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CHAPTER I

Introduction

1.1 Nuclear Energy and Nuclear Wastes

In the past sixty years, nuclear energy has greatly supported the growing econ-

omy of the world. According to the latest data from the International Atomic Energy

Agency (IAEA), there are currently 439 commercial nuclear power plants in opera-

tion, with a total capacity of 372.202 GWe and supplying 16% of the total electric

energy demand of the world. Meanwhile, to support a continuously expanding econ-

omy, 34 new nuclear power plants with a total capacity of 28.193 GWe are under

construction, with more than half of them being built in China, India and Russia

[1]. As nuclear energy continues to be one of the most important energy sources, two

of the main potential road-blocks for the further development of the nuclear energy

industry are its ability for sustaining long-term energy production and the nuclear

waste management.

In the earth’s crust, uranium is a widely spread radioactive metal. Its abundance

is about 3 ppm (parts per million), which is 500 times larger than gold, and it can be

found in rocks, soils, rivers and sea water. The average abundance of the uranium ore

is only about 0.25% in the United States, and the ore is usually manufactured into

the so-called “yellow cake”, which contains about 70% - 90% of U3O8. Therefore,

1
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to obtain 1 ton of natural uranium, it requires more than 400 tons of uranium ore.

Typically, 99% of the uranium ore, which contains almost all the radioactivity and

residual materials, are left as mine tailings, creating a large inventory of low-level

nuclear wastes [2, 3].

Natural uranium contains two major isotopes 235U and 238U with the abundance of

0.7204% and 99.274% respectively [4]. 235U is an even-old isotope and is fissionable

by absorbing an external neutron with any kinetic energy. However, 238U is only

fissionable with neutrons, which kinetic energy is larger than roughly about 1 MeV.

Other even-odd atoms such as 233U and 239Pu are very similar to 235U. They are often

called fissile materials. 232Th, 238U and 240Pu, which have an energy threshold to

undergo fission, are called fertile materials. The probability for an atom to undergo

fission by absorbing an external neutron is dependent on the neutron energy, and

usually the probability is larger for fissile materials interacting with thermal neutrons.

Therefore, most of the current nuclear power plants are thermal reactors, which use

light materials such as water, heavy water or carbon to slow down fast neutrons, so

as to maximize the probability of fission reactions in a nuclear reactor. 235U is the

major fuel isotope utilized in current nuclear power plants. Its concentration in a

typical nuclear fuel rod is about 3.5%-5%, and it is enriched from natural uranium.

The depleted uranium left from the enrichment process is a source of low-level nuclear

wastes, which need to be buried in specific repositories.

A nuclear fuel rod is irradiated in the nuclear power plant. After 12-24 months,

it is discharged from the nuclear power plant with about 1% 235U left, together with

95% of 238U, 3% of fission products and others materials. For a typical fission reaction

[2]

1
0n + 235U → (

236U
)∗ → fission products, (1.1)
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where the fission products are usually highly radioactive. Meanwhile, fertile nuclei

in the fuel rods can also absorb neutrons to form fissile nuclides, e.g.,

1
0n + 238U → (

239U
)∗ → 239Pu + γ. (1.2)

With successive neutron absorptions, heavier radioactive nuclides with long half-lives,

e.g., Pu, Am, and Cm, are built up in the fuel rods before the fuel is discharged from

the reactor. For a typical nuclear power plant with an initial loading of 1 ton of

235U, there will be roughly 250 kg of 235U and 22.7 tons of 238U left in the spent

fuel. In addition, 266 kg of Pu will also be generated, together with about 946 kg

of fission products and other minor actinides in the spent fuel rods [5]. Due to the

high radioactivity of the discharged fuel rods, they are classified as high-level nuclear

wastes and are required to be further processed or be stored in a geological repository,

such as the Yucca Mountain repository.

The extent of the nuclear power industry and the insufficient use of uranium with

current nuclear power technologies could result in an eventual shortage of nuclear

fuel supplies. Specifically, a typical fission reaction produces about 200 MeV energy.

Thus, a 1.0 GWe nuclear power plant with a capacity factor of 80% consumes about

1 ton of 235U annually [5]. According to the British Geological Survey, the total

known and economically recoverable uranium in the world is about 4,743,000 tons

in 2007 [6], which may last less than 150 years with the current rate of consumption.

Although it is possible to find more uranium ores with new exploration technologies,

a safe disposal of nuclear waste, and the production of plutonium in nuclear power

plants, with weapons proliferation potential, are critical issues which have to be

addressed in the near future.

A geological repository is a potential way of solving the nuclear waste problem.

Regardless of the high cost of building such a repository, if all the spent nuclear fuel
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is vitrified and stored, the cumulated amount of spent nuclear fuel will reach about

200,000 tons by the year of 2020, which will fill up 3 Yucca Mountain repositories,

each with the capacity of 70,000 metric tons [5, 7]. Another possible way to solve

the nuclear waste problem is to reprocess the spent nuclear fuel and transmute the

radioactive nucleus in advanced reactors. The fuel reprocessing separates out Pu and

burns it up in nuclear reactors, and the transmutation technology transfers long-lived

radioactive nuclides to stable or short-lived nuclides.

The goal of reprocessing and transmutation is to destroy plutonium and other ac-

tinides as much as possible. This technology can also help lower the requirements for

the geological repository. To illustrate, we show in Figure 1.1 the relative radiotoxi-

city of spent nuclear fuel with or without actinides [8, 9]. With actinides separated

out from the spent fuel, the life time of the engineering barrier to prevent the ra-

dioactive nuclides from leaking out of the repository may be reduced from millions

of years to less than a thousand years. As a result, many technical requirements for

designing the geological repository can be simplified. For instance, materials such as

borosilicate glass are known to be durable for thousands of years and will then serve

as a good waste form for the nuclear waste.

1.2 The ADS system

In a nuclear reactor, the destruction rate of actinides is often dependent on the

neutron energy spectrum of the reactor. Usually, a fast neutron spectrum is more

attractive in terms of incinerating Pu and other actinides, due to the fact that fast

neutrons can induce fission interactions with the actinides to supply additional neu-

trons in a fast reactor [10]. The Accelerator Driven Subcritical (ADS) system is one

type of reactor which has been investigated in the past decades to incinerate actinides
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Figure 1.1: Relative radiotoxicity on inhalation of spent nuclear fuel with a burnup of 38 megawatt
days/kg U. The radiotoxicity values are relative to the radiotoxicity (horizontal line) of
the quantity of uranium ore that was originally mined to produce the fuel (eight tons
of natural uranium yields one ton of enriched uranium, 3.5% 235U).[8]

and to transmute long-lived radioactive nuclides. The nuclear fuel configuration is

subcritical, and an external neutron source is placed in the reactor to support a

steady power level in the ADS reactor.

Figure 1.2 shows a design of an ADS system, which has three major components:

an accelerator, a neutron target and a subcritical reactor. In this conceptual design,

protons are first accelerated with an energy up to GeV by a linear accelerator. The

high-energy proton beam hits the neutron target which is located at the center of a

subcritical core to generate high-energy neutrons. The neutrons then leak out of the

target region and interact with nuclear fuels to produce energy.

Compared with critical reactors, where the fission chain is self-sustained, the

advantage of using such a subcritical system lies in the inherent safety feature of a

subcritical reactor. Specifically, the reactor power is fully determined by the intensity
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Figure 1.2: A reference core of the ADS system [11].

of the external neutron source, and the system can be shut down easily by simply

turning off the accelerator. Due to this inherent safety feature, it is also possible to

incinerate the minor actinides, which have small delayed neutron fractions and may

be difficult to serve as fuel for critical reactors [5]. In addition, long-lived fission

products, e.g. 99Tc and 129I, can also be transmuted in such a system with external

neutrons.

The accelerator in the ADS system has to be operated with a high level of per-

formance, in order to maintain a steady power level to the electric grid and to avoid

frequent thermal transients. Usually only the linear accelerator is possible to supply

such a high energy beam with large intensities. The major technical challenge for

the neutron target is to achieve a high production rate of neutrons as well as the

management of the high thermal power generated in the target.

Overall, as an integrated system, the ADS system also requires an optimization

design on the safety control of the reactor power and the subcritical level of the

reactor. Namely, to retain the advantages over critical reactors, the subcritical re-
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actor must be designed to remain subcritical during any transient conditions. As

the neutron physics is quite different between subcritical and critical reactors, tools

such as numerical simulation code packages and experimental methods which were

used in conventional critical reactors have to be verified and validated before they

are applied to analyze the ADS system.

1.3 The MUSE (MUltiplication avec Source Externe) experimental pro-
gram

In the nuclear engineering field, a critical reactor often means that if we freeze

the reactor at any moment, the number of neutrons generated by fission or other

interactions in the reactor is equal to the number of neutrons destructed by absorp-

tion and other processes such as neutrons leaking out of the system. The effective

multiplication factor keff is used to measure the degree of a reactor deviating from

its critical status. Conceptually, keff can be defined as a scalar, such that if the

number of neutrons generated by each fission interaction is scaled by this number,

the reactor is then artificially critical. Thus, keff is a global parameter which char-

acterizes the behavior of the entire reactor [12]. In practical applications, another

global parameter named as reactivity ρ is also used for convenience. It is defined as

ρ = (keff − 1)/keff .

One of the conventional methods, which was used to measure keff or ρ for reactors

not far from critical status, e.g., keff ∼ 0.99, is the pulsed-neutron experiment. To

perform the experiment, external neutrons are pulsed into the reactor. Detectors,

usually 235U fission chambers, are placed at certain positions in the reactor to moni-

tor the decay of the neutron flux. The reactivity are then inferred from the measured

detector responses, based on the α-method or the area-ratio method. Usually, for

close-to-critical reactors, the measured reactivities obtained from the local observa-
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tions are not sensitive to detector positions, and their values are close to the real ρ

of the reactor. However, for sufficiently subcritical reactors, e.g., keff ∼ 0.95, both

methods have to be examined and validated carefully.

The MUSE program is in the 5th European framework to study the reactor physics

of the ADS system [13]. Specifically, it performs a series of zero-power pulsed-

neutron experiments with the goal of improving the current understanding of the

kinetics behavior of a subcritical reactor. More importantly, the program also aims

to validate experimental methods which could be used to measure the reactivity of

a subcritical reactor.

The MUSE program started in 1995 and was led by the French Atomic Energy

Commission (CEA, Commissariat l’nergie atomique) in cooperation with other Eu-

ropean countries. Experiments were performed in the MASURCA facility, which is

a fast research reactor located at Cadarache, France. Figure 1.3 shows the X-Y and

Y-Z views of a Monte Carlo model of this subcritical reactor.

In the 4th phase of the MUSE program, the deuterons are accelerated by a

GENEPI accelerator with an average energy about 250 keV [14], and are focused

and delivered through a small window opening at the middle plane of the subcritical

reactor, as shown as the white region in the X-Y and Y-Z views. The neutron target

is a 50 mm thick copper disk placed at the center of the subcritical reactor, with

titanium doped with deuterium or tritium [15]. A lead buffer shown as an orange

region in both figures is placed at the back of the neutron target to simulate the

neutron spectrum from a spallation neutron source. Therefore, the external neutron

source can be assumed as an isotropic source.
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(a) X-Y view

(b) Y-Z view

Figure 1.3: A Monte Carlo model of the MUSE-4 SC0 MASURCA research reactor (a) X-Y view
at plane z = 0 (b) Y-Z view at x = 0.
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The subcritical reactor uses U-Pu mixed oxide (MOX) fuel. Dimensions of each

fuel subassembly are 0.106 × 0.106 × 1.642 m, and is composed of fuel pellets and

metal sodium in a steel wrapper shown as the left plot in Figure 1.4. With different

Pu concentrations in the MOX fuel, the fuel rods are marked as green, cyan, and

magenta regions in the X-Y and Y-Z view, respectively. The reactor is cooled by

nature circulation of air. The solid sodium rods, marked as yellow regions in the

Monte Carlo model, are placed in the fuel subassembly to simulate the neutron

spectrum of a sodium cooled fast reactor. The Monte Carlo model of the reflector

region is also shown as the right plot in Figure 1.4. Each reflector subassembly also

consists of solid sodium rods and steel blocks. The purple region as shown in the

X-Y view is stainless steel which acts as the shield of the subcritical reactor. Finally,

control rods, which are usually a strong neutron absorber, e.g., B4C, can be inserted

into the reactor as shown in the X-Y view.

In the MUSE-4 program, pulsed-neutron experiments are performed to evaluate

the applicability of both the α-method and the area-ratio method in measuring the

reactivity of an ADS system. The pulsed-neutron source is either a D-T or a D-

D source generated by the GENEPI accelerator, which works at a frequency of 1

Hz. The average energy of the external neutron source is 14 MeV for the D-T

source and 2.5 MeV for the D-D source. The source intensities are 3.3× 106 n/pulse

and 3.0 × 104 n/pulse for the D-T and D-D sources, respectively. The subcritical

reactor is at different configurations, e.g., SC0, SC2, and SC3, by arranging the

fuel assemblies. In addition, by placing the four safety rods vertically at different

positions, the reactor can also achieve different subcritical levels, e.g., the SC0 close-

to-critical configuration with ρ = −500 pcm and the SC0 subcritical configuration

with ρ = −3000 pcm. The Monte Carlo model shown in Figure 1.3 is the SC0
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subcritical configuration with the control rod SR1 inserted into the reactor.

Figure 1.4: A Monte Carlo model of the nuclear fuel subassembly and the reflector subassembly.

1.4 The objective and the structure of the thesis

The MUSE-4 pulsed-neutron experimental data were analyzed explicitly by Villa-

marin in his PhD thesis [15]. Overall, for the MUSE-4 SC0 subcritical configurations,

the reactivity obtained from both the α-method and the area-ratio method are sen-

sitive to detector positions. In particular, with the area-ratio method, the maximum

difference between the reactivities measured at different detector positions is about

2 $ , with an average value of about -12 $ and the measured effective delayed neu-

tron fraction β = 0.00334±0.00006. For subcritical reactor configurations with large

subcriticality, the α-method becomes difficult to be applied to the experimental data.

To investigate the spatial effects in the MUSE-4 experimental data, Carta et al.

reproduced the spatially dependent reactivities from the numerical simulations at

most of the detector positions using the area-ratio method [16]. However, Carta’s

analysis can not reproduce the measured reactivity, which possesses the largest spa-

tial effect. Furthermore, the reason that the reactivities obtained from both the

α-method and the area-ratio method are spatially dependent in the MUSE-4 pulsed-
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neutron experiments is not explained in his paper.

Recently, another type of spatial correction method called the modified area-ratio

method was also proposed by Kulik [17] to analyze the spatial effects in the MUSE-4

experiments. The method eliminates spatial effects in the experiments through di-

rect time-dependent numerical simulations of the pulsed-neutron experiment. The

method was demonstrated by the numerical tests to be capable of obtaining con-

sistent reactivities at different detector positions. However, the modified area-ratio

method requires a numerical simulation of thousands of neutron pulses, making a

spatial correction with such a method impractical to the MUSE-4 area-ratio experi-

mental data.

The area-ratio method is one of the traditional methods to measure the reactivity

of a close-to-critical reactor. Its spatial dependence in a subcritical reactor was also

studied over the years. For instance, Gozani in 1962 introduced the extrapolated

area-ratio method [18] to eliminate the spatial effects induced by high-order prompt-

neutron harmonics. However, later pulsed-neutron experiments performed by Master

et al. [19] showed that the reactivity obtained from the extrapolated area-ratio is

even more sensitive to the detector positions than the original area-ratio method.

Therefore, the importance of the high-order prompt-neutron harmonics in the area-

ratio method was extensively studied [20, 21]. The basic approach is to expand the

detector responses with a set of modal terms to obtain a spatial correction f at each

detector position with all the high-order harmonics included. For instance, Preskitt et

al. first applied the modal expansion technique to the extrapolated area-ratio method

[22], and discovered that the spatial effects of the extrapolated area-ratio method are

strongly dependent on the “kinetics distortion” factor in the subcritical reactor. In

practical applications, due to the difficulty of obtaining high-order prompt-neutron
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harmonics, the contributions of high-order prompt-neutron harmonics to the spatial

correction factor f are ignored, and most of the spatial correction factors are only

made based on the fundamental mode [23, 22].

Another approach to study the spatial effects in the area-ratio method was sug-

gested by Bell[24]. In particular, the spatial dependence of the area-ratio method can

be obtained directly from steady-state numerical simulations. For practical purposes,

the spatial correction factor derived from Bell’s method is easy to apply because it

does not require any dynamics simulations of the pulsed-neutron experiment. It

is this method that Carta used in his paper to reproduce the MUSE-4 area-ratio

experimental data [16].

To eliminate the spatial effects in the area-ratio method rather than to reproduce

the experimental result, we will derive a spatial correction factor f from Bell’s method

in this thesis. The capability for f to eliminate the spatial effects in the area-ratio

method will be validated by numerical tests. However, with f derived from Bell’s

method, we are still unable to explain why the reactivity obtained from the area-ratio

method is spatially dependent in a subcritical reactor.

According to modal analysis methods, the spatial effects are known to be induced

by the high-order harmonics contaminations. In this thesis, we apply the modal

expansion technique to the area-ratio method. Specifically, spatial correction factors

corresponding to the high-order harmonics are derived and compared with the spatial

correction factor f obtained from Bell’s method. To explicitly evaluate the spatial

effects induced by the high-order harmonics, we first use the Krylov subspace method

to calculate the high-order harmonics. Therefore, the spatial effects induced by

high-order contaminations can be evaluated by the numerical tests. In addition, a

new spatial correction factor fp with all the high-order prompt-neutron harmonics



14

included is also derived from our modal analysis. With this new spatial correction

factor fp, we are able to both correct and explain the spatial dependence in the

MUSE-4 area-ratio experimental data.

The α-method is another traditional method to measure the reactivity from a

pulsed-neutron experiment. To apply the method, the detector responses subject

to a neutron pulse is fitted by the exponential decay in the prompt-neutron decay

region to obtain a decay constant. The reactivity is then obtained with the decay

constant and the mean generation time Λ measured from the experiment. If the

decay constant is position dependent, the reactivity obtained from the α-method is

spatially dependent. For the MUSE-4 experimental data, it is found that for deep

subcritical reactor, the decay constants vary continuously over the time and space

domains. Therefore, the traditional α-method is difficult to apply. In recent years,

the modified α-method was proposed by Kulik to eliminate the spatial effects in the

α-experimental data[17]. Like the modified area-ratio method, the spatial effects

are eliminated by direct numerical simulations of the pulsed-neutron experiment.

However, the modified α-method only requires numerical simulation for a single

neutron pulse. In this thesis, we will also use this method to obtain reactivities from

the MUSE-4 experimental data. The only drawback of the modified α-method is

that its accuracy depends highly on the accuracy of the numerical model.

On the other hand, the reactivity obtained from the traditional α-method might be

significantly underestimated, even though it is not sensitive to the detector position.

It is because the mean generation time Λ is usually measured in a reference reactor,

which might be significantly different from the mean generation time in a subcritical

reactor. With prompt-neutron harmonics calculated via Krylov subspace methods,

we are able to examine the variation of the mean generation time explicitly for
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reactors at different subcritical levels through numerical simulations. In addition,

the spatial dependence of the decay constants can be easily explained by the modal

analysis approach, and a method of eliminating the spatial dependence in the MUSE-

4 pulsed-neutron experiment is also proposed in this thesis.

In summary, we apply numerical simulations to the pulsed-neutron experiments to

analyze the spatial effects. The space- and time-dependent neutron balance equation

is usually solved in the numerical simulations. The rest of the thesis is organized

as follows. In Chapter II, we start with a derivation of the time-dependent neu-

tron balance equation. Two eigenvalue problems, of which the eigenfunctions are

the expansion functions in the our modal analysis, will be derived explicitly. We

also derive the area-ratio method and the traditional α-method in Chapter III from

the point kinetics equations for the pulsed-neutron experiments. Then, Chapter IV

focuses on analyzing the spatial effects both in the area-ratio method and in the

α-method. The spatial correction factor f will be derived from Bell’s method. The

modal expansion technique is applied to the area-ratio method, and correction fac-

tors corresponding to the prompt-neutron harmonics are also derived from the modal

analysis. In addition, we also derive the α-method from the time-dependent neutron

balance equations, with a calibration factor for the mean generation time Λ. Then,

in Chapter V, we present our implementation of the Krylov subspace method to cal-

culate the high-order harmonics of the two eigenvalue problems. In Chapter VI, the

spatial correction factors derived in Chapter IV are verified with FX2-TH numerical

simulations. The spatial effects induced by the high-order harmonics in the area-

ratio method are evaluated via the modal expansion method. The variation of the

mean generation time is also evaluated. Finally, in Chapter VII, the spatial effects

in the MUSE-4 experimental data are analyzed for both the area-ratio method and
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the α-method. We present a summary and conclusions of the thesis in Chapter VIII,

with several numerical algorithms detailed in Appendices A and B. The four-group

cross sections of a FX2-TH numerical model in Chapter VI are included in Appendix

C.



CHAPTER II

The Space-Time Kinetics

2.1 The time-dependent neutron balance equation

The time-dependent transport or diffusion equation characterizes the overall reac-

tor behavior and can be obtained by setting up a neutron balance [24] in a differential

element dV dEdΩ as shown in Figure 2.1,

Rate of change of the number of neutrons = rate of neutron production

− rate of neutron destruction. (2.1)

We denote the angular neutron number density N(r, E,Ω, t) to represent the number

density of neutrons at time t, in unit volume around position r, unit energy interval

at E and unit solid angle around direction Ω. The rate of change of the number of

neutrons in a volume element dV at r, within dE at E, within dΩ at Ω, and at time

t can be written as

Rate of change of the number of neutrons =
∂N(r, E,Ω, t)

∂t
dV dEdΩ. (2.2)

Neutrons will be removed from the volume element dV by leaking out through the

surfaces or leaving dΩdE by colliding. We use the operator L(r, E,Ω, t) to represent

17
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Figure 2.1: A schematic review of the volume element in the reactor.

the neutron destruction process in dV dEdΩ at time t:

L(r, E,Ω, t)vN(r, E,Ω, t)dV dEdΩ = vΩ · ∇N(r, E,Ω, t)dV dEdΩ

+ Σt(r, E, t)vN(r, E,Ω, t)dV dEdΩ,(2.3)

where the first term on the RHS representing the leakage rate, and the second term

representing the neutron collision rate. Here, Σt is the total cross section of the

material at (r, E, t), and v is the neutron speed. Meanwhile, in the volume element

dV , neutrons are scattered into dΩdE from dΩ′dE ′, and the scattering process is

denoted by the operator S with

S(r, E, t)vN(r, E,Ω, t)dV dEdΩ =

∫
4π

dΩ′
∫ ∞

0

dE ′Σs(r, E
′ → E,Ω′ → Ω, t)

× v′N(r, E ′,Ω′, t)dV dEdΩ. (2.4)
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Most importantly, neutrons are also generated from neutron fission reactions in

dV dΩdE represented by the operator F:

F(r, E, t)vN(r, E,Ω, t)dV dEdΩ =
1

4π

∫
4π

dΩ′
∫ ∞

0

dE ′νΣf (r, E
′, t)

× v′N(r, E ′,Ω′, t)dV dEdΩ, (2.5)

where ν is the average number of fission neutrons released per fission. In a typical

fission reaction, most of fission neutrons are released promptly within 10−14 s, e.g.,

235U +1
0 n −→ 87Br + 146Ln + 31

0n + γ. (2.6)

These neutrons are often called prompt neutrons. There is also a small fraction of

fission neutrons, less than 1%, which are released from fission products after beta

decays, e.g.,

87Br
β−−−→

T=55s

(
87Kr

)∗ → 86Kr +1
0 n. (2.7)

These neutrons are called delayed neutrons, and their release time is determined by

the half-life of the beta decay process ranging from less than a second to a minute

[2]. Fission products, such as 87Br in this example, are called the delayed-neutron

precursors. For a nuclear fission reaction, a multitude of delayed-neutron precursors

are produced. For convenience, they are grouped into six groups according to their

half-lives. If the fraction of precursors generated per fission for the ith precursor

group is denoted as βi, the average number of prompt neutrons generated from each

fission reaction is then (1 − β) ν with β =
∑

i βi. Therefore, the neutron production



20

rate in dV dΩdE at time t can be obtained as

rate of neutron production = S(r, E,Ω, t)vN(r, E,Ω, t)dV dEdΩ

+ (1 − β) χp(E)F(r, t)vN(r, E,Ω, t)dV dEdΩ

+
6∑

i=1

χd,i(E)λiCi(r, t)dV dEdΩ

+ Q(r, E,Ω, t)dV dEdΩ, (2.8)

where χp is the prompt neutron spectrum, and χd,i is the delayed-neutron spectrum

for the ith precursor group. We also introduce Ci as the number density of the ith

precursor group with decay constant λi, and Q as the external source.

Finally, the continuous neutron transport equation can be obtained by inserting

Equations 2.2 through 2.5 and Equation 2.8 back into Equation 2.1 and cancelling

dV dEdΩ on both sides:

∂N

∂t
+ LvN = SvN + (1 − β) χpFvN +

6∑
i=1

χd,iλiCi + Q. (2.9)

where λi is the decay constant of the ith precursor group. In practice, the angular

neutron flux defined as Φ(r, E,Ω, t) = vN(r, E,Ω, t) is used more often than N , and

the neutron transport equation can be rewritten as

1

v

∂Φ

∂t
+ LΦ = SΦ + (1 − β) χpFΦ + χdλC + Q. (2.10)

For convenience, we will only include one group of precursor density function, and

any equations we derive later can be easily extended into a six-group formulation.

