a given δ ∈ R+ all k-sparse f ′ ∈ X have

(1.2) (1− δ)‖f ′‖q ≤ ‖M(f ′)‖q ≤ (1 + δ)‖f ′‖q.

This property is generally referred to as the Restricted Isometry Property (RIP). If

M has the RIP (for either q = 2 [19], or q = 1 + O(1)
log N

[13]) a linear program can

recover an accurate approximation to a compressible f ∈ X by solving

min ‖f ′‖1 subject toM(f ′) =M(f).

7

Construction Type Random/Deterministic Norm Type q Target Dimension d
Gaussian R 2 O(k · log(N/k)) [99, 42]
Fourier R 2 O(k · log4 N) [99]

Algebraic D 2 O(k2 · logO(1)(N)) [36]
Expander R 1 O(k · log(N/k)) [13]
Expander D 1 O(k ·N ε) [13]

Table 1.1: RIP Measurement Operator Constructions

Given that linear programs require NO(1)-time to solve, these methods are of most

interest when great measurement compression is sought. Hence, most LP based CS

work focuses on the construction of RIP operators with small target dimension (i.e.,

d minimized).

Initial constructions of RIP matrices were motivated by randomized embedding

results due to Johnson and Lindenstrauss [70]. Hence, the first measurement opera-

tors M : X → C
d consisted of taking an input f ’s inner product with d randomly

constructed m ∈ X. For example, if each m is determined by independently choosing

〈m,ψj〉 from a properly normalized Gaussian distribution for each j ∈ ZN , M can

be shown to have the RIP with q = 2 with high probability [10, 99]. Other measure-

ment operator constructions use d elements m ∈ X whose inner products with the

N basis elements match d randomly selected N × N discrete Fourier matrix rows.

For a summary of standard RIP measurement operator constructions see Table 1.1.

Please note that Equation 1.2’s δ is considered to be a fixed constant with respect

to Table 1.1.

In Table 1.1 the first column lists the type of measurement operator construction,

the second column lists whether the construction is randomized or deterministic, the

third column lists the type of RIP property the operator satisfies (see Equation 1.2),

and the fourth lists the dimension of the target space. It should be noted that the

randomized constructions are near optimal with respect to the operator target di-

8

Algorithm 1.1 Greedy Pursuit

1: Input: Signal f ∈ X, Measurements M(f), Measurement Operator M
2: Output: f̃ ∈ X
3: Set r = f , f̃ = 0.
4: while ‖M(r)‖ is too large do
5: Use M(r) to get a decent sparse approximation, r̃ ∈ X, to r
6: Set r = r − r̃, and f̃ = f̃ + r̃
7: end while
8: Return f̃

mension d (within logN factors). The deterministic algebraic operator construction

is also near optimal for its class (i.e., q = 2 with binary entries) [21]. Similarly,

improving the deterministic expander construction is probably difficult [13].

1.3.2 Greedy Pursuit

Greedy pursuit compressed sensing methods were motivated by Orthogonal Match-

ing Pursuit (OMP) and its successful application to best basis selection problems and

their variants [85]. Hence, OMP was the first greedy pursuit method to be applied

in the CS context [104]. OMP and related CS greedy pursuit recovery algorithms

all work along the lines of Algorithm 1.1. The analysis of these methods typically

consists of verifying that line 4’s residual energy will shrink quickly given that line

5’s fast approximation method maintains required iterative invariants. Although the

analysis can be difficult, the algorithms themselves are typically simple to implement

and faster than LP solution methods [74].

Recent developments in compressed sensing have led to several greedy pursuit

methods which use RIP measurement operators first developed for LP-based meth-

ods to reconstruct compressible signals using a small number of measurements [95,

94, 93, 63]. Hence, these new greedy pursuit methods can simultaneously take ad-

vantage of both the fast runtimes of greedy pursuit methods and the impressive

measurement properties (i.e., the (near)-optimal target dimensions) of the RIP con-

9

structions listed in Table 1.1. Driven by these two simultaneous advantages greedy

pursuit CS methods appear poised to replace LP-based CS methods in most appli-

cations.

Perhaps the most interesting aspect of CS greedy pursuit methods is that they

may be combined with group testing ideas [44, 55] to yield reconstruction algorithms

which have (k · log(N))O(1) time complexity. This is generally done by using struc-

tured measurement operators to collect information identifying high-energy basis

elements, thereby eliminating the need for the reconstruction algorithm to consider

the vast majority of Ψ. Having effectively pruned the N � k basis down to a subset

of size K = (k · log(N))O(1) using what amounts to a high-energy subspace projec-

tion operator, a NO(1)-time greedy pursuit method maybe employed at reduced cost

(i.e., N is replaced with K). Examples of such algorithms include [56] and [53, 54]

(developed in the Fourier context).

1.3.3 Combinatorial

Combinatorial compressed sensing methods [32, 33, 92, 61] were first developed

using ideas related to streaming algorithms [91, 51]. A combinatorial CS measure-

ment operator, M, is structured so that it separates the influence of f ’s k-largest

magnitude Ψ-basis elements from one another in some k-dimensional subspace, S,

of M’s target space. Hence, S is guaranteed to contain a high fidelity projection of

f ’s best-basis coefficients. A combinatorial recovery algorithm then utilizes knowl-

edge ofM’s structure to both locate S and to determine which subspace of Ψ must

have produced it. The majority of this thesis is concerned with combinatorial CS

methods. Thus, we postpone a more detailed discussion until later chapters.

For now, we simply note that combinatorial CS methods are also easily combined

with group testing ideas to yield incredibly fast reconstruction algorithms. Further-

10

more, some combinatorial CS methods exhibit a useful sampling structure which can

be modified to be highly beneficial in the Fourier compressed sensing case. As a re-

sult, we are able to modify combinatorial CS methods to create fast Fourier transform

algorithms for frequency-sparse signals/functions. These new combinatorial Fourier

methods can be viewed as a beneficial translation of earlier sparse Fourier methods

[53, 54] into a different context. As a result of this translation, we not only achieve

the first known deterministic sublinear-time Fourier methods, but also explicitly link

these sparse Fourier results to a general compressed sensing methodology.

1.4 Thesis Outline

The majority of this Thesis is concerned with compressed sensing in the Fourier

context. More specifically, suppose we are given a periodic function f : [0, 2π] → C

which is well approximated by a k-sparse trigonometric polynomial

(1.3) f̃(x) =
k∑

j=1

Cje
iωj ·x, {ω1, . . . , ωk} ⊂

[
−N

2
,
N

2

]
,

where the smallest such N is much larger than k. We seek methods for recovering a

high-fidelity approximation to f̃ using both (k · log(N))O(1) time and f -samples.

Table 1.2 compares the Fourier CS algorithms developed in this thesis to other

existing Fourier methods. All the methods listed are robust with respect to noise.

The runtime and sampling requirements are for recovering exact k-sparse trigono-

metric polynomials (see Equation 1.3). The second column indicates whether the

result recovers (an approximation to) the input signal with high probability (W.H.P.)

or deterministically (D). “With high probability” indicates a nonuniform O
(

1
NO(1)

)
failure probability per signal. In some cases, for simplicity, a factor of “log(k)” or

“log(N/k)” was weakened to “log(N)”.

Looking at Table 1.2 we can see that CoSaMP [93] achieves the best theoret-

11

Fourier Algorithm W.H.P./D Runtime Function Samples
LP [19] or ROMP [95] W.H.P. NO(1) O(k log(N)) [18]

CoSaMP [93] W.H.P. O(N · log2(N)) O(k · log(N)) [18]
Chapter V W.H.P. O(N · log3(N)) O(k · log2(N))
Chapter V D O(N · k · log2(N)) O(k2 · log N)

Sparse Fourier [54] W.H.P. O(k · logO(1)(N)) O(k · logO(1)(N))
Chapter V W.H.P. O(k · log5(N)) O(k · log4(N))
Chapter V D O(k2 · log4(N)) O(k2 · log3(N))

Table 1.2: Fourier CS Algorithms

ical superlinear Fourier runtimes (outperforming LP and ROMP). In comparison,

our W.H.P. Chapter V results require an additional log(N) factor in terms of both

runtime and sampling complexity. However, we should note that the Chapter V

algorithms are simpler to implement and optimize than CoSaMP. The Chapter V

algorithms are also capable of exactly reconstructing k-sparse signals in an exact

arithmetic setting. More interestingly, we note that our Chapter V Monte-Carlo

sublinear-time result matches the previous sparse Fourier method [54]. In addi-

tion, our Monte-Carlo result can be modified to yield the first known deterministic

sublinear-time sparse Fourier algorithm.

The remainder of this thesis proceeds as follows: In Chapter II we empirically

evaluate implementations of existing Monte-Carlo Fourier algorithms [53, 54] for

solving the Fourier CS problem. Next, in Chapter III, we present a combinatorial

CS method for solving the general compressed sensing problem and quickly sketch

its application to the Fourier CS problem. In Chapter IV tight sampling and run-

time bounds are worked out for the previous chapter’s combinatorial CS method.

Finally, an improved deterministic solution of the Fourier CS problem is presented

in Chapter V (along with a new Monte-Carlo solution method). An interesting im-

plication of compressed sensing for the complexity of matrix multiplication is noted

in Chapter VI.

12

1.4.1 The Appendices

It should be noted that the Fourier results herein can be considered as sparse

interpolation results. Traditional (trigonometric) polynomial interpolation methods

require O(N) function samples in order to recover an N th-degree polynomial [52, 73].

On the other hand, sparse interpolation results for recovering k-term polynomials of

maximum degree N only require O(k) function samples [87, 12, 71]. Similarly, ran-

domized sparse trigonometric polynomial interpolation results (similar to [53, 54])

exist for recovering k-term trigonometric polynomials using (k · log(N))O(1) function

evaluations [86, 23]. Chapter V presents the first known fast deterministic interpo-

lation result for trigonometric polynomials.

Given existing Fourier CS methods’ relationships to trigonometric interpolation

it isn’t surprising that they have been applied to both numerical methods [35] (via

spectral techniques [16, 103]) and medical imaging [83, 84]. Likewise, sparse inter-

polation methods can be considered as learning methods along the lines of [75] and

thereafter applied to classification problems. Due to these connections, two related

appendices have been added to the end of this thesis. Appendix A discusses a heuris-

tic method for classifying gene expression data. Appendix B outlines a method for

reducing the total imaging time of test specimens under a given cost model.

1.5 The Fourier Case

Since the majority of the remaining chapters are concerned with computing the

Fourier transform of a frequency-sparse periodic function, we will conclude this chap-

ter with a brief review of the Discrete Fourier Transform (DFT) and its standard

related results. In the process, we will establish notation used throughout subsequent

chapters.

13

1.5.1 The Discrete Fourier Transform

We will refer to a vector in CN as an array or signal. Furthermore, we’ll denote

the jth component of any array A by A[j]. The inner product of two arrays, A

and B, is defined as

〈A,B〉 =
N−1∑
j=0

A[j] ·B[j].

Using the inner product we define the L2-norm of an array, A, as

‖A‖2 =
√
〈A,A〉 =

√√√√N−1∑
j=0

|A[j]|2.

Finally, let

gN = e
−2πi

N .

We define the discrete delta function δN : [0, N)× [0, N)→ {0, 1} to be

(1.4) δN(j, k) =
1

N

N−1∑
ω=0

gω·(k−j)
N

=

PN−1

ω=0 1

N
= 1 if k = j

1−g
N·(k−j)
N

N(1−gk−j
N)

= 0 if k 6= j

.

Let GN be the N ×N matrix (GN)ω,j = gω·j
N√
N

. In effect, we note that the set of vectors

(GN)ω[j] =
gω·j

N

N
, ω ∈ [0, N)

form an orthonormal basis.

The Discrete Fourier Transform (DFT) of an array A is Â = GNA. Thus,

we have

(1.5) Â[ω] =
1√
N

N−1∑
j=0

A[j] gω·j
N
, ω ∈ [0, N).

Similarly, the Inverse Discrete Fourier Transform (IDFT) of any array A is

defined as

(1.6) Â
-1

[j] =
1√
N

N−1∑
ω=0

A[ω] g−ω·j
N

, j ∈ [0, N).

14

Not surprisingly, the IDFT allows us to recover our original signal A from Â. For

any given j ∈ [0, N) we can see that

̂̂
A

-1

[j] =
1√
N

N−1∑
ω=0

Â[ω] g−ω·j
N

=
N−1∑
ω=0

(
1

N

N−1∑
k=0

A[k] gω·k
N

)
g−ω·j

N

=
N−1∑
k=0

A[k]

(
1

N

N−1∑
ω=0

gω·(k−j)
N

)
= A[j]

using Equation 1.4. Finally, Parseval’s equality states that the DFT and IDFT

don’t change the L2-norm of an array: For any array A we have ‖Â‖2 = ‖A‖2 =

‖Â
-1

‖2. This is proven by noting that

〈Â, Â〉 =
N−1∑
ω=0

(
1√
N

N−1∑
j=0

A[j] gω·j
N

)(
1√
N

N−1∑
k=0

A[k] g−ω·k
N

)

=
N−1∑
j=0

N−1∑
k=0

A[j]A[k]

(
1

N

N−1∑
ω=0

gω·(j−k)
N

)
.

Using Equation 1.4 one more time we get

‖Â‖22 = 〈Â, Â〉 =
N−1∑
j=0

A[j]A[j] = 〈A,A〉 = ‖A‖22.

We conclude this section with one final definition. The discrete convolution of

two arrays, A and B, is defined as

(A ?B)[k] =
N−1∑
j=0

A[j] ·B [(k − j) mod N] , k ∈ [0, N).

The discrete convolution of two arrays has the following useful relationship to the two

arrays’ Discrete Fourier Transforms: ̂(A ?B)[ω] =
√
N ·Â[ω] ·B̂[ω] for all ω ∈ [0, N).

To see this we note that

̂(A ?B)[ω] =
1√
N

N−1∑
j=0

(A ?B)[j] gω·j
N

=
1√
N

N−1∑
j=0

N−1∑
k=0

A[k] ·B [(j − k) mod N] gω·j
N
.

Rearranging the final double sum we have

̂(A ?B)[ω] =
1√
N

N−1∑
k=0

A[k] gω·k
N

N−1∑
j=0

B [(j − k) mod N] gω·(j−k)
N

=
√
N · Â[ω] · B̂[ω].

15

Using this relationship we can compute the discrete convolution of arrays A and B

using their DFTs. Specifically, we have

(1.7)
√
N ·̂̂A · B̂

-1

= (A ?B)

where (Â · B̂)[ω] = Â[ω] · B̂[ω] for all ω ∈ [0, N) as expected.

1.5.2 The Fast Fourier Transform

Computing the DFT/IDFT of an N -length signal, A, via Equation 1.5/1.6 re-

quires O(N2)-time. The Fast Fourier Transform (FFT) [27] allows us to reduce the

computational expense considerably. In this section we will outline how the FFT

can be used to reduce the cost of calculating a signal’s DFT from O(N2)-time to

O(N log2N)-time for any length N . In particular, we will later apply the FFT to

signals with lengths containing large prime factors. Most FFT treatments only con-

sider signals whose sizes consist solely of small prime factors (e.g., N a power of 2).

However, even for N itself a prime, we will later require an O(N log2N)-time DFT.

Suppose our signal A has length N with prime factorization

N = p1 · p2 · · · pm, where p1 ≤ p2 ≤ · · · ≤ pm.

Choose an ω ∈ [0, N). By splitting Â[ω]’s sum (i.e., Equation 1.5) into p1 smaller

sums, one for each possible residue modulo p1, we can see that

Â[ω] =
1√
N

p1−1∑
k=0

gkω
N
·

N
p1
−1∑

j=0

A[p1j + k] · (gp1
N

)ω·j .

If we define Ak,p1 to be the entries of A for indexes congruent to k ∈ [0, p1) modulo

p1 we have

Ak,p1 = A[j · p1 + k], j ∈
[
0,
N

p1

)
.

16

Algorithm 1.2 Fast Fourier Transform (FFT)

1: Input: Signal A, length N , prime factorization p1 ≤ · · · ≤ pm

2: Output: Â
3: if N == 1 then
4: Return A
5: end if
6: for k from 0 to p1 − 1 do
7: Âk,p1 ← FFT

(
Ak,p1 ,

N
p1

, p2 ≤ p3 ≤ · · · ≤ pm

)
8: end for
9: for ω from 0 to N do

10: Â[ω]← 1√
p1

(∑p1−1
k=0 gkω

N · Âk,p1

[
ω mod N

p1

])
11: end for
12: Return Â

Our equation for Â[ω] becomes

(1.8) Â[ω] =
1
√
p1

(
p1−1∑
k=0

gkω
N
· Âk,p1

[
ω mod

N

p1

])
.

We can now recursively continue this sum-splitting procedure. In order to compute

each of the p1 discrete Fourier transforms, Âk,p1 with k ∈ [0, p1), we may split each of

their p1 sums into p2 additional sums, etc.. Repeatedly sum-splitting in this fashion

leads to the Fast Fourier Transform (FFT) shown in Algorithm 1.2. Analogous

sum-splitting leads to the Inverse Fast Fourier Transform (IFFT) which can be

obtained from Algorithm 1.2 by replacing line 10’s gkω
N

by g−kω
N

and replacing each

‘Â’ by a ‘Â
-1

’.

Let TN be the time required to compute Â from an N -length signal A via Algo-

rithm 1.2. In order to determine TN we note that lines 6 – 8 require time p1 · T N
p1

while lines 9 – 11 take O(p1N)-time. Therefore we have

TN = O(p1N) + p1 · T N
p1

.

However, Algorithm 1.2 is recursively invoked again to solve Â1,p1 , . . . , Âp1−1,p1 by

sum-splitting in line 7. Taking this into account we can see that

T N
p1

= O

(
p2N

p1

)
+ p2 · T N

p1p2

.

17

We now have

TN = O(p1N) + p1 ·
(
O

(
p2N

p1

)
+ p2 · T N

p1p2

)
= O (N(p1 + p2)) + p1p2 · T N

p1p2

.

Repeating this recursive sum-splitting n ≤ m times shows us that

TN = O

(
N ·

n∑
l=1

p1

)
+

n∏
l=1

pl · T N
p1···pn

.

Using that T1 = O(1) (see Algorithm 1.2’s lines 3 – 5) we have

(1.9) TN = O

(
N ·

m∑
l=1

p1

)
+O(N) = O(m · pm ·N).

Note that m ≤ log2N while pm is N ’s largest prime factor.

Equation 1.9 tells us that the FFT can significantly speed up computation of the

DFT. For example, if N is a power of 2 we’ll have m = log2N and pm = 2 leaving

Algorithm 1.2 with an O(N log2N) runtime. This is clearly an improvement over

the O(N2)-time required to use Equation 1.5 directly. However, if N has large prime

factors the speed up is less impressive. In the worst case, when N is prime, we have

m = 1 and p1 = N . This leaves Algorithm 1.2 with a O(N2) runtime which, in

practice, is slower than the direct method. The FFT’s inability to handle signal’s

with sizes containing large prime factors isn’t a setback in most applications because

the end-user may demand, with little or no repercussions, that signal sizes containing

only small prime factors are used. However, in later chapters (i.e., Chapters III, IV,

and V) we will need to take many DFT’s of signal’s with sizes containing large

prime factors. Thus, we conclude this subsection with a reduction (along the lines

of [14, 97]) of such DFTs to a convolution of slightly larger size.

For any ω ∈ [0, N) we may rewrite Â[ω] as

(1.10) Â[ω] = g
−ω2

2
N g

ω2

2
N Â[ω] =

g
ω2

2
N√
N
·

N−1∑
j=0

A[j] g
ω·j−ω2

2
N =

g
ω2

2
N√
N
·

N−1∑
j=0

A[j] g
−(ω−j)2

2
N g

j2

2
N .

18

The last sum in Equation 1.10 resembles a convolution. In order to make the resem-

blance more concrete we define two new signals. Let

Ã[j] =

 A[j] · g
j2

2
N if 0 ≤ j < N

0 if N ≤ j < 2dlog2 Ne+1

and let

B[j] =

g

−j2

2
N if 0 ≤ j < N

0 if N ≤ j ≤ (2dlog2 Ne+1 −N)

g
−(j−2dlog2 Ne+1)

2

2
N if (2dlog2 Ne+1 −N) < j < 2dlog2 Ne+1

.

Equation 1.10 now becomes

Â[ω] =
g

ω2

2
N√
N
·

2dlog2 Ne+1−1∑
j=0

Ã[j]B
[
(ω − j) mod 2dlog2 Ne+1

]
=
g

ω2

2
N√
N
· (Ã ?B)[ω].

This final convolution can be computed by the FFT and IFFT using Equation 1.7

in time O(N log2N). We have now established the following theorem:

Theorem I.2. Let A be a complex valued signal of length N . A’s Discrete Fourier

Transform, Â, can be calculated using O(N log2N)-time.

We are now in the position to consider sparse Fourier transforms in the next

chapter.

Chapter II

Empirical Evaluation of a Sublinear-Time Sparse DFT
Algorithm

In this chapter we empirically evaluate a recently-proposed Fast Approximate

Discrete Fourier Transform (FADFT) algorithm, FADFT-2 [54], for the first time.

FADFT-2 returns approximate Fourier representations for frequency-sparse signals

and works by random sampling. Its implementation is benchmarked against two

competing methods. The first is the popular exact FFT implementation FFTW

version 3.1. The second is an implementation of FADFT-2’s ancestor, FADFT-1

[53]. Experiments verify the theoretical runtimes of both FADFT-1 and FADFT-2.

In doing so it is shown that FADFT-2 not only generally outperforms FADFT-1 on

all but the sparsest signals, but is also significantly faster than FFTW 3.1 on large

sparse signals. Furthermore, it is demonstrated that FADFT-2 is indistinguishable

from FADFT-1 in terms of noise tolerance despite FADFT-2’s better execution time.

2.1 Introduction

The Discrete Fourier Transform (DFT) for real/complex-valued signals is utilized

in myriad applications as is the Fast Fourier Transform (FFT) [27], a model divide-

and-conquer algorithm used to quickly compute a signal’s DFT. The FFT reduces

the time required to compute a length N signal’s DFT from O(N2) to O(N log(N)).

19

20

Although an impressive achievement, for huge signals (i.e., N large) the FFT can still

be computationally infeasible. This is especially true when the FFT is repeatedly

utilized as a subroutine by more complex algorithms for large signals.

In some signal processing applications [77, 72] and numerical methods for mul-

tiscale problems [35] only the top few most energetic terms of a very large sig-

nal/solution’s DFT may be of interest. In such applications the FFT, which com-

putes all DFT terms, is computationally wasteful. This was the motivation behind

the development of FADFT-2 [54] and its predecessor FADFT-1 [53]. Given a length

N signal and a user provided number m, both of the FADFT algorithms output

high fidelity estimates of the signal’s m most energetic DFT terms. Furthermore,

both FADFT algorithms have a runtime which is primarily dependent on m (largely

independent of the signal size N). FADFT-1 and 2 allow any large frequency-sparse

(e.g. smooth, or C∞) signal’s DFT to be approximated with little dependence on

the signal’s mode distribution and relative frequency sizes.

Related work to FADFT-1/2 includes sparse signal (including Fourier) reconstruc-

tion methods via Basis Pursuit and Orthogonal Matching Pursuit [18, 104]. These

methods, referred to as “compressive sensing” methods, require a small number of

measurements (i.e., O(m polylog N) samples [99, 42]) from an N -length m-frequency

sparse signal in order to calculate its DFT with high probability. Hence, compres-

sive sensing is potentially useful in applications such as MRI imaging where sampling

costs are high [83, 84]. However, despite the small number of required samples, cur-

rent compressive sensing DFTs are more computationally expensive than FFTs such

as FFTW 3.1 [50] for all signal sizes and nontrivial sparsity levels. To the best of

our knowledge FADFT-1 and 2 are alone in being competitive with FFT algorithms

in terms of frequency-sparse DFT run times.

21

Algorithm Name Implementation Name Output for length N signal Run Time
FFT [27] FFTW 3.1 [50] Full DFT of length N signal O(N log(N))

FADFT-1? [66] RA`SFA [66] m most energetic DFT terms O(m2 · polylog(N))
FADFT-1 [53] AAFFT 0.5 m most energetic DFT terms O(m2 · polylog(N))
FADFT-2 [54] AAFFT 0.9 m most energetic DFT terms O(m · polylog(N))

Table 2.1: Algorithms and Implementations

A variant of the FADFT-1 algorithm, FADFT-1?, has been implemented and em-

pirically evaluated [66]. However, no such evaluation has yet been performed for

FADFT-2. In this chapter FADFT-2 is empirically evaluated against both FADFT-1

and FFTW 3.1 [50]. During the course of the evaluation it is demonstrated that

FADFT-2 is faster than FADFT-1 while otherwise maintaining essentially identi-

cal behavior in terms of noise tolerance and approximation error. Furthermore, it

is shown that both FADFT-1 and 2 can outperform FFTW 3.1 at finding a small

number of a large signal’s top magnitude DFT terms. See Table 2.1 for descrip-

tions/comparisons of all the algorithms mentioned in this chapter.

The main contributions of this chapter are:

1. We introduce the first publicly available implementation of FADFT-2, the Ann

Arbor Fast Fourier Transform (AAFFT) 0.9, as well as AAFFT 0.5, the first

publicly available implementation of FADFT-1.

2. Using AAFFT 0.9 we perform the first empirical evaluation of FADFT-2. The

evaluation demonstrates that FADFT-2 is generally superior to FADFT-1 in

terms of runtime while maintaining similar noise tolerance and approximation

error characteristics. Furthermore, we see that both FADFT algorithms out-

perform FFTW 3.1 on large sparse signals.

3. In the course of benchmarking FADFT-2 we perform a more thorough evaluation

of the one dimensional FADFT-1 algorithm than previously completed.

22

The remainder of this chapter is organized as follows: First, in Section 2.2, we

introduce relevant background material and present a short introduction to both

FADFT-1 and FADFT-2. Then, in Section 2.3, we present an empirical evaluation

of our new FADFT implementations, AAFFT 0.5/0.9. During the course of our

Section 2.3.1 evaluation we investigate how AAFFT’s runtime varies with signal size

and degree of sparsity. Furthermore, we present results on AAFFT’s accuracy vs.

runtime trade off. Next, in Section 2.3.2, we study AAFFT’s noise tolerance and its

dependence on signal size, the signal to noise ratio, and the number of signal samples

used. Finally, we conclude with a short discussion in Section 2.4.

2.2 Preliminaries

Throughout the remainder of this paper we will be interested in complex-valued

signals (or arrays) of length N . We shall denote such signals by A, where A(j) ∈ C is

the signal’s jth complex value for all j ∈ [0, N−1] ⊂ N. Hereafter we will refer to the

process of either calculating, measuring, or retrieving any A(j) ∈ C from machine

memory as sampling from A. Given a signal A we define its discrete L2-norm, or

Euclidean norm, to be

‖A‖2 =

√√√√N−1∑
j=0

|A(j)|2.

We will also refer to ‖A‖22 as A’s energy.

For any signal, A, its Discrete Fourier Transform (DFT), denoted Â, is another

signal of length N defined as follows:

Â(ω) =
1√
N

N−1∑
j=0

e
−2πiωj

N A(j), ∀ω ∈ [0, N − 1].

Furthermore, we may recover A from its DFT via the Inverse Discrete Fourier Trans-

23

form (IDFT) as follows:

A(j) =
̂̂
A

−1

(j) =
1√
N

N−1∑
ω=0

e
2πiωj

N Â(ω), ∀j ∈ [0, N − 1].

We will refer to any index, ω, of Â as a frequency. Furthermore, we will refer to

Â(ω) as frequency ω’s coefficient for each ω ∈ [0, N − 1]. Parseval’s equality tells

us that ‖Â‖2 = ‖A‖2 for any signal. In other words, the DFT preserves Euclidean

norm and energy. Note that any non-zero coefficient frequency will contribute to

Â’s energy. Hence, we will also refer to |Â(ω)|2 as frequency ω’s energy. If |Â(ω)| is

relatively large we’ll say that ω is energetic.

We will also refer to three other common discrete signal quantities besides the

Euclidean norm throughout the remainder of this paper. The first is the L1, or

taxi-cab, norm. The L1-norm of a signal A is defined to be

‖A‖1 =
N−1∑
j=0

|A(j)|.

The second discrete quantity is the L∞ value of a signal. The L∞ value of a signal

A is defined to be

‖A‖∞ = max{|A(j)|, j ∈ [0, N − 1]}.

Finally, the third common discrete signal quantity is the signal-to-noise ratio, or

SNR, of a signal. In some situations it is beneficial to view a signal, A, as consisting

of two parts: a meaningful signal, Ã, with added noise, G. In these situations, when

we have A = Ã + G, we define the A’s signal-to-noise ratio, or SNR, to be

SNR(A) = 20 · log10

(
‖Ã‖2
‖G‖2

)
.

Both FADFT algorithms produce output of the form (ω1, C1), . . . , (ωm, Cm) where

each (ωj, Cj) ∈ [0, N − 1]× C. We will refer to any such set of m < N tuples

{(ωj, Cj) ∈ [0, N − 1]× C s.t. 1 ≤ j ≤ m}

24

as a sparse Fourier representation and denote it with a superscript ‘s’. Note

that if we are given a sparse Fourier representation, R̂
s
, we may consider R̂

s
to be a

length-N signal. We simply view R̂
s

as the N length signal

R̂(j) =

 Cj if (j, Cj) ∈ R̂
s

0 otherwise

for all j ∈ [0, N − 1]. Using this idea we may, for example, compute R from R̂
s

via

the IDFT.

We continue with one final definition: An m-term/tuple sparse Fourier represen-

tation is m-optimal for a signal A if it contains the m most energetic frequencies

of Â along with their coefficients. More precisely, we’ll say that a sparse Fourier

representation

R̂
s
= {(ωj, Cj) ∈ [0, N − 1]× C s.t. 1 ≤ j ≤ m}

is m-optimal for A if there exists a valid ordering of Â’s coefficients by magnitude

|Â(k1)| ≥ |Â(k2)| ≥ · · · ≥ |Â(kj)| ≥ · · · ≥ |Â(kN)|

so that (kl, Â(kl)) ∈ R̂
s

for all l ∈ [1,m]. Note that a signal may have several

m-optimal Fourier representations if its frequency coefficient magnitudes are non-

unique. For example, there are two 1-optimal sparse Fourier representations for the

signal

A(j) = 2e
2πij
N − 2ie

4πij
N , N > 2.

However, all m-optimal R̂
s

for any signal A will always have both the same unique

‖R‖2 and ‖A−R‖2 values.

Given an input signal, A, the purpose of both FADFT-1 and FADFT-2 is to

identify the m most energetic frequencies, ω1 ≤ · · · ≤ ωm, from Â and approximate

25

Algorithm 2.1 FADFT-1/2 Algorithm
1: Input: Signal A, Number of most energetic frequencies m, Approximation error ε, Failure Probability

δ
2: Output: An approximate m-optimal sparse Fourier representation for A
3: Set sparse Fourier representation, bRs

, to ∅.
4: Set energetic frequencies, I, to ∅.
5: for all i← 0 to O

“
log(M

ε
)

ε2

”
do

6: Find a list, L, of energetic frequencies ω with |(bA− bR)(ω)|2 ≥ O
“

ε2

m

”
· ‖ A−R ‖22.

7: Set I = I ∪ L.
8: Update bRs

by estimating coefficients ∀ω ∈ I so that |(bA− bR)(ω)|2 ≤ O
“

ε2

|I|+m

”
· ‖ A−AI ‖22.

9: end for
10: Output top m terms of bRs

.

their coefficients. Put another way, the goals of both FADFT-1 and FADFT-2 are

as follows: Given an input signal, A, both FADFT-1 and FADFT-2 are designed to

output an approximate m-optimal sparse Fourier representation for A.

