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Chapter 1

Introduction

1.1 Structure Metrics and Thermal Design

The lattice thermal conductivities of crystals are of both practical and theoretical

importance. They are essential for reliability and performance of energy conversion

systems, thermal insulators and conductors, microdevices, and microelectronic sys-

tems. For example, in thermal insulators and thermoelectric low thermal conductivity

is desired while in other electronic devices high thermal conductivity is desired. The

lattice conductivity is often obtained by the measurements of bulk crystals. However,

some crystals, such as zeolites, cannot be grown large enough for a direct measure-

ment, and their thermal conductivities are often extracted from indirect measure-

ments with large uncertainty [25]. Furthermore, to synthesize a new material with

the desired thermal properties, or to improve the performance of existing materials,

a fundamental understanding of thermal transport in the crystals (and its relation to

the atomic structure) is needed. Though the thermal transport properties of materi-
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als have been studied for a long time, the correlations between the thermal transport

properties and the structures are not very clear yet. How does the structure of a

material affect the thermal transport? And how can we design a new material with

desired thermal transport properties? These questions are being raised more and

more often with the fast development in thermal management, thermoelectrics, and

micro electro-mechanical systems. However, so far no general attempt has been made

on the structural metrics of phonon conductivities of crystals. The recent progress

in experimental techniques, and more importantly the exponential advancement in

the quantum mechanical computation techniques in recent decades, have begun to

offer the possibility examining the interactions occurring in the microscale and the

transportation of energy carriers in the atomic structure.

1.2 Thermal Conduction in Solids

Thermal conduction in solids is traditionally described by the Fourier law of con-

duction, which is a phenomenological law and assumes the heat flux is proportional

to the temperature gradient ∇T , i.e.,

qk ≡ K · ∇T, (1.1)

where qk is the conduction heat flux, K is the thermal conductivity tensor. Then,

the conduction thermal transport is direct determination of the thermal conductivity

tensorK, which is generally considered as an inherent property of the materials only.

However, when the dimenstion of material becomes small (about 100 nm), K also

depends on the dimensions and structures. The limits of the Fourier law is due to its
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macroscopic nature and its validity is based on the following assumptions [26, 27]:

(1) the system can be modeled as a continuum;

(2) the heat carrier transport is diffusive and the heat carriers can be fully scattered

by other carriers before they can reach the boundary or interface of the system;

(3) the relaxation time is much shorter than the system transition time;

(4) non-linearity is negligible when a temperature gradient is applied.

The first two conditions are normally violated at small dimension scales and low tem-

peratures. The third condition is violated in fast transient phenomena, while the

fourth condition can be violated when a large temperature gradient is applied. At

small length or short time scales, more fundamental approaches are necessary, e.g.,

the Boltzmann transport equations (BTE), Monte Carlo (MC) method, or molecular

dynamics (MD) simulations. Dealing with the atoms and energy carriers, these meth-

ods also offer the ability to investigate the thermal transport at the atomic level and

at short times, and are extremely useful in understanding the relationship between

atomic structure and thermal conductivity.

Heat is transferred by energy carriers moving in a system. There are 4 types of

energy carriers, i.e., phonons (lattice vibration treated as quasi-particles), electrons,

fluid particles, and photons (classical electromagnetic wave treated as quasi-particles).

Phonons or electrons dominate heat transfer in solids. In insulators, phonons are

the only energy carriers; in metals or semiconductors, both phonons and electrons

contribute to the thermal transport but electrons are overwhelming in metals while

phonons are normally dominant in semiconductors. This work mainly focuses on the

heat transfer by phonons, while Chapter 4 also deals with the thermal transport by
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electrons.

In classical mechanics, lattice vibration can be decomposed as a superposition of

normal modes of vibration. A phonon is a quantum of lattice vibration due to the

collective movement of atoms in solids. It is a quasi-particle treatment of the lattice

vibration wave characterized by frequency and wavelength; therefore, phonons do not

have mass but have energy and momentum. A phonon mode is characterized by the

frequency ω and wave vector κ of the corresponding vibration wave. This definition

correlates phonon with crystalline materials. In amorphous materials, there exists no

long-range periodicity even though there may be some short-range periodicity, and the

wave vector κ is no longer a good quantity to describe the vibrations. However, the

atomic vibrations in amorphous materials can still be decomposed into a superposition

of a series of normal modes of vibration and the energy exchange of each mode

is also quantized. Thereafter, normally the “phonon” concept can still apply for

amorphous material, but in this treatment, phonons only have energy. As a quasi-

particle, phonons are said to possess zero spin and be bosons, i.e., in a thermal

equilibrium phonons follow the Bose-Einstein distribution

f ◦p =
1

eEp/kBT − 1
, (1.2)

where Ep = ~ω is the energy of phonon, kB is the Boltzmann constant.

The vibrations of neighboring atoms may be in phase or out of phase, resulting

in the acoustic and optical phonons (denoted with subscript A and O, respectively).

Normally the optical phonons have a small group velocity and contribute little to the

thermal transport. So many models only consider the transport of acoustic phonons
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[2]. When phonons move in a crystal, they may suffer scatterings by other phonons

(Umklapp processes), and by electrons, grain boundaries, impurities and imperfec-

tions. The scatterings by the last three mechanisms significantly depend on the

sample quality. To be more general and also useful for thermal material design, this

work mainly concentrates on thermal transport limited by interphonon scatterings.

Electron is a charged subatomic particle. Electron is a fermion with a spin of 1/2

and follows the Fermi-Dirac distribution

f ◦e =
1

e(Ee−µ)/kBT + 1
, (1.3)

where µ is the chemical potential. In good electrical conductors, the thermal con-

ductivity contribution from electrons relates to the electrical conductivity by the

Wiedemann-Franz law, where the ratio of electrical thermal conductivity and electri-

cal conductivity is proportional to temperature. The prefactor for this proportionality

depends on the Fermi energy, as will be discussed in Chapter 3. The scattering mech-

anisms for electrons are mainly scattering by phonons, other electrons, ionic charge,

grain boundaries, defects, and imperfections. At high temperatures, for moderately

doped semiconductors, the electron-phonon scattering dominates the electrical ther-

mal transport.
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1.3 Length, Time and Temperature Scales for In-

vestigation

A thermal system can be characterized by its length, time and temperature scales.

For phonons, there are four length scales [27]:

(1) the wavelength of the energy carrier Λ;

(2) the wave packet size l of the carrier;

(3) the mean free path of the carrier λ;

(4) the system size L.

This thesis investigates the thermal conductivity structure metrics based on Eq. (1.1).

Therefore, first the system must be large enough to be described as a macroscopic

system, i.e., L À λ; second, the thermal transport is described in terms of energy

carriers, e.g., phonons, as discussed by McGaughey and Kaviany [28], the phonon

particle treatment is only valid when λ > l > Λ; third, this thesis only deals with

the steady state thermal transport and no transient phenomenon is considered. Fur-

thermore, infinitely small temperature gradient is assumed and the linear response

function theory is adopted, e.g., Green-Kubo fluctuation-dissipation theory.

This thesis concentrates on thermal transport at moderate or high temperature

range (typically higher than 1/5 of the Debye temperature), where there occur a large

range of applications. So, even though some quantum language or tools are used in

the thesis, the systems considered are generally of classical nature.
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1.4 Thermal Materials

Bulk single crystals can be divided into two major categories:

1) compact crystals, e.g., NaCl and diamond, which has a simple basis and there is

no functional microstructure in the lattice. Due to their simplicity and wide property

range, they are normally the most common crystals in various fields;

2) micro-structured crystals, which has a complex basis or special bond arrangement

and the resulting internal microstructure, e.g., large cage, lamina, etc. These crystals

normally have special transport properties due to their unusual structures.

We are interested in both categories. Specially, in the second category, we consider

layered, linked-cage, and cage/filled-cage crystals, which constitute a major part of

the second category. The layered crystals consist of layers (e.g., graphite and Bi2Te3),

while cage crystals consist of interconnected cages (e.g., skutterudites and clathrates).

The linked-cage crystals consist of a cage linked by long bridges, such as metal-

organic frameworks (MOFs) and zeolites. The linked-cage crystals, e.g., MOFs, are

promising in hydrogen storage, and the layered and filled-cage semiconductor crystals

are important in low- and high-temperature thermoelectricity.

Figure 1.1 shows the room-temperature phonon conductivities of some crystalline

solids in the four categories, namely compact, layered, linked-cage, and cage/filled-

cage, with respect to density. From Fig. 1.1, the range of thermal conductivities and

densities for compact crystals is very wide. The cross-plane thermal conductivities

of layered crystals are normally low (of the order of 1 W/m-K) while the in-plane

thermal conductivities are much higher. The linked-cage crystals, such as MOFs,
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Figure 1.1: Experimental phonon conductivity of some crystalline solids with respect

to their density at T = 300 K. The values for metals are derived by subtracting the

electronic contribution from the total thermal conductivity.

zeolites, generally have low thermal conductivities as well as low density. The cage

crystals have a relatively low thermal conductivity, while the values for the filled-cage

crystals are significantly lower. Figure 1.1 does suggest some correlation between the

crystalline structure and its phonon conductivity, for example, materials with large

density normally have a low thermal conductivity while materials with too low a

density also have a very low phonon conductivity. However, without insight into the

atomic structure and how it affects the phonon transport, it is very hard to predict

phonon conductivity and suggest thermal material design.
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1.5 Thermal Transport Investigation

The common approaches for investigating the phonon conductivity in a crystal

fall into three categories, all of which are based on the Fourier law.

The first approach for predicting the phonon conductivity is to use an atom-

istic technique, such as molecular dynamics (MD) simulations. MD requires only

the inputs of the configuration of atoms and suitable interatomic potentials. It is

in principle a very fundamental method and often used as a tool for understanding

thermal transport, in some cases the prediction using MD agree well with experi-

ments (at relatively high temperatures) [29, 30, 31]. However, accurate interatomic

potentials are vital for MD, and the potentials used in MD are often obtained by

fitting to ab initio calculations or to experimental results for bulk properties, which

is often very challenging, especially for complex polyatomic crystals [32]. Also, MD

is often very cumbersome and time-consuming, and the numerical results generally

cannot provide much explicit information for the structure design and optimization.

Furthermore, classical MD assumes all the phonon modes are excited, so they are

invalid at very low temperatures where the quantum effects become important.

The second approach is to use the continuum transport theory and the kinetic the-

ory, such as the Boltzmann transport equation (BTE) approach of Callaway [33] and

Holland [34]. These approaches use the relaxation time approximation and the phonon

concept, and can be used to predict the phonon transport in systems with wide range

of dimension and temperature rather quickly. The expressions are relatively simple

and can analytically illustrate some key quantities that affect the phonon transport.
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As mentioned in Section 1.2, these methods are valid as long as the requirement for

the quasi-particle treatment of vibrations is satisfied. On the other hand, they require

a good understanding of the underlying phonon scattering processes. Many such ap-

proaches have some parameters that must be obtained empirically, e.g., by fitting

to the experimental data or the results of more fundamental calculations[33, 34, 35].

Therefore they are very useful to analyze the thermal transport of known samples,

but are not suitable for the prediction or design of new materials.

The third method is similar to the second one, but it seeks for the analytical

expressions for the relaxation time models and tries to reduce the inputs. In this way,

the effects of some structure parameter can be included explicitly and the results

are more general. The modelling for relaxation times needs the fundamental and

thorough understanding of the scattering process and is often extremely challenging.

Some assumptions often have to be made to simplify the model.

This work adopts a multiscale approach, which involves all the three approaches

together with the first principle calculations. Because MD simulations allow insight

into the nature of phonon transportation at atomic level on a standard platform and

the effects of different structure parameters can be decoupled and studied individu-

ally in simulations, we choose MD simulations along with the Green-Kubo method

as the major approach for the atomic-level thermal transport investigation. The in-

teratomic potentials are mainly fitted with the energy surface calculated by ab initio

calculations. Phonon spectrum techniques and continuum models are used for the

data analysis and the construction of structural metrics of phonon conductivity.
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1.6 Methodology

1.6.1 Force Field Development

Appropriate interatomic force field are vital to the MD simulations. It determines

the quality of the MD simulation results as well as the efficiency of the calcula-

tion. Normally the interatomic potentials are obtained empirically, i.e., fitted with

available experimental results. This procedure is more or less an art rather than a

science, since the available experimental results are normally few and the choice of

appropriate macroscale properties is also a challenge. It is difficult to obtain the

force field that can be used to predict all the macroscopic properties accurately. It

is normal that the force field fitted with some macroscopic experiment results can

predict some related quantities quite well, but fail in estimating some quantities that

are physically different from the data used in the fitting procedure. So, for fitting

with the experimental results, one has to choose the relevant data set very carefully.

An alternative approach is to fit the interatomic potentials with the energy surface

or other microscopic/macroscopic properties from the first-principle calculations. In

many fields, the first-principle calculations are reliable and are often regarded as

“numerical experiments”. Using first-principle calculations may avoid some system

errors or unexpected interference and noise, e.g., the impurity or imperfection in the

samples, and sometimes are even more accurate than some experimental results in

the literature. Fitting interatomic force field based on the first principle calculations

is relatively more flexible and insightful, for example, one can arbitrarily move atoms

and obtain the entire energy surface, or change some atoms while keeping the lattice
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Figure 1.2: Strategy to develop the potentials required by molecular dynamics simu-

lation from the ab initio calculations.

structure unchanged, or obtain some information from a new structure or even an

imaginary structure. Also, all the data are obtained on the same platform and should

be consistent. Furthermore, one may be able to obtain far more data or information

than the available experimental results. In one word, the first-principle calculations

offer the ability to fit the force field more accurately with much less limitations and

the ability to gain insight into the atomic structure, compared with the traditional

fitting with experimental results.

This work adopts the force-field fitting procedure based on the first-principle cal-

culations. Figure 1.2 shows the strategy to develop the force field required in MD

simulations, on the basis of the ab initio calculations. First, by moving different

atoms along some specified direction, the energy surface of the structure is obtained

from the ab initio calculations in the framework of Density Functional Theory (DFT).
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Some presumed potential forms with initial parameters are then used as the first guess

to fit the energy surface. During the fitting, the parameters as well as the potential

forms are changed to reproduce the energy surface. Some experimental results or

macroscopic properties calculated directly from DFT are also used to further check

the fitted interatomic potentials. This procedure is repeated until the fitted force

field converges.

1.6.2 Green-Kubo Method

In MD simulations the phonon conductivity can be computed either using nonequi-

librium MD (NEMD) or equilibrium MD (EMD). The two most commonly applied

methods for computing phonon conductivity are the “direct method” and the Green-

Kubo (G-K) method.

The direct method closely resembles an experimental technique based on an ap-

plication of the Fourier law[30]. The direct method is a steady-state, nonequilibrium

method in which a steady 1-D heat flux is imposed on a system. From the resulting

temperature gradient, the thermal conductivity is directly obtained using the Fourier

law [Eq. (1.1)]. The direct method normally has strong nonlinear response behavior

and significant size effects. Unless the simulation cell is many times larger than the

mean free path, the scattering from the heat source and heat sink contributes more

to the thermal resistivity than does the intrinsic anharmonic phonon-phonon scat-

tering. Therefore, large atomic system are typically required to obtain an accurate

prediction of the bulk phase thermal conductivity (it is better suited to the study of
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thin films)[30]. For a complex crystal with a large unit cell (such as MOF-5), the

computational demands would be tremendous.

The thermal conductivity limited by the phonon-phonon scatterings can also be

determined using the G-K fluctuation-dissipation method, in which the thermal con-

ductivity is related to the time decay of the heat current autocorrelation function

(HCACF). The thermal conductivity tensor Kp is given by

Kp =
1

kBV T 2

∫ ∞

0

〈ẇ(t)ẇ(0)〉, (1.4)

where kB is the Boltzmann constant, V is the volume of the simulation system, T is

the system temperature, and 〈ẇ(t) · ẇ(0)〉 is the HCACF. A slow-decaying HCACF

indicates the heat current fluctuations can spread over a long time before vanishing,

i.e., a long phonon relaxation time. The heat current ẇ is defined as

ẇ =
d

dt

N∑
i=1

riEi, (1.5)

where r and E are the position vector and the total energy of a particle (atom)

(excluding the site energy), respectively.

The G-K method has been used to investigate the thermal properties of di-

electric materials such as diamond[31], silicon[30, 36], zeolites[29], and amorphous

silicon[37]. This approach is based on fluctuation-dissipation theory and is an equi-

librium method. The linear response behavior of the G-K method leads to accurate

results using smaller atomic system than required in the direct method.[30] How-

ever, the HCACF normally converges very slowly compared with the direct method,

and long correlation time and in turn more raw data are needed to obtain accurate

results. The G-K method is also advantageous as it allows for the decomposition
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of the thermal conductivity into contributions associated with acoustic and optical

phonons[29]. This ability makes it possible to relate the structure parameters with

phonon transportation and allows the comparison between different systems, so it is

chosen for this work.

1.7 Objective and Scope of Thesis

The main objectives of this study is to develop an understanding of the structure

metrics of thermal conductivity in dielectric and semiconductor crystals at the atomic

level. A comprehensive, multiscale approach is developed for this investigation, which

combines the first principle calculation, molecular dynamics (MD), Boltzman trans-

port equations (BTE), and the kinetic theory.

The following chapters are divided based on the atomic structure of the solid, i.e.,

compact, layered, linked-cage, and filled-cage.

Chapter 2 develops an understanding of the structural metrics of high-temperature

phonon conductivity for compact crystals. Based on the Slack model, an atomic

structure-based model is developed and the relationship between the atomic struc-

ture and phonon transport is explored by modeling the Debye temperature TD and

the Grüneisen parameter γG. Under the assumption of homogeneous deformation,

TD is estimated according to a simplified force constant matrix and a phenomenolog-

ical combinative rule for force constants, which is applicable to an arbitrary atomic

pair. Also, γG is estimated from a general Lennard-Jones potential form and the

combination of the bonds. The elemental electronegativity, element mass, and the
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arrangement of bonds are found to be the dominant factors to affect the Debye tem-

perature; while the elemental electronegativity and the arrangement of bonds are

important in determining the anharmonicity. Based on this atomic-level model, the

structural metrics of crystals with low or high lattice conductivity are discussed, and

some strategies for thermal design and management are suggested.

Chapter 3 explores the phonon conductivity of a nanoporous, metal-organic frame-

work (MOF) crystal with a phenylene bridge, MOF-5, over a wide temperature range

using MD simulations and the G-K method. The force field for MOF is developed

using ab initio calculations and experimental results. The temperature dependence

of the thermal conductivity is discussed and analyzed. It is found that the mean

free path of the majority of phonons in MOF-5 has a close relationship with the

lattice parameter. To interpret the results, an analytical thermal conductivity rela-

tion is derived, which reduces to the Cahill-Pohl and Slack models under appropriate

assumptions. A critical frequency is proposed, which determines the relative con-

tributions of the short- and long-range acoustic phonons. The relationship between

the long-range acoustic phonon contribution and the special linked-cage structure is

discussed.

Chapter 4 investigates the phonon and electron transport in layered Bi2Te3 struc-

ture using a multiscale approach, combining the first-principle calculations, MD, and

BTE. The MD simulations along with the Green-Kubo autocorrelation decay method

are used to calculate the phonon thermal conductivity in both in-plane and cross-plane

directions. The required classical interatomic potentials for Bi2Te3 are developed us-

ing the first-principle calculations and experimental results. The contributions from
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the acoustic and optical phonons are identified and their dependence on temperature

and polarization is discussed and modelled. The electrical transport is calculated us-

ing the full-band structure from the linearized augmented plane wave method, BTE,

and the energy-dependent relaxation time models with the non-parabolic Kane en-

ergy dispersion. Temperature dependence of the energy gap is found to be important

for the prediction of the electrical transport in the intrinsic regime. Appropriate

modelling of relaxation times is also found to be essential for the calculation of the

electrical and thermal transport, especially in the intrinsic regime. The maximum of

the Seebeck coefficient is modelled by a simple expression containing the band gap.

The electron scatterings by the acoustic, optical, and polar-optical phonons and the

resulting electron thermal conductivity are discussed.

Chapter 5 continues to explore the phonon conductivity for caged CoSb3 skutteru-

dite and its filled structure. Both of the force field for the empty CoSb3 structure and

that for filled CoSb3 are developed based on the first-principle calculations together

with the response function theory. The interaction between the filler and the host

is analyzed to clarify the role of the filler. Then the vibrational spectrum for both

the empty and full-filled structure is explored. The MD simulation along with the

G-K method is used to directly predict the phonon conductivity of the empty and

filled structure. The effects of fillers are then analyzed and a solution model for the

partially-filled structure is proposed.

In Chapter 6, the highlights of the work is summarized, and the future directions

of related research are suggested.
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Chapter 2

Atomic Structure Metrics for

Phonon Conductivity of Compact

Crystals

2.1 Slack Model

Starting from the derivation by Julian [38], in which the variational principle is

used to obtain an analytical relaxation time for the rare-gas solids, Slack proposed

that when heat is mainly carried by acoustic phonons scattered via the three-phonon

process, the thermal conductivity of crystals with constant volume at high temper-

atures (normally above 1/4∼1/5 of the Debye temperature) can be given by the

relation [39, 2]

k =
3.1× 104〈M〉δT 3

D,∞

T 〈γ2
G〉N2/3

c

. (2.1)
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Here 〈M〉 is the mean atomic weight of the atoms in the primitive cell, δ3 is the

average volume per atom, TD,∞ is the high-temperature Debye temperature, T is the

temperature, Nc is the number of atoms in a primitive cell, and 〈γ2
G〉 is the mode-

averaged square of the Grüneisen parameter at high temperatures. Note that TD,∞

used by Slack is extracted from the phonon density of states (DOS) Dp [2], i.e.,

T 2
D,∞ =

5h2

3k2
B

∫∞
0

ν2Dp(ν)dν∫∞
0

Dp(ν)dν
, (2.2)

where h is the Planck constant, kB is the Boltzmann constant, and ν is the phonon

frequency. However, TD,∞ cannot be conveniently determined for it requires the

information of DOS. Since the difference between TD,∞ and the Debye temperature

TD (at 0 K) extracted from the elastic constant or the measurement of heat capacity

is normally small, it is customary to use TD instead of TD,∞ in Eq. (3.10). Also 〈γ2
G〉

is often replaced by 〈γG〉2 (later, for simplicity we use γG to denote 〈γG〉), which can

be determined from thermal expansion data at high temperatures.

Equation (3.10) is widely tested with pure non-metallic crystals and the overall

agreement is good, even for complex crystals [39, 2]. The Slack relation illuminates

how the atomic structure affects the thermal transport and provides a useful guide

to tailoring the thermal transport properties.

McGaughey and Kaviany [29] showed that the lattice thermal conductivity can

be decomposed into three parts:

kp = kp,A,lg + kp,A,sh + kp,O. (2.3)

Here kp,A,lg is the contribution from long-range acoustic phonons, whose mean-free

path is larger than one half of their wavelength; kp,A,sh is the contribution from
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short-range acoustic phonons, whose mean-free path is minimized to one half of their

wavelength; and kp,O is the contribution from optical phonons. Our previous work

[4], has pointed out that the Slack relation corresponds to kp,A,lg and is valid only

when the short-range acoustic or optical phonons are not important. This condition

is not always satisfied for crystals with low thermal conductivity, such as zeolites and

metal-organic frameworks (MOFs). As will be discussed in Chapter 3, to identify the

relative contributions of these different mechanisms, a critical angular frequency ωc

based on Klemens’ model [4] is used, which is given as [4]

ωc '
2.37× 10−27〈M〉u3

p,g

3π2δγ2
GkBT

, (2.4)

where up,g is the average phonon group velocity. The Slack relation is valid only

when ωc is comparable with the Debye frequency ωD and long-range acoustic phonons

dominate the thermal transport.

To use the Slack relation, TD and γG must be known, which is the main difficulty

in the estimation of the lattice conductivities of new materials. Since these two

parameters directly relate the atomic structure to thermal transport, the knowledge

of their relations provides more insightful information for the thermal design, and

allows for the estimation of thermal transport properties of new materials.

In this work, we report a simple microscopic model to estimate TD and γG. A

phenomenological combinative rule for force constants is proposed, which can be used

to derive the force constant of an arbitrary pair bond from the existing experimental

data. Then a model for the phonon group velocity and the Debye temperature of

complex crystals is derived on the basis of the dynamical matrix, in which the effects
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of the lattice and bases are decomposed by the equivalent force constant. Using

a general potential form for a bond, the Grüneisen parameters of different types of

bonds are discussed, and then a relation for the equivalent Grüneisen parameter of the

equivalent bond is developed, which can be applied for complex crystals. For linked-

cage structures, where the Slack relation may not be applicable, a simple phonon

mean-free path model based on the kinetic theory is also proposed, which shows good

agreement with experiments and MD.

2.2 Combinative Rule for Force Constants of an

Arbitrary Pair-Bond

The vibration energy is transferred in a crystal through interactions among the

atoms, which can be theoretically calculated by quantum mechanical methods. How-

ever, a quantum mechanical method deals with the electron clouds of the atoms,

and is very cumbersome for a system involving many particles. Based on the Born-

Oppenheimer approximation [32], the force field method uses empirical potentials

(fitted to experiments or quantum mechanic calculations), such as Lennard-Jones and

Buckingham potentials, to describe the interactions in the system. In most solids,

when the temperature is well below the melting point, the particles only slightly

oscillate around their equilibrium positions and many of their behaviors (including

the elastic behavior) can be well described in the framework of the harmonic ap-

proximation [14]. In this approximation, the energy of the system can normally be
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decomposed into four terms corresponding to the bond stretching, bending, torsion

and the non-bonded interactions [32], i.e.,

E =
∑

i

Γi

2
(∆ri)

2 +
∑

j

Γθ,j

2
(∆θj)

2 +

∑

l

Γφ,l

2
(∆φl)

2 +
∑

n

Γm,n

2
(∆rm,n), (2.5)

where Γ, Γθ, Γφ and Γm are the force constants of the bond length r, bond angle

θ, torsion angle φ, and the distance between molecules rm. Normally, the stretching

interaction is much stronger than the other interactions (by a factor of more than

ten), so for a rigid structure, the elastic characteristics are mainly determined by the

stretching force constants. The bending and torsion interactions are also important

for structure stability and deformation.

Since atomic interaction is determined by the electronic structure, potentials and

force constants are expected to be transferable if the bond type and surroundings are

similar [40]. Here we present a phenomenological combinative rule for the stretching

and the van der Waals force constants.

The general form of two-body potentials can be written as

ϕAB(r) = ϕAB,rep(r)− ϕAB,att(r), (2.6)

where ϕAB is the potential energy of the bond A-B, and the subscripts rep and att

represent the repulsive and the attractive terms. The repulsive term is due to the

Pauli exclusion principle or the electrostatic interactions. It has been shown that the

exchange repulsive term for two different atoms can be given as the geometric mean

22



of the corresponding terms for two pairs of equivalent atoms [41], i.e.,

ϕAB,rep(r) = [ϕAA,rep(r)ϕBB,rep(r)]
1/2, (2.7)

The attractive term is due to the interactions of dipoles, electrostatics, or a combi-

nation of them. The exchangeability of the dipolar and electrostatic interactions is

apparent, thus a similar combinative rule is suggested for the attractive term, i.e.,

ϕAB,att(r) = [ϕAA,att(r)ϕBB,att(r)]
1/2. (2.8)

The potential near the equilibrium position can be described by the general

Lennard-Jones (L-J) potential model

ϕ(r) =
α

rm
− β

rn
, (2.9)

where m and n depends on the interaction type, and their values will be discussed in

Section 2.4. The force constant Γ and the bond length r0 at the equilibrium position

are given as

Γ = −mnϕ◦
r2◦

=
m(m− n)α

rm+2◦
= n(m− n)β(

βn

αm
)

2+n
m−n

r◦ = (
αm

βn
)

1
m−n , (2.10)

where −ϕ◦ is the potential energy at the equilibrium position. Equation (2.10) shows

that the force constant at the equilibrium position is proportional to ϕ◦, when the

bond type and the bond length are similar. Note that at the equilibrium position,

the ratio of the magnitudes of the contributions from the repulsive term and the

attractive term is (m + 1)/(n + 1). Therefore, for m À n (e.g, for ionic bond), the

force constant is mainly determined by the repulsive term.
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From Eqs. (2.7), (2.8) and (2.10), if ΓAA is defined as the force constant of the

potential function ϕAA(r) = ϕAA,rep(r) − ϕAA,att(r), the force constant of A-B bond

ΓAB and its equilibrium bond length r◦,AB can be given as

ΓAB = (ΓAAΓBB)1/2, r◦,AB = (r◦,AAr◦,BB)1/2. (2.11)

Note that for ions, the A-A bond may not actually exist. However, due to the

similarity of the electronic configuration of the ions in different compounds, we may

assign a virtual potential ϕAA to the ions, e.g., keeping the interaction due to Pauli

exclusion principle as the repulsive term and setting the attractive term as ϕAA,att =

q2/r, where q is the ionic charge. The properties of the virtual potential (e.g., ΓAA) can

be extracted from the compounds. In this way, the combinative rule [Eqs. (2.7) and

(2.8)] is still valid. Similar relations like Eq. (2.11) have been derived by Feranchuk et

al. [42] using 12-6 L-J potential, but they did not consider the effects of bond order

and the long-range electrostatic interactions. In addition, it is not appropriate to

describe ionic bonds or covalent bonds using 12-6 L-J potential, as will be discussed

later.