Similar to the neutron balance equation, a balance equation for the precursor

density C(r, t) can also be derived as

∂C(r, t)

∂t
+ λC(r, t) = β

∫
4π

dΩF(r, E, t)Φ(r, E,Ω, t), (2.11)
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where the second term on the LHS stands for the destruction rate of the delayed-

neutron precursors, and the RHS stands for the production rate of the precursors in

unit volume at r and at time t.

In a nuclear reactor, the destruction operator L, the scattering operator S and

the fission production operator F are determined by the material properties of the

reactor. They can be time-dependent functions as the temperatures of the materi-

als change in the reactor or due to actual time-dependent changes in the material

compositions. Pulsed-neutron experiments are performed in a subcritical reactor op-

erated at “zero-power”. Thus, in the rest of this thesis, these operators are assumed

to be time independent. Additionally, we will also integrate the transport equations

over Ω for the 4π sphere and obtain the time-dependent diffusion equations:

1

v

∂φ(r, E, t)

∂t
+ L(r, E)φ(r, E, t) = (1 − β) χp(E)F(r, E)φ(r, E, t)

+ χd(E)λC(r, t) + Q(r, E, t), (2.12)

∂C(r, t)

∂t
+ λC(r, t) = βF(r, E)φ(r, E, t), (2.13)

where the scalar flux is defined as φ(r, E, t) =
∫

4π
dΩΦ(r, E,Ω, t), and the scattering

term is combined into the destruction operator L. The methodologies we will use in

this thesis are valid both with the diffusion and transport equations. For simplicity,

we will use the diffusion equations for the rest of the thesis unless otherwise indicated.

2.2 The static k-eigenfunctions and the α-eigenfunctions

In Chapter I, we defined the multiplication factor keff such that if the number

of neutrons generated by each fission interaction is scaled by keff , the reactor is

then artificially critical, i.e., time-independent. With the time-dependent neutron

diffusion equation derived above, we can then obtain a mathematical definition of keff

by setting all the time-derivatives to zero for a source free medium, and eliminating
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the precursor density function C(r, t) from the equation:

Lφk(r, E) =
1

k
χ(E)Fφk(r, E), (2.14)

where χ(E) = (1 − β) χp(E) + βχd(E) is the total fission spectrum. For a nuclear

reactor, it is conceptually possible to find a positive k to make the system steady-

state. Therefore, the existence of a positive k with its corresponding eigenfunction

also positive everywhere is guaranteed. Equation 2.14 is often called the k-eigenvalue

equation, which may have an infinite number of discrete eigenvalues. The correspond-

ing eigenfunctions are referred to as k-modes or λ-modes. The multiplication factor

keff is the maximum positive k-eigenvalue. The reactivity for each k-eigenvalue is

then defined accordingly as ρn = (kn − 1)/kn, n = 0, 1, 2, · · · , with ρ0 as the static

reactivity. In the nuclear engineering field, the k-modes are widely used for close-to-

critical reactors. However, the shape of the fundamental k-mode does not represent

any real neutron flux distribution except when the reactor is critical.

Usually, the k-modes are not orthogonal to each other. Instead, we define the

adjoint k-eigenvalue problem as

L+φ+
m,k =

1

km

[χF]+ φ+
m,k, (2.15)

where L+ and [χF]+ are the adjoint operators of L and χF, respectively. The function

φ+
m,k is called the mth-order adjoint k-mode, which is then biorthogonal to the forward

k-modes,

∫
dV

∫ ∞

0

dEφ+
m,kχFφn,k =

〈
φ+

m,k, χFφn,k

〉
r,E

= γnδmn, (2.16)

with γn =
〈
φ+

n,k, χFφn,k

〉
r,E

.

There is also another type of eigenvalue problem in which the fundamental mode

can be real and be measured. It is derived by assuming an exponential solution of
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the time-dependent diffusion equation,

φ(r, E, t) = φα(r, E)eαt, (2.17)

C(r, t) = Cα(r)eαt. (2.18)

Therefore, after the external neutron source vanishes, the time-dependent neutron

equations can be reduced to

[α
v

+ L
]
φα(r, E) = (1 − β) χpFφα(r, E) + χdλCα(r), (2.19)

[α + λ] Cα = βFφα(r, E). (2.20)

This eigenvalue problem is often referred to as the α-eigenvalue problem. Its eigen-

functions are called α-modes, period modes or natural modes. By solving Equation

2.20 for Cα and substituting it back into Equation 2.19, a nonlinear equation is

obtained for the α-eigenvalue problem,

[α
v

+ L
]
φα =

[
(1 − β) χp +

χdβλ

α + λ

]
Fφα. (2.21)

Then the corresponding precursor density Cα can be calculated as

Cα =
β

λ + α
Fφα. (2.22)

Unlike the k-eigenvalue problem, the α-eigenvalue problem may not be guaranteed

to have a dominant discrete eigenvalue, specifically if the reactor size is too small,

or if there is an infinite path for neutrons to follow (with zero velocity or an infinite

dimension in some direction). However, in a subcritical reactor which is not very

far away from critical, a discrete dominant eigenvalue is generally assumed to exist

[24]. In real applications, with more assumptions assumed, e.g., the multi-group

approximation to the continuous energy variable, the existence of the fundamental

α-eigenvalue is more theoretically valid [25].
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In Equation 2.21, the value of the neutron velocity v is a very large number, e.g.,

2.2× 105 [cm/s] for thermal neutrons with energy about 0.0253 eV, and the value of

the precursor decay constant λ is very small, e.g., the largest decay constant is about

2.7 s−1 for the MUSE-4 subcritical reactor. Therefore, the α-eigenfunctions can be

divided into two classes: (1) the “prompt” α-eigenfunctions which are obtained by

assuming α � λ so that the second term on the RHS of Equation 2.21 can be ignored:

[α
v

+ L
]
φp = (1 − β) χpFφp, (2.23)

and (2) the “delayed” α-eigenfunctions equation which are obtained by assuming

α ∼ λ, so that the “time-absorption” term α/v in Equation 2.21 can be ignored:

Lφd =

[
(1 − β) χp +

χdβλ

α + λ

]
Fφd. (2.24)

The corresponding eigenfunctions φp and φd are then called the prompt-neutron

α-modes and the delayed-neutron α-modes, respectively.

For a critical system, because the neutron flux φ is time invariant, i.e., α0 = 0

in Equation 2.21 and k = 1 in Equation 2.14, the fundamental k-mode and the

fundamental α-mode satisfy the same equation, and consequently, are identical. For

a non-critical system, if the prompt-neutron fission spectrum χp and the delayed-

neutron fission spectrum χd are identical, we could then define

1

kn

=

[
(1 − β) +

βλ

αn + λ

]
. (2.25)

Thus, the delayed α-eigenvalue problem in Equation 2.24 is equivalent to the k-

eigenvalue problem as defined in Equation 2.14, and the nth delayed α-mode is then

similar to the nth k-mode, for n = 0, 1, · · · . However, the shape of the prompt α-

modes will always be significantly different from the k-modes, due to the presence of

the “time-absorption” term.
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Similar to the k-eigenvalue problem, an adjoint problem can also be defined for

the α-eigenvalue problem. For the prompt α-modes, the adjoint eigenvalue problem

is defined as

[α
v

+ L+
]
φ+

p = (1 − β) [χpF]+ φ+
p . (2.26)

Therefore, the adjoint prompt α-modes are biorthogonal to the direct prompt α-

modes,

〈
φ+

m,p, v−1φn,p

〉
r,E

= γnδmn. (2.27)

The definition of the adjoint α-modes with delayed neutrons included [24] can also

be written as

α

⎡
⎢⎣ 1

v
0

0 1

⎤
⎥⎦
⎡
⎢⎣φ+

α

C+
α

⎤
⎥⎦ =

⎡
⎢⎣(1 − β) [χpF − L]+ βF+

χdλ −λ

⎤
⎥⎦
⎡
⎢⎣φ+

α

C+
α

⎤
⎥⎦ , (2.28)

with the following biorthogonal property holds:

〈
φ+

m,α, v−1φn,α

〉
r,E

+
〈
C+

m,α, Cn,α

〉
r,E

= γnδm,n. (2.29)

2.3 Numerical methods to solve the neutron balance equation

In order to analyze or predict the space- and time-dependent behavior of a nuclear

reactor, it is important to solve the time-dependent neutron diffusion or transport

equations. However, it is usually not an easy task, mainly because the neutron bal-

ance equations are coupled partial-differential integral equations with various con-

tinuous variables, e.g., position r (x, y, z), energy E, direction Ω (μ, θ), and time t

for the transport equations.

2.3.1 The direct method

A straightforward way to solve the space- and time-dependent equations is to

discretize the spatial variables directly [26]. First of all, we discretize the space
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variable r and energy E by partitioning the reactor into several separate volume

elements in multiple energy groups. The neutron diffusion equations are converted

to a set of first-order differential equations in each volume element and can be solved

by the finite difference method over the time interval [tj, tj+1] for volume element at

ri and at energy group Eg:

∂φ(ri, Eg, t)

∂t
=

φ(ri, Eg, tj+1) − φ(ri, Eg, tj)

tj+1 − tj
(2.30)

The direct method is always time-consuming, due to the large number of meshes

obtained, and it often takes a significant amount of computational time even for

time-independent calculations. In addition, the diffusion equations also form a “stiff”

system, due to the presence of the prompt and delayed neutrons. It not only requires

an extremely fine time step to accurately describe the prompt-neutron behavior,

usually on the order of μs, but also requires the calculation extended into a large

number of time steps to represent the delayed-neutron behavior. Therefore, the

direct method is normally used only for reference calculations.

2.3.2 The space-time factorization method

The space-time factorization method was developed initially as an alternative to

the direct method to solve the space-time neutron diffusion or transport equations

with less computational efforts. The basic idea of this method is to factorize the

neutron flux into two parts [26]:

φ(r, E, t) = T (t)ψ(r, E, t), (2.31)

where the amplitude function T depends only on time t and is easy to calculate,

while the shape function ψ varies slowly in the time domain. The shape function is

often expensive to calculate due to its spatial and energy dependence, but can be
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obtained accurately with large time-steps. The factorization in Equation 2.31 is not

unique. In order to obtain a unique ψ, a normalization is applied:

〈
ω,

1

v
ψ

〉
r,E

=

∫
dV

∫ ∞

0

dEω(r, E)v−1ψ(r, E, t) = γ, (2.32)

where ω is an arbitrary weight function and γ is a constant.

To calculate ψ, we first substitute Equation 2.31 back into the neutron diffusion

equation 2.12 to obtain:

1

v

∂ψ

∂t
+ Lψ = (1 − β) χpFψ +

1

T
χdλC +

1

T
Q − 1

v

ψ

T

dT

dt
. (2.33)

With the amplitude function T determined at tj, Equation 2.33 may be solved by

the backward finite-difference scheme with a large time step τj = tj − tj−1:

1

v

[
1

τj

+
1

Tj

dT (tj)

dt

]
ψj + Lψj − [(1 − β)χp]Fψj − 1

Tj

Qj

=
1

Tj

χdλCj +
1

v

1

τj

ψj−1, (2.34)

in which all the terms on the LHS are evaluated at time tj, and Cj on the RHS is

calculated by

[
1

τj

+ λ

]
Cj = βFφj−1. (2.35)

On the other hand, with the shape function calculated, the time-dependent neu-

tron balance equations 2.12 and 2.13 can be multiplied by a weight function ω on

both sides and integrated over the space and energy domain to yield

dT (t)

dt
=

ρ(t) − β(t)

Λ(t)
T (t) + λc(t) + Q(t), (2.36)

dc(t)

dt
=

β(t)

Λ(t)
T (t) − λc(t), (2.37)

with kinetics parameters ρ(t), β(t), and Λ(t) defined in terms of the weight function
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ω and the shape function ψ as

Λ(t) =
γ

〈ω, χFψ〉r,E
, (2.38)

ρ(t) =
〈ω, [χF − L] ψ〉r,E

〈ω, χFψ〉r,E
, (2.39)

β(t) =
〈ω, βχdFψ〉r,E
〈ω, χFψ〉r,E

. (2.40)

Here, β is called the effective delayed-neutron fraction and Λ is the neutron mean

generation time, which can be interpreted as the average neutron life time in a

subcritical reactor [12]. Equation 2.36 and 2.37 are called the quasi-static space-

time kinetics equations, and the detailed derivations of them can be also found in

Bell’s book [24].

In the actual implementation of the space-time factorization method, the shape

function ψ is first approximated by a known function in a large time step. This

time step is referred to as the shape step. With the approximate ψ, the kinetics

parameters β, ρ and Λ are calculated within the shape step. Equation 2.36 and

2.37 are then solved for the amplitude function T with fine time steps, which are

called the amplitude steps. With the calculated T , ψ is updated to obtain a new

T . The iteration stops when ψ is converged, and the numerical calculation then

moves to another shape step. Usually, the shape steps are several times larger than

the amplitude steps. The space-time factorization method is an effective method

to solve the time-dependent neutron balance equation, and is implemented in many

numerical codes.

2.3.3 The modal expansion method

Compared with the space-time factorization method, which calculates the spatial

and energy distributions of φ and C within each shape step, the modal-expansion
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method utilizes the pre-computed space- and energy-dependent expansion functions,

e.g., the eigenfunctions of the α-eigenvalue problem, to approximate the time-dependent

solution: ⎡
⎢⎣φ(r, E, t)

C(r, t)

⎤
⎥⎦ =

∑
n

An(t)

⎡
⎢⎣φα

n(r, E)

Cα
n (r)

⎤
⎥⎦ , (2.41)

where An(t) is the expansion coefficient for the nth α-modes.

In order to obtain the expansion coefficients, the modal expansions are directly

substituted back into the neutron balance equations. For notational convenience, we

write the equations in a matrix form as

∑
n

dAn(t)

dt

⎡
⎢⎣ 1

v
0

0 λ

⎤
⎥⎦
⎡
⎢⎣φn,α

Cn,α

⎤
⎥⎦ =

∑
n

An(t)

⎡
⎢⎣(1 − β)χpF − L χdλ

βF −λ

⎤
⎥⎦
⎡
⎢⎣φn,α

Cn,α

⎤
⎥⎦+ Q(r, E, t).

(2.42)

If the adjoint function
[
φ+

m,α C+
m,α

]
is applied to both sides of Equation 2.42, and by

integrating over the energy and space domain, the expansion coefficient An(t) can

then be obtained by solving the first-order differential equation:

dAn(t)

dt
= −αnAn(t) +

1

γn

〈
φ+

n,α, Q
〉
r,E

, (2.43)

with γn =
〈
φ+

n,α, v−1φn,α

〉
r,E

+
〈
C+

n,α, Cn,α

〉
r,E

Nowadays, the modal expansion method is not popular anymore in solving the

space-time neutron diffusion equations, mainly because a large number of modes

are required in order to obtain a sufficiently accurate solution, especially in regions

with large spatial perturbations. However, the modal expansion techniques remains

a useful tool when analyzing the spatial effects in pulsed-neutron experiments as

demonstrated in the next chapter.
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2.4 Space-time kinetics codes

In practical applications, there are several numerical code packages available to

solve the time-dependent neutron balance equation. The FX2-TH code and the

ERANOS code package are the two main numerical codes we use to simulate the

pulsed-neutron experiments in this thesis work.

The FX2-TH code is a 2-dimensional reactor kinetics code with the thermal-

hydraulic feedback implemented, and was developed at Argonne National Labora-

tory (ANL) in the 1970s [27]. It solves the multi-group diffusion equation by dis-

cretizing the spatial variables with the mesh-centered finite-difference method. For a

k-eigenvalue problem, the SLOR (Successive Line Over-Relaxation) method is used

to solve the inner iterations, and the power iteration method is applied to solve the

outer iteration. The time-dependent diffusion equations are solved by the space-time

factorization method, with the amplitude function and the shape function calculated

in tandem.

The ERANOS code package was recently developed by CEA in the framwork of

the European collaboration for fast reactor analysis [28]. It includes a lattice physics

module ECCO, which utlizes the JEFF data library in the code package and has a

resonance self-shielding treatment based on the sub-group method [29]. The ERA-

NOS code package was capable of solving a 3-D, diffusion problem. The VARIANT

module can solve the steady-state neutron diffusion equations with the variational

nodal method [30]. The KIN3D module, which is based upon the VARIANT module,

solves the time-dependent diffusion problem, with either the direct method or the

space-time factorization method applied [31].
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2.5 The point kinetics equations

In the past, despite that the time-dependent neutron balance equation can ac-

curately describe the kinetics behavior of a nuclear reactor, it is often the point

kinetics equations that were widely used in analyzing and predicting the time behav-

ior of nuclear power plants. The point kinetics equations do not treat the reactor as

a “point”. Instead, it assumes that the time-dependent neutron flux φ is separable

in the time domain from the energy and space domains. In other words, according

to the space-time factorization method we discussed in section 2.3.2, the shape flux

ψ is a time-independent function. The time-dependent neutron flux φ can then be

simply written as

φ(r, E, t) = T (t)ψ(r, E). (2.44)

Therefore, the kinetics parameters ρ, β and λ are all constants. The quasi-static

space-time kinetics equations are then reduced to the point kinetics equations:

dT

dt
(t) =

ρ − β

Λ
T (t) + λc(t) + Q(t), (2.45)

dc

dt
(t) =

β

Λ
T (t) − λc(t). (2.46)

Typically, for a close-to-critical reactor, the time-dependent shape function is al-

ways close to the fundamental k-mode. As a result, the point kinetics equations can

describe the reactor dynamics behavior quite well for relatively small perturbations.

With the point kinetics approximation, the amplitude function T (t) is then propor-

tional to the reactor power, and the reactivity of the reactor can be obtained easily

by a number of methods, e.g., the rod drop method, the α-method, the area-ratio

method and the Rossi-α method.



CHAPTER III

The Pulsed-Neutron Experiments

To measure the reactivity of a subcritical reactor, one of the simplest methods

is to measure the detector responses subject to a short neutron pulse. Usually, the

neutron pulse width ΔT is chosen to be small enough and the neutron pulse period

T is required to be large enough such that the prompt neutrons die away quickly

between the pulses. Figure 3.1 shows a typical detector response obtained from a

pulsed-neutron experiment in a subcritical reactor. It rises to a peak and then dies

away quickly, which represents the fast emission of prompt neutrons in the reactor.

The peak is due to the contributions of the high-order prompt-neutron modes to the

detector readings. After a short period of time, the detector responses decay much

more slowly to represent the emission of delayed neutrons in the reactor.

3.1 The area-ratio method

One of the methods which can be used to obtain the reactivity from the pulsed-

neutron experiment is the area-ratio method. For this method, the detector responses

are often recorded after thousands of neutron pulses are injected into the system

so that a constant delayed neutron background is achieved. The pulsed period T

is chosen to be relatively small compared with the shortest half life of delayed-

neutron precursors. Consequently, the change in the delayed neutron background

32
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Figure 3.1: Illustration of the simple area-ratio method in a pulsed-neutron experiment.

is negligible within the neutron pulse period. Therefore, in Figure 3.1, the delayed

neutron background can be treated as constant.

The area-ratio method is normally referred to as the Sjöstrand method, which

states that in a pulsed-neutron experiment, the reactivity in dollars of the subcritical

system is given by the negative ratio of the prompt-neutron area Ap and the delayed-

neutron area Ad measured by neutron detectors [32],

ρ

β
= − Ap

At − Ap

= −Ap

Ad

. (3.1)

In practice, the delayed-neutron area Ad is simply the integration of the delayed

neutron background over the pulse period. The prompt-neutron area Ap is obtained

by integrating the total detector response subtracted by the delayed-neutron area as

shown in Figure 3.1

The area-ratio method in Equation 3.1 is first derived based on the assumption

that the subcritical reactor is a point reactor. Namely, the number of neutrons pro-
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duced in one generation is simply the number of neutrons in its previous generation

times the multiplication factor keff of the subcritical system, and the total number

of neutrons generated by the external source S0 in the reactor can be calculated by

summing all the neutrons over successive generations,

At =
S0

1 − keff

(3.2)

Similarly, we also assume that the number of prompt neutrons produced at one gener-

ation is equal to k (1 − β) times the source from the previous generation. Therefore,

the total number of prompt neutrons Ap produced by the external source is calculated

as

Ap =
S0

1 − keff (1 − β)
, (3.3)

where β is the delayed-neutron fraction, and is normally treated as a constant [33].

Therefore, the area-ratio of the prompt neutrons and the delayed neutrons can be

calculated as

Ap

Ad

=
S0/(1 − keff (1 − β))

S0/(1 − keff ) − S0/(1 − keff (1 − β))

= −ρ

β
, (3.4)

which verifies Equation 3.1.

3.1.1 The area-ratio method from the point kinetics equations

The area-ratio method can also be derived from the point kinetics equations. The

amplitude function T (t) of the point kinetics equation is partitioned into a prompt

part Tp and a delayed part Td:

Tt(t) = Tp(t) + Td(t), (3.5)
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where Tt is also the total detector response, and satisfies the point kinetics equations:

dTt(t)

dt
=

ρ − β

Λ
Tt(t) + λC + Q(t), (3.6)

dC(t)

dt
=

β

Λ
Pt(t) − λC(t). (3.7)

In an actual pulsed-neutron experiment, because the pulse width ΔT is much smaller

than the pulse period T , the external source can be treated as a delta function:

Q(t) = Q0δ(t). (3.8)

The prompt neutrons die out quickly within a very short period of time, and no

delayed neutrons contribute to the prompt part Tp. Thus, for Tp, the contributions

from the delayed neutrons is ignored and we obtain

dTp(t)

dt
=

ρ − β

Λ
Tp(t) + Q0δ(t), (3.9)

with the initial condition Tp(0
−) = Tp(T

−) = 0. Furthermore, when the delayed

neutron equilibrium status is achieved, the delayed neutron flux reaches a constant

level. Therefore, we have another set of initial conditions Tt(0
−) = Tt(T

−) and

C(0−) = C(T−) for the point kinetics equations.

The prompt neutron area Ap is obtained by integrating the prompt part Tp over

the pulse period:

Ap =

∫ T

0

Tp(t)dt =
Q0Λ

β − ρ
. (3.10)

Likewise, the total neutron area At can be obtained by integrating Equations 3.6

and 3.7 and canceling out the delayed-neutron precursor C to yield:

At =

∫ T

0

Tt(t)dt =
Q0Λ

−ρ
. (3.11)

Thus, the area-ratio Ap/Ad can be obtained as

Ap

Ad

=
Ap

At − Ap

=
Λ/(β − ρ)

Λ/(β − ρ) − Λ/ρ
= −ρ

β
, (3.12)
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which also verifies Equation 3.1.

In an actual experiment, the external neutron source is always localized in some

area, and the shape function of a subcritical reactor never follows the exact shape of

the fundamental k-mode. Thus, the point kinetics equations are only approximately

applicable in a subcritical reactor. In addition, the neutron detector can only measure

the local variation of the neutron flux. Therefore, the area ratio of the prompt

neutrons and delayed neutrons is a local value and may be spatially dependent.

As illustrated in Figure 3.1, intuitively, the spatial effects are dependent on both

the high-order prompt-neutron harmonics and the delayed-neutron harmonics in the

reactor.

3.1.2 The extrapolated area-ratio method

In the past, a couple of methods were proposed to reduce or eliminate the spatial

effects by eliminating the high-order prompt-neutron harmonics. One such example

is the extrapolated area-ratio method [18]. In this method, the reactivity in dollars

equals the negative ratio of the extrapolated prompt-neutron area A∗
p to the delayed-

neutron area Ad: (
ρ

β

)GO

= −
[
A∗

p

Ad

]
, (3.13)

and the reactivity is often referred to as Gozani’s reactivity.

The prompt-neutron area A∗
p is obtained by fitting the detector response with

an exponential function, and extrapolating the prompt-neutron decay back to the

beginning of the neutron pulse as shown in Figure 3.2. Both the simple area-ratio

method and the extrapolated method were used to obtain reactivities in the past.

However, very distinct spatial effects were reported for the two methods in the pulsed-

neutron experiments [34, 19]. In this thesis, we will analyze the spatial effects of both
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methods explicitly, and derive different spatial correction factors to help understand

the differences between these two methods.

Figure 3.2: Illustration of the extrapolated area-ratio method in a pulsed-neutron experiment.

3.2 The α-method

The α-method is another approach to obtain the reactivity of a subcritical re-

actor from pulsed-neutron experiments. Unlike the area-ratio method, the detector

responses in the α-method can be recorded after a single pulse. This method can also

be directly derived from the point kinetics equations. For convenience, we rewrite

Equation 3.9 for prompt neutrons only:

dTp

dt
=

ρ − β

Λ
Tp(t) + Q(t). (3.14)

Its solution follows an exponential decay after the external neutron source is turned

off with a decay constant equal to

α =
ρ − β

Λ
, (3.15)
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which can be measured directly from the experimental data by exponential fitting.

If the kinetics parameters β and Λ of the system are determined separately, the

reactivity ρ of the subcritical reactor can then be obtained easily as

ρ = β + αΛ. (3.16)



CHAPTER IV

Spatial Effects in the Pulsed Neutron Experiments

As shown in Chapter III, both the area-ratio method and the α-method can be

derived from the point kinetics equations, by separating the prompt neutron part

Tp from the total neutron detector response Tt. For a subcritical reactor far from

critical, the point kinetics equations are only approximately applicable. Therefore,

to explore the spatial effects in the two methods, we start with the time-dependent

neutron balance equations:

1

v

∂φ(r, E, t)

∂t
+ L(r, E)φ(r, E, t) = (1 − β) χp(E)F(r, E)φ(r, E, t)

+ χd(E)λC(r, t) + Q(r, E, t), (4.1)

∂C(r, t)

∂t
+ λC(r, t) = βF(r, E)φ(r, E, t), (4.2)

with the corresponding initial conditions φt(r, E, 0−) = φt(r, E, T−) and C(r, 0−) =

C(r, T−) when the delayed-neutron equilibrium status is reached. Similarly, we also

divide the total time-dependent neutron flux φt into a prompt-neutron part φp and

a delayed-neutron part φd:

φt(r, E, t) = φp(r, E, t) + φd(r, E, t). (4.3)

39
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Because the prompt neutron flux dies out very quickly within a short period of time,

the time-dependent prompt-neutron flux then satisfies

1

v

∂φp(r, E, t)

∂t
+ L(r, E)φp(r, E, t) = (1 − β) χp(E)F(r, E)φp(r, E, t)

+ Q(r, E, t), (4.4)

with initial conditions φp(r, E, 0−) = φp(r, E, T−) = 0. Therefore, the neutron areas

Ap and Ad can be obtained by integrating the detector responses over the pulse

period T :

Ap(rD) =

∫ T

0

〈Σd(rD, E), φp(rD, E, t)〉E dt, (4.5)

Ad(rD) =

∫ T

0

〈Σd(rD, E), φd(rD, E, t)〉E dt, (4.6)

where Σd(rD, E) is the detector response function at energy E.