2.2.1 FADFT-1 Algorithm

The main result of [53] is an algorithm, FADFT-1, with the following properties:

Denote an m-optimal Fourier representation of a one dimensional signal A of length

N by R̂
s

opt and assume that, for some M, we have

1

M
≤‖ A−Ropt ‖2≤‖ A ‖2≤M.

Then, the FADFT-1 algorithm uses time and spacem2·poly(log(1
δ
), log(N), log(M), 1

ε
)

to return a sparse Fourier representation R̂
s
such that

‖ A−R ‖22≤ (1 + ε) ‖ A−Ropt ‖22

with probability at least 1− δ.

Note that for m� N the FADFT-1 algorithm is sub-linear time. Also note that

the ε and δ parameters allow the user to manage approximation error and failure

probability, respectively. For a pseudo-code outline of FADFT-1/2 see Algorithm 2.1.

FADFT-1 is a randomized greedy pursuit algorithm which, in this case, means

that it iteratively produces approximations to an R̂
s

opt which get better with high

26

probability as time goes on (i.e. i increases in Algorithm 1). Intuitively, Algorithm 1’s

step 6 will discover frequencies in A−R with large magnitudes relative to ‖ A−R ‖22

with high probability (the larger the frequency’s magnitude, the better chance it will

be found). Hence, as long as step 8 continues to estimate frequency coefficients to

high enough precision, important frequencies which haven not yet been detected will

become increasingly overwhelming in A − R as ‖ A − R ‖22 shrinks (i.e., as R̂
s
→

an R̂
s

opt). The end result is that it becomes increasingly difficult for the top m

frequencies in A to evade detection as time goes on. If the search continues long

enough they will all be found with high probability.

2.2.2 FADFT-2 Algorithm

The FADFT-2 algorithm [54] is identical to the FADFT-1 algorithm with two

main exceptions. First, FADFT-2 utilizes a faster method of coefficient estimation

(Algorithm 1’s step 8) than FADFT-1 does. Second, FADFT-2 also samples from

intermediate sparse representations via a faster algorithm than the naive method used

by FADFT-1. In order to better understand the differences between FADFT-1 and

FADFT-2, we next compare how both algorithms perform coefficient estimation. We

refer the reader to [53, 54] for more detailed descriptions of each algorithm’s energetic

frequency isolation and identification (i.e., Algorithm 2.1’s step 6) methods.

FADFT-1 Coefficient Estimation

As before, let A be a given input signal of length N . Furthermore, suppose

that we’ve identified an energetic frequency, ωbig, whose value we wish to estimate.

Independently choose two uniformly random integers c, l ∈ [0, N − 1] making sure

that l is invertible mod N . We can now estimate ωbig’s coefficient by computing the

27

following sum:

(2.1) Â
′
(ωbig) =

√
N

K

K−1∑
k=0

e
−2πiωbig(c+l·k)

N A(c+ l · k)

where K � N will be specified later. Here we have E[Â
′
(ωbig)] = Â(ωbig) and

Var[Â
′
(ωbig)] isO

(
‖A‖22

K

)
. Hence, if we letK beO(1

ν
) we’ll have |Â

′
(ωbig)−Â(ωbig)|2 <

ν ‖ A ‖22 with constant probability by the Markov inequality. If we next approxi-

mate Â(ωbig) by taking the median of E = O(log(1
δ
)) copies of i.i.d. Â

′
(ωbig)’s the

Chernoff inequality tells us we’ll achieve precision ν ‖ A ‖22 with probability ≥ 1− δ.

See [53] for details.

Note that K is proportional to the desired number, m, of most energetic fre-

quencies (FADFT-1 step 8 requires that frequency coefficients are estimated with

accuracy O
(

ε2

|I|+m

)
· ‖ A−AI ‖22). Furthermore, we’ll need to estimate coefficients

for at least m frequencies. Hence, the time to find an m-term Fourier representation

using this coefficient estimation method as stated will be proportional to m2. Fortu-

nately there are also O(m · polylog(m))-time methods for calculating m coefficients

to within the same precision.

FADFT-2 Coefficient Estimation

The main difference between FADFT-1 and FADFT-2 is that FADFT-2 utilizes

Unequally Spaced Fast Fourier Transform (USFFT) techniques [9, 45, 47, 78] both

to sample from sparse representations and to perform coefficient estimation (i.e.,

compute Equation 2.1 for m frequencies) in O(m · polylog(m))-time. In this way

FADFT-2 is able to avoid all FADFT-1’s O(m2)-time Fourier matrix multiplications.

A brief explanation of how FADFT-2 utilizes an USFFT along the lines of [9] to

perform coefficient estimation follows. An analogous method allows FADFT-2 to

sample m values from the inverse transform of a m-term Fourier representation in

28

time proportional to m · polylog(m).

Suppose we want to estimate the coefficients of m frequencies ω1, . . . , ωm in an

input signal A of length N . Independently choose two uniformly random integers

c, l ∈ [0, N − 1] making sure that l is invertible mod N . In order to estimate the m

frequencies’ coefficients we need to calculate Equation 2.1 for j = 1, . . . ,m:

Â
′
(ωj) =

√
N

K

K−1∑
k=0

e
−2πiωj(c+l·k)

N A(c+ l · k) =

√
N

K
e
−2πiωjc

N f(ω′j) for j = 1, . . . ,m,

where we let f(ω) =
∑K−1

k=0 e
−2πiωk

N A(c + l · k) and ω′j = ωj · l. Now, let R = 8 · K

and define rω to be the integer r ∈ [0, R] that minimizes |ω − r·N
R
|. Expanding f in

a Taylor series we see that

f(ωj) = f(rωj
N/R) + f ′(rωj

N/R) ·∆ωj
+ f ′′(rωj

N/R) · (∆2
ωj
/2) + . . .

where

∆ωj
= ωj − rωj

N

R
for each j.

Calculating the derivatives and setting ak = A(c+l·k) for k ∈ [0, K−1] (0 otherwise)

we get that

f(ωj) =

(
R−1∑
k=0

ake
−2πirωj k/R

)
+
−2πi∆ωj

N
·

(
R−1∑
k=0

akke
−2πirωj k/R

)
+(2.2)

1

2

(−2πi∆ωj

N

)2

·

(
R−1∑
k=0

akk
2e−2πirωj k/R

)
+

Each sum in the expression above may be calculated for all rωj
simultaneously in

time O(K log(K)) via the FFT. And, since |−2πi∆ωj

N
| ·K < 1

2
, we only need O(log(1

ν
))

such sums to get ±ν ‖ A ‖22 precision. The upshot is that we only need time

O
(
m · polylog(m) log(1

ν
)
)

in order to estimate the coefficients of ω1 through ωm.

It is important to note that in Equation 2.1 A is sampled along an arithmetic

progression. The kth sample is at location c+ l · k. It is exactly sampling A in this

29

fashion that allows USFFT techniques to be utilized. To the best of our knowledge

all known USFFT methods require either frequencies or sample positions to be rep-

resented as an arithmetic progression. Depending on the user’s ability to dictate

what samples are used, this may or may not be a weakness of FADFT-2.

FADFT-2 Result

The main result of [54] is that FADFT-2 has the following properties: Denote an

m-optimal Fourier representation of a one dimensional signal A of length N by R̂
s

opt

and assume that, for some M, we have

1

M
≤‖ A−Ropt ‖2≤‖ A ‖2≤M.

Then, the FADFT-2 algorithm uses time and spacem·poly(log(1
δ
), log(N), log(M), 1

ε
)

to return a Fourier representation R̂
s
such that

‖ A−R ‖22≤ (1 + ε) ‖ A−Ropt ‖22

with probability at least 1 − δ. When working to double (i.e., 64-bit) precision it

should be safe to assume

M ≈ max(1016, ‖ A ‖2).

In other words, even if A is an exact superposition (e.g., a sinusoid), machine noise

(i.e., roundoff errors) will generally limit the accuracy of our m-optimal Fourier

representation R̂
s

opt.

Note that this result indicates FADFT-2 is essentially linear in m as opposed

to FADFT-1 which is quadratic. Second, it is important to note that FADFT-2 is

designed to quickly output a high fidelity approximation to FADFT-1’s output for

any given input signal without having to utilize any extra information (e.g., signal

samples). Hence, if given good parameter settings and a frequency-sparse input

signal, both versions of FADFT should yield approximately the same output.

30

2.3 FADFT Implementation and Evaluation

Both FADFT-1 and FADFT-2 were implemented in C++ utilizing the Standard

Template Library (for readability). Hereafter these implementations will be referred

to as different versions of the Ann Arbor Fast Fourier Transform (AAFFT). Ver-

sion 0.5 of AAFFT is the straightforward quadratic time in m, the desired number

of largest Fourier terms, implementation the FADFT-1 algorithm. Version 0.9 of

AAFFT is an implementation of FADFT-2. All AAFFT source code and documen-

tation is available at [64].

Calculating the optimal m-term Fourier representation for a length-N signal may

be done naively by computing the entire DFT and then reporting its largestm Fourier

terms. This naive approach requires time O(N log(N)) using an FFT implementa-

tion. Given the absence of other fast competitors, below we benchmark AAFFT 0.5

and AAFFT 0.9 against this naive approach with FFTW version 3.1 [50] serving

as the FFT implementation. All experiments were carried out on a dual 3.6 GHz

processor multi-threaded Dell desktop with 3G of memory. Below FFTW will always

refer to FFTW version 3.1 using an FFTW ESTIMATE In Place Transform Data

plan. In order to help us remain as unbiased as possible we don’t include any sorting

or non-zero coefficient search time in FFTW’s reported run times below. All reported

signal sizes are powers of 2.

It is important to note that both AAFFT implementations rely on 20 different

user-provided parameter settings that influence approximation error, runtime, the

number of signal samples utilized, memory usage, etc.. For the sake of readability

we only mention individual parameters in subsequent sections when absolutely nec-

essary. Instead, we will report observable consequences of various parameter settings

31

(e.g. runtime, approximation error, etc.) without providing detailed descriptions of

what parameter settings produced them. For a detailed discussion of all AAFFT

parameters along with example parameter settings used for various experiments be-

low we invite the reader to visit http://aafftannarborfa.sourceforge.net/. Besides the

AAFFT source code, this site contains a file called README.pdf which contains

detailed parameter information.

2.3.1 Empirical Evaluation: Run Time and Accuracy

Run Time: In Figure 2.1 we report how AAFFT’s run time changes with input

signal size. The 10 reported signal sizes for each implementation are 217, 218, . . . , 226.

The run time reported at each signal size for each implementation is the average of

1000 test signal DFT times. It is important to remember that AAFFT is randomized

and approximate so the run time depends on how much error the user is willing to

tolerate. Parameters for both AAFFT implementations were chosen so that the

average L1 (taxi-cab) error between AAFFT and FFTW’s returned representations

was between 10−5 and 10−7 at each signal size.

The test signals were randomly generated 60-frequency exact superpositions. Hence,

m was fixed to 60 for all the AAFFT runs used to create Figure 2.1. The mag-

nitude of each non-zero frequency was 1 so that all frequencies were of the same

importance. This is the most difficult type of sparse signal for AAFFT since the

energetic frequency isolation and identification portion of the FADFT algorithm

works best at finding single frequencies larger than all others. For each of the 1000

test superpositions we generated 60 integers ω1, . . . , ω60 ∈ [0, N − 1] and 60 phases

p1, . . . , p60 ∈ [0, 2π] uniformly at random. We then set the test signal, A, to be

A(x) =
1√
N

60∑
j=1

e2πipje
2πiωjx

N ∀x ∈ [0, N − 1].

32

In Figure 2.1 below we graph the maximum, minimum, and mean run times for

FFTW 3.1, AAFFT 0.5, and AAFFT 0.9 over the 1000 test signals at each signal

size. At each data point the top and bottom of the point’s vertical line gives the

associated implementation’s maximum and minimum run times, respectively. The

data point itself is located at the associated implementation’s mean run time. Note

in Figure 2.1 below that both AAFFT 0.9 and AAFFT 0.5 have relatively constant

run times despite being randomized.

105 106 107 10810−2

10−1

100

101

102

Signal Size

Ru
n

TI
m

e
(s

ec
)

60 Frequency Exact Superposition DFT Run Time

FFTW 3.1
AAFFT 0.5
AAFFT 0.9

Figure 2.1: AAFFT Run Time Vs. Signal Size

Recall that AAFFT 0.9’s theoretical run time is m·poly(log(1
δ
), log(N), log(M), 1

ε
)

where m is the number of desired output representation terms, 1 − δ is the prob-

ability of achieving multiplicative error bound ε, M is a bound for the signal’s

energy, and N is the signal size. Similarly, AAFFT 0.5’s theoretical run time is

m2 · poly(log(1
δ
), log(N), log(M), 1

ε
). Figure 2.1’s run times were generated from

sparse exact 60 superpositions with all terms magnitude 1 so that m and M remained

fixed for all experiments. Furthermore, requiring that the average L1 (taxi-cab) error

between AAFFT and FFTW’s returned representations be between 10−5 and 10−7 at

33

each signal size kept δ and ε fairly stable. Hence, we expect the run times of AAFFT

0.5 and AAFFT 0.9 to increase with signal size like polylog(N). Our expectation

does appear to be realized in Figure 2.1 where we see both AAFFT 0.9 and AAFFT

0.5’s run times gently increase with N . Note that AAFFT 0.9 is faster than AAFFT

0.5 for all signal sizes when m = 60. Figure 2.1 also contains a graph of FFTW

3.1’s run times which appear to increase something like the expected O(N logN).

Note that for signal sizes greater than 220(i.e. 1, 048, 576) AAFFT 0.9 is faster at

recovering an exact 60 frequency superposition than FFTW 3.1. Similarly, AAFFT

0.5 begins to beat FFTW 3.1 at signal sizes greater than 223(i.e. 8, 388, 608).

In the group of tests used to produce Figure 2.2 below we held the signal size N

constant at 222 = 4, 194, 304 and varied m. As before, at each reported number of

superposition frequencies we graph the maximum, minimum, and mean run times

for FFTW 3.1, AAFFT 0.5, and AAFFT 0.9 over the 1000 tests. Each test run

was performed on a randomly-generated test m-superposition similar to above. For

a fixed m we create each test signal by generating m integers ω1, . . . , ωm ∈ [0, N −

1] and m random phases p1, . . . , pm ∈ [0, 2π]. We then set the the test signal,

A, to be A(x) = 1
2048

∑m
j=1 e

2πipje
2πiωjx

N ∀x ∈ [0, 4194303]. Again, as above, we

required that the average L1 (taxi-cab) error between AAFFT and FFTW’s returned

representations was between 10−5 and 10−7 at each superposition size m. We expect

little dependence on M,N, ε, and δ in our AAFFT runtime results.

As expected, AAFFT 0.5 displays quadratic run time in m while AAFFT 0.9’s

run time looks linear. Also, not surprisingly, FFTW 3.1’s run time is essentially

constant. Note that AAFFT 0.9 can recover superpositions with ≤ 135 frequencies

more quickly than FFTW at signal size 222. Meanwhile, AAFFT 0.5 is only capa-

ble of computing ≤ 45-sparse signals more quickly then FFTW. Also notice that

34

0 20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

7

8

Number of Superposition Frequencies

Ru
n

Ti
m

e
(s

ec
)

Exact Superposition DFT Run Times at Signal Size 222

FFTW 3.1
AAFFT 0.5
AAFFT 0.5 Least Squares Parabola
AAFFT 0.9
AAFFT 0.9 Least Squares Line

Figure 2.2: AAFFT Run Time Vs. Superposition Size

AAFFT 0.9 is competitive with AAFFT 0.5 for all values of m. AAFFT 0.5 is, on

average, slightly faster than AAFFT 0.9 for small frequency (e.g., m = 1) super-

positions. This is due to AAFFT 0.5’s naive O(m2)-time coefficient estimation and

sparse Fourier representation sampling (I)DFT matrix/vector multiplications having

a smaller constant runtime factor than the USFFT techniques AAFFT 0.9 employs.

However, for all m ≥ 15 AAFFT 0.9’s O(m · polylog(m))-time USFFT techniques

outperform AAFFT 0.5’s straightforward (I)DFT methods. Hence, AAFFT 0.9 is

generally faster than AAFFT 0.5 for all values of m ≥ 15.

Approximation Error: When using AAFFT for numerical analysis applications

one may desire greater average accuracy than the 5 or 6 digits per term guaranteed

above. Hence, we next present some results concerning AAFFT’s accuracy vs. run

time trade-offs. As before, every Figure 2.3 data point results from 1000 runs on

randomly generated 60-superpositions whose frequencies each have magnitude 1 with

random phase. Furthermore, the signal sizes, N , are once again fixed to 222 for every

trial run.

35

Recall that AAFFT 0.9 frequency coefficient estimation (as well as representa-

tion sampling) is carried out by using truncated Taylor series with T terms in order

to calculate multiple frequencies’ coefficient estimates at once (see Section 2.2.2).

Also recall that for each identified frequency, ωbig, the median of E such coefficient

estimates becomes ωbig’s coefficient update for each round of the program (see Sec-

tion 2.2.2). In general, the larger T and E are the more accurate and reliable the

final frequency coefficient estimates should be. Note that AAFFT 0.5 works in the

same way except that Taylor series are not used. Thus, AAFFT 0.5 does not depend

on T .

In Figure 2.3 below we investigated the effect of varying E and T on AAFFT

0.5/0.9’s accuracy. All other parameters were held fixed. To create Figure 2.3 we

varied E for AAFFT 0.5 and three different T -valued AAFFT 0.9 variants (with

T = 5, 10, and 15). The mean, mean + 1 standard deviation, and maximum L∞

approximation error values over each of five 1000 run trials (with E = 1, 3, 5, 7,

and 9) were graphed for all 4 AAFFT versions. In order to give a better idea of

AAFFT’s approximation error vs. run time trade offs, the L∞ values were graphed

against their associated trial’s maximum run time for each data point.

As expected, the runtime (and, generally, accuracy) of all 4 AAFFT variants

increased monotonically with E. Hence, for each of the 4 curves in Figure 2.3 the

uppermost-left data point corresponds to E = 1, the second highest-left data point

to E = 3, etc.. Also as expected, we can see that both AAFFT 0.9’s accuracy and

runtime tend to increase with T . The 5 Taylor term variant of AAFFT 0.9 is only

accurate to ≈ 10−5 despite the number of medians used. On the other hand, the 10

Taylor term AAFFT 0.9 variant is comparable in accuracy to both AAFFT 0.5 and

the 15 Taylor term AAFFT 0.9 variant for each E value. Furthermore, we can see

36

0 0.5 1 1.5 2 2.510−10

10−8

10−6

10−4

10−2

100

102

Maximum Run Time (sec)

L∞
 E

rro
r

60 Frequency Exact Superposition L∞ Error at Signal Size 222

AAFFT 0.9 with 5 Taylor Terms
AAFFT 0.9 with 10 Taylor Terms
AAFFT 0.9 with 15 Taylor Terms
AAFFT 0.5

Figure 2.3: AAFFT Error Vs. Parameters

that AAFFT 0.9 with 10 Taylor terms appears to be faster than both AAFFT 0.5

and AAFFT 0.9 with 15 Taylor terms.

Both AAFFT 0.5/0.9 and FFTW 3.1 utilize double precision (i.e., 64-bit) arith-

metic/variables. Hence, for Figure 2.3’s experiments FFTW 3.1 always reported

frequency coefficients that were accurate to within 10−15. Looking at Figure 2.3

above it appears as if AAFFT 0.5/0.9’s average worst-case frequency coefficient esti-

mates are only accurate to within ≈ 10−9 at best. However, we expect to get better

accuracy by increasing AAFFT’s K parameter (see Section 2.2.2’s Equation 2.1)

which was fixed at 128 during these experiments [64]. For example, in the extreme

case where K is increased to N , we can expect that AAFFT 0.5/0.9 will calculate

each energetic frequency’s coefficient to within ≈ 10−12 or better. More generally,

as K is increased toward N we expect AAFFT’s accuracy (and run time) to also

increase. However, testing the limits of AAFFT’s accuracy is left as future work.

37

2.3.2 Empirical Evaluation: Noise Tolerance and Sampling Complexity

Noise Tolerance: Our next series of experiments report on the noise tolerance

of both the AAFFT 0.9 and AAFFT 0.5 implementations. In order to determine

each implementation’s level of noise tolerance we will work with signals consisting

of a single non-zero coefficient frequency buried in complex Gaussian noise. Given

such signals we will try to determine how the noise level influences AAFFT’s ability

to recover the hidden frequency. In essence, we wish to investigate AAFFT’s utility

as a denoiseing tool.

Below we work exclusively with signals consisting of a single non-zero frequency

signal, Ã, in Gaussian noise. Let N be our signal size. Then,

Ã(x) = Ce2πip · e
2πiωx

N ∀x ∈ [0, N − 1],

where C ∈ R+ is chosen to control the signal to noise ratio, p is a uniformly random

phase ∈ [0, 2π], and ω is a uniformly random frequency ∈ [0, N − 1]. As above, we

generate a new Ã for every AAFFT trial run.

Furthermore, in all subsequent experiments each trial run’s Gaussian noise is

(re)generated each run by adding standard (i.e., mean 0, variance 1) normally dis-

tributed values independently to both the real and imaginary components of every

element of the complex hidden signal Ã. All normally distributed values are gener-

ated by the Polar Box-Muller method [15]. For the remainder of this chapter we’ll

denote the noise added to Ã(x) by G(x) ∀x ∈ [0, N − 1]. Hence, every trial run’s

input signal, A, is of the form A = Ã + G. The signal to noise ratio, or SNR, of A

is 20 · log10

(
‖Ã‖2
‖G‖2

)
. Furthermore, for fixed Ã, note that

min
{
k ∈ [0, N − 1] s.t. |Â(k)| = ‖Â‖∞

}
is Ã’s single nonzero frequency with high probability (depending on the SNR).

38

For a fixed m, decreasing A’s SNR will tend to increase ‖ A −Ropt ‖22. Hence,

looking back at Sections 2.2.1/2.2.2, we will have weaker accuracy guarantees for the

m-term Fourier representations returned by AAFFT 0.5/0.9 as SNR decreases. If the

accuracy guarantees become weak enough we will not even be able to expect AAFFT

to correctly discover which Â frequencies are most energetic. Thus, decreasing A’s

SNR generally requires us to both increase m and/or decrease ε in order to properly

determine, and then estimate the coefficients of, A’s most energetic DFT modes.

Therefore, the lower the SNR, the more samples and run time AAFFT will need in

order to recover our ̂̃A frequency with high probability.

Figure 2.4 investigates the probability of AAFFT 0.9 and 0.5 successfully recov-

ering an input signal A’s smallest DFT frequency of largest coefficient magnitude.

Each Figure 2.4 graph was generated using 200 three-dimensional (i.e., # AAFFT

sample points × average A SNR × success probability) data points. Each data point

was generated via 1000 AAFFT trail runs. The signal size, N , of all data points’

trial signals was fixed at 222.

Every Figure 2.4 data point had its 1000 runs’ input signals’ (i.e., As’) SNR values

controlled through the use of a uniform magnitude value, C, over its 1000 randomly

generated single frequency Ã’s. Though new Gaussian noise was generated every

run, each data point’s 1000 input signal SNRs were tightly grouped around the mean

SNR (standard deviation from each of the 200 data point’s reported mean SNRs was

< 0.0025). Each data point plots the mean SNR value of its 1000 associated runs

against each Figure 2.4 plot’s vertical axis.

Note that the sub-linear run times of AAFFT 0.9 and AAFFT 0.5 necessitate that

neither method can read the entire input signal A. During Figure 2.4’s experiments

the number of samples used by both AAFFT 0.9 and 0.5 depended deterministically

39

on a subset of parameter settings common to both implementations. For each of the

200 data points making up Figure 2.4 a uniform set of parameters were used across

each point’s 1000 trial runs. The number of signal samples resulting from each

data point’s parameters (listed as a percentage of N) is plotted against Figure 2.4’s

horizontal axis.

Each Figure 2.4 plot’s color/shade at any (percent sampled x, average SNR y) pair

indicates the probability of AAFFT 0.9/0.5 successfully determining the smallest

frequency, k, so that |Â(k)| = ‖Â‖∞ for a trail signal A with SNR y if AAFFT

0.9/0.5 is only allowed to use x·N
100

samples from A. For each data point the probability

of success was calculated from its 1000 trail runs by counting the number of times

AAFFT 0.9/0.5 returned the same minimum largest-magnitude frequency as FFTW

3.1, divided by 1000. Figure 2.4’s color bars indicate how the gray scale values in

each graph correspond to success probabilities. Lighter values indicate high success

probabilities while darker values indicated lower success probabilities.

Looking at Figure 2.4 we can see that there is no significant difference between the

performance of AAFFT 0.5 and 0.9 on noisy signals. This is unsurprising given that

AAFFT 0.9 was, in essence, designed to quickly return a high fidelity approximation

to AAFFT 0.5’s output for any given input signal without using additional samples.

Thus, we’ll concentrate on AAFFT 0.9’s noise tolerance results for the remainder of

this section.

Figure 2.4’s AAFFT 0.9 graph (bottom graph) behaves as expected. If we fix

any SNR value we can see that increasing the number of samples AAFFT 0.9 uses

allows an increase in success probability. In effect, the shading lightens from left to

right along any SNR line. Similarly, if we fix the number of AAFFT 0.9 samples and

increase the SNR the shading lightens (i.e. success probability increases). In general,

40

Figure 2.4: Probability of Hidden Signal Recovery for AAFFT 0.5 (top) and AAFFT 0.9 (bottom)

Figure 2.4 indicates that AAFFT tolerates small amounts of noise (SNR > −15) well

as long as it’s allowed to use > 42, 000 samples (> 1% of 222).

In order to more clearly see AAFFT 0.9’s noise tolerance results for lower SNR

values we present Figure 2.5. Figure 2.5 shows four fixed SNR success probability

curves from Figure 2.4’s AAFFT 0.9 graph. Again, as expected, Figure 2.5 demon-

strates that AAFFT 0.9 is more tolerant of smaller levels of noise than larger levels

(i.e. larger SNR value curves are higher than lower SNR value curves). Furthermore,

each SNR curve increases with increasing AAFFT sample usage. Looking at the −17

SNR curve it appears as if AAFFT 0.9 will always successfully locate the smallest

41

signal of largest coefficient magnitude when it’s allowed to use > 100, 000 samples.

0.5 1 1.5 2 2.5 3 3.5 4 4.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Signal Sampled

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

fu
l F

re
qu

en
cy

 R
ec

ov
er

y

Frequency Recovery From Noisy Signal of Size 222

SNR Fixed at −17
SNR Fixed at −20
SNR Fixed at −21
SNR Fixed at −23

Figure 2.5: AAFFT 0.9’s Probability of Hidden Signal Recovery from Signals with Various Noise
Levels

Figure 2.6 illustrates how signal size influences success probability. Every data

point in Figure 2.6 is generated by 1000 trial runs on randomly generated input

signals A. The 1000 signals used for each data point vary in size from 217 through 226.

All sizes are powers of two. Otherwise each trial signal A is created just as before (i.e.

consists of a randomly generated single frequency signal, Ã, with added Gaussian

noise, G). The standard complex Gaussian noise is regenerated for each trial run

via the Polar Box-Muller method. For every Figure 2.6 data point the magnitude

of Ã is chosen so that mean SNR of all the data point’s trail signals is tightly

grouped around −17 (SNR standard deviations for all data points are < 0.013).

Probabilities of successfully calculating the minimum frequency of maximum energy

are also calculated just as before.

Figure 2.6 presents the variation of success probability with signal size for AAFFT

0.9 with three different numbers of sample cutoffs. Again, the number of samples was

determined by AAFFT’s parameter settings. The data points to use for each cutoff

42

17 18 19 20 21 22 23 24 25 260.7

0.75

0.8

0.85

0.9

0.95

1

Log2(Signal Size)

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

fu
l F

re
qu

en
cy

 R
ec

ov
er

y

Frequency Recovery from Signal with SNR of −17

Allowed < 105,000 Samples
Allowed < 80,000 Samples
Allowed < 60,000 Samples

Figure 2.6: Probability of Hidden Signal Recovery Vs Signal Size for AAFFT 0.9

curve were selected as follows: For each signal size, 6 data points were created each

using a different number of samples < 105, 000. The data point for the y-sample

cutoff curve at signal size x is the x-size data point using < y samples with the

highest success probability.

Looking at Figure 2.6 we can see that the achievable success probability appears to

vary little with signal size. Each cutoff curve is essentially constant. Also, we see the

expected increase of success probability with the number of allowed samples. Based

on these results it seems safe to conclude that ∼ 105 samples should be sufficient to

achieve near perfect hidden frequency identification for any signal with SNR ≥ −17

that is storable in current computer memory.

Sparse Recovery: In our final experiment we investigated the number of signal

positions we must read in order to recover all the frequencies of a sparse superposition.

Figure 2.7 contains the results. As before, a sparse superposition was created for each

individual trial run by selecting m frequencies uniformly at random from [0, N) and

then giving each selected frequency a magnitude 1 coefficient with uniformly random

43

phase. Also, as before, each Figure 2.7 data point is the result of 1000 such trial

runs. The probability of successful superposition frequency recovery was calculated

by counting the number of trial runs for which AAFFT 0.9’s L∞ error was < 1
2
,

divided by 1000. However, for each Figure 2.7 data point, AAFFT 0.9’s mean L∞

error was < 0.02 (i.e., better than 1
2
).

Figure 2.7: Signal Samples for Sparse Superposition Recovery via AAFFT 0.9

We know from Section 2.2.2 that AAFFT 0.9’s runtime should (given a fixed

signal size N , failure probability δ, and desired accuracy ε) scale linearly in the input

signal’s sparsity levelm. Therefore, assuming good parameter settings, the worst case

number of samples AAFFT 0.9 requires to recover a signal must also scale linearly

in the sparsity level. Looking at Figure 2.7 we can see that the number of samples

required to recover a sparse superposition with high probability does indeed appear

to scale linearly with superposition sparsity level (the number of non-zero coefficient

frequencies m). Figure 2.7 also indicates that, with high probability, AAFFT 0.9

can approximate the DFT of any ≈ 6000-term superposition of length N = 222 using

less than half of the superposition’s samples.

44

To date, L1-minimization based sparse Fourier methods [18] have not been shown

to allow exact reconstruction of an m-term/N -length superposition’s DFT with high

uniform probability unless at least O(m log4N) signal samples are used [99]. Hence,

we can see that the number of samples AAFFT 0.9 requires to approximate a super-

position’s Fourier transform with high probability is at worst a polylog(N) multiple

of the number of samples required to calculate (to machine precision) a superposi-

tion’s Fourier transform with high uniform probability via L1-minimization. This is

a potentially promising result given that L1-minimization based methods have higher

theoretical run time complexity than AAFFT 0.9.

2.4 Conclusion

In this chapter we empirically demonstrated that FADFT-2 [54] retains all the

advantages of FADFT-1 [53, 66] while also being more computationally efficient. To

accomplish this task a C++ implementation, AAFFT 0.9, of FADFT-2 was compared

against a C++ implementation, AAFFT 0.5, of FADFT-1. Both implementations

were bench-marked against FFTW 3.1 [50].

In Section 2.3.1 the runtime and approximation error of AAFFT 0.9 and 0.5

were compared for sparse superpositions (i.e. signals with a small number of non-

zero frequencies). Section 2.3.1’s comparisons demonstrated that AAFFT 0.9 is

generally faster than AAFFT 0.5 while retaining similar accuracy. Furthermore, it

was demonstrated that both AAFFT 0.9 and AAFFT 0.5 outperform FFTW 3.1 for

large sparse superpositions.

