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INVESTIGATION OF THE EXACT SOLUTIONS OF THE LINEARIZED EQUATIONS

FOR THE FLOW PAST CONICAL BODIES

PREFACE

The problem of the steady flow of a gas over bodies of conical
shape moving in a uniform stream at supersonic speeds has received con-
siderable attention in the literature. Among the first successful treat-
ments of this problem was that given by v. Karman and Moorel)[;J for the
case of slender bodies of revolution in which the assumptions essential
to the linear theory of Glauert [?] and Prandtl [3] were made. This work
was immediately followed by the more general treatment of the cone of
revolution by Taylor and Maccoll [&] . Later Busemann [5], [5] gave an
extended analytical treatment of the problem of the flow over a body with
axial symmetry.

In the original investigation of this problem by Busemann [7],
it is assumed that the floﬁ over the conical body is irrotational and such
that the characteristic quantities of the flow, namely, velocity, pressure
and density, are constant along rays 1§suing from the vertex of the cone.
This assumption was retained in his later treatment of the problem and was
also adopted by Taylor and Maccoll in their work. Busemann referred to a

region in which the flow has this property as a conical flow field (the

1) Numbers in brackets refer to the bibliography.



common point of the family of rays along which the velocity is constant is
called the "center" of the conical field), and the term has been in common
usage sinceg). In 1943 Busemann [6] formulated a very general method of
treating the linearized flow problem of Glauert and Prandtl for a conical
body under the assumption that the flow past the body is conical. This
method has recently received widespread attention. Notable among the
applications which have been made of this method for the investigation of
the general properties of supersonic flow and for the treatment of special
types of bodies are those of Stewart [9] , Gurevich [10], Lagerstrom [lJJ s
and Hayes I_l2] .

The basis of the present treatment of the equations for the
linearized flow past a conical body is the method suggested in the work of
Busemann {?]. The purpose, however, is to develop a method of determining
the solution of these equations which satisfies the precise boundary con-
ditions along the surface'of the body and thus to obtain a flow for which
the surfacé is an actual stream surface. This is in contrast with the
previous treatments in which the actual conditions on the boundary are re-
placed by the approximate "linearized" conditions. The work is presented
in three parts. Part I is devoted to the theory of conical flow and the
formulation of an analytical treatment of the general problem. Parts II
and III are devoted respectively to the deﬁermination of the conical flow
past a plane arrow-shaped wing with angle of attack and zero yaw, and an
elliptic cone with zero angle of attack by means of the method developed

in the first part.

2) It should be remarked that the term conical flow does not
imply that the velocity of the flow at a point of the field is in the
direction of the ray passing through this point and the center of the
flow.



“In the general treatment of Part I, it is shown that a super-
sonic conical flow in space can be completely described in terms of
functions depending on a single complex variable. In particular, the com-
ponents of the velocity of the flow are determined by a single analytic
function of a complex variable which in this theory plays a role of com-
parable importance to that played by the complex velocity potentisl in
the theory of the steady, irrotational motion of an incompressible, ideal
fluid. Hence, when the general problem of conical flow is formulated in
this way its analytical treatment naturally lends itself to applications
of the well-established theory of functions of a complex variable, es-
pecially to applications of the techniques utilizing conformal mapping.

In the treatment of the arrow wing in Part II, it is shown that
the boundary conditions are not sufficient to determine the conical flow
past the wing. This fact was previously pointed out by Stewart [9] in
his solution of the corresponding problem with the simpler linearized
boundary conditions. In order to determine the order of the infinite
singulaerities which the velocity of the flow is permitted to have at the
edges of the wing, he supplemented the boundary conditions by requiring
the 1ift coefficient of the wing to be finite. It is shown in Part II
that the addition of this supplementary condition suffices to determiﬁé
the flow uniquely, and hence, it is shown that among all conical flows for
which the wing is a stream surface, there is a unique one for which the
coefficient of 1ift is finite.

The work in Part III on the conical flow past an elliptic cone
indicates that the incompleteness of the boundary conditions in the case
of the arrow wing springs from the singularities of the surface at the

wing edges. For it is shown in this part that the boundary conditions are



sufficient to determine a unique conical flow past an elliptic cone without

edge having a finite velocity at every point of the field.