4.1 The area-ratio method

4.1.1 Bell’s spatial correction factor

To explore the spatial effects in the area-ratio method, we want to relate the static

reactivity ρ with the measured Ap and Ad. First, we integrate the neutron balance

equations 4.1 through 4.4 over the pulse period T and obtain

L

∫ T

0

φpdt = (1 − β) χpF

∫ T

0

φpdt +

∫ T

0

Qdt, (4.7)

L

∫ T

0

φtdt = χF

∫ T

0

φtdt +

∫ T

0

Qdt. (4.8)

If we define the time-integrated prompt neutron flux as φ̂p(r, E) =
∫ T

0
φp(r, E, t)dt,

and the time-integrated total neutron flux as φ̂t(r, E) =
∫ T

0
φt(r, E, t)dt, φ̂p and φ̂t

are then the solutions of the static diffusion or transport equations:

Lφ̂p = (1 − β) χpFφ̂p +

∫ T

0

Qdt, (4.9)

Lφ̂t = χFφ̂t +

∫ T

0

Qdt. (4.10)
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The prompt neutron area Ap and the total neutron area At can then be directly

calculated as

Ap =

〈
Σd,

∫ T

0

φpdt

〉
E

=
〈
Σd, φ̂p

〉
E

, (4.11)

At =

〈
Σd,

∫ T

0

φtdt

〉
E

=
〈
Σd, φ̂t

〉
E

. (4.12)

The delayed neutron area Ad can be obtained as

Ad =

〈
Σd,

∫ T

0

φddt

〉
E

=
〈
Σd, φ̂d

〉
E

=
〈
Σd, φ̂t − φ̂p

〉
E

. (4.13)

Remarkably, this observation leads to a direct way of correcting the spatial effects

in the area-ratio method. Specifically, we start with the following identity:

ρ

β
= −

[
Ap

Ad

]
×
[
Ad

Ap

· −ρ

β

]
. (4.14)

Therefore, we can define a spatial correction factor f(rD) as

f(rD) = −
[
Ad(rD)

Ap(rD)

]
·
[

ρ

β

]
. (4.15)

If Ap, Ad, ρ and β could be obtained from numerical simulations, the spatial cor-

rection factor f can then be calculated easily. Due to the cross section data uncer-

tainties, the geometry errors, etc., the neutron areas calculated through Equations

4.11 and 4.12 are not exactly the same as in the actual experiment. Nevertheless,

with a sufficiently accurate numerical model, f can account for the spatial effects

in the area-ratio method adequately, because any systematic errors in the numerical

model will be reduced in calculating the ratio by Equation 4.15. The reactivity of

the reactor can then be determined by

ρ

β
= −

[
Ap(rD)

Ad(rD)

]exp

· f(rD)cal. (4.16)

It was Bell [24] who first suggested using Equations 4.11 and 4.13 to calculate

the prompt- and delayed-neutron areas numerically. Therefore, we also call the
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spatial correction factor f defined in Equation 4.15 as Bell’s spatial correction factor.

Equations 4.9 through 4.12 were used to reproduce some of the MUSE-4 experimental

data [16] successfully. Bell’s spatial correction factor f is easy to calculate, because it

only requires to solve two steady-state fixed source problems for the time-integrated

flux φ̂p and φ̂t, and to calculate two constants ρ and β. In order to eliminate the

spatial effects, the numerical model should be as accurate as possible. The Monte

Carlo method is capable of accurately modeling the reactor geometry and neutron

physics in the reactor.

The limitation of this spatial correction factor is that it cannot give physical ex-

planation of the spatial variations observed in the experiments. Specifically, it cannot

predict how the experimental results will be spatially dependent without direct nu-

merical simulations. With this spatial correction factor, it is also unclear how the

high-order harmonics affect the experimental result in the area-ratio method, and

whether the high-order harmonics can be ignored in calculating the spatial correc-

tion factors. Therefore, to understand the role of the high-order harmonics in the

area-ratio method, the modal expansion techniques is used in the next to physically

explain the spatial dependence in the area-ratio method.

4.1.2 The modal expansion method to the area-ratio method

In order to study the spatial effects in the area-ratio method, instead of integrating

the time-dependent neutron balance equations 4.1 through 4.4 directly, we derive

the area-ratio method starting with the time-dependent neutron balance equations.

First, the modal expansion technique is applied to the prompt-neutron flux with the

prompt α-modes as the expansion functions:

φp(r, E, t) =
M∑
m

Am(t)φm,p(r, E), (4.17)
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where Am(t) is the expansion coefficient for the mth mode. Usually, in pulsed-neutron

experiments, the external neutron source varies in the time domain, and it can be

represented as

Q(r, E, t) = Q0(r, E)δQ(t). (4.18)

Therefore, by substituting Equations 4.17 and 4.18 back into Equation 4.4, we obtain

M∑
m

φm,p

v

dAm(t)

dt
=

M∑
m

[(1 − β)χpF − L] φm,pAm(t) + Q0δQ. (4.19)

If we multiply both sides of Equation 4.19 by the adjoint prompt α-mode φ+
k,p and

integrate it over the space and energy domain, with Equations 2.26 and 2.27, the

coefficient Am(t) is then determined by a first-order differential equation

dAm(t)

dt
= αmAm(t) +

〈
φ+

m,p, Q0

〉
r,E〈

φ+
m,p, 1/vφm,p

〉
r,E

δQ(t), (4.20)

and its solution can be written as

Am(t) =

〈
φ+

m,p, Q0

〉
r,E〈

φ+
m,p, 1/vφm,p

〉
r,E

eαmt

∫ t

0

δQ(t′)e−αmt′dt′. (4.21)

Because the pulsed width ΔT is very small compared with the pulse period T , the

external source could then be treated as a δ-function. The total prompt neutron

area Ap can then be also calculated as

Ap =

∫ T

0

〈Σd(rD), φp(rD, E, t)〉E dt =
M∑
m

Am(0)

−αm

〈Σd, φm,p〉E , (4.22)

where

Am(0) =

〈
φ+

m,p, Q0

〉
r,E〈

φ+
m,p, 1/vφm,p

〉
r,E

. (4.23)

In a nuclear reactor, the delayed-neutron precursors are often immobile, and the

delayed-neutron α-modes can be approximated by the k-modes. Therefore, we ex-
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pand the time-integrated delayed-neutron flux directly with the k-modes as the ex-

pansion functions:

φ̂d(r, E) =
N∑
n

Bnφn,k(r, E), (4.24)

where Bn is the expansion coefficient of the nth term. In order to find the expan-

sion coefficients Bn, we integrate Equations 4.1 through 4.4 over the pulse period

[0, T ]. By eliminating the precursor density functions C, the time-integrated prompt

neutron flux and the time-integrated delayed-neutron flux hold the relationship:

[L − χF] φ̂d = χdβFφ̂p. (4.25)

Then, if the modal expansions in Equations 4.17 and 4.24 are substituted back into

the above relationship, we obtain

N∑
n

Bn [L − χF] φn,k =
N∑
n

Bn

[
1

kn

− 1

]
χFφn,k =

M∑
m

χdβ
Am(0)

−αm

Fφm,p. (4.26)

By multiplying both sides with the adjoint k-mode φ+
n,k and integrating over the

pulse period [0, T ], the expansion coefficient Bn can then be obtained as

Bnρn = −

M∑
m

〈
φ+

n,k, χdβ
Am(0)

−αm

Fφm,p

〉
r,E〈

φ+
n,k, χFφn,k

〉
r,E

, n = 0, 1, 2, · · · , (4.27)

where ρn = (kn − 1)/kn, and ρ0 is the static reactivity ρ. Consequently, the delayed-

neutron area can be obtained by summing over all modal terms as

Ad =
N∑
n

〈Σd, Bnφn,k〉E

= B0 〈Σd, φ0,k〉E
[
1 +

N∑
n=1

Bn 〈Σd, φn,k〉E
B0 〈Σd, φ0,k〉E

]
. (4.28)

To relate the static reactivity ρ with the area-ratio Ap/Ad, we divide Equation

4.28 by Equation 4.22 on both sides to solve for B0:

1

B0

=

[
Ap

Ad

][ 〈Σd, φ0,k〉E∑M
m

Am(0)
−αm

〈Σd, φm,p〉E

][
1 +

N∑
n=1

Bn 〈Σd, φn,k〉E
B0 〈Σd, φ0,k〉E

]
. (4.29)
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The B0 term can also be evaluated from Equation 4.27 with n = 0. Thus, by

eliminating B0 in Equation 4.29, we obtain

ρ0 = −
[
Ap

Ad

]
⎡
⎢⎢⎢⎢⎢⎣

M∑
m

Am(0)

αm

〈
φ+

0,k, χdβFφm,p

〉
r,E〈

φ+
0,k, χFφ0,k

〉
r,E

M∑
m

Am(0)

αm

〈Σd, φm,p〉E
〈Σd, φ0,k〉E

⎤
⎥⎥⎥⎥⎥⎦
[
1 +

N∑
n=1

Bn 〈Σd, φn,k〉E
B0 〈Σd, φ0,k〉E

]
.(4.30)

In addition, if we define βeff similar to Equation 2.40:

βeff =

〈
φ+

0,k, χdβFφ0,k

〉
r,E〈

φ+
0,k, χFφ0,k

〉
r,E

, (4.31)

Equation 4.30 can be rewritten as

ρ0

βeff

= −
[
Ap(rD)

Ad(rD)

]
· fp(rD) · fd(rD), (4.32)

where fp and fd are the spatial correction factors to the area-ratio method, cor-

responding to the prompt-neutron harmonics and the delayed-neutron harmonics,

respectively,

fp =

⎡
⎢⎢⎢⎢⎢⎣

M∑
m

Am(0)

αm

〈
φ+

0,k, χdβFφm,p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

M∑
m

Am(0)

αm

〈Σd, φm,p〉E
〈Σd, φ0,k〉E

⎤
⎥⎥⎥⎥⎥⎦ , (4.33)

fd =

[
1 +

N∑
n=1

Bn 〈Σd, φn,k〉E
B0 〈Σd, φ0,k〉E

]
. (4.34)

As shown in Equation 4.33, the prompt-neutron harmonics affect the area-ratio

results in a complicated manner. If we only consider the spatial effects induced by

the fundamental prompt mode, i.e., m = 0, in Equation 4.33, the correction factor

fp is then reduced to

f 0
p (rD) =

[〈
φ+

0,k, χdβFφ0,p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

· 〈Σd, φ0,k〉E
〈Σdφ0,p〉E

]
, (4.35)
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which is the traditional “kinetics distortion” factor originally suggested by Gozani

[35]. However, our derivation also indicates that the spatial correction factor for

the area-ratio method is not solely determined by the kinetics distortion factor, but

also dependent on the difference between the high-order prompt α-modes and the

fundamental k-mode. The spatial distributions of the high-order prompt α-modes

always deviate substantially from that of the fundamental k-mode. Therefore, fp

might be significantly different from f 0
p .

In addition, the summation of the infinite series in the denominator and numerator

of Equation 4.33 is nothing but a modal expansion of the time-integrated prompt-

neutron flux φ̂p

φ̂p =

∫ T

0

φp(r, E, t)dt =
M∑
m

Am(0)

−αm

φm,p. (4.36)

Thus, with all the high-order prompt α-modes included, the spatial correction factor

fp eventually converges to a prompt correction factor f∞
p :

f∞
p (rD) =

⎡
⎢⎣
〈
φ+

0,k, χdβFφ̂p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

· 〈Σd, φ0,k〉E〈
Σd, φ̂p

〉
E

⎤
⎥⎦ , (4.37)

which indicates that the spatial variations of the area-ratio method induced by

the prompt-neutron harmonics are determined by the difference between the time-

integrated prompt-neutron flux φ̂p and the fundamental k-mode φ0,k. If φ̂p and φ0,k

are properly normalized so that

〈
φ+

0,k, χdβFφ̂p
〉

r,E
=
〈
φ+

0,k, χdβFφ0,k

〉
r,E

, (4.38)

f∞
p is simply the ratio of φ0,k and φp at detector position rD, i.e.,

f∞
p (rD) =

〈Σd, φ0,k〉E〈
Σd, φ̂p

〉
E

. (4.39)
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Similar to fp, with all the delayed α-modes included, the spatial correction factor

fd is determined by the differences between the high-order k-modes and the funda-

mental k-mode, and it converges to a delayed correction factor defined by

f∞
d (rD) =

⎡
⎣
〈
Σd,
∫ T

0
φddt

〉
E

B0 〈Σd, φ0,k〉E

⎤
⎦ =

⎡
⎣
〈
Σd, φ̂d

〉
E

B0 〈Σd, φ0,k〉E

⎤
⎦ . (4.40)

Compared with the spatial correction factor f obtained from Bell’s method in

Equation 4.15, f∞
p is easier to calculate because it does not require the calculation

of βeff . In addition, with the spatial correction factor f∞
p , the spatial dependence

of the area-ratio method can be simply determined by the difference of the two flux

distributions. Thus, the correction factor f∞
p we derived can give physically intuitive

explanation on the spatial dependence in the area-ratio method. Specifically, we will

compare the two flux distributions in Section 6.1.2 to analyze the spatial effects in

the area-ratio method. We will also use it to explain the spatial dependence observed

in the MUSE-4 pulsed-neutron experiment as shown in Section 7.2.3. Because the

spatial correction factors fp and fd are always obtained through Equations 4.37 and

4.40, for notational simplicity, we will refer to f∞
p and f∞

d as fp and fd, respectively,

for the rest of the thesis.

Finally, the total spatial corrections can be calculated as

fm = fp × fd. (4.41)

With Equations 4.37, 4.40, and 4.27, the prompt correction factor fp together with
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delayed correction factor fd returns to Bell’s correction factor f :

fm =

⎡
⎢⎣
〈
φ+

0,k, χdβFφ̂p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

· 〈Σd, φ0,k〉E〈
Σd, φ̂p

〉
E

⎤
⎥⎦
⎡
⎣
〈
Σd, φ̂d

〉
E

B0 〈Σd, φ0,k〉E

⎤
⎦

=

⎡
⎢⎣
〈
φ+

0,k, χdβFφ̂p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

·

〈
Σd, φ̂d

〉
E〈

Σd, φ̂p

〉
E

⎤
⎥⎦ 1

B0

= −

〈
Σd, φ̂d

〉
E〈

Σd, φ̂p

〉
E

·
ρ0

〈
φ+

0,k, χFφ0,k

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

= −Ad

Ap

· ρ0

β
= f. (4.42)

Thus, the modal analysis we presented here stands as a way to explore the role of

high-order harmonics played in the area-ratio method, and how the spatial effects

from the prompt-neutron harmonics and the delayed-neutron harmonics could be

separated. The spatial correction factors for the area-ratio method are derived rig-

orously. Equations 4.39 and 4.40 also indicate that for a subcritical reactor, the

spatial correction factor fp and fd can not be 1.0 everywhere in the reactor because

of the different spatial distributions of the time-integrated prompt flux φ̂p and the

fundamental k-mode φ0,k. Thus, our modal analysis also shows that for subcritical

reactors, the area-ratio method is always spatially dependent.

4.1.3 The modal expansion method to the extrapolated area-ratio method

In the past, a modal analysis was performed by Preskitt, et al. [22] to obtain

the space-time corrections for the extrapolated area-ratio method. However, their

derivations could not identify the spatial effects induced by the prompt-neutron

harmonics and delayed-neutron harmonics separately. With similar steps for the

area-ratio method, we may also obtain both fp and fd for the extrapolated area-

ratio method.



49

In particular, in the extrapolated area-ratio method, the extrapolated prompt

neutron area A∗
p is the fundamental term of the prompt neutron area Ap and can be

obtained from Equation 4.22:

A∗
p(rD) =

A0(0)

−α0

〈Σd, φ0,p〉E (4.43)

Thus, to study the spatial effects in the extrapolated area-ratio method, we relate

the reactivity ρ with the area-ratio A∗
p/Ad. With similar derivations to the area-ratio

method, if we divide Equation 4.28 by Equation 4.43 on both sides, the expansion

coefficient B0 is obtained as

1

B0

=

[
A∗

p

Ad

] [ 〈Σd, φ0,k〉E
A0(0)
−α0

〈Σd, φ0,p〉E

][
1 +

N∑
n=1

Bn 〈Σd, φn,k〉E
B0 〈Σd, φ0,k〉E

]
. (4.44)

Then, by substituting Equation 4.44 back into Equation 4.27, we obtain the reactivity

in dollars:

ρ0

βeff

= −
[
A∗

p(rD)

Ad(rD)

]
· fp,e · fd,e (4.45)

where the spatial correction factors fp,e and fd,e are defined as

fp,e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
−α0

〈
φ+

0,k, χdβFφ̂p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

A0(0)
〈Σd, φ0,p〉E
〈Σd, φ0,k〉E

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (4.46)

fd,e =

[
1 +

N∑
n=1

Bn 〈Σd, φn,k〉E
B0 〈Σd, φ0,k〉E

]
. (4.47)

Like from the area-ratio method, the reactivity obtained from the extrapolated

area-ratio method will also be contaminated by the high-order delayed-neutron har-

monics. Moreover, the spatial effects induced by the prompt-neutron harmonics are

solely determined by the kinetics distortion factor, which is significantly different
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from the simple area-ratio method. Usually, the kinetics distortion is manifest in

the region with low absorption cross sections, i.e., the reflector and shield regions.

Thus, from our modal analysis, we can conclude that the reactivity derived from the

extrapolated area-ratio method is expected to exhibit strong spatial dependence in

the regions where kinetics distortion is significant. In addition, our modal analysis

also confirms that the spatial dependence in the area-ratio method is significantly

different from that in the extrapolated area-ratio method, due to the presence of the

high-order prompt-neutron harmonics in the subcritical reactor.

4.2 The α-method

4.2.1 α-method with the space-time kinetics

Unlike the area-ratio method, the α-method is only related to the prompt neutron

decay in a subcritical reactor. Therefore, to study the spatial effects in the α-

method, we first derive a formula similar to Equation 3.16 when the point kinetics

approximation is not valid, requiring the use of Equation 4.4 for the prompt-neutron

flux only.

For convenience, we rewrite Equation 4.4 as

1

v

∂φp

∂t
+ Lφp = (1 − β) χpFφp + Q0δQ(t). (4.48)

The modal expansion of Equation 4.17 is also utilized to expand the prompt-neutron

flux φp, with the expansion coefficient Am(t) obtained in Equation 4.21. Then,

the detector response measured at the detector position rD in the pulsed-neutron

experiment is

R(rD, t) = 〈Σd(rD, E), φp(r, E, t)〉E =
M∑
m

Am(t) 〈Σd, φm,p〉E . (4.49)

For the α-method, we are interested in the detector responses in the prompt-neutron

decay region after the neutron pulsed is turned off. Thus, for t > ΔT , the expansion



51

coefficient Am(t) in Equation 4.21 can be also be rewritten as

Am(t) = Am(ΔT )eαm(t−ΔT ), (4.50)

where Am(ΔT ) is the coefficient Am(t) evaluated at the time point t = ΔT when the

neutron pulse is turned off, and αm is the mth eigenvalue of the prompt α-eigenvalue

as defined in Equation 2.23. Thus, the detector response can be expressed as the

summation of multiple exponential terms

R(rD, t) =
M∑
m

Am(ΔT ) 〈Σd, φm,p〉E eαm(t−ΔT ), (4.51)

and the slowest decay constant α0 can be retrieved from the measured detector

responses R by the standard exponential fitting technique after all the high-order

prompt-neutron harmonics decay away.

With the measured decay constant α0 from the pulsed-neutron experiment, in

order to obtain the reactivity ρ of the reactor, we first rewrite the adjoint k-eigenvalue

problem as

L+φ+
0,k = (1 − ρ) [χF]+ φ+

0,k. (4.52)

If we multiply both sides of the above equation by φ0,p, and integrate over the space

and energy domains, ρ can be obtained as

ρ =

〈
[χF − L]+ φ+

0,k, φ0,p

〉
r,E〈

[χF]+ φ+
0,k, φ0,p

〉
r,E

=

〈
φ+

0,k, [χF − L] φ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

. (4.53)

Then, according to the definition of the prompt α-eigenvalue problem as shown in

Equation 2.23, the reactivity ρ in Equation 4.53 can be calculated by

ρ =

〈
φ+

0,k, [(1 − β)χpF − L] φ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

+

〈
φ+

0,k, χdβFφ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

=

〈
φ+

0,k, α0v
−1φ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

+

〈
φ+

0,k, χdβFφ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

= α0Λ̄0 + β̄, (4.54)
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with the decay constant α0 obtained from the measurement, and the mean generation

time Λ0 and the effective delayed-neutron fraction β defined similar to Equation 2.38

and 2.40:

Λ̄0 =

〈
φ+

0,k, v
−1φ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

, (4.55)

β̄ =

〈
φ+

0,k, χdβFφ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

. (4.56)

In practice, one of the technical difficulties of applying the α-method is that the

detector responses might not follow a single-exponential decay in any interval within

the neutron pulse period. If we take the logarithm of the detector responses as shown

in Equation 4.51,

α(rD, t) =
∂ ln R(rD, t)

∂t
=

∂

∂t

[
M∑
m

Am(ΔT ) 〈Σd, φm,p〉E eαm(t−ΔT )

]
, (4.57)

the decay constant is a space- and time-dependent function due to the high-order

harmonics contaminations. If all the high-order modal terms with m ≥ 1 damped

away, the eigenvalue α0 corresponding to the fundamental prompt α-mode is the

asymptotic value of α(rD, t), and is spatially independent. In other words, theo-

retically, a spatially independent and time-invariant decay constant can always be

obtained if we wait long enough in the pulsed-neutron experiment, with delayed neu-

trons ignored. However, due to the limited efficiency of the neutron detectors, the

fundamental exponential decay curve might not be separated from high-order modal

terms before the detector responses die out. Thus, it may be infeasible to retrieve

the fundamental decay constant α0 from the experimental data.

4.2.2 The modified α-method

The modified α-method is a way of obtaining the reactivity from pulsed-neutron

experiments, if the fundamental decay constant can not be properly retrieved. It
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was proposed by Kulik [17] to eliminate the spatial variations in the MUSE-4 pulsed-

neutron experiments. The advantage of this method is that it does not require the

calculation of any decay constant to obtain the reactivity. Therefore, this method

provides a good way of obtaining reactivities for a subcritical reactor, if the decay

constant obtained from the experimental data is spatially dependent.

The modified α-method is derived from the quasi-static space-time kinetics equa-

tions with delayed neutrons ignored in the prompt-neutron decay period. If we use

φ+
0,k as the weighting function and assume that the delayed-neutron flux is negligible

compared with the prompt-neutron flux, Equation 2.36 can be reduced to

dT (t)

dt
=

ρ(t) − β(t)

Λ(t)
T (t), (4.58)

where β(t), ρ(t) and Λ(t) are kinetics parameters defined in Equation 2.38, 2.39 and

2.40, respectively. According to the definition of the adjoint k-eigenvalue Equation

2.15, the reactivity ρ(t) can be reduced to

ρ(t) =

〈
[χF − L]+ φ+

0,k, ψ
〉
r,E〈

[χF]+ φ+
0,k, ψ

〉
r,E

= 1 −
〈
L+φ+

0,k, ψ
〉
r,E〈

[χF]+ φ+
0,k, ψ

〉
r,E

= 1 − 1

k0

= ρ0, (4.59)

where ρ0 is the static reactivity of the subcritical system. Thus, by integrating

Equation 4.58 over an interval [t1, t2] within the prompt-neutron decay region, ρ0

can be easily obtained as

ρ0 = β +
T (t2) − T (t1)∫ t2
t1

T (t)/Λ(t)dt
, (4.60)

where β is usually a constant during the transient.

In order to obtain ρ0, the amplitude function T (t) has to be calculated first. In

the pulsed-neutron experiment, the detector response measured at detector position
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rD can be expressed as

R(rD, t) = 〈Σd(rD, E), φ(r, E, t)〉E = T (t) 〈Σd, ψ〉E . (4.61)

Therefore, if the shape function term 〈Σd, ψ〉E can be calculated numerically, the am-

plitude function at position rD can be obtained by combining the measured detector

response R with the calculated shape function:

T (rD, t) =
R(rD, t)

〈Σd, ψ〉cal
E

. (4.62)

Then ρ0 can be obtained at each detector position via Equation 4.60, with T calcu-

lated from Equation 4.62, and β(t) and Λ(t) calculated from the numerical simula-

tions.

Theoretically, [t1, t2] can be any interval within the prompt neutron decay period.

Therefore, the modified α-method is capable of obtaining reactivities, even though

high-order modal terms do not decay away. A drawback of this method is that

the accuracy of the reactivity is highly related to the accuracy of the numerical

simulations.

For instance, if we assume that [t1, t2] is located in the prompt neutron decay

region where all the high-order harmonics decayed away, the neutron flux is the

fundamental modal term

φ(r, E, t) = T (t)ψ(r, E, t) = A0(t)φ0,p(r, E), (4.63)

and the shape function ψ is equal to the time-independent fundamental α-mode φ0,p.