In Section 2.3.2 we saw that AAFFT 0.9 and AAFFT 0.5 are essentially indistin-

guishable in terms of noise tolerance. Furthermore, we saw that AAFFT 0.9’s noise

tolerance is relatively independent of signal size. Based on Section 2.3.2’s results

45

we may safely conclude that both AAFFT 0.9 and 0.5 are highly tolerant to small

amounts of noise (e.g. SNR > −10) as long as AAFFT 0.9/0.5 may use a few tens

of thousands of samples from signals of size ∼ 106. Finally, we saw that AAFFT 0.9

is capable of approximating the output of higher time complexity L1-minimization

methods using, at worst, polylog(N) times L1-minimization’s required number of

samples. As future work we plan to perform a more careful empirical comparison be-

tween AAFFT and L1-minimization based sparse Fourier methods in order to more

accurately determine their runtime/sampling complexity tradeoffs.

Chapter III

A Deterministic Sparse Fourier Algorithm via Non-adaptive
Compressed Sensing Methods

We consider the problem of estimating the best B term Fourier representation for

a given frequency-sparse signal (i.e., vector) A of length N � B. More precisely, we

investigate how to deterministically identify B of the largest magnitude frequencies

of Â, and estimate their coefficients, in polynomial(B, logN) time. Randomized sub-

linear time Monte Carlo algorithms exist for solving this problem. However, for fail-

ure intolerant applications such as those involving mission-critical hardware designed

to process many signals over a long lifetime, deterministic algorithms with no prob-

ability of failure are highly desirable. In this chapter we build on the deterministic

Compressed Sensing results of Cormode and Muthukrishnan (CM) [92, 32, 33] in or-

der to develop the first known deterministic sub-linear time sparse Fourier Transform

algorithm suitable for failure intolerant applications. Furthermore, in the process of

developing our new Fourier algorithm, we present a simplified deterministic Com-

pressed Sensing algorithm which improves on CM’s algebraic compressibility results

while simultaneously maintaining their results concerning exponential compressibil-

ity.

46

47

3.1 Compressed Sensing and Related Work

Compressed Sensing (CS) methods [18, 104, 92, 32, 33] provide a robust framework

for reducing the number of measurements required to summarize sparse signals. For

this reason CS methods are useful in areas such as MR imaging [83, 84] and analog-

to-digital conversion [77, 72] where measurement costs are high. The general CS

setup is as follows: Let A be an N -length signal/vector with complex valued entries,

and Ψ be a full rank N×N change of basis matrix. Furthermore, suppose that Ψ ·A

is sparse (i.e., only k � N entries of Ψ ·A are significant/large in magnitude). CS

methods deal with generating a K ×N measurement matrix, M, with the smallest

number of rows possible (i.e., K minimized) so that the k significant entries of Ψ ·A

can be approximately recovered from the K-element result of

(3.1) M ·Ψ ·A.

Note that CS is inherently algorithmic since a procedure for recovering Ψ ·A’s largest

k-entries from the result of Equation 3.1 must be specified.

For the remainder of this chapter we will consider the special CS case where Ψ is

the N ×N Discrete Fourier Transform matrix. Hence, we have

(3.2) Ψi,j =
e
−2πi·i·j

N

√
N

.

Our problem of interest is to find, and estimate the coefficients of, the k significant

entries (i.e., frequencies) of Â given a frequency-sparse (i.e., smooth) signal A. In

this case the deterministic Fourier CS measurement matrixes, M · Ψ, produced by

[104, 92, 32, 33] require super-linear O(KN)-time to multiply by A in Equation 3.1.

Similarly, the energetic frequency recovery procedure of [18, 36] requires super-linear

time in N . Hence, none of [18, 104, 36, 92, 32, 33] have both sub-linear measurement

and reconstruction time.

48

Existing randomized sub-linear time Fourier algorithms [53, 66, 54] not only show

great promise for decreasing measurement costs, but also for speeding up the nu-

merical solution of computationally challenging multi-scale problems [35]. However,

these algorithms are not deterministic, and so can produce incorrect results with

some small probability on each input signal. Thus, they aren’t appropriate for long-

lived failure intolerant applications.

In this chapter we build on the deterministic Compressed Sensing methods of

Cormode and Muthukrishnan (CM) [92, 32, 33] in order to construct the first known

deterministic sub-linear time sparse Fourier algorithm. In order to produce our new

Fourier algorithm we must modify CM’s work in two ways: First, we alter CM’s mea-

surement construction in order to allow sub-linear time computation of Fourier mea-

surements via aliasing. Thus, our algorithm can deterministically approximate the

result of Equation 3.1 in time K·polylog(N). Second, CM use a k-strongly selective

collection of sets [60] to construct their measurements for algebraically compressible

signals. We introduce the notion of a K-majority k-strongly selective collection of

sets which leads us to a new reconstruction algorithm with better algebraic com-

pressibility results than CM’s algorithm. As a result, our deterministic sub-linear

time Fourier algorithm has better then previously known algebraic compressibility

behavior.

The main contributions of this chapter are:

1. We present a new deterministic compressed sensing algorithm that both (i)

improves on CM’s algebraically compressible signal results, and (ii) has compa-

rable measurement/run time requirements to CM’s algorithm for exponentially

decaying signals.

2. We present the first known deterministic sub-linear time sparse Fourier method.

49

In the process, we explicitly demonstrate the connection between compressed

sensing and sub-linear time Fourier transform methods.

3. We introduce K-majority k-strongly selective collections of sets which have

potential applications to streaming algorithms along the lines of [91, 51].

The remainder of this chapter is organized as follows: In section 3.2 we introduce

relevant definitions and terminology. Then, in section 3.3, we define K-majority k-

strongly selective collections of sets and use them to construct our compressed sensing

measurements. Section 3.4 contains our new deterministic compressed sensing algo-

rithm along with analysis of its accuracy and run time. Finally, we present our

deterministic sub-linear time Fourier algorithm in sections 3.5. Section 3.6 contains

a short conclusion.

3.2 Preliminaries

Throughout the remainder of this chapter we will be interested in complex-valued

functions f : [0, 2π] → C and signals (or arrays) of length N containing f values

at various t ∈ [0, 2π]. We shall denote such signals by A, where A(j) ∈ C is

the signal’s jth complex value for all j ∈ [0, N − 1] ⊂ N. As in Chapter II our

algorithm produces output (i.e., a sparse Fourier representation R̂
s
) of the form

(ω0, C0), . . . , (ωB−1, CB−1) where each (ωj, Cj) ∈ [0, N − 1] × C. Recall that a B-

term/tuple sparse Fourier representation is B-optimal for a signal A if there exists

a valid ordering of Â’s coefficients by magnitude

(3.3) |Â(ω0)| ≥ · · · ≥ |Â(ωj)| ≥ · · · ≥ |Â(ωN−1)|

so that
{
(ωl, Â(ωl))

∣∣ l ∈ [0, B)
}

= R̂
s
. Furthermore, all B-optimal Fourier repre-

sentations, R̂
s

opt, for any signal A will always have both the same unique ‖Ropt‖2

and ‖A−Ropt‖2 values.

50

We continue with two final definitions: Let ωb be a bth most energetic frequency

as per Equation 3.3. We will say that a signal Â is (algebraically) p-compressible for

some p > 1 if |Â(ωb)| = O(b−p) for all b ∈ [1, N). If Rs
opt is a B-optimal Fourier

representation we can see that

(3.4) ‖A−Ropt‖22 =
N−1∑
b=B

|Â(ωb)|22 = O

(∫ ∞

B

b−2pdb

)
.

Hence, any p-compressible signal A (i.e., any signal with a fixed c ∈ R so that

|A(ωb)|2 ≤ c · b−p for all b ∈ [1, N)) will have ‖A − Ropt
B ‖22 ≤ c̃p · B1−2p for some

c̃p ∈ R. For any p-compressible signal class (i.e., for any choice of p and c) we will

refer to the related optimal O(B1−2p)-size worst case error value (i.e., Equation 3.4

above) as ‖Copt
B ‖22. Similarly, we define an exponentially compressible (or exponen-

tially decaying) signal for a fixed α ∈ R+ to be one for which |Â(ωb)| = O(2−αb).

The optimal worst-case error is then

(3.5) ‖Copt
B ‖

2
2 = O

(∫ ∞

B

4−αbdb

)
= O(4−αB).

Fix δ small (e.g., δ = 0.1). Given a compressible input signal, A, our deter-

ministic Fourier algorithm will identify B of the most energetic frequencies from

Â and approximate their coefficients to produce a Fourier representation R̂
s

with

‖A − R‖22 ≤ ‖A − Ropt‖22 + δ‖Copt
B ‖22. These are the same types of compressible

signal results proven by CM [32, 33].

3.3 Construction of Measurements

We will use the following types of subset collections to form our measurements:

Definition III.1. A collection, S, of s subsets of [0, N) is called K-majority k-

strongly selective if for any X ⊂ [0, N) with |X| ≤ k, and for all x ∈ X, the

following are true: (i) x belongs to at least K subsets in S and, (ii) more than

51

two-thirds of Sj ∈ S containing x are such that Sj ∩ X = {x} (i.e., every member

of X occurs separated from all other members of X in more than two-thirds of the

S-subsets it belongs to).

A K-majority k-strongly selective collection of sets is a more structured version

of a k-strongly selective collection of sets [60, 92]. Every K-majority k-strongly

selective collection of sets not only isolates each x ∈ X, but does so a 2
3

rd
’s majority

of the time. Thus, our newly defined K-majority k-strongly selective collections

will help us count how many times each significant signal entry is isolated. This

added structure allows a new reconstruction algorithm (Algorithm 3.1) with better

algebraic compressibility properties than previous methods.

Next, we will buildO(logN)K-majority k-strongly selective collections of subsets.

Each of these O(logN) collections will ultimately be used to determine energetic

frequencies modulo a small prime less than N . These moduli will then be used along

with the Chinese Remainder Theorem to reconstruct each energetic frequency in a

manner akin to the introduction’s simple example. Our technique is motivated by

the method of prime groupings first employed in [91]. To begin, we will denote each

of the O(logN) collections of subsets by Sl where 0 ≤ l ≤ O(logN). We construct

each of these K-majority k-strongly selective collections as follows:

Define p0 = 1 and let

p1, p2, . . . , pl, . . . , pm

be the first m primes where m is such that

m−1∏
l=1

pl ≤
N

k
≤

m∏
l=1

pl.

Hence, pl is the lth prime natural number and we have

p0 = 1, p1 = 2, p2 = 3, p3 = 5, . . . , pm = O(m logm).

52

Note that we know pm = O(m logm) via the Prime Number Theorem, and so pm =

O(logN log logN). Each pl will correspond to a different K-majority k-strongly

selective collection of subsets of [0, N) = {0, . . . , N − 1}.

Along these same lines we let q1 through qK be the first K (to be specified later)

consecutive primes such that

max(pm, k) ≤ q1 ≤ q2 ≤ · · · ≤ qK .

We are now ready to build S0, our first K-majority k-strongly selective collection of

sets. We begin by letting S0,j,h for all 1 ≤ j ≤ K and 0 ≤ h ≤ qj − 1 be

S0,j,h = {n ∈ [0, N) | n ≡ h mod qj}.

Next, we progressively define S0,j to be all integer residues mod qj, i.e.,

S0,j = {S0,j,h | h ∈ [0, qj)},

and conclude by setting S0 equal to all K such qj-residue groups:

S0 =
K⋃

j=1

S0,j.

More generally, for 0 ≤ l ≤ m we define Sl by

Sl =
K⋃

j=1

{
{n ∈ [0, N) | n ≡ h mod plqj}

∣∣ h ∈ [0, plqj)
}
.

Lemma III.2. Fix k. If we set K ≥ 3(k − 1)blogk Nc + 1 then S0 will be a K-

majority k-strongly selective collection of sets. Furthermore, if K = O(k logk N)

then |S0| = O
(
k2 log2

k N ·max(log k, log logk N)
)
.

Proof. Let X ⊂ [0, N) be such that |X| ≤ k. Furthermore, let x, y ∈ X be such that

x 6= y. By the Chinese Remainder Theorem we know that x and y may only collide

modulo at most blogk Nc of the K q-primes qK ≥ · · · ≥ q1 ≥ k. Hence, x may collide

53

with all the other elements of X (i.e., with X−{x}) modulo at most (k−1)blogk Nc

q-primes. We can now see that x will be isolated from all other elements of X modulo

at least K − (k− 1)blogk Nc ≥ 2(k− 1)blogk Nc+ 1 > 2K
3
q-primes. This leads us to

the conclusion that S0 is indeed K-majority k-strongly selective.

Finally, we have that

|S0| ≤
K∑

j=1

qj ≤ K · qK .

Furthermore, given that K > max(k,m), the Prime Number Theorem tells us that

qK = O(K logK). Thus, we can see that S0 will indeed contain

O
(
k2 log2

k N ·max(log k, log logk N)
)

sets.

Note that at least O(k logk N) primes are required in order to create a (K-

majority) k-strongly separating collection of subsets using primes in this fashion.

Given any x ∈ [0, N) a k − 1 element subset X can be created via the Chinese Re-

mainder Theorem and x moduli so that every element of X collides with x in any

desired O(logk N) q-primes.

We next consider the properties of the other m collections we have defined:

S1, . . . ,Sm.

Lemma III.3. Let Sl,j,h = {n ∈ [0, N) | n ≡ h mod plqj}, X ⊂ [0, N) have ≤ k

elements, and x ∈ X. Furthermore, suppose that S0,j,h ∩ X = {x}. Then, for all

l ∈ [1,m], there exists a unique b ∈ [0, pl) so that Sl,j,h+b·qj
∩X = {x}.

Proof. Fix any l ∈ [1,m]. S0,j,h∩X = {x} implies that x = h+a · qj for some unique

integer a. Using a’s unique representation modulo pl (i.e., a = b+ c · pl) we get that

x = h+ b · qj + c · qjpl. Hence, we can see that x ∈ Sl,j,h+bqj
. Furthermore, no other

54

element of X is in Sl,j,h+t·qj
for any t ∈ [0, pl) since its inclusion therein would imply

that it was also an element of S0,j,h.

Note that Lemma III.3 and Lemma III.2 together imply that each S1, . . . ,Sm is

also a K-majority k-strongly separating collection of subsets. Also, we can see that

if x ∈ Sl,j,h+b·qj
we can find x mod pl by simply computing h + bqj mod pl. Finally,

we form our measurement matrix:

Set S = ∪m
l=0Sl. To form our measurement matrix, M, we simply create one

row for each Sl,j,h ∈ S by computing the N -length characteristic function vector

of Sl,j,h, denoted χSl,j,h
. This leads to M being a Õ(k2) x N measurement matrix.

Here we bound the number of rows in M by noting that: (i) |S| < m · K · pmqK ,

(ii) m = O(logN), (iii) pm = O(logN · log logN), (iv) K = O(k logN), and (v)

qK = O(K logK).

3.4 Signal Reconstruction from Measurements

Let Â be an N -length signal of complex numbers with its N entries numbered 0

through N − 1. Our goal is to identify B of the largest magnitude entries of Â (i.e.,

the first B entries in a valid ordering of Â as in Equation 3.3) and then estimate

their signal values. Toward this end, set

(3.6) ε =
|Â(ωB)|√

2C

where C > 1 is a constant to be specified later, and let B′ be the smallest integer

such that

(3.7)
N−1∑
b=B′

|Â(ωb)| <
ε

2
.

Note that B′ identifies the most energetic insignificant frequency (i.e., with energy

< a fraction of |Â(ωB)|). We expect to work with sparse/compressible signals so

55

Algorithm 3.1 Sparse Approximate

1: Input: Signal Â, integers B,B′

2: Output: R̂
s
, a sparse representation for Â

3: Initialize R̂
s
← ∅

4: Set K = 3B′blogB′ Nc
5: Form measurement matrix,M, via K-majority B′-strongly selective collections (Section 3.3)
6: Compute M · Â

Identification

7: for j from 0 to K do
8: Sort 〈χS0,j,0 , Â〉, . . . , 〈χS0,j,qj−1 , Â〉 by magnitude
9: for b from 0 to B′ do

10: kj,b ← bth largest magnitude 〈χS0,j,· , Â〉
11: r0,b ← kj,b’s associated residue mod qj

12: for l from 1 to m do
13: tmin ← mint∈[0,pl) |kj,b − 〈χSl,j,t·qj+r0,b

, Â〉|
14: rl,b ← r0,b + tmin · qj mod pl

15: end for
16: Construct ωj,b from r0,b, . . . , rm,b via the CRT
17: end for
18: end for
19: Sort ωj,b’s maintaining duplicates and set C(ωj,b) = the number of times ωj,b was constructed

via line 16
Estimation

20: for j from 0 to K do
21: for b from 0 to B′ do
22: if C(ωj,b) > 2K

3 then
23: C(ωj,b)← 0
24: x = median{real(kj′,b′)|ωj′,b′ = ωj,b}
25: y = median{imag(kj′,b′)|ωj′,b′ = ωj,b}
26: R̂

s
← R̂

s
∪ {(ωj,b, x + iy)}

27: end if
28: end for
29: end for
30: Output B largest magnitude entries in R̂

s

that B ≤ B′ � N . Later we will give specific values for C and B′ depending on B,

the desired approximation error, and Â’s compressibility characteristics. For now

we show that we can identify/approximate B of Â’s largest magnitude entries each

to within ε-precision via Algorithm 3.1.

Algorithm 3.1 works by using S0 measurements to separate Â’s significantly en-

ergetic frequencies Ω = {ω0, . . . , ωB′−1} ⊂ [0, N). Every measurement which suc-

cessfully separates an energetic frequency ωj from all other members of Ω will both

(i) provide a good (i.e., within ε
2
≤ |Â(ωB)|

2
√

2
) coefficient estimate for ωj, and (ii) yield

56

information about ωj’s identity. Frequency separation occurs because our S0 mea-

surements can not collide any fixed ωj ∈ Ω with any other member of Ω modulo

more than (B′ − 1) logB′ N q-primes (see Lemma III.2). Therefore, more than 2
3

rds

of S0’s 3B′ logB′ N + 1 q-primes will isolate any fixed ωj ∈ Ω. This means that our

reconstruction algorithm will identify all frequencies at least as energetic as ωB at

least 2B′ logB′ N+1 times. We can ignore any frequencies that are not recovered this

often. On the other hand, for any frequency that is identified more than 2B′ logB′ N

times, at most B′ logB′ N of the measurements which lead to this identification can

be significantly contaminated via collisions with valid Ω members. Therefore, we can

take a median of the more than 2B′ logB′ N measurements leading to the recovery

of each frequency as that frequency’s coefficient estimate. Since more than half of

these measurements must be accurate, the median will be accurate.

Theorem III.4. Let R̂opt be a B-optimal Fourier representation for our input sig-

nal A. Then, the B term representation, R̂
s
, returned from Algorithm 3.1 is such

that ‖A − R‖22 ≤ ‖A − Ropt‖22 + 6B·|Â(ωB)|2
C

. Furthermore, Algorithm 3.1’s Iden-

tification and Estimation (lines 7 - 30) run time is O(B′2 log4N). The number of

measurements used is O(B′2 log6N).

Theorem III.4 immediately indicates that Algorithm 3.1 gives us a deterministic

O(m2 log6N)-measurement, O(m2 log4N)-reconstruction time method for exactly

recovering vectors with m non-zero entries. If Â has exactly m non-zero entries

then setting B′ = B = m and C = 1 will be sufficient to guarantee that both

|Â(ωB)|2 = 0 and
∑N−1

b=B′ |Â(ωb)| = 0 are true. Hence, we may apply Theorem III.4

with B′ = B = m and C = 1 to obtain a perfect reconstruction via Algorithm 3.1.

However, we are mainly interested in the more realistic cases where Â is either

algebraically or exponentially compressible. The following theorem presents itself.

57

Algorithm 3.2 Fourier Measure

1: Input: f-samples, integers m,K
2: Output: < χSl,j,h

, f̂ >-measurements
3: Zero a O(qKpm)-element array, A
4: for j from 1 to K do
5: for l from 1 to m do
6: A← f(0), f

(
2π

qjpl

)
, . . . , f

(
2π(qjpl−1)

qjpl

)
7: Calculate Â via Chirp z-Transform [97, 14]
8: < χSl,j,h

, f̂ >← Â(h) for each h ∈ [0, qjpl)
9: end for

10: end for
11: Output < χSl,j,h

, f̂ >-measurements

Theorem III.5. Let Â be p-compressible. Then, Algorithm 3.1 can return a B

term sparse representation, R̂
s
, with ‖A − R‖22 ≤ ‖A − Ropt‖22 + δ‖Copt

B ‖22 using

O
(
B

2p
p−1 δ

2
1−p log4N

)
total identification/estimation time and O

(
B

2p
p−1 δ

2
1−p log6N

)
measurements. If Â decays exponentially, Algorithm 3.1 can return a B term sparse

representation, R̂
s
, with ‖A−R‖22 ≤ ‖A−Ropt‖22+δ‖C

opt
B ‖22 using both

(
B2 + log2 δ

−1
α

)
·

polylog(N) measurements and identification/estimation time.

For p-compressible signals, p > 2, CM’s algorithm [32, 33] takesO
(
B

6p
p−2 δ

6
2−p log6N

)
-

identification/estimation time and O
(
B

4p
p−2 δ

4
2−p log4N

)
-measurements to achieve

the same error bound. As a concrete comparison, CM’s algorithm requires

O(B18δ−6 log6N)- identification/estimation time andO(B12δ−4 log4N)-measurements

for 3-compressible signals. Algorithm 3.1, on the other hand, requires only

O(B3δ−1 log4N)- identification/estimation time andO(B3δ−1 log6N)-measurements.

Hence, we have improved on CM’s algebraic compressibility results. All that is left

to do in order to develop a deterministic sub-linear time Fourier algorithm is to

compute our CS Fourier measurements (Algorithm 3.1 lines 1 - 6) in sub-linear time.

3.5 Fast Fourier Measurement Acquisition

Our goal in this section is to demonstrate how to use Algorithm 3.1 as means to ap-

58

proximate the Fourier transform of a signal/function f : [0, 2π]→ C, where (i) f has

an integrable pth derivative, and (ii) f(0) = f(2π), f ′(0) = f ′(2π), . . . , f (p−2)(0) =

f (p−2)(2π). In this case we know the Fourier coefficients for f to be p-compressible

[16, 49]. Hence, for N = q1 ·p1 · · · pm sufficiently large, if we can collect the necessary

Algorithm 3.1 (lines 5 and 6) measurements in sub-linear time we will indeed be able

to use Algorithm 3.1 as a sub-linear time Fourier algorithm for f .

Choose any Section 3.3 q-prime qj, j ∈ [1, K], and any p-prime pl with l ∈

[0,m]. Furthermore, pick h ∈ [0, qjpl). Throughout the rest of this discussion we

will consider f to be accessible to sampling at any desired predetermined positions

t ∈ [0, 2π]. Given this assumption, we may sample f at t = 0, 2π
qjpl

, . . . ,
2π(qjpl−1)

qjpl
in

order to perform the following DFT computation:

〈χSl,j,h
, f̂〉 =

1

qjpl

qjpl−1∑
k=0

f

(
2πk

qjpl

)
e
−2πihk

qjpl .

Using the Fourier expansion for f yields

〈χSl,j,h
, f̂〉 =

1

qjpl

qjpl−1∑
k=0

(
∞∑

ω=−∞

f̂(ω)e
2πiωk
qjpl

)
e
−2πihk

qjpl .

Finally, exchanging the order of summation above, we see that 〈χSl,j,h
, f̂〉 reduces to

1

qjpl

∞∑
ω=−∞

f̂(ω)

qjpl−1∑
k=0

e
2πi(ω−h)k

qjpl =
∑

ω≡h mod qjpl

f̂(ω)

via aliasing [16].

Using Sections 3.3 and 3.4 we can see that these measurements are exactly what

we need in order to determine B of the most energetic frequencies of f̂ modulo

N = q1 · p1 · · · pm (i.e., B of the most energetic frequencies of f ’s band-limited

interpolant’s DFT). We are now in the position to modify Algorithm 3.1 in order to

find a sparse Fourier representation for f̂ . To do so we proceed as follows: First,

remove lines 5 and 6 and replace them with Algorithm 3.2 for computing all the

59

necessary < χSl,j,h
, f̂ >-measurements. Second, replace each “< χSl,j,h

, Â >” by

“< χSl,j,h
, f̂ >” in Algorithm 3.1’s Identification section. It remains to show that

these Algorithm 3.1 modifications indeed yield a sub-linear time approximate Fourier

transform. The following theorem presents itself:

Theorem III.6. Let f : [0, 2π] → C have (i) an integrable pth derivative, and (ii)

f(0) = f(2π), f ′(0) = f ′(2π), . . . , f (p−2)(0) = f (p−2)(2π) for some p > 1. Fur-

thermore, assume that f̂ ’s B′ = O
(
B

p
p−1 δ

1
1−p

)
largest magnitude frequencies all

belong to
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
. Then, we may use Algorithm 3.1 to return a B term sparse

Fourier representation, R̂
s
, for f̂ such that ‖f̂−R̂‖22 ≤ ‖f̂−R̂opt‖22 +δ‖Copt

B ‖22 using

O
(
B

2p
p−1 δ

2
1−p log7N

)
-time and O

(
B

2p
p−1 δ

2
1−p log6N

)
-measurements from f .

If f : [0, 2π] → C is smooth (i.e., has infinitely many continuous derivatives on

the unit circle where 0 is identified with 2π) it follows from Theorem III.6 that

Algorithm 3.1 can be used to find an O
(

1
N

)
-accurate sparse B-term Fourier rep-

resentation for f̂ using Õ(B2)-time/measurements. This result differs from previ-

ous sub-linear time Fourier algorithms [53, 54] in that both the algorithm and the

measurements/samples it requires are deterministic. Recall that the deterministic

nature of the algorithm’s required samples is potentially beneficial for failure intol-

erant hardware. In signal processing applications the sub-Nyquist sampling required

to compute Algorithm 3.1’s < χSl,j,h
, f̂ >-measurements could be accomplished via

Õ(B) parallel low-rate analog-to-digital converters.

3.6 Conclusion

Compressed Sensing (CS) methods provide algorithms for approximating the re-

sult of any large matrix multiplication as long as it is known in advance that the result

will be sparse/compressible. Hence, CS is potentially valuable for many numerical

60

applications such as those involving multiscale aspects [35]. In this chapter we used

CS methods to develop the first known deterministic sub-linear time sparse Fourier

transform algorithm. In the process, we introduced a new deterministic Compressed

Sensing algorithm along the lines of Cormode and Muthukrishnan (CM) [32, 33]. Our

new deterministic CS algorithm improves on CM’s algebraic compressibility results

while simultaneously maintaining their results concerning exponential compressibil-

ity.

Compressed Sensing is closely related to hashing methods, combinatorial group

testing, and many other algorithmic problems [91, 51]. Thus, K-majority k-strongly

selective collections of sets and Algorithm 3.1 may help improve deterministic re-

sults concerning stream hashing/heavy-hitter identification. Further development of

these/other algorithmic applications is left as future work.

Note that in order to validate the use of Algorithm 3.1 (or any other sparse ap-

proximate Fourier Transform method [53, 54]) we must assume that f exhibits some

multiscale behavior. If f̂ contains no unpredictably energetic large (relative to the

number of desired Fourier coefficients) frequencies then it is more computationally

efficient to simply use standard FFT/USFFT methods [27, 78, 9, 45, 47]. The re-

sponsible user, therefore, is not entirely released from the obligation to consider f̂ ’s

likely characteristics before proceeding with computations.

Chapter IV

Improved Bounds for a Deterministic Sublinear-Time Sparse
Fourier Algorithm

This chapter improves on the best-known runtime and measurement bounds for

a recently proposed Deterministic sublinear-time Sparse Fourier Transform algo-

rithm (hereafter called DSFT). In Chapter III, it is shown that DSFT can exactly

reconstruct the Fourier transform (FT) of an N -bandwidth signal f , consisting of

B � N non-zero frequencies, using O(B2 ·polylog(N)) time and O(B2 ·polylog(N))

f -samples. DSFT works by taking advantage of natural aliasing phenomena to hash a

frequency-sparse signal’s FT information modulo O(B ·polylog(N)) pairwise coprime

numbers via O(B ·polylog(N)) small Discrete Fourier Transforms. Number theoretic

arguments then guarantee the original DFT frequencies/coefficients can be recovered

via the Chinese Remainder Theorem. DSFT’s usage of primes makes its runtime and

signal sample requirements highly dependent on the sizes of sums and products of

small primes. Our new bounds utilize analytic number theoretic techniques to gener-

ate improved (asymptotic) bounds for DSFT. As a result, we provide better bounds

for the sampling complexity/number of low-rate analog-to-digital converters (ADCs)

required to deterministically recover frequency-sparse wideband signals via DSFT in

signal processing applications [77, 72].

61

62

4.1 Introduction

Compressed Sensing (CS) is an exciting new signal acquisition and recovery paradigm

in which highly compressible signals can be (approximately) recovered from a few

linear measurements, considerably fewer measurements than previously assumed

[39, 18]. This chapter will focus on a particular type of compressible signal, namely

signals consisting of a small number of significant Fourier modes. Thus, we sample

a frequency-sparse signal f on a small deterministic sample set and then reconstruct

the signal by returning a list of the predominant frequencies in the spectrum of

f . This sensing paradigm is useful in many areas, including MR imaging [83, 84],

numerical methods for multiscale problems [35], and ADC design [77, 72].

Existing CS (and related) Fourier reconstruction algorithms [39, 18, 36, 104, 53]

are all either (i) super-linear time in the signal’s bandwidth, making them computa-

tionally intensive for wideband signals, or (ii) capable of producing incorrect results

with some small probability, making them inappropriate for failure intolerant ap-

plications. DSFT [65] is both sublinear-time and deterministic. Hence, it is an

improvement over previous CS (and related) Fourier reconstruction algorithms for

N -bandwidth signals containing B � N significant (e.g., non-zero) frequencies, al-

though it does require a O(B · polylog(N))-factor increase in the number of signal

samples over previous randomized approaches [54]. Furthermore, DSFT is consistent

with recently proposed ADC designs [77, 72] that suggest a radical new approach

to analog-to-digital conversion. These ADC designs, which are based on random

sampling, currently require the implementation of random clocks, pseudo-random

switches, etc. Due to its deterministic nature, DSFT would allow one to build simi-

lar circuits with fixed sample sets in the hardware, thus simplifying the circuit design.

63

In this chapter, we employ analytic number theory to give the first asymptotic

runtime/sample complexity bounds for DSFT on B-support wideband signals (i.e.,

wideband signals consisting of exactly B non-zero frequencies). Furthermore, we

present experiments which both validate our theoretical sample bounds and investi-

gate the number of significant frequencies DSFT may recover from signals of various

sizes while maintaining sub-linear sample usage. Finally, we briefly discuss algo-

rithmic improvements which significantly decrease DSFT’s sampling and runtime

requirements in practice. Our new bounds, besides advancing our knowledge of

DSFT’s computational properties, also allow us to better bound the number of low-

rate parallel ADCs required to deterministically recover wideband frequency-sparse

signals along the lines of [77, 72].

4.2 Preliminaries

Throughout the remainder of this chapter, we will be interested in complex-valued

signals, f : [0, 2π] → C, which are band-limited and frequency-sparse. Hence, we

will assume there exists an N ∈ N such that for all our signals f ,

Ωf =
{
ω ∈ Z

∣∣ f̂(ω) 6≈ 0
}

(
(
−
⌈
N

2

⌉
,

⌊
N

2

⌋]
.

Also, we assume that for all f , we have B = |Ωf | � N . For any signal f , we will

refer to the B non-zero elements of Ωf as ω1, ω2, . . . , ωB. Furthermore, we will refer

to the process of either calculating or measuring f at any t ∈ [0, 2π] as sampling

from f . Finally, we will say that N is f ’s bandwidth.