Note that this combinative rule is only applicable for the bonds with the same

bond type (m and n are close) and bond order. In real compounds, a bond with

the same atom configuration can have different bond orders. For example, C=O has

the bond order of 2, and C-O has the bond order of 1. It is observed that the force

constant is approximately proportional to the bond order [43], that is

ΓAB,s = sΓAB,1, (2.12)

where ΓAB,s is the force constant of the bond between A and B with the bond order
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of s. Thus Eq. (2.12) can be rewritten as

ΓAB,s = s(ΓAA,1ΓBB,1)
1/2. (2.13)

Consequently, we have

ΓAC,s = s
(ΓAB,1ΓBC,1)

1/2

ΓBB,1

. (2.14)

According to Eq. (2.12), the potential energy ϕ can be assumed proportional to s,

and re is expected to be independent of s. For ionic bonds, when this assumption is

used, the resulting combinative rule for ionic bond length agrees well with the exper-

iments (the error is less than 3%) [42]. However, this assumption is only moderately

accurate for covalent bonds, because the L-J potential does not accurately describe

the changes of electron clouds and the energy in the entire range of atomic distance.

Generally, for covalent bonds, re will decrease slightly when s increases. Paolini [44]

developed an empirical bond order-bond length relationship for covalent bonds

re,s = re,1 − 0.78(s0.33 − 1), (2.15)

where re,s is the equilibrium bond length (in Angstrom) with the bond order of s.

Equation (2.15) shows good agreements with the experimental results for many bonds

[44] and can be used for the estimation of the bond length.
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Table 2.1: Electronegativity, equilibrium bond length, and force constants of element

pairs (list in order of atomic number) with the bond order of 1. The data are extracted

from [1]. The symbols C and V represent covalent and van der Waals interactions,

and the unlabeled are the values for ionic interactions.

Atom χ re,1, Å Γ, N/m Atom χ re,1, Å Γ, N/m

H 2.20 0.74[C] 575.67[C] Br 2.96 2.28[C] 250.83[C],
539.78

He - 1.04[C] 411.74[C] Kr 3.00 4.03[V] 1.43[V]
Li 0.98 2.67 25.48 Rb 0.82 3.79 8.25
Be 1.57 1.39 120.62 Sr 0.95 3.05 26.57
B 2.04 1.76[C] 354.90[C] Y 1.22 - 70.05
C 2.55 1.54[C] 510.5[C] Zr 1.33 8.41 141.43
N 3.04 1.46[C] 771.20[C] Nb 1.60 2.36 108.25
O 3.44 1.46[C] 593.57[C]

1305
Ru 1.02 2.17 56.53

F 3.98 1.41[C] 473.82[C]
1960

Ag 1.93 2.59 59.09

Ne - 3.10[V] 0.12[V] Cd 1.69 4.28 44.93
Na 0.93 3.08 17.28 In 1.78 2.86 34.41
Mg 1.31 3.89 41.60 Sn 1.96 2.80 58.34
Al 1.61 2.47 49.15 Sb 2.05 2.82[C] 70.64[C]
Si 1.90 2.34[C] 109.04[C] Te 2.10 2.74[C] 119.46[C]
P 2.19 2.20[C] 201.50[C] I 2.66 2.66[C] 172.73[C]

343.06
S 2.58 2.08[C] 250.65[C]

536.92
Xe 2.60 4.36[V] 1.74[V]

Cl 3.16 1.98[C] 330.42[C]
705.81

Cs 0.79 4.47 6.97

Ar - 3.76[V] 0.80[V] La 1.10 2.83 53.41
K 0.82 3.90 9.84 Ce 1.12 2.74 169.30
Ca 1.00 4.28 34.61 Pr 1.13 - 48.25
Sc 1.36 2.40 77.60 Eu 1.20 - 31.11
Ti 1.54 2.17 107.71 Tb 1.10 - 72.63
V 1.63 2.09 103.03 Ho 1.23 3.11 77.21
Cr 1.66 2.17 87.18 Yb 1.10 2.89 33.74
Mn 1.55 2.59 46.40 Lu 1.27 2.63 78.69
Fe 1.83 2.04 62.53 Hf 1.30 2.44 103.98
Co 1.88 3.20 116.61 Ta 1.50 2.36 179.07
Ni 1.91 2.96 130.00 W 2.36 - 202.54
Cu 1.90 2.22 65.82 Ir 2.20 2.36 110.01
Zn 1.65 3.41 81.15 Au 2.54 2.47 106.80
Ga 1.81 2.43 99.38 Hg 2.00 3.30 32.61
Ge 2.01 2.16 121.79 Tl 1.62 3.07 31.60
As 2.18 2.42 120.48 Pb 2.33 3.03 39.91
Se 2.55 2.34[C] 108.54[C] Bi 2.02 3.07 49.08
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Figure 2.1: (a) Variation of calculated ionic force constant ΓAA,1 with respect to

the electronegativity. (b) Variation of the calculated covalent force constant ΓAA,1

with respect to the ratio of the electronegativity and atomic number. The data are

extracted from the spectra of diatomic molecules [1]. The lines are used to guide the

eyes.
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Table 2.1 lists the force constant ΓAA,1, electronegativity χ, and equilibrium bond

length re,1. ΓAA,1 is extracted from the experimental spectra of diatomic molecules

[1] according to Eqs. (2.13) and (2.14) [the ionic ΓAA,1 of elements, e.g., O and S, is

an average of the values extracted from their compounds]. re,1 is extracted from the

bond lengths of the diatomic molecules [1]. Table 2.1 shows that ΓAA,1 of ionic bonds

for the elements with high electronegativity χ (e.g., O and Cl) are normally twice that

of the corresponding covalent bond. This indicates that the virtual potential of ions

is steeper than the covalent potential of the corresponding atoms near the equilibrium

position. The electronegativity χ can be used to determine the bond type. Bonds

between atoms with a large electronegativity difference (≥ 1.7), are usually considered

to be ionic, while values between 1.7 and 0.4 are considered polar covalent, and values

below 0.4 are considered non-polar covalent bonds [45]. For metallic elements, even

though ∆χ is small, their electron structures are similar to those in the ionic crystals,

for the conduction electrons can move about [46].

Figure 2.1(a) shows that generally the ionic ΓAA,1 increases as the electronega-

tivity increases. The alkali metals have the lowest ΓAA,1, while the halogen elements

have the highest ΓAA,1. When 1.0 < χ < 2.5, most transition metal elements and

semiconducting elements have a ΓAA,1 around 50 N/m, which is a relatively low value.

In general, ΓAA,1 decreases while the atomic radius increases. However, Fig. 2.1(b)

shows for covalent bonds ΓAA,1 seems to relate to the ratio of χ/N (N is the atomic

number) rather than χ. Nitrogen has the highest covalent ΓAA,1.

Figure 2.2 compares the experimental results of some bonds in diatomic molecules

along with the calculated values. The mean square error is less than 8%, and the
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overall agreement is good.
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Figure 2.2: Comparison of calculated force constants and the corresponding values

from the experimental spectra, for some atomic pairs [1].

Note that the above force constants and equilibrium bond lengths are derived from

the data of gaseous diatomic molecules, where the intermolecular effects are negligible.

For crystal bonds, long-range interactions (mainly electrostatic interactions) from the

surroundings may significantly affect the equilibrium bond length and force constant.

For example, Na-Cl in a NaCl molecule has a force constant of 110 N/m and a bond

length 2.36 Å[1], while the distance between the nearest Na and Cl ions in a NaCl

crystal at T = 300 K is 2.83 Å, and the effective force constant of each Na-Cl pair

derived from the bulk modulus is only 20 N/m [47]. Thus, a relation between the

force constant of a bond in a gaseous diatomic molecule and that in a crystal must

be developed to account for the effects of long-range interactions. Here, only the

effect of electrostatic interactions is considered. Our approach is to include long-
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range interactions in an effective bond potential of the nearest neighboring atoms.

A bond (in a diatomic molecule) with a form in Eq. (2.9) is considered. Since

the repulsive term is a very short-range interaction, we assume only the long-range

attractive term is affected by the surroundings. This effective bond in a crystal can

then be represented as

〈ϕ〉(r) =
α

rm
− η

β

rn
, (2.16)

where η is the correction factor due to the long-range interactions (in simple ionic

structures, it is related to the Madelung constant). However, η is difficult to determine

for complex crystal structures. In practice, according to this assumption and Eq.

(2.10), the force constant of the bond in the crystal Γ′AB can be simply calculated as

Γ′AB = ΓAB(
r◦
r′◦

)m+2, (2.17)

where ΓAB is the force constant of the bond in the diatomic molecule AB, and r′◦ is

the equilibrium bond length in the crystal. For example, for NaCl, by setting m = 6.3

[using the approximation method Eq. (2.36)], and using the above bond length data,

we have Γ′NaCl = 110 × (2.36/2.83)(6.3+2) = 24 N/m, which is very close to 20 N/m

derived from the bulk modulus [47]. For ionic bonds, m is large, and Eq. (2.17)

indicates that Γ′AB is very sensitive to the values of r◦ and r′o, so the experimental

values of ro and r′o will be preferred. When the experimental value of ro is unavailable,

the combinative rule [Eq. (2.11)] can be used.
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2.3 Evaluation of Sound Velocity and Debye Tem-

perature

If the force constants between atoms are known, the dynamical matrix can be

readily constructed to determine the sound velocity. However, for complex polyatomic

crystals, the calculation is still very cumbersome, and it is difficult to explicitly relate

the numerical results to the complex structure. For the purpose of estimation and

design, a simple model that can directly relate the sound velocity and the Debye

temperature to the crystal structure is needed.

A real crystal structure can always be considered as an underlying lattice, together

with a basis describing the arrangement of the atoms, ions, and molecules within

a primitive cell [14]. The acoustic branches of the phonon dispersion correspond

to the motion of the mass centers of the primitive cells [14]. Therefore, both the

monatomic and polyatomic crystal structures can be modelled as a lattice with rigid

bases connected by equivalent bonds with an equivalent force constant, as shown in

Fig. 2.3.

2.3.1 Equivalent Force Constants

The elastic response of a solid can be divided into two parts, namely, (i) atomic

vibrations at fixed volume, and (ii) unit cell volume fluctuations for a fixed atomic

configuration (homogeneous deformation). The first part corresponds to the inhomo-

geneous deformation, in which the bending potentials and the torsion potentials may

be important, especially in a flexible structure. The bending potential can also be
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Figure 2.3: Decomposition of a complex crystal into lattice and bases, with equivalent

bonds.

converted into an equivalent stretching potential between the atoms at the two ends.

Since the force constant of the bending potentials and the torsion potentials are nor-

mally small, the equivalent force constant will be much reduced by the inhomogeneous

deformation. It is difficult to obtain a general simple analytical solution for such an

inhomogeneous deformation, and a numerical calculation using full dynamical matrix

(including the bending potentials) is preferred for obtaining the equivalent force con-

stant. However, for many solids, the crystallographic symmetries and the stability

of a given phase with respect to small lattice deformations result in the diminishing

effects from the first part [48], and the elastic behavior can be described using the

equivalent force constants of the stretching potentials. In these cases, the bending

potential and the torsion potential may contribute to the stability of the structure,

but their contribution to the elastic response is negligible.

When only considering the bond stretching, it is apparent that only the transport

of stretching along the translational unit vector a can contribute to the energy trans-

port in this direction. Thus we define the force constant of a bond along a given unit
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vector a as [49]

Γµν,a =
∂2ϕµν

∂x2
a

=
∂2ϕµν

∂r2
µν

(
xa

rµν

)2 = (a · nµν)
2Γµν , (2.18)

where xa is the projection of the bond length r along a, and nµν is the unit vector

pointing from the particle µ to the particle ν. Eq. (2.18) shows that the projection

of the force constant along a has a factor of (a · nµν)
2.

The total deformation of the primitive cell is affected by all the bonds in it. Using

Eq. (2.18), we may treat the bonds in a primitive cell as springs with the same Γµν,a,

and then convert the crystal primitive cell into a network composed of springs. This

spring network can be simplified to obtain the equivalent force constant between two

bases according to the following rules (we denote the force constants of two bonds as

Γ1 and Γ2, and that of the equivalent bond of these two bonds as Γeq):

(i) when the two bonds are in series,

Γ−1
eq = Γ−1

1 + Γ−1
2 , (2.19)

(ii) when the two bonds are parallel,

Γeq = Γ1 + Γ2. (2.20)

For a monatomic crystal, the primitive cell only includes one atom, and the equiv-

alent force constant is just the force constant of the bond between the atoms.

33



2.3.2 Sound Velocity and Debye Temperature Model

From the lattice dynamics, the sound velocities of acoustic branches at the long-

wavelength limit are the square roots of the eigenvalues of the matrix [14]

− 1

2M

∑
R

(sκ ·R)2D(R), Di,j(R) =
∂2ϕ

∂u0
i ∂uR

j

, (2.21)

where sκ is the unit wave vector, D(R) is the force matrix, R is the position vector

of the neighbor, u is the displacement of the mass center of the primitive cell from

the equilibrium position (0 represents the origin), and M is the mass of the primitive

cell.

Using the above simplified model for crystal structures, if only the stretching

energy is considered, Eq. (2.5) can be rewritten as

ϕ =
∑
R

ΓR

2
{nR · [uR − u0]}2, nR =

R

|R| , (2.22)

where ΓR is the equivalent force constant between the two bases. Thus Di,j(R) =

ηi,jΓR. Note that R is a linear function of the lattice constants, so the sound velocity

will have the form

up,g,i = d(sk,i, {ai})( Γi

M
)1/2, Γi =

∑
R

[η(R, sk,i)ΓR], (2.23)

where {ai} is the set of the translational vectors of the lattice. Note that Eq. (2.23)

has the same form as the formula for the one-dimensional chain [49]. It is instructive

to consider a plane wave travelling in a crystal, wherein the lattice is consisted of

parallel planes perpendicular to the wave vector and the atoms in a plane will move

in phase. The transportation along the wave vector is essentially one dimensional.
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From the comparison with the formula of the one-dimensional chain [49], d is indeed

the equivalent distance between the planes and normally is the linear function of the

lattice constants. The effective force constant Γ is the summation of the projections

of the equivalent force constant in the polarization sκ,i, that is, η(R, sκ,i) = (nR ·sκ,i)
2.

The average sound velocity up,g,A can be calculated as

up,g,A = (
3∑

i=1

1

3u3
p,g,i

)−1/3. (2.24)

For cubic structures, the average sound velocity can be given as

up,g,A =
1

31/2
a(

Γ

M
)1/2, (2.25)

where a is the lattice constant.

From the longitudinal and transversal sound velocity, we can obtain the polarization-

dependent Debye temperature TD,i and the average Debye temperature TD [14]

TD,i = up,g,i
~
kB

(6π2na)
1/3

=
di

V
1/3
c

(
Γi

M
)1/2 ~

kB

(6π2Nc)
1/3

TD = up,g,A
~
kB

(6π2na)
1/3 = (

3∑
i=1

1

3T 3
D,i

)−1/3, (2.26)

where na is the number density of atoms, Nc is the number of atoms in a primitive

cell, and Vc is the volume of a primitive cell. Here di/V
1/3
c is only a function of the

ratio of lattice constants and the polarization, and the Debye temperature relates to

the ratio of the lattice constants rather than their absolute values. It is apparent that

if the lattice constant and other parameters are the same except the lattice type, the

order of magnitude of TD is TD(FCC) > TD(BCC) > TD(SC).
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Figure 2.4 compares the calculated and experimental Debye temperatures [2] (de-

termined from elastic constants or specific heat capacity measurements) of some crys-

tals. The force constants used in the calculation are from the combinative rule and

Table 2.1. The overall agreement is good. The force constant for metals are calcu-

lated according to Eq. (2.17). It is found that m = 8 gives good agreement with

experimental values. Again, it is found that for metallic crystals, the force constant

can be reduced significantly by the long-range electrostatic interaction (by a factor

of about 5), which results in a low Debye temperature.
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Figure 2.4: Comparison of the predicted and measured Debye temperature for some

crystals. The force constants for metallic crystals are calculated according to Eq.

(2.17) (m is set to 8). The experimental values are from [2].
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2.4 Thermal Expansion and Grüneisen Parameter

The Grüneisen parameter has been used to represent the volume dependence of

the normal mode frequencies. The overall Grüneisen parameter γG is defined as [14]

γG =

∑
κ,α γG,κ,αcvα(κ)∑

κ,α cvα(κ)
, γG,κ,α = −∂ ln ωκ,α

∂ ln V
, (2.27)

where the subscript α denotes the branch of a normal mode, cv is the heat capacity per

normal mode, and V is the volume. In the Debye approximation, all the normal-mode

frequencies scale linearly with the Debye temperature TD, and therefore [14]

γG = γG,κ,α = −∂ ln ωD

∂ ln V
. (2.28)

That is, γG represents the relative shift of the Debye angular frequency with respect

to the volume.

We consider a crystal containing only one bond type. According to Eq. (2.23)

and (2.28), since the Debye frequency ωD ∝ Γ1/2 and the volume V ∝ r3
e , we have

γG = − d ln Γ

6d ln re

. (2.29)

Note that γG only relates to the bond. Zallen etc. [50] defined a “bonding-scaling

parameter” γ′G as

γ′G,i = − d ln Γ′i
6d ln r′i

, (2.30)

where Γ′i and r′i are the force constant and the equilibrium length of the bond i. For

the crystals containing only one bond type, the Grüneisen parameter γG is equal to

the bonding-scaling parameter γ′G.
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We can rewrite Eq. (2.30) in terms of a a small relative deviation fraction ε:

Γ′i(ε) ' Γ′◦(1− 6γ′Gε), (2.31)

where Γ′◦ is the initial equivalent force constant. It is apparent that γ′G represents

the intrinsic anharmonicity of a bond, i.e., the relative shift of the force constant

with respect to the bond length. It seems reasonable that the γ′G of each bond is

independent of other bonds.

We again consider the crystal containing one bond type to obtain the bond-scaling

parameter γ′G. Ruffa [51] developed a thermodynamic description of Morse oscillators

using a statistical treatment. Here a similar approach is applied for the Lennard-

Jones oscillators representing the interatomic potentials. Consider an assembly of

independent oscillators with the interatomic potential of Eq. (2.9), of which the

natural angular frequency ω = (Γ/µ)1/2 (µ is the reduced mass of the oscillator). If

Eq. (2.9) is expanded in a Taylor series, the vibrational energy El and the mean

atomic separation 〈rl〉 of the motion with the principle quantum number l of this

oscillator can be expressed as [52]

El = ~ω(l +
1

2
)− Ce~2ω2(l +

1

2
)2, Ce =

5(m + n + 3)2

48ϕ◦mn

〈rl〉 = r◦ + Crr◦~ω(l +
1

2
), Cr =

3(m + n + 3)

2ϕ◦mn
. (2.32)

Then, we have (see the derivation in Appendix A)

γ′G ' γ′G,◦[1 + CekBT
f1(xD)

f(xD)
], γ′G,◦ =

m + n + 3

6

f(xD) =

∫ xD

0

x3dx

ex − 1
, xD = TD/T

f1(xD) =

∫ xD

0

x4(1 + ex)dx

(ex − 1)2
. (2.33)
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Typically, the vibration energy is much smaller than the dissociation energy and

CekBT is small, so the temperature dependence of γ′G is weak. At high temperatures,

γ′G will reach γ′G,◦. It is very interesting to note that γ′G,◦ only depends on m and n,

or the bond type.

(i) Ideal ionic bonds. The attractive potential is dominated by the electrostatic

potential, and the lattice summation of the long-range electrostatic interactions does

not change n (the Madelung term), thus n = 1. The repulsive term arises from

the full-filled shells and the Pauli exclusion principle. The measurements for typical

ionic bonds show m = 6 ∼ 10 [14]. The midpoint m = 8 is a reasonable choice for

the estimation, therefore γ′G,◦ = 2.0. In fact, γ′G,◦ = 2.0 agrees well with the high

temperature γG values of many typical ionic crystals with one bond type [49, 2].

(ii) van der Waals interactions. The attractive term arises from the interaction

between dipoles and varies as 1/r6, that is, n = 6. The widely-used 12-6 Lennard-

Jones potential chooses m = 12 for the repulsive term. However, it is found that

m = 12 makes the repulsive term very steep [32]. m = 12 gives γ′G,◦ = 3.5, a much

higher value than the measured results. For example, at high temperatures, γG of Ne,

Ar, Kr, and Xe are 2.76, 2.73, 2.84, 2.65 [2], respectively. Considering the repulsive

term of van der Waals interaction arises from the same mechanism (i.e., the filled

outer shell) as in an ionic bond, it is reasonable to choose the same value 8 for m.

This choice gives γ′G,◦ = 2.83, which agrees much better with the above experimental

results.

(iii) Non-polarized covalent bonds. The attractive term is due to the electrostatic

interaction, therefore, n = 1. For m, the case is more complicated, because the
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distribution of valence electrons differs substantially from that in isolated atoms or

ions. The repulsive term includes the electrostatic term and the term due to the Pauli

exclusion principle. In fact, the covalent bond is more appropriately described by the

Morse potential [32]

ϕ = ϕ◦[e−2a◦(r−r◦) − 2e−a◦(r−r◦)]. (2.34)

Ruffa [51] suggested an empirical relation: a◦r◦ = (m + 4)/5. For typical covalent

bonds, a◦r◦ ' 1.0 ∼ 1.2, thus m ' 1 ∼ 2. Since m > n, we choose m = 2 and obtain

γ′G,◦ = 1.0. This value is also in accord with the relation Γr6 = constant for covalent

bonds, as suggested by Herzberg [40].

The covalent bond between atoms with different electronegativities is partially

polarized (ionic bonds can also be considered highly polarized covalent bonds). Using

the relation of the percent of the ionic character c proposed by Pauling [45], γ′G of a

polarized bond can be given as

γ′G = γ′G,AB = (1− c)γG,cov + cγ′G,ion, c = 1− e−(χA−χB)2/4, (2.35)

where γ′G,cov and γ′G,ion represent the bond-scaling parameters of a non-polarized co-

valent bond and the ideal ionic bond, respectively. Equation (2.35) together with Eq.

(2.33) can also be used for the rough estimation of m in an interatomic potential:

m ' 8− 6e−(χA−χB)2/4. (2.36)

(iv) Metallic bonds. Though metallic crystals also include ions, they are very

different from ionic crystals. The metals can be treated as ions immersed in a sea of

free electrons [14]. Thus, the interactions between ions can be treated as the summa-

tion of the bare interactions between ions and the electron-ion interactions. Both the
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repulsive term and attractive term include the long-range electrostatic interactions.

However, due to the screening effects of free electrons, the interaction between ions

decays faster than the pure coulomb interactions, thus, m > 1 and n ≥ 1 (due to the

attractions of ions to free electrons, repulsive term decays faster than the attractive

term). The derivation of γ′G for metallic bonds is complicated. To compare it with

experimental results, one also needs to include the contribution from the free elec-

trons (it may be small at high temperatures). However, since the screening effects

increase with the increasing electron number density [14], we would expect that in

the metals with high electron number density, m ' 8 and 1 ≤ n ≤ 6. For simplicity,

in this work we set m = 8 and n = 1 (the same values for ionic bonds). The resulting

γG = 2.0 is close to the experimental results of many metals (the alkali metals have

a γG close to 1.2, due to the poor screening effects).

(v) Other interactions. Some other interactions, e.g., ion-dipole interaction, may

exist in some crystals. These interaction may be considered as the cross terms of the

above interactions. Using the combinative rule for potentials [Eqs. (2.8) and (2.7)],

we can have

m =
(m1 + m2)

2
, n =

(n1 + n2)

2
, γ′G =

(γ′G,1 + γ′G,2)

2
, (2.37)

where the subscripts 1 and 2 denote the individual interactions.

It can be seen that the order of magnitude of γ′G for bonds is γ′G(van der Waals

bond) > γ′G(ionic bond) > γ′G(polarized covalent bond) > γ′G(non-polarized covalent

bond). Figure 2.5 compares the calculated high-temperature Grüneisen parameters

of crystals containing only one bond type with the experimental results (at the Debye
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temperature) [2], and the overall agreement is good. Note that for ionic crystals,

Grüneisen parameters are slightly overestimated. One reason is that the temperature

at which the measurements are performed is not high enough. For example, γG of

NaCl at the Debye temperature is 1.57, but at 800 K, its value is 1.76 [53], compared

to 1.71 given by Eq. (2.35). Another possible reason is that c in Eq. (2.35) determined

by Pauling is not very accurate.
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Figure 2.5: Comparison of predicted high temperature Grüneisen parameters with

the experimental results at the Debye temperatures, for some crystals [2].

Note that Eq. (2.30) is valid for the equivalent force constant Γ, so the Grüneisen

parameter γG of a crystal can be obtained by evaluating the equivalent γ′G of the

equivalent bond.

For two parallel bonds, Eqs. (2.20) and (2.31) lead to

γ′G =
Γ10

Γ10 + Γ20

γ′G,1 +
Γ20

Γ10 + Γ20

γ′G,2, (2.38)

42



where Γ10 and Γ20 represent the equilibrium force constants of bond 1 and 2. That

is, the equivalent γ′G of the parallel bonds is the summation of the γ′G,i of the bonds

weighted by the fraction of force constants.

Similarly, for two bonds in series, the equilibrium requirement gives

ε1 =
Γ20(r1 + r2)

(Γ10 + Γ20)r1

ε, ε2 =
Γ10(r1 + r2)

(Γ10 + Γ20)r2

ε, (2.39)

and Eqs. (2.19) and (2.31) lead to

γ′G = (
Γ20

Γ10 + Γ20

)2 r1 + r2

r1

γ′G,1 + (
Γ10

Γ20 + Γ10

)2 r1 + r2

r2

γ′G,2. (2.40)

Equation (2.40) shows the equivalent γ′G is related not only to the force constants

and γ′G,i, but also to the bond lengths. Note when ε1 = ε2 = ε (homogeneous

deformation), Eq. (2.40) can be reduced to

γ′G = (
Γ20

Γ10 + Γ20

)γ′G,1 + (
Γ10

Γ20 + Γ10

)γ′G,2, (2.41)

which does not relate to the bond lengths.

Assuming r1 ' r2 and γ′G,2 is the smaller one, the dependence of γ′G/γ′G,2 on the

ratio of force constants Γ10/Γ20 is plotted in Fig. 2.6.

Figure 2.6 shows that, the equivalent γ′G of both the parallel and serial arrange-

ment is always higher than γ′G,2. For the parallel arrangement, γ′G,2 ≤ γ′G ≤ γ′G,1,

the stronger bond contributes more to the equivalent γ′G; when γ′G,1/γ
′
G,2 = 1, the

equivalent γ′G is independent on Γ10/Γ20. For serial configuration, γ′G,2 ≤ γ′G ≤ 2γ′G,1,

the weaker bond contributes more to γ′G. For equivalent γ′G, according to Eq. (2.40),

the lowest value 2γ′G,1γ
′
G,2/(γ

′
G,1 + γ′G,2) is achieved when Γ10γ

′
G,1 = Γ20γ

′
G,2, and the

mismatch of Γiγ
′
G,i of neighboring bonds causes an increase in the anharmonicity.
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To increase anharmonicity and reduce the sound velocity, the serial arrangement is

preferred.
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Figure 2.6: Variation of ratio of the equivalent bond-scaling parameter to the smaller

bond-scaling parameter of the bonds γ′G/γ′G,2 with respect to the ratio of the force

constants Γ10/Γ20. The symbols P and S denote the parallel and serial arrangements.

2.5 Prediction of Thermal Conductivity

Using the relations for γG, α and TD, when ωc is comparable with ωD, the thermal

conductivity can be readily calculated using the Slack relation. The predicted thermal

conductivities of some crystals at high temperatures are listed in Table 2.2 and shown

in Fig. 2.7(a), and the measured values and the values calculated by Slack [2] are

also given. Note Slack used TD,∞ calculated from the phonon density of states Dp,

which is different from the measured TD listed in Table 2.2. Table 2.2 shows that the

thermal conductivities and the Debye temperatures estimated by our model agree well
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Figure 2.7: Comparison of the predicted lattice thermal conductivity of some compact

crystals with the experimental results.

with the experimental results and the Slack results, but the Grüneisen parameters

are normally overestimated in our model, as discussed in Section 2.4. The average

mean square error between the estimated values and the experimental results is about

20%. Slack used TD,∞ along with the experimental γG (but 0.7 was used for Ge, Si,

and SiC for better agreement with the experiments [2]), both of which are normally

slightly lower than the values estimated in our model. Note that we also predict the

lattice thermal conductivity of Al and Pt, by only considering the phonon-phonon

scattering. The crystalline metals normally have a low lattice thermal conductivity,

not only due to the strong scattering of phonons by free electrons, but also due to

their large Grüneisen parameters and small force constants (caused by long-range

electrostatic interactions).
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Table 2.2: Predicted thermal conductivities and parameters of some crystals at given

temperatures. The experimental results [2, 14] are shown in the parentheses, and the

calculated results by Slack are shown in the brackets. Note that Slack used TD,∞

determined from the phonon density states, which is different from the experimental

TD listed here. Also Slack used the γG derived from experiments except diamond,

SiC, Ge, GaAs, and BP (he chose 0.7 for these crystals for better agreement with the

experiments). The values of m used in the calculations are all estimated using Eq.