PART I. THE GENERAL PROBLEM OF THE SUPERSONIC CONICAL FLOW

1.1 Statement of the General Problem

Consider the flow over a slender conical body placed in a uni-
form stream moving with supersonic speed, the vertex of the body pointing
in the direction of the oncoming stream. Let the origin of the rectangu-
lar system of X, Y, and Z coordinates be taken at this point with the Z-
axis in the direction of the uniform flow. Let w, denote the velocity
of the uniform stream, and let u, v, and v denote the components of the
additional velocity; the components of the total velocity of the dis-
turbed flow at any point are therefore u, v, and w + v, . Since the flow
is irrotational, the additional velocity is expressible as a gradient of

a velocity potential ¢(X, Y, Z):

of o

of
3 3 vEDY ¢ Y=%zZ ° (1)
vhere, in accordance with the assumptions of the linear theory, the po-

tentialé satisfies the linear differential equation:”
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in vhich B = (M2 - 1)1/ 2 and M is the constant Mach number of the uniform
stream.

The characteristics of the differential equation (1.2) are the
conical surfaces of revolution with axes parallel to the Z-axis (i.e.,

parallel to the direction of the flow of the uniform stream) and with

semi-vertex angle equal to the Mach angle 1 defined by the equation:

Mo= sin~t (%) = cot™t B . (1.3)

3) cf. Glauert [2] and Prandtl [3]. Also R. Sauer, Theoretische
E in fuhrung in die Gas dynamik. Springer, Berlin, 1943. Reprinted by
Edwards Bros., Ann Arbor, Michigan, 1945, p.24.



The downstream halves of these cones are significant physically since each
envelopes the domain which is influenced by a small disturbance originating
at its vertex. These semi-conesh) are therefore identified with the well-
known Mach cones of sonic disturﬁance in a stream of‘uniform supersonic
velocity.

If it 1s assumed that the conical body is entirely enclosed within
the Mach cone attached to the verte# of the conical body, then, in accord-
ance with the linear theory, the Mach cone will constitute a boundarykbe-
tween the region of the constant state of the flow ahead of the body and
the}region of the disturbed flow adjacent it. The problem is, therefore,
to determine the distribution of the velocity of the flow in the region
between the two surfaces subject to the two conditions: (a) that conical
body‘be a stream surface and (b) that the transitibn from the constant
state of flow to the disturbed flow take place across the characteristic
or Mach cone. The first of these conditions implies that at each point
of the body surface the component of the total velocity in the direction
of the normal at the point is zero5). Thus if S(X, Y, 2) = 0O represents‘
the equation of body surface, this condition becomes

FES
A
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usx+Vay 0 (1.4)
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k) Por convenience, the semi-conical surfaces generated by a
half-line, or ray, emanating from a point will henceforth be referred to
as a cone.

5) In conformity with the observed properties of the motion of
a fluid, it must also be required that the velocity of the fluid be con-
tinuous at each regular point of the surface of the obstacle, that is,
at each point at which the surface has a continuous normal vector.



or, by equation (1.1),
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The second of the conditions implies that the velocity is continuous across

the Mach cone6), and therefore that the components u, v, and w of the

additional veloéity satisfy the following equations on this Mach cone7):
u=v=ws=D0, (1.6)
or, by equation (1l.1),
9 9% 29
5" 3Y "9z °" (1.7)

Therefore, the problem of determining the (linearized) flow past
the cqnical obstacle may be formulated as (Problem I), that of determining
the function é (X, Y, Z) which satisfies the differential equation (1.2)
in the region between the body and the Mach cone and the boundary con-
ditions (1.4) and (1.7) at pointe on these two surfaces, respectively.

The functions u, v, and w corresponding to a solution § of the
problem formulated above will also satisfy differential equations of the
type (1.2), as can easily be verified by differentiating equation (1.2)
with respegt to either X, Y, or Z and making use of the corresponding
eqnationé in (1.1). Therefore, in the region between the Mach cone and

the surface of the conical obstacle u, v, and w satisfy the three equations

2 2 s 92
_?)}_123+§;£21.-52 J 2.0, etc., (1.8)

922

6) See, for example, Sauer: loc. cit., pp. 110 and 132.