Recently, a Deterministic sublinear-time Sparse Fourier Transform algorithm (DSFT)

[65] was developed by building upon the number theoretic hashing techniques first

proposed in [91, 32]. For a given input signal f , DSFT produces output of the form

(ω1, f̂(ω1)), . . . , (ωB, f̂(ωB)) using O(B2 log7N) time and O(B2 log6N) samples [65].

64

In effect, DSFT works by hashing f ’s B frequencies modulo O(B · polylog(N)) rela-

tively prime numbers. We next define the numbers which DSFT uses to hash signal

frequencies via aliasing. See Chapter III (or [65]) for details.

Let p0 = 1 and pl be the lth prime. Next, choose m such that

m∏
l=1

pl ≥
N

B
>

m−1∏
l=1

pl.

Finally, let qK > · · · > q1 > max(B, pm) be the smallest K = 3BblogB Nc+1 primes

> max(B, pm). DSFT requires the computation of the Discrete Fourier Transform

(DFT) of

f(0), f

(
2π

plqj

)
, . . . , f

(
2π(plqj − 1)

plqj

)
for every 0 ≤ l ≤ m and 1 ≤ j ≤ K. Note that each of these (m + 1) · K DFT’s

will take O(pmqK log qK) time independent of the factorizations of the array lengths

[14, 97].

Fact IV.1. The number of ADC f -samples required by DSFT [65] is

(4.1)
m∑

l=0

K∑
j=1

plqj =

(
m∑

l=0

pl

)
·

(
K∑

j=1

qj

)
.

Fact IV.2. The runtime of DSFT [65] is

(4.2) Θ

(
m∑

l=0

K∑
j=1

plqj log qj

)
.

The remainder of this chapter is dedicated to studying (4.1) and (4.2). In the

following section, we establish necessary lemmas so that in Section 4.4, we may ana-

lyze DSFT’s runtime and number of required samples. Then, in Section 4.5, we both

empirically validate our Section 4.4 sample bounds for (4.1) and investigate DSFT’s

65

ability to reconstruct superpositions of various sizes using a sub-linear number of

samples. Finally, we discuss methods of improving DSFT’s sampling performance in

Section 4.6 before concluding with a brief discussion in Section 4.7.

4.3 Required Lemmas

In this section, we will assume that R ≥ 3, B ≥ 2, and N/B ≥ 3. Furthermore, p

will always stand for a prime number, and π(x) will denote the number of primes less

than or equal to x. The following lemma recalls three forms of the Prime Number

Theorem.

Lemma IV.3. One has that

(4.3) π(x) =
x

lnx
+O

(
x

ln2 x

)
and that

(4.4) pl = l ln l +O(l ln ln l).

Also, there exists a positive constant c such that

(4.5)
∑
p≤x

ln p = x+O

(
x

exp(c
√

lnx)

)
.

We now use the Prime Number Theorem to establish asymptotics required in the

analysis of DSFT.

Lemma IV.4. Choose m such that

m∏
l=1

pl ≥
N

B
>

m−1∏
l=1

pl.

There exists a positive constant c such that

pm = ln
N

B
+O

 ln N
B

exp
(
c
√

ln ln N
B

)
 .

66

Proof. Note that

∏
p≤R

p ≥ N

B
if and only if

∑
p≤R

ln p ≥ ln
N

B
.

It now follows from formula (4.5) that there exists a positive constant c such that

pm = ln
N

B
+O

 ln N
B

exp
(
c
√

ln ln N
B

)
 .

Lemma IV.5. One has

∑
p≤R

p ln p =
R2

2
+O

(
R2

lnR

)
.

Proof. By Riemann-Stieltjes integration (see Chapter 10 of [58]), integration by parts,

and formula (4.3), we obtain

∑
p≤R

p ln p =

∫ R+

2−
(x lnx)dπ(x)

= (R lnR)π(R)−
∫ R

2

π(x)d(x lnx)

= R2 +O

(
R2

lnR

)
−
∫ R

2

(x

lnx
+O

(x

ln2 x

))
(lnx+ 1)dx

=
R2

2
+O

(
R2

lnR

)
.

Lemma IV.6. One has

∑
p≤R

p =
R2

2 lnR
+O

(
R2

ln2R

)
.

Proof. Note that ∫ R
ln R

2

x

lnx
dx = O

(
R2

ln3R

)

67

and that ∫ R

R
ln R

x

lnx
dx =

R2

lnR

∫ 1

1
ln R

y

1 + ln y
ln R

dy

=
R2

lnR

∫ 1

1
ln R

(
y − y ln y

lnR + ln y

)
dy

=
R2

lnR

∫ 1

1
ln R

(
y +O

(∣∣∣∣y ln y

lnR

∣∣∣∣)) dy
=

R2

2 lnR
+O

(
R2

ln2R

)
.

Therefore, we may conclude that

(4.6)

∫ R

2

x

lnx
dx =

R2

2 lnR
+O

(
R2

ln2R

)
.

By Riemann-Stieltjes integration, integration by parts, and formulas (4.3) and (4.6),

it follows that ∑
p≤R

p =

∫ R+

2−
xdπ(x) = Rπ(R)−

∫ R

2

π(x)dx

=
R2

lnR
+O

(
R2

ln2R

)
−
∫ R

2

(
x

lnx
+O

(
x

ln2 x

))
dx

=
R2

2 lnR
+O

(
R2

ln2R

)
.

4.4 Runtime and Measurement Bounds

We now are prepared to analyze the performance of DSFT. By formula (4.3), we

have

π(max(B, pm)) = O

(
B

lnB
+

ln N
B

ln ln N
B

)
.

When

S = π(max(B, pm)) +K

= 3BblogB Nc+O

(
B

lnB
+

ln N
B

ln ln N
B

)
,

68

then by formula (4.4), we have

qK = pS = S lnS +O(S ln lnS)

= 3BblogB Nc ln(B lnN)

(
1 +O

(
ln ln(B lnN)

ln(B lnN)

))
.

Using Lemma IV.6, we see that

K∑
j=1

qj =
∑

max(B,pm)<p≤qK

p

=
9

2
B2blogB Nc2 ln(B lnN)

(
1 +O

(
ln ln(B lnN)

ln(B lnN)

))
and

m∑
l=0

pl =
p2

m

2 ln pm

+O

(
p2

m

ln2 pm

)

=
ln2 N

B

2 ln ln N
B

(
1 +O

(
1

ln ln N
B

))
.(4.7)

Combining the above two estimates with Fact IV.1, we obtain the following theorem.

Theorem IV.7. The number of f -samples required by DSFT is

9B2blogB Nc2 ln(B lnN) ln2 N
B

4 ln ln N
B

·(
1 +O

(
1

ln ln N
B

+
ln ln(B lnN)

ln(B lnN)

))
.

By Lemma IV.5, we have

K∑
j=1

qj ln qj =
∑

max(B,pm)<p≤qK

p ln p

=
q2
K

2
+O

(
q2
K

ln qK
+B2 + p2

m

)
(4.8)

=
(3BblogB Nc ln(B lnN))2

2

(
1 +O

(
ln ln(B lnN)

ln(B lnN)

))
.

By combining Fact IV.2 with formulas (4.7) and (4.8), we obtain the following the-

orem.

69

Theorem IV.8. The runtime of DSFT is

Θ

(
B2 ·

ln2N · ln2 N
B
· ln2(B lnN)

ln2B · ln ln N
B

)
.

Let α ∈ (0, 1
2
) be a constant, and suppose that B = Θ(Nα). In this case,

we have improved the previous best sample bound for DSFT from O(B2 log6N)

to Θ
(
B2 · log3 N

log log N

)
. Furthermore, we have improved the previous best bound for

DSFT’s runtime from O(B2 log7N) to Θ
(
B2 · log4 N

log log N

)
. Finally, in signal process-

ing applications along the lines of [77, 72], we can see that the sub-Nyquist sam-

pling required to compute DSFT’s (m + 1) · K DFTs can be accomplished via

(m + 1) · K = O
(
B · log N

log log N

)
parallel analog-to-digital converters, each with rate

O(pmqK) = O
(
B log2N

)
Hz. Hence, DSFT provides a promising deterministic

method for quickly reconstructing frequency-sparse wideband signals. We next em-

pirically investigate the signal sizes for which DSFT (as formulated in [65]) can

reconstruct sparse superpositions with sub-linear sampling requirements.

4.5 Sampling: Empirical Evaluation

In order to test DSFT’s sample asymptotic (Theorem IV.7), we compare the

number of f -samples DSFT requires to perfectly recover an N -bandwidth signal

f containing exactly B = 512 non-zero frequencies against the sample asymptotic’s

main term in Theorem IV.7. The number of DSFT samples required to recover a 512-

frequency superposition, divided by the associated asymptotic value in Theorem IV.7,

is plotted in Figure 4.1 for various bandwidth values N . Figure 4.1 demonstrates

that our asymptotic is within a constant multiple of 2 of the true number of samples

required by DSFT for all tested bandwidth values. Thus, despite the fact that

our asymptotic converges to DSFT’s number of utilized samples at an exceedingly

70

Figure 4.1: Empirical Test of Theorem IV.7.

slow pace, it appears as if the asymptotic generally gives us a reliable estimate of

DSFT’s sampling requirements. Experiments performed for smaller B reinforce this

observation.

Given that a standard FFT can determine the Fourier transform of anN -bandwidth

signal f by taking N samples from f , it is important for us to determine when DSFT

enables us to utilize less than N samples to recover f̂ . Figure 4.2 addresses this is-

sue by plotting, for each bandwidth value N , the maximum number of non-zero

frequencies f may contain while still allowing DSFT to determine f̂ using less than

N f -samples. Figure 4.2 demonstrates that DSFT, as formulated in [65], does not

exhibit sub-linear sampling for B > 1 until the bandwidth is ≥ 222 (about 4 million).

In Section 4.6, we will discuss improvements/modifications for DSFT which allow

sub-linear sampling for significantly smaller signals.

71

Figure 4.2: Maximum B Value Yielding Less Than N Samples.

Finally, Figure 4.3 plots the number of f -samples DSFT requires to recover f̂

divided by f ’s bandwidth, N , for three different bandwidth values. It is interesting

to note that DSFT’s number of required samples occasionally decreases as B increases

(for small B). This is due to K = 3BblogB Nc+ 1 decreasing in size, implying that

DSFT requires fewer qj-primes (see Section 4.2). We will use this phenomenon to

our advantage in the following section.

4.6 Sampling: Improving DSFT’s Performance

DSFT’s sample usage can be mildly decreased (i.e., by a constant factor) through

a more careful choice of which primes pl and qj from Section 4.2 are used for sampling.

In this section, we will discuss three such DSFT improvements. We will also briefly

mention two more radical changes to DSFT which dramatically reduce the sample

72

Figure 4.3: Fraction of Bandwidth Sampled for Various B Values.

usage, but at the expense of either losing DSFT’s sub-linear reconstruction time or

deterministic nature.

First, it should be noted that using powers of pl-primes can decrease DSFT’s

sample usage. Instead of performing DFTs of size p0 ·qj, . . . , pm ·qj for each qj-prime,

one can implement DSFT using DFTs of size

p0 · qj, p
αj,1

1 · qj, . . . , pαj,v
v · qj, . . . , p

αj,mj
mj · qj

for each qj-prime (see Section 4.2). This would require that

mj∏
v=1

pαj,v
v ≥ N

qj
>

mj−1∏
v=1

pαj,v
v

for each qj. We would then replace each(
m∑

l=0

pl

)
· qj term with a

(
mj∑
v=0

pαj,v
v

)
· qj term

73

in our bounds for the number of f -samples and the runtime. Finally, the condition

that q1 > max(B, pm) would be replaced with the requirement that qj > max(B, pmj
)

for each 1 ≤ j ≤ K.

Second, as pointed out at the end of the last section, using a larger B for DSFT

sometimes decreases sampling requirements (see Figure 4.3). We may use this phe-

nomenon to our advantage by increasing the size of q1 and redefining our required

number of qj-primes to be

(4.9) K = 3Bblogq1
Nc+ 1.

Here q1 > max(B, pm1), as in the previous paragraph, but q1 need not be the smallest

prime > max(B, pm1). By altering q1 and K’s definitions in this fashion, it becomes

clear that slightly increasing q1 can be beneficial.

Third, by a careful analysis of the arguments in [65], DSFT can be modified to

require only K = 2Bblogq1
Nc + 1 qj-primes (i.e., K’s factor of 3 can be reduced

to a 2) while still maintaining its sub-linear Θ̃(B2)-runtime in Theorem IV.8. No

modification of the pv
αj,v -values are required. We will next consider an example that

demonstrates the utility of these three modifications with respect to DSFT’s sample

usage.

Consider an N = 50, 000 bandwidth signal f containing exactly B = 5 non-

zero frequencies. DSFT, as formulated in Section 4.2 and [65] would require almost

950, 000 samples to recover f̂ . DSFT would use 2, 3, 5, 7, 11, and 13 as its pl-primes,

leading to a total of

41 ·

(
K∑

j=1

qj

)
DSFT samples. However, if we require q1 to be greater than 40 and use 4, 9, 5, and 7

as the pv
αj,v -values for all qj-primes, we can modestly reduce DSFT’s sample usage

74

to

25 ·

(
K∑

j=1

qj

)
.

In addition to our savings from using different pv
αj,v -values, using q1 = 41 instead of

q1 = 11 also allows the use of fewer qj-primes (see (4.9)). This, in combination with

the aforementioned algorithmic reduction of K’s constant factor from 3 to 2, will

allow a well optimized DSFT implementation to recover our N = 50, 000 bandwidth,

5-frequency superposition f using roughly 43, 000 samples (about 22 times fewer

samples than previously required). Thus, optimizing DSFT can dramatically improve

its performance.

Further reductions in DSFT’s sampling requirements can be obtained if the user

is willing to tolerate a super-linear Õ(B · N) Fourier reconstruction time for N -

bandwidth signals with B non-zero frequencies. After performing DFT’s of length

q1, q2, . . . , qK , as in Section 4.2, one can determine the Fourier coefficient for any of

the signal’s N , possibly non-zero, frequencies as follows: For each

ω ∈
(
−
⌈
N

2

⌉
,

⌊
N

2

⌋]
,

we first determine ω’s residue modulo qj for each qj. Proofs analogous to those in

[65] then guarantee that ω’s Fourier coefficient’s real/imaginary part will equal the

median of the real/imaginary parts of the K DFT entries associated with ω’s residues

modulo each qj. Thus, we no longer need any pv
αj,v -values if we are willing to inspect

all N frequencies in this fashion. The number of required samples is reduced to

K∑
j=1

qj.

Returning to the last paragraph’s example, this modified DSFT method only needs

1, 791 samples to correctly recover an N = 50, 000 bandwidth, B = 5 superposition’s

75

Fourier transform. This represents roughly an additional 24-fold decrease in DSFT’s

sampling needs. However, we are forced to abandon DSFT’s sub-linear runtime.

Finally, it is also worthwhile to note that Monte Carlo Fourier results similar to

those of [54] may be obtained by limiting our qj-prime usage in Section 4.2. If we only

use a small subset of randomly chosen qj, we will still be able to isolate all non-zero

superposition frequencies with high probability. The frequency’s coefficients can then

either (i) be approximated by USFFT techniques [54, 45, 47, 78] or (ii) be recovered

exactly (assuming non-zero frequency isolation occurs more often then not) using a

procedure similar to the one outlined in the previous paragraph. This allows one to

use only Õ(B)-samples/runtime for B-frequency superposition reconstruction, which

is within a polylogarithmic factor of the current best sample bounds for sparse signal

reconstruction via Linear Programming [99, 42]. However, modifying our DSFT

techniques in this fashion only allows one to reconstruct sparse superpositions with

high probability, and the deterministic nature of our algorithm is lost.

4.7 Conclusion

In this chapter, we utilized analytic number theory to develop the first known

asymptotic runtime/sample complexity bounds for DSFT on B-support wideband

signals. We then empirically evaluated our new DSFT sampling bounds in Sec-

tion 4.5. Let α ∈ (0, 1
2
) be a constant, and suppose that B = Θ(Nα). In this case,

we have improved the previous best sample bound for DSFT from O(B2 log6N)

to Θ
(
B2 · log3 N

log log N

)
. Furthermore, we have improved the previous best bound for

DSFT’s runtime from O(B2 log7N) to Θ
(
B2 · log4 N

log log N

)
. In Section 4.6, we demon-

strated that if one is willing to tolerate a super-linearO
(
Bblogq1

Nc log(Bblogq1
Nc) ·N

)
reconstruction runtime (after all DFTs have been taken), then DSFT’s sampling

76

bound can be reduced to Θ(B2 · logN). Furthermore, if one is willing to exchange

determinism for success with high probability, we can reduce both DSFT’s runtime

and sampling needs to O(B · polylog(N)).

In signal processing applications [77, 72], we have shown that the sub-Nyquist

sampling required to compute DSFT’s (m + 1) · K DFTs can be accomplished via

(m + 1) · K = O
(
B · log N

log log N

)
parallel ADCs, each with rate O

(
B log2N

)
Hz.

Hence, DSFT provides a promising deterministic method for quickly reconstruct-

ing frequency-sparse wideband signals. Finally, it is worth noting that our DSFT

methods are closely related to combinatorial group testing and many other algo-

rithmic problems involving hashing by consecutive primes [91, 51]. Our new DSFT

bounds should also provide asymptotic bounds for these related methods.

Chapter V

Combinatorial Sublinear-Time Fourier Algorithms

In this chapter we improve and simplify the deterministic sublinear-time sparse

Fourier Transform algorithm methods outlined in Chapter III. A simple relaxation

of our improved deterministic Fourier result leads to a new Monte Carlo Fourier algo-

rithm with similar runtime/sampling bounds to the current best randomized Fourier

method [54]. Finally, the Fourier algorithm we develop here implies a simpler opti-

mized version of the deterministic compressed sensing method previously developed

in Chapter III (and [65]).

5.1 Introduction

In many applications only the top few most energetic terms of a signal’s Fourier

Transform (FT) are of interest. In such applications the Fast Fourier Transform

(FFT), which computes all FT terms, is computationally wasteful. Compressed

Sensing (CS) methods [39, 18, 104, 95, 74, 36] provide a robust framework for reduc-

ing the number of signal samples required to estimate a signal’s FT. For this reason

CS methods are useful in areas such as MR imaging [83, 84] and analog-to-digital

conversion [77, 72] when sampling costs are high. However, despite small sampling

requirements, standard CS Fourier methods utilizing Basis Pursuit (BP) [39, 18, 36]

and Orthogonal Matching Pursuit (OMP) [104, 95] have runtime requirements which

77

78

are superlinear in the signal’s size/bandwidth. Hence, these methods are inappro-

priate for applications involving large signal sizes/bandwidths where runtime is of

primary importance (e.g., numerical methods for multiscale problems [35]).

A second body of work on algorithmic compressed sensing includes methods which

have achieved near-optimal reconstruction runtime bounds [53, 54, 32, 33, 92, 56, 61].

However, with the notable exception of [53, 54], these CS algorithms don’t permit

sublinear sampling in the Fourier case. Hence, despite their efficient reconstruction

algorithms, their total Fourier measurement and reconstruction runtime costs are

still superlinear in the signal size/bandwidth. In the Fourier case they generally

require more operations than a regular FFT for all nontrivial sparsity levels while

utilizing approximately the same number of signal samples.

To date only the randomized Fourier methods [53, 54] have been shown to out-

perform the FFT in terms of runtime on frequency-sparse broadband superpositions

while utilizing only a fraction of the FFT’s required samples [66]. However, these al-

gorithms are not deterministic and so can produce incorrect results with some small

probability on each input signal. Thus, they aren’t appropriate for long-lived failure

intolerant applications.

In this chapter we construct the first known deterministic sublinear time sparse

Fourier algorithm. In order to produce our new Fourier algorithm we introduce a

combinatorial object called a k-majority separating collection of sets which can be

constructed using number theoretic methods along the lines of [32, 46]. This new

combinatorial object yields a simple new CS reconstruction algorithm with better

algebraic compressibility results than previous fast deterministic CS methods [32,

33, 92, 61]. Furthermore, the number-theoretic nature of our construction allows the

sublinear-time computation of Fourier measurements via aliasing. As a result, we

79

are able to obtain a deterministic sublinear-time Fourier algorithm which behaves

well on both algebraically and exponentially compressible signals. Finally, a simple

relaxation of our deterministic Fourier method provides a new randomized Fourier

algorithm with runtime/sampling bounds similar to [54].

Work related to our results here include all of the aforementioned CS methods

(see [3] for many more). Most closely related of these are the deterministic CS

methods [32, 33, 92, 61, 36]. The deterministic constructions in [36] require BP-

or OMP-based reconstruction methods [5, 95] with runtimes that are superlinear

in the input signal size/bandwidth. On the other hand, our deterministic CS based

methods utilize faster recovery procedures along the lines of those first introduced by

Cormode and Muthukrishnan (CM) [32, 33, 92]. Indyk’s recent work [61] also utilizes

similar recovery procedures and achieves theoretically faster reconstruction times on

exact superpositions. However, his iterative reconstruction methods don’t appear to

generalize to algebraically compressible signals. Furthermore, as previously stated,

neither Indyk’s nor CM’s compressed sensing algorithms permit sublinear sampling

in the Fourier setting.

Previous randomized Fourier algorithms [53, 54] are similar to our determinis-

tic results in that they obtain both sublinear reconstruction time and sampling (as

opposed to other CS Fourier methods). However, they employ random sampling

techniques and thus fail to output good approximate answers with non-zero proba-

bility. Other related work includes earlier methods for the reconstruction of sparse

trigonometric polynomials via random sampling [86, 23]. In turn, these methods can

be traced back further to algorithms for learning sparse multivariate polynomials

over fields of characteristic zero [71, 87].

Finally, our CS recovery techniques are related group testing methods [44]. In

80

particular, our k-majority separating collection of sets construction is closely related

to the number theoretic group testing construction utilized in [46]. This relationship

to group testing, in combination with the Fourier transform’s natural aliasing be-

havior, is essentially what allows our sublinear Fourier methods to be constructed.

For more on group testing in statistical signal recovery see [55].

The main contributions of this chapter are:

1. We simplify and optimize Chapter III’s deterministic sublinear-time sparse DFT

methods. In the process, we improve Chapter III’s compressed sensing methods.

2. We present a simple randomized Fourier algorithm with runtime superlinear in

the input signal’s size/bandwidth which exactly recovers k-frequency superpo-

sitions with high probability using a near-optimal number of samples. When

modified to run in sublinear time, we obtain a Fourier algorithm with run-

time/sampling requirements similar to [54].

3. We introduce k-majority strongly selective collections of sets which have poten-

tial applications to streaming algorithms along the lines of [91, 51].

The remainder of this chapter is organized as follows: In section 5.2 we introduce

relevant definitions, terminology, and background. Then, in Section 5.3 we define

k-majority selective collections of sets and present number theoretic constructions.

Section 5.4 contains simple superlinear-time Fourier algorithms along with analysis

of their runtime and sampling requirements. In section 5.5 we modify Section 5.4’s

algorithms to produce sublinear-time Fourier algorithms. Finally, the discrete ver-

sions of our algorithms are presented in Section 5.6. Section 5.7 contains a short

conclusion.

81

5.2 Preliminaries

As in previous chapters we will be interested in complex valued functions f :

[0, 2π] 7→ C and signals (or arrays) of length N containing f values at various x ∈

[0, 2π]. We denote such signals by A, where A(j) ∈ C is the signal’s jth complex

value for all j ∈ [0, N). Hereafter we will refer to the process of either calculating,

measuring, or retrieving the f value associated any A(j) ∈ C from machine memory

as sampling from f and/or A.

Given a signal A we define its discrete Lq-norm to be

(5.1) ‖A‖q =

(
N−1∑
j=0

|A(j)|q
) 1

q

.

More specifically, we will refer to ‖A‖22 as A’s energy. We will say that A ∈ Lq if

‖A‖qq converges (i.e., we allow N =∞). Finally, j and ω will always denote integers

below.

5.2.1 Compressed Sensing and Compressibility

Given a signal A, let Ψ be any N × N change of basis matrix/transform under

which A is sparse (i.e., only k � N entries of Ψ·A are significant/large in magnitude).

Algorithmic compressed sensing (CS) methods [53, 54, 32, 33, 92, 56, 61, 65] deal

with generating a K×N measurement matrix,M, with the smallest number of rows

possible (i.e., K minimized) so that the k significant entries of Ψ · A can be well

approximated using the K-element vector result of

(5.2) (M ·Ψ) ·A.

Recall that CS a procedure for recovering Ψ ·A’s largest k-entries from the result of

Equation 5.2 must be specified.

82

As in previous chapters our recovery algorithm produces output of the form

(ω1, C1), . . . , (ωk, Ck) where each (ωj, Cj) ∈ [0, N) × C. We will refer to any such

set of k < N tuples

{(ωj, Cj) ∈ [0, N)× C s.t. j ∈ [1, k]}

as a sparse Ψ representation. Note that we may reconstruct R in any desired

basis using Rs
Ψ. Finally, a sparse Ψ representation Rs

Ψ is k-optimal for A if there

exists a valid ordering of Ψ ·A by magnitude

(5.3)
∣∣ (Ψ ·A) (ω1)

∣∣ ≥ ∣∣ (Ψ ·A) (ω2)
∣∣ ≥ · · · ≥ ∣∣ (Ψ ·A) (ωj)

∣∣ ≥ · · · ≥ ∣∣ (Ψ ·A) (ωN)
∣∣

so that
{

(ωl, (Ψ ·A) (ωl))
∣∣ l ∈ [1, k]

}
= Rs

Ψ.

We conclude this subsection by recalling compressibility: Let ωb be a bth largest

magnitude entry of Ψ · A as per Equation 5.3. A signal Ψ · A is (algebraically)

p-compressible for some p > 1 if | (Ψ ·A) (ωb)| = O(b−p) for all b ∈ [1, N]. For

any p-compressible signal class (i.e., for any choice of p) we will refer to the related

optimal O(k1−2p)-size worst case error value as ‖Copt
k ‖22. Similarly, an exponentially

compressible (or exponentially decaying) signal for a fixed α to be one for which∣∣ (Ψ ·A) (ωb)
∣∣ = O(2−αb). The optimal worst case error is then

(5.4) ‖Copt
k ‖

2
2 = O

(∫ ∞

k

4−αbdb

)
= O(4−αk).

5.2.2 The Fourier Case

We are primarily interested in the special CS case where Ψ is the N ×N Discrete

Fourier Transform (DFT) matrix

(5.5) Ψi,j =
2π

N
· e

2πi·i·j
N .

83

Thus, in this chapter we define Â as follows:

(5.6) Â(ω) =
2π

N
·

N−1∑
j=0

e
−2πiωj

N A(j), ∀ω ∈

(
−

⌈
N

2

⌉
,

⌊
N

2

⌋]
.

The Inverse Discrete Fourier Transform (IDFT) of Â is defined as:

(5.7) A(j) =
̂̂
A

−1

(j) =
1

2π
·

bN
2
c∑

ω=1−dN
2
e

e
2πiωj

N Â(ω), ∀j ∈ [0, N).

Parseval’s equality tells us that ‖Â‖2 =
√

2π
N
· ‖A‖2.

Fix δ small (e.g., δ = 0.1). Given an input signal, A, with a compressible Fourier

transform, our deterministic Fourier algorithm will identify k of the most energetic

frequencies from Â and approximate their coefficients to produce a sparse Fourier

representation R̂
s

with ‖Â − R̂‖22 ≤ ‖Â − R̂opt‖22 + δ‖Copt
k ‖22. It should be noted

that the Fourier reconstruction algorithms below all extend naturally to the general

compressed sensing case presented in Section 5.2.1 above via work analogous to that

presented in [65].

5.3 Combinatorial Constructions

The following combinatorial structures are motivated by k-strongly separating sets

[60, 32]. There properties directly motivate our Fourier reconstruction procedures in

Sections 5.4 and 5.5.

Definition V.1. A collection, S, of subsets of
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
is called k-majority

selective if for all X ⊂
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
with |X| ≤ k and all n ∈

(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
, more

than half of the subsets S ∈ S containing n are such that S ∩ X = {n} ∩ X (i.e.,

every n ∈
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
occurs separated from all (other) members of X in more

than half of the S elements containing n).

84

Definition V.2. Fix an unknown X ⊂
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
with |X| ≤ k. A randomly

assembled collection of
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
subsets, S, is called (k, σ)-majority selective

if the following is true with probability at least σ: For all n ∈
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
, more

than half of the subsets S ∈ S containing n have S ∩ X = {n} ∩ X (i.e., with

probability ≥ σ every n ∈
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
occurs separated from all (other) members

of X in more than half of the S elements containing n).

The existence of such sets is easy to see. For example, the collection of subsets

S =

{
{n}

∣∣∣∣∣n ∈
(
−

⌈
N

2

⌉
,

⌊
N

2

⌋]}
consisting of all the singleton subsets of

(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
is k-majority selective for

all k ≤ N . Generally, however, we are interested in creating k-majority selective

collections which contain as few subsets as possible (i.e., much fewer than N subsets).

We next give a construction for a k-majority selective collection of subsets for any

k,N ∈ N with k ≤ N . Our construction is motivated by the prime groupings

techniques first employed in [91]. We begin as follows:

Define p0 = 1 and let pl be the lth prime natural number. Thus, we have

p0 = 1, p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . .

Choose q,K ∈ N (to be specified later). We are now ready to build a collection of

subsets, S. We begin by letting Sj,h for all 0 ≤ j ≤ K and 0 ≤ h ≤ pj − 1 be

(5.8) Sj,h =

{
n ∈

(
−

⌈
N

2

⌉
,

⌊
N

2

⌋] ∣∣∣∣∣ n ≡ h mod pq+j

}
.

Next, we progressively define Sj to be all integer residues mod pq+j, i.e.,

(5.9) Sj = {Sj,h | h ∈ [0, pq+j)},

and conclude by setting S equal to all K such pq+j residue groups:

(5.10) S =
K⋃

j=0

Sj.

85

We now prove that S is indeed k-majority selective if K is chosen appropriately.

Lemma V.3. Fix k. If we set K ≥ 2kblogpq
Nc then S as constructed above will be

a k-majority selective collection of sets.

Proof: Let X ⊂
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
be such that |X| ≤ k. Furthermore, choose n ∈(

−
⌈

N
2

⌉
,
⌊

N
2

⌋]
and let x ∈ X be such that x 6= n. By the Chinese Remainder Theorem

we know that x and n may only collide modulo at most blogpq
Nc of the K+1 primes

pq+K ≥ · · · ≥ pq. Hence, n may collide with all the (other) elements of X (i.e., with

X − {n}) modulo at most kblogpq
Nc Sj-primes. We can now see that n will be

isolated from all the (other) elements of X modulo at least K + 1 − kblogpq
Nc ≥

kblogpq
Nc+1 > K+1

2
Sj-primes. Furthermore, n will appear in at most K+1 of S’s

subsets. This leads us to the conclusion that S is indeed k-majority selective. 2

Note that at least Ω(k) coprime integers are required in order to create a k-

majority separating collection of subsets in this fashion. Given any n ∈
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
a k element subset X can be created via the Chinese Remainder Theorem and n

moduli so that every element of X collides with n in any desired Ω(1) Sj-coprime

numbers ≤ N
2
. Thus, it is not possible to significantly decrease the number of

relatively prime values required to construct k-majority separating collections using

these arguments.

The number of coprime integers required to construct each k-majority separating

collection is directly related to the Ω(k2) signal samples required by our subsequent

Fourier algorithms. Given that we depend on the number theoretic nature of our

constructions in order to take advantage of aliasing phenomena, it is unclear how to

reduce the sampling complexity for our deterministic Fourier methods below. How-

ever, this does not stop us from appealing to randomized number theoretic construc-

tions in order to decrease the number of required coprime values (and, therefore,

86

samples). We next present a construction for (k, σ)-majority selective collections

which motives our subsequent Monte Carlo Fourier algorithms.