(2.36), rather than from the experimental results.

Crystals T (K) TD Nc γG kp (W/m-K)

Ar 84 94 (85) 1 2.83 (2.73) 0.5 (0.4)[3.8]

Kr 66 87 (73) 1 2.83 (2.84) 1.1 (0.5)[0.4]

Diamond 300 2183 (2230) 2 1.0 (0.9) 1292 (1350)

Ge 235 382 (360) 2 1.0 (0.76) 95 (83)[89]

Si 395 584 (625) 2 1.0 (0.56) 76.7 (115)[93]

Cu 300 339 (315) 1 2.0 14.4 (10b)

Pt 300 194 (230) 1 2.0 9.1 (6b)

GaAs 220 367 (346) 2 1.01 (0.75) 72 (81)[77]

CaF2 345 453(510) 3 1.89 (1.89) 7.0 (8.5)[9.1]

MgO 600 1034 (945) 2 1.68 (1.44) 53 (25) [28]

NaCl 230 382(330) 2 1.71(1.57) 11.1 (8.6)[6.3]

c-BN 300 1614 2 1.22 733 (748)

SiC 300 1212 (1079) 2 1.11 (0.76) 463 (490)[461]

BP 670 891 (982) 2 1.0 97.46 (110)[166]

PNa 300 890 2 1.16 329

CSea 300 706 2 1.0 327

a assuming the crystal has the similar structure as BN, and the bond length is calculated from the

combinative rule.

b the lattice conductivities are from reference [39]. They are obtained by subtracting the electrical

thermal conductivity (derived from Wiedemann-Franz law) from the total thermal conductivity.
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When ωc ¿ ωD, the thermal transport is dominated by the short-range acoustic

phonons and optical phonons. While the acoustic contribution can be calculated

using a relation similar to the Cahill-Pohl relation [54, 4], the optical part is difficult

to determine and it is comparable to the acoustic contribution [4, 29]. However, for

some special atomic structures, the phonon mean-free path is limited by the crystal

structure, and the thermal conductivities of such crystals often exhibit temperature-

independence above the Debye temperature. According to the kinetic relation [14]

k = nacvup,gλ/3(cv is the heat capacity per atom), if the phonon mean-free path λ

can be determined from the characteristics of the structure, the thermal conductivity

can also be easily calculated. This will be discussed in Chapter 3.

2.6 Summary and Conclusion

A simple atomic structure based model for the estimation of lattice thermal con-

ductivity of crystals at moderate and high temperature is proposed. When the critical

frequency ωc is comparable with the Debye frequency ωD, the thermal conductivity

is obtained on the basis of the Debye temperature and the Grüneisen parameter

calculated from the atomic configuration of the structure.

The calculation of the Debye temperature involves three steps: (i) estimation of

the force constant of arbitrary pair of interacting atoms on the basis of a phenomeno-

logical combinative rule and data listed in Table 2.1; (ii) simplification of the network

system of bonds using analogy with a spring system, and calculation of the equivalent

bonds; (iii) calculation of the Debye temperature using the equivalent bonds and the
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topology of the crystal.

The determination of the Grüneisen parameter consists of two steps: (i) estimation

of the bond-scaling parameter of each single bond; (ii) estimation of the equivalent

Grüneisen parameter using Eqs. (2.38) and (2.40) on the basis of the configuration

of bonds. It is found that when Γγ′G of the bonds match, the equivalent Grüneisen

parameter achieves its minimum.

This simple atomic structure-based model can be used to quickly estimate the

high-temperature thermal conductivity of crystals. On the other hand, some useful

insights into the design of materials with desired properties can be extracted.

According to Eqs. (3.10) and (2.26), we have

k =
4.0× 1012NlΓ

3/2δ

γ2
G〈M〉1/2N

7/6
c T

, (2.42)

where Nl is a constant related only to lattice type. Therefore, to increase the thermal

conductivity, one may increase the equivalent force constant Γ and lattice constant

a, while reducing the mean atomic weight 〈M〉, Nc, and the Grüneisen parameter

γG. Here FCC is expected to achieve a high thermal conductivity. The opposite

approaches can be used to achieve a low lattice thermal conductivity.

Evidently, molecular crystals will normally have a very low thermal conductivity

because of the small Γ, large γG and Nc.

For ionic and covalent diatomic crystals, γG = 2− exp(−∆χ2/4), then Eq. (2.43)

can be rewritten as

k =
4.0× 1012NlδΓ

3/2

[2− exp(−∆χ2/4)]2〈M〉1/2N
7/6
c

. (2.43)

For compact structures, δ may be set as the mean diameter of the atoms.
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Table 2.1 and Fig. 2.1(a) show that most metals have a low ΓAA,1 around 50

N/m. Even when they bond with F (which has the highest ΓAA,1), ΓAB,1 is expected

to be lower than 250 N/m. Also, metal elements normally have a heavy mass and

ionic bonds have a relatively high ∆χ. In comparison, covalent bonds may have

a higher ΓAB,1, lower ∆χ, and those nonmetallic elements with a high ΓAA,1 have

a relatively light mass. Thus, for high thermal conductivity, covalent crystals are

preferred. Among covalent crystals, the compounds of N and C are expected to have

a high thermal conductivity, since N and C have the highest ΓAA,1, moderate χ, light

masses, and possibly high bond orders. In general, the sequence of lattice conductivity

for crystals is: kp(non-polarized covalent crystal) > kp(polarized covalent crystal) >

kp(ionic crystal) > kp(molecular crystal), as shown in Fig. 2.7(a). Furthermore,

the oxidation states of the elements need to match and the mass difference should

be small to achieve a small Nc. Materials satisfying these conditions are expected

to have a high thermal conductivity, e.g., BN, AlN, BP and SiC, furthermore, it is

expected that PN, and CSe would have a high thermal conductivity if they could be

synthesized (listed in Table 2.2).

For thermoelectic materials or thermal insulators, lower phonon thermal conduc-

tivity is desired. In addition to the common strategies (e.g., using heavy atoms and

making a complex unit cell), the following may be used as a guide:

(i) Adding flexible structures on the transport path. Flexible structures with

bending or torsion motion often have a small Γ and high γG, thus they can both

reduce the sound velocity and increasing the anharmonic scattering.

(ii) Making the bonds as perpendicular as possible to the transport path. This
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can reduce the projection of the force constant, and lower the Debye temperature.

(iii) Enlarging the mismatch of ΓγG of the neighboring bonds. Substituting some

bonds with bonds with higher γG, or substituting some bonds to increase the mis-

match of force constant, can increase the anharmonic scattering. For example, by

replacing some covalent pairs with pairs with charges or larger electronegativity dif-

ference, the phonon thermal conductivity can be reduced, as observed by Cahill, et

al. [54].

(iv) Arranging the bonds with high γG in series. This will help increase the

anharmonic scattering.

This simple atomic structure model allows for the quick estimation of thermal

transport properties, and can be used as a guide for the design of new materials with

a desired lattice conductivity.
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Chapter 3

Phonon Transport in Linked-Cage

Crystals: Metal-Organic

Frameworks

There exist many special structures that can limit the phonon mean-free path at

high temperature. Some special substructures act as scatterers and limit the phonon

mean-free path to be the distance between them. Here we discuss the linked-cage

structure, which is common for nanoporous crystals, e.g., MOFs, zeolites, and many

molecular crystals.
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3.1 Linked-Cage Crystals: Metal-Organic Frame-

works

The metal-organic frameworks (MOFs), a sub-family of the nanoporous crystals,

are characterized by metal-oxygen cages (vertices) connected by organic bridges.[15,

55, 56, 57] MOFs currently attract intensive interest for their excellent potential

for storing and separating gases (e.g., N2, Ar, CO2, CH4, and H2).[58, 59, 60] By

changing the organic bridge and/or its functionalization, new MOFs can be designed

and synthesized without changing the underlying topology. Recent work has focused

on their structural properties,[55] adsorption characteristics,[55, 58, 59, 60] and the

diffusion of light gases through them,[61] but their thermal transport characteristics

have yet to be considered. Knowledge of the thermal conductivity of a MOF is crucial

for predicting its behavior during the adsorption/desoprtion of gases and in other

potential applications. Furthermore, the variety of MOFs available points towards

the possibility of systematically designing materials with specified thermal properties.

To prepare for such molecular design, an understanding of the relationship between

a MOF structure and its thermal conductivity is required.

We report the investigation of the thermal transport in MOF-5 (shown in Fig. 3.1),

which is the smallest of a series of MOFs that have a simple cubic crystal structure.[55]

It is built from zinc-oxygen tetrahedra connected by 1,4-benzenedicarboxylate (BDC)

bridges. It has a low density (610 kg/m3), a large free cage volume (79%), and a pore

diameter of 11.2 Å.[55]

In this investigation, MD will be used to predict the thermal conductivity of

52



Phenylene

bridge

C3

Zn

Carboxylate

moiety

   Zn4 O (CO2)6 

    cage unit

Oc

O

C1

C2

Figure 3.1: MOF-5 unit cell: 8[Zn4O(BDC)3]. This is the 1 × 1 × 1 system. The

cage is built from four zinc-oxygen tetrahedra (ZnOcO3), which share the Oc atom

(located at the center of the cage). The O-C1-O group forms a carboxylate moiety, to

which a phenylene group is attached. Note the distinction between the three carbon

sites. The carboxylate moieties on either side of a phenylene ring are perpendicular.

Thus, eight cages and twelve bridges are required to form the simple cubic unit cell,

which has a lattice constant of 25.85 Å. The formal charges on the oxygen atoms at

the center of the cage (Oc), the carboxylate-oxygen atoms (O), and the zinc atoms

are -2, -0.5, and +2. The other species are charge neutral.
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MOF-5. The data required for a BTE study is currently unavailable.

We first describe the development of the classical interatomic potentials (force

fields) needed to perform MD simulations of MOFs. Using these potentials, the

thermal conductivity of MOF-5 is predicted between temperatures of 200 K and

400 K. The thermal conductivity is decomposed into components associated with

short- and long-range acoustic phonons and optical phonons. A model is formulated

to explain the observed weak temperature dependence, and a critical frequency is

introduced to separate the contributions of the two acoustic components. Finite size

and quantum effects on the thermal conductivity prediction are also discussed. The

relationship between the MOF-5 structure and its thermal behavior is explored, and

a simplified structural model is proposed.

3.2 Classical Interatomic Potentials for MOF-5

To model the dynamics of MOF-5, the development of potentials for different

interactions in MOF-5 is required. Previous MD studies have focused on the inter-

action of gases with the structure, and modelled the crystal as being rigid.[61] The

main challenge in the construction of a potential set is related to the oxygen atom in

the carboxylate moiety, which has a charge of -0.5. While potentials exist for Zn-O

systems with formal charges,[62] parameters are not available for this reduced charge

state. To construct the potentials, we fit selected algebraic expressions to energy

surfaces obtained from ab initio calculations.

The ab initio calculations are performed with Gaussian 98.[63] First, to determine
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Table 3.1: Structural parameters predicted by different ab initio methods/basis sets

and the experimental data[15]. B3YLP/ 6-311g** gives the best agreement with the

experimental data based on a sum of squares calculation. S2 =
∑9

i=1[(si−sexp)/sexp]
2,

where the summation is over the bond lengths and angles listed.
Bond lengths (Å) Angles (degree) S2

(10−3)

Method/ Basis Oc-Zn Zn-O O-C1 C1-C2 C2-H Oc-Zn-

O

Zn-O-

C1

O-C1-

C2

C2-

C3-H

RHF/ sto-3g* 1.877 1.865 1.281 1.549 1.085 113.5 127.6 116.1 108.8 6.23

RHF/6-311g** 1.992 1.962 1.241 1.504 1.080 109.5 133.6 117.2 108.8 1.53

RHF/6-311+g** 1.996 1.981 1.242 1.506 1.080 109.5 133.3 117.1 108.8 1.95

RHF/LANL2DZ 2.044 1.973 1.271 1.504 1.077 108.9 135.3 119.4 109.1 4.81

B3YLP/6-311g** 1.972 1.953 1.262 1.510 1.088 110.8 131.7 117.8 111.1 0.76

B3YLP/6-311+g** 1.982 1.980 1.265 1.512 1.087 110.8 131.6 117.8 111.0 1.40

B3YLP/LANL2DZ 2.037 1.988 1.295 1.514 1.091 110.0 133.6 118.8 110.5 4.92

Experiment 1.936 1.941 1.252 1.498 1.090 111.1 132.3 118.1 109.5

the appropriate method/basis set, the MOF-5 structure is relaxed using common

formulations. The resulting structures are then compared to the experimental data,

as shown in Table 3.1. Based on a sum of squares error calculation (compared to

the experimental data), B3YLP/6-311g** is found to be most suitable. The energy

surface of MOF-5 is then scanned using B3YLP/6-311g** by changing bond lengths

and angles. The classical potentials are fitted to this data using the GULP software

package.[64]
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Table 3.2: Interatomic potentials for MOF-5. r, θ and φ are distance, bond angle

and torsion angle. The C2 and C3 atoms are treated in the same way in the pair and

angular potentials (denoted as C2/3). The cutoff radius of electrostatic terms is 10

Å. For all other terms, only bonded interactions are considered.

Interaction Potential Model Parameters

Pair

Oc-Zn 1
r qOcqZn + A exp(− r

r◦
)− Cr−6 A = 770.127 eV, r◦ = 0.357 Å, C =

0.00088 eV-Å6

Oc-O 1
r qOcqO

O-Zn 1
r qOcqZn + A exp(− r

r◦
)− Cr−6 A = 529.7 eV, r◦ = 0.352 Å, C = 0.0

eV-Å6

Zn-Zn 1
r qZnqZn

O-O 1
r qOqO

O-C1 ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 4.624 eV, a = 2.337 Å
−1

, r◦ =

1.28 Å

C1-C2 ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 5.439 eV, a = 1.669 Å
−1

, r◦ =

1.482 Å

C2/3-C2/3 ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 8.196 eV, a = 1.680 Å
−1

, r◦ =

1.388 Å

Angular

C2/3-C2/3-C2/3 1
2kθ(cos θ − cos θ◦)2 kθ = 11.732 eV, θ◦ = 120◦

O-C1-O 1
2kθ(cos θ − cos θ◦)2 kθ = 11.0 eV, θ◦ = 120◦

C1-C2-C3 1
2kθ(cos θ − cos θ◦)2 kθ = 9.599 eV, θ◦ = 120◦

Zn-O-C1 1
2kθ(cos θ − cos θ◦)2 kθ = 11.0 eV, θ◦ = 132.3◦

Torsional

C2/3-C2/3-C2/3-

C2/3

kφ[1− cos(φ− φ◦)] kφ = 1.735 eV, φ◦ = 0◦

O-C1-C2-C3 kφ[1− cos(φ− φ◦)] kφ = 1.587 eV, φ◦ = 0◦

O-C1-O-Zn kφ[1− cos(φ− φ◦)] kφ = 1.732 eV, φ◦ = 0◦
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The set of interatomic potentials includes two-body (pair), three-body (angular),

and four-body (torsional) terms, as presented in Table 5.3. The C2 and C3 atoms

are treated in the same way in the pair and angular potentials (denoted as C2/3).

The C2/3-C2/3-C2/3 bending and C2/3-C2/3-C2/3-C2/3 torsion potentials are taken

from Chelli et al.[65] Other than electrostatics, no two-body interactions are assumed

for the non-bonded pairs of Oc-O, O-O, and Zn-Zn. These interactions are best

captured with the three- and four-body potentials. The hydrogen atoms are not

directly included in the model. The C3-H group is taken to be a rigid entity (by

adding the hydrogen mass to the carbon mass), a common treatment for hydrogen

atoms in MD.[32]

The MOF-5 structure is then relaxed under the new potentials with GULP. The

resulting structural parameters are shown in Fig. 3.2, where they are compared

with the experimental data. The average difference between the predicated data and

the experimental data is 2%. The MOF-177, IRMOF-11, and IRMOF-16 structures

have also been successfully relaxed in GULP using these potentials, indicating their

transferability to other MOFs.

To further validate the potential, we compare the MD predicted infrared (IR)

spectrum and that from experimental NIR-FT (Near InfraRed-Fourier Transform)

measurements.[3] The range of the NIR-FT data is from 75 Trad/s to 375 Trad/s

(400 cm−1 ∼ 2000 cm−1). The MD predicted IR spectrum is obtained by taking the

Fourier transform of the electrical flux autocorrelation function:[66, 67]

I(ω) ∝
∫ ∞

0

〈dM(t)

dt
· dM(0)

dt
〉 cos(ωt)dt, (3.1)
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Figure 3.2: MOF-5 structure produced by optimization with GULP using the new

potentials and the experimental data (in parentheses). The lengths are in Angstrom

and the angles are in degrees.

where

dM(t)

dt
=

N∑
i=1

qiui(t). (3.2)

Here, I(ω) is the spectral density, ω is angular frequency, M(t) is the summation

of the individual dipole moments of all the atoms in the system, t is time, N is the

number of atoms in the system, qi is the charge on the ith atom, and ui(t) is the

velocity of ith atom. In Fig. 3.3, the two IR spectra are shown and the main band

peaks are identified. The average deviation between the main band peaks predicted

by MD and the associated experimental data is 3.5%, which we take to be good

agreement.[68]
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Figure 3.3: IR spectrum calculated from MD and the experimental (NIR-FT) results.

The curves are normalized against the largest peak in each data set. The correspon-

dence between peaks is established by comparing the partial density of states of the

species calculated from MD (see Fig. 3.8) to the results of experiments,[3] and by

visual comparison of the two spectra. The 127/125 peak is related to vibrations of

the Oc atom, the 245/262 peak is associated with symmetric stretching of the car-

boxylate moiety, the 284/279 peak results from vibrations of the phenylene ring, and

the 306/297 peak is associated with asymmetric stretching of the carboxylate moiety.

3.3 Simulation Details

3.3.1 Logistics

All data used for the thermal conductivity predictions come from simulations

run in the NV E (constant mass, volume, and energy) ensemble. Unless noted, the

simulation cell contains eight unit cells in a 2×2×2 arrangement (2,624 atoms). Size

effects will be discussed in Section 3.3.2.
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The Verlet leapfrog algorithm is used to integrate the equations of motion with a

time step of 0.2 fs. The Wolf method is applied to model the electrostatic interactions

according to:[69]

qiqj

rij

' qiqjerfc(βrij)

rij

− lim
rij→Rc

{
qiqjerfc(βrij)

rij

}
, (3.3)

where rij, β, and Rc are the distance between atoms i and j, the damping parameter,

and the cut-off radius. The Wolf method can significantly reduce the computation

time compared to the traditional Ewald sum. Demontis et al.[70] suggest taking

Rc ≥ 5b and β ' 2/Rc, where b corresponds to the largest of the nearest-neighbor

distances between particles of opposite charge. For MOF-5, b ' 2 Å(see Fig. 3.2).

Thus, we choose Rc to be 10 Å, and β to be 0.2 Å
−1

. To find the zero-pressure

lattice constant as a function temperature, simulations are run in the NPT (constant

mass, pressure, and temperature) ensemble, and an average was taken over 20 ps of

data. The Nose-Hoover thermostat and the Berendsen barostat are used to control

the system temperature and pressure.[71]

3.3.2 Quantum effects

Below the Debye temperature, TD, phonon mode populations in a quantum sys-

tem are temperature dependent, but almost temperature independent in a classical

system, such as MD.[35] By running the current simulations at temperatures above

the Debye temperature, errors that may result from ignoring quantum effects when

comparing to experimental data will be minimized.
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The Debye temperature for a monatomic crystal is defined as [46]

TD =
~
kB

up,g(6π
2n)1/3, (3.4)

where ~ is the Planck constant divided by 2π, kB is the Boltzmann constant, up,g

is the sound speed (an average phonon group velocity) and n is the atomic number

density (N/V ). For polyatomic crystals, Slack[2] ignored the optical branches and

introduced a factor 1/N
1/3
c to Eq. (3.4) (Nc is the number of atoms in the unit

cell). For MOF-5, where the mass and bond differences are not large between species,

the correction to Eq. (3.4) is expected to be smaller than that proposed by Slack.

Using Eq. (3.4) as given will thus somewhat overestimate the Debye temperature

and provide a safe estimate of the temperatures for which the simulations will be

comparable to experimental data.

To find the Debye temperature, a sound speed is required, which can be obtained

from MD simulations using the following procedure. In the NV E ensemble, the

adiabatic compressibility, κs, is given by [72]

κs =

[
2

3
P + nkBT + 〈

∑
i,j

∂2ϕ

∂ri∂rj

〉 − N

nkBT
〈(δP )2〉

]−1

, (3.5)

where P is the pressure, ϕ is the total potential energy, and δP is the root-mean-

square pressure fluctuation, i.e., 〈(δP )2〉 = 〈(P − 〈P 〉)2〉. At a temperature of 300 K,

the adiabatic compressibility is found to be 7.09 × 10−10 Pa−1. With the adiabatic

compressibility, the longitudinal sound velocity up,g,L and transverse sound velocity

up,g,T can be determined from[49, 73]

up,g,L =

[
3(1− 2ν)

κsρ

]1/2

(3.6)
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up,g,T =

[
3(1− 2ν)

2(1 + ν)κsρ

]1/2

, (3.7)

where ρ is density and ν is the Poisson ratio. For most solids, ν ' 0.3. An average

sound speed, up,A, can be given by 3up,A
−1 = up,g,L

−1 + 2up,g,T
−1, which yields up,A=

1,184 m/s for MOF-5 at a temperature of 300 K, a reasonable value. Using Eq.

(3.4) (replacing up,g with up,A), we have TD ' 102 K. We will consider temperatures

between 200 K and 400 K (at 50 K intervals), well above the estimated TD.

3.3.3 Thermal Conductivity Prediction

The thermal conductivity, kp, is predicted using the Green-Kubo (G-K) method,

where, for an isotropic material, it is given by [74]

kp =
1

kBV T 2

∫ ∞

0

〈ẇ(t) · ẇ(0)〉
3

, (3.8)

where ẇ(t) is the heat current vector, and 〈ẇ(t) · ẇ(0)〉 is the heat current autocor-

relation function (HCACF). A slow-decaying HCACF indicates that the heat current

fluctuations can spread over a long time before vanishing (i.e., a long phonon relax-

ation time). The heat current is given by

ẇ =
d

dt

N∑
i=1

riEi, (3.9)

where ri and Ei are the position vector and the total energy of particle i.

At the beginning of a simulation for a thermal conductivity prediction, the system

is run in the NV T ensemble to set the temperature. After 20 ps, when the system

has reached equilibrium, the simulation is switched to run in the NV E ensemble, and

the HCACF is obtained over 200 ps. At each temperature, three runs are performed
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Figure 3.4: (a) Decay of the normalized HCACF for MOF-5 and (b) its integral (the

thermal conductivity) at a temperature of 300 K.

unless noted. The thermal conductivity is then obtained from the integral of the

HCACF.[29] A running average is applied to the integral to obtain a smooth behavior,

allowing a convergence region to be defined. The decay of the normalized HCACF

at a temperature of 300 K is shown in Fig. 3.4(a), and its integral, the thermal

conductivity, is shown in Fig. 3.4(b). The HCACF vanishes after 6 ps. The MOF-5

HCACF has high frequency oscillations, believed to be related to optical phonons.[29]
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Table 3.3: Variation of the predicted thermal conductivity of MOF-5 with respect to

the simulation system size (number of cells and total number of atoms) and temper-

ature. The number in the parentheses is the number of simulation runs and averaged

to get the reported value and the uncertainty. The uncertainty for the 3 × 3 × 3

system are estimated from the fluctuation of the HCACF in the converged region of

the integral.

kp (W/m-K)

Simulation System Size

T (K) 1× 1× 1 (328 atoms) 2× 2× 2 (2,624 atoms) 3× 3× 3 (8,856 atoms)

200 0.157 ± 0.015 (3) 0.287 ± 0.041 (3)

250 0.167 ± 0.013 (3) 0.293 ± 0.027 (3)

300 0.165 ± 0.007 (3) 0.308 ± 0.024 (4) 0.288 ± 0.044(1)

350 0.150 ± 0.008 (3) 0.316 ± 0.008 (3) 0.291 ± 0.052 (1)

400 0.146 ± 0.008 (3) 0.317 ± 0.008 (3)

3.3.4 Simulation-Size Effects

In a small simulation cell, there may not be enough phonon modes to estab-

lish scattering and transport representative of the associated bulk system.[28] Such

size effects will lead to a thermal conductivity different from the infinite size (bulk)

limit.[31, 30] The MD predicted thermal conductivities of MOF-5 are shown in Table

3.3, for simulation systems containing 1×1×1, 2×2×2 and 3×3×3 unit cells (328,

2624, and 8856 atoms). The thermal conductivity of the 1 × 1 × 1 system is much

lower than that of the larger systems (by a factor of about two). The predictions for

the 2×2×2 system are very close to those for the 3×3×3 system at temperatures of

300 K and 350 K, indicating that the 2× 2× 2 system will suffice to give a converged
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Figure 3.5: Temperature dependence of the thermal conductivity of MOF-5 predicted

by MD. The Slack relation [Eq. (3.10)], using γG = 0.45 to fit the predicted thermal

conductivity value at T = 300 K] and the Cahill-Pohl relation [Eq. (4.13)], using the

MD predicted sound speeds] are also shown.

value.

3.4 Numerical Results and Analysis

3.4.1 Thermal Conductivity and Temperature Dependence

The 2 × 2 × 2 data from Table 3.3 are plotted in Fig. 3.5. Also included in the

plot are the thermal conductivity models of Slack[2] and Cahill and Pohl.[54]

Slack proposed that the thermal conductivity of crystals at temperatures above

that of the experimental peak value can be approximated by the relation [39, 2]

kS =
3.0× 104〈M〉T 3

D

Tn1/3γ2
GN

2/3
c

, (3.10)

65



where 〈M〉 is the mean atomic weight of the atoms in the unit cell (kg/kmol) and γG is

the mode-averaged Grüneisen constant. This relation indicates that the thermal con-

ductivity will decrease with increasing temperature as T−1 (other factors such as γG

have a weak temperature dependence [39]), a prediction consistent with experimental

data for many crystals.[39] The decrease in the thermal conductivity is a result of a

decrease in the phonon mean-free path due to an increase in inter-phonon scattering,

which itself is a result of the increasing anharmonicity brought about by the higher

temperatures.[75, 76] The Slack model is plotted in Fig. 3.5 by fitting γG to the MD

predicted thermal conductivity at a temperature of 300 K. The resulting value of γG

is 0.45, lower than typical values between unity and two. The fit is primarily intended

to allow for comparison between the trend of the Slack model and the MD data, and

not as a prediction of γG.

Cahill and Pohl[54] developed a model for the thermal conductivity of amorphous

materials by assuming that energy transfer only occurs between neighboring vibra-

tional entities, so that the mean free path of all phonons is equal to one half of their

wavelength. The thermal conductivity in this model is given by

kCP =
(π

6

)1/3

kBn2/3

3∑
i=1

up,g,i

(
T

TD,i

)2 ∫ TD,i/T

0

x3ex

(ex − 1)2
dx, (3.11)

and has been interpreted as a minimum solid phase thermal conductivity.[2] It is

plotted in Fig. 3.5. The summation in the expression for kCP is over the three

vibration polarizations. The thermal conductivity predicted by Eq. (4.13) increases

with increasing temperature, as more phonons modes are excited (a quantum effect,
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related to the specific heat). When T À TD, Eq. (4.13) reaches its classical limit,

kCP,classical =
1

2

(π

6

)1/3

kBn2/3

3∑
i=1

up,g,i. (3.12)

The thermal conductivity of MOF-5 at a temperature of 300 K is 0.31 ± 0.02

W/m-K, a very low value for a crystal. This value can be compared with the thermal

conductivities of other nanoporous crystals, such as MD predictions for the zeolites

sodalite (3.5 W/m-K), faujasite (2.1 W/m-K), and zeolite-A (1.7 W/m-K)[29], and

experimental results for Tl9BiTe6 (0.39 W/m-K) [77] and amorphous silica (1.4 W/m-

K) [78].

The thermal conductivity of MOF-5 is almost temperature independent. A power-

law fit (k ∝ T ξ) yields a ξ value of 0.16, different from the T−1 high temperature

dependence predicted by Eq. (3.10) and kinetic theory.[39] The behavior is more

similar to that of an amorphous material. This result suggests that in the temperature

range of 200 K to 400 K, the mean free path of most phonons in MOF-5 has been

minimized. The quantitative difference between the MD prediction and the CP model

will be discussed in the next section.