7) It can be shown that for a conical (linearized) flow the
condition (1.6) is equivalent to merely requiring that the component of
the total velocity tangent to the Mach cone be continuous on passing
through this surface. In this connection, it should be observed that in
the two-dimensional flow over a wedge the corresponding condition requiring
the continuity of the velocity component tangent to the Mach lines leads
to the familiar discontinuity of the velocity vector across these lines.



wvhere in the last two equations, u is replaced by v and w, respectively.
However, the three functions derived in this manner from equation (1.1)
are not entirely independent of one another, but in addition, satisfy the
following equations in the region between the Mach cone and the body’

dw Ov Jdu dw dv  Qu
5T -3z % 3z "3 % 3% - 57 - 0 (:.9)

These are simply the conditions of irrotationality of the velocity figld
defined by the functions u, v, and w. It is also evident that the func-
tions u, v, and w corresponding to the solution § of Problem I will
satisfy the boundary conditions in equations (1.4) and (1.6) on the surface
of the body and on the Mach cone, respectively.

Following Busemanna), 1£ is observed that the equations (1.4),”
(1.6), (1.8), and (1.9) as well as the equatfons for the surfaces9) of the
conical body and the Mach cone, are not changed by the operation of re-
placing the variables X, Y, and Z by tX, tY, and tZ, respectively, where
t is an arbitrary positive constant. Therefore, if the functions u(X, Y, Z),
v(X, Y, Z), and w(X, Y, Z) eatisfy the differential equations (1.8) and
(1.9) and the boundary conditions (1.4) and (1.6), then the functions
u(tx, tY, tz), v(tX, tY, tZ), and w(tX, tY; tZ) do likewise. This corre-
sponds to the statement that an arbitrary magnification (or contractiop) of
the field of flow compatible with the surface of the obstacle is again a
field of flow compatiblé with this surface. This observation lead Busemann

to conjecturelo) that the velocity of the flow 1s constant along rays

8) cf. Busemann [7]
9) 1In general, the equation of a cone with vertex at the origin
is homogeneous in the variables X, Y, and Z.

, 10) The truth of this conjecture would immediately follow from the
property that the solution of Problem I is unique, except for an additive
constant, provided that the problem as it has been formulated enjoyed this
property. However, the latter is not true in general, since it is shown
that in the case of the arrow wing there are infinitely many functions
& (x,y,z) satisfying the conditions of the problem. Nevertheless, these
functions are all homogeneous of degree one.



emanating from the origin, or vertex of the conical obstacle, and con-
sequently that the flow is conical. This hypothesis is also adopted in
the remainder of this report. ‘Hence, only those solutions f (X, Y, Z2) of
Problem I will be sought for which the corresponding flow is conical, i.e.,
for which the components u, v, and v of the additional velocity in equation
(1.1) are homogeneous functions of degree zero. Apart from additive .con-
stants, the admissible solutions é(x, Y, Z) are therefore homogeneous
functions oi_‘ degree one. In this connection, it should be remarked that
by .virtue of this property of homogeneity, equation (1.1) is readily solv-
able for the function § . Thus, making use of Euler's relation for homo-
geneous functions and equation (1.1l), it is evident that f can be ex-
pressed in the form:

) =x%§§+yg—%+zg—%+ const-u_f+ﬂ.+wz+ const.

. (1.1a)

Since the differential equation (1.8) is obtained from ( 1.2) vy
a process of differentiation, the differential equation (1.8) when expressed
in terms of é is of higher order than (1.2). It is therefore not necess-
arily true that the function é which is determined by the converse pro-
cedure from the solutions of the differential equations (1.8) and (1.9)
will satisfy equation (1.2) and thus represent the potential of a linear
flow. However, if in addition, the solutions u, v, and w of the system of
equations in (1.8) and (1.9)are required to be homogeneous of degree zero,
that is, define a conical flow field, then it is readily shown that the
corresponding function & (x, y, z) obtained from them by means of equation
(1.1), or more simply, by (1.la), is a solution of equation (1.2). For,
on substituting (l.l&) in (1.2), making use of (1.9) and the homogeneity

of the functions u, v, and w, the left hand member of (1.2), which is

here denoted by L§$} , becomes
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Since u, v, and v are of degree zero, the quantity L{§} is either
identically zero, whence equation (1.2) is satisfied, or is homogeneous

of degree -1. In the latter event, it follows from Euler's relation that

AL oL oL _
X-é—-'x-+Y-8-—f+Z—8—Z_

-L.