Lemma V.4. Fix k and an unknown X ⊂
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
with |X| ≤ k. We may form

a (k, σ)-majority selective collection of subsets, S, as follows: Set K ≥ 3kblogpq
Nc

and create J ⊂ [q, q+K] by choosing O
(
log
(

N
1−σ

))
elements from [q, q+K] uniformly

at random. Set S = ∪j∈JSj (see Equation 5.9).

Proof: Choose any n ∈
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
. A prime chosen uniformly at random from

{pq, . . . , pq+K} will separate n from all (other) elements of X with probability at least

2
3

(see proof of Lemma V.3). Using the Chernoff bound we can see that choosing

O
(
log
(

N
1−σ

))
primes for J is sufficient to guarantee that the probability of n being

congruent to any element of X modulo more than half of J ’s primes is less than

1−σ
N

. The union bound can now be employed to show that J ’s primes separate every

element of
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
from the (other) elements of X with probability at least

σ. 2

We conclude this section by bounding the number of subsets contained in our

k-majority and (k, σ)-majority selective collections. These subset bounds will ulti-

mately provide us with sampling and runtime bounds for our Fourier algorithms.

The following lemma is easily proved using results from Chapter IV (and [69]).

Lemma V.5. Choose q so that pq is the smallest prime ≥ k. If S is a k-majority

selective collection of subsets created as per Lemma V.3, then |S| is

Θ
(
k2 · log2

k N · log(k logN)
)
. If S is a

(
k, 1− 1

NO(1)

)
-majority selective collection of

subsets created as per Lemma V.4, then |S| is O (k · logk N · log(k logN) · logN).

Let α ∈ (0, 1) be a constant, and suppose that k = Θ(Nα). In this case, we

have a construction for k-majority selective collections, S, with |S| = Θ (k2 · logN).

87

Furthermore, we have a construction for
(
k, 1− 1

NO(1)

)
-majority selective collections,

S, with |S| = O
(
k · log2N

)
.

5.4 Superlinear-Time Fourier Algorithms

For the remainder of the chapter we will assume that f : [0, 2π] 7→ C has the

property that f̂ ∈ L1. Our goal is to identify k of the most energetic frequencies in f̂

(i.e., the first k entries in a valid ordering of f̂ as in Equation 5.3) and then estimate

their Fourier coefficients. Intuitively, we want f to be a continuous multiscale func-

tion. In this scenario our algorithms will allow us to ignore f ’s separation of scales

and sample at a rate primarily dependent on the number of energetic frequencies

present in f ’s Fourier spectrum.

Let C ≥ 1 be a constant (to be specified later) and set

(5.11) ε =
|f̂(ωk)|
C

.

Furthermore, let B be the smallest integer such that

(5.12)
∞∑

b=B+1

|f̂(ωb)| ≤
ε

2
.

Note that B is defined to be the last possible significant frequency (i.e., with energy

greater than a fraction of |f̂(ωk)|). We will assume below that N is chosen large

enough so that

(5.13) Ω = {ω1, . . . , ωB} ⊂

(
−

⌈
N

2

⌉
,

⌊
N

2

⌋]
.

We expect to work with multiscale signals so that k ≤ B � N . Later we will give

specific values for C and B depending on k, the desired approximation error, and f̂ ’s

compressibility characteristics. For now we show that we can identify/approximate

k of f̂ ’s largest magnitude entries each to within ε-precision via Algorithm 5.1.

88

Algorithm 5.1 Superlinear Approximate

1: Input: Signal pointer f , integers k ≤ B ≤ N
2: Output: R̂

s
, a sparse representation for f̂

3: Initialize R̂
s
← ∅

4: Set K = 2BblogB Nc, q so that pq−1 < B ≤ pq

5: for j from 0 to K do
6: Apq+j

← f(0), f
(

2π
pq+j

)
, . . . , f

(
2π(pq+j−1)

pq+j

)
7: Âpq+j

← DFT[Apq+j
]

8: end for
9: for ω from 1−

⌈
N
2

⌉
to
⌊

N
2

⌋
do

10: <{Cω} ← median of multiset
{
<
{
Âpq+j(ω mod pq+j)

} ∣∣ 0 ≤ j ≤ K
}

11: ={Cω} ← median of multiset
{
=
{
Âpq+j(ω mod pq+j)

} ∣∣ 0 ≤ j ≤ K
}

12: end for
13: R̂

s
← (ω, Cω) entries for k largest magnitude Cω’s

Algorithm 5.1 works by using the k-majority separating structure created by

the aliased DFTs in line 7 to isolate f̂ ’s significantly energetic frequencies. Ev-

ery DFT which successfully separates a frequency ωj from all the (other) members

of Ω will provide a good
(

i.e., within ε
2
≤ |Â(ωk)|

2

)
coefficient estimate for ωj. Fre-

quency separation occurs because more than 1
2

of our aliased DFT’s will not collide

any n ∈
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
with any (other) member of Ω (see Lemma V.3). At most

B logB N of the DFT calculations for any particular frequency can be significantly

contaminated via collisions with Ω members. Therefore, we can take medians of each

frequency’s associated 2B logB N + 1 DFT residue’s real/imaginary parts as a good

estimate of that frequency coefficient’s real/imaginary parts. Since more than half

of these measurements must be accurate, the medians will be accurate. In order to

formalize this argument we need the following lemma.

Lemma V.6. Every Cω calculated in lines 10 and 11 is such that |f̂(ω)−Cω| ≤ ε.

Proof: Suppose that Cω is calculated by lines 10 and 11. Then, its real/imaginary

part is given the median of K estimates of f̂(ω)’s real/imaginary parts. Each of

89

these estimates is calculated by

(5.14) Âpq+j
(h) =

2π

pq+j

pq+j−1∑
k=0

f

(
2πk

pq+j

)
e
−2πihk

pq+j

for some 0 ≤ j ≤ K, 0 ≤ h < pq+j. Via aliasing each estimate reduces to

Âpq+j
(h) =

2π

pq+j

pq+j−1∑
k=0

f

(
2πk

pq+j

)
e
−2πihk

pq+j(5.15)

=
2π

pq+j

pq+j−1∑
k=0

(
1

2π

∞∑
ρ=−∞

f̂(ρ)e
2πiρk
pq+j

)
e
−2πihk

pq+j

=
∞∑

ρ=−∞

f̂(ρ)

(
1

pq+j

pq+j−1∑
k=0

e
2πi(ρ−h)k

pq+j

)
=

∑
ρ≡h mod pq+j

f̂(ρ)

=
〈
χSj,h

, f̂ · χ(−dN
2
e,bN

2
c]
〉

+
∑

ρ≡h mod pq+j ,ρ/∈(−dN
2
e,bN

2
c]

f̂(ρ).

Thus, by Lemma V.3 and Equations 5.12 and 5.13, more than half of our f̂(ω)

estimates will have

∣∣f̂(ω)− Âpq+j
(ω mod pq+j)

∣∣ ≤ ∑
ρ/∈Ω

∣∣f̂(ρ)
∣∣ ≤ ε

2
.

It follows that taking medians as per lines 10 and 11 will result in the desired ε-

accurate estimate for f̂(ω). 2

The following Theorem presents itself.

Theorem V.7. Let R̂opt be a k-optimal Fourier representation for our input func-

tion f ’s Fourier transform. Then, the k-term representation R̂
s

returned from Al-

gorithm 5.1 is such that ‖f̂ − R̂‖22 ≤ ‖f̂ − R̂opt‖22 + 9k·|f̂(ωk)|2
C

. Furthermore, Algo-

rithm 5.1’s runtime is O
(
N ·B · log2 N ·log2(B log N)

log2 B

)
. The number of f samples used

is Θ
(
B2 · log2

B N · log(B logN)
)
.

Proof: Choose any b ∈ (0, k]. Using Lemma V.6 we can see that only way some

ωb /∈ R̂
s

B is if there exists some associated b′ ∈ (k,N] so that ωb′ ∈ R̂
s
and

|f̂(ωk)|+ ε ≥ |f̂(ωb′)|+ ε ≥ |Cωb′
| ≥ |Cωb

| ≥ |f̂(ωb)| − ε ≥ |f̂(ωk)| − ε.

90

In this case we’ll have 2ε > |f̂(ωb)| − |f̂(ωb′)| ≥ 0 so that

(5.16) |f̂(ωb′)|2 + 4ε
(
ε+ |f̂(ωk)|

)
≥ |f̂(ωb′)|2 + 4ε

(
ε+ |f̂(ωb′)|

)
≥ |f̂(ωb)|2.

Now using Lemma V.6 we can see that

‖f̂ − R̂‖2 =
∑

(ω,·)/∈R̂
s

|f̂(ω)|2 +
∑

(ω,Cω)∈R̂
s

|f̂(ω)− Cω|2 ≤
∑

(ω,·)/∈R̂
s

|Â(ω)|2 + k · ε2.

Furthermore, we have

k · ε2 +
∑

(ω,·)/∈R̂
s

|f̂(ω)|2 = k · ε2 +
∑

b∈(0,k], ωb /∈R̂
s

|f̂(ωb)|2 +
∑

b′∈(k,N], ωb′ /∈R̂
s

|f̂(ωb′)|2.

Using observation 5.16 above we can see that this last expression is bounded above

by

k · (5ε2 + 4ε|f̂(ωk)|) +
∑

b′∈(k,N], ωb′∈R̂
s

|f̂(ωb′)|2 +
∑

b′∈(k,N], ωb′ /∈R̂
s

|f̂(ωb′)|2

≤ ‖f̂ − R̂opt‖22 + k · (5ε2 + 4ε|f̂(ωk)|).

Substituting for ε (see Equation 5.11) gives us our result. Mainly,

k · (5ε2 + 4ε|f̂(ωk)|) =
k|f̂(ωk)|2

C

(
5

C
+ 4

)
≤ 9k|f̂(ωB)|2

C
.

To finish, we provide sampling/runtime bounds. Algorithm 5.1’s lines 5 through

8 take O
(
B2 · log2 N ·log2(B log N)

log2 B

)
time using the Chirp z-Transform [14, 97] (see [69]

for details). Lines 9 through 13 can be accomplished in

O (N ·B logB N · log(B logN)) time. Algorithm 5.1’s sampling complexity follows

directly from Lemma V.5. 2

It’s not difficult to see that the proofs of Lemma V.6 and Theorem V.7 still

hold using the (k, σ)-majority selective properties of randomly chosen primes. In

particular, if we run Algorithm 5.1 using randomly chosen primes along the lines

of Lemma V.4 then Theorem V.7 will still hold whenever the primes behave in a

91

majority selective fashion. The only change required to Algorithm 5.1 is that we

compute only a random subset of the DFTs in lines 5 through 8. We have the

following corollary.

Corollary V.8. Let R̂opt be a k-optimal Fourier representation for our input func-

tion f ’s Fourier transform. If we run Algorithm 5.1 using O
(
log
(

N
1−σ

))
randomly

selected primes along the lines of Lemma V.4, then with probability at least σ we

will obtain a k-term representation R̂
s
having ‖f̂ − R̂‖22 ≤ ‖f̂ − R̂opt‖22 + 9k·|f̂(ωk)|2

C
.

The runtime will be O
(
N · logB N · log

(
N

1−σ

)
· log2

(
B log

(
N

1−σ

)))
. The number of f

samples will be O
(
B · logB N · log(B logN) · log

(
N

1−σ

))
.

It has been popular in the compressed sensing literature to consider the recovery

of k-frequency superpositions (see [74] and references therein). Suppose we have

(5.17) f(x) =
k∑

b=1

Cb · eiωbx, Ω = {ω1, . . . , ωk} ⊂

(
−

⌈
N

2

⌉
,

⌊
N

2

⌋]
.

for all x ∈ [0, 2π]. Setting B = k and C = 1 is then sufficient to guarantee that∑∞
b=B+1 |f̂(ωb)| = 0. Theorem V.7 now tells us that Algorithm 5.1 will perfectly

reconstruct f . We quickly obtain the final result of this section.

Corollary V.9. Suppose f is a k-frequency superposition. Then, Algorithm 5.1

can exactly recover f in O
(
N · k · log2 N ·log2(k log N)

log2 k

)
time. The number of f samples

used is Θ
(
k2 · log2

k N · log(k logN)
)
. If we run Algorithm 5.1 using O

(
log
(

N
1−σ

))
randomly selected primes along the lines of Lemma V.4, then we will exactly recover

f with probability at least σ. In this case the runtime will be

O

(
N · logk N · log

(
N

1− σ

)
· log2

(
k log

(
N

1− σ

)))
.

The number of f samples will be

O

(
k · logk N · log(k logN) · log

(
N

1− σ

))
.

92

As before, let α ∈ (0, 1) be a constant and suppose that k = Θ(Nα). Further-

more, let σ = 1− 1
NO(1) . Corollary V.9 implies that our deterministic Algorithm 5.1

exactly recovers k-frequency superpositions using O(k2 logN) samples. If randomly

selected primes are used then Algorithm 5.1 can exactly reconstruct k-frequency su-

perpositions with probability 1 − 1
NO(1) using O(k log2N) samples. In this case our

randomized Algorithm 5.1’s sampling complexity is within a logarithmic factor of

the best known Fourier sampling bounds concerning high probability exact recovery

of superpositions [18, 74]. This is encouraging given Algorithm 5.1’s simplicity. Of

greater interest for our purposes here, however, is that Algorithm 5.1 can be easily

modified to run in sublinear-time.

5.5 Sublinear-Time Fourier Algorithms

In order to reduce Algorithm 5.1’s runtime we will once again utilize the combina-

torial properties of line 7’s aliased DFTs. If we can correctly identify any energetic

frequencies that are isolated from the other elements of Ω by any given line 7 DFT,

we will be guaranteed to recover all energetic frequencies more than K
2

times. Thus,

collecting all frequencies recovered from more than half of line 7’s DFTs will give

us the k most energetic Ω frequencies (along with some possibly ‘junk frequencies’).

The ‘junk’ can be discarded, however, by using our existing coefficient estimation

method (lines 9 - 13) on the collected potentially energetic frequencies. Only truly

energetic frequencies will yield large magnitude coefficient estimates by Lemma V.6.

Finally, note that only O(K logK) potentially energetic frequencies may be recov-

ered more than K
2

times via line 7’s DFTs. Thus, our formally superlinear-time loop

(lines 9 - 12) will be sublinearized.

93

Algorithm 5.2 Sublinear Approximate

1: Input: Signal pointer f , integers m, k ≤ B ≤ N
2: Output: R̂

s
, a sparse representation for f̂

3: Initialize R̂
s
← ∅

4: Set K = 2BblogB Nc, q so that pq−1 ≤ max(B, pm) ≤ pq

5: for j from 0 to K do
6: for l from 0 to m do
7: Apl·pq+j

← f(0), f
(

2π
pl·pq+j

)
, . . . , f

(
2π(pl·pq+j−1)

pl·pq+j

)
8: Âpl·pq+j

← DFT[Apl·pq+j
]

9: end for
10: end for

Energetic Frequency Identification

11: for j from 0 to K do
12: Âsort ← Sort Âp0·pq+j by magnitude (i.e., bth largest magnitude entry in Âsort(b))
13: for b from 1 to B do
14: r0,b ← index of Âp0·pq+j

’s bth largest magnitude entry(
i.e., Âsort(b)’s associated residue mod pq+j

)
15: for l from 1 to m do
16: tmin ← mint∈[0,pl)

∣∣Âsort(b)− Âpl·pq+j (t · pq+j + r0,b)
∣∣

17: rl,b ← (r0,b + tmin · pq+j) mod pl

18: end for
19: Construct ωj,b from r0,b, . . . , rm,b via modular arithmetic
20: end for
21: end for
22: Sort ωj,b’s maintaining duplicates and set C(ωj,b) = the number of times ωj,b was constructed

via line 19
Coefficient Estimation

23: for j from 1 to K do
24: for b from 1 to B do
25: if C(ωj,b) > K

2 then

26: <
{
Cωj,b

}
← median of multiset

{
<
{

̂Apm·pq+h(ωj,b mod pm · pq+h)
} ∣∣ 0 ≤ h ≤ K

}
27: =

{
Cωj,b

}
← median of multiset

{
=
{

̂Apm·pq+h(ωj,b mod pm · pq+h)
} ∣∣ 0 ≤ h ≤ K

}
28: end if
29: end for
30: end for
31: R̂

s
← (ωj,b, Cωj,b

) entries for k largest magnitude Cωj,b
’s

In order to correctly identify energetic frequencies isolated by any Algorithm 5.1

DFT we will utilize a procedure along the lines of Cormode and Muthukrishnan’s CS

reconstruction method [92, 32, 33]. However, in order to take advantage of aliasing,

we will utilize an identification procedure based on the Chinese Remainder Theorem

instead of CM’s Hamming code based bit testing. For a simple illustration of how our

method works in the single frequency case see Chapter I (or [65, 69]). Algorithm 5.2

94

is the sublinear-time algorithm obtained by modifying Algorithm 5.1 as outlined

above.

Let m be the smallest integer such that

(5.18)
m∏

l=0

pl ≥
N

B
.

The following lemma establishes the correctness of Algorithm 5.2’s energetic fre-

quency identification procedure.

Lemma V.10. Lines 11 through 22 of Algorithm 5.2 are guaranteed to recover all

valid ω1, . . . , ωk (i.e., all ω with |Â(ω)|2 ≥ |Â(ωk)|2 — there may be > k such entries)

more then K
2

times. Hence, an entry for all such ωb, 1 ≤ b ≤ k, will pass the test in

line 25 and be added to R̂
s
in line 31.

Proof: Fix b ∈ [1, k]. By Lemma V.3 we know that there exist more than K
2

pq+j-primes that isolate ωb from all of Ω− {ωb}. Denote these primes by

pj1 , pj2 , . . . , pjK′ ,
K

2
< K ′ ≤ K.

We next show, for each k′ ∈ [1, K ′], that we get Âp0·pjk′
(ωb mod pjk′

) as one of

the B largest magnitude entries found in line 12. Choose any k′ ∈ [1, K ′]. Using

Equations 5.11 and 5.12 we can see that

ε

2
≤ |f̂(ωk)| −

∞∑
b′=B+1

|f̂(ωb′)| ≤ |f̂(ωb)| −

∣∣∣∣∣∣
∑

b′ /∈Ω, ωb′≡ωb

f̂(ωb′)

∣∣∣∣∣∣
≤
∣∣∣Âp0·pjk′

(ωb mod pjk′
)
∣∣∣ .

We also know that the (B + 1)st largest magnitude entry of Âp0·pjk′
must be ≤ ε

2
.

Hence, we are guaranteed to execute lines 13-20 with an r0,· = ωb mod pjk′
.

Next, choose any l ∈ [1,m] and set

Ω̄′ =
{
ωb′
∣∣ ωb′ /∈ Ω, ωb′ ≡ ωb mod pjk′

, ωb′ 6= ωb mod plpjk′

}
.

95

Line 16 inspects all the necessary residues of ωb mod plpjk′
since

ωb ≡ h mod pjk′
−→ ωb ≡ h+ t · pjk′

mod plpjk′

for some t ∈ [0, pl). To see that tmin will be chosen correctly we note first that∣∣∣Âp0·pjk′
(ωb mod pjk′

)− Âpl·pjk′
(ωb mod plpjk′

)
∣∣∣ ≤ ∑

ωb′∈Ω̄′

|f̂(ωb′)| ≤
ε

2

≤ |f̂(ωk)| −
∞∑

b′=B+1

|f̂(ωb′)|.

Furthermore, setting r0,· = ωb mod pjk′
and Ω̃′ to be

{
ωb′
∣∣ ωb′ /∈ Ω, ωb′ ≡ ωb mod pjk′

, ωb′ 6= (r0,· + tpjk′
) mod pjk′

pl

with t s.t. (r0,· + tpjk′
) 6= ωb mod plpjk′

}
,

we have

|f̂(ωk)|−
∞∑

b′=B+1

|f̂(ωb′)| ≤ |f̂(ωb)| −

∣∣∣∣∣∣
∑

ωb′∈Ω̃′

f̂(ωb′)

∣∣∣∣∣∣ ≤∣∣∣Âp0·pjk′
(ωb mod pjk′

)− Âpl·pjk′

(
(r0,· + tqjk′

) 6= ωb mod plqjk′

)∣∣∣ .
Hence, lines 16 and 17 will indeed select the correct residue for ωb modulo pl. And,

line 19 will correctly reconstruct ωb at least K ′ > K
2

times. 2

Using Lemma V.10 along with Lemma V.6 and Theorem V.7 we obtain the fol-

lowing Theorem concerning Algorithm 5.2. The sampling and runtime bounds are

computed in [65, 69].

Theorem V.11. Let R̂opt be a k-optimal Fourier representation for our input func-

tion f ’s Fourier transform. Then, the k-term representation R̂
s

returned from Al-

gorithm 5.2 is such that ‖f̂ − R̂‖22 ≤ ‖f̂ − R̂opt‖22 + 9k·|f̂(ωk)|2
C

. Furthermore, Al-

gorithm 5.2’s runtime is O
(
B2 · log2 N ·log2(B log N)·log2 N

B

log2 B·log log N
B

)
. The number of f samples

used is O
(
B2 · log2 N ·log(B log N)·log2 N

B

log2 B·log log N
B

)
.

96

Also, as above, if we run Algorithm 5.2 using randomly chosen pq+j-primes along

the lines of Lemma V.4 then Theorem V.11 will still hold whenever the pq+j-primes

behave in a majority selective fashion. We have the following corollary.

Corollary V.12. Let R̂opt be a k-optimal Fourier representation for our input func-

tion f ’s Fourier transform. If we run Algorithm 5.2 using O
(
log
(

N
1−σ

))
randomly

selected pq+j-primes for each f along the lines of Lemma V.4, then with proba-

bility at least σ we will obtain a k-term representation R̂
s

having ‖f̂ − R̂‖22 ≤

‖f̂−R̂opt‖22+
9k·|f̂(ωk)|2

C
. The runtime will be O

(
B · log N ·log(N

1−σ)·log2(B log(N
1−σ))·log2 N

B

log B·log log N
B

)
.

The number of f samples will be O

(
B · log2(N

1−σ)·log(B log N)·log2 N
B

log B·log log N
B

)
.

Let α ∈ (0, 1) be a constant and suppose that k = Θ(Nα). Furthermore, sup-

pose that σ = 1 − 1
NO(1) . Theorem V.11 tells us that our sublinear-time determin-

istic Algorithm 5.2 exactly recovers k-frequency superpositions in O
(
k2 · log4 N

log log N

)
time using O

(
k2 · log3 N

log log N

)
samples. If randomly selected pq+j-primes are used then

Algorithm 5.2 can exactly reconstruct k-frequency superpositions with probability

1 − 1
NO(1) in O

(
k · log5 N

log log N

)
time using O

(
k · log4 N

log log N

)
samples. It is worth noting

here that the recent randomized sublinear-time Fourier results of [53, 54] do not

yield exact reconstructions of sparse Fourier superpositions in this manner. They

iteratively produce approximate solutions which converge to the true superposition

in the limit.

We are now ready to give sublinear-time results concerning functions with com-

pressible Fourier coefficients. For the remainder of this chapter we will assume that

our input function f : [0, 2π] 7→ C has both (i) an integrable pth derivative, and (ii)

f(0) = f(2π), f ′(0) = f ′(2π), . . . , f (p−2)(0) = f (p−2)(2π) for some p > 1. Standard

Fourier coefficient bounds then imply that f̂ is a p-compressible ∞-length signal

97

[49, 16]. Before applying Theorem V.11 we will determine Algorithm 5.2’s B and

Equation 5.11’s C variables based on the desired Fourier representation’s size and

accuracy. Moving toward that goal, we note that since f̂ is algebraically compressible

we have

(5.19)
9k · |f̂(ωk)|2

C
=

1

C
O
(
k−2p+1

)
= O

(
1

C

)
‖Copt

k ‖
2
2.

Thus, we should use C = O
(

1
δ

)
and a B so that

(5.20)
∞∑

b=B+1

|f̂(ωb)| = O(B1−p) = O(δ · |f̂(ωk)|) = O(δ · k−p).

Solving, we get that B = O
(
δ

1
1−pk

p
p−1

)
. Applying Theorem V.11 gives us Algo-

rithm 5.2’s runtime and number of required measurements. We obtain the following

Corollary.

Corollary V.13. Let f : [0, 2π] 7→ C have (i) an integrable pth derivative, and

(ii) f(0) = f(2π), . . . , f (p−2)(0) = f (p−2)(2π) for some p > 1. Furthermore, assume

that f̂ ’s B = O
(
δ

1
1−pk

p
p−1

)
largest magnitude frequencies all belong to

(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
.

Then, we may use Algorithm 5.2 to return a k-term sparse Fourier representation,

R̂
s
, for f̂ with ‖f̂ − R̂‖22 ≤ ‖f̂ − R̂opt‖22 + δ‖Copt

k ‖22 in O
(
δ

2
1−pk

2p
p−1 · log6 N

log2 kp

δ

)
time.

The number of f samples used is O
(
δ

2
1−pk

2p
p−1 · log5 N

log2 kp

δ

)
. If we run Algorithm 5.2

using O
(
log
(

N
1−σ

))
randomly selected pq+j-primes along the lines of Lemma V.4,

then with probability at least σ we will obtain a k-term representation R̂
s

having

‖f̂ − R̂‖22 ≤ ‖f̂ − R̂opt‖22 + δ‖Copt
k ‖22 in O

(
δ

1
1−pk

p
p−1 · log6 N

log kp

δ

)
time. The number of f

samples used is O
(
δ

1
1−pk

p
p−1 · log5 N

log kp

δ

)
.

If f : [0, 2π] → C is smooth (i.e., has infinitely many continuous derivatives on

the unit circle where 0 is identified with 2π) it follows from Corollary V.13 that

Algorithm 5.2 can be used to find an δ-accurate, with δ = O
(

1
N

)
, sparse k-term

98

Fourier representation for f̂ in O(k2 log6N) time using O(k2 log5N) measurements.

If randomly selected pq+j-primes are utilized then Algorithm 5.2 can obtain a O
(

1
N

)
-

accurate k-term Fourier representation for f̂ with high probability in O(k log6N)

time using O(k log5N) measurements. Similarly, standard results concerning the

exponential decay of Fourier coefficients for functions with analytic extensions can

be used to generate exponentially compressible Fourier results.

5.6 Discrete Fourier Results

Suppose we are provided with an array A containing N equally spaced samples

from an unknown smooth function f : [0, 2π] → C (i.e., A’s band-limited interpo-

lent). Hence,

(5.21) A(j) = f

(
2πj

N

)
, j ∈ [0, N).

We would like to use Algorithm 5.2 to find a sparse Fourier representation for Â. Not

having access to f directly, and restricting ourselves to sublinear time approaches

only, we have little recourse but to locally interpolate f around Algorithm 5.2’s

required samples.

For each required Algorithm 5.2 f -sample at t = 2πh
pq+jpl

, h ∈ [0, pq+jpl), we may

approximate f(t) to within O (N−2κ) error by constructing 2 local interpolants (one

real, one imaginary) around t using A’s nearest 2κ entries [52]. These errors in f -

samples can lead to errors of size O (N−2κ · pmpq+K log pq+K) in each of Algorithm 5.2

line 8’s DFT entries. However, as long as these errors are small enough (i.e., of size

O(δ · k−p) in the p-compressible case) Theorem V.11 and all related Section 5.5

results and will still hold. Hence, using 2κ = O (log (δ−1 · kp)) interpolation points

per f -sample will be sufficient. We have the following result.

Corollary V.14. Let A be an N-length complex valued array and suppose that

99

Â is p-compressible. Then, we may use Algorithm 5.2 to return a k-term sparse

Fourier representation, R̂
s
, for Â with ‖Â − R̂‖22 ≤ ‖Â − R̂opt‖22 + δ‖Copt

k ‖22 in

O
(
δ

2
1−pk

2p
p−1 · log6 N

log kp

δ

)
time. The number of samples used is O

(
δ

2
1−pk

2p
p−1 · log5 N

log kp

δ

)
. If

we run Algorithm 5.2 using O
(
log
(

N
1−σ

))
randomly selected pq+j-primes along the

lines of Lemma V.4, then with probability at least σ we will obtain a k-term repre-

sentation R̂
s
having ‖Â− R̂‖22 ≤ ‖Â− R̂opt‖22 + δ‖Copt

k ‖22 in O
(
δ

1
1−pk

p
p−1 · log6N

)
time. The number of A samples used is O

(
δ

1
1−pk

p
p−1 · log5N

)
.

Notice that Corollary V.14 doesn’t guarantee the exact recovery of k-frequency

superpositions in the discrete setting. Generally, the sparse Fourier representations

produced by Algorithm 5.2 on discrete data will always contain interpolation errors.

However, for δ = Θ (N−1), we can still consider smooth data A to be Θ(logN)-

compressible and so achieve an accurate Õ(k2)-time DFT algorithm for large N .

5.7 Conclusion

In this chapter the first known deterministic Fourier algorithm with both sublinear-

time sampling and runtime complexity was developed. Hence, we have established

the first deterministic algorithm which can exactly reconstruct a k-frequency super-

position using time polynomial in the superposition’s information content. When

viewed from this perspective the following open problem presents itself.

Open Problem 1. Construct (or show the impossibility of constructing) a determin-

istic Fourier algorithm guaranteed to exactly recover k-frequency superpositions in

k · logO(1)N time.

The status of current methods with respect to Problem 1 is as follows: Gilbert,

Muthukrishnan, and Strauss’ randomized Fourier algorithm [54] achieves a near opti-

mal runtime, but is neither deterministic nor exact. Similarly, our Section 5.5 Monte

100

Carlo algorithm achieves exact reconstruction and a near optimal runtime, but isn’t

deterministic. Linear programming [39, 18] and OMP-based [95] methods achieve

universal sampling sets of acceptable size [99, 42], but both the verification of the

sampling sets universal properties and the associated reconstruction procedures are

computationally taxing. Finally, Indyk’s fast deterministic CS procedure [61] obtains

a promising reconstruction runtime, but doesn’t allow fast Fourier measurement ac-

quisition.

In terms of applications, there are two compelling motivations for developing fast

sparse Fourier transform methods along the lines of [53, 54] and Algorithm 5.2: run-

time and sample usage. In numerical applications such as [35] where runtime is the

dominant concern we must assume that our input function f exhibits some multi-

scale behavior. If f̂ contains no unpredictably energetic and large (relative to the

number of desired Fourier coefficients) frequencies then it is more computationally

efficient to simply use standard FFT/NUFFT methods [27, 78, 9, 45, 47]. In other

applications [77, 72, 83, 84] where sampling costs are of greater concern than re-

construction runtime, even mild oversampling for the sake of faster reconstruction

may be unacceptable. In such cases the runtime/sampling tradeoff must be carefully

weighed.

Chapter VI

A Note on Compressed Sensing and the Complexity of
Matrix Multiplication

We consider the conjectured O(N2+ε) time complexity of multiplying any two

N × N matrices A and B. Our main result is a deterministic Compressed Sensing

(CS) algorithm that both rapidly and accurately computes A · B provided that the

resulting matrix product is sparse/compressible. As a consequence of our main result

we increase the class of matrices A, for any given N × N matrix B, which allows

the exact computation of A · B to be carried out using the conjectured O(N2+ε)

operations. Additionally, in the process of developing our matrix multiplication

procedure, we present a modified version of Indyk’s recently proposed extractor-

based CS algorithm [61] which is resilient to noise.