3.4.2 Thermal Conductivity Decomposition

A two-stage monotonic decay of the HCACF has been reported for crystals with

a one-atom unit cell.[79, 80] In crystals with larger unit cells, optical phonons have

been found to add high-frequency oscillations to the HCACF.[29] As such, we can

decompose the HCACF of a crystal with a multi-atom unit cell into three parts
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[acoustic short-range (A, sh), acoustic long-range (A, lg), and optical (O)] as[29]

〈ẇ(t) · ẇ(0)〉
3

= AA,sh exp(−t/τA,sh)+AA,lg exp(−t/τA,lg)+
∑

i

BO,i exp(−t/τO,i) cos(ωO,it).

(3.13)

The coefficients A and B represent the strength of a given mode. The summation in

the optical term corresponds to a sum over the peaks in the frequency spectrum of

the HCACF.[29] Then, from Eq. (3.8), the thermal conductivity can be decomposed

into three parts as

kp =
1

kBV T 2

(
AA,shτA,sh + AA,lgτA,lg +

∑
i

BO,iτO,i

1 + τ 2
O,iω

2
O,i

)

≡ kp,A,sh + kp,A,lg + kp,O. (3.14)

We first identify the optical phonon parameters by fitting to the Fourier transform

of the HCACF. The resulting kp,O values for the three simulation runs are then av-

eraged. The fit optical component of the HCACF is then subtracted from the raw

HCACF. The resultant HCACFs for the three simulation runs are then averaged and

integrated, and the acoustic components are obtained by fitting the integral. The

results for the decomposition of MOF-5 are listed in Table 3.4 for all the tempera-

tures considered, and are plotted in Figure 3.6. By comparing with Table 3.3, we

see that the decomposition predicts a total thermal conductivity within 5% of the

value obtained from the direct integration method. Note that kp,O contributes signif-

icantly to the thermal conductivity. This contribution is often ignored in modelling

efforts due to the flatness of the associated phonon dispersion branches.[33, 34, 75]

Such an assumption is justified for materials with a large thermal conductivity. [29]

For a crystal with a low thermal conductivity, such as MOF-5, the optical phonon
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Table 3.4: Thermal conductivity decomposition for MOF-5 and the temperature de-

pendence of the components.

T (K) kp (W/m-K) kp,A,lg (W/m-K) kp,A,sh (W/m-K) kp,O (W/m-K)

200 0.298 0.051 0.141 0.106

250 0.306 0.042 0.151 0.113

300 0.305 0.029 0.160 0.116

350 0.314 0.025 0.161 0.128

400 0.318 0.021 0.142 0.155

ξi (kp,i ∝ T ξi) 0.09 -1.30 0.06 0.54

contribution cannot be ignored. A similar result was found for silica structures.[29]

The components of the thermal conductivity have different temperature depen-

dencies: kp,A,sh is almost temperature independent (ξ = 0.06), and is close to kCP

at all temperatures (as was found for a series of silica structures[29]); kp,O increases

when the temperature increases (ξ = 0.54), and kp,A,lg decreases noticeably with in-

creasing temperature (ξ = −1.30). Note that only kp,A,lg varies with temperature

approximately as T−1. For MOF-5, a crystal with a low thermal conductivity, the

relative contribution of the long-range acoustic phonons is small and the temperature

dependence of the total thermal conductivity is thus weak. Only for those crystals in

which long-range correlations dominate the heat transfer (e.g., diamond, NaCl) will

the total thermal conductivity vary as T−1.

To develop a theoretical description of the acoustic portion of Eq. (4.12) (kp,A ≡

kp,A,sh + kp,A,lg), we begin by writing the thermal conductivity as a summation of the
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Figure 3.6: Variation of the thermal conductivity components of MOF-5 with respect

to temperature and the Cahill-Pohl relation [Eq. (4.13)]. The Cahill-Pohl relation

uses the temperature-independent sound speeds obtained in Section 3.3.2.

contributions of all the phonon modes as [76]

kp =
∑

κ

1

3
cv,κup,g,κλp,κ

=
∑
κ,A

1

3
cv,κup,g,κλp,κ +

∑
κ,O

1

3
cv,κup,g,κλp,κ

= kp,A + kp,O, (3.15)

where cv,κ, up,g,κ, and λp,κ, are the mode specific heat capacity, group velocity, and

mean free path. Under the Debye approximation, the contribution of the acoustic

phonons modes, kp,A, can be written as [34]

kp,A = kBn

3∑
i=1

up,g,i

(
T

TD,i

)3 ∫ TD,i/T

0

x4ex

(ex − 1)2
λp,i(x)dx, (3.16)

where the summation is over the three polarization branches, x is ~ω/kBT and TD,i

is ~ωD,i/kB (ωD,i is the Debye frequency for the ith branch). In general, the mean

free path is limited by boundary scattering, impurity scattering, and interphonon
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scattering.[34, 75] At high temperatures, interphonon scattering dominates. In the

MD simulations performed here, only interphonon scattering is present. To be physi-

cally meaningful, the mean free path of a phonon mode should be longer than one half

of its wavelength.[54] Starting from this idea, we construct a two-segment mean free

path model. When the phonon frequency is below a critical frequency, ωc, its mean

free path will vary according to the relaxation time model of Roufosse for moderate

and high temperatures (above TD).[75, 81] When the phonon frequency is above the

critical frequency, its mean free path is set to one half of its wavelength. Thus, we

get

λp,i(ω) =
up,g,i

Ai(1 + Biω2)ω2T
, ω < ωc,i,

Ai =
3× 103NAπaγ2

GkB

21/2〈M〉u3
p,g,i

, Bi =

(
4π

3

)2/3
5a2

12π2u2
p,g,i

=
πup,g,i

ω
, ωc,i ≤ ω ≤ ωD,i, (3.17)

where a is the mean interatomic distance (a = n−1/3) and NA is the Avogadro number.

To ensure a continuous λp,i(ω), ωc must satisfy

ωc,iAi(1 + Biω
2
c,i) =

1

πT
. (3.18)

For Bi ¿ π2A2
i T

2, we have

ωc,i ' 1

AiπT
. (3.19)

For MOF-5 at a temperature of 300 K and using up,A = 1, 184m/s, B is 9.2×10−27 s2,

and π2A2T 2 is 2.1 × 10−25 s2, so that the use of Eq. (3.19) is justified. At this

temperature, ωc is 2.2 Trad/s, much less than the Debye frequency (ωD = 13.4 Trad/s),

indicating that most acoustic phonons have the minimum mean free path.
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The critical frequency ωc decreases with temperature (for MOF-5, ωc at temper-

atures of 200 K, 250 K, 300 K, 350 K, and 400 K is 3.3 Trad/s, 2.6 Trad/s, 2.2

Trad/s, 1.9 Trad/s, and 1.7 Trad/s). That is, as the temperature increases, an in-

creasing number of phonon modes reach the limiting mean free path of one half of

their wavelength. Using Eq. (3.17), Eq. (3.16) can be rewritten as

kp,A =
3∑

i=1

kB

2π2up,g,iAiT

∫ ωc,i

0

[(
4π

3

)2/3
5ω2a2

12π2u2
p,g,i

+ 1

]−1

dω +

(π

6

)1/3

n2/3

3∑
i=1

up,g,i
~4

T 2
D,ik

3
BT 2

∫ kBTD,i/~

ωc,i

ω3e
~ω

kBT

(e
~ω

kBT − 1)2
dω. (3.20)

Based on the construction of this model, and our knowledge of the G-K thermal

conductivity decomposition, we associate the first term in Eq. (3.20) with kp,A,lg

and the second term with kp,A,sh. In considering Eq. (3.20), even if the temperature

dependencies of the material properties and phonon dispersion are ignored, kp,A,lg

still departs from T−1 behavior (T ξ with ξ < −1). This is because ωc decreases

with temperature. At the same time, kp,A,sh increases slightly with temperature and

eventually saturates. The lower ωc, the larger the fraction of kp,A,sh in kp,A. Equation

(3.20) also predicts that the temperature dependence of kp,A will become progressively

weaker as temperature increases.

In Fig. 3.7(a), the temperature dependencies of kp,A,lg and kp,A,sh predicted by

the two-stage model are shown along with the MD decomposition data. The kp,A,lg

component is fit to the decomposition data at 300 K by setting γG equal to 1.01.

As with the fit to the Slack model in Fig. 3.5, the purpose of the fit is to compare

the general trends, and not to specify γG. The agreement between the trends in the

model and the MD data is good. Note that the thermal conductivity predicted by
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Eq. (3.20) goes to infinity as the temperature goes to zero, typical of a crystal in

an MD simulation, where there are no quantum effects. A simulation of MOF-5 at

a temperature of 50 K (lower than TD) gives a thermal conductivity of 2.8 W/m-K,

consistent with this trend. While this numerical value cannot be compared with the

experiments, it does indicate that MOF-5 behaves like a crystal in the simulations

(the thermal conductivity of amorphous materials in MD decreases as the temperature

decreases, consistent with experimental data[37, 82, 29]).
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Figure 3.7: Variation of kp,A,lg and kp,A,sh with respect to temperature predicted by the

two-stage model and from the MD decomposition. The longitudinal and transverse

sound speeds are taken to be 1,672 m/s and 1,033 m/s (see Section 3.3.2), and γG is

set as 1.01 to fit kp,A,lg at a temperature of 300 K.

By setting ωc equal to ωD, up,g,i to the mean phonon speed up,g, and using ωD =

up,g(6π
2n/Nc)

1/3, we have, from Eq. (3.20),

kp = kp,A,lg =
4.48× 103〈M〉T 3

D

Tn1/3γ2
GN

2/3
c

, (3.21)

which is similar to the Slack relation [Eq. (3.10)], except for the constant. The
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difference in the constants is due to the single-mode relaxation time approximation

and a different Hamiltonian used by Roufosse for three-phonon interactions.[75] If ωc

is equal to zero, only kp,A,sh contributes to kp,A, and as expected, Eq. (3.20) reduces

to Eq. (4.13). For T/TD,i À 1, ωc vanishes, and kp,A will reach the classical limit of

kCP, Eq. (3.12).

Since kp,A,sh and kp,O are small and their temperature dependencies are not strong

(their sum has been interpreted as a thermal conductivity limit in crystals[29]), we

may obtain a crystal with a low thermal conductivity and a weak temperature de-

pendence by reducing ωc. This can be accomplished by reducing the sound speed and

increasing the mean interatomic distance.

3.4.3 Examination of Vibrations

The thermal conductivity of a dielectric material is related to the lattice vibra-

tions (i.e., phonon transport). To further investigate the low thermal conductivity of

MOF-5, we will calculate the partial density of states (PDOS) of the distinct atomic

positions in the unit cell. The PDOS of the βth species, Dp,β, is determined by tak-

ing the Fourier transform of the velocity auto-correlation function, and weighting the

result with the species concentration cβ:[83]

Dp,β(ω) = cβ

∫ τ

0

Γβ(t) cos(ωt)dt, (3.22)

where

Γβ(t) =

Nβ∑
i

〈uiβ(t) · uiβ(0)〉/
Nβ∑
i

〈uiβ(0) · uiβ(0)〉. (3.23)
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The total phonon DOS is obtained by summing over the partial DOS:

Dp(ω) =
∑

β

Dp,β(ω). (3.24)

The PDOS indicates the vibrational modes that specific atoms are involved with in

the overall crystal lattice dynamics. In a classical system, such as an MD simulation,

and in real systems well above the Debye temperature, all degrees of freedom have ap-

proximately the same expectation value for their energy. Thus, one can interpret the

area under the PDOS curves as an indication of how the system energy is distributed

among the atoms.

In Fig. 3.8 (a), two cages and one bridge of the MOF-5 structure are shown.

In Figs. 3.8(b) and 3.8(c), the PDOS of the Oc, Zn, O, C1, C2, and C3 atoms are

plotted. The C1 and C2 atoms have the same PDOS. Motivated by the decomposition

of the thermal conductivity, we can examine the vibrations in both the low- and high-

frequency regimes.

In the acoustic phonon modes, which end around 14 Trad/s (2.3 THz), the center

oxygen atom (Oc) essentially doesn’t participate. If one thinks of the heat transfer

as energy moving from atom to atom, in the cage structure it will need to take a

circuitous route around the Oc atom. There is also more activity in the C3 (which

are a part of the phenylene ring) and O1 (which are a part of the cage) atoms than

the C1/C2 atoms. The C1/C2 atoms act as a bottleneck. We interpret this result as

a sign of energy localization. The phenylene ring can pivot about the axis defined by

the C1-C2 bond, and yet these motions are difficult to pass onto the cage and vice

versa. Energy moves back and forth across the bridge, or inside the cage, as it is
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Figure 3.8: (a) Section of the MOF-5 structure. (b) and (c) PDOS of Oc, Zn, O,

C1, C2, and C3 atoms in the simulation cell. Note that the scale for the C3 atoms is

different than the others in (c).

reflected at the connection between them. In this way, the development of long-range

correlations is suppressed. A similar trend is observed in the optical phonon spectrum

of the C3 atoms. There is also scant overlap between the PDOS of the Zn and O

atoms at the higher frequencies (most likely brought about by their mass difference),

identifying another point in the structure where transmitting energy will be difficult.

The overall picture is thus one of cages and bridges between which energy flow is

restricted. This is a finding similar to that for zeolites,[29] where energy localization
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on specific Si-O-Si structures was identified.

3.5 Experimental Results and Discussion

The experimental results are used to compare and verify the MD simulations. The

details of the experiment, e.g., the sample preparation, measurement procedure, and

the heat loss correction, is shown in Appendix B. Figure 3.9 shows the variation of

the MOF-5 thermal conductivity with respect to temperature, from 6 K to 300 K.

The experimental uncertainty of the absolute thermal conductivity is within ±15%

(estimated by the standard error relation [84]). The uncertainty mainly results from

the difficulty in the accurate determination of the effective cross-section area A (due

to the small size and irregular shape of the sample) and the effective length of the

heat flow path d (due to the junctions). The heat loss correction below 100 K is

made as shown in Appendix B. Given the measured temperatures, the geometrical

parameters, and the thermal conductivities of constantan, chromel, and copper[85],

the heat loss at low temperature can be precisely predicted.

Since MOF-5 is a good dielectric, the thermal conductivity is from the con-

tribution of phonons. The following processes are assumed to affect transport of

phonons: grain-boundary scattering, lattice-defect scattering, and phonon-phonon

scattering.[39]

To analyze the data, the average phonon mean free path λ is evaluated using

the Debye model and the kinetic theory. The lattice thermal conductivity kp can be
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Below 100 K, the heat loss correction is made by the heat loss model (Appendix B). The

MD predicted result of 2 × 2 × 2 unit-cell system, at 200, 250, and 300 K, are also shown

[4].

written as [33]

kp =
kB

2π2up,g

(
kBT

~

)3 ∫ TD/T

0

τpx
4ex

ex − 1
dx, (3.25)

where kB is the Boltzmann constant, ~ is the reduced Planck constant, TD is the

Debye temperature, up,g is the phonon group velocity, and τp is the phonon scattering

relaxation time. The relaxation time τp is normally frequency dependent, and it

relates to the phonon mean free path λ through the relation τp = λ/up,g.

Using Equation (3.25) and making the average, the average mean free path λ is

given by

λ(T ) = k

[
kB

2π2u2
p,g

(
kBT

~

)3 ∫ TD/T

0

x4ex

ex − 1
dx

]−1

. (3.26)

We have made an estimation of the Debye temperature (TD ' 102 K) and the phonon

group velocity (up,g ' 1, 184 m/s), which is independent of the thermal conductivity

prediction. Using these values in Equation (3.26), λ(T ) is ploted in Fig. 3.10.
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The results are for two different samples having different impurities and sizes.

From Fig. 3.9, below 70 K, the measured thermal conductivities of the different

samples are not the same (we denote the sample with higher kp as sample 1, and

the other as sample 2). The average mean free path of sample 2 is much smaller

than that of sample 1 below 25 K, though they have similar dimensions. The mean

free path of sample 2 reaches a limited value below 13 K, which is the typical effects

of point defects (either inherent or due to thermal stresses resulting from cooling).

However, λ of sample 1 continues to increase with decreasing temperature, suggesting

this divergence is due to the different qualities of the samples. The peak in the thermal

conductivity occurs at about 20 K (this is affected by the crystal quality). Below 20 K,

the thermal conductivity increases sharply with increasing temperature, which is due

to the excitation of more phonons at higher temperatures and is related to the increase
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of the specific heat.[39] From Fig. 3.10, the temperature dependence of λ changes

at about 35 K, we find that λ ∝ T−2.16 (by fitting the mean free path between 6 K

and 35 K). The typical interphonon scattering (U-process) will result in λ ∝ T−1,[39]

and the dependence of T−2 suggests the effects of the lattice distortion.[39, 86] The

peak is just the result of the combination of the decreasing mean free path and the

increasing specific heat, with the increase in temperature. From 35 K to 100 K, both

kp and λ decrease with increasing temperature, and λ shows a dependence λ ∝ T−1.17,

suggesting the interphonon scattering dominates.

From 100 K to 300 K, the thermal conductivity only varies about 30%, considering

the experimental uncertainties, the thermal conductivity exhibits a weak temperature

dependence (similar to the behavior of amorphous phase). The MD predictions at

200, 250 and 300 K, shown in Fig. 3.9, agree quite well with the measured value.

At 300 K, the thermal conductivity of MOF-5 is only 0.32 W/m-K, a rather low

value for crystals. This value can be compared with the thermal conductivities of

other nanoporous crystals, such as the MD predicted value for the zeolites sodalite

(3.53 W/m-K), faujasite (2.07 W/m-K), and zeolite-A (1.68 W/m-K)[29]. The weak

temperature dependence of the thermal conductivity is a common character for the

nanoporous crystals.[29] Figure 3.10 shows that λ is almost a constant above 100 K,

indicating the minimization of phonon mean free path. Similar phenomena are found

for other crystals.[86] The minimum mean free path of MOF-5 is about 8.3 Å, much

smaller than the lattice constant (25.85 Å), but close to the cage size (7.16 Å). In the

accompanying manuscript, we show that it is the carboxylate-carbon atom that limits

the transport of the acoustic phonons, that is, the acoustic phonons are reflected at
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the connector between the cage and the bridge.[4] Considering most acoustic vibration

modes lie in the cage, it is reasonable for the minimum λ to be close to the size of

the cage. The low thermal conductivity and its temperature independence occur

when most phonons reach their minimum mean free paths. In such a situation,

the interphonon scattering cannot further reduce the phonon mean free paths and

the energy is transmitted by activation or hopping of the localized modes, which is

similar to the behavior of the amorphous phase [76].

3.6 Simple Model for Phonon Conductivity

Just like MOF-5, many linked-cage structure includes complex multiatomic cages

connecting by relatively simple bridges [see Fig. 3.11)] (sometimes the cages may also

be joined directly without bridges). In such a structure, the atoms in the cage are

normally much more than the atoms acting as connectors. Zeolites and MOFs are

good examples of such structures. Some siliceous zeolites, e.g., LTA, FAU and SOD,

contain the complex sodalite cage built from SiO4 tetrahedra [29].

Many molecular crystals consist of large, complex molecules held together by weak

van der Waals interactions or hydrogen bonds. The intramolecular interactions are

much stiffer than the intermolecular interactions. They can also be considered a

special type of linked-cage structure, and each complex molecule can be considered a

cage.

When T ≥ TD, all the vibration modes will have the same contribution to the

total vibration energy. Since most atoms lie in the cage, most vibration energy is
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located in the cage and a fraction of the vibration energy transports to the next cage

through connectors. However, the large coordination number difference or bond stiff-

ness difference make the connector a bottleneck for the energy transport, and most

phonon energy is localized in the cage, or reflected at the connectors. McGaughey

and Kaviany [29] showed that the Si-O-Si bonds contribute to the energy localiza-

tion in FAU- and SOD-zeolites. Our work for MOF-5 [4] also showed the carbon

connector limits the transport of phonon energy. An indicator of this phenomena is

the large difference between the phonon partial density of states (PDOS, weighted

by the concentration of atoms) of the cage and that of the connectors (as shown in

[4]). Therefore, the connectors will act as scatterers in the structure. If the cage

is relatively rigid (phonons experience little scattering within the cage), the phonon

mean-free path will be limited by the distance between the connectors at the bound-

ary of the cage, which is often the same as the cage size w. For molecular crystals, w

is essentially the dimension of the molecule. Then we have

kp =
1

3
nacvup,gw. (3.27)

When the temperature is higher than the Debye temperature, cv can be simply set

as 3kB.

This simple mean-free path model for the linked-cage structures leads to good

agreement with the experimental values or the MD results, as shown in Table 3.5 and

Fig. 3.11. The values calculated by the Slack relation (kCP) are also shown, and it is

apparent that kCP has a lower value.

When the temperature decreases, the high frequency phonon modes caused by
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Figure 3.11: Comparison of the calculated thermal conductivities of some linked-cage

crystals with the experimental or MD results.

the internal vibrations of the cage will decrease much faster than the low frequency

modes, and the fraction of localized energy will decrease. When the temperature is

much lower than the Debye temperature, the fraction of localized vibration energy

will be small and the phonon mean-free path will no longer be limited by the cage

size.
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Table 3.5: Comparison of predicted thermal conductivities of some linked-cage struc-

tures calculated by Eq. (3.27) and the Slack relation, with the experimental and the

MD results.

up,g kp (W/m-K)

Crystals T (K) (m/s) w (Å) Eq. (3.27) kp,S Exp./MD

MOF-5a 300 1184 7.16 0.28 0.025 0.32

IRMOF-16a 300 600 7.16 0.10 0.01 0.08

SOD 350 4200b 8.88 2.79 1.58 3.09c

LTA 300 3200b 8.88 1.75 0.47 1.68c

C60 260 2000d 7.00 0.52 0.007 0.4e

a values for MOF-5 are taken from reference [4]. The data for IRMOF-16 is calculated by

MD using the same potentials;

b values are derived from the bulk modulus [48], by setting poisson ratio as 0.3;

c values are taken from MD results from reference [29];

d values are derived from the bulk modulus [87];

e values are from reference [88].
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Chapter 4

Phonon and Electron Transport in

Layered Bi2Te3 Structure

4.1 Introduction of Bismuth Telluride

Efficient solid state energy conversion devices based on the thermoelectric (TE)

effects, i.e., the Peltier effect for cooling and the Seebeck effect for power generation,

have great application potentials and economic benefits in many areas. However,

present TE devices have a very low efficiency, which is directly limited by the per-

formance of TE materials. Search into the fundamentals and improvements in TE

transport phenomena continues. The performance of TE materials is presented by

the dimensionless figure of merit (ZT)

ZT = α2
SσeT/(ke + kp), (4.1)
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where αS is the Seebeck coefficient, σe is the electrical conductivity, T is the temper-

ature, and ke and kp are the electric and lattice thermal conductivity, respectively.

Identifying and designing materials with high ZT has proven to be very challenging.

Currently the best bulk commercial TE materials for applications near room tem-

perature are still the compounds based on Bi2Te3, with ZT near 1. Bi2Te3 exhibits

many typical features of a good room-temperature TE material, such as a narrow

band gap, high density of states near the band edges, and low total thermal conduc-

tivity. Understanding phonon and electron transport in Bi2Te3 is important in design

and optimization of TE materials.

Bulk Bi2Te3 has a rhombohedral lattice structure which belongs to the space group

D5
3d (R3̄m) and contains 5 atoms along the trigonal axis in the sequence of Te1-Bi-Te2-

Bi-Te1 (Fig. 4.1). At 293 K, the rhombohedral unit-cell parameters[5] are aR = 10.473

Å, θR = 24.159◦, and the corresponding hexognal unit-cell parameters are a = 10.473

Å, c = 30.487 Å. In the rhombohedral structure, the fractional coordinates for Te1

atoms are designated as (±u,±u,±u) and those for Bi as (±v,±v,±v), where u and v

at 293 K have been found[89] to be 0.4001 and 0.2095. In the hexognal unit cell (Fig.

4.1), it is apparent that Bi2Te3 has a lamella structure made of Te1-Bi-Te2-Bi-Te1

blocks. The bond length of the Te1-Bi bond is 3.07 Å shorter than that of the Bi-

Te2 bond (3.25 Å), indicating that they may be of different bond types; the Te1-Te1

bond is the longest (3.64 Å) and is believed to be van der Waals interaction, which

responses to the ease of cleavage along the planes [5, 89]. We denote the direction

along the c axis (cross-plane direction) as “⊥” and the in-plane direction as “‖”.
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Figure 4.1: Crystal structure of Bi2Te3 showing both the rhombohedral and hexognal

unit cells. The first Brillouin zone for the rhombohedral cell and some symmetry axes

and κ points are also shown. The hexogonal structure is made of Te1-Bi-Te2-Bi-Te1

five-layer blocks.

Significant experimental characterization efforts [5, 89, 7, 90, 16, 91, 92, 93, 94] on

Bi2Te3 and some ab initio calculations and theoretical treatments [7, 16, 20] have been

reported. However, theoretical treatments for both the phonon and electron transport

in Bi2Te3 are rare, especially for the lattice thermal conductivity. The difficulty has

been due to the different physical features of phonon and electron transport, and a

multi-scale approach is required for such investigations.

In order to systematically study the relationship between the TE properties and

the structural features and understand the transport mechanisms in TE materials, we

87



develop a comprehensive strategy to calculate all the TE transport properties (αS, σe,

ke, and kp). In this strategy, first-principle calculations based on density functional

theory (DFT), molecular dynamics (MD) simulations, and Boltzmann transport equa-

tion (BTE) are combined to calculate the TE transport properties of Bi2Te3. Below,

we first report the classical interatomic potentials for Bi2Te3 developed on the basis of

DFT energy calculations. With these potentials, the lattice vibrations are analyzed

using MD simulations. Then the lattice thermal conductivity along the in-plane and

cross-plane directions are calculated in a temperature range from 150 K to 450 K,

using MD combined with the Green-Kubo (G-K) autocorrelation decay method. For

electric transport, we start with the first-principle band structure calculations and the

modeling for the chemical potential. Then the electric transport properties (αS, σe,

and ke) are determined using BTE with the appropriate modeling of the relaxation

time and chemical potential between 100 K and 500 K. The calculated results are in

reasonable agreement with the experiments, noting that the experiments inherently

contain various defects.

4.2 Prediction of Phonon Conductivity

There are two common theoretical approaches in the investigation of phonon trans-

port in solids. One is the continuum transport theory (or kinetic theory), such as

BTE [33, 34], which is suitable for fast calculations of large systems. However, this

normally needs some parameter input from experiments or other predictions, there-

fore its application is limited. The other is the atomistic technique, such as MD
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simulations. Unlike BTE, MD only requires material structures and suitable inter-

atomic potentials. In a sense, MD is more fundamental and can provide insight into

the lattice dynamics at the atomic level. Also, MD allows for decomposing different

transport mechanisms, and therefore, is chosen here.

4.2.1 Interatomic Potentials

Suitable interatomic potentials are essential for modeling the lattice dynamics

of Bi2Te3 in the MD simulations. Though there are already some simple harmonic

potentials fitted using the experiments in the literature [7, 16], they are not suitable

for the calculation of lattice conductivity due to the omitted anharmonic effects. Here,

the interatomic potentials involving the anharmonic terms have been developed by

fitting the energy surface from the ab initio calculations. The ab initio energy surface

scan is normally carried out by considering only small isolated clusters. This approach

is valid only when the interatomic interactions in a real crystal are mainly of short

range. However, long-range interactions, e.g., van der Waals interactions, may be

important in determining the structure and dynamics of Bi2Te3.[7] Therefore, a crystal

structure with periodic boundary condition was adopted in the energy surface scan.

The ab initio calculations were performed with Quantum-ESPRESSO package [95]

within DFT framework, using a plane-wave basis set and pseudopotentials adopting

the Ceperley-Alder LDA with Perdew-Zunger data (PZ). A cut-off energy of 50 Ry

was used and the spin–orbit coupling was included. The energy surface of Bi2Te3 was

scanned by changing the bond lengths and angles. Both a rhombohedral primitive
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cell and a hexagonal representation were used in the scan. The classical potentials

with predetermined forms were first fitted to these data using the GULP code[64].

Then, the crystal structure and other properties such as the elastic constants were

calculated by implementing those potentials in the GULP package and compared with

experimental results. Such procedures iterated until convergent results were achieved.

Note that the DFT with the generalized-gradient (GGA) or local (LDA) density

approximations can not describe the true long-range van der Waals interactions[96].

Though recent developments[96] have seamlessly included van der Waals interactions

in DFT, the solutions are not very simple and are unavailable in most present DFT

codes. In this work, the van der Waals interactions were first parameterized by

fitting the energy surface scanned by Quantum-ESPRESSO and subsequently refined

by fitting to the structure and elastic constants. In the fitting with the energy surface,

we adopted the atomic charges fitted by Kullmann et al. [16] The final forms of the

interatomic potentials are listed in Table 5.3.