However, by equations (1.9) and (1.8) each of the partial derivatives'in
the left hand member of this equation vanishes identically. Consequently,
L aiao vanishes identically. Hence, the function 5? defined in this way
satisfies thé differential equation (1.2). It is evident that SE will
also satisfy the boundary conditions (1.5) and (l.f) if the functions u,
v, and w satisfy the corresponding conditions (1.4) and (1.6). It there-
fore follows that in order to determine the admissible solutions jS of
Problem I, it is sufficient to seek solutions u, v, and w of the differen-
tial equations (1.8) and (1.9) which are homogeneous of degree zero and
vhich satisfy the boundary conditions (1.4) and (1.6).

In summarizing the results of the preceding paragraphs, it can
be stated that the problem of determining the_conical flow past a conical
body which is contained within the Mach cone attached to its vertex 1is
equivalent to either: (Problem I) determining the single function 45 satis-
fying the differential equation (1.2) in the region between the body and
the Mach cone and the boundary conditions (1.5) and (1.7) on these surfaces,
respectively; or (Problem II) determining the three functions u, v, and
w which are homogeneous of degree zero in the variables X, Y, Z, and which
satisfy the differential equations (1.8) and (1.9) between the body and
Mach cone and the boundary conditioﬁs (1.4) and (1.6) on these surfaces,

respectively. It will be shown in the following section that when considered
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in the latter form, the problem does in general admit of a very elegant

formulation in terms of functions of a complex variable.

1.2 Transformation of the Equation for the General Conical Flow

Since the functions u, v, and v are constant along rays emanating
from the origin, the values of these functions along any such ray depend
only on two independent quantities specifying the direction of the ray.

The procedure is therefore to make an appropriate coordinate transforma-
tion so as to reduce the differential equations and boundary conditions
defining u, v, and v to a differential system depending on two independent
variables which can be treated by an established method of integration.

Consider the mapping from the flow space to the space of the
parameters g »M , and R, with R > 0, by means of the coordinate trans-

formationll)

SRS, y- -g{, Z =R li’é, (1.10)

where

V 22 - B3(x57°) . (1.10a)

It is evident that these equations set up & one-to-one correspondence between

x=%(1-§2-o]2) and R

11) This transformation is anslogous to the transformation from
the (X, g »2)-cqoordinates to the stereographic parameters (§',7 ,R), where
R=(X“+Y<+Z ):L e and§ »h are the coordinates of the points obtained by
means of a stereographic projection of the point (X/R Y/R,Z/R) of the unit
sphere with center at the origin onto the ( -plane, taking (0,0,-1)
as the center of the projecgiog In equation 71 the unit sphere is re-
placed by the hyperboloid Z (X +Y2 )=1.

It should be noted that the second of equations (1.10a) ef-
fectively specifies a particular branch of the inverse of the transforma-
tion defined by equations (1.10). Equations (1.10) with A defined as in
(1.10a) assign to each interior point (X,Y,Z) of the region of definition
two distinct points of the £§ ’ ,R) -space, one interior to and the other
exterior to the cylinder
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the pointe of the region bounded by the Mach cone, i.e., the region defined
by the relations

Z > 0, 72 - p2(x2 + Y3)> o,
and the points of the (&, %, R)-space (R> 0) bounded by the circular
cylinder with unit radius end axis along the R-axis. This correspondénce
is such that images of cones in the (i, Y, Z)-space with vertices at the
origin and contained entirely within the Mach cone are cylinders in the
(§, U R)-space lying entirely within the unit circular cylinder; the
Mach cone itself corresponds to this unit circular cylindef as & limiting
caseé. Equations (l.lO)iand (1.10a) therefore define a one-to-one mapping
of the region between the conical body and the Mach cone in the flow space
into the region of the (§, 7 » R)-space (R > 0) bounded externally by
the unit circular cylinder and internally by a parallel cylinder corres-
ponding to the conical body.