6.1 Introduction

Over the past several years the development and refinement of Compressed Sens-

ing (CS) results have generated a cascade of methods exploiting inherent signal spar-

sity in applications ranging from numerical methods for partial differential equations

[35] to summarizing streamed network data [51, 91, 92, 13]. Perhaps most funda-

mental of all the numerical applications to be addressed using CS-related methods

is the approximation of matrix multiplication via random sampling [43, 11]. The

101

102

existence of these randomized algorithms for approximating matrix products leads

us to the following two questions which we consider in this chapter:

1. Are there computationally efficient deterministic algorithms for approximating

the product of two N ×N matrices?

2. Does the existence of fast CS-related algorithms for approximating matrix mul-

tiplication tell us anything new about the complexity of exact matrix multipli-

cation?

The answer to both questions is ‘Yes’. In this chapter we present a deterministic

algorithm for approximating the product of two N×N matrices which is guaranteed

to produce accurate results as long as the matrix product is sparse/compressible.

Furthermore, because we develop a noise-tolerant variant of the fastest current de-

terministic CS method [61] to use in our algorithm, it is fast enough to prove the

conjectured O(N2+ε) runtime of N × N matrix multiplication for any two dense

N ×N matrices whose product is sparse in all columns (or rows).

The remainder of this chapter is organized as follows: In Section 6.2 we introduce

relevant definitions, terminology, and discuss related work. In Section 6.3 we outline

the development of a noise tolerant variant of Indyk’s extractor-based CS method

and use it to create a deterministic algorithm for approximating the product of any

two N × N matrices. Finally, in Section 6.4, we conclude with a discussion our

result’s implications with respect to the complexity of matrix multiplication.

6.2 Preliminaries and Related Work

Throughout the remainder of this chapter we will utilize the standard Frobenius

matrix norm. Let A be an N × N complex-valued matrix. A’s Frobenius norm,

103

‖A‖F, is defined as

(6.1) ‖A‖F =

√√√√ N∑
i=1

N∑
j=1

|Ai,j|2.

Here Ai,j is A’s ith row’s jth entry. Similarly, Ai will denote A’s ith row and Aj will

denote A’s jth column.

Our main result deals with compressible matrices. We say that a complex-valued

vector, v ∈ CN , is (C, γ)-compressible for fixed C, γ ∈ R+, if there exists an ordering

of v’s elements by magnitude,

(6.2) |vj1| ≥ . . . ≥ |vjm| ≥ . . . ≥ |vjN
|,

such that |vjl
| ≤ C · 2−γ·l for all 1 ≤ l ≤ N . Furthermore, we will say that a vector

containing only k nonzero-elements, uopt
k , is k-optimal with respect to vector v if

(6.3) ‖v− uopt
k ‖

2
2 =

N∑
l=k+1

|vjl
|2 = O

(
C2

γ
· 4−γ·k

)
.

Note that the k-optimal error

(6.4) ‖v− uopt
k ‖

2
2

is unique for each v ∈ CN . Finally, we will say that an N×N complex-valued matrix

A is compressible, or (C, γ)-compressible, if all of A’s column (or row) vectors are

(C, γ)-compressible. For a compressible N×N matrix A, we will let Uopt
k denote any

N ×N matrix minimizer of

(6.5) ‖A− Uk‖2F

over the class of matrices containing ≤ k non-zero entries per column (or row).

Without loss of generality we will assume column compressibility from now on.

104

Work related to our results includes existing randomized approximate matrix

multiplication algorithms [43, 11]. Let A and B both be N×N real-valued matrices.

In [43], Drineas et al. provide a Monte Carlo algorithm which approximates A · B

by randomly selecting and rescaling c columns of A (and the associated c rows of

B), and then computing the product, R, of the resulting N × c and c×N matrices.

Provided that the columns of A/rows of B are chosen via an appropriate probability

distribution they show that

(6.6) ‖AB −R‖F = O

(
‖A‖F ‖B‖F√

c

)
with high probability. However, there is no guarantee that the algorithm will return

the correct answer (or an arbitrarily good approximation) w.h.p. for any particular

class of matrices.

In [11] Belabbas et al. utilize low-rank approximation methods on a kernel related

to A and B in order to generate an approximation to A · B. They then prove

that a given optimal sampling strategy nicely relates their approximate product’s

expected accuracy to the rank of A and B. As a result, their algorithm can compute

an accurate approximation (i.e., the expected error is zero) to A · B w.h.p. with

the conjectured O(N2+ε) operations provided (i) both A and B have rank O(N ε),

and (ii) that their algorithm has access to an oracle to sample via the optimal

strategy. Unfortunately, actually sampling according to the optimal distribution is

computationally intractable. Thus, Belabbas et al.’s work doesn’t provide complexity

results of the type we seek here. Unlike [43, 11] our approximation algorithm is both

(i) deterministic, and (ii) fast enough to provide new near-optimal complexity results

for exactly multiplying specific types of dense matrices.

105

6.2.1 Compressed Sensing

Let v ∈ CN and Ψ be a complex-valued N×N matrix. Furthermore, suppose that

Ψ ·v is sparse/compressible (e.g., (C, γ)-compressible). Compressed sensing methods

provide a K ×N measurement matrix,M, with K minimized such that the k most

significant entries of Ψ · v can be recovered from the K-element result of

(6.7) M ·Ψ · v.

Standard algorithms for recovering/approximating Ψ ·v’s largest k entries in magni-

tude from the result of (6.7) include linear programming [39, 18], orthogonal matching

pursuit [104], and various faster algorithms [56, 92, 33, 65, 61] for particular types of

measurement matricesM. For the purposes of this chapter we will utilize a variant

of Theorem VI.1 (proved in [61]).

Theorem VI.1. Suppose that the vector Ψ · v ∈ CN contains at most k non-zero

elements. There exists a k · 2O(log2 log N)×N measurement matrix,M, which enables

the exact reconstruction of Ψ · v from the k · 2O(log2 log N)-element result of M · Ψ · v

in k · 2O(log2 log N) time.

We concentrate on Theorem VI.1 for two reasons. First, the reconstruction

method outlined in [61] has a runtime complexity that is both sublinear in N (the

vector dimension) and linear in k (the sparsity level). All deterministic variants of

[39, 18, 104, 92, 33, 65] utilize reconstruction algorithms which are superlinear in

either N , k, or both. Furthermore, unlike fast CS methods with uniform error guar-

antees (e.g., [56]), Indyk’s method is both deterministic and explicit (i.e., there is

no probability of failure). Although the uniformly random guarantees in [56] suf-

fice to demonstrate the existence of deterministic matrix multiplication algorithms,

106

verifying any such algorithm’s correctness over all sparse signals is computationally

intractable.

6.2.2 Complexity of Matrix Multiplication

Clearly, multiplying two arbitrary N × N matrices requires Ω(N2) operations

(e.g., to read the input matrices). Naive multiplication of two N × N matrices

uses Θ(N3) operations. It is conjectured that for any ε > 0, one can multiply two

N ×N matrices with O(N2+ε) operations, and this result would follow from various

combinatorial and algebraic conjectures [24, 30].

Recent approaches to matrix multiplication include the use of tensor product

constructions to produce algorithms to multiply two large matrices. The current

best algorithm for multiplying two N × N matrices [30] combines tensor product

constructions with a result from additive combinatorics due to Salem and D. C.

Spencer [100] to derive an algorithm requiring O(N2.376) operations. For a survey

of matrix multiplication complexity and related geometry results see [76]. In this

chapter, we utilize the following theorem of Coppersmith (see [29]).

Theorem VI.2. Let β = .29462... and ε > 0. One can multiply matrices of size

N ×N and N ×Nβ with complexity O(N2+ε).

Theorem VI.2 provides the current best result in terms of maximizing the number

of rows, m, an m × N matrix may have while still being able to be multiplied by

another N ×N matrix with complexity O(N2+ε). In the next section we present an

algorithm for computing the product of twoN×N matrices using O(N2+ε) operations

under the assumption that the product is sparse in each column. As a result, we

generalize Theorem VI.2 with respect to the types of N × N matrices A we may

multiply by any given N ×N matrix B with the conjectured complexity.

107

6.3 Approximating Matrix Products

In this section we discuss how the combination of compressed sensing methods

with Coppersmith’s work (i.e., Theorem VI.2) can be used to (approximately) mul-

tiply two N × N matrices with O(N2+ε) operations when the product of the two

matrices is known to be sparse/compressible. However, in order to state our simple

CS based matrix multiplication method we must utilize a noise tolerant version of

Theorem VI.1. By slightly modifying Indyk’s recovery algorithm and measurement

construction the following result can be obtained.

Theorem VI.3. Suppose that v ∈ CN , Ψ is a complex-valued N × N matrix, and

Ψ · v is (C, γ)-compressible. Then, we may construct a
(
m+ 1

γ

)
· 2O(log2 log N) × N

measurement matrix, M, which allows a
(
m+ 1

γ

)
· 2O(log2 log N)-time reconstruction

algorithm to use the result of M ·Ψ · v and return a vector um such that

‖ Ψ · v− um ‖22 ≤ ‖ Ψ · v− uopt
m ‖22 +

∣∣ (Ψ · v)jm+1

∣∣2
N

.

Here,
∣∣ (Ψ · v)jm+1

∣∣ is the magnitude of the product’s (m+ 1)st-largest entry/entries.

Theorem VI.3’s proof is analogous to Theorem VI.1’s proof, modulo minor com-

plications due to the presence of ‘noise’ (i.e., the exponentially decaying smaller

magnitude entries of Ψ · v). Due to the proof’s similarity to the work in [61] we will

only sketch it here.

Proof Sketch:

If we want to recover the m largest magnitude entries of Ψ · v we will substitute

(6.8) m+O

 log2N + log
(

C
γ

)
γ

for r (i.e., the sparsity level) everywhere in [61]. Furthermore, instead of using [33]’s

explicit CS construction we can just as easily use the related construction/theorems

108

in [65]. Thus, complex values are easily handled and each non-overflowing H row

can recover entries with enough accuracy to yield results along the lines of [65]’s

Theorems 2 and 3 (exponential decay).

We will consider the vector we want to recover, Ψ · v, to consist of an exact

r-sparse vector (containing a few more than the m largest magnitude entries we

ultimately want to recover — see Equation 6.8) plus a noise vector containing all the

remaining entries (i.e., the exponentially decaying ‘noise’). As long as the sum of all

the noise terms is small enough, Indyk’s algorithm will work as before after a few

modifications.

First, we must modify [61]’s Reduce procedure by replacing the line

“IF votes[j] CONTAINS > dA/2 COPIES OF val THEN yj = val”

with

“IF |votes[j]| > 2dA/3 THENRe(yj) = MEDIAN OFRe(votes[j]) AND Im(yj) =

MEDIAN OF Im(votes[j])”.

This changes the proof of [61]’s Lemma 1 only in that now dA/3 vote changes are

needed to make any entry yj have a value more than the current cumulative noise

level from the true value (e.g., more than O(2−γ·m · N−2) from the correct value in

the final iterative call of Reduce). Thus, if we set ε < 1/24 more than half of the

r-sparse portion of our input vector will be replaced by controllable noise after each

iteration.

Second, we note that the iterative nature of Indyk’s Recover procedure won’t

109

degrade our final accuracy. In the worst case each iteration of the Reduce can

multiply the additive noise for every recovered entry by O(N), resulting in Recover

returning an estimate yjl
for each largest magnitude entry (Ψ ·v)jl

, 1 ≤ l ≤ m, with

(6.9) |yjl
− (Ψ · v)jl

| = NO(log N) ·

(
N∑

n=r+1

∣∣(Ψ · v)jn

∣∣) = NO(log N) · C · 2
−γ·r

γ
.

If r is replaced with Equation 6.8 we can maintain the additive error bounds needed

by [65]’s recovery algorithm to maintain its required accuracy during all O(logN)

iterative calls of the Reduce procedure.

Finally, after we collect the output from the Recover procedure, we sort the

output entries by their magnitude and return the largest m of them as our sparse

representation um. Because we are able to maintain the required accuracy of Re-

cover’s output (see preceding paragraph), an argument analogous to the proof of

[65]’s Theorem 2 will give us our final result. 2

With Theorem VI.3 in hand we are ready to consider matrix multiplication. Let

A and B denote two N×N matrices with complex entries. Furthermore, we suppose

that A · B is (C, γ)-compressible. To construct an approximate product matrix Um

with

(6.10) ‖A ·B − Um‖F = O
(
‖A ·B − Uopt

m ‖F
)

we proceed as follows:

1. Use a
(
m+ 1

γ

)
·2O(log2 log N)×N measurement matrix,M, as per Theorem VI.3

to compute

(6.11) P = (M · A) ·B

using Theorem VI.2. Provided that there exists some ε > 0 so that both m and

1
γ

are O(Nβ−ε) this can be accomplished in O(N2+ε) time.

110

2. Apply Theorem VI.3 to P j for all 1 ≤ j ≤ N to recover Um.

The total recovery time will be O(N1+β). We quickly obtain our main theorem.

Theorem VI.4. Let β− < .29462..., ε > 0, and A,B be N ×N matrices. If A ·B is

(C, γ)-compressible and both m and 1
γ

are O(Nβ−
), then one can obtain an N × N

matrix Um such that

‖(A ·B)− Um‖2F ≤ ‖(A ·B)− Uopt
m ‖2F +

N∑
i=1

∣∣ (A ·B)i
jm+1

∣∣2
N

in O(N2+ε) time.

Note that in the special case where A ·B has ≤ m non-zero elements per column,

we have

(6.12)
N∑

i=1

∣∣ (A ·B)i
jm+1

∣∣2
N

= 0.

We obtain the following corollary.

Corollary VI.5. Let β− < .29462... and c, ε ∈ R+. Furthermore, let A and B

denote N ×N matrices. If the product A ·B has at most cNβ−
non-zero elements in

each column, then A ·B can be computed using O(N2+ε) operations.

Let A and B denote square N × N matrices, ε > 0, and c > 0. If A · B is

compressible in each column, we can use Theorem VI.4 to obtain a near-optimal

best cN .29462 element-per-column approximation to A ·B using O(N2+ε) operations.

More specifically, if each column of the product A ·B has at most cN .29462 non-zero

elements, then we can use Corollary VI.5 to calculate the product A ·B exactly using

O(N2+ε) operations.

6.4 Discussion

In this chapter we discussed how compressed sensing methods can be used to

(approximately) multiply two square matrices quickly if the product is known to be

111

sparse. In the process, we have increased the class of N × N matrices A, for any

given N × N matrix B, which allow A · B to be calculated exactly using O(N2+ε)

operations (see Corollary VI.5). Provided that A ·B contains at most O(Nβ−
) non-

zero entries per column, it can be calculated exactly using O(N2+ε) operations. In

contrast, previous results [28, 29] required that A contain O(Nβ) non-empty (i.e.,

non-sparse) rows to achieve the same bound.

Furthermore, we have also provided results concerning the approximation of the

product of two (dense) N ×N matrices in O(N2+ε) time. Any two matrices may be

approximately multiplied using our method, and the result will be accurate to the

extent that the true product is compressible. The required measurement acquisition

(i.e., Equation 6.11) can either be accomplished via traditional matrix multiplica-

tion or via lower complexity methods (e.g., Theorem VI.2). In the later case it is

worth mentioning that any additional advances in rapid matrix multiplication sim-

ilar to Theorem VI.2 will automatically strengthen our results. This is due to the

reconstruction algorithm in Theorem VI.3 having O(m ·N ε) runtime.

We finish by noting that in practice we may not know when a matrix product

is going to be column/row-sparse. Thus, although we have given a deterministic

algorithm which is guaranteed to accurately approximate such products, we won’t

necessarily know when our answers are accurate. In such cases existing streaming

algorithm techniques [48, 8] allow us to predict the sparsity (i.e., number of non-

zero entries) of all the matrix product’s columns/rows to within a small constant

factor (e.g., 4) with probability O(1 − 1
NO(1)) in O(N2 · logN)-time [62]. Thus, in

the general case (where the matrix product’s sparsity is unknown) a Monte-Carlo

variant of Corollary VI.5 holds.

Appendices

112

113

Appendix A

Scalable Rule-Based Gene Expression Data Classification

Microarray technology allows biologists to simultaneously measure the expression of

thousands of genes in a single experiment. This technology provides a unique tool

to examine how a cell’s gene expression pattern changes under various conditions.

Microarray methods could also play a critical role in personalized medicine as they

could be used to determine the unique genetic susceptibility of an individual to

disease.

See Table A.1 for a sample microarray dataset shown using the common discretized

relational representation. In this table, each sample row consists of (i) a list of

discretized genes and (ii) a class label. A gene is present in a sample row if the

sample expresses the gene. The absence of a gene in a row implies that the gene

is not expressed in that sample. Thus, the sample/gene expression relationships for

relational microarray data are essentially boolean.

Leading associated rule-based methods such as Top-k [25], FARMER [26], CLOS-

ET+ [107], and CHARM [108] which have been applied to microarray datasets aim to

correlate gene expression patterns with the classification labels. For these algorithms

the discovered correlations take the form of association rules [6]. For an example

association rule, consider the data shown in Table A.1. Note that only the Cancer

samples s1 and s2 express both genes g1 and g3. Based on this observation we can

114

Sample Expressed Genes Class Label
s1 g1 g2 g3 g5 Cancer
s2 g1 g3 g6 Cancer
s3 g2 g4 g6 Cancer
s4 g2 g3 g5 Healthy
s5 g3 g4 g5 g6 Healthy

Table A.1: Running Example of Microarray Data

create the following association rule: g1, g3 ⇒ Cancer. This rule means that if a

query sample express both g1 and g3 (i.e., if g1 and g3’s associated genes are both

expressed in their associated expression intervals), then the query sample is likely to

be of type Cancer. Hence, we can use this rule to classify query samples of unknown

type as Cancer if they express both g1 and g3. Note that there is nothing special

about the class label Cancer. After noticing that only Healthy sample s5 expresses

both g5 and g6, we can also create the meaningful association rule g5, g6 ⇒ Healthy.

Current state-of-the-art association rule-based classifiers for gene expression data

operate in two phases: (i) Association rule mining from training data followed by (ii)

Classification of query data using the mined rules. In the worst case, these meth-

ods require an exponential search over the subset space of the training data set’s

samples and/or genes during at least one of these two phases. Hence, existing as-

sociation rule-based techniques are prohibitively computationally expensive on large

gene expression datasets.

Our main result is the development of a heuristic rule-based gene expression

data classifier called Boolean Structure Table Classification (BSTC). BSTC is ex-

plicitly related to association rule-based methods, but is guaranteed to be polyno-

mial space/time. Extensive cross validation studies on several real gene expression

datasets demonstrate that BSTC retains the classification accuracy of current asso-

ciation rule-based methods while being orders of magnitude faster than the leading

115

classifier RCBT on large datasets. As a result, BSTC is able to finish table gen-

eration and classification on large datasets for which current association rule-based

methods become computationally infeasible.

BSTC also enjoys two other advantages over association rule-based classifiers: (i)

BSTC is easy to use (requires no parameter tuning), and (ii) BSTC can easily handle

datasets with any number of class types. Furthermore, in the process of developing

BSTC we introduce a novel class of boolean association rules which have potential

applications to other data mining problems.

In this appendix we focus on association rule-based classifiers (hereafter referred

to simply as rule-based classifiers) for gene expression data. We focus on rule-based

classifiers for two reasons: (i) rule-based classifiers have been demonstrated to be

more accurate for gene expression analysis than other methods [25, 26, 38, 79] such

as SVM [34] and tree-based C4.5 family algorithms [96], and (ii) as opposed to

other classifiers such as SVM, rule-based classifiers can offer concise, concrete, and

biologically meaningful rules supporting their non-default classifications. However,

rule-based methods are not scalable due to their high association rule mining costs.

Although these rule mining costs are “one-time costs” in the sense that rules must

only be mined once per training set, larger training data sets are being generated

at an ever increasing rate. It is impossible for any exponential time method to

keep up. Consequently, in this appendix, we focus on extending accurate association

rule-based classification methods to larger data sets.

This appendix develops a scalable rule-based classifier called Boolean Structure

Table Classification (BSTC) for microarray datasets. Given a labeled training set,

such as the example in Table A.1, BSTC efficiently builds an accurate classifier.

The emphasis on accuracy is easy to appreciate and comes from BSTC being related

116

to association rule-based methods. Hence, BSTC supports its classifications with

intuitive rules. The emphasis on efficiency is also critical since large gene expression

datasets are computationally taxing for existing association rule-based algorithms

and, as successful microarray techniques fuel the growth of gene expression datasets,

these methods will quickly become infeasible. In contrast, BSTC’s space and runtime

costs are only polynomial. Hence, BSTC is scalable to large data sets on which

current association rule-based methods are challenged computationally.

In an attempt to control runtime many current association rule methods [25, 26,

82] utilize support-based rule pruning. Using a large enough support cutoff does

allow rule mining to finish more quickly, but doesn’t completely resolve the issue.

If the user sets the support cutoff too small he/she can easily spend days waiting

for rule mining to finish before giving up in frustration. A few such mistakes can

result in weeks of wasted time. On the other hand, setting the support cutoff too

high excludes the generation of important high-confidence lower-support rules [88].

In order to not miss too many important rules the user can’t set the support cutoff

too high. The end result is that in practice support cutoffs are difficult and time

intensive to tune. In contrast, BSTC is fast and easy to use.

In addition, to the best of our knowledge all current association rule-based clas-

sifiers for gene expression data only handle datasets with two class labels. Although

our example Table A.1 data contains just two class labels, in practice microarray

data can contain an arbitrary, though small, number of class types. Unlike previous

association rule-based classifiers, BSTC easily generalizes to datasets with more than

two class types.

To develop an accurate, scalable, multi-class, and easy to use rule-based classifier

we carefully considered the underlying primitives that power association rule-based

117

methods. These methods use conjunctive association rules (CARs), in which

the rule antecedent is restricted to being a conjunction of terms. In contrast, we

approach this problem by relaxing the types of rules to an important and larger

subset of the more general class of boolean association rules (BARs). We develop

a novel method for compactly storing these BARs in a simple data structure called

a Boolean Structure Table (BST). BSTs can then be used for BAR generation and

classification. BST classification (BSTC) collectively considers many simple BARs

with 100% confidence in bulk. Because the rules are simple BSTC avoids extensive

rule mining. Furthermore, considering rules in bulk keeps the computational cost

low.

The main contributions of this appendix are:

1. We propose a new polynomial time and space rule-based classifier for gene

expression data analysis that is accurate, scalable, easy to use, and easily gen-

eralizable to multi-class classification.

2. We extensively evaluate our method against the current leading association rule-

based method (RCBT [25]), and show that our method is orders of magnitude

faster on large datasets while maintaining high classification accuracy.

3. We introduce a subclass of more general boolean association rules and relate

them to existing CARs. This not only leads to a better appreciation of why our

classification method works, but also lays the foundation for the future use of

these BARs on other database problems.

The remainder of this appendix is organized as follows: First, in Section A.1 we

formalize the concept of BARs. Then in Section A.2, we define a concept called

Boolean Structure Tables (BSTs) which are related to an important class of BARs.

118

Section A.3 provides a polynomial time and parameter-free classifier based on BSTs.

Section A.4 presents an extensive empirical evaluation of our classifier. Finally,

Section A.5 discusses related work, and Section A.6 briefly presents our conclusions

and directions for future work.

A.1 Preliminaries

We work with the following type of data: We are given a finite set G of genes and

N collections of subsets from G. These N collections are disjoint and represented as

C1 = {s1,1, . . . , s1,m1}, . . . , CN = {sN,1, . . . , sN,mN
}. Each Ci is called a class type

or class label. Furthermore, we will refer to each set si,j ⊆ G as a sample and every

element g ∈ G as a gene. We denote the total set of samples by S =
⋃N

i=1Ci. If

g ∈ si,j we will say that sample si,j expresses gene g. Otherwise, if g ∈ G and g /∈ si,j

we will say that sample si,j doesn’t express gene g. Similarly, we say that sample s

is of class type Ci if and only if Ci contains s ⊂ G. Consider the Table A.1 data.

Here we have samples S = {s1, s2, s3, s4, s5} and genes G = {g1, g2, g3, g4, g5, g6}.

Furthermore, we have N = 2 classes: C1 = Cancer = {s1, s2, s3} and C2 = Healthy =

{s4, s5}.

Given such relational training data, a conjunctive association rule (CAR)

is any element of 2G × {1, . . . , N}. A CAR gj1 , . . . , gjr ⇒ n can be interpreted as

follows: “If a query sample s contains all genes gj1 , . . . , gjr then it should be grouped

with class type Cn.” Naturally, of the 2|G| · N possible association rules some are

more useful than others. The following standard definitions were introduced in [6]

to compare association rules:

Support: The support of a CAR gj1 , . . . , gjr ⇒ n, called supp[gj1 , . . . , gjr ⇒ n], is:

|{sn,j s.t. {gj1 , . . . , gjr} ⊂ sn,j, 1 ≤ j ≤ mn}|.

119

Confidence: The confidence of a CAR gj1 , . . . , gjr ⇒ n is:

supp[gj1 , . . . , gjr ⇒ n]

|{si,j s.t. {gj1 , . . . , gjr} ⊂ si,j∀i, j}|
.

Consider the CAR g1, g3 ⇒ Cancer for our running example in Table A.1. We

can see that the example CAR has a support of 2 since only two Cancer samples, s1

and s2, contain both g1 and g3. Furthermore, we can see that the example CAR has

confidence 1 (or 100%) since no healthy samples contain both g1 and g3.

A.1.1 Boolean Association Rules

For any sample s and gene gi, 1 ≤ i ≤ n = |G|, let s[gi] ∈ {0, 1} represent

whether or not sample s expresses gene gi. Furthermore, for gi ∈ G define s[−gi] to

be 1 − s[gi]. Now suppose that B(x1, . . . , xn) is a Boolean expression whose value

depends on some subset of {x1, . . . , xn}. We can evaluate B to true or false given

a sample s by computing B(s[g1], . . . , s[gn]). For example, consider the boolean

expression:

B̂(x1, x2, x3, x4, x5, x6) = (x1 ∧ x3) ∨ (x2 ∧ x4).

Using Table A.1 we can evaluate

(A.1) B̂(s1[g1], s1[g2], s1[g3], s1[g4], s1[g5], s1[g6])

to be (1 ∧ 1) ∨ (1 ∧ 0) = 1. Note that B̂ will only evaluate the Table A.1 Cancer

samples to True.

For a given class set Ci and boolean expression B we can create a Boolean

association rule (BAR) of the form B ⇒ Ci. The interpretation of any such

BAR, B ⇒ Ci, is “if B(s[g1], . . . , s[gn]) evaluates to true for a given sample s, then

s should belong to class Ci.” From this point on we will work with the following

generalized definitions of support and confidence:

120

Figure A.1: Example BST for the Cancer Class

Support: The support of any BAR B ⇒ Ci, represented as

supp(B ⇒ Ci), is:

{samples s ∈ Ci s.t. B(s[g1], . . . , s[gn]) evaluates to true}.

The corresponding numerical support value of B ⇒ Ci is denoted as |supp(B ⇒ Ci)|.

Confidence: The confidence of a BAR B ⇒ Ci is

|supp(B ⇒ Ci)|
|{samples s s.t. B(s[g1], . . . , s[gn]) evaluates to true}|

For CARs these definitions coincide with the CAR definitions of support and

confidence found in [6, 7]. Hence, they are natural generalizations of the previous

definitions (see section A.2.3).

Consider our example boolean expression B̂ in terms of Table A.1. We can see

that the BAR B̂ ⇒ Cancer (shown in Eq. A.1) has support 3 and confidence 1.

A.2 BSTs and BARs

The discussion in this section will focus on tables for each class Ci. These tables,

called Boolean Structure Tables (BSTs), will form the basis for our classification

method. In order to motivate the utility of BSTs for classification, we will present

their close relationship to a special category of BARs which, in turn, will be related

121

Algorithm A.1 Create-BST: The BST Creation Algorithm
1: Input: Finite set of Genes G, set of samples S, Class Ci

2: Output: The BST Table for Class Ci.
3: for all (c, h) ∈ Ci × S − Ci do
4: initialize a pointer ← NULL
5: end for
6: for all (g, c) ∈ G× Ci s.t. g ∈ c and g /∈ ∪h∈S−Cih do
7: Set BST (g, c)← Black Dot
8: end for
9: for all (g, c, h) ∈ G× Ci × S − Ci s.t. g ∈ c and g ∈ h do

10: if pointer (c, h) 6= NULL then
11: push a copy of (c, h)→ BST (g, c)
12: else
13: L = {g ∈ G s.t. g ∈ h & g 6∈ c}
14: if L 6= ∅ then
15: (c, h)← L’s address
16: else
17: L = {g ∈ G s.t. g 6∈ h & g ∈ c}
18: (c, h)← L’s address
19: end if
20: end if
21: Push a copy of (c, h)→ BST (g, c).
22: end for

back to CARs. Through this discussion we will demonstrate that BSTs contain

all the information of the high confidence CARs already known to be valuable for

microarray data classification.

A.2.1 Boolean Structure Tables

A Boolean Structure Table (BST) T (i) is a two dimensional table, T (i) =

G×Ci, where each table entry refers to a maximum of |S|−|Ci| lists of up to |G| genes

each. For every Ci the associated BST, T (i), will require O ((|S| − |Ci|) · |G| · |Ci|)

space and can be constructed with proportional time complexity via Algorithm A.1.

When the Algorithm A.1 is run on the Table A.1 example input and for class

Cancer, the Boolean Structure Table shown in Figure A.1 is produced. In Figure A.1

a black dot at location (g, s) indicates that no healthy samples express gene g but

some cancerous sample does. A cell (g, s) is left blank only if sample s didn’t express

gene g. If (g, s) contains a list of the form (h : −g1, . . . ,−gn) it means that s may be

distinguished from sample h by the non-expression of any one of genes g1 through

122

gn. Similarly, if (g, s) contains a list of the form (h : g1, . . . , gn) it means that s may

be distinguished from sample h by the expression of any one of genes g1 through gn.

Such lists will hereafter be referred to as exclusion lists.

Note that there is no reason why the BST in Figure A.1 was created for the Cancer

class. We can just as easily build a BST for the Healthy class using the example shown

in Table A.1. In general, if a relational gene expression dataset contains N classes,

we can construct N different BSTs for the data set (one for each class).

Runtime Complexity for BST Creation

We can see that the total time to construct BSTs via Algorithm A.1 for all of

C1, . . . , CN is O
(∑N

i=1(|S| − |Ci|) · |Ci| · |G|
)
. Given that the class sets Ci are all

disjoint, we have
∑N

i=1(|S| − |Ci|) · |Ci| · |G| ≤
∑N

i=1 |S| · |Ci| · |G| = |S|2 · |G|. Hence,

BSTs can be constructed for all Cis in time O(|S|2 · |G|).

A.2.2 BST Generable BARs

We view every BST cell, (g, c), as an atomic 100% confident BAR. For example,

Figure A.1’s (g3, s1)-cell corresponds to the BAR

g3 expressed AND g1 expressed AND (either g4 or g6 not expressed) ⇒ Cancer.

We refer to this rule as the Figure A.1 BST’s (g3, s1)-cell rule. Note that the cell

rule is both (i) 100% confident, and (ii) supported by sample s1. Throughout the

remainder of this section we will use such cell rules as atomic building blocks to

construct more complicated BARs. Furthermore, in Section A.3, we will directly

employ BST cell rules to build a new classifier called BSTC.