It is interesting to note that the Te1-Bi bond has a higher bond energy and higher

force constant than the Te2-Bi bond, also its potential has a larger spatial variation

than the Te2-Bi bond, showing a stronger bond anharmonicity. This indicates that

the Te1-Bi bond is more ionic than the Te2-Bi bond. The Te1-Te1 bond, which is

commonly considered as a van der Waals interaction, has a bond energy ϕ◦ = 0.0691

eV, lower than that of a typical ionic or covalent bond but much higher than the

bond energy of the Xe-Xe or Kr-Kr van der Waals interaction (for Xe-Xe, ϕ◦ = 0.014

eV, and for Kr-Kr, ϕ◦ = 0.02 eV)[14], which have a close filled-shell atomic radius.

Also, the force constant Γ of Te1-Te1 at the equilibrium site is 10.45 N/m, which
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Table 4.1: Interatomic potentials (excluding the electrostatic interactions) for Bi2Te3.

Here r and θ are interatomic separation distance and bond angle. The cut-off radius

of the electrostatic terms is 12 Å. The atomic charges of Te1, Bi, and Te2 are -0.26,

0.38, -0.24, respectively [16].

Interaction Potential Model Parameters

Pair

Te1-Bi (adjacent layers) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 0.974 eV, a =

1.2848 Å
−1

, r◦ = 3.10 Å

Te2-Bi (adjacent layers) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 0.5801 eV, a =

1.2537 Å
−1

, r◦ = 3.235 Å

Te1-Te1 (adjacent layers) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 0.0691 eV, a =

2.174 Å
−1

, r◦ = 3.64 Å

Bi-Bi (same layer) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 0.085 eV, a =

1.93 Å
−1

, r◦ = 4.18 Å

Angular

Te1-Bi-Te1 (adjacent layers) 1
2ϕθ(cos θ − cos θ◦)2 ϕθ = 0.56 eV, θ◦ = 90◦

Bi-Te1-Bi (adjacent layers) 1
2ϕθ(cos θ − cos θ◦)2 ϕθ = 1.31 eV, θ◦ = 90◦

Te2-Bi-Te2 (adjacent layers) 1
2ϕθ(cos θ − cos θ◦)2 ϕθ = 1.47 eV, θ◦ = 85◦

Bi-Te2-Bi (adjacent layers) 1
2ϕθ(cos θ − cos θ◦)2 ϕθ = 1.47 eV, θ◦ = 85◦

Te2-Bi-Te1 (adjacent 3 layers) 1
2ϕθ(cos θ − cos θ◦)2 ϕθ = 1.16 eV, θ◦ = 92◦

Bi-Te2-Bi (adjacent 3 layers) 1
2ϕθ(cos θ − cos θ◦)2 ϕθ = 1.18 eV, θ◦ = 95◦

is also much larger than those of Xe-Xe (Γ = 0.96 N/m) and Kr-Kr (Γ = 1.15

N/m)[14]. This value agrees well with the results of Jenkins et al[7] (Γ = 9.83 N/m)

and Kullmann et al. [16] (7.98 N/m). The large bond energy, the force constants and

large spatial variation of the Te1-Te1 interaction indicates that the Te1-Te1 (excluding

electrostatic interaction) interaction may be special. As will be discussed in Section

4.3.1, the interatomic bonds in each quintuple layer are primarily the ppσ interactions.
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We applied these potentials in the GULP package to optimize the structure (en-

ergy minimization). The resulting c and a values at 0 K are listed in Fig. 4.2,

compared with the values measured[6] at 4 K. Since structure parameters at low tem-

peratures are unavailable, we also used MD to obtain the average bond lengthes and

angles in a free-standing structure at 300 K, and the comparisons with the experi-

mental results measured[5, 89] at 293 K are shown in Fig. 4.2. The overall agreement

is good (the average deviation from the measured data is less than 1%). The calcu-

lated Te1-Te1 bond length at 0 K (not shown) in the crystal is 3.62 Å, shorter than

the equilibrium bond length parameter 3.64 Å listed in Table 5.3. This indicates the

repulsion between the adjacent two Te1 layers is overwhelmed by the electrostatic

interaction between the distant Bi layers and Te1 layers in two neighboring blocks.

However, at high temperature, as shown in Fig. 4.2, the attraction between the two

adjacent Te1 layers originates from both the electrostatic interaction and the weak

Te1-Te1 bonds. The combination of the electrostatic interaction and the strong van

der Waals interaction make the net Te1-Te1 interaction behave as an ionic bond.

The elastic constants (the elastic modula Cαβ, bulk modulus Ep and Young mod-

ulus EY) of the optimized structure are also calculated using the dynamical matrix

approach implemented in the GULP package. In performing the lattice dynamical

calculation, the Cartesian reference axis is chosen as the same as in the reference

[7]. The calculated results apply to 0 K. Table 4.2 compares the elastic constants of

the optimized structure with the experimental data at different temperatures [7, 16].

Except for C13, our data for the optimized structure at 0 K agree quite well with

the elastic constants at 0 K measured by Jenkins et al.[7], and the average deviation
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Figure 4.2: Comparison of the structure parameters calculated by the model at 300 K

with those[5, 6] (shown in the parentheses) from experiments at 293 K. The calculated

lattice parameters at 0 K and 300 K, together with the experimental results[5, 6], are

also shown.

from the measured values is less than 10%. We also calculate the elastic constants

of a free-standing structure at 300 K. As shown in Table 4.2, the changes of the

elastic constants ∆Cαβ agree quite well with the experiments. This indicates that

these potential can be used to describe the harmonic behaviors of Bi2Te3 over a wide

temperature range. Also, note that C11 is only slightly larger than C33 because of

the high force constant of Te1-Te1 bonds, which shows weak anisotropy in the elastic

properties of the layered Bi2Te3 structure.

The Umklapp processes, in which the phonon momentum is changed by a recip-
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Table 4.2: Comparison of the calculated elastic modula Cαβ, bulk modulus Ep and

the in-plane Young modulus EY (in GPa) with experimental results[7, 16].

C11 C13 C14 C33 C44 C66 Ep EY

Ultrasonic Experiment (280 K)[7] 68.5 27.0 13.3 47.7 27.4 23.4 37.4 54.2

Ultrasonic Experiment (0 K)[7] 74.4 29.2 15.4 51.6 29.2 26.2 39.5a -

Neutron Scattering Experiment (77 K)[16] 76.3 - 13.2 51.2 30.9 9.9 - -

This study (0 K) 69.0 21.6 12.3 54.8 28.8 26.7 34.4 52.5

This study (300 K) 65.4 19.0 10.9 50.7 26.5 25.7 31.6 51.4

a calculated through the bulk modulus relation in the reference [7].

rocal lattice vector, dominate the lattice thermal conductivity of crystalline materials

at normal and high temperature (typically above 1/3-1/2 of the Debye temperature).

This intrinsic resistive process results from the anharmonicity of the interatomic po-

tentials in solids. Its strength depends on both the available phonon phase and the

phonon-phonon scattering matrix, which are in turn determined by the harmonic force

constants and anharmonicity of the interatomic potentials, respectively [97]. There-

fore, we chose the Grüneisen parameter and the linear thermal expansion coefficients

to check the anharmonicity of the interatomic potentials before applying them in the

thermal conductivity calculations.

The mode Grüneisen parameter γG,κ,s describes the relative shift of phonon fre-

quency of the mode (κ, s) with the change of the volume and is defined as

γG,κ,s = − V

ωs(κ)

∂ωs(κ)

∂V
, (4.2)

where the mode is denoted by the wave vector κ and the branch identifier s, ω is the

angular frequency and V is the volume. The overall Grüneisen parameter is defined
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as

γG =

∑
κ,s γκ,αcv,s(κ)∑

κ,s cv,j(κ)
, cv,s(κ) =

~ωs(κ)

V

∂

∂T
[

1

e~ωs(κ)/kBT − 1
] =

βEp

cv

, (4.3)

where cv,s(κ) is the contribution of the mode (κ, s) to the volumetric specific heat

cv, and β is the volumetric thermal expansion coefficient. To calculate the volume

dependence of the phonon frequencies in Eq. (4.2), we used GULP to calculate the

volume of a hexagonal unit cell under different hydrostatic pressures p by minimizing

the enthalpy of the system. With the resulting new structure, the phonon frequency

at each κ point was recalculated by diagonalizing the corresponding dynamical matrix

(a 6 × 6 × 6 κ mesh was used). The Grüneisen parameter was then calculated from

the changes in the phonon frequencies and listed in Table 4.3.

The linear thermal expansion coefficient βα was obtained from the elastic compli-

ance coefficient Sij, and from the generalized Grüneisen parameters, which are defined

as [98]

γ′G,α =

∑
κ,s γ′α,κ,scv,s(κ)∑

κ,s cv,s(κ)
, γ′G,α,κ,s = − 1

ωsκ

∂ωs(κ)

∂εα

, (4.4)

where εα is a uniform areal strain along the α direction. The linear thermal expansion

coefficients of a hexagonal crystal can be obtained from [98]

β‖ = [(S11 + S12)γ
′
‖ + S13γ

′
⊥]cv (4.5)

β⊥ = [2S13γ
′
‖ + S33γ

′
⊥]cv. (4.6)

The corresponding volumetric thermal expansion coefficient β is

β = 2β‖ + β⊥. (4.7)
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Table 4.3: Comparison of the calculated Grüneisen parameters and thermal expansion

coefficients, at T = 293 K, with the experimental results[7, 5, 17].

Parameter γG γG,‖ γG,⊥ β (10−6/K) β‖ (10−6/K) β⊥ (10−6/K)

Experiment 1.49[7] - - 48.0[5],

44.0[17]

12.9[5],

13.0[17]

22.2[5],

18.0[17]

Calculation 1.40 1.17 1.86 46.8 12.9 21.0

The calculated results and those from experiments at T = 300 K are also listed in

Table 4.3.

From Table 4.3, the calculated anharmonic properties agree well with the ex-

perimental results. Therefore, we would expect this set of interatomic potentials to

provide a reasonable prediction for the lattice thermal conductivities.

Since Bi2Te3 is a highly anisotropic layered structure, to characterize the anhar-

monicities along different polarizations, similar to Eq. (4.3), we can also define a

polarized Grüneisen parameter

γG,α =
3βαEp

cv

, (4.8)

which measures the anharmonicity along α direction and equates to γG if the structure

is isotropic (γG =
∑

α γG,α/3). Table 4.3 shows the in-plane Grüneisen parameter γG,‖

is close to the γG value of an ideal covalent material [99] and much smaller than the

cross-plane Grüneisen parameter γG,⊥, indicating the in-plane anharmonic scattering

is much weaker than the cross-plane anharmonic scattering. The calculated γG,⊥,

however, is a typical value of an ionic material, which confirms the conclusion about

the Te1-Te1 ionic-like mixed bond.
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4.2.2 Lattice Vibrations

To further investigate the lattice vibrations of Bi2Te3, we also used the MD simu-

lations to calculate the normalized total phonon density of states (DOS) [Fig. 4.3(a)]

together with the atomic partial phonon density of states (PDOS) (Fig. 4.4). The

normalized PDOS of the βth species in the α direction, D∗
p,β,α, is determined by taking

the Fourier transform of the velocity auto-correlation function (1800 ps raw velocity

data were used in the autocorrelation calculation) [49, 100]

D∗
p,β,α(ω) =

∫
exp(−iωt)〈uβ,α(t)uβ,α(0)〉dt∫ ∫

exp(−iωt)〈ui,β,α(t)ui,β,α(0)〉dtdω
, (4.9)

where uβ,α denotes the velocity of an atom of the βth species in the α direction.

The normalized total phonon DOS is obtained by summing over the normalized

partial DOS weighted with the speceies concentration cβ

D∗
p(ω) =

∑

β,α

cβD∗
p,β,α(ω). (4.10)

To obtain the DOS and PDOS, the MD simulations were run at 300 K and 1800 ps

raw velocity data were used in the calculation for the autocorrelation function. The

obtained total phonon DOS is shown in Fig. 4.3. The generalized phonon density of

states G(ω) measured at 77 K by Rauh et al. [8] using the inelastic neutron scattering,

and that calculated by Jenkins et al. [7] with the assumed Born-von Karman model,

are also shown in Fig. 4.3. Note that the G(ω) measured by Rauh et al.[8] is not the

conventional DOS because the difference of the weight factors is significant for Bi and

Te. The cut-off frequency calculated by the MD simulation is 4.7 THz, larger than

the value 4.3 THz calculated by Jenkins et al.[7] but agreeing well with the value 4.7
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THz measured by Rauh et al. [8] and 4.55 THz measured by Kullmann et al.[16]

Overall, our DOS results agree fairly well with that of Jenkins et al.[7] In our DOS

results, there is a gap between 2.5 THz and 2.9 THz, which is mainly determined by

the weak Te1-Te1 bond and the Te2-Bi bond. Neither our model nor that of Jenkins

et al.[7] can reproduce the transversal eigen mode around 1.0 THz. This may be due

to the simple nature of the “rigid-ion” model, since the high polarizability of Te and

Bi may significantly influence the dispersion behavior of the transverse optical mode.

A suitable core-shell model may account for this problem, which will be investigated

in the future.
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Figure 4.3: Predicted variation of the normalized phonon DOS for Bi2Te3 with respcet

to frequency, and the comparison with the available DOS [7, 8].

Figure 4.4(a) shows the normalized in-plane and cross-plane phonon DOS of the

entire Bi2Te3 structure and those of the different species. Overall, the in-plane and

cross-plane phonon DOS almost overlaps, especially when f < 3 THz, and the differ-
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Figure 4.4: (a) Predicted variation of the directional phonon DOS for Bi2Te3 with

respect to frequency. (b) Root mean square of the displacement for various atoms in

Bi2Te3.

ence only lies in the high frequency regime (f > 3 THz), where the cross-plane spec-

trum seems to shift a little towards a relatively higher frequency regime. This rough

identity indicates there is only minor difference between the in-plane and cross-plane

vibration spectrum, which is consistent with the fact that C11 only differs slightly

from C33. The in-plane and cross-plane PDOS of the different species provide more

details about the lattice vibration. When f < 1.5 THz, where acoustic vibrations

dominate, the three PDOS for both directions are almost the same. The Bi atoms

have more modes in the low frequency regime (f < 2.6 THz) of the PDOS for both
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the directions, but less modes in the high frequency regime (f > 3 THz) than those

of the Te1 and Te2 atoms. This is due to their larger mass. Overall, the in-plane

PDOS of Te1 and Bi match each other quite well and the difference only exists in

a narrow frequency regime (2.8 THz < f < 3.6 THz). This is believed to directly

result from the strong Te1-Bi bonds. However, most in-plane vibration modes of Te2

atoms concentrate in the high frequency regime (2.8 THz < f < 4.6 THz). The in-

plane vibration spectrum of Te1 shows strong peaks between 2.8 THz and 3.6 THz,

where Te1 and Bi have much less vibration modes. Te2 also has much less vibration

modes than Bi and Te1 atoms in the regime between 1.5 THz and 2.6 THz. All

these show that the correlation between the in-plane optical vibrations of Te2 and

Bi/Te1 is weak, while the correlation between the in-plane vibrations of Bi and Te1 is

strong. This may be due to the relatively weak Bi-Te2 bonds (compared with Bi-Te1

bonds) and the symmetric position of Te2 atoms in the five-layer sandwich structure.

Similarly, the cross-plane PDOS of Te2 atoms mainly focuses in the high-frequency

regime (f > 2.8 THz). There are strong peaks between 3 THz and 3.6 THz in the

cross-plane PDOS of Te2, but those peaks are rather weak in the PDOS of Te1 and

Bi, indicating the energy localization of those modes. Also, there are large differences

among the cross-plane PDOS of neighboring Te1/Bi and Bi/Te2 layers, suggesting

that phonon transporting across the planes will suffer from strong scattering. Those

strong scatterings are mainly due to the mass difference and the large variation in

Γγ′ (Γγ′ is the product of the force constant Γ and the bond-scaling parameter γ′) in

the neighboring bonds [99]. Figure 4.4(b) shows the root mean square displacement

of atoms (RMS). The RMS of the Te2 atoms are isotropic, while the Bi atoms have
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the largest cross-plane RMS and the Te1 atoms have the largest in-plane RMS.

4.2.3 MD Simulation Procedure and G-K Autocorrelation

The MD simulations were performed with a system consisting of 6×6×1 hexognal

unit cells and involving 540 atoms. The simulations with larger systems produced

very similar results. The temperatures considered were from 100 K to 400 K, with

an interval of 50 K. The time step was chosen as 10 fs. The Verlet leapfrog algo-

rithm was adopted for the calculation, while the Nose-Hoover thermostat and the

Berendsen barostat were used to control the system temperature and pressure. The

system was first simulated in a NPT (constant number of atoms, pressure and tem-

perature) ensemble for 100 ps-200 ps until it reached a free-standing state at the

desired temperature, then it was switched into a NVE ensemble and ran for 200 ps

to arrive in equilibrium. At each temperature point, 1700 ps raw heat current data

were obtained for the calculation of HCACFs. After calculating HCACF, the direct

integration method is used to obtain the thermal conductivity. The integral is aver-

aged to smooth the behavior in a converged region. The final result is the average

value over the converged region.

To speed up the calculations, the Wolf method[69] was adopted for the calculation

of the long-range electrostatic interactions. The decay parameter β is chosen as

0.25 Å
−1

, and the cut-off radius Rc is chosen as 10 Å.
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4.2.4 Phonon Conductivities and Its Decomposition

Figure 4.5 shows the time variation of the normalized raw HCACF and the lattice

thermal conductivity along the in-plane and cross-plane directions. The normaliza-

tion factors 〈ẇα(0) · ẇα(0)〉 for the two directions only differ slightly (< 3%). The

normalized raw HCACF curves in both directions involve high frequency components

caused by the high frequency optical phonons. It is apparent that the fluctuations in

the in-plane HCACF are much larger than the cross plane. Considering the identity

of the normalized vibration spectrum along the two directions, the high frequency vi-

brations along the cross-plane direction are more likely to be localized. Both HCACF

curves consist of two stages, i.e., an initial rapid decay stage followed by a relatively

slow decay stage, which have also been found for other crystals [29]. It has been

shown that the HCACF of a crystal with a multi-atom unit cell can be decomposed

into three parts by fitting the HCACF to a function of the form [29]

〈ẇα(t) · ẇα(0)〉 = AA,sh,α exp(−t/τp,A,sh,α) + AA,lg,α exp(−t/τp,A,lg,α) +

∑
i

BO,i,α exp(−t/τp,O,i,α) cos(ωp,O,i,αt), (4.11)

where τp,i is a time constant, the coefficients A and B represent the strength of a

given mode, and the subscripts sh, lg, A, and O denote short-range, long-range,

acoustic, and optical contributions, respectively. We used a Fourier low-pass filter

(cut-off frequency was set as 1.5 THz) to remove the high frequency components of

HCACF, and fitted the low frequency acoustic part using the two-term exponential

functions. The fitting results are also shown in Figure 4.5. At the beginning, the

decay relaxation times for HCACF curves are almost the same and rather short (0.27
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Figure 4.5: Time variation of the raw HCACF and the lattice thermal conductivity at

T = 300 K, for the in-plane and cross-plane directions. The curve fits of the two-term

exponential functions, for the HCACF low-frequency portion, are also shown.

ps). However, for the long-range decay, the relaxation time for the in-plane HCACF is

10.62 ps, which is longer than that for cross-plane HCACF (7.88 ps), indicating that

the lattice scattering along the cross-plane direction is stronger. The time variation

of the lattice thermal conductivities shown in Fig. 4.5, also confirms this.

Figure 4.6 shows the temperature-dependent, in-plane and cross-plane lattice con-

ductivities of Bi2Te3 calculated by the MD simulations using the potentials listed in

Table 5.3. The available experimental results [9] are also shown. Note that the calcu-

lated in-plane and cross-plane kp,‖, kp,⊥ are higher than the experimental results. This

is expected, considering the various defects (e.g., isotopes, displacements, lamellae,

etc.) in a real Bi2Te3 crystal[101], which will reduce the thermal conductivity.

The lattice conductivities in both directions roughly follow the 1/T law, similar

to insulators. The calculated cross-plane thermal conductivity kp,⊥ is lower than the
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Figure 4.6: Predicted temperature-dependent, in-plane and cross-plane lattice ther-

mal conductivity, compared with the experimental results [9].

in-plane kp,‖. Since the average cross-plane sound velocity (1,631 m/s) is very close

to the in-plane sound velocity (1,775 m/s), the difference between the two thermal

conductivities is mainly due to the different anharmonicities along the two directions.

This can be verified by the directional Grüneisen parameter γG,α along the direction α.

For Bi2Te3, at 300 K, the in-plane Grüneisen parameter γG,‖ is 1.17, while the cross-

plane Grüneisen parameter γG,⊥ is 1.86. The large difference in the anharmonicity

originates from the unique bond characteristics in the layered structure (Fig. 4.1),

in which the intra-layer bonds are mainly covalent but the inter-layer bonds are the

hybrids of the electrostatic interaction and the van der Waals interaction.

Figure 4.5 illustrates the different decay stages and components of HCACF. Ac-

cording to Eqs. (3.8) and (4.11), the lattice thermal conductivity Kp can then be
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Figure 4.7: Decomposition of calculated in-plane and cross-plane thermal conduc-

tivity. The lowest in-plane and cross-plane thermal conductivities calculated by the

Cahill-Pohl model are also shown.

decomposed into three parts as

Kp = Kp,A,sh + Kp,A,lg + Kp,O. (4.12)

Here Kp,lg,A is believed to be the contribution from the long-range acoustic phonons,

with a mean-free path larger than one half of their wavelengthes; Kp,sh,A is the con-

tribution from the short-range phonons, with their mean-free pathes minimized[29, 4]

(Kaburaki et al.[102] attributed it to single-particle motions in a local environment);

and Kp,O is the contribution from the high frequency optical phonons. We obtained

Kp,sh,A and Kp,lg,A by fitting the low frequency part of HCACF with the two-term

exponential functions shown in Eq. (4.11), and obtained Kp,O by directly integrating

the high frequency part of HCACF. The Fourier low-pass and high-pass filters were

used to separate the different components. Further details about the decomposition
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can be found elsewhere [29, 4].

Figure 4.7 shows the variation of the different components of the in-plane and

cross-plane lattice thermal conductivity with respect to temperature. The results

shown are the average for several data sets. The difference between the summation

of the fitted three components and that specified directly from the integral is less

than 10%. As shown in Fig. 4.7, for both the in-plane and cross-plane directions, the

long-range contribution kp,A,lg dominates, and kp,A,sh is relatively small, but still 3 to

4 times larger than kp,O. The in-plane long-range contribution kp,A,lg,‖ is larger than

the cross-plane long-range component kp,A,lg,⊥ and the ratio kp,A,lg,‖/kp,A,lg,⊥ varies

from 1.55 to 2.17 in the temperature range 150 K ∼ 450 K. Considering the almost

isotropic sound velocity and phonon DOS (Section 4.2.2), this difference is mainly

attributed to the different scattering strength along the two directions. However, the

short-range and optical components are almost the same in both the directions (the

in-plane values seem slightly larger but the difference is in the error range of the

data). This seems to indicate that the mean-free paths of both the short-range and

optical phonons are independent of the scattering mechanisms and their transport is

mainly determined by the local environment. This conclusion is consistent with the

fact that kp,A,sh and kp,O are almost temperature independent. On the other hand,

kp,A,lg decreases with increasing temperature. A power-law fit yields kp,A,lg,‖ ∝ T−1.03

and kp,A,lg,⊥ ∝ T−1.23, and the stronger temperature dependence of kp,A,lg,⊥ may be

due to larger thermal expansion along the cross-plane direction. In other words, in

both the in-plane and cross-plane directions, kp,A,lg roughly follows the normal T−1

law for high-temperature lattice thermal conductivities.
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In Fig. 4.7, the lattice conductivity calculated by the Cahill-Pohl model[54] kp,C−P

is also shown, which is given by

kp,C−P =
(π

6

)1/3

kBn2/3

3∑
i=1

up,g,i

(
T

TD,i

)2 ∫ TD,i/T

0

x3ex

(ex − 1)2
dx, (4.13)

where n is the number density of atoms. The lattice conductivity predicted by Eq.

(4.13) has been interpreted as the minimum solid phase thermal conductivity. In

Fig.4.7, kp,C−P,‖ is only slightly higher than kp,C−P,⊥ and both are almost temperature

independent in the temperature range between 150 K and 450 K. The sum of kp,A,sh

and kp,O is about 60% of kp,C−P,‖ or kp,C−P,⊥. The behavior of kp,A,sh and kp,O are

actually quite similar. If they are both mainly affected by a local environment, the

sum of them seems likely to be independent of different scattering mechanisms unless

the local environment (with a dimension of the order of the interatomic spacing) is

changed. In other words, this provides a lower limit of the phonon conductivity for

structure engineering, which is 0.2 W/m-K at 300 K.

By assuming heat was mainly carried by the acoustic phonons scattered via the

three-phonon processes, Slack [2] proposed a simple relation for the thermal conduc-

tivity of crystals with constant volume at high temperatures

kp,S =
3.1× 104〈M〉N1/3

c δT 3
D,∞

T 〈γ2
G〉

. (4.14)

Here 〈M〉 is the mean atomic weight of the atoms in the primitive cell, δ3 is the

average volume per atom, Nc is the number of atoms in a primitive cell, and TD,∞ is

defined from the phonon density of states (DOS) Dp,[2] i.e.,

T 2
D,∞ =

5h2
P

3k2
B

∫∞
0

f 2Dp(f)df∫∞
0

Dp(f)df
, (4.15)
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where hP is the Planck constant, and f is the phonon frequency. Note that the

integral is only over the acoustic portion of the phonon spectrum. TD,∞ is generally

close or slightly lower than the Debye temperature for the acoustic branches TD/N
1/3
c

(TD is the Debye temperature).

Slack mainly applied this relation for isotropic crystals with a cubic structure.

However, as discussed in the reference [99], if the long-range phonons dominate the

heat transfer, their contribution may still have a form very similar to Eq. (4.14),

therefore, it is possible to modify this relation and apply it for anisotropic crystals.

Assuming that the scattering of phonons along the α direction is only related to

the elastic and anharmonic properties along this direction, that is, the transport of

phonons along this direction is similar to the transport in an isotropic structure with

the same elastic and anharmonic properties, then we extended Eq. (4.14) as

kp,S,α =
3.1× 104〈M〉N1/3

c δT 3
D,∞,α

Tγ2
G,α

, α =⊥ or ‖ . (4.16)

Here TD,∞,α is given by Eq. (4.15) while replacing Dp(ν) with Dp,α(ν). As discussed in

Section 4.2.2, the total in-plane and cross-plane PDOS are almost the same, and the

calculation according to Eq. (4.15) provides TD,∞,‖ = 76 K and TD,∞,⊥ = 75 K. Using

γG,‖ = 1.17 and γG,⊥ = 1.86 calculated in Section 5.4, the in-plane and cross-plane

long-range components [denoted as kp,A,lg,‖(Slack) and kp,A,lg,⊥(Slack)] were calculated

by Eq. (4.16) and are also shown in Fig. 4.7. Overall, these results are in reasonable

agreement with those decomposed from the MD simulations in both directions (the

average deviations from the MD results are within 30% for kp,A,lg,‖, and 20% for

kp,A,lg,⊥).
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4.2.5 Role of Phonon-Electron Scattering in Phonon Con-

ductivity

In semiconductors, phonons are scattered by grain boundary, defects, other phonons,

and carriers. According to the Matthiessen rule, the total thermal resisitivity can be

represented as

1

kp

=
1

kp,b

+
1

kp,d

+
1

kp,U

+
1

kp,c

, (4.17)

where kp,b, kp,d, kp,U and kp,c are the thermal conductivity limited by the scattering

of grain boundary, defects, phonon-phonon U process and carriers, respectively.

The thermal conductivity limited by phonon-carrier scattering kp,c can be esti-

mated using the electrical resistivity ρe. Their relations have been derived by ignoring

the difference between the N-processes and U-processes between carriers and phonons

[39, 103], as is

1

kp,c

=
A

NLT

(
TD

T

)
I5

π2z2
e

27I2
4

(4.18)

ρe = A

(
T

TD

)5

I5, (4.19)

where

In =

∫ TD/T

0

xnex

(ex − 1)2
dx. (4.20)

In the above relations, ze is the number of free electrons per atom, NL the Lorenz

constant, and A is a constant (for metals, A = 3.7). Then we have

1

kp,c

=
ρe

NLT

(TD/T )6

27I2
4

π2z2
e . (4.21)

When T/TD increases from 0.1 to 10, (TD/T )6/I4(TD/T )2 decreases from 97 to 9.

Also, for normal dopant concentration (< 1019 cm−3), ze is of the order of 10−3. Then
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for a wide temperature range (0.1 ≤ T/TD ≤ 10), 1/kp,c is only about 10−4 of the

electrical thermal resistivity 1/ke found from the Wiedemann-Franz law; therefore, it

is negligible for most semiconductors (including Bi2Te3).