The amplitude function T (t) is the coefficient A0(t) corresponding to the fundamental

modal term. Then, the quasi-static Λ(t) between [t1, t2] can be calculated as

Λ(t) =
γ〈

φ+
0,k, χFφ0,p

〉
r,E

=

〈
φ+

0,k, v
−1φ0,p

〉
r,E〈

φ+
0,k, χFφ0,p

〉
r,E

= Λ̄0, (4.64)
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which is a constant and equivalent to Λ̄0 defined in Equation 4.55. Similarly, β(t) is

also a constant in the time interval [t1, t2] and is equivalent to β̄0. According to the

modified α-method, the static reactivity can be obtained as

ρ0 = β̄0 + Λ̄0
R(rD, t2) − R(rD, t1)∫ t2

t1
R(rD, t)dt

= β̄0 + Λ̄0α0, (4.65)

where α0 is the fundamental decay constant obtained from the measured detector

responses. Thus, the modified α-method is equivalent to the α-method as shown

in Equation 4.54, with the fundamental decay constant measured from the exper-

imental data but the mean generation time calculated directly from the numerical

simulations. In actual pulsed-neutron experiments, it is often difficult to accurately

calculate the mean generation time Λ(t) for a subcritical reactor using numerical

methods, due to the errors in modeling the reactor geometry, material compositions

and neutron cross section data. Thus, any systematic error in the numerical model

will directly affect the reactivity obtained from the modified α-method.

4.2.3 The mean generation time correction factor

For the traditional α-method, the kinetics parameter Λ̄0 and β̄ are measured in a

reference configuration, which is close-to-critical and similar to the subcritical reactor

in material compositions and geometry configurations. However, the mean generation

time of the subcritical reactor might be significantly different from that of a reference

configuration. Thus, to obtain a better approximation of the mean generation time

of the subcritical reactor, we propose to use the measured mean generation time Λm
ref

in a reference reactor calibrated by a correction factor fΛ, which is calculated from

the numerical simulations.

The simplest correction factor is the ratio of Λsub and Λref calculated from the

numerical simulations for the reference configuration and for the subcritical configu-
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ration, respectively:

fΛ =

[
Λsub

Λref

]cal

. (4.66)

Then, the mean generation time Λ for the subcritical configuration is obtained by

Λ = Λm
reffΛ. (4.67)

Because the correction factor fΛ is the ratio of two quantities obtained from the same

numerical model, the systematic modeling error is then expected to be reduced.

Overall, the traditional α-method measures the prompt-neutron decay constant α

from the measured detector responses, and calculates the reactivity with the kinetics

parameter Λ and β measured in a reference reactor. There are two major technical

difficulties with this method. For a subcritical reactor, the first one is that the

fundamental prompt-neutron decay constant may not be properly retrieved from

the experimental data. The modified α-method of Equation 4.60 is a good way of

obtaining reactivities for this case. Another difficulty is that the mean generation

time Λ varies from the reference reactor to the subcritical reactor. The measured Λ

in the reference reactor can be calibrated with a correction factor fΛ, which can be

obtained from numerical simulations.



CHAPTER V

Krylov Subspace Methods to Obtain the
Time-Eigenfunctions

5.1 Eigenvalue problems

In pulsed neutron experiments performed to measure the reactivity of a system,

the difference between the α- and k-modes reveals the presence of the spectral and

spatial effects of the area-ratio methods. To apply the method developed in Chapter

IV, it is crucial to be able to calculate both the k- and α-modes corresponding to the

reactor configuration. Furthermore, the α-modes are the appropriate ones in reactor

dynamics studies, when the time-dependent behavior of the system is of primary

interest. For instance, Kaplan [36] fully discussed the nice finality property of the

α-modes, i.e., the expansion coefficients are independent of the number of terms

retained, which renders them more useful than the k-modes in a modal expansion of

the time-dependent flux.

For convenience, we rewrite the k-eigenvalue problem as

Lφ =
1

k
χFφ. (5.1)

We also rewrite the α-eigenvalue problem of a reactor system as

1

α

⎡
⎢⎣φ

C

⎤
⎥⎦ =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎣ 1

v
0

0 1

⎤
⎥⎦
−1

Aα

⎫⎪⎪⎬
⎪⎪⎭

−1 ⎡
⎢⎣φ

C

⎤
⎥⎦ , (5.2)
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where the system matrix Aα is defined as

Aα =

⎡
⎢⎣(1 − β) χpF − L χdλ

βF −λ

⎤
⎥⎦ . (5.3)

For a critical system, i.e., with k0 = 1 and α = 0, the fundamental k-mode and

α-mode satisfy the same equation and are identical. However, for high-order modes

or non-critical systems, the two eigenvalue equations are not equivalent.

Traditionally, the fundamental k-mode is calculated by the power iteration method.

A drawback of this method is that it is only designed to calculate the fundamental

mode. Although the high-order modes can be obtained by filtering out the converged

low-order modes, the method is not efficient in cases where the low-order modes are

not dominant. With delayed neutrons ignored, the fundamental prompt α-mode can

also be obtained by an approach which varies the α/v term in a k-mode calculation,

[α
v

+ L
]
φ =

1

k
[(1 − β) χp]Fφ, (5.4)

till k = 1. However, with this approach, the α/v term may lead to a problem which

has zero or negative absorption cross sections and is difficult to solve. In addition,

the high-order prompt α-modes are hard to obtain by this approach.

Recently, to obtain prompt α-eigenvalues, Modak [37] used the orthmin(k) method

to minimize the residual norm:

||r|| =
∣∣∣∣∣∣[(1 − β) χF − L] φ − α

v
φ
∣∣∣∣∣∣ . (5.5)

With this method, in order to converge to a desired high-order mode, a sufficiently

accurate initial guess has to be supplied. For an asymmetric heterogeneous reactor,

this is usually not a trivial task. At the same time, the method is not efficient since

only one mode can be obtained at each iteration.
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The Arnoldi method is known as a powerful method to calculate multiple eigenvec-

tors of a linear system simultaneously. It is easy to be applied by using the ARPACK

software [38] which implements the Implicit Restarted Arnoldi Method (IRAM) effi-

ciently. Lathouwers [39] applied ARPACK to obtain the prompt α-modes for a 1-D

transport problem. Warsa, et al. [40] also used this package to calculate high-order

k-modes and compared the efficiency of IRAM with the power iteration method

explicitly.

In this chapter, we present our calculations of α-modes and k-modes for 2-D dif-

fusion problems. With the ARPACK software, we are able to obtain not only the

fundamental and high-order prompt α-modes, but also the first few delayed α-modes.

In the next section, we briefly describe the Arnoldi method, and how this method

is applied to solve the k- and α-eignevalue problems. The implementation of the

Arnoldi method for both α-modes and k-modes requires an inner-outer iteration

scheme, and normally the inner iteration takes most of the CPU time. Therefore, we

will also focus on describing the inner iteration solvers, including SOR (Successive

Overrelaxation), LSQR, GMRES (Generalized Minimum RESidual) and BICGSTAB

(BiConjugate-Gradient STABilized). Preconditioners which help to accelerate the in-

ner iterations are also discussed. Finally, IRAM is compared with the power iteration

method in terms of both efficiency and accuracy. The fundamental and high-order

α-modes are verified by examining a modal expansion of the time-dependent flux for

a pulsed-neutron experiment in a subcritical reactor.
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5.2 Outer iterative solvers

5.2.1 The power iteration method

To obtain the eigenvalue which is the largest in magnitude (LM) of a typical

eigenvalue problem,

Ax = λx, (5.6)

the traditional power iteration method starts from an arbitrary initial vector x0 and

computes Ax0, A2x0, · · · till the sequence is converged. At the mth step, the LM

eigenvalue can be estimated as

λm,0 =
||Axm−1||
||xm−1|| =

||Amx0||
||Am−1x0|| . (5.7)

The vector which the sequence converges to is the corresponding eigenvector and is

denoted as x̂0. The great advantage of the power iteration method is its simplicity.

In the above iterative procedure, the method only requires a matrix-vector operation,

xm = Axm−1, (5.8)

with given vector xm−1. In the nuclear engineering field, the system matrix A is

usually a large sparse matrix. Direct methods, e.g., QR algorithm, will easily destroy

the sparse property of A. Since the power iteration method only requires a matrix-

vector operation, it saves the computational storage and is easy to implement.

The power iteration method also has several disadvantages. First of all, it is

designed only to calculate the dominant eigenvalue. Theoretically, high-order eigen-

values and eigenvectors can also be obtained with this method by filtering out low-

order modes. For instance, to obtain the eigenvector which corresponds to the second

largest eigenvalue in magnitude, the power iteration method is first utilized to ob-

tain x̂0 with the arbitrary initial guess x0. Then, the power iteration restarts with
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an updated initial guess x1 which is calculated as

x1 = x0 − 〈x0, x̂0〉
〈x̂0, x̂0〉 x̂0. (5.9)

The converged vector of the second power iteration sequence is the desired eigenvector

x̂1. Apparently, in order to obtain the nth-mode, the power iteration method has to

be restarted at least n times.

Another disadvantage of the power iteration method is that the method discards

the old information as it proceeds. In other words, at the mth step, only Amx0 and

Am−1x0 are saved. As a result, the calculations of high-order eigenvalues need to

largely repeat the calculations done in the previous power iterations. For simplicity,

we assume the eigenvectors x̂0, x̂1, · · · are orthogonal to each other and are complete.

The arbitrary initial guess x0 can then be expanded as

x0 = a0x̂0 + a1x̂1 + · · · + anx̂n + · · · , (5.10)

where an is the expansion coefficient corresponding to the nth eigenvector. In order

to obtain x̂1, the power iteration has to be performed twice. At the mth step of the

first power iteration, the matrix-vector operation is performed m times to obtain the

vector xm,0,

xm,0 = Amx0 = a0A
mx̂0 + a1A

mx̂1 + · · · + anA
mx̂n + · · · , (5.11)

and in the second iteration, the matrix-vector operation has to be performed another

m times to obtain the vector xm,1,

xm,1 = Amx1 = a1A
mx̂1 + · · · + anA

mx̂n + · · · , (5.12)

However, if the results of every matrix-vector operation in the first power iteration

is saved, the sequence in the second power iteration can be obtained directly. For
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instance, xm,1 can be rewritten as

xm,1 = Amx1 = Amx0 − 〈x0, x̂0〉
〈x̂0, x̂0〉A

mx̂0 = xm,0 − 〈x0, x̂0〉
〈x̂0, x̂0〉λ

m
0 x̂0. (5.13)

Yet, an additional disadvantage of the power iteration method is that its conver-

gence rate is highly dependent on the dominance ratio γ which is defined as

γ =
λ1

λ0

, (5.14)

where λ0 and λ1 are the largest and the second largest eigenvalues in magnitude of

the system, respectively. The power iteration stops when the direction of the vector

xm is sufficiently close to the direction of x̂0. By substituting Equation 5.6 into the

Equation 5.11, the normalized xm could be obtained as

xm = a0x̂0 + a1

(
λ1

λ0

)m

x̂1 + · · · + an

(
λn

λ0

)m

x̂n + · · · . (5.15)

If γ is close to 1, a large m is required for xm to converge to x̂0.

5.2.2 The Arnoldi method

The Arnoldi method [41] is designed to retain all the past information in the power

iteration method. Its basic idea is to build an orthogonal basis Vm = [v1, v2, · · · vm]

of the Krylov subspace Km which is spanned by the power iteration sequence:

Km(A, x0) = span
{
x0,Ax0,A

2x0, · · · ,Am−1x0

}
. (5.16)

The steps of building Vm is often referred to as the Arnoldi process. It starts with an

arbitrary initial guess x0, and sets the first basis vector v1 equal to x0. Then, at the

mth Arnoldi step, the basis vector vm is obtained from the modified Gram-Schmidt

method as

vm = Avm−1 −
m−1∑
l=1

〈Avm−1, vl〉 vl. (5.17)
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To write the Arnoldi process in a matrix form, we obtain

AVm = VmHm + hm+1,meT vm+1, (5.18)

where the vector em is a unit vector with only the mth element nonzero, and Hm is

an upper Hessenberg matrix, with its element hi,j defined as

hi,j =

⎧⎪⎨
⎪⎩

〈Avj, vi〉 j ≥ i

‖vi+1‖ j = i + 1

(5.19)

The Arnoldi process stops when hm+1,m vanishes. Then the system matrix A is

transformed into the upper Hessenberg matrix Hm with Vm as the transforming

matrix,

AVm = VmHm. (5.20)

Therefore, if y is an eigenvector of Hm corresponding to the eigenvalue λ, we can

obtain

AVmy = VmHmy = λVmy, (5.21)

which indicates that λ is also an eigenvalue of A, with the eigenvector calculated as

x = Vmy. (5.22)

Usually, the dimension m of the Krylov subspace or the dimension of Hm is much

smaller than the dimension of A. The eigenvalues and eigenvectors of Hm can be

obtained easily by simple methods, e.g., the QR algorithm. Therefore, multiple eigen-

values and eigenvectors can be obtained simultaneously within one Arnoldi process.

In addition, the Arnoldi method also preserves the simplicity of the power iteration

method. In particular, the Arnoldi process only requires a matrix-vector operation

except for the additional arithmetical calculations.
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The difficulty of implementing the Arnoldi method lies in the fact that m is

unknown. For some problems, m becomes so large that a large memory is required

to store the orthogonal vectors. Additionally, the number of matrix-vector operation

also increases linearly as m increases. Due to the computer round-off errors, if m

is large, it is also very difficult to maintain the orthogonality between a large set

of vectors. The loss of orthogonality leads to severe numerical difficulties, such as

missing eigenvectors or producing suspicious duplicated eigenvectors [38].

5.2.3 The Implicit Restarted Arnoldi method (IRAM)

The implicit restarting is an efficient way to overcome the intractable require-

ments for the computational storage and time by the Arnoldi method. The implicit

restarting technique can also avoid the need to maintain a large vector set Vm in

the Arnoldi method. The basic strategy is to restart the Arnoldi process after every

m steps of the orthogonalization with a new starting vector, which is updated to

enhance the components in the directions of the desired eigenvectors as well as to

depress the components in other directions.

If the first k dominant eigenvalues are of primary interest, the best choice of the

initial guess is

x0 = a0x̂0 + a1x̂1 + · · · + akx̂k, (5.23)

in which x̂k is the eigenvector corresponding to the kth eigenvalue we are interested

in. Then the Arnoldi process stops at its kth step, and the k eigenvalues are obtained.

Usually, it is impossible to pick up such a perfect initial guess. Instead, a Krylov

subspace with dimension m = k + j and j >= k is constructed by the Arnoldi

process. The initial guess x0 is randomly picked, so that x0 may have significant
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components in all the eigenvector directions,

x0 = a0x̂0 + a1x̂1 + · · · + akx̂k + · · · . (5.24)

We first perform m Arnoldi steps with the initial guess x0. Then the eigenvalues

of Hm are calculated. Those eigenvalues are often referred to as Ritz values of A.

Although they are not exact eigenvalues of A, they are good approximations to

the exact ones. The eigenvectors x obtained from Equation 5.22 also indicate the

approximate locations of the real eigenvectors.

In the next step, we update the initial vector x0 in a way such that the components

of x0 in some of the undesired-eigenvector directions, e.g., x̂k+1, x̂k+2, · · · , x̂m, are

reduced. This procedure can also be viewed by operating a polynomial p(λk) on each

of the expansion term in equation 5.24:

x0 = a0p(λ0)x̂0 + a1p(λ1)x̂1 + · · · + anp(λk)x̂k + · · · , (5.25)

where λk is the kth eigenvalue of A. To suppress the component of x0 in the x̂k+1,

· · · , x̂m directions, the ideal polynomial is

p(λ) = (λ − λk)(λ − λk+1) · · · (λ − λm−1). (5.26)

Because the real eigenvalues are unknown, they are replaced by the Ritz values

calculated from the previous Arnoldi process. This process to update x0 can be

easily realized by the QR shift algorithm.

In IRAM, the dimension of the Krylov subspace m is usually small and fixed,

and the orthogonality can be easily fulfilled numerically. On the other hand, there

is also no systematic way to determine an optimal value of m. To use the ARPACK

software, it is only required that m is no less than twice the number of the desired

eigenvectors [38]. Generally, a large m will always lead to a faster convergence
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of IRAM, at the expense of increased computational costs for each iteration. For

instance, to seek the dominant eigenvalue λ0, the convergence rate of IRAM with

m = 3 is often comparable to λ3/λ0.

In addition, the power iteration method can also be seen as a special example of

the restarted Arnoldi method, with the subspace dimension m = 1, and the updating

polynomial p(λ) to be

p(λ) =
λ

λ0

. (5.27)

As we have discussed in Section 5.2.1, the convergence rate of the power iteration

method for λ0 is then determined by the dominance ratio λ1/λ0.

5.2.4 ARPACK and applications to k- and α-modes

ARPACK (Arnoldi PACKage) is a group of FORTRAN 77 subroutines which

implement the Implicit Restarted Arnoldi Method to solve eigenvalue problems for

sparse matrices [38]. It only requires a user-supplied subroutine to perform the

matrix-vector operation. With this package, in principle, we are able to calculate

multiple eigenvalues at various positions of the spectrum, such as LM and SM, which

represent the largest and smallest eigenvalues in magnitude. However, similar to the

power iteration method, it is more effective in calculating the dominant eigenvalues.

For eigenvalues other than LM eigenvalues, an inverse-shift technique is applied. For

example, with ARPACK, it is often more convenient to seek the LM eigenvalues of

A−1 instead the SM eigenvalues of A.

In our applications, the LM eigenvalues are our primary interests for the k-

eigenvalue problem. Thus, Equation 5.1 is directly rearranged to the standard form

of an eigenvalue problem as

kφ = L−1χFφ (5.28)
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For the α-eigenvalue problem of a subcritical system, we are interested in the SM

eigenvalues. Therefore, an inverse technique is applied. By ignoring the delayed

neutrons, the standard form of the prompt α-eigenvalue problem can be obtained

from Equation 5.2 as

1

αp
φ =

{(
1

v

)−1

[(1 − β) χpF − L]

}−1

φ. (5.29)

For delayed α-modes, we choose to solve the flux φ and the precursor density function

C jointly, i.e., Equation 5.2 is directly solved.

5.3 The fixed source problems and the inner iterative solvers

In IRAM, in order to build the orthogonal basis Vm, a user subroutine has to be

supplied to calculate the product of a matrix A and a given vector x0. In other words,

to obtain the k-eigenvalues, the prompt α-eigenvalues and the delayed α-eigenvalues,

we need to solve three fixed source problems, respectively:

Aky = Ly = χFx0, (5.30)

Aα,py = [(1 − β) χpF − L] y =
1

v
x0, (5.31)

Aαy =

⎡
⎢⎣ 1

v
0

0 1

⎤
⎥⎦x0. (5.32)

Discretizing the fixed source problems in space and energy domains leads to a linear

equation:

Ax = b, (5.33)

where A is a large sparse asymmetric matrix. Direct methods, e.g., LU decom-

positions, often easily destroy the sparsity of the matrix, and therefore, are not

appropriate to solve large sparse linear systems. Iterative methods, which are usu-

ally referred to as inner iterations, are favored to solve such problems. Likewise,
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the iterations performed by IRAM are referred to as outer iterations in solving an

eigenvalue problem. Because the inner-iteration subroutine is repetitively called by

the outer iteration, a good inner-iterative solver can greatly accelerate the overall

calculations.

5.3.1 Classic iterative methods

Traditionally, a straightforward way to solve Equation 5.33 iteratively is to split

the matrix A as

A = M − N. (5.34)

Then, the linear equation is transformed into a new equation:

Mx = Nx + b. (5.35)

Consequently, an iterative scheme can be constructed from the above equation as

Mxk+1 = Nxk + b. (5.36)

In order to solve Equation 5.36, M is chosen to be a matrix which is easy to invert.

The performance of the method is highly dependent on the choice of the matrix

M. Table 5.1 lists the M-matrix for each of the classic iterative methods, e.g.,

the Jacobi’s method, the Gauss-Seidel method, the successive overrelaxation (SOR)

method and the symmetric successive overrelaxation (SSOR) method. In the table,

A = D−L−U, with D, L and U representing the diagonal, the lower triangular part

and the upper triangular part of A, respectively. The variable ω is the relaxation

parameter of the successive overrelaxation scheme.

In the past, the SOR method and its variants achieved great success in solving

neutron balance equations. The algorithm is very simple and easy to be implemented
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Table 5.1: M-matrices for the classic iterative methods.

Methods Jacobi’s Gauss-Seidel SOR SSOR

M − matrix D D − L 1
ωD − L ω

2−ω

[
1
ωD − L

]
D−1

[
1
ωD − U

]

as shown in Appendix A.1. With an optimal relaxation parameter ω, the SOR

method is very effective to solve diagonally-dominant linear systems. However, its

convergence rate is sensitive to ω, where its optimal value is often unknown. The

estimation of the optimal ω complicates the SOR algorithm itself, and demands

more computational effort. In addition, the convergence of the SOR method is only

guaranteed for diagonally dominant linear system, which may not be the case for the

α-eigenvalue problem.

5.3.2 The conjugate gradient and LSQR methods

Another classic way of solving Equation 5.33 which does not require the estimation

of an optimal parameter is the conjugate gradient (CG) method. It is an effective

method to solve both non-diagonally and diagonally dominant linear systems. The

method seeks an optimal solution x̂ by minimizing the norm of the residual vector

iteratively:

x̂ = arg min
x

‖b − Ax‖. (5.37)

It starts with an arbitrary initial guess x0, and the first search direction p0 along the

residual direction r0. Then at the kth step of the iteration, the new guess xk+1 is

updated by performing an exact line search in the search direction pk,

xk+1 = xk + αpk, (5.38)

where α is obtained from the exact line search. The new search direction pk+1 is

also updated to be a linear combination of the old search direction pk and the new



70

gradient direction rk+1 as

pk+1 = rk+1 + βpk, (5.39)

where β is determined by letting pk+1 conjugate to the previous search direction

pk. If A is symmetric, pk+1 is then automatically conjugate to all the previous

search directions p0, · · · , pk. However, if A is asymmetric, pk+1 is not guaranteed

to be conjugate to all the previous search directions. Then, the CG method may

not converge. Instead, if A is nonsingular, we can use the CG method to solve the

normal equations:

ATAx = AT b, or AAT y = b with x = AT y. (5.40)

The CG method is easy to implement since it also only requires a matrix-vector

operation as shown in Appendix A.2. Its convergence rate is comparable to the SOR

method with the optimal ω at the worst case [41]. However, its convergence rate is

also sensitive to the conditioning of the linear system. For asymmetric linear systems,

the condition number of the normal equations are the square of the condition number

of A. Usually, the CG method is not appropriate to solve the normal equations

directly, due to the slow convergence rate and numerical instabilities.

The LSQR method is a CG-like method which is developed by Paige and Saunders

[42]. It is a clever implementation of the Lanzcos process for the matrix ATA, and

is mathematically equivalent to applying the CG method on the normal equations.

Like the CG method, its convergence rate is also sensitive to the conditioning of

the linear system. Nonetheless, the method is also demonstrated to be numerically

more stable than the method which applies the CG method directly to the normal

equations. In this thesis, we also used the FORTRAN subroutine, which implements

the LSQR algorithm and is developed by Saunders, to solve the fixed source problem.
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5.3.3 The Krylov subspace method: GMRES(m)

In recent studies, the Krylov subspace method is one of the popular projection

methods to solve nonsymmetric linear systems. The method also does not require any

estimation of the relaxation parameter ω. As illustrated by Saad [43], its basic idea is

to seek an approximate solution of the linear system in a specific subspace Km, which

is normally referred to as the search space. The approximate solution is confined in

Km by the Petrov-Galerkin condition. Specifically, the solution is obtained by letting

the residual vector be orthogonal to m independent vectors Vm = [v1, · · · , vm],

r = b − Axm ⊥ Vm. (5.41)

The subspace spanned by Vm is referred to as the subspace of constraints or the left

subspace L. Different projection methods can be obtained with different Kms and

Ls. For the Krylov subspace methods, the search subspace is the Krylov subspace

Km(A, r0) defined in Equation 5.16, where r0 is the initial residual vector corre-

sponding to the initial guess x0. The constraint subspace L has a very important

impact on the performance of the iterative methods. Currently, the GMRES and the

BICGSTAB method are the two most popular subspace methods with left subspaces

L equal to AKm(A, r0) and Km(AT , r0), respectively.

The GMRES algorithm is to seek the solution based on the Arnoldi process. It

first performs m Arnoldi steps to build the orthogonal basis Vm with an initial guess

x0 = 0. Then at the mth Arnoldi step, the method seeks the approximate solution

xm which is a linear combination of the basis vector Vm

xm = Vmym, (5.42)
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so that the the norm of the residual vector is minimized,

ym = arg min
y

‖b − AVmy‖. (5.43)

If we define β = ‖b‖, with the Arnoldi process, the above minimization problem can

then be reduced to a new minimization problem on a subspace with a much smaller

dimension m:

ym = arg min
y

‖b − VmHmy‖

= arg min
y

‖Vm (βe1 − Hmy) ‖

= arg min
y

‖βe1 − Hmy‖, (5.44)

which is easy to solve with the plane rotation technique. In addition, with more

Arnoldi steps, the norm of the residue rm is reduced. The GMRES method stops as

the residual norm reaches its convergence criterion.