Mining More Complicated BST BARs

Let T (i) be a BST for sample type Ci. We can view each row of T (i) as a 100%

confident BAR by combining the row’s cell rules. To see this, choose any gj ∈ G

123

Algorithm A.2 BSTRowBAR: Constructing BST Gene Row BAR
1: Input: Class Ci, BST for the class T (i), gene gj

2: Output: Row BAR for gene gj with 100% conf.
3: A← FALSE
4: for all s ∈ Ci s.t. T (i)’s (gj , s)− cell is not empty do
5: B ← TRUE
6: for all exclusion lists e ∈ T (i)’s (gj , s)-cell do
7: if e = (sk : −gl1 · · · − glm) then
8: B ← B AND (−gl1 OR . . . OR −glm)
9: else if e = (sk : gl1 . . . glm) then

10: B ← B AND (gl1 OR . . . OR glm)
11: end if
12: A← A OR B
13: end for
14: end for
15: Return gj AND A⇒ Ci

and consider the CAR gj ⇒ Ci. This CAR can be augmented with exclusion list

clauses from each of T (i)’s gj-row cells via Algorithm A.2. The result will be a

BAR with 100% confidence which is logically equivalent to a disjunction of T (i)’s

gj-row cell rules. See Figure A.2 for the gene row BARs which result from applying

Algorithm A.2 to the BST in Figure A.1.

For the remainder of this appendix we will restrict our attention to BARs that

may be generated by taking conjunctions of BST cell rule disjuncts. Henceforth we

simply refer to these as BARs. It is very important to notice that all such BARs

have a special form: Their antecedents consist of a CAR antecedent ANDed with a

disjunction of BST exclusion list clause conjunctions. Consider the BAR for gene g6

in Figure A.2. Gene g6’s rule antecedent consists of a CAR antecedent, g6, conjoined

to a disjunction of the Figure A.1 exclusion list clauses: (either g4 or g5 not expressed)

and (either g3 or g5 not expressed).

Along these same lines, BARs with more complex antecedents can be created

by taking the logical AND of a BST’s gene row rules. For example, consider our

running example BST’s gene row rules listed in Figure A.2. We can form the 100%

confident CAR (g1 expressed AND g6 expressed) ⇒ Cancer by ANDing Figure A.2

124

Gene g1: (g1 expressed) ⇒ Cancer.

Gene g2: (g2 expressed AND [EITHER (g1 expressed) OR (either g5 or g3 not expressed)]) ⇒ Cancer.

Gene g3: (g3 expressed AND [EITHER {(g1 expressed) AND (either g4 or g6 not expressed)} OR { (either

g2 or g5 not expressed) AND (either g4 or g5 not expressed)}]) ⇒ Cancer.

Gene g4: (g4 expressed AND [either g5 or g3 not expressed]) ⇒ Cancer.

Gene g5: (g5 expressed AND [g1 expressed AND (either g4 or g6 not expressed)]) ⇒ Cancer.

Gene g6: (g6 expressed AND [(either g4 or g5 not expressed) OR (either g3 or g5 not expressed)]) ⇒
Cancer.

Figure A.2: Gene Row BARs with 100% Confidence Values.

gene row rules for g1 and g6 as follows: While ANDing we use the BST in Figure A.1

to quickly simplify the resulting expression. First, we can tell that product will

only be supported by sample s2 because only the BST’s s2 column contains non-

empty cells for both of gene rows g1 and g6. Thus, we only need to consider the

exclusion lists in cells (g1, s2) and (g6, s2) while forming our product. Second, the

black dot in BST entry (g1, s2) means we don’t have to use the Healthy sample

s5 exclusion list information (s5 : −g4,−g5) from BST entry (g6, s2) in our new

rule. This is because gene g1 already excludes s5 on its own since g1 /∈ s5. By

ANDing gene row rules in this manner we can create BARs with antecedents that

are the conjunction of any desired CAR antecedent with a simplified exclusion list

based clause (to eliminate non-Ci supporting samples). Progressive polynomial time

algorithms for BAR mining via a BST can be found in an extended version of this

appendix [1].

A.2.3 BARs Relationships to CARs

Let R ⇒ Ci be any 100% confident BST created BAR containing exclusion

clauses for non-Ci samples h1, . . . hm. Removing all exclusion list clauses related

to {ĥ1, . . . , ĥp} ⊂ {h1, . . . , hm}, p ≤ m, will create a new boolean association rule,

R̂ ⇒ Ci, with support = supp(R ⇒ Ci) and confidence ≥ |supp(R⇒Ci)|
|(supp(R⇒Ci)|+p

. Let’s

consider the g3-row BAR from our running example:

125

(g3 expressed AND [EITHER {(g1 expressed) AND (either g4 or g6 not expressed)} OR { (either g2 or

g5 not expressed) AND (either g4 or g5 not expressed)}]) ⇒ Cancer.

It has 100% confidence and support {s1, s2}. Now, if we remove all exclusion list

clauses related to sample row s5 we end up with the boolean association rule:

(g3 expressed AND [EITHER (g1 expressed) OR (either g2 or g5 not expressed)] ⇒ Cancer.

This new rule has support {s1, s2} and a confidence of |{s1,s2}|
|{s1,s2,s5}| = 2

3
. The preceding

observation leads us to the following theorem:

Theorem A.1. Let D be a relational data set containing s samples, no two of

which are the same (i.e. no two sample rows express the exact same set of genes).

Then, there exists a pure conjunction B implying a class type C (i.e., a CAR) with

confidence c and support supp for D if and only if there exists a 100% confident BST

generated BAR B̂ ⇒ C for D that: (i) has supp(B̂ ⇒ C) = supp, and (ii) contains

exclusion list clauses actively excluding (1
c
− 1)|supp| non-C samples.

Proof. ⇐: From the observation directly preceding this theorem we can see that

if B̂ ⇒ C has supp(B̂ ⇒ C) = supp then removing all the exclusion list clauses

from B̂ (by replacing them all with true) will create a new pure conjunction B with

supp(B ⇒ C) = supp. Furthermore, we require that {non-C samples excluded by ex-

clusion clauses} = {non-C samples satisfying B} (i.e., the exclusion clauses actually

exclude something). Hence, B ⇒ C will have confidence c = |supp|
|supp|+# excluded samples

.

⇒: Let B be a conjunction of items/genes g1, . . . , gn. Given that no two samples in

D are the same we can build a 100% confident BST for class C of D. Furthermore,

both the following are true:

1. A non-C sample h expresses all genes g1, . . . , gn ⇐⇒ ∀s ∈ supp and 1 ≤ i ≤ n the

BST cell (gi, s) contains an active exclusion list for h. Thus, only non-C samples

126

expressing all of g1, . . . , gn (and therefore satisfying B) generate active exclusion lists

in all relevant (gi, s) BST cells.

2. supp(B ⇒ C) =
⋂

1≤j≤n supp(gj ⇒ C).

Here we get the B̂ by ANDing down each of the BST supp(B ⇒ C) sample

column’s gi cells and then ORing the resulting |supp(B ⇒ C)| rules together.

Theorem 1 tells us how we can get CARs from BARs. Furthermore, it says 100%

confident BARs with large support and a small number of excluded samples are

equivalent to high support/confidence CARs. Hence, genes that show up in many

high confidence, high support CARs will also be prevalent in many 100% confident

BARS with high support and a low number excluded samples. Most importantly,

we see that all high confidence CARs (which tend to be good classifiers) have closely

related BAR counterparts. Furthermore, these counterparts can be mined from a

BST by ANDing gene row BARs.

A.3 BST-Based Classification

In principal, 100% confident BST-generable BARs should be sufficient for clas-

sification because they contain at least as much information as all generable CARs

do (see section A.2.3). Indeed, beyond what CARs with similar support are capable

of, 100% confident BARs supply us with “unpolluted” ground truth. Thus, it is not

too surprising that the class of BST-generable BARs we’ve looked at so far will be

enough to enable highly accurate classification.

Let Ci be a class set of interest and T (i) be the BST for class Ci constructed

from the given training data. From section A.2.2 we can see that all BST generable

BARs for class Ci are created by combining T (i) cell rules. Thus, we expect that

by restricting our attention to the O(|G| · |Ci|) atomic T (i) cell rules we will be,

127

in some sense, still considering all T (i) generable BARs for Ci. Our new scalable

classifier, the Boolean Structure Table Classifier (BSTC), capitalizes on this

line of thought by ignoring BAR generation and focusing exclusively on atomic BST

cell rules.

A.3.1 BSTC Overview

Let Q be a test/query gene expression data sample and T (i) be a BST for class set

Ci. BSTC is a heuristic rule-based classifier motivated by standard Boolean formula

arithmetization techniques [90] such as those employed in fuzzy satisfiability [101].

By using these ideas we can avoid the highly costly process of support/confidence

based association rule mining. Instead of explicitly generating rules, BSTC decides

(heuristically), for all Ci, how well Q collectively satisfies T (i)’s atomic cell rules.

BSTC then classifies Q as the sample class whose BST has the highest expected

atomic rule satisfaction level from Q.

Intuitively, we expect BSTC to be accurate because it approximates the results of

CAR-based classification: Suppose that a high support/confidence CAR exists which

classifies our query sample Q as class Cj. This will only happen if all the CAR’s

antecedent genes, AG, appear in both (i) Q and, (ii) most of the training samples

in the CAR’s consequent class Cj. Let T (j) be the BST for class Cj. Because of

(ii) most of T (j)’s sample columns must contain cell entries for all the AG genes.

Furthermore, all T (j)’s AG cell entries will have few exclusion lists in common (by

Theorem 1). Hence, T (j)’s expected atomic rule satisfaction level from Q (i.e., Q’s

classification value) should be heavily influenced (increased) by the AG rows and

their few shared lists.

128

Algorithm A.3 BST Cell rule quantized Evaluation (BSTCE)
1: Input: Class Ci, BST for the class T (i), Samples S, Query sample Q
2: Output: Classification value
3: for all non-empty exclusion lists e in T (i)’s cells do

4: Ve ← |{ĝ∈e s.t. Q[ĝ]=1}|
|e|

5: end for
6: for all (g, s) ∈ {g ∈ G s.t. Q[g] = 1} × Ci do
7: if T (i)(g, s) contains a • then
8: T (i)[g][s]← 1
9: else

10: T (i)[g][s]← Min {Ve s.t. e is in T (i)(g, s)}
11: end if
12: end for
13: for all non-blank sample columns s ∈ T (i) do
14: Vs ← Mean of non-blank T (i)[?][s] values
15: end for
16: Return the Mean of step 16’s Vs values

A.3.2 BST Cell Rule Satisfaction

As above, let Q be a test/query gene expression data sample and T (i) be a BST

for class set Ci. Algorithm A.3, BSTCE, gives BSTC’s method of calculating the

level that Q satisfies a given atomic T (i) cell rule. We next explain the rationale

behind BSTCE.

We know that each T (i) (g, s)-cell exclusion list, L, corresponds to a disjunction

in T (i)’s (g, s)-cell rule. Hence, if Q satisfies any one negation/inclusion in L, Q will

satisfy L. However, if Q expresses most of its genes in common with L’s associated

non-Ci sample we assume it’s probably not of type Ci (i.e., Q is weakly excluded).

Hence, we use BSTCE’s line 4 ratio to approximate the probability that L correctly

excludes Q from being of L’s associated sample’s class.

In order for the (g, s)-cell rule to be satisfied, all of (g, s)’s exclusion lists must be

satisfied (i.e., logical AND). If independence of each exclusion list’s correct classifi-

cation is assumed it is natural to multiply all of (g, s)’s list’s probabilities. We don’t

assume independence and use a min instead (line 10). Finally, recall that all black

dots in T (i) correspond to genes expressed only in class Ci samples. If Q expresses

129

Algorithm A.4 The BSTC Algorithm
1: Input: BSTs for all dataset classes T (1), . . . , T (N), Query sample Q
2: Output: Classification for query sample Q
3: for all i ∈ {1, . . . , N} do
4: CV (i)← BSTCE(T (i), Q)
5: end for
6: Return min{i|CV (i) = max{CV (1), . . . , CV (N)}}

a black dot gene it automatically satisfies all that gene’s non-empty T (i) cell rules.

Hence, black dots are all assigned values of 1 in BSTCE’s line 8.

Once we have used BSTCE lines 1-12 to calculate Q’s classification values (i.e.,

T (i)’s atomic rule satisfaction levels from Q) for each relevant simple (g, s)-cell rule,

we are nearly finished. We have all the values required to judge Q’s similarity to T (i)

via an expectation calculation. For the sake of T (i)’s expectation calculation, all that

is left to do is imagine choosing a relevant simple T (i) rule at random and then using

it to classify Q. To randomly select a (g, s) rule we first imagine selecting a non-

empty T (i) sample column uniformly at random and then picking a cell-rule from

that column uniformly at random. The expected probability of correctly classifying

Q with T (i) via this method (which heuristically is proportional to T (i)’s expected

satisfaction level from Q) is then calculated by averaging the approximate cell rule

satisfaction levels down each non-empty sample column (line 14) and then averaging

the resulting non-empty sample averages (line 16).

A.3.3 BSTC Algorithm

Suppose we are given relational training data D containing sample rows S split up

into disjoint class sets C1, . . . , CN . BSTC usesD to constructN BSTs, T (1), . . . , T (N).

Next, let G be the union of the elements contained in each sample row of D (i.e. the

gene set of D) and let Q be a query sample with expression information regarding G.

BSTC will use the BSTCE algorithm to classify Q as being the Ci with smallest i

such that BSTCE(T (i), Q) = max{BSTCE(T (j), Q)|0 ≤ j ≤ N}. See Algorithm A.4

130

for the BSTC algorithm.

Note that there is no reason why N must be 2. BSTC easily generalizes to datasets

containing more than two class labels.

BSTC Runtime

As noted in section A.2.1 it takes time and space O(|S|2 · |G|) to construct all

the BSTs T (1), . . . , T (N). Thus, BSTC requires time and space O(|S|2 · |G|) to

construct. Furthermore, during classification BSTC must calculate BSTCE(T (i), Q)

for 1 ≤ i ≤ N . BSTCE (Algorithm A.3) runs in O ((|S| − |Ci|) · |G| · |Ci|) time per

query sample. Therefore the BSTC worst case evaluation time is also O(|S|2 · |G|)

per query sample. See Section A.6 for more on BSTC’s per-query classification time.

Biological Meaning of BSTC Classification

Association rules mined from gene expression data provide an intuitive represen-

tation of biological knowledge (e.g., the expression of certain genes implies cancer).

Hence, CAR-based classifiers have the desirable ability to justify each non-default

consequent class query classification with the biologically meaningful CAR(s) the

query satisfied. BSTC, being rule-based and related to CAR-classifiers, also has this

property.

BSTC can support its query classifications with BARs of any user specified com-

plexity. Most simply, for any given query sample Q and c ∈ (0, 1], BSTC can justify

its classification of Q as class Ci by reporting all T (i) atomic cell rules with satisfac-

tion levels ≥ c. Note that returning this information requires no additional per-query

classification time. Also note that section A.2.2 methods can be used to mine more

complex highly satisfied BARs if desired.

131

Figure A.3: BSTC cell rule Evaluation Example

A.3.4 BSTC Example

Consider our running example from Table A.1. In order to construct BSTC

we must construct both T (Healthy) and T (Cancer) (shown in Figure A.1). Once

both BSTs have been constructed we can begin to classify query samples. Suppose,

for example, we are given the query sample Q = {g1 expressed, g2 not expressed,

g3 not expressed, g4 expressed, g5 expressed, g6 not expressed}. To classify this

query we must first calculate BSTCE(T (Cancer), Q) and BSTCE(T (Healthy), Q).

The evaluation of BSTCE(T (Cancer), Q) proceeds as follows: Since our query

sample Q expresses gene g5 we can see that we must, for example, determine the

fraction of both of the (g5, s1)-cell’s exclusion lists satisfied by Q. The (g5, s1)-cell’s

(s4 : g1) exclusion list is totally satisfied since Q expresses g1. Hence, it gets a value

of 1. However, the (s5 : −g4,−g6) exclusion list is only half satisfied since, although

Q doesn’t express g6, Q does expresses g4. Thus, in total, we only consider half of the

132

simple (g5, s1)-cell rule to be satisfied (i.e. the s5 exclusion list is the weakest link).

Continuing to use BSTC’s approximation scheme for the expected probability of Q’s

correct Cancer classification via the Figure A.1 BST we obtain Figure A.3. Note that

only Figure A.3 gene rows corresponding to genes expressed in Q are non-empty.

If we now evaluate BST-EXPECT(T (Healthy), Q) we obtain a final value of 3
8
.

To finish, BSTC will compare Q’s Cancer classification value of 3
4

to Q’s Healthy

classification value of 3
8

and conclude that Q is most probably Cancer. Hence, Q will

be classified as Cancer.

A.4 Experimental Evaluation

All experiments reported here were carried out on a 3.6 GHz Xeon machine with

3GB of memory running Red Hat Linux Enterprise 4. For our empirical evaluation

we use four standard real microarray datasets [2]. Table A.2 lists the dataset names,

class labels, and the number of samples of each class. All discretization was done

using the entropy-minimized partition [4] as in [25].

Class 1 Class 0 # Class 1 # Class 0
Dataset Genes label label samples samples
ALL/AML (ALL) 7129 ALL AML 47 25
Lung Cancer (LC) 12533 MPM ADCA 31 150
Prostate Cancer (PC) 12600 tumor normal 77 59
Ovarian Cancer (OC) 15154 tumor normal 162 91

Table A.2: Gene Expression Datasets

Executables for both RCBT and Top-k were provided by the authors of [25]. In all

experiments, the Top-k rule generator was used to generate rule groups for RCBT.

Unless otherwise noted we ran both Top-k and RCBT with the author-suggested

parameter values (i.e., support = 0.7, k = 10, nl = 20, 10 RCBT classifiers). Hence,

while generating rules for RCBT we used Top-k with a minimum support value of

0.7 and found the 10 most confident covering rule groups (i.e. k = 10). Furthermore,

133

Class 1 # Class 0 Genes random-
Training Training After BSTC RCBT SVM Forest

Dataset Samples Samples Discr. Accur. Accur. Accur. Accuracy
ALL 27 11 866 82.35% 91.18% 91.18% 85.29%
LC 16 16 2173 100% 97.99% 93.29% 99.33%
PC 52 50 1554 100% 97.06% 73.53% 73.53%
OC 133 77 5769 100% 97.67% 100% 100 %
Avg.
Accuracy 95.59% 95.98% 89.5% 89.54%

Table A.3: Results Using Given Training Data

during classification we used RCBT with the suggested 10 classifiers (1 primary and

9 standby). Finally, nl, the number of lower bound rules to use for classification per

Top-k mined rule group, was set equal to 20. We coded BSTC with C++.

A.4.1 Preliminary Experiments

Each of Table A.2’s four gene expression datasets comes with a clinically deter-

mined training set. The authors of [25] provided us with their discretizations of these

four datasets. We ran BSTC on their discretizations and BSTC matched RCBT’s

reported mean accuracy (about 96%) outperforming CBA (87%), IRG (81%), Weka

3.2 (C4.5 family single tree (74%), bagging (78%), boosting(74%)), and SVMlight 5.0

(93%) in reported mean performance [25].

To compare BSTC and RCBT with the most recent R e1071 package SVM imple-

mentation [22] and randomForest version 4.5 [17] we rediscretized the four datasets

and reran BSTC/RCBT. To keep comparisons fair we ran SVM and randomForest

on the same genes selected by our entropy discretization except with their original

undiscretized gene expression values. SVM was run with its default radial kernel.

We ran randomForest 10 times with its default 500 trees for ALL, LC, and OC and

its accuracy was constant. For PC we had to increase randomForest’s number of

trees to 1000 before its accuracy stabilized over the 10 runs.

134

Table A.3 contains the number of class 0/1 samples in the clinically determined

training set, the number of genes selected by our entropy discretization, and our

experimental results. As shown in this table, the overall average accuracies of BSTC

and RCBT are again best at about 96% each. When compared against RCBT, SVM,

and randomForest on the individual tests we can see that BSTC is alone in having

100% accuracy on the majority of datasets.

However, BSTC’s performance on the preliminary AML/ALL dataset test is rela-

tively poor. This is likely due to over fitting. Every error BSTC made mistook a class

0 (AML) test sample for a class 1 (ALL) test sample (i.e., all errors were made in this

same direction). And, the ALL training data has both (i) about 2.5 times as many

class 1 samples as class 0 samples, and (ii) a small number of total samples/genes.

When the training set is more balanced and the number of samples/genes is larger we

can expect that cancellation of errors will tend to neutralize/balance any over fitting

effects in BSTC. And, BSTC is a method meant primarily for large training sets

where CAR-mining is prohibitively expensive. As we will see later in Section A.4.2,

BSTC’s performance is much better for larger AML/ALL training set sizes.

A.4.2 Holdout Validation Studies

Holdout validation studies make comparisons less susceptible to the choice of a

single training dataset and provide performance evaluations that are likely to better

represent program behavior in practice. We next present results from a thorough

holdout validation study completed using 100 different training/test sets from each

of the ALL, LC, PC, and OC data sets. For these holdout validation tests we

benchmark BSTC against Top-k/RCBT because (i) BSTC and RCBT perform best

in our preliminary experiments, (ii) Top-k/RCBT is the fastest/most accurate CAR-

based classifier for microarray data, and (iii) we are interested in BSTC’s CAR-

135

related vs Top-k/RCBT’s CAR-based scalability.

For the holdout validation study we generated training sets of sizes 40%, 60%,

and 80% of the total samples. Each training set was produced by randomly selecting

samples from the original combined dataset. We then used the standard R dprep

package’s entropy minimized partition [4] to discretize the selected training samples.

Finally, the remaining dataset samples were used for testing the two classifiers after

rule/BST generation on the randomly selected training data. For each training set

size we produced 25 independent tests. In addition to these training sets, we created

an additional 25 1-x/0-y tests. To create these tests we chose training data by

randomly selecting x class 1 samples and y class 0 samples to be used as training

data. As before, the remaining samples were then used to test both classifiers. For

each dataset the x and y values are chosen so that the resulting 25 classification tests

have the exact same training/test data proportions as the single related dataset test

reported in section A.4.1. For each training set size we plot our results using a

boxplot.

Boxplot Interpretation: Each boxplot that we show in this section can be

interpreted as follows: The median of the measurements is shown as a diamond,

and a box with boundaries is drawn at the first and the third quartile. The range

between these two quartiles is called the inter-quartile range (IQR). Vertical lines

(a.k.a. “whiskers”) are drawn from the bottom and the edge of the box to indicate

the minimum and the maximum value, unless outliers are present. If outliers are

presents, the whiskers only extend to 1.5 × IRQ. The outliers that are near (i.e.

within 3× IRQ are drawn as an empty circle, and further outliers are drawn using

an asterisk.

136

Figure A.4: ALL Holdout Validation Results Figure A.5: LC Holdout Validation Results

ALL/AML (ALL) Experiment

Figure A.4 shows the classification accuracy for the ALL/AML dataset. As can

be seen in this figure, BSTC and RCBT have similar accuracy across the ALL/AML

tests as a whole. BSTC outperforms RCBT in terms of median and mean accuracy

on the 40% and 80% training set sizes while RCBT has better median/mean accuracy

on the 1-27/0-11 training size tests. And, both classifiers have the same median on

the 60% training set size. Over the 100 ALL/AML tests we see that BSTC has a

mean accuracy of 92.13% while RCBT has a mean accuracy of 91.39% (they are very

close).

It’s noteworthy that BSTC is 100% accurate on the majority of 80% training size

tests. However, BSTC appears to have slightly higher variance than RCBT on all but

the 40% training tests. Considering all the results together both BSTC and RCBT

have essentially equivalent classification accuracies on the ALL/AML dataset.

Lung Cancer (LC) Experiment

The results for the Lung Cancer dataset are reported in Figure A.5. Here, again,

both BSTC and RCBT have similar classification behavior. RCBT has higher mean

and median accuracies on the 40% and 60% tests while BSTC outperforms RCBT

137

Figure A.6: PC Holdout Validation Results Figure A.7: OC Holdout Validation Results

on the 1-16/0-16 tests. Meanwhile, both classifier have the same median on the 80%

training test. Over all 100 LC tests we find that BSTC has a mean accuracy of

96.32% while RCBT has a mean accuracy of 97.08% (again, they are very close).

As before, BSTC is alone in having 100% accuracy more then half the time for

any training set size (see Figure A.5 (d)). However, RCBT has smaller variance for

3 of the 4 training set sizes. Therefore, as for the ALL/AML data set, both BSTC

and RCBT have about the same classification accuracy on LC.

Prostate Cancer (PC) Experiment

RCBT begins to run into a computational difficulties on PC’s larger training set

sizes. This is because before using a Top-k rule group for classification RCBT must

first mine nl lower bound rules for the rule group. RCBT accomplishes rule group

lower bound mining via a pruned breadth-first search on the subset space of the rule

group’s upper bound antecedent genes. This breadth-first search can be quite time

consuming. In the case of the Prostate Cancer (PC) dataset all 100 classification tests

(25 tests for each of the 4 training set sizes) generated at least one top-10 rule group

upper bound with more than 400 antecedent genes. Due to the difficulties involved

with a breadth-first search over the subset space of a several hundred element set,

RCBT began suffering from long run times on many PC classification tests.

138

Table A.4 contains four average classification test run times (in seconds) for each

PC training size. The ‘BSTC’ column run times reflect the average time required

to build both class 0 and class 1 BSTs and then use them to classify all the test

samples. Each ‘Top-k’ column run time is the average time required for Top-k to

mine the top 10 covering rule groups (with minimum support 0.7) for each training

set.

Table A.4’s ‘RCBT’ column gives average run times for RCBT using a time cutoff

value of 2 hours for all the training sets. For each classification test, if RCBT was

unable to complete the test in less than the cutoff time, it was terminated and its

run time was reported as the cutoff time. Hence, the ‘RCBT’ column gives lower

bounds on RCBT’s average run time per training set test. Finally, the ‘# RCBT

DNF’ column gives the number of tests RCBT was unable to finish in < the cutoff

time, over the number of tests for which Top-K finished mining rule group upper

bounds.

Training BSTC Top-k RCBT # RCBT DNF
40% 2.13 0.09 418.81 0/25
60% 4.93 5.06 ≥ 7110.00 24/25
80% 5.78 120.63 ≥ 7200 † 25/25†
1-52/0-50 5.57 21.32 ≥ 7200 † 25/25†

Table A.4: Average Run Times for the PC Tests (in seconds). † indicates nl was lowered to 2.

Explanation for varying nl values: Run time cutoffs were necessary to miti-

gate excessive holdout validation CAR-mining times. Even with a cutoff of 2 hours

these 100 PC experiments required about 11 days of computation time, with most

experiments not finishing. For the 80% and 1-52/0-50 training set sizes RCBT with

nl = 20 failed to finish lower bound rule mining for all 50 tests within 2 hours. Thus,

RCBT’s nl parameter was lowered from the default value of 20 to 2 in an attempt to

improve its chances of completing tests. Not surprisingly, decreasing nl (i.e., mining

139

fewer lower bound rules per Top-k rule group) decreases RCBT’s runtime. However,

RCBT was still unable to finish lower bound rule mining for any tests.

Training BSTC RCBT
40% 75.08% 79.27%
60% 78.18% 85.45%
80% 84.98% —
1-52/0-50 81.65% —

Table A.5: Mean Accuracies for the PC Tests that RCBT Finished.

Classification Accuracy: Figure A.6 contains accuracy results for BSTC on

all four Prostate Cancer test sets. Prostate Cancer boxplots for RCBT were not

constructed for training set sizes RCBT was unable to complete all 25 tests for

within the time cutoffs. In contrast, BSTC was able to complete each of the 100 PC

classification tests in less than 6 seconds. Table A.5 contains mean accuracies for the

PC dataset with 40%, 60%, 80%, and 1-52/0-50 training. For each training set, the

average accuracies were taken over the tests RCBT was able to complete within the

cutoff time. Hence, the 40% row means were taken over all 25 results. Since RCBT

was unable to complete any 80% or 1-52/0-50 training size tests we report these

BSTC means over all 25 tests. RCBT has slightly better accuracy then BSTC on

40% training. For 60% training RCBT outperforms BSTC on the single test it could

finish by more then 7%, although it should kept in mind that RCBT’s results for the

24 unfinished tests could vary widely. Note that BSTC’s (mean) accuracy increases

monotonically with training set size as expected. At 60% training BSTC’s accuracy

behaves almost identically to RCBT’s 40% training accuracy (see Figure A.6).

Ovarian Cancer (OC) Experiment

For the Ovarian Cancer dataset, which is the largest dataset in this collection,

the Top-k mining method that is used by RCBT also runs into long computational

140

times. Although Top-k is an exceptionally fast CAR group upper bound miner, it still

depends on performing a pruned exponential search over the training sample subset

space. Thus, as the number of training samples increases Top-k quickly becomes

computationally challenging to tune/use.

Table A.6 contains four average classification test run times (in seconds) for each

Ovarian Cancer(OC) training size. As before, the second column run times each

give the average time required to build both class 0/1 BSTs and then use them to

classify all test’s samples with BSTC. Note that BSTC was able to complete each

OC classification test in about 1 minute. In contrast, RCBT again failed to complete

processing most classification tests within 2 hours.

Training BSTC Top-k RCBT # RCBT DNF
40% 30.89 0.6186 273.37 0/25
60% 61.28 41.21 ≥ 5554.37 19/25
80% 71.84 ≥ 1421.80 ≥ 7205.43 † 21/22
1-133/0-77 70.38 ≥ 1045.65 ≥ 6362.86 † 20/23

Table A.6: Average Run Times for the OC Tests (in seconds). † indicates nl was lowered to 2.

Table A.6’s third column gives the average times required for Top-k to mine the

top 10 covering rule groups upper bounds for each training set test (with the same 2

hour cutoff procedure as used for PC testing). The fourth column gives the average

run times of RCBT on the tests for which Top-k finished mining rules (also with a

2 hour cutoff). Finally, the ‘# RCBT DNF’ column gives the number of tests that

RCBT was unable to finish classifying in < 2 hours each, over the number of tests

for which Top-k finished. Because RCBT couldn’t finish any 80% or 1-133/0-77 tests

within 2 hours with nl = 20, we lowered nl to 2.

Classification Accuracy: Figure A.7 contains boxplots for BSTC on all four

OC classification test sets. Boxplots were not generated for RCBT with 60%, 80%,

or 1-133/0-77 training since it was unable to finish all 25 tests for all these training

141

set sizes in less than 2 hours each. Table A.7 lists the mean accuracies of BSTC and

RCBT over the tests on which RCBT was able to produce results. Hence, Table A.7’s

40% row consists of averages over 25 results. Meanwhile Table A.7’s 60% row results

are from 6 tests, 80% contains a single test’s result, and 1-133/0-77 results from 3

tests. RCBT has better mean accuracy on the 40% training size, but the results are

closer on the remaining sizes (less than 4% difference over RCBT’s completed tests).

Again, RCBT’s accuracy could vary widely on its uncompleted tests.

Training BSTC RCBT
40% 92.05% 97.66%
60% 95.75% 96.73%
80% 94.12% 98.04%
1-133/0-77 93.80% 96.12%

Table A.7: Mean Accuracies for the OC Tests that RCBT Finished.

CAR Mining Parameter Tuning and Scalability: We attempted to run

Top-k to completion on the 3 OC 80% training and 2 OC 1-133/0-77 training tests.

However it could not finish mining rules within the 2 hour cutoff. Top-k finished

two of the three 80% training tests in 775 min 43.64 sec (about 13 hours) and 185

min 3.29 sec. However, the third test ran for over 16,000 min (> 11 days) without

finishing. Likewise, Top-k finished one of the two 1-133/0-77 tests in 126 min 45.15

sec but couldn’t finish the other in 16,000 min (> 11 days). After increasing Top-k’s

support cutoff from 0.7 to 0.9 it was able to finish the two unfinished 80% and 1-

133/0-77 training tests in 5 min 13.8 sec and 35 min 36.85 sec, respectively. However,

RCBT (with nl = 2) then wasn’t able to finish lower bound rule mining for either

of these two tests within 1,500 min.(more than a day). Clearly, CAR-mining and

parameter tuning on large training sets is computationally challenging. As training

set sizes increase, it is likely that these difficulties will also increase.