4.3 Prediction of Electronic Properties

The thermoelectric transport properties can be derived from BTE with the re-

laxation time approximation. The general form of the relations for TE properties is

[104]

σe,αβ(Ee) =
1

N

∑
i,κ

e2
cτe,i,κuα(i,κ)uβ(i, κ)

δ(Ee − Ee,i,κ)

dEe

σe,αβ =
1

V

∫
σe,αβ(Ee)[−∂fµ(T ; Ee)

∂Ee

]dEe

vαβ =
1

ecTV

∫
σe,αβ(Ee)(Ee − µ)[−∂fµ(T ; Ee)

∂Ee

]dEe

αS,αβ = (σ−1
e )jαve,jβ

k◦αβ =
1

e2
cTV

∫
σe,αβ(Ee)(Ee − µ)2[−∂fµ(T ; Ee)

∂Ee

]dEe

ke,αβ = k◦αβ − Tvαj(σ
−1
e )ljvlβ, (4.22)

where αS is the Seebeck coefficient, σe is the electrical conductivity, ke is the electrical

thermal conductivity, i is the band index, τe is the relaxation time, ec is the charge

of electron, κ is the wave vector, u is the group velocity, f = [e(Ee−µ)/(kBT ) + 1]−1 is

the equilibrium Fermi-Dirac distribution function, µ is the chemical potential, and

Ee is the total energy of electron. Accordingly, the band structure Ee(i,κ), chemical

potential µ, and relaxation times τe, are required inputs for the electronic property

calculations.
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4.3.1 Electronic Band Structure of Bi2Te3

The band structure calculation for Bi2Te3 was carried out in the framework of

density functional theory (DFT). The WIEN2k program [105], which employs the full

potential, linearized augmented plane-wave (LAPW) and local orbits (LO) methods,

was chosen for this investigation. The generalized gradient approximation (GGA) as

proposed by Perdew et al. [106] was used for the exchange and correlation potential.

The experimental rhombohedral cell parameters of a = 10.48 Å and 24.16◦ and the

atomic parameters[5, 89] u = 0.4001 and v = 0.2095 at T = 300 K were used in the

calculations. The radii of both Bi and Te atoms were set as 2.8 a.u. An R · κmax

value of 9 and a Gmax value of 14 were adopted, and a non-shifted mesh with 10,000 κ

points were used. The energy cut-off between the core and valence states was set at -6

Ry. Because of the significant spin–orbit (SO) effects on the band structure of Bi2Te3,

the eigen states below 10 Ry were considered in the SO calculations. As suggested by

Larson [19], the p1/2 corrections may significantly affect the band structure; therefore,

the p1/2 corrections have also been considered for the Bi 6p and Te 5p states.

The calculated band structures along some high-symmetry lines is plotted in Fig.

4.8. The solid and dash lines show the results with and without the p1/2 corrections,

respectively. When the p1/2 corrections are not included, our results are consistent

with the results of Scheidemantel et al. [20] The band gap is evaluated as ∆Ee,g = 0.13

eV (Scheidemantel et al.[20] reported ∆Ee,g = 0.11 eV), which is slightly smaller than

the zero-temperature experimental results[90] (0.16 eV). The band edges were found

in the mirror plane and off the high symmetry lines, yielding six highest valence bands
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Figure 4.8: Electronic band structure of Bi2Te3 along the high-symmetry lines with

spin–orbit coupling. The solid and dash lines are for the results with and without the

p1/2 corrections included.

(HVB) and six lowest conduction bands (LCB). The conduction band edge (CBE)

is found at (0.667,0.571,0.571), close to those of previous investigations [20, 18, 21].

The secondary LCB edge is found at (0.238,0.238,0.238) with an 10 meV higher

energy. The valence band edge (VBE) is also found at (0.667,0.571,0.571), the same

κ position of the LCB edge. This result is close to (0.652,0.579,0.579) reported

by Scheidemantel et al.[20], but different from (0.546,0.383,0.383) found by Youn et

al.[18], and (0.555,0.397,0.397) by Kim et al.[21]. These comparisons are listed in

Table 4.4.

As shown in Fig. 4.8, the addition of p1/2 lowers the CBE, but elevates the VBE,
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resulting a decrease in ∆Ee,g from 0.13 eV to 0.07 eV. The positions of the band

edges are still off the high symmetry lines. The CBE keeps at the same position

(0.667,0.571,0.571), but VBE shifts to (0.571,0.571, 0.429). Fig. 4.8 also illustrates

this shift.

The effective masses of electrons and holes for a single valley near the band edge

m∗
i,e,◦ = (m∗

i,e,◦,xxm
∗
i,e,◦,yym

∗
i,e,◦,zz)

1/3 (i = e, h), where m∗
i,e,◦,kl

−1 = ~−2[∂2Ee/∂κk∂κl],

were calculated by choosing a small region around the band extrema. As shown in

Table 4.4, the addition of the p1/2 corrections significantly reduces m∗
e,e,◦ and m∗

h,e,◦.

Figure 4.9 (a) also shows the addition of the p1/2 corrections lower the slope of the

electron density of states near the band edge. The band structure without the p1/2

corrections seems to agree better with the experiments [93, 94, 90].

Table 4.4: Comparison of the calculated CBE, VBE, and the corresponding effective

masses m∗
i,e,◦ = (m∗

i,e,◦,xxm
∗
i,e,◦,yym

∗
i,e,◦,zz)

1/3 at the band edges, with the available

results[18, 19, 20, 21].

Reference ∆Ee,g (eV) CBE VBE m∗
e,e,◦ m∗

h,e,◦

Youn et al. [18] 0.06 (0.663,0.568, 0.568) (0.546,0.383, 0.383) - -

Larson [19] 0.05 (0.381,0.5, 0.5) (0.546,0.383, 0.383) - -

Scheidemantel et

al. [20]

0.11 (0.663,0.568, 0.568) (0.652,0.579, 0.579) - -

Kim et al. [21] 0.154 (0.646,0.549, 0.549) (0.555,0.397, 0.397) 0.07 0.11

Experiment [93, 94,

90]

0.16 - - 0.07 0.09

This study (no p1/2

correction)

0.13 (0.667,0.571, 0.571) (0.667,0.571, 0.571) 0.06 0.08

This study (p1/2

correction)

0.07 (0.667,0.571, 0.571) (0.571,0.571, 0.429) 0.02 0.03
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The total electron density of states De with and without the p1/2 corrections,

are shown in Figs. 4.9(a). It is apparent that De of both the valence bands and

conduction bands are non-parabolic. However, we find the Kane band structure

model[107], with ∆Ee,g and m∗
i,e,◦ calculated from the Wien2K (listed in Table 4.4),

gives a good approximation for De near both the conduction and valence band edges.

Many semiconductors with narrow band gap exhibit significant non-parabolicity of

their energy bands. The two-band Kane model[107], which has been used successfully

to describe many real narrow gap materials[92], was adopted to account the non-

parabolicity for theoretical calculations of transport coefficients. The Kane model

assumes the band extrema for the conduction and valence bands are located at the

same κ point. The energy separation from other bands is greater than the main energy

gap and the momentum operator has non-zero matrix elements between the states

corresponding to the extremal points [108]. The dispersion relation of the bands of a

valley is of the form

Ee(1 +
Ee

∆Ee,g

) =
~2κ2

2mi,e,◦
, (4.23)

where mi,e,◦ is the density of states effective mass at the band edge, ∆Ee,g is the

energy gap, and κ is the wave vector. Note here Ee is measured from the band edge.

Then the density of states De can be explicitly written as

De(E) =
21/2Nm

3/2
e,e,◦

π2~3
E1/2

e (1 +
Ee

∆Ee,g

)1/2(1 + 2
Ee

∆Ee,g

). (4.24)

Here N is the multiplicity of the valleys. However, for Bi2Te3, it is the De calculated

by the Kane model using N = 12 instead of N = 6 that can match the results near the

band edge from Wien2K [shown in Fig. 4.9 (a)]. This is believed to result from the
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secondary band edges, of which the energy only slightly differs from that of the band

edges. This also leads to the total effective mass me,e = N2/3me,e,◦ = 0.31me and

mh,e = 0.42me (me is the mass of a free electron), which agree well with me,e = 0.32me

and mh,e = 0.46me measured by Harman et al. [109] Also note that the energy regime

in which the Kane model can provide a good approximation for De is within 0.1 eV

around the band edges. Since only the states with an energy within 3kBT about

the chemical potential are important for the transport properties, the Kane model is

believed to be a good approximation for De over a wide temperature range.

The total density of states without the p1/2 corrections for each species (a product

of the partial De of each species and its multiplicity), are shown in Figs. 4.9(b).

For comparison of the contribution of different orbitals, the orbital-decomposed De

(without the p1/2 corrections) are also shown in Fig. 4.9(c).

As shown in Fig. 4.9(b), for the valence bands, Te1 atoms contribute the most to

the electronic density of states De near the band edge, while the contributions from

Bi and Te2 atoms are less and nearly the same. This indicates that the Te1 atoms are

more probable to lose electrons and be donors in the structure. In contrast, for the

conduction bands, the Bi atoms contribute the most to the density of states near the

band edge, indicating they are more probable to receive an electron and be acceptors.

Note that the contributions from Te1 atoms are only slightly less than those from the

Bi atoms. This is consistent with the slightly ionic-like bond between the Bi atoms and

Te1 atoms. Te2 atoms contribute the least to the density of states at both the valence

and conduction band edges, indicating they are relatively inert in determining the

electronic transport properties of Bi2Te3. Figure 4.9(c) shows that, for Te1 and Te2
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Figure 4.9: (a) Dimensionless electronic density of states De of Bi2Te3 with and

without the p1/2 corrections. The inset is for the band edge, also shown is the De

calculated by the Kane model. (b) Total De,β for individual species β (partial De of

each species times its multiplicity). (c) Decomposed, partial De,β,l for each species.

atoms, p-type orbitals predominate in both the valence band and conduction band.

Bi atoms, however, have strong s+p orbital contribution at the valence band edge,

but the wave function at the conduction band edge is mainly p-type. Considering the

layer sequence Te1-Bi-Te2-Bi-Te1, it seems the bonds between the nearest-neighboring

atoms in each quintuple layer are primarily the ppσ interactions, as suggested by

Mishra et al. [110]
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4.3.2 Chemical Potential

In a thermal equilibrium system, chemical potential µ is an essential parameter

to describe the equilibrium distribution of carriers and their concentrations. All the

electronic transport coefficients, in fact, are functions of the band structure Ee(κ), µ,

and temperature.

Generally, µ can be determined from

nd,h − nd,e = nh + nh,b − ne − ne,b, (4.25)

where nd,h and nd,e are the concentrations of acceptors and donors, nh is the hole

concentration, nh,b is the concentration of holes bound on the acceptors, ne is the

electron concentration, ne,b is the concentration of electrons bound on the donors.

For modest doped semiconductors, nh,b and ne,b are normally negligible at normal

and high temperatures (> 100 K). Therefore, we can rewrite Eq. (4.25) as

nd,h − nd,e =

∫ 0

−∞
De(Ee)

1

e(µ−Ee)/kBT + 1
dEe −

∫ ∞

∆Ee,g

De(Ee)
1

e(Ee−µ)/kBT + 1
dEe,

(4.26)

Given nd,h − nd,e, and using the De calculated by the Kane model, we obtain the

carrier concentrations and the chemical potentials at each temperature point. Figure

4.10 shows the temperature dependence of the calculated carrier concentrations and

chemical potentials, compared with the experimental results[10] for p-type Bi2Te3

single crystals, where nd,h − nd,e = 1.1 × 1019 cm−3. Both a constant ∆Ee,g and

a temperature dependent ∆Ee,g(T ) were adopted in the calculation. As shown in

Fig. 4.10, a constant ∆Ee,g gives a much lower carrier concentration compared to the

experiments [10] at high temperatures (T > 300 K), when the thermal excitation of
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Figure 4.10: Temperature dependence of the calculated carrier concentrations and

chemical potentials, compared with the experimental results [10]. Both a constant

band gap ∆Ee,g = 0.13 eV and a temperature-dependent band gap ∆Ee,g = 0.13 −

1.08× 10−4T were used.

carriers becomes important. A good overall agreement can only be achieved by using

a temperature-dependent band gap ∆Ee,g = 0.13−1.08×10−4T . The different ∆Ee,g

produce two chemical potential µ curves. The deviation between them is small below

200 K, but becomes more prominent when T ≥ 250 K, especially when T ≥ 500 K.

Below 300 K, µ resides within the valence band and the sample is in the extrinsic

regime. For T > 300 K, increasingly more carriers are thermally excited, leading µ

into the band gap, and the crystal becomes intrinsic. At even higher temperatures, µ

tends to move toward the middle of the band gap. In the following electrical transport

calculations, we use µ calculated from Eq. (4.26) with the temperature-dependent

∆Ee,g by shifting the conduction band.
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4.3.3 Relaxation Time Models

The relaxation time models simplify the calculation of BTE, but condense all

the complexities into the relaxation time τe. In principle, the scattering relaxation

time can be obtained using the Fermi golden rule and the perturbation theory. The

scattering of electrons is related to the perturbation of the Hamiltonian for an electron,

which is [105, 111]

H = − ~2

2me

∇2 +
e2

c

4πε◦

∫
nege(r

′)
|r − r′| dr′ + ϕec + ϕext + H′ (4.27)

H′ = H′
e−p,A + H′

e−p,O + H′
e−p,PO + H′

e−v,d + H′
e−v,C + ...

= ϕd,a
∂d

∂r
+ ϕd,od− ecqe

V◦

∑
κp

κp

κ2
p + λ−2

(iQκpe
iκp·r) +

ϕv,c +
Ze2

c

4πεr
e−r/λ + ... (4.28)

where ge(r) is the electron radial distribution function, ϕec is the exchange-autocorrelation

energy, ϕext is the external potential excluding the perturbation, H′ is the perturba-

tion Hamiltonian due to scatterings, H′
e−p,A, H′

e−p,O, H′
e−p,PO, H′

e−v,d, and H′
e−v,C are

the perturbation Hamiltonian for the acoustic phonon scattering, non-polar optical

phonon scattering, polar optical phonon scattering, short-range scattering by impu-

rity, and scattering by Coulomb potential, respectively. Here ϕd,a and ϕd,o are the

deformation potentials for the acoustic and optical phonons, qe is the effective charge,

ϕv,c is the scattering potential of impurity. d = N−1/2
∑

κp
Qκpsκp exp(iκp ·R) (N

is the number of unit cells and sκp is the polarization vector) is the normal coordi-

nate form of lattice displacement, κp is the phonon wave vector, Qκp is the normal

coordinate, λ is the screening length, and Zec is the effective charge of impurity.
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The electron relaxation time τe for a mode κ can be represented as [111]

1

τe(κ)
=

∑
i

1

τe,i(κ)
=

∫
dκ′

(2π)3
γ̇κ,κ′,i(1− gκ′

gκ

f ◦κ
f ◦κ′

), (4.29)

where f ◦κ is the carrier equilibrium distribution , gκ = fκ − f ◦κ is the perturbation of

the distribution, γ̇κ,κ′,i is the transition rate from state κ to κ′ by the ith scattering,

which can in turn be given by the Fermi golden rule as [111]

γ̇κ,κ′,i =
2π

~
δ[Ee − Ee(κ

′)]|Mκ,κ′,i|2

Mκ,κ′,i = 〈κ′|H′
i|κ〉 =

∫
ψ†(κ′, r)H′

iψ(κ, r)dr, (4.30)

where H′
i is the perturbation Hamiltonian for the scattering mechanism i, and ψ(κ, r)

is the wave function for mode κ. The Bloch wave function corresponding to the

electron wave vector κ can be written as

ψ(κ′, r) =
1

V 1/2

∑
o

C ′
J

∑
G

Cκ
Gei(κ+G)·r, (4.31)

where V is the volume, C and C ′ are coefficients, and the subscripts J and G denote

the different orbitals and reciprocal lattice vectors. Therefore,

Mκ,κ′ =
1

V 1/2

∑

J ′

∑
J

C ′†
J ′C

′
J

∑

G′

∑
G

ei(−κ′−G′)·rH′ei(κ+G)·r. (4.32)

If the wave function and the perturbation potential can be obtained from the

first-principle calculation, τe,i can be directly determined. This calculation is very

challenging and here we just introduce an analytical relaxation time model, which is

also based on the Fermi golden rule and incorporates the non-parabolic Kane model

for the energy dispersion.
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Five common electron scattering mechanisms are considered in this work, namely

due to deformation potential of the acoustic phonons τe−p,A, deformation potential

of the optical phonons τe−p,O, polar scattering by the optical phonons τe−p,PO, short

range deformation potential of vacancies τe−v,d, Coulomb potential of vacancies τe−v,C.

According to the Matthiessen rule, the total scattering relaxation time τe is expressed

as

1

τe

=
1

τe−p,A

+
1

τe−p,O

+
1

τe−p,PO

+
1

τe−v,d

+
1

τe−v,C

. (4.33)

Using the Kane model, the expressions for different scattering mechanisms are

given as follows.[91]

(i) Scattering by Deformation Potential of Acoustic Phonons τe−p,A

The relaxation time for electrons dispersed on the deformational potential of

acoustic phonons, when using the Kane model of dispersion and assuming a elas-

tic procedure, can be given as

τe−p,A =
(τe−p,A)◦(Ee + E2

e

∆Ee,g
)−1/2

(1 + 2 Ee

∆Ee,g
)[(1− A)2 −B]

A ≡
Ee

∆Ee,g
(1− aA)

(1 + 2 Ee

∆Ee,g
)

, aA =
ϕd,A,v

ϕd,A,c

B ≡
8 Ee

∆Ee,g
(1 + Ee

∆Ee,g
)aA

3(1 + 2 Ee

∆Ee,g
)2

(τe−p,A)◦ ≡ 2π~4Cl

ϕ2
d,a,ckBT (2me,e,o)3/2

, (4.34)

where ϕd,A,c is the acoustic deformation potential coupling constant for the conduc-

tion band, Cl is a combination of elastic constants, aA is the ratio of the acoustic

deformation potential coupling constants for the valence and conduction bands, and
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me,e,o is the density of states effective mass for a single ellipsoid.

(ii) Scattering by Deformation Potential of Optical Phonons τe−p,O

τe−p,O =
(τe−p,O)◦(Ee + E2

e

∆Ee,g
)−1/2

(1 + 2 Ee

∆Ee,g
)[(1− A)2 −B]

A ≡
Ee

∆Ee,g
(1− aO)

(1 + 2 Ee

∆Ee,g
)

, aO =
ϕ′d,O,v

ϕ′d,O,c

B ≡
8 Ee

∆Ee,g
(1 + Ee/∆Ee,g)aO

3(1 + 2 Ee

∆Ee,g
)2

(τe−p,O)◦ ≡ 2~2a2ρ(~ωp,O)2

πϕ′2d,o,ckBT (2me,e,o)3/2

, (4.35)

where a is lattice constant, ρ is the density, ωp,O is the frequency of the optical

phonons, ao is the ratio of the optical deformation potential coupling constants for

valence and conduction bands.

(iii) Scattering by Polar-Optical Phonons τe−p,PO

In a simple isotropic parabolic model, the relaxation time for polar longitudinal

optical phonons has the form

τ−1
e−p,PO ∼

1

ueκ2

∫ 2κ

0

qdq, (4.36)

where ue is the velocity of electrons. When the integral takes into account all phonons,

we have

τe−p,PO =
~2ue

2kBTe2
c [(εoεe,s)−1 − (εoεe,∞)−1]

. (4.37)
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Inclusion of non-parabolicity and screening effects will lead to

τe−p,PO =
~2(Ee + E2

e

∆Ee,g
)1/2F−1

e2
c(2me,e,o)1/2kBT [(εoεe,s)−1 − (εoεe,∞)−1](1 + 2 Ee

∆Ee,g
)

F ≡ 1− δ ln(1 + δ−1)−
2 Ee

∆Ee,g
(1 + Ee

∆Ee,g
)

(1 + 2 Ee

∆Ee,g
)2

[1− 2δ + 2δ2 ln(1 + δ−1)]

δ ≡ (2κλo)
−2, (4.38)

where εe,s and εe,∞ are the static and high frequency relative permitivities, κ is the

carrier wave vector and λo is the screening length of the optical phonons.

(iv) Scattering by Short Range Deformation Potential of Vacancies τe−v,d

τe−v,d also has a form similar to the relaxation time of electron-acoustic phonon

scattering, due to a similar deformation potential, which is

τe−v,d =
(τe−v,d)o(Ee + E2

e

∆Ee,g
)−1/2

(1 + 2 Ee

∆Ee,g
)[(1− A)2 −B]

A ≡
Ee

∆Ee,g
(1− av)

(1 + 2 Ee

∆Ee,g
)

, av =
ϕ′v,v

ϕ′v,c

B ≡
8 Ee

∆Ee,g
(1 + Ee/∆Ee,g)av

3(1 + 2 Ee

∆Ee,g
)2

(τe−v,d)o ≡ π~4

ϕ′2v,cme,e,◦(2me,e,◦)1/2nv

, (4.39)

where nv is the vacancy density, av is the ratio of the short range deformation poten-

tial coupling constants of vacancies for valence and conduction bands.

(v) Scattering by Coulomb Potential of Vacancies τe−v,C

τe−v,C =
ε2
s(2me,e,o)

1/2(Ee + E2
e

∆Ee,g
)3/2

π(Ze2
c)

2nv[ln(1 + ξ)− ξ/(1 + ξ)](1 + 2 Ee

∆Ee,g
)

ξ ≡ (2κλv)
2, (4.40)
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Table 4.5: Parameters used in the relaxation time models for Bi2Te3, from fit to

experimental results[10].

Parameter Magnitude Parameter Magnitude

mh,e,◦/me 0.08 me,e,◦/me 0.06

nv, 1/m3 1.04× 1025 ρ, kg/m3 7.86× 103

εe,o 400 εe,∞ 69.8

Cl, N/m2 0.71× 1011 ~ωo, eV 0.0061

Z 0.1 ϕd,A,c, eV 35

ϕd,O,c, eV 40 ϕ′v,c, J-m3 1.2× 10−46

aA, aO, av 1.0 a, Å 10.45

∆Ee,g, eV 0.13− 1.08× 10−4T

where Zec is the vacancy charge, and λv is the screening radius of the vacancy po-

tential, and λv is given as

λ−2
v =

4πe2
c

εs

De(µ), µ = EF

De(µ) ≡ 21/2(me,e,◦)3/2

π2~3
(µ +

µ2

∆Ee,g

)1/2(1 + 2
µ

∆Ee,g

), (4.41)

where De(µ) is actually the density of states at the Fermi level.

Figure 4.11 shows the temperature dependence of the calculated average relaxation

times described above. The parameters used in the calculation are listed in Table

4.5. Some parameters, e.g., the deformation potentials, are obtained by fitting the

electrical conductivity with experimental results at 100 K. Overall, the scatterings

by acoustic and optical phonons dominate the electrical transport of Bi2Te3. On the

other hand 〈〈τe−v,d〉〉 and 〈〈τe−v,C〉〉 are orders of magnitudes larger than 〈〈τe−p,A〉〉

and 〈〈τe−p,O〉〉. Therefore, the scattering by the short-range deformation potential

of vacancies and Coulumb potentials are unimportant for the electrical transport of
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Figure 4.11: Variation of calculated average electron relaxation times for Bi2Te3 with

respect to temperature, using the Kane band model for energy dispersion.

Bi2Te3. Note that 〈〈τe−p,PO〉〉 is comparable with 〈〈τe−p,A〉〉 and 〈〈τe−p,O〉〉. Therefore,

the polar scattering by optical phonons is also important.

4.3.4 Seebeck Coefficient

Figure 4.12 shows the variation of calculated αS,‖ of Bi2Te3 with temperature, us-

ing Eq. (4.22). The calculation was carried out using BoltzTraP, a software package

adopting Boltzmann transport equations (BTE). Both the energy-dependent relax-

ation time models (Section 4.3.5) and the constant relaxation time model were used.

We modified the BoltzTraP code and incorporated the relaxation time model into

the integration, since BoltzTrap assumes a constant relaxation time. The corre-

sponding Fermi energy at each temperature is determined by Eq. (4.26) along with

the Kane band model for De. To incorporate the temperature dependence of the
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band structure, we assume the band structure does not change with temperature,

and shift the conduction band in the calculation to include the temperature depen-

dence of the band gap ∆Ee,g. Figure 4.12 shows that, the constant ∆Ee,g leads to

much higher values for T > 300 K (intrinsic regime), while results calculated with

the temperature-dependent ∆Ee,g = 0.13 − 1.08 × 10−4T agrees quite well with the

experimental results. However, in the extrinsic regime (T ≤ 300 K), there is only mi-

nor difference between the results with the two different settings for ∆Ee,g. As shown

in Fig. 4.12, with the same temperature-dependent ∆Ee,g = 0.13 − 1.08 × 10−4T

eV, the two relaxation-time models give very similar results in the extrinsic regime,

since one kind of carriers dominate the electrical transport. However, some deviation

appears in the intrinsic regime, where the concentrations of the holes and electrons

become comparable, and it increases with the increasing temperature. This phenom-

ena indicate the temperature dependences of the mobilities of holes and electrons are

different.

The band structure calculated with the experimental lattice parameters at 300

K was used in the above calculations for αS. Temperature changes not only the

carrier concentrations but also the lattice parameters. However, the band structure

calculations adopting the lattice parameters under different temperatures, shows that

the thermal expansion has negligible effects on the band structure. The change of

lattice parameters from 0 K to 300 K only results in less than 2% change in the band

gap. Compared with the actual temperature dependence of band gap[112], it seems

that the temperature variation of the band gap is mainly due to lattice vibration.

Figure 4.13 shows the variation of αS along the ‖ and ⊥ directions, with respect
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Figure 4.12: Variation of the calculated Seebeck coefficient for p-type Bi2Te3 with

respect to temperature, compared with the available experimental results[10]. Both

a temperature-dependent band gap ∆Ee,g = 0.13− 1.08× 10−4T eV and a constant

∆Ee,g = 0.13 eV are used. Also shown are the predictions using the energy-dependent

relaxation times and the constant relaxation time model.

to the chemical potential µ, at 300 K. Apparently, the two curves are very similar,

indicating the isotropy of αS. Figure 4.13 shows that for p-type Bi2Te3, the αS peaks

along the ‖ and ⊥ directions almost overlap. However, for n-type Bi2Te3, the absolute

peak value αS along the ‖ direction is larger than that along the ⊥ direction, though

the peak positions are identical. In Fig. 4.13, µ0 is the chemical potential value at

which αS = 0. It is useful to rewrite the relation for αS in Eq. (4.22) as

αS =
kB

ec

〈Ee − µ〉σe(Ee,µ)

kBT
, 〈Ee − µ〉σe(Ee,µ) =

∫
σe(Ee, µ)(Ee − µ)dEe∫

σe(Ee, µ)dEe

. (4.42)

Here 〈Ee − µ〉σe(Ee,µ) is the σe(Ee, µ)-averaged energy deviation from the chemical

potential. Then we have

µ0 = 〈Ee〉σe(Ee,µ0), (4.43)
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which is the σe(Ee)-averaged energy and close to the middle of band gap. Therefore,

αS =
kB

ec

[〈Ee〉σe(Ee,µ) − 〈Ee〉σe(Ee,µ0)]− (µ− µ0)

kBT
. (4.44)

〈Ee〉σe(Ee,µ) has a simple form if the nondegenerate approximation may be used,

that is,

〈Ee〉σe(Ee,µ) ' σe,e∆Ee,g

σe,e + σe,h

=
1

1 + be−2ε/(kBT )
∆Ee,g, (4.45)

where σe,e and σe,h are the electrical conductivity contributed by electrons and holes,

b = (µh/µe)(me,h/me,e)
3/2 (µh and µe are the mobilities of electrons and holes), and

∆Ee = µ−∆Ee,g/2 is the seperation of the chemical potential above the middle of the

band gap. Apparently, for semiconductors with large band gap (e.g., ∆Ee,g > 10kBT ),

the absolute value of the maximum αS can be estimated as

|αS,max| = kB

|ec|
∆Ee,g

2kBT
. (4.46)

For small 2∆Ee/kBT , we have

〈Ee〉σe(Ee,µ) ' ∆Ee,g

1 + b
[1 +

2b∆Ee/(kBT )

1 + b
]. (4.47)

Therefore,

αS ' kB

ec

[ 2b∆Ee,g

(1+b)2kBT
− 1](µ− µ0)

kBT
. (4.48)

For narrow band-gap semiconductors, as shown in Fig. 4.13, Eq. (4.48) is a good

approximation for αS when |µ−µ0| < ∆Ee,g/2. When µ move towards the band edge,

the effects of opposite charges becomes smaller; when µ move further into the band
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Figure 4.13: Variation of the calculated Seebeck coefficient of Bi2Te3 with different

lattice parameters at T = 300 K, with respect to the chemical potential µ.

edge, 〈Ee〉σe(Ee,µ) will become closer to µ. Therefore αS will achieve the maximum

near the band edge, and the maximum value can be estimated from Eq. (4.48).

Assuming b = 1 and the maximum is achieved at the band edge, for Bi2Te3 at 300 K,

|αS|max ' 320 µV/K, close to the maximum in Fig. 4.13.