The GMRES method is guaranteed to converge in at most n steps, where n is

the size of the system. However, similar to the Arnodi method, it is also important

to restart the orthogonalization process after every m steps to maintain the orthog-

onality between the basis vectors and to save the computer storage. The restarted

GMRES method is often named as GMRES(m), where m is the dimension of the

Krylov subspace. Before restarting the Arnoldi process, the vector ym is obtained

by solving Equation 5.44, and the corresponding xm is taken as the initial guess

x0 of the next m-step Arnoldi process. By restarting, the method may take more

than n steps to converge. Furthermore, by restarting, the method may miss its fast

convergence rate and the method may also stagnate if the subspace dimension is not

large enough. The materials which discussed the GMRES method can be found in

Saad’s text book [43]. We include the GMRES(m) method in Appendix A.3.
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5.3.4 The Krylov subspace method: BICGSTAB

The numerical difficulties in the CG method and the GMRES method in solving

Equation 5.33 lies in the fact that the system matrix A is asymmetric. If A is

symmetric, the Arnoldi process is equivalent to the well-known symmetric Lanczos

process. Specifically, if A is symmetric, the upper Henssenberg matrix Hm obtained

from the Arnoldi process is a triangular matrix. Therefore, Equation 5.17 is reduced

to a three-term recurrence,

vm = Avm−1 − 〈Avm−1, vm−1〉 vm−1 − 〈Avm−1, vm−2〉 vm−2, (5.45)

and the computation effort of the orthogonalization process at the mth step is greatly

reduced.

For an asymmetric linear system, the Bi-CG method utilizes the two-side Lanc-

zos process to build a pair of biorthogonal sequences Vm = [v1 · · · vm] and Wm =

[w1 · · ·wm] for the Krylov subspace Km(A, v1) and Km(AT , w1) respectively. The

process begins with an initial vector w1 = v1, and at the mth step, we obtain vm+1

and wm+1 as

vm+1 = Avm − αmvm − βmvm−1, (5.46)

wm+1 = AT wm − αmwm − δmwm−1, (5.47)

where αm = 〈Avm, wm〉, βm and δm are only required to satisfy βmδm = 〈vm, wm〉. It

can be verified that the basis vectors obtained from the above process are biorthog-

onal to each other:

〈wj, vi〉 = δij. (5.48)

The big advantage of using the biorthogonal process rather than the Arnoldi

process is that there is no need to numerically maintain orthogonality between a
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large set of vectors. One of the main disadvantages of the Bi-CG method is that

it requires to perform both the forward and the adjoint matrix-vector operations.

For some problems, the adjoint problem is not as easy as the forward problem.

The CG-squared method uses another forward matrix-vector calculation to replace

the adjoint calculation. However, this method becomes extremely sensitive to the

computer round-off errors, and its convergence is irregular. The BICGSTAB method

modifies the CG-squared method with a remedy of minimizing the 2-norm of the

residual vector, so as to smooth the convergence irregularities and at the same time

to maintain the fast convergence speed of the Bi-CG method. Given a detailed

derivation of the BICGGSTAB method in text books [43, 44], we include its algorithm

in Appendix A.4.

5.4 The preconditioning techniques

For most of the iterative methods, the convergence rate is dependent on the con-

dition number of the system matrix A. In order to improve the performance of the

inner-iteration solvers, linear systems are often transformed into new systems which

have much better condition numbers. This technique is often called “precondition-

ing”. As stated by Lanczos [45], the main goal of preconditioning is not to find the

exact solution but to “reduce the initial skewness” of the system. In practice, for

iterative methods, e.g., LSQR, GMRES and BICGSTAB, it is often important to

find a preconditioner M, such that M−1A or AM−1 has a better condition number

than A. Thus, a new linear system is solved:

M−1Ax = M−1b, (5.49)

or

AM−1y = b, (5.50)
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with x = M−1y. Equation 5.49 with M on the left of A is usually referred to as

the left preconditoning technique. Likewise, Equation 5.50 is referred to as the right

precondtioning technique.

Good preconditioners are those with good approximations to the matrix A, and

are often easily obtained. In actual applications, usually M is not calculated explic-

itly. Instead a matrix-vector production of M is often more important. For instance,

except the simple arithmetic calculations, GMRES only requires a matrix-vector

operation to build the orthogonal basis such as

y = Ax0, (5.51)

with a given x0. With the left preconditioning technique, the new system in Equation

5.49 is solved by the GMRES method. Therefore, to build a basis vector for the new

system, we have to solve a new matrix vector operation defined as

y = M−1Ax0, ⇒ My = Ax0. (5.52)

Thus, a good preconditioner M is a matrix which is also easy to invert numerically.

5.4.1 The SSOR preconditioner

The classic iterative methods, e.g., the Jacobi’s method, the Gauss-Seidel method,

the SOR method and the SSOR method, provide simple ways to invert matrix M.

For convenience, we rewrite their iterative scheme:

Mxk+1 = Nxk + b. (5.53)

If the iteration starts with an initial guess x0 = 0, the first iterative step produces

Mx1 = b. (5.54)



76

Thus Equation 5.52 is solved explicitly if b = Ax0 and y = x1. All the M matrices

corresponding to the classic iterative methods can serve as good preconditioners.

The SSOR preconditioner is the most popular and effective one. To apply the SSOR

preconditioner on the inner-iterative methods, it only requires one additional step

of the forward SOR iteration followed by one step of the backward SOR iteration.

In addition, regardless of how the relaxation parameter ω is chosen, the SSOR pre-

conditioner usually improves the convergence rate of the inner iteration methods

significantly.

5.4.2 The ILU preconditioners

Recently, the preconditioner technique has become one of the most popular meth-

ods to improve the performance of the iterative methods. There are many other

advanced preconditoners based on incomplete factorizations, e.g., the incomplete LU

decomposition (ILU) and the incomplete Cholesky (IC) factorization [46, 41]. Specif-

ically, the basic idea of the ILU(p) preconditioners is very similar to the ILU with

zero fill-ins (ILU(0)). We will only discuss the ILU(0) preconditioner in the thesis as

an example of the incomplete factorization precoditioners.

For a square matrix A, if its leading principal submatrices are all non-singular, it

can always be decomposed into a lower triangular matrix L and an upper triangular

matrix U:

A = LU. (5.55)

Then, Equation 5.52 can be solved directly with a forward substitution followed by

a backward substitution. For a large sparse A, because the LU decomposition easily

destroys the sparsity of A and fills in the whole matrix, it is not suitable to solve such

linear systems. However, if the LU decomposition is performed in an approximate
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but simple way, in other words, A  M = LU, M may be a good preconditioner.

A general effective way to derive the incomplete LU factorization is to perform

the Gaussian elimination on the matrix A, and then to drop elements in some pre-

determined positions. The simplest way is to drop all the fill-ins in the Gaussian

elimination, and this technique is called ILU with zero fill-in, or denoted by ILU(0).

Then, the decomposed L and U have the same sparse pattern as A. In our work, we

have limited our efforts on applying the SSOR and ILU(0) preconditoners because

of their simplicity and effectiveness in solving our eigenvalue problems. In Appendix

B, we include the detailed algorithms for both preconditioners.

5.5 2-D diffusion theory calculations

Overall, as shown in Figure 5.1, the ARPACK software combined with the inner-

iteration solvers, such as SOR, LSQR, GMRES(m), or BICGSTAB, was implemented

with standard Fortran 77 language to calculate both k- and α-modes. We adopted

the UM2DB code, which is a substantially modified version of the 2DB code [47], to

discretize the reactor geometries and read neutron cross section data. In addition, we

used the SSOR preconditioner or the ILU(0) preconditioner to accelerate the inner

iterations.

5.5.1 Accuracy of eigenvector calculations

In order to examine the accuracy of the fundamental k-mode calculated by IRAM,

we performed a numerical 2-G, 2-D simulation of the Westinghouse AP600 design.

The power iteration method, together with the successive line over relaxation method

(SLOR) as the inner-iteration solver, was embedded in the original UM2DB code.

Hence, we used this method to perform the first k-eigenvalue calculation, and ob-

tained keff = 0.99746. The second k-eigenvalue calculation was performed with the
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Figure 5.1: The scheme of the implementation of IRAM to solve the prompt α-eigenvalue problem.

IRAM implemented in ARPACK. The keff obtained from this method agrees with

the power iteration result up to five significant digits. Furthermore, the fundamental

k-modes calculated from the above two methods are close to each other at every

point of the reactor, with a maximum difference of 0.06%. The power distributions

based on the fundamental k-modes agree with the Westinghouse SSAR results [48]

reasonably well, as shown in Figure 5.2.
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Figure 5.2: Normalized assembly power distribution for the AP600 core.
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With delayed neutrons ignored, i.e., Equation 5.2 with β = 0, we used IRAM

to calculate the fundamental α-eigenvalue of the AP600 core and obtained α =

−6.98121 s−1. Based on Equation 5.4, a k-eigenvalue calculation was also performed

with the absorption term modified by the α/v term to yield keff = 1.00000, which

verifies the accuracy of α calculated via IRAM. In addition, the flux obtained from

the α-eigenvalue calculation shows an excellent agreement with the flux obtained

from the k-eigenvalue calculation, with a maximum difference less than 0.0006%,

which again proves the accuracy of the fundamental α-mode calculation with IRAM.

The accuracy of the high-order α-modes calculated is also verified by performing

a similar k-eigenvalue calculation with the modified absorption term α/v to obtain

k = 1.00000 as one of the eigenvalues, although not the dominant one as expected.

Another more promising way of verifying that IRAM calculates α-modes accu-

rately is to perform a quasi-static simulation of the pulsed neutron experiment, and

then compare the α-mode synthetic fluxes with the quasi-static fluxes as shown in

Figure 5.3.
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Figure 5.3: Comparison of α-mode expansion fluxes with quasi-static simulated fluxes.
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The numerical simulations are performed in a 2-D x-y geometry core, with a 0.11

m × 0.11 m source region located at the center, a MOX type fuel with a thickness

of 0.36 m surrounding the source region, and a sodium reflector with a thickness of

0.17 m outside the fuel region, as shown in Figure 5.4.

Source Core Reflector Shield

0.53m

0.16m

0.36m

0.05m

Figure 5.4: Quarter core map of the fast reactor.

The flux transient is initiated by injecting a neutron pulse in the source region.

The time evolutions of the fluxes are simulated by the ERANOS code [31], with de-

tectors put in the source, fuel and reflector regions respectively. The time-dependent

fluxes at each detector position are shown in Figure 5.3, and we use the α-modes

as the expansion functions. The α-modes φn,p are calculated via IRAM, and the

expansion coefficients An(t) are obtained with Equation 2.43. Then, the synthetic

fluxes with expansion order N can be obtained as

φN(r, t) =
N∑

n=1

An(t)φn,p(r). (5.56)

As shown in Figure 5.3, the synthetic fluxes with N = 4 or N = 16 are also illustrated

at three different regions respectively. The modal expansion fluxes agree well with
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the ERANOS simulations after a short period of time, when the neutron pulse is

turned off at t = 0.1 μs. This excellent agreement confirms the accuracy of the

fundamental α-mode calculation. Furthermore, Figure 5.3 also reveals that with a

large number of modal expansion terms included, the synthetic fluxes agree better

with the ERANOS quasi-static fluxes everywhere in the source, fuel and reflector

regions. Hence, the accuracy of the high-order modes is again established.

In addition, a modal-local method, which combines a modal expansion with a

specialized function representing the local variations in the neutron flux, can also help

obtain a better approximation to the ERANOS simulation as also shown in Figure

5.3 [49]. The modal-local formulation expresses the space- and time-dependent flux

as a combination of a local term f and a global term h determined by a modal

synthesis method:

φN(r, t) = f(r, t) + h(r, t) = f(r, t) +
N∑

n=1

An(t)φn,p(r). (5.57)

The local component f is chosen such that it takes the substantial variations of

the neutron flux when the pulsed-neutron source is injected into the reactor, and is

assumed to be separable in the space and time domains:

f(r, t) = f0(r)b(t), (5.58)

where f0 satisfies

L(r)f0(r) = Q0(r), (5.59)

and the time-dependent coefficient b(t) satisfies

〈
f0,

1

v
f0

〉
r

db(t)

dt
+ 〈f0,Lf0〉r b(t) = 〈f0, Q0〉r ΔQt. (5.60)
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Therefore, the time-dependent expansion coefficient An(t) be obtained by

dAn(t)

dt
= −αnAn(t) +

1

γn

[〈
φ+

n,p, Q0

〉
r
ΔQt

]

− 1

γn

[〈
φ+

n,p, v
−1f0

〉
r

(
db(t)

dt
+ αnb(t)

)]
. (5.61)

Overall, as shown in Figure 5.5(a), compared with the modal fluxes expansion in

Figure 5.3, a better agreement between the modal-local fluxes and the ERANOS

simulations can be achieved shortly after the neutron pulse is turned off, with ex-

pansion order N = 16, especially in the fuel and reflector regions. The modal-local

method, with the k-eigenfunctions as the expansion functions [49] for the global term

h, can also be used to approximate the time-dependent neutron fluxes well as shown

in Figure 5.5(b). However, the α-modes are usually preferred due to its property of

finality [36].

5.5.2 Efficiency of the IRAM method

As the power iteration method can be viewed as a special case of the Arnoldi

method with the subspace dimension equal to 1. Its convergence rate is highly de-

pendent on the dominance ratio λ1/λ0. IRAM (or ARPACK) adopted the implicit

shift technique to dampen the undesired components. It is more efficient than the

power iteration method for problems with dominance ratios close to 1. To demon-

strate this point, we present a simple numerical test, which compares the number of

inner iterations required by the two methods to converge as shown in Table 5.2.

Table 5.2: Comparison of the number iterations for the power iteration method and IRAM.

Methods Power Iteration IRAM

m = 3 m = 10

k-mode 791 106 51

α-mode 10 14 11

The calculations are performed in two cases: (1) the fundamental k-eigenvalue of
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the AP600 design, which has a dominance ratio of 0.975 and (2) the fundamental

α-eigenvalue of the same AP600 design, which has a dominance ratio of 0.093. Both

methods start from the same initial guess, and are augmented by the same inner

iteration solver to achieve the same accuracy level. In addition, to apply IRAM, a

small Krylov subspace with dimension m = 3 and a slightly larger subspace with

m = 10 are tested. Table 5.2 indicates that IRAM outperforms the traditional

power iteration method for the k-eigenvalue problem which has dominance ratios

close to 1.0. IRAM also works equally well with the power iteration method for the

α-eigenvalue problem which has a small dominance ratio. Additionally, Table 5.2

also indicates that IRAM converges faster by working with a larger subspace, hence,

with a larger computer storage.

5.5.3 Efficiencies of the inner iterative solvers

In IRAM, the upper Hessenberg matrix usually has a much smaller size than

the original matrix. Therefore, most of the computational work in the eigenvector

calculations is dedicated to the inner iteration, and a good inner iteration solver can

greatly improve the general efficiency. Table 5.3 summarizes the performance of the

four inner-iteration solvers both for obtaining the fundamental k- and α-mode of

the AP600 design. The LSQR method, the GMRES method and the BICGSTAB

method are augmented by the SSOR right preconditioner with ω = 1.5. In addition,

the same ω is also chosen for the SOR method.

In the table, we compare the number of iterations required by each method to

stop at the same convergence criterion. We also list the number of matrix-vector

operations per iteration for all the methods, and the total CPU time required to

solve the fixed source problem on the same computer.

Overall, the BICGSTAB method with the SSOR preconditioner outperforms other
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Table 5.3: Comparison of the performance of the inner iteration solvers.

Methods SOR LSQR GMRES BICGSTAB

(ω = 1.5) (m = 20)

k-mode
Ax/iteration 2 21 2 2

number of iterations 111 162 2 14

CPU time (s) 0.220 1.272 0.190 0.110

α-mode
Ax/iteration 2 21 2 2

number of iterations 10651 270 5 35

CPU time (s) 23.2 1.83 0.681 0.240

methods for both the k- and the α-eigenvalue problems in terms of the computational

storage and the computer time. The GMRES(m) method has a comparable conver-

gence rate with the BICGSTAB method, but requires more computer storage. The

SOR method performs poorly in calculating the α-modes, because the system matrix

of the corresponding fixed source problem is not diagonally dominant. Although an

estimation of the optimal relaxation parameter can accelerate the method consid-

erably, the convergence rate would be still much slower than the Krylov subspace

methods. The LSQR method only works modestly for both problems, and it con-

verges much slower than both the GMRES method and that BICGSTAB method.

Additionally, we compare the number of iterations required by the BICGSTAB

method to converge with different preconditioners. As shown in Table 5.4, the SSOR

preconditoner can accelerate the inner iteration solver greatly, even with a less op-

timal relaxation parameter. The ILU(0) preconditioner works no better than the

SSOR method in both our k- and α-eigenvalue problems.

Table 5.4: Comparison of the number of iterations required by BICGSTAB with or without the
preconditioners.

Preconditioners None SSOR SSOR ILU(0)

ω = 1.0 ω = 1.5

k-mode 74 25 14 48

α-mode 220 50 35 128
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(a) With α-modes

(b) With k-modes

Figure 5.5: Comparison of the quasi-static ERANOS simulated neutron fluxes with the modal-local
fluxes (a) with α-modes as the expansion functions, (b) with k-modes the expansion
functions.



CHAPTER VI

FX2-TH Numerical Tests

In this chapter, we first analyze the spatial effects in pulsed neutron experiments

with numerical simulations. Specifically, we perform time-dependent numerical sim-

ulations of a pulsed-neutron experiment for a simple idealized reactor with the FX2-

TH code. Our analysis of the spatial effects are then based on the detector responses

simulated by the FX2-TH code. We consider a R-Z cylindrical reactor which has an

external source region at the center with a radius of 0.02 m and a height of 0.19 m,

as shown in Figure 6.1. A fuel region with a radius of 0.3 m and a core height of

0.57 m surrounds the source region, and a reflector region is the outermost region

with a thickness of 0.5 m. The fuel region is composed of 8.5 wt% UO2 fuel pins

and a homogenized baffle region with 90% of stainless steel and 10% water. The

four-group macroscopic cross sections and the 235U detector efficiencies Σd,g are cal-

culated by the CASMO-3 code, with all the cross sections listed in Appendix C. The

four-group diffusion calculation by the FX2-TH code gives keff = 0.94797. The βeff

is calculated to be 0.0072. The reference reactivity of the model is then -7.62 $ [17].

To simulate a pulsed-neutron experiment, external pulsed neutrons are injected

into the source region uniformly at the highest energy group with a 10 Hz frequency

(or period T = 0.1 s). The pulse width is ΔT = 0.1 μs. The detector responses are

86
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Figure 6.1: The geometry configuration of the thermal reactor.

assumed to be recorded at the midplane along the radius as shown in Figure 6.1.

6.1 Area-ratio method

6.1.1 FX2-TH code simulations

Due to the “stiffness” of the reactor system, it is not an easy task to directly sim-

ulate the time-dependent neutron flux subjected to the injection of external neutron

pulses in a subcritical reactor. In addition, for the area-ratio method, the detector

responses are recorded after thousands of repetitive neutron pulses are injected into

the subcritical reactor to reach an equilibrium state. Therefore, the direct numerical

simulations of thousands of neutrons pulses become even more difficult.

To obtain an accurate simulation of the detector responses, instead of simulating

thousands of neutron pulses directly, we propose to calculate the delayed-neutron

equilibrium conditions and to perform the simulation only for a single pulse start-

ing with the calculated delayed-neutron equilibrium conditions. The delayed-neutron

equilibrium conditions are the initial conditions of the time-dependent diffusion equa-
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tions when the delayed-neutron background reaches an asymptotic level, as shown

in Chapter IV. Mathematically, we can rewrite them down as

φt(r, E, 0−) = φd(r, E, T−), C(r, 0−) = C(r, T−), (6.1)

where the delayed neutron flux φd and and the precursor density function C are

unknowns at t = T−. Because the neutron pulse period T is rather small compared

with the shortest half-life of the delayed-neutron precursors, φd and C can then be

assumed as constants within the pulse period T and be well approximated by

φt(r, E, 0−) = φd(r, E, T−)  1

T

∫ T

0

φd(r, E, t)dt =
1

T

(
φ̂t − φ̂p

)
, (6.2)

C(r, 0−)  1

T

∫ T

0

C(r, t)dt =
β

Tλ
Fφ̂t, (6.3)

where φ̂t and φ̂p are time-integrated fluxes and can be obtained by solving Equations

4.7 and 4.8, respectively.

Thus, in our numerical simulations for the area-ratio method, we first solve the

two steady-state fixed-source diffusion problems corresponding to Equations 4.7 and

4.8. The fixed external source has the same spatial and energetic distributions as

the time-dependent pulsed-neutron source but are integrated over the pulse period

T . The delayed neutrons are ignored by setting βeff = 0.0 while solving for the

time-integrated prompt flux φ̂p. The delayed-neutron equilibrium state is then cal-

culated from Equations 6.2 and 6.3. With the calculated delayed-neutron equilibrium

conditions as the initial conditions, the time-dependent diffusion equations 2.12 and

2.13 are solved by the FX2-TH code for a single pulse. The detector responses are

obtained from the time-dependent numerical simulations.

6.1.2 Validation of Bell’s static spatial correction method

With the simulated detector responses, the area-ratio method yields the reactivi-

ties of the R-Z reactor at each detector position as shown in Figure 6.2 with the scale
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on the LHS ordinate. Compared with the reference reactivity, the area-ratio method

overestimates the value of the reactivity by a maximum of 50% in the source region.

As detectors move away from the external source region, the reactivities obtained

from the area-ratio method gradually agree with the reference reactivity, but with a

7.5% underestimation of the subcriticality everywhere in the reflector.

Figure 6.2: The reactivity and the spatial corrections of the area-ratio method for the thermal
reactor with 235U detectors at the middle plane in the R-direction.

Bell’s spatial correction factor f can also be calculated, with the time-integrated

fluxes φ̂t and φ̂p calculated by the FX2-TH code. Figure 6.2 shows the calculated f at

each detector position with the scale on the RHS ordinate. The reactivities obtained

from the area-ratio method are then corrected at each detector position with the

spatial correction factor f . As shown in the figure, the reactivities after the spatial

corrections are much less spatially dependent than those obtained from the area-ratio

method alone, with a maximum deviation from the reference calculation is < 6% in

the source region. The corrected reactivities obtained for the detectors in the reflector
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region are spatially independent and agree with the reference calculation within 1%.

The relative large difference in regions close to the external is due to the numerical

errors in the FX2-TH simulations. Specifically, in the pulsed-neutron experiment,

the neutron pulse width is small and is localized in a small region. Thus, the detector

responses rise very quickly for detectors close to the source region, and are difficult

to simulate accurately with finite time steps.

In addition, the prompt spatial correction factor fp can also be obtained based on

Equation 4.37. As shown in Figure 6.2, fp agrees with f everywhere in the reactor.

It also indicates that the spatial effects in the area-ratio method are mainly induced

by the prompt-neutron harmonics, and fd is close to 1.0.

To understand why the area-ratio method overestimates the subcriticality of the

reactor significantly in regions close to the external source, we compare the detector

responses corresponding to φ̂p and φ0,k, respectively. In a subcritical reactor, the

time-integrated prompt-neutron flux φ̂p, which is the solution of Equation 4.7, usually

peaks in regions close to the external source and falls off exponentially or like an

exponential function in the spatial domain. However, the spatial distribution of the

fundamental k-mode φ0,k is flatter and like a cosine function. Therefore, as shown

in Figure 6.3, φ̂p will be larger than φ0,k, and fp will always be smaller than 1.0

in regions close to the external source, which explains why the area-ratio method

always overestimates the subcriticality of the reactor in those regions.

Moreover, the neutron detectors are fission chambers with energy response func-

tions similar to that of the fission operator F in Equation 4.38. Besides, F is zero

outside the fuel region. Therefore, the equality in Equation 4.38 is only imposed on

the fuel region. To satisfy this equality, there must exist a region in the fuel where

φ̂p will be smaller than φ0,k. Consequently, the spatial correction factor fp will be
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Figure 6.3: The comparison of the detector responses corresponding to the time-integrated prompt-
neutron flux and the fundamental k-mode in the thermal reactor.

larger than 1.0, and the area-ratio method underestimates the subcriticality in this

region, as indicated in Figure 6.2.

Overall, this numerical test verifies that the spatial effects of the simple area-ratio

method are well compensated for by Bell’s spatial correction factor f if accurate

kinetics parameters β and ρ are used. This numerical test also shows that our prompt

spatial correction factor fp provides physically intuitive explanations of the spatial

effects in the area-ratio method. Due to the different spatial distribution between

φ̂p and φ0,k, fp also predicts that the area-ratio method will always overestimate

the subcriticality at positions close to the external source in the fuel region, and

underestimate the subcriticality at position away from the source but in the fuel

region. In a real pulsed-neutron experiment, the real reactivity of the subcritical

reactor can then be bracketed by the measurements performed at these two positions.
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6.1.3 Spatial effects in the extrapolated area-ratio method

The reactivity of a subcritical reactor can also be obtained from the simulated

detector responses with the extrapolated area-ratio method as shown in Figure 6.4.

For this numerical model, the extrapolated area-ratio method yields reactivities much

less spatially dependent compared with the area-ratio method, with a maximum

overestimation of the subcriticality by about 2% at the source region, and about

1.5% at the core-reflector interface.

To obtain the spatial correction factor fp,e and fd,e, the fundamental prompt α-

mode is calculated via IRAM. The correction factors are then obtained according to

Equations 4.46 and 4.47 as shown in Figure 6.4 with the scale on the RHS ordinate.

In this figure, the prompt correction factor fp,e is almost spatially flat both in the

core and in the reflector region, except at the core-reflector interface, where the spa-

tial correction is larger than 1%. This compensates for the underestimation of the

subcriticality by the extrapolated area-ratio method at the core-reflector interface

very well. The spatial correction factor fd,e corresponding to the delayed-neutron

harmonics has the largest value in the source region with a maximum spatial correc-

tion of 3%. Overall, the reactivity obtained from the extrapolated area-ratio method

after the spatial corrections agrees with the reference reactivity of -7.62 $ within

0.5% everywhere along the radius.