It follows from the properties of the transformation that rays
through the origin of the flow space along which the functions u, v, and
v are constant are mapped into lines which are parallel to the R-axis.
The corresponding "flow" defined in the image space by these functions
is therefore constant along lines parallel to the R-axis. As a conse-
quence, the "flow" in the image space is two-dimensional in character
since-the functions u, v, and w have the same values at corresponding
points in all planes parallel to the (35, 7 )-plane and are therefore
everyvhere defined by their values over any one of these planes. The
twvo-dimensional domain into which the flow pattern is projected by the
transformation defined by equations (1.10) and(1.10a) consists of a
doubly-connected region (see Figure 1) of the (§, ”‘)-plane bounded ex-
ternally by the unit circle with center at the origin, and intermally by
a simple closed curve whose shape is determined by the shape and orien-

tation of the conical obstacle.
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On making the substitutions of equation (1.10) in the differen-

tial equation (1.2), it becomes

A =22 5% (32%%), (1.11)
where 92
a2 9P
A§ = Qgé + 9,;2? ‘

If, in particular, it is required that the function @' (X, Y, Z) be homo-
geneous of degree n in the wariables X, Y, and Z, it follows from equation

(1.10) that
v - nd
and, hence, by equation (1.11) that
A é - n( : + 1) é .
Therefore, the differential equation in the variables § and 0/ which deter-

mines the admissible solutions é of Problem I representing the potentials of

a conical flow is obtained by setting n = 1, namely,
2
b = 3 [ (1.12)

This equation holds throughout the doubly-connected region of the (§ ,7 )-
plane. On the other hand, the admissible solutions u, v, and w of Problem
II representing the componeﬁts of the additional velocity of the conical
flow are homogeneous of degree zero. Hence, these functions satisfy the‘
two-dimensional Laplace equations
Au = Av = Aw.= 0

throughout the doubly-connected region of the ( § ,17 )-plane. In other
words, an irrotational conical flow is defined by a triplet of harmonic

functions of the variables § and 0’ which in addition satisfy equation (1.9).

If the harmonic functions u, v, and w are considered as the real

parts respectively of the three analytic functions U(¢ ), V(é ), and W($)
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of the complex variable g = ‘§ + 17 s the set of functions satisfying
equation (1.9) can be expressed in an especially elegant form. For, by

equation (1.10), it follows that®)

d _Bm¢l, . ,2 _d
with similar expressions for the derivatives with respect to Y and Z.

Hence, equation (1.9) can be placed in the form:

S S NEE IR
R a8 +35) & =0, (1.13)

R{ B0 - G0 s B Lo

These equations hold within the doubly-connected region of the g -plane.
However, the vanishing of the real part of an analytic function in any
portion of its region of definition implies that the imaginary part and,
consequently, the function itself must be constant throughout this region.
Since the determinant of the coefficients of dU/dg, dV/d§ , and dw/dg

in the foregoing equations is identically zero, the quantity contained in
each brace is, in fact, equal to zero. This is evidéntly true if, and
only if, the analytic fuhctions U, V, and W are given by means of the in-

tegral formulae:

) =8 [+ gt m3) ag,
) =8 [ a-¢frS) ag, (1.24)
W) = -fﬂ?(g) ag,

12) The symbol R{ } represents the real part of the complex
quantity within the brace. »
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where F( ; ) 18 an arbitrary analytic function of the complex variable ¢ J.'3 )
Finally, the boundary conditions (1.4) and (1.6) yield a pair
of conditions satisfied by the functions u, v, and w on the inner and
outer boundaries, respectively, of the doubly-connected region of the
plane., Thus, since the function S(X, Y, Z) is homogeneous in the variables
X, Y, and Z, equation (1.4) will take the following form on making the
substitutions (1.10):
Au + Bv + C(Wyq + W) = 0, (1.15)
where the coefficients A, B, and C are in general functions of § and 0] .
This condition is satisfied on the imner boundary corresponding to the sur-
face of the conical body. On the other hand, it follows from (1.6) that
the functions u, v, and w vanish on the unit circle forming the outer
boundary, i.e., .
u=v=w=0 for ,§l=l. (1.16)
Thus, beginning with Problem II of the preceding section and re-
formulating the differential equations and boundary conditions in terms of
the variables g and % , or the complex variable S = § +19 , 1t is
shown in this section that real parts u, v, and v of the complex functions