4.3.5 Electrical Conductivity and Electric Thermal Conduc-

tivity

Figure 4.14 shows the calculated electrical conductivity of Bi2Te3 along the ‖

and ⊥ directions, wherein the Kane band model based relaxation times are used.

The temperature-dependent band gap ∆Ee,g = 0.13−1.08×10−4T eV and the corre-

sponding chemical potential calculated in Section 4.3.2 are adopted in the calculation.

The parameters for the relaxation time models are listed in Table 4.5. Below 300 K,

129



the ratio σe,‖/σe,⊥, is around 2.2 and almost temperature independent. But above 300

K, σe,‖/σe,⊥ increases with increasing temperature. From the results shown in Fig.

4.14, this is because σe,‖ changes much faster than σe,⊥ at high temperatures. Note

the calculated σe,‖/σe,⊥ is lower than the experimental values (around 2.95 [113]). A

reason can be neglecting of the direction dependence of the effective masses.
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Figure 4.14: Variation of calculated directional electrical conductivity for Bi2Te3 with

respect to temperature, using the Kane band model and energy-dependent relaxation

times, and comparison with the available experimental results. [10]

We also used a constant band gap ∆Ee,g = 0.13 eV for the calculation of σe using

the above energy dependent relaxation time models. The same parameters in Table

4.5 are used, and the results are also plotted in Fig. 4.14. Below 300 K, the σe,‖

calculated with a constant ∆Ee,g, is fairly close to those results with a temperature-

dependent ∆Ee,g(T ). But in the intrinsic regime, the larger band gap suppresses the

thermal excitation of carriers and thus leads to lower σe values. Note, with a constant

∆Ee,g, σe,‖ continues to decay without any rebound shown in the experimental results.
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Figure 4.15: (a) Variation of the calculated, scaled Lorenz number for Bi2Te3 (along

‖ and ⊥), with respect to the chemical potential. Both the constant relaxation

time model and the energy-dependent relaxation time model (with the Kane band

dispersion) results are shown. (b) Variation of the calculated ke along the ‖ and ⊥

directions, with respect to temperature. The results calculated using the constant

NL,◦, i.e., NL,◦σeT , are also shown.

131



However, a temperature-dependent ∆Ee,g(T ) yields a much better agreement with

the experiments at high temperatures, indicating the temperature dependence of the

band gap is important in predicting the temperature dependence of the electrical

conductivity.

Traditionally, the Wiedemann-Franz law, ke = NLσeT , where NL is the Lorenz

number, is used to calculate the electric thermal conductivity ke on the basis of σe.

However, for semiconductors, NL may not be the values used for metals [NL,◦ =

(π2/3)k2
B/e2

c ], especially when the chemical potential is near the center of the band

gap[?]. Figure 4.15(a) shows the variation of the directly calculated Lorenz number

NL (scaled with NL,◦) for Bi2Te3 (along ‖ and ⊥) at 300 K, with respect to the

chemical potential. The results are similar to those found by Chaput et al.[?] for

doped skutterudites. When the sample is heavily doped (the chemical potential is

deep inside the valence or conduction band), NL/NL,◦ is close to 1.0. However, for

intermediate doping, NL/NL,◦ can be smaller than 1.0, and the minimum is around

0.7. For small doping concentrations or intrinsic regime, NL/NL,◦ may be much larger

than 1.0. Figure 4.15(a) also shows the constant relaxation time model will lead to a

larger NL, compared to that for the energy-dependent relaxation time model discussed

above. For both relaxation time models, NL along the ‖ direction is slightly larger

than that along the ⊥ direction. Figure 4.15(b) shows the temperature dependence

of the electric thermal conductivity calculated according to Eq. (4.22) and that

calculated from NL,◦σeT . The results from Eq. (4.22) shows that ke for both directions

increase with increasing temperature, while NL,◦σeT results show valleys near the

room temperature. Due to the significant changes of NL in the intrinsic regime,
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Figure 4.16: Variation of calculated directional figure of merit for Bi2Te3 (along ‖

and ⊥), with respect to temperature. Both the results with the directly calculated

kp and that modified by defects are presented. The experimental results[10] are also

shown.

NL,◦σeT underestimates ke at high temperatures.

4.3.6 Figure of Merit

Figure 4.16 shows the variation of the figure of merit ZT for the p-type Bi2Te3

specimen of experiment[10] along the ‖ and ⊥ directions, with respect to temperature.

The lower two curves are based on the directly (MD) calculated kp. Since kp as well

as σe is very sensitive to defects, which are always present in fabricated specimens, for

comparison between the calculated and measured ZT , we used a modified kp and the

results are shown with the top two curves. Due to the difficulty in modeling various

defects, the modified kp was obtained by fitting the total thermal conductivity to the

experimental results[10] at 300 K and then using the 1/T law at other temperatures.
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The experimental results are also shown in Fig. 4.16. The ZT with a modified kp is

higher than experimental results above 200 K, mainly due to the overestimation of

σe. The calculated ZT reaches its maximum around 250 K. ZT along the ‖ direction

is higher than that along the ⊥ direction between 200 K and 400 K, due to the larger

ratio σe,‖/σe,⊥ compared to kp,‖/kp,⊥. Note that the experimental σe,‖/σe,⊥ is larger

than the calculated results (discussed above), so the difference in the figure of merits

along the ‖ and ⊥ direction is expected to be even larger.

4.4 Summary and Conclusion

The interatomic potentials for Bi2Te3 have been developed and the calculated

elastic constants and thermal expansion coefficients agree well with the experimental

data, indicating the proposed force field is suitable to describe both the harmonic

and anharmonic behaviors of Bi2Te3. The interaction between two Te1 atoms in the

neighboring layers is a mixture of the electrostatic interaction and the van der Waals

interaction and behaves like an ionic bond. The force constant difference between the

Te1-Te1 and Te2-Bi bonds leads to a phonon band gap near 2.5 THz. There is only

small difference between the in-plane and cross-plane vibrations and no significant

two-dimensional elastic behavior has been found in this layered structure. However,

the anisotropy in the polarized Grüneisen parameter shows much stronger anhar-

monicity along the cross-plane direction, which is mainly due to the high anharmonic

Te1-Te1 interaction.

The temperature dependence of the in-plane and cross-plane lattice thermal con-
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ductivity kp,A,‖ and kp,A,⊥ has been calculated in a temperature range from 150 K

to 450 K. The ratio kp,A,‖/kp,A,⊥ varies from 1.55 to 2.17 in this temperature regime.

Since the elastic properties along the two directions are nearly the same, the difference

between kp,A,‖ and kp,A,⊥ is believed to be mainly due to the different inharmonicity

along the two directions. The calculated in-plane thermal conductivity roughly fol-

lows the 1/T law while the calculated cross-plane lattice thermal conductivity seems

to have a slightly stronger temperature dependence(i.e., 1/T 1.23), which may be due

to the larger thermal expansion effects along that direction. The decomposition of

the lattice thermal conductivity shows that the long-range acoustic phonons dominate

the heat transfer in both the in-plane and cross-plane directions. The contribution

from the long-range acoustic phonons kp,A,lg has a strong temperature dependence; in

contrast, the contribution from the short-range acoustic phonons kp,A,sh and that from

the optical phonons kp,O are also temperature-independent. Also, at each tempera-

ture point, kp,A,sh and kp,O along the in-plane and cross-plane directions are almost

identical. Therefore, kp,A,sh and kp,O are not sensitive to the inharmonicity. The sum

of kp,A,sh and kp,O provides a lower limit for the doped, bulk Bi2Te3, which is about

0.2 W/m-K at 300 K. By using direction-dependent TD,∞ and γG, the Slack model

was also extended for anisotropic materials. The extended Slack model gives a good

estimation for both the in-plane and cross-plane lattice thermal conductivity, indicat-

ing the phonon transport along a given direction is only affected by the elastic and

inharmonic properties along that direction.

We have also calculated the temperature dependence of αS, σe, and ke, over the

temperature range from 100 K to 500 K. These calculation are based on the band
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structure, µ, and τe. The Kane band model is found to be appropriate to describe the

non-parabolicity of the Bi2Te3 band structure. The fitting with the carrier concen-

tration and µ shows that the temperature dependence of the band gap is important

to give a good prediction. The thermal expansion has negligible effects on the re-

lationship between αS and µ, therefore, the effects of temperature on αS are mainly

through changing the distribution function and µ. Both the constant relaxation time

model and the analytic relaxation-time model with the non-parabolic Kane model

for energy dispersion, have been used in the calculations for αS. The results show αS

is sensitive to the temperature dependence of the band gap and the relaxation time

models in the intrinsic regime.

The fitting for σe using the relaxation time model also shows that the polar scat-

tering by optical phonons and the scattering by the deformation potential of acoustic

and optical phonons predominate the electron transport in Bi2Te3. The scattering

by the short-range deformation potential of vacancies and the coulomb potentials

are negligible. The comparison of the temperature dependence of different scattering

mechanisms also shows that the temperature dependence of the band gap is impor-

tant to describe the temperature dependence of σe. It is also found that the Lorenz

number can be smaller than the value for metals for intermediate doping and will

become much larger in the intrinsic regime. In the relaxation time models used, some

parameters are found by fitting to the experimental data on σe. Further work would

use the first-principle methods [e.g., Eq. (4.30)] to calculate the scattering rates by

acoustic and optical phonons.
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Chapter 5

Phonon Conductivity of Filled

Skutterudites

5.1 Filled Skutterudites

Binary skutterudites are structures with the general formula MX3, where M is one

of the group 9 transition metals (Co, Rh, or Ir), and X is a pnictogen. Skutterudites

are characterized by a complex crystalline structure containing large cages and four-

membered planary rings of X (shown in Fig. 5.1). It has been observed that filling the

cages leads to a dramatic decrease in the phonon conductivity [114, 115]. Due to their

good electronic properties (high Seebeck coefficient and high electrical conductivity),

this reduction in phonon conductivity makes the filled skutterudites promising for

thermoelectric applications.

One mechanism that has been evoked to explain the significant decrease of the

phonon conductivity in filled skutterudites is a strong unharmonic rattling motion of
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Transition metal

Pnicogen Rare Earth

Figure 5.1: Cubic structure of skutterudites. Two fillers in the cages are also shown.

the filling atom. Large ADPs of the filler ions in filled-skutterudites with a drastically

reduced phonon conductivity has been observed [116], which is believed to result from

the rattling motion of fillers in the skutterudite cages. Perhaps the most important

evidence of rattling comes from the investigations of low temperature specific heat

measurements [117], which suggests the presence of Einstein oscillators.

To clarify the mechanisms in the reduction of phonon conductivity in filled skut-

terudites, investigation of the phonon transport at the atomic level are needed.

Present work reports the lattice dynamics calculations and direct molecular dynamic

(MD) simulations for the thermal conductivity of CoSb3 and Bax(CoSb3)4 on the

basis of quantum mechanics, which provides important information for the filler-host

interaction and interphonon scattering. First, the vibration spectrum and dispersion

of the empty and fully-Ba-filled CoSb3 structure are calculated and compared. Then

the force fields for this two structures are developed using the ab initio calculations.

Together with the Green-Kubo method, the MD simulations are used to directly pre-
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dict the thermal conductivity of the two structures. Thereafter, the role of filler in

determining the phonon transport is discussed and modelled.

5.2 Empty and Filled Structure

The ab initio calculations were performed for the empty CoSb3 and fully-filled

Ba(CoSb3)4 structure using ABINIT package [118] within the density-functional the-

ory (DFT) framework, with a planewave basis and the general gradient approxima-

tion (GGA) parameterized by Perdew et al. [106] to the exchange-correlation poten-

tial. Both the lattice constants and atomic positions of CoSb3 and the fully-filled

Ba(CoSb3)4 were relaxed until the forces on the atoms were smaller than 2.6× 10−3

eV/Å. So far in experiments no fully Ba-filled CoSb3 cage has been achieved, due

to the long-range coulomb interactions [119]. Then fully-filled Ba(CoSb3)4 may not

exist, but it can simplify the calculations and still provide useful information about

the filler-host interactions. A 2×2×2 grid of special κ-points was sufficient to obtain

well-converged results and the kinetic energy cutoff is 35 hartree. The calculated

structure parameters and their comparison with some other calculations are shown in

Table 5.1. The lattice constant of the relaxed CoSb3 is a = 9.14 Å, which is slightly

larger than the experimental value[23] a = 9.04 Å. However, it is the same as the DFT

(GGA) result from Mahan et al.[22]. The internal parameters u and v for the relaxed

CoSb3 structure are in good agreement with both the experimental and DFT results

in literature [22, 11, 23]. For Ba(CoSb3)4, the comparison with the LDA calculations

for Ba(CoSb3)8 performed by Kajitani et al [24] shows a reasonable agreement.
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Table 5.1: Comparison among the structure parameters of CoSb3 and Ba(CoSb3)4

obtained from the ab initio calculations and some theoretical and experimental results

in the literatures [22, 11, 23, 24].

Parameters CoSb3 Ba(CoSb3)4

a (Å) 9.14 (GGA) [22] 9.12a (LDA) [24]

8.94 (LDA) [22] 9.27 (GGA, this work)

8.94 (LDA) [11]

9.04 (Exp.) [23]

9.14 (GGA, this work)

u 0.3332 (GGA) [22] 0.3334/0.3360a (LDA) [24]

0.3328 (LDA) [22] 0.3386 (GGA, this work)

0.3354 (Exp.) [23]

0.3346 (GGA, this work)

v 0.1594 (GGA) [22] 0.1587/0.1605a (LDA) [24]

0.1599 (LDA) [22] 0.1619 (GGA, this work)

0.1579 (Exp.) [23]

0.1585 (GGA, this work)

Co-Sb (Å) 2.53 c(Exp.) [23] 2.52/2.53 (LDA) [24]

2.55 (GGA, this work) 2.59 (GGA, this work)

Sb-Sb (Å) 2.90/2.98 c(Exp.) [23] 2.93/3.03 b (LDA) [24]

2.89/3.03 (GGA, this work) 2.99/3.00 (GGA, this work)

Co-Sb-Co (degree) 126.9 c (Exp.) [23] 126.9 (LDA) [24]

126.9 (GGA, this work) 126.9 (GGA, this work)

Sb-Co-Sb (degree) 85.6 c(Exp.) [23] 84.6/93.9 (LDA) [24]

85.7 (GGA, this work) 84.2 (GGA, this work)

a The data are for Ba(CoSb3)8 [24].

b,c The values are calculated from the published lattice parameters [24, 23].
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Table 5.1 shows that the addition of Ba filler will slightly increase the lattice

constant as well as the internal parameters u and v. This is also apparent in the

calculations[24] for the half-filled Ba(CoSb3)8, which show a larger lattice constant

and two groups of Sb sites. The most significant change is the bond length for the

short Sb-Sb bond, which increases from 2.888 Å to 2.993 Å. Thus the intra rectangular

pnicogen ring becomes closer to a square in the fully-filled structure. On the other

hand, there are only minor changes in other bond lengths and bond angles.

The GGA calculations using the ABINIT package[118] were adopted to investigate

the interactions between the filler and the host. Figure 5.2(a) shows the variation of

calculated total energy of BaCo8Sb24 with respect to the absolute displacements from

the center of the cage along the [100], [110], and [111] directions. Apparently, the three

curves overlap quite well, indicating the energy surface for the filler-host interactions

is isotropic. At the same time, Fig. 5.2(b) shows the dependence of the calculated

lattice energy of ReCo8Sb24 on the displacement of the fillers (Re = Ba, Ce, La

and Yb, GGA for Ba and La, LDA for Ce and Yb) from the center along the [100]

direction. It is apparent that all the potentials are nearly harmonic with respect to the

filler site. Some anharmonic deviation are marginally evident at large displacements.

Similar behavior is also found by Feldman et al.[120] for La(Ce)Fe4Sb12 and Ghosez

and Veithen[121] for TlFeCo3Sb12. Figure 5.2(b) also shows that the order of the

bare force constant for the fillers is Ba > La > Ce > Yb, that is, the heavier the

filler, the smaller bare force constant and in turn the lower bare vibration frequency.

From Fig. 5.2(b), we can obtain the bare vibration frequencies for Ba, La, Ce, and

Yb, which are 3.31, 2.71, 2.23, 1.80 THz, respectively. The bare frequencies for La
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and Ce obtained here are slightly higher than those [120] reported for La (2.24 THz)

and Ce (2.04 THz) in La(Ce)Fe4Sb12. Since interaction between the filler and the

host is of strong covalent characters [121], we assumed the filler only interacts with

the nearest Sb and Co neighbors and then fitted the interatomic force constants with

the scanned filler-host energy surface. The results are shown in Table 5.2. The fitted

force constants show that all the fillers have a strong coupling with the nearest Sb

atoms, but the coupling with Co atoms is very weak due to the longer seperation.

Table 5.2: Fitted force constants for the interaction between the filler Re (Re = Ba,

Ce, La and Yb) and the CoSb3 host.

Interactions Ba La Ce Yb

ΓRe−Sb (eV/Å2) 1.70 1.11 0.96 0.63

ΓRe−Co (eV/Å2) 0.008 0.013 0.033 0.0027

Using the response-function theory (RFT) and applying perturbations based on

the structure symmetry, the interatomic force constants Γi−j are directly determined

using ABINIT. Those force constants were projected on the local coordinates to

be decomposed into the longitudinal and transversal force constants. The resulting

longitudinal force constants ΓL are expected to correspond to the two-body stretching

force constant, and the transversal force constants ΓT are believed to result from the

many-body interactions.

Figure 5.3 shows the comparison of the calculated longitudinal force constants of

CoSb3 and Ba(CoSb3)4 structure. The force constant values that change significantly

after the Ba insertion into the cage vacancy are shown in a box. Figure 5.3 shows
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Figure 5.2: (a) Variations of calculated LDA/GGA total energy of BaCo8Sb24, with

respect to displacements from center of the cage along the [100], [110], and [111]

directions. (b) Variations of calculated LDA/GGA total energy of ReCo8Sb24 (Re

= Ba, Ce, La), with respect to displacement from center of the cage along [100]

directions. The dashed lines show the slopes of those LDA/GGA energy curves at

d2 = 0.
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Figure 5.3: Comparisons between the longitudinal force constants Γi−j of CoSb3 and

BaCo8Sb24, obtained from the ab initio calculations and from RFT. Atoms 1-12 are Sb

atoms, 13-16 are Co atoms, and 17 is Ba atom. The values that changes significantly

due to the addition of filler are shown in box.

that, except for Co-Sb bonds, the force constants of other bonds are more or less

changed by the Ba filler. The most important change is ΓL of the short Sb-Sb bond,

which decreases around 50% and becomes close to that of the long Sb-Sb bond. ΓL

of the long Sb-Sb bond and the Sb-Sb inter-rectangle bond also decrease 10 % and

20 %, respectively. The calculated ΓL of Sb-Ba interaction is 1.66 eV/Å2, in good

agreement with 1.7 eV/Å2 (shown in Table 5.2) obtained by fitting the energy surface.
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5.3 Lattice Dynamics

To investigate the effects of the fillers on the lattice vibrations of skutterudite

structure, the normalized phonon total density of states (DOS), projected density of

states (PDOS), and dispersion curves of the unfilled CoSb3 and the filled Ba(CoSb3)4

were calculated using RFT and lattice dynamics. Figures 5.4(a) and (b) show the

calculated phonon DOS of CoSb3 and Ba(CoSb3)4, respectively. The calculated DOS

for CoSb3 is in good agreement with the other calculations in the literature [11, 121].

Apparently, the existence of the filler, Ba atoms, affects the overall total vibration

spectrum: first the cut-off frequency is significantly reduced from 8.3 THz to 7 THz;

second the peak around 5 THz is separated from the lower frequency spectrum; third

the small gap around 3 THz disappears and the large gap above 6 THz becomes

much smaller; and fourth there are more peaks appearing between 1.5 THz and 3.0

THz. The fourth change is believed to be due to the vibration of Ba atoms and its

hybridization with the vibrations of Co and Sb. However, the first three changes are

unlikely due to the disturbance from Ba atoms. As will be shown below, they result

from the weakened bonds caused by the presence of the Ba atom. The vibration

spectrum of Ba atoms actually occupies a wide frequency regime and is distinct from

that of an Einstein oscillator, which only occupies a narrow band regime.
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Figure 5.4: (a) Normalized phonon DOS of CoSb3. (b) Normalized phonon DOS of

Ba(CoSb3)4.
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Phonon dispersion may provide more information on the effects of the filler in

CoSb3 structure. Figure 5.5 shows the phonon dispersion of (a) CoSb3 and (b)

Ba(CoSb3)4. The dispersion curves for CoSb3 seem to be significantly changed by

Ba atoms. First, the acoustic branches become flatter and their cutoff frequency is

reduced from around 1.5 THz to 1.0 THz, which means the group velocity of acoustic

branches is reduced by around 30%. Second, the optical branches are squeezed, i.e.,

both the vibration frequency and group velocity are reduced. Furthermore, there are

strong disturbance near 2 THz. The first two changes in the dispersion, however,

are not due to the disturbance of the Ba vibration, but due to the weakened bond

force constant by the presence of the Ba atom. This is more clear by comparing the

dispersion curves plotted in Fig. 5.6 and those in Fig. 5.5. In Fig. 5.6, the potential

model C proposed by Feldman and Singh [11] was adopted for the CoSb3 host, and

the filler-host interaction is fitted with the scanned energy surface, as mentioned in

Section 5.2. Figure 5.6(a) shows the dispersion for the empty CoSb3 structure calcu-

lated from Feldman-Singh’s model, which is in good agreement with the result from

RFT [shown in Fig. 5.5(a)]. When the Ba atom is inserted into the cage, as shown

in Fig. 5.6(b), the overall change in the dispersion is minor if the force field for the

host keeps the same. The acoustic branch below 1.5 THz is almost untouched and

the optical phonon spectrum between 1.5 THz and 6 THz actually expands, which is

in direct contrast with the result shown in Fig. 5.5(b). Comparing the dispersions

for the empty and filled structure, phonon transport is more likely to be suppressed

in the filled structure with a dispersion shown in Fig. 5.5(b), as compared to the

dispersion shown in Fig. 5.6(b).
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Figure 5.5: Phonon dispersion calculated by RFT for (a) Co4Sb12, and (b)

Ba(CoSb3)4.
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Figure 5.6: Phonon dispersion calculated by the classical force field for (a) Co4Sb12

and (b) Ba(CoSb3)4. Feldman-Singh’s model C [11] is adopted for the CoSb3 host,

and the filler-host interaction is fitted with the energy surface.
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5.4 Interatomic Potentials

Lutz and Kliche[122] (LK) fitted six-parameter central force constant model to the

infrared data of CoSb3. Their model accurately predicts the LDA volume dependence

of the total energy and most eigen mode frequency. However, the LK model does not

contain bond angle force constants, which may be important due to the significance

of covalent bonding in CoSb3 structure. Feldman et al. [123] proposed a harmonic

force field which includes the bond-angle distortions by fitting the parameters to the

available infrared data and LDA results. They also fitted the cubic anharmonic terms

of the interatomic potentials with the LDA results. Their model predicts the zone-

center mode frequencies and the anharmonicity in the volume-dependent LDA results

quite well. The effects of atomic charges are assumed to be negligible in Feldman’s

model as well as LK model, due to the strong covalent charaters of the interatomic

bond. Nevertheless, a cubic bond-stretching potential passes through a maximum and

might cause some instability in the molecular dynamics for some cases. Therefore, the

quadratic anharmonic terms should be involved for a robust MD simulation, which,

however, is very challenging to fit accurately. Of the many functional forms used

to model interatomic interactions, the Morse potential is found to be very useful,

especially for covalent bonds. The Morse potential has the following form [124]

ϕ = ϕ◦{[1− exp(−a(r − r◦))]2 − 1}, (5.1)

where ϕ◦ is the depth of the potential energy minimum and r◦ is the equilibrium

bond length. We first determined the parameters in the Morse potentials for CoSb3

by fitting their harmonic and cubic anharmonic terms with the force field proposed
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by Feldman et al. [123]. As in the force field proposed by Feldman et al. [123],

this force field model includes the nearest-neighbor Co-Sb interaction, the nearest-

neighbor Co-Co interaction, the two nearest-neighbor Sb-Sb interactions (both long

and short bonds) in the rectangles, the two nearest-neighbor Sb-Sb interactions be-

tween rectangles, and the two bond-angle distortions associated with the two distinct

Co-Sb-Sb angles. As expected, this force field produces the same predictions for the

zone-center normal modes and elastic constants as those calculated by Feldman et

al. [11] The potential for the filler-host interaction can be obtained by fitting the

energy surface calculated in Section 5.3. However, for a filled skutterudite structure,

the filler may significantly affect the interatomic interactions [123]. Therefore, for the

direct comparison between the empty structure and the fully-filled one, we also need

to obtain the potentials for filled CoSb3 structure as well as the empty one on the

same platform and using the same approach. Ba was chosen as the filler to investigate

as high filling fraction has been achieved experimentally [12]. Normally, interatomic

potentials are developed by fitting the energy surface scanned by the ab initio cal-

culations or the experimental data, which is extremely challenging, especially for

structures with strong interatomic coupling, due to the difficulty in decomposing the

different interactions. With the motivation from the dynamical matrix calculations

in Section 5.3, a new approach based on the response function theory [118, 125, 126]

was adopted here. First, the interatomic force constants for the optimized structure

were calculated. Then, by varying the lattice constant,
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Table 5.3: Interatomic potentials for CoSb3 and the rattlers. Here r and θ are in-

teratomic separation distance and bond angle. The parameters of the potentials are

derived from ab initio calculations and RFT. The subscripts 1 and 2 denote the

potentials for CoSb3 and Ba(CoSb3)4, respectively.

Interaction Potential Model Parameters

Pair

Co-Sb ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,1 = 1.289 eV, a1 =

1.175 Å
−1

, r◦,1 = 2.554 Å

ϕ◦,2 = 1.075 eV, a2 =

1.286 Å
−1

, r◦,2 = 2.592 Å

Co-Co ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,2 = 0.273 eV, a2 =

0.657 Å
−1

, r◦,2 = 4.569 Å

ϕ◦,2 = 0.025 eV, a2 =

0.719 Å
−1

, r◦,2 = 4.636 Å

Sb-Sb (short bond) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,1 = 2.24 eV, a1 =

1.039 Å
−1

, r◦,1 = 2.888 Å

ϕ◦,2 = 1.002 eV, a2 =

0.992 Å
−1

, r◦,2 = 2.993 Å

Sb-Sb (long bond) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,1 = 1.380 eV, a1 =

1.102 Å
−1

, r◦,1 = 3.025 Å

ϕ◦,2 = 0.91 eV, a2 =

1.11 Å
−1

, r◦,2 = 3.004 Å

Sb-Sb (between rectangles ) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,1 = 0.702 eV, a1 =

0.864 Å
−1

, r◦,1 = 3.473 Å

ϕ◦,2 = 0.431 eV, a2 =

0.96 Å
−1

, r◦,2 = 3.474 Å

Sb-Sb (between rectangles ) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,1 = 0.527 eV, a1 =

0.8 Å
−1

, r◦,1 = 3.746 Å

ϕ◦,2 = 0.228 eV, a2 =

0.866 Å
−1

, r◦,2 = 3.847 Å

Co-Sb (second neighbor) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,1 = 0.158 eV, a1 =

0.676 Å
−1

, r◦,1 = 4.44 Å

ϕ◦,2 = 0.022 eV, a2 =

0.751 Å
−1

, r◦,2 = 4.538 Å

Co-Sb (third neighbor) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦,1 = 0.196 eV, a1 =

0.665 Å
−1

, r◦,1 = 4.51 Å

ϕ◦,2 = 0.102 eV, a2 =

0.719 Å
−1

, r◦,2 = 4.636 Å

Angular

Co-Sb-Sb (1) 1
2
ϕθ(cos θ − cos θ◦)2 ϕθ = 0.91 eV, θ◦ = 109.2◦

Co-Sb-Sb (2) 1
2
ϕθ(cos θ − cos θ◦)2 ϕθ = 0.91 eV, θ◦ = 107.6◦

Filler-Host

Ba-Sb (third neighbor) ϕ◦{[1− exp(−a(r − r◦))]2 − 1} ϕ◦ = 0.549 eV, a =

1.147 Å
−1

, r◦ = 3.48 Å
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a series of force constants were obtained. Providing the interatomic bond model,

these force constants together with the corresponding bond length are then analyzed

to obtain the anharmonic terms. Thereafter, the Morse potentials were fitted with

these harmonic and anharmonic terms, and the results are listed in Table 5.3.

5.5 MD Simulation Procedure and G-K Autocor-

relation

The phonon thermal conductivity Kp of unfilled and filled CoSb3, is determined

using molecular dynamics simulations together with G-K approach (described in chap-

ter 1)[124].