The spatial dependence of the extrapolated area-ratio method is mainly related

to the “kinetics distortions” factor, unlike the spatial dependence in the area-ratio

method. In this particular numerical model, the extrapolated area-ratio method is

much less spatially-dependent than the simple area-ratio method due to the weak

“kinetics distortions”. Namely, as shown in Appendix C, the neutron removal cross

sections in the reflector region are not significantly different from those in the fuel



93

Figure 6.4: The spatial corrections of the extrapolated area-ratio method in the thermal reactor
with 235U detectors at the middle plane in the R-direction.

region. Thus, neutrons, especially thermal neutrons, will not accumulate in either of

the regions. In addition, with this numerical model, the spatial correction factor fp,e

and fd,e are demonstrated to be capable of compensating for the spatial effects in

the extrapolated area-ratio method induced by both the prompt-neutron harmonics

and delayed-neutron harmonics.

6.1.4 Modal analysis of the area-ratio method

In this numerical model, the area-ratio method shows large spatial effects. How-

ever, the “kinetics distortion” factor, which is the fundamental modal term of f , is

almost spatially independent as shown in the extrapolate area-ratio method. Thus,

in order to investigate the role of the high-order prompt-neutron harmonics in the

area-ratio method, we calculate the spatial correction factor fp with different num-

bers of prompt-harmonics modes included.

First, the prompt α-modes φm,p are obtained via IRAM for this R-Z thermal
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reactor. The detector responses corresponding to the prompt α-modes are shown

in Figure 6.5, where only the fundamental and first harmonics in R-direction are

included. The direct and adjoint k-modes are also calculated via IRAM. The prompt

spatial correction factor fp with M prompt α-modes included can then be obtained

based on Equation 4.33:

fp,M =

⎡
⎢⎢⎢⎢⎢⎣

m=M∑
m=0

Am(0)

αm

〈
φ+

0,k, χdβFφm,p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

m=M∑
m=0

Am(0)

αm

〈Σd, φm,p〉E
〈Σd, φ0,k〉E

⎤
⎥⎥⎥⎥⎥⎦ . (6.4)
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Figure 6.5: The first six 235U detector response maps 〈Σd, φ
α
m〉E in the thermal reactor.

In addition, we also calculate the prompt spatial correction factors fp,e and fp

based on Equations 4.46 and 4.37, respectively. Figure 6.6 compares the spatial

correction factors fp,M with fp, where M is the modal expansion order. If only the

fundamental prompt α-mode is included (M = 0), the spatial correction factor fp,0 is

almost flat and very similar to fp,e, which indicates that the spatial variations in the

area-ratio method due to the “kinetics distortion” are small. If the first harmonics
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in the R-direction is included (M = 2), due to the significant difference between the

first prompt α-mode and the fundamental k-mode in the R-directions, fp,2 becomes

strongly spatially dependence as shown in the figure. With more modes included

(M = 5), the spatial correction factor fp,5 agrees with fp better than fp,2. However,

a very large number of expansion modes would be required for fp,M to closely agree

with fp.

Figure 6.6: The prompt spatial correction factors for the 235U detector in the thermal reactor.

Thus, this numerical tests showed that the high-order prompt α-modes have great

impacts on the spatial effects in the area-ratio method, and it cannot be neglected

when calculating the prompt spatial correction factor fp [23].
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6.2 α-method

6.2.1 FX2-TH code simulations

Compared with the area-ratio method, the numerical simulations of the pulsed-

neutron experiment for the α-method are much easier because the detector re-

sponses are recorded after a single neutron pulse injected into the system. The

time-dependent diffusion equations are solved directly by the FX2-TH code for the

same R-Z reactor as shown in Figure 6.1. The 235U detectors are placed at the same

radial positions as in the area-ratio method.

To obtain the reactivity, the detector responses are fitted by an exponential func-

tion in the prompt decay region from t = 1 ms to t = 2.5 ms. As an example,

Figure 6.7 shows the exponential fitting at r = 18 cm in the fuel region. The decay

constants obtained from the detector responses are all about α = −3348 s−1. If the

kinetics parameters Λ and βeff are provided, the reactivity of the thermal reactor

can then be estimated based on Equation 3.16.

Figure 6.7: The exponential fitting of the detector response at r = 18 cm in the thermal reactor.
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For the traditional α-method, Λ and βeff are usually measured in a close-to-critical

reference configuration, which is very similar to the subcritical reactor in material

compositions and geometry configurations. In this numerical simulation, we choose

to vary the height of the fuel region of the R-Z reactor to 104.5 cm to achieve

keff = 0.9966. With this close-to-critical reference model, we obtain βref = 0.00721,

and Λref = 17.6 μs. Another way to achieve criticality is to adjust the fission cross

sections. With the same keff , we obtain Λref = 17.5 μs, which is very close to the

value by varying the core height. Thus, the reactivity of the R-Z reactor can be

calculated with the decay constant α0 obtained at each detector position through

Equation 3.16, as shown in Figure 6.8.

Figure 6.8: The reactivity and the space-time corrections of the simple α-method for the thermal
reactor with 235U detectors at the middle plane in the R-direction.

Unlike the area-ratio method, the reactivities estimated from the α-method are

spatially independent for this numerical model, because the decay constants obtained

from the detector responses are uniform. However, compared with the reference re-
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activity ρ = −7.62 $, the α-method underestimates the subcriticalitiy of the R-Z

reactor about by 6% everywhere in the reactor. This is mainly due to the approx-

imations in the kinetics parameters, especially the mean generation time Λ. In the

next section, we will study the variation of the mean generation time in a subcritical

reactor at different subcriticalities.

6.2.2 Space-time effects in the α-method

The mean generation time varies for reactors at different subcritical levels. In our

numerical model, by varying the height of the reactor fuels, the reactor keff changes

from 0.92 to 0.997, and Λ continuously decreases about 8%, as shown in Figure 6.9.

Usually, in a pulsed-neutron experiment, the reactor is made to be subcritical

from the reference configuration by adjusting cross sections, e.g., inserting control

rods, or removing fuel plates out of the reactor. As defined in Equation 4.55, the

mean generation time Λ is inversely proportional to the number of fission neutrons

generated from the fission, i.e., the χFφ0,p term in 4.55. For a nuclear reactor, if keff

of the reactor decreases, the total number of fission neutrons generated by fission

usually decreases correspondingly. Therefore, Λ increases proportionally as shown in

Figure 6.9.

The property that Λ increases as keff decreases for a subcritical reactor, espe-

cially for a small reactor with a large reflector, was also investigated by Perdu [50].

In his Monte Carlo simulations, he captured the reactor at a moment t after the

neutron pulse is turned off. Then he counted the number of neutrons from different

generations in the reactors with keff = 0.9 and keff = 1.0 respectively, and observed

that the fraction of the neutrons born in early generations is larger in the subcritical

reactor than in the critical reactor. This is due to the fact that in the subcritical

reactor, fewer neutrons are born in the recent generations because of the smaller mul-
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Figure 6.9: The mean generation time Λ of the thermal reactor at different configurations.

tiplication factor. Neutrons from the old generations are long-lived. Because Λ is an

average value of the neutron life-time in a reactor, Λ then is larger in a subcritical

reactor than in the reference close-to-critical reactor.

In our numerical model, in order to obtain an accurate estimation of the mean

generation time Λ for a subcritical reactor, we first calculate the mean generation

correction factor from the numerical simulations. IRAM is utilized to calculate both

the fundamental k-mode φ+
0,k and the prompt α-mode φ0,p of the reactor at the refer-

ence configuration and at the subcritical configuration. The calculated fundamental

prompt α-eigenvalue for the subcritical configuration is -3345 s−1 which agrees with

the fitted value of α0 = −3348 s−1 very well. According to Equation 4.66, the cor-

rection factor f cal
Λ is calculated to be 1.056. The reactivities of the R-Z reactor with

the corrected Λ are then obtained as shown as in Figure 6.8, which indicates a very

good agreement between the corrected reactivities and the reference reactivity.
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6.2.3 Modal analysis of the α-method

In addition to the difficulty of accurately determining Λ in actual applications of

the α-method, we note in general that it may also be difficult to obtain spatially-

independent decay constants in a pulsed-neutron experiment. In this numerical

model, the decay constants obtained from the simulated detector responses at differ-

ent positions are coherent, because the high-order modal terms decrease quickly.

Specifically, Figure 6.10 shows the modal expansions of the detector responses at

r = 8 cm and r = 18 cm, respectively. The modal expansion fluxes are calculated

according to Equation 5.56 with the fundamental term only, i.e. N = 1, or with

the first 16 modal terms, i.e., N = 16. As shown in the figure, the modal expansion

flux with 16 modes included decays away quickly during the first 100 μs, leaving a

tail which agrees with the fundamental term and decays away in a purely exponen-

tial manner at both positions. In addition, after about 100 μs the detector responses

obtained from the direct FX2-TH simulations closely agree with the one-term expan-

sion. Therefore, the decay constants obtained from different positions after t = 100

μs are spatially independent, and are equal to the fundamental prompt α-eigenvalue

α0.
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(a) at r = 8 cm

(b) at r = 18 cm

Figure 6.10: The modal expansions of the detector responses with expansion order N = 1 and
N = 16 at (a) at r = 8 cm and (b) at r = 18 cm .



CHAPTER VII

The Space-Time Corrections in the MUSE-4 Subcritical
Reactor

7.1 Numerical models of the MUSE-4 experiment for the area-ratio
method

To analyze the spatial effects in the MUSE-4 pulsed-neutron experiments, we first

set up a 33-group XYZ-geometry model for the MUSE-4 SC0 reactor. Figure 7.1

shows the core layout of the simulation model for the MUSE-SC0 subcritical reactor

with one shim rod (or control rod) SR1 inserted into the reactor. The pilot rod (PR)

can also be inserted into the reactor to adjust the reactivity. Because it is a small

perturbation to the system, we do not simulate the PR in our numerical model. The

locations of the fission chamber detectors are marked by their names in the core

layout.

The materials in each region as shown in the core layout are homogenized and

their macroscopic cross sections are calculated by the ECCO module of the ERANOS

code package [29]. The JEF2.2 library is applied in the ECCO code. The VARI-

ANT nodal diffusion calculation gives keff = 0.9641 for the subcritical case with

SR1 in the reactor and keff = 1.0017 for the close-to-critical case with no SR rod

inserted into the reactor. The time-dependent diffusion simulations for the pulsed

neutron experiments are performed with the KIN3D module for the subcritical con-

102
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Figure 7.1: The core layout of the MCNP model for the MUSE-4 SC0 reactor and the location map
of the 235U detectors in the reactor.

figuration. We also set up a MCNP model to tally 33-group response functions

for the 235U detectors using the ENDF/B-VI library. The Monte Carlo KCODE

calculation gives keff = 1.007 ± 0.00014 for the close-to-critical configuration and

keff = 0.9638± 0.0003 for the subcritical configuration. The k-eigenvalues obtained

from the numerical simulations are compared with the experimental data in Table

7.1, where we note that the ERANOS deterministic calculations agree reasonably
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Table 7.1: The calculated keff and the experimental data for the MUSE-4 SC0 close-to-critical and
subcritical configurations.

Configurations Experiment MCNP5 ERANOS

Close-to-critical 0.99920 ± 0.0001 1.007 ± 0.00014 1.0017

Subcritical · · · 0.9638 ± 0.0003 0.9641

well with the Monte Carlo simulations.

7.2 The area-ratio method of the MUSE-4 experiment

In the MUSE-4 project, pulsed-neutron experiments were performed in the sub-

critical reactor with several different configurations as discussed in Section 1.3. The

SC0 without control rods, and the SC2 and the SC3 configurations are all X-Y sym-

metric. Figure 7.1 illustrates an asymmetric configuration of SC0 because the SR1

is inserted into the top-left quadrant of the reactor. The area-ratio method was

applied carefully on the experimental data to obtain reactivities for each reactor

configurations in Villamarin’s PhD thesis [15]. Here we summarize his results in

Table 7.2.

Table 7.2: Reactivities ($) obtained from the area-ratio method with the 235U detectors for different
configurations in the MUSE-4 project.

Detector SC0 SC0 SC2 SC3
4SR ↑ PR ↓ 3SR↑ SR1↓ PR ↓ 4SR ↑ PR ↓ 4SR ↑ PR ↓

F -1.98 ± 0.01 −11.82 ± 0.02 -9.05 ± 0.02 -13.53 ± 0.02
I -2.00 ± 0.01 −14.07 ± 0.02 -9.25 ± 0.02 -14.76 ± 0.02
L -2.00 ± 0.01 -12.83 ± 0.02 -9.41 ± 0.02 -14.65 ± 0.02
G -2.02 ± 0.01 -12.82 ± 0.02 -9.54 ± 0.02 -14.81 ± 0.02
H -2.00 ± 0.01 -12.96 ± 0.02 -9.38 ± 0.02 -14.18 ± 0.02

M/C -2.00 ± 0.01 -12.68 ± 0.02 -9.12 ± 0.02 -14.31 ± 0.02
N/D -1.99 ± 0.01 -12.06 ± 0.02 -9.34 ± 0.02 -13.88 ± 0.02
A -2.01 ± 0.01 -12.57 ± 0.02 -9.41 ± 0.02 -14.40 ± 0.02
B -2.01 ± 0.01 -12.71 ± 0.02 -9.37 ± 0.02 -14.42 ± 0.02

Average -2.001 ± 0.004 -12.55 ± 0.06 -9.32 ± 0.05 -14.33 ± 0.05

As shown in the second column of the table, the spatial dependence is very small

for the SC0 close-to-critical configuration. However, as shown in the third column of
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the table, the difference between the reactivities obtained from detector F and de-

tector I is > 2 $ in the SC0 subcritical configuration. The spatial dependence is also

significant in the SC3 configuration where the reactor is more subcritical. Moreover,

from the table, a spatial pattern can also be found from the measured reactivities.

Specifically, for all the configurations, the reactivity obtained from detector F is al-

ways smaller than the averaged value of the reactivities, while the reactivity obtained

from core detector I or L is always larger than the average. Because there are large

spatial variations in the SC0 subcritical configuration, our spatial analysis focuses

on analyzing the spatial effects in this configuration. Spatial correction factors will

be calculated from the numerical simulations with the ERANOS determinstic model

or the MCNP model.

7.2.1 Diffusion simulations of the MUSE-4 experiment for the area-ratio method

In order to calculate spatial correction factors from the numerical simulations,

we start with the 3-D ERANOS diffusion model. The time-integrated flux φ̂p and

φ̂t are calculated with the VARIANT module of the ERANOS code package. The

spatial correction factors for 235U detectors are obtained via Equation 4.15, and are

listed as fDIF in Table 7.3. The reactivities after spatial corrections are also listed

as ρDIF in the table. The experimental data ρexp is the same as the third column in

Table 7.2. Apparently, the spatial variations of ρexp can not be compensated for by

the correction factor fDIF . Especially, ρDIF obtained from detector F and detector

I still differ from each other by about 2$.

7.2.2 Transport simulations of the MUSE-4 experiment for the area-ratio method

The diffusion theory approximation is not very accurate to describe the flux vari-

ations in the reactor, especially for regions around control rods. A transport theory
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Table 7.3: Spatial correction factors and the reactivities of the area-ratio method for 235U detectors
in the MUSE-4 SC0 configuration with SR1 down phase.

Detector ρexp($) fDIF ρDIF ($) fMCNP
p σ(%) ρMCNP ($) ρBISTRO($)

F −11.82 ± 0.02 0.923 −10.91 1.044 0.380 −12.34 -11.8

I −14.07 ± 0.02 0.913 −12.84 0.917 0.412 −12.90 -13.1

L -12.83 ± 0.02 0.868 -11.14 0.932 0.342 -11.96 -13.0

G -12.82 ± 0.02 0.941 -12.06 0.947 0.870 -12.15 -12.4

H -12.96 ± 0.02 0.915 -11.85 1.003 0.772 -13.00 -12.1

M -12.68 ± 0.02 0.926 -11.74 0.926 1.004 -11.74 -12.8

N -12.06 ± 0.02 0.923 -11.14 1.018 0.743 -12.28 -11.8

A -12.52 ± 0.02 0.941 -11.78 0.994 4.081 -12.43 -12.4

B -12.71 ± 0.02 0.925 -11.76 0.935 5.318 -11.88 -13.0

Average ($) -12.72 ± 0.006 · · · -11.69 · · · · · · -12.30 -12.47

calculation using the BISTRO module in the ERANOS code package [51] was per-

formed by Carta, et al. [16]. In his transport calculations, the 33-group homogenized

cross sections are also obtained via the ECCO code with the JEF2.2 library. The

prompt-neutron area and the delayed-neutron area are obtained by solving the two

fixed-source transport problems in Equations 4.9 and 4.10. Reactivities are then cal-

culated as the negative ratio of prompt-neutron area and the delayed-neutron area,

and are listed as ρBISTRO in Table 7.3. Overall, the BISTRO transport calculation

generates reactivities close to the measurements at most of the detector positions

except at detector I, where the largest spatial variation occurs.

In order to obtain a set of spatial correction factors which can reduce the spatial

effects in the experimental data, a more accurate transport model other than the

2-D BISTRO model is required. The Monte Carlo method is a perfect tool to solve

a steady-state 3-D transport problem, despite the demand of a long computational

time to achieve a reasonably small statistical error. The MCNP5 code is a power-

ful Monte Carlo software to represent neutron transport in a nuclear reactor [52],

and can be easily used to calculate detector responses, yielding, e.g.,
〈
Σd, φ̂p

〉
and



107

〈
Σd, φ̂t

〉
. However, in order to calculate Bell’s spatial correction factor f , the effec-

tive delayed neutron fraction β has to be calculated first. This additional calculation

requires more complicated tallies. As we have demonstrated in our numerical test

in Figure 6.2, most of the spatial variations in the area-ratio method are induced by

the prompt-neutron harmonics. Therefore, we will calculate the prompt correction

factor fp, which only tallies the prompt neutrons, and is easier to obtain with the

MCNP5 code.

For notational convenience, we rewrite Equation 4.37 for the prompt spatial cor-

rection factor fp as

fp(rD) =

⎡
⎢⎣
〈
φ+

0,k, χdβFφ̂p

〉
r,E〈

φ+
0,k, χdβFφ0,k

〉
r,E

· 〈Σd, φ0,k〉E〈
Σd, φ̂p

〉
E

⎤
⎥⎦ . (7.1)

With the MCNP5 code, the adjoint fundamental mode can only be calculated by

a multi-group scheme, and the available multi-group data library is collapsed from

the ENDF/B-V library. However, the ENDF/B-VI library is the primary library for

all the nuclides in direct Monte Carlo simulations, and the delayed fission neutron

data are included in the ENDF6DN library for all the fissionable nuclides. Thus,

there is inevitable modeling error due to the multi-group calculations of the adjoint

flux using different neutron data libraries. On the other hand, the calculated fp will

not be too sensitive to the modeling error due to the fact that the adjoint flux is

included both in the denominator and numerator of Equation 7.1 to calculate fp.

Thus, in our calculation, the multi-group adjoint flux is obtained from the 33-group

diffusion calculation. Then, the inner product
〈
φ+

0 , χdβFφ̂p

〉
r,E

in Equation 7.1 can

be calculated as

〈
φ+

0 , χdβFφ̂p

〉
r,E

=

〈∑
g

χd,gβφ+
0,k,g,

∑
g′

νΣf,g′φ̂g′,p

〉
r

, (7.2)
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where the χd,gβφ+
0,k,g term is obtained from the 33-group ERANOS diffusion calcula-

tion. Likewise, the inner product
〈
φ+

0 , χdβFφ0,k

〉
r,E

can also be obtained. A uniform

weight function instead of the fundamental adjoint flux was also applied to test the

sensitivity of fp to the modeling error. It was found that fp calculated with uniform

weight function only differs by < 5% from that with the adjoint fundamental flux as

the weight function. Thus, the calculated spatial correction factor is indeed not very

sensitive to the modeling error of the adjoint flux.

The calculated spatial correction factor fp from the MCNP simulations is listed as

fMCNP
p in Table 7.3, and the corresponding standard deviation in percentage is listed

as σ in the same table. The reactivity in dollars after the spatial correction is also

included in Table 7.3 as ρMCNP . With Monte Carlo simulations, the large spatial

variation between detector I and detector F is well compensated for by fMCNP
p . The

reactivities after the spatial corrections are coherent, with a maximum difference of

6% at detector H from the averaged value. Because in our Monte Carlo model, all

the special tubes, vertical channels are ignored for simplicity, a more detailed model,

which represents more accurate geometry, is expected to help reduce the remaining

spatial variation in the corrected experimental data, especially at detector position

H.

7.2.3 Analysis of the spatial pattern in the MUSE-4 experiments

As demonstrated in the above section, the spatial effects in the MUSE-4 area-

ratio data can be well compensated for by the prompt correction factor fp. Thus,

the spatial effects in the MUSE-4 area-ratio experimental data can be studied by

examining the spatial dependence of fp. Figure 7.2 shows the spatial correction

factors fp calculated for a 235U detector placed in regions horizontally or diagonally

across the MUSE-4 SC0 reactor. The horizontal regions are marked with “×” in



109

Figure 7.1, and the diagonal regions are marked with “◦” in the same figure.

Figure 7.2: The spatial correction factors for 235U detectors horizontally or diagonally crossing the
MUSE-4 SC0 reactor.

As shown in Figure 7.2, when the detectors are close to the external source region,

fp deviates from 1.0 and less than 1.0, which indicates that the simple area-ratio

method overestimates the value of the reactivity at regions close to the external

source. The spatial correction factor curve gradually becomes flat away from the

external source region. In addition, fp is also sensitive to local variations, e.g., the

presence of a control rod. In the MUSE-SC0 subcritical configuration, the control

rod SR1 is placed in the top-left quadrant in Figure 7.1, and the diagonal regions are

across the reactor from the top-left quadrant to the bottom-right quadrant. From

Figure 7.2, we can find that the correction factor fp is always smaller than 1.0

in the top-left quadrant and larger than 1.0 in the bottom-right quadrant. These

parametric results are consistent with the experimental results. Namely, for the
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MUSE-4 SC0 configuration, as shown in Table 7.2, detectors F, and N in the bottom-

right quadrant give smaller values of the reactivity than detectors I, M and B in the

top-left quadrant.

According to Equation 7.1, the spatial dependence of fp is dependent on the rela-

tive difference between the normalized detector responses
〈
Σd, φ̂p

〉
E

and 〈Σd, φ0,k〉E.

Thus, the spatial distribution of fp is not only determined by the difference between

the time-integrated prompt flux φ̂p and the fundamental k-mode φ0,k at each detector

position, but also on the detector’s energy response function. However, if detectors

are located at the same region in the subcritical reactor, e.g., detectors F and I both

in the fuel region, their neutron spectra are similar. Figure 7.3 shows the energy

distributions of the detector responses 〈Σd, φ0,k〉E tallied with 33 energy groups by

the MCNP5 simulation for detector F in the fuel, detector N in the reflector and de-

tector A in the shield region, respectively. For detectors in the fuel region, although

the 235U detector has large reaction cross sections at the low energy range, most of

the neutrons detected in the fuel region are still high-energy neutrons. For instance,

the detector response at detector F peaks at the very high energy range from 0.01

MeV to 10 MeV. The peak of the 235U detector response is broadened and shifted to

the low energy end for detectors moved out in the reflector and in shield region.

Thus, for detectors in the fuel region, the spatial distribution of fp is determined

by the relative difference between the neutron fluxes φ̂p and φ0,k at the high energy

region. To evaluate fp obtained for detector F and I, we compare φ̂p with φ0,k at

these two positions within each energy group, as shown in Figure 7.4. Indeed, for

both detectors, detector responses peak at the high energy range [0.01, 10] MeV,

with φ̂p relatively higher than φ0,k at position F, but lower at position I. As a result,

fp is larger than 1.0 at detector position F and smaller than 1.0 at detector position
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Figure 7.3: 235U detector responses at different positions in the MUSE-4 SC0 subcritical configu-
ration.

I. In addition, as shown in Figure 7.4, thermal neutrons have little contributions to

the detector responses at those two positions. Therefore, although large standard

deviations are obtained in the thermal energy groups, they are not important in the

overall spatial correction factor calculations.

Furthermore, due to the equality in Equation 4.38 which imposes on the fuel

region only, the relative value of φ̂p to φ0,k is determined by their difference in the fuel

region only. Because the neutron flux φ̂p is larger than φ0,k at positions close to the

external source, e.g., detector I, to satisfy the equality in Equation 4.38, there must

exist a region, e.g., detector F, away from the external source, where φ̂p is relatively

smaller than φ0,k to yield fp > 1.0, as shown in Figure 7.4(b). Therefore, with the

prompt spatial correction factor fp, we also physically explained why the area-ratio

method will always overestimate the subcriticality at detector I, and underestimate

the subcriticality at detector F in the MUSE-4 pulsed neutron experiments. The real
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(a) Detector I

(b) Detector F

Figure 7.4: Comparison of the time-integrated prompt flux with the fundamental k-mode of the
MUSE-4 SC0 subcritical configuration at (a) detector I and (b) detector F.
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reactivity of the subcritical reactor is then bracketed by the measurements performed

at these two positions.

When external or fission neutrons propagate into the reflector and shield regions,

they slow down by interacting with nuclei there. As a result, the neutron spectrum

becomes softer, and the peak of the 235U detector response function is broadened and

shifted to the low energy end as shown in Figure 7.3. Thus fp is mostly determined

by the difference between φ̂p and φ0,k in the thermal energy range. Similar to the

analysis for detectors F and I, we also compare φ̂p and φ0,k at detector N in Figure 7.5.

Here, φ̂p is still larger than φ0,k at the high-energy groups with neutron energy larger

than 0.1 MeV for detector N. However, the agreement between φ̂p and φ0,k gradually

becomes better in the epithermal energy groups with neutron energy around 1 keV.