U< ), V(g ), and W(;), respectively, of (1.11/‘) which satisfy the conditions

13) The analogy between the formulee (1.ll) and those representing
the solution of the minimal surface problem as formulated by Weierstrass is
self-evident. The latter involves the determination of a triplgt of analytic
functions £,(¢) (n=1,2,3) satisfying the condition & [f;(G )] “=0. The
real parts of the analytic function fn(f; ) are the coordinate functions de-
fining the minimal surface. See, for example, Courant-Hilbert, Methoden der
Mathemetischen Physik, Vol II., Berlin, 1937, Chap. III, § 2. It follows
from (1.14) that the triplet of functions 3(5 ), V(S )y and W(<S ) satisfy
an analogous condition: [U'(&)]<+[V'(S )] -Ba[W(g )] ©=0. However, this
single condition is not sufficient to insure the complete satisfaction of
the three equations (1.13), two of which are independent, corresponding to
the conditions of irrotationality (1.9). As a consequence of this, it will
be seen that the integral formulae in (1.14) are not invariant in form under
conformal transformations of the doubly-connected region.
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(1.15) and (1.16) determine an irrotational, conical flow over the conical
body. The (linearized) conical flow problem is therefore equivalent to
that of determining a single function F(g ) vhich is analytic in the double-
connected region of the § -plane and such that the real parts u, v, and w
of the complex functions defined by the formulas (l.ll/‘) satisfy the bouﬁ-
dary conditions (1.15) and (1.16) on the inner and outer boundary, respec-
tively, of this region. This form of the problem has the obvious advantage
that it is suseeptible to treatment by the methods developed in the theory
of functions of a complex variable for solving boundary value problems by
means of conformal mapping.

It should be remarked that the function F(§ ) plays a role in
the present theory of irrotational, conical flow, which is analogous to
and as important as that which is played by the complex potential in the
theory of the irrotétional motion of an incompressible fluid. The functions
u, v, and w corresponding to any arbitrary analytic function F( g ) deter-
mine a flow with the conical property. However, it is readily verified
that these functions will not in general vanish over the surface of the
Mach cone in accordance (1.6) unless the F(; ) can be represented at pc;ints
of an annular neighborhood of the unit circle by a Laufent series of the

form

oo
F(S) =§];§§a°+nz.—.1 (an§n+-§§)},
where the coefficient a, is real, and the coefficient En is the complex
conjugate of the coefficient a,. For the simple case

F(S) = —5% ,
the formulae (1.16“) yield the familiar Kérmén-Moore solution for the flow

over a circular cone.
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It should also be remarked at this point that in general the
function F(g,) is necessarily continuous on the unit circle. This follows,
in accordance with the general theorems on the properties of an analytic
function, from the fact that the real part of the analytic function W(S )
is constant along this circle. For, as an immediate consequence of the
latter, the derivative Wf(§) existé and is continuous on the unit circle
and, consequently, by the last of equation (1.14), F(S;) is continuous on

that circle.

1.5 Application of the Lorentz Group of Rotations

It ie evident that the differential equation (1.2) remains un-
changed in form under the following linear transformation from the points
(X, Y, Z) to the points (X;, Y;, Z;) of the space:

BX) = pa11X + PajoY + a13Z,

pY; = Baglx + BaaeY + aaBZ, (1.17)
Zl = ﬁa31X + Ba52Y + aBBZ,

where

ailgjl + ai2a32 - a13a33 =0 for 1 £ 5

Therefore, any solution of the differential equatiop (1.2) is transformed
by the linear substitutions (1.17) into a solution of the same differential
equation in terms of the coordinates (X;, Yy, Z;). It is easily verified
that the Mach cone is also invariant under this same transformation of

the space. Hence this transformation has the property that it maps any

given linear, supersonic flow field bounded by a given Mach cone into
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1
another such field bounded by the same Mach cone
In particular, consider the two distinct subgroups of the group

of transformation defined by (1.17):

]

BY cosh @ - Z sinh @ (1.18)

"Pitch":  BYy

Z, = -BY ginh @ + Z cosh O
BX, = BX coshy - Z sinh
"Yaw": BY, = BY (1.19)
AL ~/
Zl = -pX sinhy + 2 cosh'\f .