Because of their cubic structures, the phonon thermal conductivities of CoSb3 and

filled structure (ReCo8Sb24) are isotropic. Due to the limit computation resource, to

minimize the computation time, the MD simulations were mainly performed with a

system consisting of 12 × 3 × 3 cubic unit cells (117 × 27 × 27 Å3). We assume the

phonon transport in the x direction will not be affected by the small dimensions in

the other two directions. This assumption was confirmed by running a simulation

with 9 × 9 × 9 cubic unit cells. The obtained results for the 9 × 9 × 9 unit-cell

system were found very close to the x-direction results for the 12 × 3 × 3 unit-cell

system. The simulations with even larger systems, e.g., 15× 4× 4 system, produced

very similar results, indicating the size effects were minor for a 12 × 3 × 3 system.

All the simulations were performed at 300 K and the time step was chosen as 4 fs.
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The Verlet leapfrog algorithm was adopted for the calculation, while the Nose-Hoover

thermostat and the Berendsen barostat were used to control the system temperature

and pressure. The system was first simulated in a NPT (constant number of atoms,

pressure and temperature) ensemble for 100-200 ps until it reached a free-standing

state at the desired temperature, then it was switched into a NVE ensemble and

ran another 100 ps to reach the the equilibrium state. Thereafter, 3000 ps raw heat

current data were obtained for the calculation of HCACFs. The resulted HCACFs

were then directly integrated and the phonon conductivities were set as the average

values in the stable regime of the integral.

5.6 Effects of Fillers

Figure 5.7 shows the time evolvement of the predicted phonon conductivity of

CoSb3 at T = 300 K, using the modified force field (model C) developed by Feldman

and Singh [123]. This force field leads to a kp of 6.3 W/m-K. This value is lower than

the experimental results (kp of between 8 and 11 W/m-K)[114, 127, 12]. This lower

value might be due to the overestimation of Grüneisen parameter, which is calculated

as γG = 1.1 and is higher than the experimental value [127] γG = 0.95. By adding the

Ba-Sb potential fitted with the scanned energy surface, the phonon conductivity of

fully-filled Ba(CoSb3)4 is also calculated and is shown in Fig. 5.7. It is surprising that

the predicted kp of Ba(CoSb3)4 reaches 10 W/m-K, which is even higher than that of

pure CoSb3. This directly contradicts the traditional “rattler” idea that the filler’s

random “rattling” movement strongly scatters phonons and results in a much lower
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Figure 5.7: Evolvement of predicted variation of the phonon conductivity of CoSb3

and Ba(CoSb3)4. In the MD simulation, the modified force field of Feldman and

Singh[11] is used for the host, and the Sb-Ba potential is fitted with the energy

surface .

phonon conductivity. To find out the reason for this increase in phonon conductivity,

we calculated the elastic properties of Ba(CoSb3)4 using the above force field. After

the Ba insertion, the bulk modulus Ep increases from 99.2 GPa to 116.8 GPa and c11

increases from 203 GPa to 235 GPa. These changes suggest that the creation of a

strong Ba-Sb bond makes the lattice more rigid. According to the Slack relation (Eq.

3.10), kp ∝ T 3
D ∝ E

3/2
p , the change in elastic properties may result in 25% increase

in the phonon conductivity. At the same time, the insertion of Ba atoms adds some

parallel pathes for phonon transport, i.e., some phonons may pass through Ba-Sb

bonds rather than propagate around the cage.

According to Fig. 5.5, we believe that the phonon conductivity of the fully-filled

Ba(CoSb3)4 skutterudite should be lower than that for the empty structure, but this
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Figure 5.8: Predicted variation of the phonon conductivity of CoSb3 and Ba(CoSb3)4

with respect to the correlation time. In the MD simulation, the force fields developed

on the basis of DFT and RFT are used.

decrease is due to the bond change resulting from the presence of Ba atoms. To

confirm this, we replaced the force fields for the host with those developed in the

preceding sections on the basis of DFT and RFT (shown in Table 5.3) in the MD

simulation. Figure 5.8 shows the predicted evolvement with these new potentials, at

T = 300 K. The results support the suggestion that the filler “softens” the host bonds

and suppresses the phonon transport.

We find that the filling effects can be estimated by the Slack relation 3.10. Since

TD is proportional to the cutoff frequency fA,max of the acoustic branches, by ignoring

the changes in the Grüneisen parameter, we have

kp,Ba(CoSb3)4

kp,CoSb3

' [
fA,max,Ba(CoSb3)4

fA,max,CoSb3

]3. (5.2)

As approximation, we use the average cutoff frequency for the three acoustic branches.
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According to Fig. 5.5, fA,max,Ba(CoSb3)4 ' 1.0 THz and fA,max,Ba(CoSb3)4 ' 1.5 THz,

therefore, kp,Ba(CoSb3)4/kp,CoSb3 ' 0.3. This simple method also works fine for Sr-filled

Ge clathrate and predicts the ratio of kp,Sr6Ge46/kp,Ge46 ' [ (80+45×2)
3

/30] = 0.15 (here

we have used frequency in cm−1). This value is in a good agreement with the MD

predicted ratio[128] of 0.12.

5.7 Partial Filling

It has been observed that a relatively small concentration of a filler can cause

relatively large decrease in phonon conductivity of skutterudites [114, 115, 129]. In

addition, the largest decrease in the phonon conductivity is achieved for the partially-

filled skutterudites rather than the fully-filled structures [114, 115]. If this reduction in

phonon conductivity is due to the scattering by “rattlers”, then we expect the phonon

conductivity to decrease monotonically with increasing filler concentration. However,

observations show there exists an optimal filling fraction in reducing the phonon

conductivity [114, 115, 129]. Moreover, the room-temperature phonon conductivity of

some partially filled skutterudites[129], e.g., CeyFexCo4−xSb12, is almost independent

of the filling fraction when the filling fraction is larger than 0.2. Nolas et al. [114]

argued that a point-defect-type phonon scattering effect, due to the partial, random

distribution of fillers in the voids, as well as the “rattling” effect of the filler ions,

results in the scattering of a larger spectrum of phonons than in the case of full

filling.

As discussed in previous sections, the filler is strongly coupled with the host
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and the role of filler in reducing the phonon conductivity is more likely to change

the surrounding bonds, instead of being a “rattler”. It is reasonable to treat the

fully-filled skutterudite as a new compound which has a lower phonon conductivity.

Therefore, the partially-filled skutterudites can be thought of as solid solutions of

completely filled and unfilled components, e.g., the partially-filled Bax(CoSb3)4 can

be considered as solid solutions of Ba(CoSb3)4 and ¤(CoSb3)4. Thus, the preminant

mass fluctuation scattering is between Ba and ¤. Similar ideas for CeyFexCo4−xSb12

have been proposed by Meisner et al. [115].

We compared the experimental phonon conductivity[12] of Bax(CoSb3)4 with that

predicted using the point defect scattering theory[130, 131, 115]. For high defect

concentration, the phonon conductivity limited by the point defects scattering kp,d

can be given by

kp,d = kB/[4πup,g,A(a1τp−p)
1/2], (5.3)

where τp−p is the relaxation time for interphonon scattering, and up,g,A is average

phonon group velocity. The relaxation time for interphonon scattering can be es-

timated from the room-temperature thermal conductivity of empty CoSb3 crystal

kp,CoSb3 = 10 W/m-K, i.e.,

τp−p = k2
BTD/(2π2up,g,A~kp,CoSb3)

=
(6n)1/3kB

2π4/3kp,CoSb3

, (5.4)

where n is the atomic number density. This yields τp−p = 6.54 × 10−16 s. The

parameter a1 is the coefficient for the Rayleigh-type point defect scattering rate,
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which is given by a1 = Vcas/(4πu3
p,g,A). Here, Vc is the unit cell volume and as is

the scattering parameter. For impurity atoms on a single atom site, as =
∑

fi(1 −

Mi/〈M〉)2, where 〈M〉 =
∑

fiMi, fi is the fractional concentration of impurity i,

and Mi is its mass. The scattering parameter for a compound ReuMvXw, denoted as

as(ReuMvXw), is given by [132, 115]

as(ReuMvXw) =
u

u + v + w
(
MRe

Mm

)2as(Re) +
v

u + v + w
(
MM

Mm

)2as(M)

+
w

u + v + w
(
MX

Mm

)2as(X), (5.5)

where Mm = (uMRe + vMM + wMX)/(u + v + w). For solid solution of [Ba(CoSb3)4]x

[¤(CoSb3)4]1−x, Re = (Ba, ¤), M = Co, and X = Sb. Therefore, as(ReuMvXw) =

0.095x(1− x). According to Eq. (5.3) and using[127] up,g,A = 2934 m/s, the thermal

resistivity due to the point defects scattering is k−1
p,d = 0.745[x(1 − x)] m-K/W. Ac-

cording to the Matthiessen rule[124], the overall phonon conductivity kp(solution) of

the solution [Ba(CoSb3)4]x [¤(CoSb3)4]1−x is given by

k−1
p (solution) = xk−1

p,Ba(CoSb3)4
+ (1− x)k−1

p,CoSb3
+ k−1

p,d. (5.6)

The variation of predicted overall phonon conductivity kp(solution) of Bax(CoSb3)4

with respect to the filling fraction (at T = 300 K) is shown in Fig. 5.9, together

with the experimental results [12]. In this calculation, both kp,Ba(CoSb3)4 and kp,CoSb3

are from the MD simulations. The overall agreement between the calculated values

and the experimental results is fairly good. Figure 5.9 also shows that kp,solution is

not very sensitive to the filling fraction x when 0.2 < x < 0.8, which is partially

due to the low phonon conductivity of Ba(CoSb3)4. Figure 5.9 shows the minimum
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Figure 5.9: Variation of predicted phonon conductivity of Bax(CoSb3)4 (at T = 300

K), with respect to the filling fraction. The experimental results from Chen et al.

[12] are also shown.

value does not occur exactly at x = 0.5, but depends on kp,Ba(CoSb3)4 and kp,CoSb3 .

This solution model can also explain why the phonon conductivities of the filled

skutterudites are independent of temperature at high temperatures and have lower

peaks at low temperatures, since these are typical behaviors of solid solutions.

5.8 Summary and Conclusion

In this work, both the lattice vibrations and phonon transport in the empty CoSb3

and filled Ba(CoSb3)4 skutterudites were investigated by performing first-principles

calculations and MD simulations.

The filler-host coupling in filled CoSb3 is found to be strong and its anharmonicity

is minor. This contradicts with the traditional thought that fillers act as randomly-
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moving “rattlers” that have weak bonds with the host. The lattice structures of both

empty CoSb3 and fully-filled Ba(CoSb3)4 are relaxed using DFT calculations. The

comparison of the two relaxed structures shows that the insertion of Ba changes the

lattice constants and almost all the bond lengths. The interatomic force constants

for the two relaxed structure are also calculated using DFT and RFT. The results

shows that the interatomic longitudinal force constant, except for Sb-Co bonds, is

significantly affected by the presence of the Ba filler.

The MD simulations also shows that without changing the interatomic interactions

for the host, the addition of filler can not reduce the phonon conductivity for filled

skutterudites. This contradicts with the traditional “rattler” theory. The decrease

in the phonon conductivity in the fully-filled skutterudites seems more likely due to

the weaker bonds and lattice distortion resulting from the presence of the filler. This

is confirmed by the MD simulations with the force field developed on the basis of

DFT and RFT calculations. It is also found that the change in the acoustic cutoff

frequency can be used to estimate the effects of filler on the phonon conductivity of

skutterudites.

The results for the partially-filled Bax(CoSb3)4 skutteruidites may be better un-

derstood if they are considered as the solid solutions of the empty CoSb3 and the

fully-filled Ba(CoSb3)4. The predictions using the point defect scattering theory show

a good agreement with the experimental results. This indicates the importance of

alloying in reducing the phonon conductivity of skutterudites.
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Chapter 6

Summary and Conclusion

6.1 Contribution

This work investigates the atomic-level thermal transport in compact,linked-cage,

layered, and filled-cage crystals. The relationship between phonon conductivity and

lattice structure has been studied theoretically and explained for understanding the

nature of phonon transport in crystalline solids. Using this, we developed metrics

and guidelines for the design of materials with desired thermal transport properties.

A comprehensive, multiscale approach which combines the ab initio calculations,

MD/G-K, BTE, and the kinetic theory, has been developed for the investigation of

thermal transport at atomic scale. Use of quantum mechanics makes it possible to

avoid many assumptions required in other methods and provides more fundamental

and unbias information at the atomic level. The obtained information also allows

for examination of these assumptions and guides the construction of new models.

MD/G-K, BTE and kinetic theory, are mainly of classical nature, but are efficient
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for larger-scale system. The integration of these techniques allows for investigation

of the bulk properties at the atomic scale, and for relating the micro structure to the

macro phenomena.

This research is theoretical rather than experimental and the approach is through

numerical simulation. However, experimental results are also intensively used. Chal-

lenges in both numerical results and experimental data are how to extract the infor-

mation or relationship of interest and how to organize the information into a uniform

framework. Therefore, analytic, theoretical modelling is used here to bridge this gap.

Some significant contributions made here are summarized below:

• Exploration of structural metrics of phonon conductivity. An atomic structure-

based model is developed for the understanding the relationship between the

atomic structure and phonon transport in compact crystals at high tempera-

tures. The thermal conductivity is predicted on the basis of the Debye tem-

perature and the Grüneisen parameter from the atomic configuration of the

structure. The elemental electronegativity and mass, and the arrangement of

bonds are found to be the dominant factors in determining the phonon con-

ductivity contribution from the long-range acoustic phonons. In linked-cage

crystals, the phonon mean free path is limited by the cage-bridge structure and

is equal to the cage size.

• Development of force fields for MOFs, Bi2Te3, and skutterudites Though the

research on MOFs, Bi2Te3, and skutterudites are of academic and practical

importance, the MD simulations for them are rare, due to the challenge in de-
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veloping suitable classical force fields. Based on the ab initio calculations, we

have developed the interatomic potentials for these structure. Comparison with

available experimental results shows suitability of these potentials for investi-

gating thermal transport in these structures.

• Filler versus “rattler” role for filled skutterudites. The filler in filled-cage crys-

tals is traditionally thought of being a “rattler” with randomly “rattling” move-

ments and strongly scattering phonons. As shown in Chapter 5, the coupling

between the filler and host is strong and of minor anharmonicity, even at large

displacements from the cage center. MD simulation shows that without filler-

affected change in the host potentials, the insertion of a filler actually makes the

structure more rigid and increases the phonon conductivity. The decrease in the

phonon conductivity of a fully-filled skutterudite is due to softening of the host

bonds, resulting from presence of filler. For partially-filled skutterudites, alloy

effects are found to be very important in suppressing the phonon transport.

6.2 Future work

There are four natural extensions of the work presented here that should be pur-

sued.

• The fitting of force field with energy surface scanned by the ab initio calcu-

lations, as used here, is not very efficient. The discrete points on the energy

surface are few, and may not contain all the important information. To obtain

dense energy surface, the calculations become formidable. In practice, not all
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the points on the energy surface are necessary for obtaining good interatomic

potentials. The manner in choosing the special energy surface points and ex-

tracting useful information on the interatomic potentials, is critical in both

calculation efficiency and quality.

• Materials with nanostructures, e.g., supperlattice and nanowire, have exhibited

great potentials in promising fields, such as thermoelectric and thermal insula-

tion/conduction. Some atomic-level techniques developed in this work can also

be applied to those nanostructures. It will be of great importance to understand

the phonon and electron transport in these structures.

• The Green-Kubo fluctuation-dissipation method is normally used together with

classical MD simulation. The challenge of finding suitable force fields for clas-

sical MD simulations limits the existing and future application of this method.

The Green-Kubo method is based on the fluctuation-dissipation theory, which

is also valid for system with quantum effects. In recent years, ab initio MD

simulations, which avoid the fitting for the classical interatomic potentials, is

attracting attentions. Combining the Green-Kubo method with ab initio MD

simulations will greatly expands applications for both of these.

• This work focuses on bulk, single crystals. As well known, doping or alloying

may significantly change both phonon and electron transport. This freedom

makes it possible to improve performance of existing materials. The techniques

developed here can also be used in exploring the structural metrics in these

doped materials or alloys.
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6.3 Outlook

Theoretical work is important, because it provides insight into the nature of phys-

ical phenomena. However, it can never replace experimental research. Experiments

make no assumption, and new physical phenomena are always found in experiments.

The challenge in experiments is how to explain the results and how to extract infor-

mation of interest. The combination of theory and experiment will take advantage of

both sides and benefit both sides.
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Appendix A

Grüneisen Parameter for L-J

Oscillator

For L-J oscillators, the vibrational energy El and the mean atomic separation 〈rl〉

of the motion with the principle quantum number l of this oscillator can be expressed

as [52]

El = ~ω(l +
1

2
)− Ce~2ω2(l +

1

2
)2, Ce =

5(m + n + 3)2

48ϕ◦mn

〈rl〉 = r◦ + Crr◦~ω(l +
1

2
), Cr =

3(m + n + 3)

2ϕ◦mn
, (A.1)

where −ϕ◦ is the equilibrium potential energy.

The statistical mean vibration energy E(ω) and interatomic separation r(ω) for

frequency ω can then be given as [51]

E(ω) = F − T (
∂F

∂T
)V , F = −~ω ln Z (A.2)

r(ω) =

∑∞
l=0〈rl〉e−El/kBT

∑∞
l=0 e−El/kBT

= r◦ +
Crr◦~ω

2
+

Crr◦~ω
e~ω/~ω − 1

, (A.3)
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where Z =
∑∞

l=0 e−El/kBT , is the partition function of the oscillator. Using the Debye

approximation, the total vibrational energy E can be given as

E =

∫ ωD

0

E(ω)Dp(ω)dω,

' Eo + 9NkBTx−3
D f(xD)−

9CeN(kBT )2x−3
D f1(xD)

f(xD) =

∫ xD

0

x3dx

ex − 1
, xD = TD/T

f1(xD) =

∫ xD

0

x4(1 + ex)dx

(ex − 1)2
, (A.4)

where Dp(ω) is the phonon density of states, and ωD is the Debye frequency and E◦

is the zero point energy.

Similarly, the mean interatomic separation re can be written as

re =
1

3N

∫ ωD

0

Dp(ω)r(ω)dω

= r◦ + r1 + 3kBTCrr◦(
T

TD

)3f1(xD), (A.5)

where r1 is the deviation due to the zero-point vibration, and r2 is related to the

thermal vibration and anharmonicity of the potential. re,o = r◦+r1 is the equilibrium

separation at T = 0 K.

The Mie-Grüneisen equation of state is [51]

p +
dU

dV
= γ

Ev

V
, (A.6)

where p is the pressure, U is the lattice potential energy, Ev is the total vibration

energy excluding the zero-point energy E◦, and V is the volume.

For small perturbation,

dU

dV
' B◦

V − V◦
V◦

= 3B◦
r − ro

r◦
. (A.7)
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where B◦ is the bulk modulus at zero temperature, and V◦ is the initial volume.

Since Bo = Uomn/(9Vo) [51] and γ = γ′ (the crystal contains only one bond type),

by setting re,o = ro, Eqs. (A.7), (A.4) and (A.5) give

γ′ ' γ′◦[1 + CekBT
f1(xD)

f(xD)
], γ′◦ =

m + n + 3

6
. (A.8)
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Appendix B

Thermal Conductivity

Measurement for MOF-5

B.1 Crystal Preparation

We synthesize large single cubic crystals by mixing 8.38 g Zn(NO3)2·4H2O (32.0

mmol) and 1.77 g terephthalic acid (10.7 mmol) dissolved in 100 mL DEF in a glass

beaker and sonicating the mixture for 15 minutes. The solution is dispensed evenly

into 20 scintillation vials (20-mL size) by using a plastic syringe equipped with a

PTFE filter (Whatman, 0.45 µm pore size). The vials are then tightly capped and

placed in an isothermal oven. The reactions are stopped after being heated at 368 K

for 72 hours. The mother liquor in each vial is decanted while warm and the product

is washed with fresh DEF (3 × 5 mL for each vial). In a typical batch as described

above, 5-6 large single cubic crystals (size 1-2 mm) are obtained. The cubic crystals

are confirmed to be MOF-5 by the coincidence of experimental PXRD pattern with
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the simulated one and by examination of these crystals under an optical microscope

[133, 15, 134].

After obtaining the large single cubic crystals, solvent-exchange is carried out to

remove the high-boiling-point DEF in the crystals. The suitable crystals are collected

in a 20-mL scintillation vial. After the DEF solvent is removed as clean as possible

by using a pipette, this open vial is placed in a desiccator saturated with chloroform

vapor, which slowly condenses into the vial and accumulates to 5 mm tall in 3 days.

After the removal of the accumulated chloroform, two different methods are adopted

for further solvent-exchange. One is to fill the vial with chloroform liquid and then

cap it (direct addition of chloroform liquid). The solvent volume is replaced twice

after a 1-day and a 2-day immersion respectively, and is kept at rest for another 2

days. The total time of chloroform-exchange of large MOF-5 single crystals is 3 days

in desiccator and 5 days on bench. The other is to repeat the vapor diffusion exchange

(slow condensation of chloroform vapor) 3 times in 7 days. The latter method is easier

for obtaining clear crystals.

The effectiveness of exchanging DEF solvent is confirmed by the disappearance of

characteristic amide carbonyl peaks in FT-IR spectra.

Table B.1 shows the characteristics of the crystal samples used in the conductivity

measurement. Both the stored (old) solvent and the fresh solvent are purified and

both solvent-exchange methods are used.
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Table B.1: Characteristics of the samples used.

Sample Size, mm3 Chemical preparation

♦ 0.94× 1.13× 1.32 old solvent, solvent-exchange: direct addition of chloroform liquid

¤ 1.71× 1.17× 1.79 fresh solvent, solvent-exchange: slow condensation of chloroform vapor

© 1.33× 0.83× 1.50 fresh solvent, solvent-exchange: slow condensation of chloroform vapor

M 0.75× 1.13× 1.20 fresh solvent, solvent-exchange: slow condensation of chloroform vapor

B.2 Thermal Conductivity Measurement

The thermal conductivity of the MOF-5 samples is measured based on the Fourier

law [13], using the longitudinal, steady-state heat flow method.[135, 136] Since MOF-

5 has a cubic structure, its thermal conductivity is isotropic and can be obtained by

the measurement in only one direction.

Figure B.1(a) shows the apparatus used for the measurement and Fig. B.1(b)

shows the thermal circuit diagram for the heat flow paths.

To avoid the formation of small cracks resulting from the adsorption of water va-

por, the MOF-5 sample is prepared in a sealed airbag with filling prepurified nitrogen

atmosphere. The dimensions of the sample are measured using a microscope. Two

fine copper-constantan thermocouples (the diameters of the copper and constantan

wires are 30 µm and 10 µm, respectively) are attached to the surface of the sample, us-

ing SE4422, a fast-drying thermally conductive adhesive produced by Dow Corning.

The distance d between the thermocouples is also measured using the microscope.

Here d is defined as the distance between the two thermocouple center points. Then

the sample is mounted between a small heater and the copper heat sink of a cryostat,

as shown in Fig. B.1(a).
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Figure B.1: (a) Apparatus for the measurement of thermal conductivity; (b) The thermal

circuit diagram [13] for the heat flow path through the sample and various other paths.
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Two copper wires with diameters of 30 µm are used for current input to the

heater, and two chromel wires with diameters of 10 µm are used to measure the

heater voltage. The lengths of the copper and chromel wires are all 25 cm (long

enough to minimize the conduction loss). The cryostat is then evacuated until the

pressure is reduced to 10−7 torr.

Liquid nitrogen is used to cool the sample from 300 K to about 100 K. Then liquid

helium is used to cool the sample to 6 K. Thereafter, the temperature of the sample

is raised incrementally back to 300 K. The thermal conductivity is measured during

the procedure. The cooling rate using liquid helium is fast and the resulting thermal

stress may result in the formation of defects within the sample, which can affect the

low temperature results.

The specification of the thermal conductivity involves two steps. First, at each

predetermined temperature point, a 1 mA DC current is input into the heater. After

5 to 10 minutes (to allow for steady, stable readings), when the outputs of the ther-

mocouples become stable, the input current Jh, the voltage 4ϕh and the temperature

difference ∆T are recorded. Second, the heat loss is measured. After finishing the

first step, the sample is detached from the heat sink, and left suspended by thermo-

couple wires, while keeping the heater attached to its bottom surface. The sample is

then placed back into the cryostat and the cryostat is evacuated again. The heat loss

is measured at the same temperatures as in the first step. The input current of the

heater is adjusted by trial and error to raise the temperature of the sample to the same

average temperature measured in the first step. The current Je,2 and voltage 4ϕh,2

of the heater are recorded and the heat loss Qloss is calculated by Qloss = Je,24ϕh,2.
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Then the thermal conductivity kp is calculated by

kp =
(Jh4ϕh −Qloss)d

A4T
, (B.1)

where A is the cross section area perpendicular to the heat flow.

B.3 Heat Loss Model

The heat loss generally takes a long time to measure, and sometimes such a

measurement is challenging at low temperatures. It is more efficient to calculate the

heat loss using a model. This model can also guide minimizing the error due to the

heat loss.

From Fig. B.1(b), Qloss is the summation of Q1 to Q8, i.e.,

Qloss =
8∑

i=1

Qi, (B.2)

where Q1 is the radiation heat loss from the heater surface, Q2 is the radiation heat

loss from the sample surface, Q3, Q4, and Q5 represent the conduction through the

copper wires (heater), thermocouple wires, and chromel wires, and Q6, Q7 and Q8

are the radiation from the chromel wires, thermocouple wires and the copper wires

(heater) surface.

We assume the temperature varies linearly along the surface. Then each Qi (i =

1, 2, ..., 8) can be calculated from

Q1 = σεhAh(T
4
h − T 4

0 ), Th =
l1(T1 − T2)

d
+ T2
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Q2 = σεs

∫ l1+d

0

2(w + l)((T1 +
(T2 − T1)x

d
)4 − T 4

0 )dx

Q3 = 2kcu
πD2

cu

4

(Th − T0)

lcu,h

Q4 = kcu
πD2

cu

4

(T2 − T0)

lcu,s

+ kcon
πD2

con

4

(T2 − T0)

lcon,s

Q5 = 2kch
πD2

ch

4

(Th − T0)

lch,h

Q6 = 2σεch

∫ lch,h

0

πDch{[T0 +
(Th − T0)x

d
]4 − T 4

0 }dx

Q7 = σεcu

∫ lcu,s

0

πDcu{[T0 +
(T2 − T0)x

d
]4 − T 4

0 }dx +

σεcon

∫ lcon,s

0

πDcon{[T0 +
(T2 − T0)x

d
]4 − T 4

0 }dx

Q8 = 2σεcu

∫ lcu,h

0

πDcu{[T0 +
(Th − T0)x

d
]4 − T 4

0 }dx, (B.3)

where σ is the Stefan-Boltzmann constant, Ah is the area of the heater, εh, εs, εcu, εcon,

and εch, are the emissivities of the heater, sample, copper, constantan and chromel,

respectively (all assumed constant). Also, kcu, kcon and kch are the thermal conductiv-

ities of copper, constantan and chromel, respectively (all are temperature dependent).

Here lcu,h and lch,h are the lengths of the copper and the chromel wires connected to

the heater, respectively, and lcon,s and lcu,s are the lengths of the constantan and the

copper wires of the thermocouples. Also, Dcu, Dch and Dcon are the diameters of

the copper , the chromel and the constantan wires, respectively. The outputs of the

thermocouples give the temperatures T1 and T2, T0 is the temperature of the heat

sink and the surroundings, and Th is the temperature of the heater.

It is assumed that the effect of thermal expansion and the contact resistance

are negligible, and that temperature varies linearly along the longitudinal direction.

Based on the experimental data, the radiation through the transparent sample is
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negligible (less than 1% of the total heat flow at 300 K).

Figure B.2 shows the ratio Qi/Jh∆ϕh, as a function of ambient temperature T0.

The emissivities of the wires are fitted by measuring the thermal conductivities of the

materials with a known thermal conductivity, for example, glass and teflon. For the

emissivities, we have found 0.6 for the copper wires, 0.6 for the constantan wires, 0.6

for the chromel wires, and 1.0 for the heater. The emissivity of the sample is assumed

to be 1.0.

Q1

Q2

Q3
Q4

Q5

Q6

Q7

Q8

Q
lo

ss
 /

 J
h
 ∆

 φ
h
 

0.0

0.1

0.2
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7 50 100 150 200 250 300

T0 (K)

Figure B.2: Predicted contribution of the different heat losses as a function of ambient

temperature, for a typical experiment. The geometric parameters in this heat loss model,

are set as those for a typical sample at room temperature. The temperatures, T1 and T2,

are set as the measured values at the ambient temperature T0.

As shown in Fig. B.2, above 100 K, the total heat loss is dominated by surface

radiation. The radiation effect increases sharply with increasing temperature and the

total heat loss is up to 20% of the input power Qin at 300 K. Among the radiation heat

losses, Q1 and Q8 are the most significant, because the temperature of the heater is the
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highest and the copper wires have the largest surface area. Between 40 K and 100 K,

the total heat loss is relatively small. The conduction through the wires is significant

below 40 K, due to the sharply increasing thermal conductivity of the copper with

respect to decreasing temperature. The heat loss calculated by this model agrees well

with the measured value.
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