Due to the wide energy range of the detector response at position N as shown in

Figure 7.3, the large differences in the high-energy groups become less important to

the integration of the detector response over the entire energy domain. Therefore, fp

at detector position N is closer to 1.0 than fp at detector F. The reactivities obtained

from detectors in the shield and reflector regions are better estimations of the real

reactivity than from the core detectors.

As the spatial correction factor fp is also dependent on the detector’s energy

response function, with different types of neutron detector, the spatial dependence

of the reactivity obtained from the area-ratio method may be different. This effect

is often referred to as the “spectral effect”. Specifically, we also calculate fp for

the MUSE-4 SC0 from our Monte Carlo simulations by replacing the 235U detectors

with the 237Np detectors. Figure 7.6 compares fp obtained for the 237Np and 235U

detectors located diagonally across the reactor. It predicts that replacing the 235U

detector with the 237Np detector would not necessarily reduce the spatial effects in
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Figure 7.5: Comparison of the time-integrated prompt flux with the fundamental k-mode at detec-
tor N for the MUSE-4 SC0 subcritical configuration.

area-ratio method for the MUSE-4 pulsed-neutron experiment. In fact, the spatial

corrections might be even larger at some positions, e.g., at detector positions F and

N, with 237Np detectors.

In summary, from our analysis of the spatial effects in the MUSE-4 area-ratio

experimental data, we can conclude that the area-ratio method always overestimates

the subcriticality of the reactor in fuel regions close to the external source, and

underestimates it in fuel regions away from the external source. The real reactivity

of the subcritical reactor can be bracketed by the reactivities measured at such two

positions. The reactivity obtained at detectors in the reflector or shield regions away

from the external source are less spatially dependent and are often better estimations

of the real reactivity than in the fuel region. In addition, our analysis also shows

that the 237Np detector might not help reduce the spatial effects in the area-ratio

method.
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Figure 7.6: The comparison of spatial correction factors for 237Np detectors and 235U detectors
diagonally crossing the MUSE-4 SC0 reactor.

7.3 The α-method of the MUSE-4 experiment

For the MUSE-4 pulsed-neutron experiments, the α-method was also applied to

the experimental data. Figure 7.7(a) shows the detector responses recorded by de-

tectors F, N and A in the core, reflector and shield regions for the MUSE-4 SC0

subcritical configuration, respectively. The delayed neutron background has already

been subtracted from the detector responses. The decay constant α is obtained by

applying an exponential fitting technique via a rolling window with a 20 μs interval.

Figure 7.7(b) shows that the decay constant α varies continuously. From t = 60 μs to

t = 200 μs, it decreases about 20% for detector F, and is almost halved for detectors

N and A. In addition, the fitted α for the core detector F differs significantly from

the fitted values for detectors N and A, with the values for detectors N and A only

about half of that for detector F.
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(a) Detector responses.

(b) Decay constants.

Figure 7.7: The experimental data for detector F, N and A in the pulsed-neutron experiments of
the MUSE-4 SC0 subcritical reactor with delayed neutron background subtracted: (a)
detector responses, (b) decay constants.
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7.3.1 Numerical simulations of the MUSE-4 experiment for the α method

To analyze the spatial effects in the α-method, we rely primarily on dynamic

simulations of the MUSE-4 pulsed-neutron experiment. For the MUSE-4 SC0 sub-

critical reactor, we use the MCNP model and the ERANOS 3-D diffusion model to

simulate the detector responses at detector positions F, N and A, respectively. The

235U fission chambers are simulated in the Monte Carlo model. Figure 7.8 shows that

both the MCNP5 model and the deterministic ERANOS 3-D model can simulate the

decay of the detector responses, e.g., detector F, for the first 200μs in the fuel region

very well. However, for detectors N and A located at the reflector and shield regions,

both the MCNP5 simulations and the ERANOS simulations start to deviate from

the experimental data at about 100 μs after the neutron pulse is turned off.

Similar disagreements between the numerical simulations and the experimental

data were also reported in other numerical simulations performed by Villamarin [15]

and Carta [16]. In their Monte Carlo simulations, they decomposed the detector

responses into six energy groups and found that at about 100 μs after the neutron

pulse is turned off , neutrons detected in the reflector and shield regions are mainly

thermal neutrons with neutron energy < 1 eV. However, due to the large absorption

cross section of the MOX fuel (239Pu), the thermal neutron population is low in

the fuel region, and most of neutrons detected in the fuel region are fast neutrons.

Therefore, the disagreements between the numerical simulations and the experiments

mainly originate from the error in numerical simulations of thermal neutrons, and

there are many possible sources of error. Because the reflector and shield regions

consist mostly of iron, a sensitivity analysis involving a decrease of the 56Fe capture

cross sections was performed to identity the source of error, but the discussion related

to this topic is out of the scope of this thesis. Nonetheless, as shown in Figure
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(a) Core detector F.

(b) Reflector detector N.

Figure 7.8: The simulated detector responses in the MUSE-4 SC0 reactor with delayed neutrons
ignored: (a) core detector F, (b) reflector detector N.
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7.8, the ERANOS deterministic simulation agrees with the Monte Carlo simulation

reasonably well at all three positions. Thus, we will use the ERANOS deterministic

model in the rest of our analysis.

7.3.2 The modified α-method

Unlike the thermal reactor we analyzed in Chapter VI, where the fitted α from the

simulated detector responses are spatially coherent, the spatial effects in the MUSE-

4 experiment are much more complicated for the α-method. Namely, the fitted α

continuously varies over the spatial and time domains as shown in Figure 7.7(b).

Consequently, the fundamental decay constant α can not be properly retrieved from

the experimental data. For this type of problem, as we discussed in Section 4.2.2,

the modified α-method provides a good way of obtaining a spatially-independent

reactivity of the system. Thus, we first use the modified α-method to estimate the

reactivity for the MUSE-4 SC0 subcritical reactor.

The time-dependent shape function is obtained from the ERANOS 3-D numerical

simulation. The kinetics parameter Λ(t) and β(t) can also be obtained from the

numerical simulations. As shown in Figure 7.9, β(t) is almost a constant during the

source transient. However, the mean generation time Λ(t) varies significantly over

the transient. With the experimental data measured at each detector position, the

amplitude function can then be obtained based on Equation 4.62. By integrating over

the interval [20 , 60] μs, the reactivity of the MUSE-4 SC0 subcritical reactor is then

obtained through the modified α-method and is almost spatially coherent as shown

in Table 7.4, where β = 0.00334 is the measured value in the MUSE-4 reference

reactor. Compared with the average value of the reactivity obtained from the area-

ratio method after the spatial corrections, the modified α-method underestimates

the overall subcriticality about 2 $ everywhere in the reactor. This is due to the
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Table 7.4: The calculated ρ0 of the MUSE-4 SC0 subcritical reactor from the modified α-method.

Detector F I L H M

ρ ($) -10.5 -10.5 -10.6 -9.75 -10.4

Detector N G A B Area-ratio

ρ ($) -10.1 -10.1 -10.6 -10.7 -12.3

modeling error of the ERANOS numerical model. Particularly, the 3-D ERANOS

diffusion calculation gives keff = 0.964 and ρ = −11.1$, which underestimates the

subcriticality of the reactor by about 1.2$. As we discussed in Section 4.2.2, the

systematic error in the numerical model then directly affects the accuracy of the

reactivity obtained from the modified α-method, as we have shown in Table 7.4.

Figure 7.9: The 3-D ERANOS simulations of the mean generation time Λ(t) and the effective
delayed-neutron fraction β(t) in the the MUSE-4 SC0 reactor with delayed neutrons
included.

7.3.3 Modal analysis of the α-method

For the α-method, if a spatially independent decay constant can be obtained

from the experimental data, the traditional α-method can then be used directly to

obtain the reactivities of the system, with the mean generation time calibrated by the
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numerical simulations. In addition, as also discussed in Section 4.2, if the high-order

prompt-neutron harmonics all decay away within a short period of time, the fitted

α would be a spatially-independent constant, which equals the fundamental prompt

α-eigenvalue α0. Thus, in this section, we will try to obtain α0 for the MUSE-4 SC0

reactor numerically.

To simplify the problem, we set up a 2-D deterministic model instead of the 3-D

full scale model of the MUSE-4 reactor. The 2-D numerical model only represents the

X-Y midplane of the 3-D model as shown in Figure 7.1. By adjusting the geometric

buckling in the z-direction, the multiplication factor is tuned to be 0.9643, which

is very close to keff = 0.9641 of the 3-D ERANOS model. The detector responses

corresponding to the core detector F, reflector detector N and shield detector A are

also simulated by the ERANOS code package. As shown in Figure 7.10, the 2-D

simulations agree reasonably well with the 3-D simulations up to the first 200 μs

after the neutron pulse is turned off.

With a rolling window and a fixed fitting width, the decay constants can also

be obtained from the 2-D ERANOS simulations at detector position F, N and A,

as shown in Figure 7.11. For detector F, the fitted α for this 2-D numerical model

varies similarly to the fitted α obtained from the experimental data over the space

and time domains as illustrated in Figure 7.7(b). The fitted values are, however,

different for detectors N and A because of the differences between the numerical

simulations and the experimental data as illustrated in Figure 7.8(b). Nonetheless,

the fitted α for this 2-D numerical model also varies continuously over the space and

time domain. Therefore, we will calculate the fundamental prompt α-eigenvalue for

this 2-D numerical model.

According to Equation 4.57, the decay constant can be expressed as a modal
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Figure 7.10: The 2-D ERANOS simulations of detector responses for core detector F and reflector
detector N in the MUSE-4 SC0 reactor with delayed neutrons ignored.

expansion

α(rD, t) =
∂ ln R(rD, t)

∂t
=

∂

∂t
ln

[
M∑
m

Am(ΔT ) 〈Σd, φm,p〉E eαm(t−ΔT )

]
, (7.3)

where α(rD, t) is a space- and time-dependent function if the high-order modal terms

are not negligible, and α0 is then the asymptotic value of α(rD, t) at any position

which could be measured from pulsed-neutron experiments. In addition, α0 also cor-

responds to the decay rate of the slowest decay component in the detector response

R, and is the fundamental prompt α-eigenvalue of the subcritical reactor. The fun-

damental mode φ0,p describes the distribution of the slowest decaying component in

the detector responses.

Thus, for our 2-D numerical model, as shown in Figure 7.11, the fitted α does not

reach the asymptotic value of α0 after the detector responses have decreased by more

than six orders of magnitude, which indicates that the high-order modal terms still



123

Figure 7.11: The fitted decay constants α of the simulated 235U detector responses for detector F,
N and A in the ERANOS 2-D numerical model of the MUSE-4 subcritical SC0 reactor.

make important contributions to the detector responses. With the prompt α-modes

calculated via IRAM, we compare the modal expansion of the detector response R

with the ERANOS simulation. The modal expansions are calculated through Equa-

tion 4.51, with the fundamental modal term only, i.e., M = 0, or with the first 16

modal terms, i.e., M = 15. The disagreement between the modal-expansion fluxes

and the ERANOS simulation is very similar at other detector positions. Figure 7.12

only shows the comparison at detector F. Specifically, the detector response corre-

sponding to the fundamental mode is much smaller than the ERANOS simulation

within the first 300 μs, which indicates that the fundamental modal term has little

contributions to the detector responses in the prompt-neutron decay region. The

majority of the prompt neutrons in the reactor decay away with a decay rate faster

than α0.

Theoretically, the fundamental prompt α-mode describes the distribution of the
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Figure 7.12: Comparison of the ERANOS simulated 235U with the modal expansions (M = 0) and
(M = 15) of the detector responses at detector F in the 2-D numerical model of the
MUSE-4 SC0 subcritical reactor.

slowest decaying component in detector responses. As shown in Figure 7.13, for

our 2-D numerical model, the slowest decaying component in the detector response

peaks in the lead buffer and the beam pipe regions, and has very small values in other

regions. In addition, we also calculate the first few high-order prompt α-eigenvalues,

e.g., α1 = −11052 s−1 and α2 = −12788 s−1. The detector response maps for the

high-order modes are very similar to the fundamental-mode response shown in Figure

7.13. Particularly, the detector responses also peak in the lead buffer and beam pipe

regions with relatively small values in other regions. For clear illustrations, we only

plot the detector responses 〈Σd, φm,p〉E for the first three prompt-modes at y = 0

and at x = 0, respectively, in Figure 7.14. We note that the high-order modes only

represent the detailed spatial variations of the detector responses in the lead buffer

and beam pipe regions.

In fact, the fundamental eigenvalue α0 obtained from IRAM calculation for this
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Figure 7.13: The calculated detector response 〈Σd, φ0,p〉E corresponding to the prompt α-mode for
the 2-D numerical model of the MUSE-4 SC0 subcritical reactor.

2-D numerical model is about -10436 s−1, which is much smaller in magnitude than

the largest decay constant in Figure 7.11. In addition, the expansion coefficient

Am(0) corresponding to each modal term at the beginning of the pulse can also be

calculated based on Equation 4.21 as

Am(0) =

〈
φ+

0,p, Q0

〉
r,E〈

φ+
0,p, 1/vφ0,p

〉
r,E

=

〈
φ+

0,p, Q0

〉
r,E∑

g

〈
φ+

0,p, 1/vφ0,p

〉
r,g

. (7.4)

In the pulsed-neutron experiment, the external neutron source is always injected from

the high-energy groups. Thus, we calculate the numerator of A0(0) corresponding

to each energy group normalized by its denominator. As shown in the second to

fourth column of Table 7.5, the denominator of Am(0) is mainly determined by its

thermal component. Besides, we also calculate the first three modal terms at the

beginning of the pulse as listed in Table 7.6. Compared with the fundamental modal

term, the high-order modal terms are not small, and make significant contributions
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(a) At y = 0.

(b) At x = 0

Figure 7.14: The calculated detector response corresponding to the prompt α-modes for the 2-D
numerical model of the MUSE-4 SC0 subcritical reactor: (a) along x-direction at y = 0,
(b) along y-direction at x = 0.
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Table 7.5: The denominator of the modal expansion coefficient Am(0) at each energy group for the
2-D numerical model of the MUSE-4 SC0 subcritical reactor.

Upper energy bound Without Cadmium With Cadmium

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

14 MeV 1.0E-05 -3.95E-05 5.08E-06 7.44E-06 -5.41E-06 2.08E-06

1 keV 5.02E-05 1.00E-06 2.46E-05 3.92E-05 -5.47E-04 1.54E-04

1 eV 2.17E+00 2.45E-01 3.00E+00 2.42E-05 -5.39E-03 1.67E-03

Sum 2.17E+00 2.45E-01 3.00E+00 7.08E-05 -5.94E-03 1.82E-03

Table 7.6: The modal expansion coefficient Am(0) 〈Σd, φm,p〉g at detector position F for the 2-D
numerical model of the MUSE-4 SC0 subcritical reactor.

Upper energy bound Without Cadmium With Cadmium

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

14 MeV 2.07E+11 -3.60E+10 9.49E+10 5.12E+15 -3.31E+11 2.18E+13

1 keV 2.60E+10 -3.38E+09 9.10E+09 6.47E+14 1.04E+10 2.98E+12

1 eV 6.21E+08 -1.20E+09 7.45E+09 1.46E+13 4.32E+09 1.82E+12

Sum 2.29E+11 -4.06E+10 1.11E+11 5.78E+15 -3.17E+11 2.66E+13

to the overall detector responses. Thus, a very large number of modal terms would

be required to accurately approximate the time-dependent detector responses in the

first few hundred μs after the neutron pulse is turned off.

Physically, this can also be explained by the fact that the materials in the lead

buffer and in the beam pipe regions have very small neutron absorption cross sections

for thermal neutrons, i.e., 10 times smaller than those in the shield region. Therefore,

thermal neutrons that propagate into the lead buffer and beam pipe regions stay

alive relatively longer than in other regions. These long-lived neutrons in the lead

buffer and beam pipe regions can return to the subcritical fuel regions, and lead to

an extremely slow neutron decay in the detector responses. Because the MUSE-4

SC0 subcritical reactor is a fast reactor, and the lead buffer and the beam pipe are

also small regions in the reactor. Therefore, the number of these long-lived thermal

neutrons is very small, and their contributions to the detector responses are then
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small in the first 300 μs as demonstrated in Figure 7.12.

Overall, the fundamental decay constant α0 of a subcritical reactor is determined

by the slowest neutron propagation process in the reactor. Usually, it takes much a

longer time for thermal neutrons to stabilize than for fast neutrons after the external

source is turned off. For the MUSE-4 subcritical reactor, the long-lived thermal

neutrons in the beam pipe and lead buffer regions control the final decay rate of

detector responses. Before reaching the asymptotic decay rate, the neutron flux

distribution varies continuously over time and space, and so does the decay constant.

The asymptotic decay constant is not observable in the MUSE-4 pulsed-neutron

experiments because the neutron detectors have limited efficiency and the detector

responses decay out before the neutron flux distribution reaches its asymptotic shape.

The asymptotic decay constant α0 cannot represent the majority of the prompt-

neutrons decay in this 2-D numerical model.

To search a decay constant α, which is the decay rate of the majority of the

prompt-neutrons in the reactor, one straightforward way is to terminate the long-

lived thermal neutrons in the lead buffer and beam pipe regions, because the fraction

of them is small in the MUSE-4 subcritical reactor. To eliminate the contamination

of the slow decaying components in the detector responses, in an alternate 2-D nu-

merical model, we assume that the accelerator beam pipe and the lead buffer are

wrapped around by a 1 mm-thick cadmium layer. Therefore, thermal neutrons are

absorbed by the cadmium layer while traveling from the fuel to the buffer and the

beam pipe regions or from those regions back to the fuel region [53].

With the thin cadmium layer present in our 2-D numerical model, we obtain

keff = 0.961, which is only about 0.3% less than that for the original 2-D model.

However, the cadmium layer has a significant impact on the dynamic behavior of the
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subcritical reactor. The magnitude of the fundamental prompt α-eigenvalue increases

significantly, i.e., α0 = −49121 s−1, which is about four times larger than its original

value. The neutron flux distribution is then expected to achieve an asymptotic shape

much faster than that in the original 2-D model. To validate this conclusion, we also

use the ERANOS code package to perform the numerical simulations of a neutron

pulse injected into the 2-D subcritical reactor with the cadmium layer. The decay

constants are then obtained by applying an exponential fitting on the simulated

detector responses at detector positions F, N and A, respectively. As shown in

Figure 7.15, the fitted α is similar to the fitted α of the original 2-D model in the

first 100 μs. In Figure 7.11, the fitted α varies continuously over the next 200 μs.

However, for the 2-D model with the cadmium layer, the fitted α converges to α0,

which is calculated via IRAM, as shown in Figure 7.15.

Figure 7.15: The fitted decay constants α of the simulated 235U detector responses for detectors F,
N and A in the ERANOS 2-D numerical model of the MUSE-4 SC0 subcritical reactor
with a 1mm-thick cadmium layer.

For this 2-D model with the cadmium layer, the fast convergence of the neutron
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flux distribution to the fundamental prompt α-mode can also be demonstrated by

comparing the ERANOS simulation with the modal expansions as shown in Figure

7.16. The ERANOS 2-D time-dependent simulations agree reasonably well with its

fundamental modal term after about 100 μs, and decay nearly exponentially till 400

μs.

Figure 7.16: Comparison of the ERANOS simulated 235U detector response with its fundamental
modal expansion (M = 0) at detector F in the 2-D numerical model of the MUSE-4
SC0 subcritical reactor with the cadmium layer.

In addition, compared with Figure 7.12, Figure 7.16 also shows that with a cad-

mium layer included, the fundamental modal term has a very large contribution

to the total detector response in the prompt neutron decay region. As shown in

Table 7.5, the corresponding fundamental modal expansion coefficient is also much

larger than the coefficient for the 2-D model without the cadmium layer, indicating

that the fundamental prompt α-eigenvalue characterizes the exponential decay rate

of the majority of the prompt neutrons in the subcritical reactor. In addition, as

shown in Table 7.6, with the cadmium layer included, the high-order modal terms
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are relatively much smaller compared with the fundamental modal term. Thus, the

fundamental modal term dominates the neutron flux quickly in this 2-D numerical

model. Moreover, as shown in Figure 7.16, the cadmium layer has little impact on

the detector responses in the first 200 μs. Therefore, the calculated α0 from this 2-D

numerical model with the cadmium layer included also describes the decay rate of

most of the prompt neutrons in the 2-D numerical model without the cadmium layer.

Furthermore, at detector F, because the 2-D ERANOS simulation agrees with the

experimental data well in the first 200 μs as shown in Figures 7.10 and 7.8(a), the

calculated α0 will also describe the exponential decay of most of the prompt neutrons

in the actual MUSE-4 SC0 reactor. The corresponding fundamental prompt α-mode

then describes the distribution of the corresponding component in the detector re-

sponses as shown in Figure 7.17. Compared with Figure 7.13, the detector responses

peaks in the reflector region. In other words, the decay constant is then determined

by the thermal neutrons decay in the reflector region. This result is also consistent

with Villamarin’s Monte Carlo simulations [15].

7.3.4 Mean generation time variations

Finally, in order to obtain the reactivity from the α-method, we also want to

examine the variation of the mean generation time Λ when the MUSE-4 reactor is

made to be subcritical from the reference configuration. In the 2-D numerical model

with the cadmium layer, for the close-to-critical configuration with no control rod

inserted into the reactor, we obtain keff = 0.9994 and Λ = 0.454 μs. While at the

subcritical configuration with keff = 0.961, we obtain Λ = 0.711 μs, which is about

50% larger than Λ calculated at the close-to-critical configuration. Thus, with the

calculated α0 from the 2-D numerical model, and the measured Λm
ref = 0.586 μs and
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Figure 7.17: The calculated detector response 〈Σd, φ0,p〉E corresponding to the prompt α-mode of
the ERANOS 2-D numerical model of the MUSE-4 SC0 subcritical reactor with the
cadmium layer.

β = 0.00334, the reactivity of the subcritical reactor can be calculated as

ρ = α0Λ
m
reffΛ + β

= −49121 × 0.586 × 10−6 ∗
(

0.711

0.454

)
+ 0.00334

= −0.04182 = −12.5 $, (7.5)

which agrees well with the reactivity obtained from the area-ratio method.

In addition, as indicated in Figure 7.9, the quasi-static mean generation time

Λ(t) varies significantly in a pulsed-neutron experiment. Similar to the detector

responses R, Λ(t) can also be expressed in terms of the modal expansions. In the

prompt neutron decay region, by ignoring the delayed neutrons, the total neutron

flux is then expanded with the prompt α-modes, and Λ(t) can then be written as

Λ(t) =

〈
φ+

0,k, v
−1ψ
〉
r,E〈

φ+
0,k, χFψ

〉
r,E

=

〈
φ+

0,k, v
−1 [T (t)ψ]

〉
r,E〈

φ+
0,k, χF [T (t)ψ]

〉
r,E

=

〈
φ+

0,k, v
−1φp

〉
r,E〈

φ+
0,k, χFφp

〉
r,E

=

∑
m Am(t)

〈
φ+

0,k, v
−1φm,p

〉
r,E∑

m Am(t)
〈
φ+

0,k, χFφm,p

〉
r,E

, (7.6)



133

which shows that Λ(t) varies in the time domain due to the presence of the high-order

harmonics. With the prompt α-modes calculated via IRAM, we also obtain ΛM(t)

with the first few prompt α-modes included:

ΛM(t) =

m=M∑
m=0

Am(t)
〈
φ+

0,k, v
−1φm,p

〉
r,E

m=M∑
m=0

Am(t)
〈
φ+

0,k, χFφm,p

〉
r,E

, (7.7)

where M is the modal expansion order in Equation 4.48. Thus, according to Equation

7.7, Λ0 is a constant, and is the static mean generation time Λ̄0 we defined previously

in Equation 4.55. For our 2-D model with the thin cadmium layer, Figure 7.18 shows

that the calculated ΛM varies with time and reach the asymptotic value Λ̄0 when

all the high-order harmonics decay away. However, we notice that the magnitude

variations of ΛM is very small in the first 100 μs compared with the quasi-static Λ(t)

illustrated in Figure 7.9. This is because a large number of high-order modes make

significant contributions to ΛM right after the neutron pulse is turned off. As shown

in Figure 7.18, with more modes included, ΛM should be better approximations to

Λ(t).

7.4 Comparison of the k-mode with the α-mode in a fast subcritical
system

The prompt α-modes and k-modes are extensively utilized in our analysis of the

spatial effects in the pulsed neutron experiments. The delayed α-modes are approx-

imated by the corresponding k-modes in our modal analysis. With a little amount

of additional work, we will compare the calculated fundamental k-mode and the

fundamental α-modes in the MUSE-4 SC0 subcritical reactor. Specifically, we use

the 2-D numerical model with the cadmium layer. The fundamental k-mode and

the α-modes are calculated via IRAM, with the BICGSTAB method as the inner
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Figure 7.18: The calculated mean generation time ΛN with modal expansion order M = 0, 3, 7
respectively for the 2-D numerical model of the MUSE-4 SC0 subcritical reactor with
the cadmium layer.

iteration solver and the relaxation parameter ω = 1.4 for the SSOR preconditioner.

The flux distributions are compared in Figure 7.19 at three different detector

positions F, N and A in the fuel, reflector and shield regions, respectively. For

the sake of clearly illustrating the flux distributions, the normalized fluxes in the

shield and in the fuel regions are reduced by factors of 100 and 1000, respectively.