142

A.5 Related Work

While operating on a microarray dataset, current CAR [25, 26, 107, 108] and

other pattern/rule [81, 98] mining algorithms perform a pruned and/or compacted

exponential search over either the space of gene subsets or the space of sample subsets.

Hence, they are generally quite computationally expensive for datasets containing

many training samples (or genes as the case may be). BSTC is explicitly related to

CAR-based classifiers, but requires no expensive CAR mining.

Existing pattern/rule miners attempt to streamline the process of mining useful

CARs in several ways. Part of the difficulty involved with mining CARs is that in

addition to the exponentially large number of uninteresting rules that may be formed,

there are usually many interesting rules as well. This means CAR miners such as

CHARM [108] and CLOSET+ [107] may not only end up having to wade through

a prohibitive number of low quality rules while discovering interesting CARs, but

there may also be a huge number of repetitive CARs that are discovered.

The FARMER algorithm reduces the number of stored interesting rules by uti-

lizing the notion of a rule group. Rule groups allow many interesting rules with

similar sample support to be clustered together in a more compact form. Although

rule groups provide a beneficial reduction in the number of interesting CARs which

must be saved, there are typically still a large number of interesting rule groups.

Hence, for large datasets it can still be prohibitively expensive for FARMER to find

and store all user targeted rule groups.

More recently, the Top-k algorithm has solved the problem of generating an ex-

cessive number of interesting (i.e. high confidence) user targeted rule groups. Top-k

cleverly allows the user to decide on the number of best rule groups to find and store.

143

Hence, a small number of non-redundant CAR rule groups may be stored and used

for dataset analysis and classification. Although a significant step forward, Top-k

still depends on performing a pruned exponential search of the dataset’s training

sample subset space. Furthermore, the RCBT [25] classifier proposed by the Top-

k authors requires a potentially prohibitively expensive breadth-first search on the

subset space of antecedent genes in each discovered rule group upper bound.

BSTC is also related to decision tree-based classifiers such as random forest [17]

and C4.5 family [96] methods. It is possible to represent any consistent set of boolean

association rules as a decision tree, and vice versa. However, it is generally unclear

how the trees generated by current tree-based classifiers are related to high con-

fidence/support CARs which are known to be particularly useful for microarray

data[25, 26, 38, 79, 88]. BSTC is explicitly related to, and motivated by, CAR-based

methods.

To the best of our knowledge there is no previous work on mining/classifying with

BARs of the form we consider here. Perhaps the work closest to utilizing 100% BARs

is the TOP-RULES [80] miner. TOP-RULES utilizes a data partitioning technique

to compactly report item/gene subsets which are unique to each class set Ci. Hence,

TOP-RULES discovers all 100% confident CARs in a dataset. However, the method

must utilize an emerging pattern mining algorithm such as MBD-LLBORDER [37],

and so generally isn’t polynomial time. Also related to our BAR-based techniques

are recent methods which mine gene expression training data for sets of fuzzy rules

[105, 59]. Once obtained, fuzzy rules can be used for classification in a manner

analogous to CARs. However, the resulting fuzzy classifiers don’t appear to be as

accurate as standard classification methods such as SVM [59].

144

A.6 Conclusions and Future Work

To address the computational difficulties involved with preclassification CAR min-

ing (see Tables A.4 and A.6), we developed a novel method which considers a larger

subset of CAR-related boolean association rules (BARs). These rules can be com-

pactly captured in a Boolean Structure Table (BST), which can then be used to pro-

duce a BST classifier called BSTC. Comparison to the current best CAR classifier,

RCBT, on several benchmark microarray datasets shows that BSTC is competitive

with RCBT’s accuracy while avoiding the exponential costs incurred by CAR mining

(see Section A.4.2). Hence, BSTC extends generalized CAR-based methods to larger

datasets then previously practical. Furthermore, unlike other association rule-based

classifiers, BSTC easily generalizes to multi-class gene expression datasets.

BSTC’s per-query classification time: BSTC’s worst case theoretical per-

query classification time is currently worse than a CAR-based method’s (O(|S|2 · |G|)

versus O(|S| · |G|)), after all exponential time CAR mining is completed. As future

work we plan to investigate techniques to decrease BSTC’s per-query classification

time by carefully culling BST exclusion lists. For now we simply point out that

BSTC’s Section A.4 run times are reasonable and will remain so for larger problems

on which CAR mining is infeasible (e.g., for OC training sets containing several

hundred samples).

Generalizing BSTC: As future work we also plan to experiment with other

boolean formula arithmetization procedures besides those employed to evaluate BST

satisfaction levels in Algorithm A.3. Multiple BST satisfaction level arithmetization

procedures could be used along with a heuristic classification confidence measure

employed to select the best one. One potential confidence measure is the normalized

145

difference between the highest and second highest BST satisfaction level returned

by each arithmetization procedure. The larger the normalized difference, the more

“sure” the procedure appears to be about its classification.

146

Appendix B

Fast Line-based Imaging of Small Sample Features

This project aims to reduce the time required to attain more detailed scans of small

interesting regions present in a quick first-pass sample image. In particular, we con-

centrate on high fidelity imaging of small sample features via hyperspectral Raman

imaging (e.g., small scale compositional variations in bone tissue [89]). The current

standard procedure for high quality hyperspectral Raman imaging of small sample

features consists of four steps: First-Pass Imaging, Detail Identification, Planning,

and finally Detail Imaging. Traditionally, Detail Imaging and Planning have been

carried out manually by human personnel—after acquiring some quick low-quality

data in First-Pass Imaging, a researcher looks for interesting features (Detail Identi-

fication) and decides how to acquire higher-quality data for the interesting features

(Planning), which is done in the final Detail Imaging phase. In this appendix we

will discuss automating the Detail Identification and Planning steps, resulting in a

decrease of the procedure’s total integration time. We fix an arbitrary way to au-

tomate Detail Identification and compare several different Planning methods. Our

primary result is a method guaranteed to return a least cost (e.g., minimum inte-

gration time/number of scans) Detail Image under a general cost model. Because of

their generality, the methodologies developed here may prove widely useful to basic

biomedical scientists as well as to researchers in the pharmaceutical industry.

147

B.1 Introduction

Within the last several years many biomedical research groups have begun study-

ing the compositional chemical properties that underlie the mechanical properties

of bone. Unlike higher levels of architecture, the compositional level of bone was

previously neglected due to the paucity of tools for non-destructive bone composi-

tion study. Recently the content and organization of bone at the molecular level

has been successfully explored using Raman microspectroscopy and Raman imaging

[20, 57, 89, 102]. These studies, as well as others in the literature, have begun to shed

light on the molecular mechanisms of bone failure and response under both normal

and diseased states.

An important hindrance to spectroscopic studies has been the long data acqui-

sition time required for Raman microspectroscopy and Raman imaging. The time

required to acquire a 256×256-pixel Raman image now (2008) varies between about

30 minutes and several hours. Reasons for this long imaging time include the ten-

dency for current image acquisition protocols to be simple, manual, and non-adaptive.

For example, during sample imaging a constant integration (acquisition) time is tra-

ditionally used at every data point despite the fact that there are usually several

different optimal integration times for different types of regions.

Currently, small-scale sample features are imaged via Raman spectroscopy in four

steps. First, during First-Pass Imaging, a low fidelity neighborhood image is quickly

obtained. Then, during Detail Identification, the first-pass image is used to identify

small interesting features—this stage is often done manually by a human expert.

That expert then plans how to gather data during the fourth step. Finally, during

Detail Imaging, the specimen is imaged again according to the plan to gather high

148

quality detail data. In this appendix we will propose automating Detail Identification

and Planning with the following goals:

• Make Detail Identification more reliable and more repeatable than current man-

ual processes. We expect our proposal to make this stage quicker as well, though

we have not investigated this experimentally.

• Make the Planning phase provably optimal or nearly-optimal in the sense of

minimizing the time for subsequent Detail Imaging.

B.2 Background and Methodology

For the remainder of the appendix we will consider each Raman image to be an

n×m array of spectral data. Every image location (i, j) will correspond to a physical

location in row i and column j of the sample. Each column of the image is gathered

by one scan. Hence, given that each scan provides n pixels of spectral data, it takes

m scans to produce an n×m image. During each scan, a sample column of data is

illuminated with a laser while the induced radiation from each of the sample column’s

n data points is measured with an Electron Multiplying Charge Coupled Detector

(EMCCD). In general we’d like to reduce the total imaging integration time not only

for increased speed, but also to minimize potential sample damage due to the laser

illumination. Hence, given a small collection of interesting sample positions to be

imaged with a long integration time, we’d like to minimize the number of long scans

required to cover the interesting sample positions.

In this appendix, our focus is the comparison of different methods for the Planning

phase. To that end, we will fix a method for Detail Identification. We discuss this

further in Section B.4.

The purpose of this appendix is to propose a new method for Raman imaging

149

and give theoretical and proof-of-concept support using a small amount of data.

Ultimately, the effectiveness of our methods must be validated using many samples;

that will be the subject of future work. We will avoid asking questions that can only

be addressed by examining many samples.

B.3 Optimal Column/Row Scanning

In this section, we assume that Detail Identification has been performed, resulting

in a set P of interesting pixels in the [n]× [m] grid. We address the Planning stage.

Traditionally, only columns are scanned. Once the sample is fixed, imaging only

takes place by acquiring frames (scanning columns) from left to right. However, it

is generally possible to rotate the specimen by 90◦. We therefore consider the more

general problem of minimizing the number of long column and/or row scans required

to cover a small number of interesting sample points.

Definition B.1. Given a set P ⊆ [n] × [m] of p interesting pixel locations, a set

U = C ∪ R is a feasible cover of P if C ⊆ [m] is a set of columns and a set R ⊆ [n]

of rows such that, for every (i, j) ∈ P , either i ∈ R or j ∈ C.

A feasible cover U of P is optimal if it has the minimum size of all feasible covers.

The set P is typically derived from quick First-Pass Imaging. See the 4 × 3

rectangular image in Figure B.1 for an example problem.

Figure B.1: An Example Problem, The Problem’s Related Scan Graph, and a Scan Graph Solution

In the Figure B.1 example image we would like to scan the five black pixels. Hence,

150

our set of interesting pixels is P = {(1, 1), (1, 2), (1, 3), (3, 3), (4, 3)}. Our task is to

find the minimum number of columns and/or rows to scan in order to image all 5

black pixels.

We next compare three methods for obtaining feasible covers. They all take a set

P of p interesting pixels, and return a set of columns C and/or rows R to be scanned

in order to cover P. The three methods are:

B.3.1 Push Broom

Let x = min{j | ∃i ∈ N with (i, j) ∈ P} and y = max{j | ∃i ∈ N with (i, j) ∈

P}. Scan C = {x, x+ 1, . . . , y − 1, y} and R = ∅.

The Push Broom method is essentially the current standard method for scanning

a small number of interesting pixels. After quickly obtaining a low fidelity first-pass

image, a set of interesting pixels is obtained. The entire region from leftmost to

rightmost column containing interesting pixels is then rescanned from left to right

with a higher integration time.

B.3.2 Optimal Columns

Scan column set C = {j | ∃i ∈ N with (i, j) ∈ P} and row set R = ∅. In effect,

scan every column containing an interesting pixel.

B.3.3 Optimal Rows + Columns

Scan any cover of P that is Optimal.

It is straightforward to implement the Push Broom and Optimal Columns meth-

ods. Algorithms for Optimal Rows + Columns have been known [106]; we include a

brief discussion for completeness and to illustrate the computational cost.

We omit the proof of the following.

151

Algorithm B.1 Plan: Plan Detail Imaging
1: Input: Pixels to image P .
2: Output: Optimal Rows + Columns cover of P .
3: Construct a scan graph for P . The scan graph of P is a directed weighted graph, G, with node set
{s, t}∪{1, 2, . . . , n}∪{1, 2, . . . , m} and edge set {(s, i) | 1 ≤ i ≤ n}∪P ∪{(j, t) | 1 ≤ j ≤ m}. All edges
from the source node s and into the termination node t have a weight of 1. All remaining P edges are
given a weight of ∞.

4: Use the Ford-Fulkerson method [31] to find a minimum cut of G.
5: Using the final resulting residual network we let C be the set of columns reachable from s and R be the

set of rows not reachable from s.

Theorem B.2. Algorithm B.1 produces an Optimal Rows + Columns cover of its

input, P .

Example B.3. Recall the Figure B.1 example image. Figure B.1’s middle graph

is the scan graph for the 4 × 3 image with P = {(1, 1), (1, 2), (1, 3), (3, 3), (4, 3)}.

Figure B.1’s rightmost graph gives the residual network that arises using the Ford-

Fulkerson algorithm for a minimum cut in the scan graph. In the rightmost graph

all gray nodes are reachable from the source node s. All white nodes are unreachable

from s. Note that the gray(reachable) column 3 and white(not reachable) row 1

nodes provide us with an Optimal Rows + Columns cover of P . By inspecting the

example image we can see that scanning row 1 and column 3 is indeed a minimal way

of imaging P . Furthermore, we can see that if we only use columns or rows alone it

will require 3 scans to cover P as opposed to only 2 scans.

The computational cost to run Algorithm B.1 is polynomial in the size of the input,

P . Note that the size of P is at most the total number mn of possible pixels; in the

context where this algorithm is used, we expect that |P | � mn. For a 256×256-pixel

image, we expect that the time to compute an Optimal Rows + Columns cover of

P will be less than the time to acquire data in the Detail Imaging step. In any case,

our focus in this appendix is minimizing the data acquisition time, which we equate

with patient discomfort; we mention that computation time is acceptable.

152

B.4 Empirical Evaluation

Figure B.2: Test Image Along with the Number of Rows+Columns Required to Cover Its Lightest
Pixels

We compare the performance of Push Broom, Optimal Columns, and Optimal

Rows + Columns on two test problems. For both test problems we assume that

scanning any row and/or column is just as costly as scanning any other. All non-P

scan graph edges are given a weight (cost) of one.

See Figure B.2 for the first test image and results. For our first test we let I be

the noisy Figure B.2 “HELLO” image and let the set of interesting pixels, P , be the

lightest p pixels in I. Note that this first test contains a variety of both horizontal and

vertical bands of light (i.e., interesting) pixels. As a result we can see in Figure B.2’s

results graph that the Optimal Rows + Columns method requires substantially fewer

columns and rows than the other two methods to cover the lightest p ≤ 30% of I’s

pixels. Between the Optimal Columns and Push Broom methods we can see that

the Optimal Columns method outperforms the Push Broom method for covering a

very small (i.e., less than about 2%) number of the lightest pixels. However, both

Push Broom and Optimal Columns are about the same cost for larger p.

See Figure B.3 for the second test image. In Figure B.3 our image I is a first-

153

Figure B.3: Bone + PMMA Image, and The Total Time Required to Image Its Boniest (Lightest)
Pixels

pass Raman image of test sample consisting of mouse bone embedded in PMMA

plastic. Here the lighter pixels correspond to bone while darker pixels correspond to

PMMA. Gray pixels indicate bone covered by a thin layer of PMMA. Here our pixels

of interest, P , are the p boniest (lightest) pixels in I. Here we assume that choosing

the p boniest pixels, for various p, according to the low-fidelity First-Pass image is

a good way to do Detail Identification; properly addressing this question is beyond

the scope of this appendix.

Figure B.3’s first-pass bone + PMMA image, I, was produced by scanning each

of the 60 image columns with a 1 second integration time. We would like, how-

ever, to scan each bony (interesting) pixel for 8 seconds. Hence, Figure B.3’s result

graph reports 60 + 8(# columns/rows to cover P) seconds for each method. There

we can see that both the Optimal Columns and Optimal Columns + Rows methods

outperform Push Broom for scanning the lightest p at most about 15% of I’s pixels.

Finally, note that Figure B.3’s first-pass bone + PMMA image, I, is biased toward

154

a strong Optimal Columns performance over the Optimal Columns + Rows method.

Not only does each of I’s columns cover more than three times as many pixels as

each row, but all of I’s boniest (i.e. lightest) features are aligned vertically. However,

even for this very difficult test image, Optimal Rows + Columns still requires less

scan time than Optimal Columns for most small |P | values (i.e. less than ≈ 5%

pixels scanned).

B.5 Generalizations and Future Work

In the Optimal Rows + Columns method there is some flexibility with respect

to the edge weights assigned in the scan graph. Although all P pixel edges should

always be given a weight of ∞, the remaining edges from the s node and into the

t node need not all have weight 1. In general the weight assigned to an edge (s, i)

should correspond to the cost of scanning row i. Likewise, the weight assigned to an

edge (j, t) should correspond to the cost of scanning column j. If, as above, all non-P

edges are assigned the weight 1 it means that all rows and columns require the same

unit of cost to scan. However, each non-P column/row scan graph edge can indeed

be given any desired positive real cost. This leaves the user a good deal of flexibility

in assigning row and column costs based on the first-pass image I. Brighter pixels

require less integration time.

Angles other than 90◦ can be considered as well. If each pixel is in more than

two possible frames (horizontal and vertical), we know of no efficient computation

of an optimal cover. There are, however, fast approximate algorithms [31] for the

set-cover problem, including a greedy algorithm, with an approximation ratio of

ln(max(m,n)). An example is the greedy algorithm that repeatedly chooses a frame

that covers the maximum number of as-yet-uncovered pixels, until all pixels are

155

covered. The number of frames selected by this algorithm is guaranteed to be at

most ln(max(m,n)) times the optimal number of frames. There are implementations

of this algorithm with runtime close to O(k|P |), where k is the number of angles

allowed. One can also use an Optimal Columns cover under the best possible rotation.

Preliminary experiments on limited data were inconclusive. There is also inherent

approximation involved in using data from one pass in order to predict the outcome

of a second pass rotated by an angle that is not a multiple of 90◦. In particular,

if the pixels are square, pixels of one pass do not line up exactly with pixels of the

second pass. We do not discuss that further here.

Jitter and hysteresis effects on the scanner realignments necessitated by the Op-

timal Columns and Optimal Rows + Columns methods should also be more thor-

oughly investigated. However, we don’t expect these effects to be important. The

spectrometer used to produce the Figure B.3 test image utilizes a mirror which can

be positioned to better than 0.1 micron (small in comparison to Figure B.3’s 16

micron length scale). Stages exist with similar precision. Furthermore, hysteresis

effects can be mitigated by beginning detailed imaging behind the starting point and

progressing with column/row scans in only one direction along each axis.

B.6 Conclusion

In this appendix we demonstrated that two proposed scanning methods, Opti-

mal Columns and Optimal Columns + Rows, may be useful in decreasing the total

integration time required to rescan a small set of interesting image pixels.

Bibliography

156

157

Bibliography

[1] Available at http://www-personal.umich.edu/∼markiwen/.

[2] Available at http://sdmc.i2r.a-star.edu.sg/rp/.

[3] Compressed sensing resources. http://www.dsp.ece.rice.edu/cs/.

[4] The dprep package. http://cran.r-project.org/doc/packages/dprep.pdf.

[5] l1-magic website. http://www.acm.caltech.edu/l1magic/.

[6] R. Agrawal, T. Imielinski, and A. Swami. Mining associations between sets of items in large
databases. SIGMOD, pages 207–216, 1993.

[7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB, pages
487–499, 1994.

[8] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. J. of Comput. and System Sci., 58:137–147, 1999.

[9] C. Anderson and M. D. Dahleh. Rapid computation of the discrete Fourier transform. SIAM
J. Sci. Comput., 17:913–919, 1996.

[10] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted
isometry property for random matrices. Constructive Approximation, to appear.

[11] M.-A. Belabbas and P. Wolfe. On sparse representations of linear operators and the ap-
proximation of matrix products. Conference on Information Sciences and Systems (CISS),
2008.

[12] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial
interpolation. Proc. Twentieth Annual ACM Symp. Theory Comput., pages 301–309, 1988.

[13] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining geometry and
combinatorics: A unified approach to sparse signal recovery. preprint, 2008.

[14] L. I. Bluestein. A Linear Filtering Approach to the Computation of Discrete Fourier Trans-
form. IEEE Transactions on Audio and Electroacoustics, 18:451–455, 1970.

[15] G. Box and M. Muller. A note on the generation of random normal deviates. Ann. Math.
Stat., 29:610–611, 1958.

[16] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Inc., 2001.

[17] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[18] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52:489–509,
2006.

158

[19] E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Communications on Pure and Applied Mathematics, 59(8):1207–1223, 2006.

[20] A. Carden, M. D. Morris, R. M. Rajachar, and D. H. Kohn. Ultrastructural changes accom-
panying the mechanical deformation of bone tissue: A raman imaging study. Calcified Tissue
International, 72(2):166–175, 2003.

[21] V. Chandar. A negative result concerning explicit matrices with the restricted isometry
property. preprint, 2008.

[22] C. Chang and C. Lin. Libsvm: a library for support vector machines, 2001.

[23] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Brooks/Cole Publishing
Company, 1992.

[24] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for matrix
multiplication. preprint.

[25] G. Cong, K. L. Tan, A. K. H. Tung, and X. Xu. Mining top-k covering rule groups for gene
expression data. SIGMOD, 2005.

[26] G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang. Farmer: Finding interesting rule groups
in microarray datasets. SIGMOD, 2004.

[27] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Comput., 19:297–301, 1965.

[28] D. Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., pages
467–471, 1982.

[29] D. Coppersmith. Rectangular matrix multiplication revisited. J. Complexity, pages 42–49,
1997.

[30] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.
Symbolic Comput., pages 251–280, 1990.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. 2nd
Edition, 2001.

[32] G. Cormode and S. Muthukrishnan. Combinatorial Algorithms for Compressed Sensing.
Technical Report DIMACS TR 2005-40, 2005.

[33] G. Cormode and S. Muthukrishnan. Combinatorial Algorithms for Compressed Sensing.
Conference on Information Sciences and Systems, March 2006.

[34] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

[35] I. Daubechies, O. Runborg, and J. Zou. A sparse spectral method for homogenization multi-
scale problems. Multiscale Model. Sim., 2007.

[36] R. A. DeVore. Deterministic constructions of compressed sensing ma-
trices. http://www.ima.umn.edu/2006-2007/ND6.4-15.07/activities/DeVore-
Ronald/Henrykfinal.pdf, 2007.

[37] G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends and differences.
KDD, pages 43–52, 1999.

[38] G. Dong, X. Zhang, L. Wong, and J. Li. Caep: Classification by aggregating emerging
patterns. Proc. 2nd Int. Conf. Discovery Science (DS), 1999.

[39] D. Donoho. Compressed Sensing. IEEE Trans. on Information Theory, 52:1289–1306, 2006.

159

[40] D. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Trans-
actions on Information Theory, 47:2845–2862, 2001.

[41] D. Donoho and P. Stark. Uncertainty principles and signal recovery. SIAM J. Appl. Math.,
49:906–931, 1989.

[42] D. L. Donoho and J. Tanner. Thresholds for the recovery of sparse solutions via l1 minimiza-
tion. In 40th Annual Conference on Information Sciences and Systems (CISS), 2006.

[43] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM J. Comp., 2006.

[44] D. Z. Du and F. K. Hwang. Combinatorial Group Testing and Its Applications. World
Scientific, 1993.

[45] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci.
Comput., 14:1368–1383, 1993.

[46] D. Eppstein, M. T. Goodrich, and D. S. Hirschberg. Improved combinatorial group testing
algorithms for real-world problem sizes, May 2005.

[47] J. A. Fessler and B. P. Sutton. Nonuniform Fast fourier transforms using min-max interpo-
lation. IEEE Trans. Signal Proc., 51:560–574, 2003.

[48] P. Flajolet and G. Martin. Probabilistic counting algorithms for data base applications. J.
of Comput. and System Sci., 31:182–209, 1985.

[49] G. B. Folland. Fourier Analysis and Its Applications. Brooks/Cole Publishing Company,
1992.

[50] M. Frigo and S. Johnson. The design and implementation of fftw3. Proceedings of IEEE 93
(2), pages 216–231, 2005.

[51] S. Ganguly and A. Majumder. CR-precis: A deterministic summary structure for update
data streams. ArXiv Computer Science e-prints, Sept. 2006.

[52] C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Addison-Wesley Publishing
Company, 1994.

[53] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal sparse
Fourier estimation via sampling. ACM STOC, pages 152–161, 2002.

[54] A. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal sparse
Fourier representations. SPIE, 2005.

[55] A. C. Gilbert and M. J. Strauss. Group testing in statistical signal recovery. submitted, 2006.

[56] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algorithmic linear dimension
reduction in the l1 norm for sparse vectors. submitted, 2006.

[57] K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris. Is
photobleaching necessary for raman imaging of bone tissue using a green laser? Biochimica
et Biophysica Acta, 1758(7):868–873, 2006.

[58] N. B. Haaser and J. A. Sullivan. Real analysis. Dover Publications, Inc., 1991.

[59] S.-Y. Ho, C.-H. Hsieh, H.-M. Chen, and H.-L. Huang. Interpretable gene expression classifier
with an accurate and compact fuzzy rule base for microarray data analysis. Biosystems,
85:165–176, 2006.

160

[60] P. Indyk. Explicit constructions of selectors and related combinatorial structures, with ap-
plications. In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 697–704, Philadelphia, PA, USA, 2002. Society for Industrial and
Applied Mathematics.

[61] P. Indyk. Explicit constructions for compressed sensing of sparse signals. In Proc. of ACM-
SIAM symposium on Discrete algorithms (SODA’08), 2008.

[62] P. Indyk. Personal correspondence, 2008.

[63] P. Indyk and M. Ruzic. Near-optimal sparse recovery in the l1 norm. preprint, 2008.

[64] M. A. Iwen. Unpublished Results. http://www-personal.umich.edu/ markiwen/.

[65] M. A. Iwen. A deterministic sub-linear time sparse fourier algorithm via non-adaptive
compressed sensing methods. In Proc. of ACM-SIAM symposium on Discrete algorithms
(SODA’08), 2008.

[66] M. A. Iwen, A. C. Gilbert, and M. J. Strauss. Empirical evaluation of a sub-linear time sparse
DFT algorithm. Communications in Mathematical Sciences, 5(4), 2007.

[67] M. A. Iwen, W. Lang, and J. Patel. Scalable rule-based gene expression data classification.
In IEEE International Conference on Data Engineering (ICDE’08), 2008.

[68] M. A. Iwen, G. S. Mandair, M. D. Morris, and M. Strauss. Fast line-based imaging of
small sample features. In IEEE International Conference on Acoustics, Speech, and Signal
Processing(ICASSP), April 2007.

[69] M. A. Iwen and C. V. Spencer. Improved bounds for a deterministic sublinear-time sparse
fourier algorithm. In Conference on Information Sciences and Systems (CISS), 2008.

[70] W. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Conf. in Modern Analysis and Probability, pages 189–206, 1984.

[71] E. Kaltofen and L. Yagati. Improved sparse multivariate polynomial interpolation algorithms.
International Symposium on Symbolic and Algebraic Computation, 1988.

[72] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Bara-
niuk. Analog-to-information conversion via random demodulation. Proc. IEEE Dallas Cir-
cuits and Systems Conference, 2006.

[73] R. Kress. Numerical Analysis. Springer-Verlag, 1998.

[74] S. Kunis and H. Rauhut. Random Sampling of Sparse Trigonometric Polynomials II - Orthog-
onal Matching Pursuit versus Basis Pursuit. Foundations of Computational Mathematics, to
appear.

[75] J. Lafferty and L. Wasserman. Rodeo: Sparse nonparametric regression in high dimensions.
preprint, 2008.

[76] J. M. Landsberg. Geometry and the complexity of matrix multiplication. Bulletin of the
American Mathematical Society, 45(2), April 2008.

[77] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and M. Strauss. Ran-
dom sampling for analog-to-information conversion of wideband signals. Proc. IEEE Dallas
Circuits and Systems Conference, 2006.

[78] J.-Y. Lee and L. Greengard. The type 3 nonuniform FFT and its applications. J Comput.
Phys., 206:1–5, 2005.

161

[79] J. Li and L. Wong. Identifying good diagnostic genes or gene groups from gene expression
data by using the concept of emerging patterns. Bioinformatics, 18:725–734, 2002.

[80] J. Li, X. Zhang, G. Dong, K. Ramamohanarao, and Q. Sun. Efficient mining of high confidence
association rules without support thresholds. Principles of Data Mining and Knowledge
Discovery (PKDD), pages 406 – 411, 1999.

[81] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based on multiple
class-association rules. ICDM, 2001.

[82] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. KDD,
1998.

[83] M. Lustig, D. Donoho, and J. Pauly. Sparse MRI: The application of compressed sensing for
rapid MR imaging. Submitted for publication, 2007.

[84] R. Maleh, A. C. Gilbert, and M. J. Strauss. Signal recovery from partial information via
orthogonal matching pursuit. IEEE Int. Conf. on Image Processing, 2007.

[85] S. Mallet. A Wavelet Tour of Signal Processing. China Machine Press, 2003.

[86] Y. Mansour. Learning boolean functions via the fourier transform. Theoretical Advances in
Neural Computation and Learning, pages 391–424, 1994.

[87] Y. Mansour. Randomized approxmation and interpolation of sparse polynomials. SIAM
Journal on Computing, 24:2, 1995.

[88] T. McIntosh and S. Chawla. On discovery of maximal confident rules without support pruning
in microarray data. SIGKDD Workshop on Data Mining in Bioinformatics (BIOKDD), 2005.

[89] M. D. Morris, W. F. Finney, and R. M. R. et al. Bone tissue ultrastructural response to
elastic deformation probed by raman spectroscopy. Faraday Discussions, 126:159–168, 2004.

[90] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[91] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science, 1, 2005.

[92] S. Muthukrishnan. Some Algorithmic Problems and Results in Compressed Sensing. Allerton
Conference, 2006.

[93] D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate
samples. preprint, 2008.

[94] D. Needell and R. Vershynin. Signal recovery from incomplete and inaccurate measurements
via regularized orthogonal matching pursuit. preprint, 2007.

[95] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via regular-
ized orthogonal matching pursuit. submitted, 2007.

[96] J. R. Quinlan. Bagging, boosting, and c4.5. AAAI, 1:725–730, 1996.

[97] L. Rabiner, R. Schafer, and C. Rader. The Chirp z-Transform Algorithm. IEEE Transactions
on Audio and Electroacoustics, AU-17(2):86–92, June 1969.

[98] F. Rioult, J. F. Boulicaut, B. Cremilleux, and J. Besson. Using transposition for pattern
discovery from microarray data. DMKD, pages 73–79, 2003.

[99] M. Rudelson and R. Vershynin. Sparse reconstruction by convex relaxation: Fourier and
gaussian measurements. In 40th Annual Conference on Information Sciences and Systems
(CISS), 2006.

162

[100] R. Salem and D. C. Spencer. On sets of integers which contain no three terms in arithmetical
progression. Proc. Nat. Acad. Sci., pages 561–563, 1942.

[101] S. Sudarsky. Fuzzy satisfiability. Intl. Conf. on Industrial Fuzzy Control and Intelligent
Systems (IFIS), 1993.

[102] C. P. Tarnowski, M. Ignelzi, and W. W. et al. Earliest mineral and matrix changes in force-
induced musculoskeletal disease as revealed by raman microspectroscopic imaging. Journal
of Bone and Mineral Research, 19(1):64–71, 2004.

[103] L. N. Trefethen. Spectral methods in MatLab. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[104] J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal matching
pursuit. Submitted for Publication, 2005.

[105] S. Vinterbo, E. Kim, and L. Ohno-Machado. Small, fuzzy and interpretable gene expression
based classifiers. Bioinformatics, 21:1964–1970, 2005.

[106] D. Wagner. Efficient algorithms and intractable problems, April 2003. UC Berkeley CS 170
Handout 20.

[107] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent
closed itemsets. KDD, 2003.

[108] M. Zaki and C. Hsiao. Charm: An efficient algorithm for closed association rule mining.
Proc. of the 2nd SIAM Int. Conf. on Data Mining (SDM), 2002.