Figure 7.19(a) indicates that the prompt α-mode possesses a much softer neutron

spectrum than the k-mode at all three positions. In contrast to the large differences

between the prompt α-mode and the k-mode, the fundamental k-mode closely agrees

with the delayed α-mode everywhere in the subcritical reactor, as shown in Figure

7.19(b). Therefore, it also verifies that the fundamental k-mode is indeed a good

approximation for the delayed α-mode.
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(a)

(b)

Figure 7.19: Comparison of flux distributions at fuel, reflector and shield regions in the MUSE-4
subcritical system with the cadmium layer: (a) fundamental k-mode compared with
prompt α-mode (b) fundamental k-mode compared with delayed α-mode. Fuel and
shield fluxes are reduced by factors of 100 and 1000, respectively.



CHAPTER VIII

Summary and Conclusions

8.1 Summary of the thesis

In this thesis, we have studied the spatial effects in pulsed-neutron experiments.

Both the area-ratio method and the α-method are traditional methods to measure

the reactivity of a subcritical reactor with pulsed-neutron experimental data, and

their spatial effects are examined carefully in this thesis.

The area-ratio method is originally derived based on a true “point” reactor. It

states that the reactivity in dollars of a subcritical reactor is equal to the negative

ratio of the prompt neutron area Ap and the delayed neutron area Ad. For a close-

to-critical reactor, which can often be treated as a point reactor, the method can

be derived directly from the point kinetics equations. For a subcritical reactor away

from its critical status, the reactivity obtained from the area-ratio method varies

at different neutron detector locations. Traditional kinetics distortion factor was

used to correct the spatial effects in the area-ratio method. However, it can only

compensate for the spatial effects induced by the fundamental prompt mode. The

modified area-ratio method, which requires direct numerical simulations of the time-

dependent neutron fluxes subjected to thousands of neutron pulses, is difficult to

apply in actual experiments.

136
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The static approach suggested by Bell offers a direct way to obtain a spatial

correction factor f . In this thesis, we derived f explicitly and named it as Bell’s

spatial correction factor. In addition, we have also demonstrated that f is very

efficient in compensating for the spatial effects in the area-ratio method with FX2-

TH simulations. However, the application of Bell’s spatial correction factor f is

limited because it cannot be used to explain the spatial dependence in the area-ratio

method.

To obtain physical explanations of the spatial dependence in the area-ratio method,

we have performed a complete modal analysis to identify the spatial effects induced

by the prompt-neutron harmonics and the delayed-neutron harmonics, separately.

Two spatial correction factors fp and fd are derived through our modal analysis.

With FX2-TH simulations, we have demonstrated that a significant part of fp comes

from the difference between the high-order prompt α-modes and the fundamental k-

mode, and the spatial effects induced by the high-order delayed-neutron harmonics

are small.

As a good approximation to f , the correction factor fp is simply obtained as the

ratio of the fundamental k-mode flux φ0,k and the time-integrated prompt flux φ̂p,

with the proper normalization applied. With this spatial correction factor, we can

then provide physically intuitive explanations of the spatial dependence in the area-

ratio method. Specifically, due to the different spatial distributions of φ̂p and φ0,k in

a subcritical reactor, the area-ratio method always overestimates the subcriticality

at detector positions close to the external source, and underestimates the subcriti-

cality at detector positions away from the source but in the fuel region. The true

reactivity of the subcritical reactor can be bracketed by these two measured values.

In addition, for the MUSE-4 experiments, we have performed Monte Carlo simula-
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tions to calculate fp for the MUSE-4 SC0 subcritical reactor, and verified that fp

compensates well for the spatial effects in the experimental data.

Additionally, in this thesis, a full modal analysis is also performed for the ex-

trapolated area-ratio method, where we also introduce two spatial correction factors

fp,e and fd,e to account the spatial effects induced by prompt-neutron harmonics

and delayed-neutron harmonics, respectively. The spatial effects in the extrapolated

area-ratio method are mainly subject to the traditional kinetics distortion, i.e., the

difference between the fundamental prompt α-mode and the fundamental k-mode.

Therefore, the spatial correction for the extrapolated area-ratio method is large in

regions where the kinetics distortions are significant, i.e., in the reflector or shield

regions where materials have small neutron absorption cross sections, and is small in

the fuel region where usually neutrons are easily absorbed.

The α-method is another way of obtaining the reactivity from pulsed-neutron ex-

periments. The reactivity can be calculated directly with the fundamental neutron

decay constant α0 and the prior knowledge of the kinetics parameters, i.e., the mean

generation time Λ and the effective delayed-neutron fraction βeff of the subcritical

reactor. Usually, α0 is obtained by an exponential fitting of the experimental data for

prompt neutrons after all high-order prompt-neutron harmonics decay away. How-

ever, for some subcritical systems, the fundamental mode is not well separated from

the high-order harmonics in the experimental data, e.g., the MUSE-4 experiment.

The decay constant obtained from the experimental data is then space- and time-

dependent. In this situation, the modified α-method can be used to eliminate the

spatial effects in the experimental data. For the MUSE-4 experiment, the modified

α-method gives an almost uniform reactivity everywhere in the reactor. However, it

also underestimates the subcriticality by about 2 $ due to errors in the numerical
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model.

In a subcritical reactor, α0 is determined by the decay rate of the slowest decay

component in the detector responses, and the fundamental prompt α-mode describes

its distribution in the space and energy domains. For the MUSE-4 experiment, we

calculated the fundamental prompt α-mode for a 2-D model of the MUSE-4 SC0

subcritical reactor, and found that the slowest decay component in the detector

responses peaks in the lead buffer and the accelerator beam pipe regions, due to the

small thermal-neutron absorption cross sections in those regions. This slowest decay

component is small, and most of prompt-neutrons in the reactor decays away with

a rate much faster than α0. To obtain the decay constant for most of the prompt-

neutron in the reactor, we modeled a thin cadmium layer to wrap the buffer and

the beam pipe in our numerical experiments. For this numerical model with the

cadmium layer, the fundamental decay constant α0 then represents the decay rate of

the majority of the prompt neutrons after the neutron pulse is turned off.

Another difficulty of applying the α-method is to measure or calculate the kinetic

parameters Λ and βeff . In actual pulsed-neutron experiments, they are usually

measured in a reference reactor which is close-to-critical. Our FX2-TH simulation

shows that the mean generation time Λ increases significantly as the subcriticality

increases. In order to obtain an accurate estimation of the reactivity, we proposed

to calibrate the measured Λ with a correction factor fΛ obtained from numerical

calculations. For the 2-D numerical model with the cadmium layer, we showed that

Λ of the MUSE-4 SC0 subcritical reactor differs from Λ of the close-to-critical reactor

by more than 50%. With the decay constant α0 obtained for most of the prompt

neutrons in the reactor, and the calibrated Λ, the α-method yields reactivity of the

MUSE-4 SC0 subcritical reactor -12.5 $, which agrees well with the avearage value
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obtained from the area-ratio method after the spatial corrections.

The prompt α-modes and k-modes have been used extensively in our analysis of

the spatial effects. Traditionally, the power iteration method is usually applied to

calculate the fundamental and high-order k-modes. However, it is not efficient for

high-order modes calculations. In this thesis, we have developed a code, which is

combined with the ARPACK software, to successfully calculate the fundamental and

high-order k- and α-modes of a 2-D diffusion problem with X-Y geometry. We have

also implemented the BICGSTAB method together with the SSOR preconditioner

in the code to solve the corresponding fixed-source equations for both the k- and the

α-eignevalue problems. With the code we developed, we also demonstrated that in

the MUSE-4 SC0 subcritical reactor, the fundamental prompt α-mode differs from

the fundamental k-mode significantly at the low energy groups and in the shield and

reflector regions, but the delayed α-mode agrees with the fundamental k-mode very

well everywhere and at all energy groups.

Overall, in this thesis, we placed an emphasis on both accurate numerical analysis

and developing physical insights into spatial effects in the pulsed-neutron techniques

for reactivity measurements. We performed a complete modal analysis for the area-

ratio method and the α-method. The spatial effects induced by the prompt-neutron

harmonics and delayed-neutron harmonics are identified separately, and are first

evaluated in this thesis with the fundamental and high-order prompt-neutron har-

monics calculated by the Krylov subspace method. Meanwhile, with the capability

of calculating the prompt-neutron harmonics, we also calibrated the measured mean

generation time for a subcritical reactor in the α-method. Most importantly, we pro-

posed a new spatial correction factor fp for the area-ratio experiment, which is easy

to calculate and can give physically intuitive explanations of the spatial dependence



141

in the area-ratio method. The spatial effects in the MUSE-4 area-ratio experimental

data are well compensated for by this spatial correction factor fp.

8.2 Future work

In our study, IRAM is implemented with the 2-D diffusion code. However, there

is no limitation to calculate the eigenvalues for a more complicated problem. The

implementation for a full scale 3-D transport problem no doubt will help describe

the subcritical reactor more accurately and requires more computational skills. In

addition, as demonstrated in Chapter V, the inner iterative solvers with the precon-

ditioner techniques which have been proposed in recent years, e.g., GMRES(m) and

BICGSTAB, are superior to the traditional SOR method for many cases. Further

investigations of those numerical methods in the nuclear engineering field will be

another interesting topic.

In practical applications, pulsed-neutron experiments are only one of the methods

to measure the reactivity of a subcritical reactor. The validity of other methods,

e.g., the source-jerk method, the Rossi-α method and the Feynman-α method, for a

subcritical system with k  0.95 or less also need to be evaluated more carefully.
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APPENDIX A

Iterative algorithms

A.1 The Successive Overrelaxation Method

The SOR method [41] searches for an estimation of xk , such that ‖Axk − b‖ <

ε‖b‖, where A = {aij}, i = 1, · · · I, and j = 1, · · · J :

1. With initial guess x0, obtain r0 = b − Ax0;

2. Do while ‖rk‖ > ε‖b‖:

For i = 1, · · · , I:

x̂ =
1

aii

[
b(i) −

i−1∑
j=1

aijxk(j) −
J∑

j=i+1

aijxk−1(j)

]

δ = x̂ − xk−1(i)

xk(i) = xk−1(i) + ωδ

End For

rk = b − Axk.

3. End do, return xk and rk.
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A.2 The Conjugate Gradient Method

The CG method [41] seeks an estimation of xk, such that ‖Axk−b‖ < ε‖b‖, where

A = {aij}, i = 1, · · · I, and j = 1, · · · J :

1. With initial guess x0, obtain r = b − Ax0, p = r

2. Do while ‖r‖ > ε‖b‖:

ν = rT r

α =
ν

〈p,Ap〉
x = x + α ∗ p

r = r − α ∗ p

β =
rT r

ν

p = r + βp

3. End do, return r and x.
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A.3 The Generalized Minimum RESidual Method

The GMRES(m) method [43] seeks an estimation of xk, such that ‖Axk − b‖ <

ε‖b‖, where A = {aij}, i = 1, · · · I, and j = 1, · · · J :

1. With initial guess x0, obtain r = b − Ax0, β = ‖r‖, and v1 = r/β.

2. Do while ‖r‖ > ε‖b‖:

For i = 1, · · · ,m

ωi = Avi

hij = 〈Avi, vj〉

ωi = ωi − hijvj j = 1, · · · , i

hi+1,i = ‖ωi‖

vj+1 = ωi/hi+1,i

End For

3. Solve the minimal problem ‖βe1 − H̄mym‖2 for ym with the plane rotation

method, and xm = x0 + Vmym.

4. x0 = xm, r = b − Ax0, Go to 2.

5. End do, return xm
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A.4 The BiConjugate-Gradient STABilized Method

The BiCGSTAB method [43] seeks an estimation of xk , such that ‖Axk − b‖ <

ε‖b‖, where A = {aij}, i = 1, · · · I, and j = 1, · · · J :

1. With initial guess x0, obtain r0 = b − Ax0, r∗ = r0, p0 = r0

2. Do while ‖rk‖ > ε‖b‖:

αk =
〈rk, r

∗〉
〈Apk, r∗〉

sk = rk − αk ∗ Apk

ωk =
〈Ask, sk〉
〈Ask,Ask〉

xk+1 = xk + αkpk + ωksk

rk+1 = sk − ωkAsk

βk =

[〈rk+1, r
∗〉

〈rk, r∗〉
] [

αk

ωk

]

pk+1 = rk+1 + βk ∗ (pk − ωkApk)

3. End do, return xk and rk
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APPENDIX B

The Preconditioning Technique

B.1 The Symmetric Successive Overrelaxation Preconditioner

The SSOR preconditioner [41] tries to solve the equation y = M−1x, in which M

is the SSOR M matrix of A = {aij}, given x :

1. With initial guess y0 = 0,

2. For i = 1, · · · , I:

ŷ =
1

aii

[
x(i) −

i−1∑
j=1

aijy(j)

]

y(i) = ωŷ

END For

3. For i = I, · · · , 1:

ŷ =
1

aii

[
y(i) −

I∑
j �=i

aijy(j)

]

δ = ŷ − y(i)

y(i) = y(i) + ωδ

END For

4. return y.
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B.2 The Incomplete LU preconditioner

The incomplete LU-factorization preconditioner at zero fill-ins [41] is realized to

solve the equation y = M−1x, in which M is the ILU(0) M matrix of A = aij, given

x.

To realize the preconditioner, the LU decompositions of A is first performed only

at positions aij �= 0, and the M is stored in matrix A, and then y is obtained by the

forward and backward substitution.

1. For i = 2, · · · , I

For k = 1, · · · , i − 1

If aik �= 0 Then

ai,k = ai,k/ak,k

For j = k + 1, · · · , J

If aij �= 0 Then

ai,j = ai,j − ai,k ∗ ak,j

End If

End For

End If

End For

End For

2. Forward substitution

For i = 1, · · · , I

y(i) = x(i) −
i−1∑
j=1

aijy(j)
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End For

3. Backward substitution For i = I, · · · , 1

y(i) =
1

aii

[
x(i) −

J∑
j=i+1

aijy(j)

]

End For

4. return y.
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APPENDIX C

The numerical model of the RZ reactor in the FX2-TH
simulation

Table C.1: Four-group macroscopic cross sections of the core material for the RZ reactor.

Energy Group 1 2 3 4

Σtr (cm−1) 1.4993E-01 2.9008E-01 4.8085E-01 1.2633E+00

Σrm (cm−1) 7.1226E-02 7.4597E-02 8.6783E-02 1.1085E-01

Σf (cm−1) 2.2711E-03 6.3646E-04 7.8058E-03 6.0643E-02

Σνf (cm−1) 6.3334E-03 1.5563E-03 1.8881E-02 1.4668E-01

Σs,i→i+1 (cm−1) 6.8312E-02 7.2630E-02 6.3705E-02 · · ·
χp 7.5560E-01 2.4382E-01 1.8078E-04 0.0000E-04

χd 7.5560E-01 2.4382E-01 1.8078E-04 0.0000E-04

v(cm/s) 1.9600E+09 4.6400E+08 6.2300E+06 4.2600E+05

Σd (cm−1) 0.0045 0.0069 0.00961 0.8925

Table C.2: Four-group macroscopic cross sections of the reflector material for the RZ reactor.

Energy Group 1 2 3 4

Σtr (cm−1) 3.0269E-01 6.5237E-01 1.2142E+00 2.1988E+00

Σrm (cm−1) 1.1803E-01 1.1650E-01 1.2663E-01 1.4449E-01

Σs,i→i+1 (cm−1) 1.1664E-01 1.1564E-01 1.1187E-01 · · ·

Table C.3: Delayed neutron parameters for the RZ reactor.

Group 1 2 3 4 5 6
β 2.575E-04 1.4853E-03 1.3378E-03 2.9204E-03 9.8550E-04 2.1926E-04
λ .0127 .0318 .1178 .3152 1.4015 3.9056



REFERENCES

151



152

REFERENCES

[1] International Atomic Energy Agency (IAEA), “Latest news related to PRIS
and the status of nuclear power plants” (2008). [Online]. Available:
http://www.iaea.org/programmes/a2/index.html.

[2] J. J. DuDerstadt and L. J. Hamilton, Nuclear reactor analysis, John Willey & Sons (1976).

[3] World Nuclear Association (WNA), “The nuclear fuel cycle” (2008). [Online]. Available:
http://www.world-nuclear.org/info/inf03.html.

[4] National Nuclear Data Center (NNDC), “Chart of nuclides.” [Online]. Available:
http://www.nndc.bnl.gov/chart/.

[5] H. Nifenecker, O. Meplan, and S. David, Accelerator driven subcritical reactors, Institute of
Physics Publishing (2003).

[6] British Geological Survey (BGS), “Mineral profile: Uranium,” Nature Environment Research
Council (2007).

[7] R. C. Ewing and A. Macfarlane, “NUCLEAR WASTE: Yucca mountain,” Science, 296, 659
(2002).

[8] R. C. Ewing, “Nuclear waste forms for actinides,” Proceedings of the National Academy of
Sciences, 96, 3432 (1999).

[9] A. Hedin, “SKB technical report 97-13,” Swedish Nuclear Fuel and Waste Management Co.,
Stockholm (1997).

[10] M. Salvatores, I. Slessarev, and M. Uematsu, “A global physics approach to transmutation of
radioactive nuclei,” Nuclear Science and Engineering, 116, 1 (1994).

[11] D. Hill, G. V. Tuyle, D. Beller, B. Bishop, T. Cotton, P. Finck, B. Halsey, J. Herczeg, J. S.
Herring, D. Lancaster, J. March-Leuba, H. Ludewig, T. Sanders, B. Savage, E. Schweitzer,
C. Smith, L. Stewart, M. Todosow, and C. Walter, “A Roadmap for developing ATW tech-
nology: systems scenarios & integration: report of the ATW roadmap systems scenarios &
integration technical working group,” ANL-99/16 (1999).

[12] A. F. Henry, Nuclear reactor analysis, The MIT Press (1975).

[13] M. Salvatores and et al., “MUSE-1: A first experiment at MASURCA to validate the physics
of sub-critical multiplying systems relevant to ADS.” Second International Conference on
Accelerator-Driven Transmutaion Technologies and Applications (1996).

[14] C. Destouches, M. Fruneau, J. Belmont, J. Do Pinhal, S. Albrand, J. Carreta, P. Chaussonnet,
J. De Conto, A. Fontenille, P. Fougeras, A. Garrigue, M. Guisset, J. Laurens, J. Loiseaux,
D. Marchand, R. Micoud, F. Mellier, E. Perbet, M. Planet, J. Ravel, and J. Richaud, “The
GENEPI accelerator operation feedback at the MASURCA reactor facility,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment Proceedings of the 7th International Conference on Accelerator Applica-
tions - AccApp05, 562, 601 (2006).



153

[15] D. Villamarn, “Anlisis dinmico del reactor experimental de fisinnuclear MUSE-4,” Ph.D. dis-
sertation, Universidad Complutense de Madrid (2004).

[16] M. Carta, A. D’Angelo, V. Peluso, G. Aliberti, G. Imel, V. Kulik, G. Palmiotti, J. Le-
brat, Y. Rugama, C. Destouches, E. Gonzalez-Romero, D. Villamarin, S. Dulla, F. Gabrielli,
P. Ravetto, and M. Salvatores, “Reactivity assessment and spatial time-effects from the MUSE
kinetics experiments,” Proceedings of the PHYSOR 2004: The Physics of Fuel Cycles and Ad-
vanced Nuclear Systems - Global Developments, 657 (2004).

[17] V. V. Kulik and J. C. Lee, “Space-time correction for reactivity determination in source-Driven
subcritical systems,” Nuclear Science and Engineering, 153, 69 (2006).

[18] T. Gozani, “A modified procedure for the evaluation of pulsed source experiments in subcritical
reacotrs,” Nukleonik, 4, 348 (1962).

[19] C. Masters and K. Cady, “A procedure for evaluating modified pulsed-neutron-source experi-
ments in subcritical nuclear reactors,” Nuclear Science and Engineering, 29, 272 (1967).

[20] T. Gozani, “Consistent subcritical fast reactor kinetics,” Dynamics of Nuclear Systems, Uni-
versity of Arizaona Press, Tucson., 109 (1972).

[21] G. Kosaly and J. Valko, “Remarks on the use of well-known reactivity measuring techniques
by the pulsed-source method,” Annals of Nuclear Energy, 2, 477 (1975).

[22] C. Preskitt, E. Nephew, J. Brown, and K. Van Howe, “Interpretation of pulsed-source experi-
ments in peach bottom HTGR,” Nuclear Science and Engineering, 29, 283 (1967).

[23] M. El-Zeftawy and L. Ruby, “Kinetics distortion in a TRIGA reactor with an asymmetric
relfector.” Nuclear Science and Engineering, 45, 335 (1971).

[24] G. I. Bell and S. Glasstone, Nuclear reactor theory, Van Nostrand Reinhold Company (1970).

[25] E. Larsen, “The spectrum of the multigroup neutron transport operator for bounded spatial
domains,” Joural of Mathematical Physics, 20, 1776 (1979).

[26] T. M. Sutton and B. Aviles, “Diffusion theory methods for spatial kinetics calculations,”
Progress in Nuclear Energy, 39, 119 (1996).

[27] R. A. Shober, D. R. Ferguson, and T. A. Daly, “FX2: A two-dimensional nuclear reactor
kinetics code with thermal and hydraulics feedback,” Argonne National Laboratory, ANL-78-
97 (1978).

[28] G. Rampault, D. Plisson, J. Tommasi, R. Jacqmin, J. M. Rieunier, D. Verrier, and D. Biron,
“The ERANOS code and data system for fast reactor neutronic analyses,” Proc. Reactor
Physics Topl. Mtg. (PHYSOR 2002), Seoul, Korea (2002).

[29] G. Rimpault, “Algorithmic features of the ECCO cell code for treating heterogeneous fast
reactor subassemblies,” Proc. Intl. Conf. Mathematics and Computations, Reactor Physics,
and Environmental Analyses, Portland, Oregon, American Nuclear Society (1995).

[30] G. Palmiotti, C. B. Carrico, and E. E. Lewis, “Variational nodal methods with anisotropic
scattering,” Nuclear Science and Engineering, 115 (1993).

[31] A. Rineiski and J. Y. Doriath, “Time-dependent neutron transport with variational nodal
method,” Proc. Int. Conf. Mathematical Methods and Supercomputing for Nuclear Applica-
tions, Saratoga, Springs, New York, American Nuclear Society (1997).

[32] N. Sjostrand, “Measurements on a subcritical reactor using a pulsed neutron source,” Arkiv
for Fysik, 11, 233 (1956).



154

[33] M. Isbasescu, “On the physical foundations of the method of Sjostrand for reactivity measure-
ment by the pulsed neutron technique,” Annals of Nuclear Energy, 4, 193 (1977).

[34] M. Becker and K. Quisenberry, “The spatial dependence of pulsed-neutron reactivity measure-
ments,” Symposium on Neutron Dynamics and Control, Tucson, Ariz. (1964).

[35] T. Gozani, “The concept of reactivity and its application to kinetic measurements,” Nukleonik,
5, 55 (1963).

[36] S. Kaplan, “The property of finality and the analysis of problems in reactor space-time kinetics
by various modal expansions,” Nuclear Science and Engineering, 9, 857 (1961).

[37] R. S. Modak and A. Gupta, “A scheme for the evaluation of dominant time-eigenvalues of a
nuclear reactor,” Annals of Nuclear Energy, 34, 213 (2007).

[38] R. B. Lehoucq, D. C. Sorensen, and C. Yang, “ARPACK user’s guide,” Society for Industrial
and Applied Mathematics,Philadelphia, Pennsylvania (1998).

[39] D. Lathouwers, “Iterative computation of time-eigenvalues of the neutron transport equation,”
Annals of Nuclear Energy, 30, 1793 (2003).

[40] J. S. Warsa, T. A. Wareing, J. E. Morel, and J. M. McGhee, “Krylov subspace iterations for
deterministic k-eigenvalue calculations,” Nuclear Science and Engineering, 147, 26 (2004).

[41] D. S. Watkins, Fundamentals of matrix computations, second ed., John Wiley & Sons (2002).

[42] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse
least squares,” ACM Transactions on Mathematical Software, 8, 43 (1982).

[43] Y. Saad, Iterative methods for sparse linear systems, second ed., SIAM (2003).

[44] H. A. v. d. Vorst, “BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solu-
tion of nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing,
13, 631 (1992).

[45] C. Lanczos, “Chebyshev plolynomials in the solution of large-scale linear sytems,” Toronto
symposium on computing techniquies, 124 (1952).

[46] Y. Saad and H. A. van der Vorst, “Iterative solution of linear systems in the 20th century,”
Journal of Computational and Applied Mathematics, 123 (2000).

[47] W. W. Little Jr. and R. W. Harie, “2DB - A two-dimensional fast reactor burnup code,”
Nuclear Science and Engineering, 32, 275 (1968).

[48] Westinghouse, “AP600 standard safety analysis report,” Westinghouse Electric Corp., DE-
AC03-90SF18495 (2003).

[49] Y. Cao and J. Lee, “An improved modal-local method for ADS transient analysis,” Transac-
tions of the American Nuclear Society, 96, 675 (2007).

[50] F. Perdu, J. M. Loiseaux, A. Billebaud, R. Brissot, D. Heuer, C. Lebrun, E. Liatard, O. Meplan,
E. Merle, H. Nifenecker, and J. Vollaire, “Prompt reactivity determination in a subcritical
assembly through the response to a dirac pulse,” Prongress in Nuclear Energy, 42, 107 (2003).

[51] G. Palmiotti, J. M. Rieunier, C. Gho, and M. Salvatores, “BISTRO optimized two dimensional
Sn transport code,” Nuclear Science and Engineering, 104 (1990).

[52] T. E. Booth, J. T. Goorley, A. Sood, F. B. Brown, and et al., “MCNP-A general monte
carlo N-particle transport code, version 5,” Los Alamos National Laboratory, LA-UR-03-1987
(2003).



155

[53] G. Aliberti, G. Rimpault, R. Jacqmin, J. F. Lebrat, P. J. Finck, G. Imel, A. Rineiski,
P. Ravetto, and J. C. Sens, “Dynamic measurements and control of an Accelerator Driven
System (ADS),” Physor02 (2002).