These two families of transformations constitute the so-called
Lorentz groups of non-Euclidean rotations of space about the X- and Y-axis,
respectively, leaving the Mach cone unaltered; &’ and ';UJ denote the non-
Euclidean "angles of rotation" in pitch and yaw, respectively. It is
readily verified that the actual Euclidean angle of rotation & in pifch
and the non-Euclidean angle a are related by the equation

B tan a = tanh Q, (1.20)
with a similar relation fof the angles in yaw. In particular, the position
of & line making an angle J‘ with the YZ-plane and contained in a plane
vhich makes an angle @ with the XZ-plane (for example, an edge of the
arrov wing in Figure 2) can be specified by means of the corresponding
non-Euclidean angles of rotation aland ;' about the X- and Y-axis, pro-

vided that

Btana:tanha and Bta.n&/ seca=tanhf sech a .
(1.21)

14) Since the transformation defined by (1.17) is in general
not conformal, the form of the boundery conditions (1.5) is not preserved
under the transformation.
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The transformations corresponding to (1.18) and (1.19) in the
( § , /7 )-plane are especially simple. It is readily shown that these trans-
formations of the region of the flow bounded by the Mach cone onto itself
correspond to two distinct subgroups of linear fractional transformations
vhich map the interior of the unit cifcle conformally onto itself. Thus,
by making the substitutions (1.10), it is seen that (1.18) and (1.19)
correspond respectively to the following transformations of the § -plane

onto the < 1—plane:

Sy = I +'1§‘; , (1.22)

where

e

o
1}
ot
5
IR
-

(1.22a)

ST (1.23)

~/

fanh —g)— . (1.2%a)

and

where

a

- The first of these maps the interior of the unit circle in the ¢ -plane
onto the region bounded by the unit circlAe in the Sl-plane in such a

manner that points of the 0) f-axis corréspond to points of the /7 1-axis ;b
wvhereas the mapping effected by.the second carries the points of the § -

axis into the points of the &j-axis,
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PART II. SUPERSONIC FLOW PAST AN ARROW WING AT AN ANGLE OF ATTACK

2.1 Formulationbof the Problem

The general theory which is presented in Part I is here applied
to the problem of the flow around an arrow wing fbfmedAby a sector of a
plane inclined at an angle of o with respect to the uniform flow and at
zero yaw. The flare angle; i.e., thg angle of thebsector, is taken as
2 )'(see Figufe 2). It is assumed throughout that the angle of attack «
and the flare angle 22* are go restricted fhat‘the wing is contained entirely
within the Mach‘cone §f~its vertex. This casé may be regarded as the limit-
ing case of the floﬁ around an ellipﬁic cone whose normal cross éection is
an ellipse with vanishing minor axes.

Let the vertex of the ﬁing be placed at the origin and let the
equation of its plane be Y = Z tan. Making the substitutions, equation

(1.10), this becomes, with the aid of (1.21)
§2 +r72 -2 cot}a~07+ 1=0- (2.1)

The arrow wing characterized by the angles o and.z', or the corresponding
quantities a'andér'of equation (1.21), is therefore projegted ihto the

| g - plane as an arc of the circle determined‘by equation (2.1). The
edges of the wing cofrespond%’ to the end pointé (th 7E) of this

arc (see Figure 3a). This circle and the unit circle lgl = 1 intersect
orthogonally. Consequently, itg position is completely fixed by its in-
tercept b with the v -axis and, therefore, by the angle of attack of the

wing. For by equation (2.1) or, more simply, by (1.22a), it follows that

o
b=tamn g . Y/ (2.2)
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Hence, in accordance with Section 1.2, the problem of the flow over the
arrow wing is that of determining a function F(§) which is analytic in the

doubly-connected region of the §-plane bounded externally by the unit circle

and "internally" by the circular arc (+ §E,°)E) and such that the real
parts u, v, and v of the functions U(), V(§) and W(§), respectively, in
equation (1.14) are single valued and satisfy the following boundary con-
ditions corresponding to equations (1.15) and (1.16) respectively:

(1) On the circular arc: v - wtana = w tanx ,
(2.3)

L}

(2) On the unit circle igl: 1} u=v=w=0-

The solution of the problem just formulated is accomplished by
solving an equivalent problem for an»annular region bounded by two concentric
circles obtained by the method of conformal mapping. In more detail, let
the relation

Z = g(z) (2.4)
map the doubly-connected regiom of the ¥ -plane conformally omto the
annular region ro € [t] S 1 in the plane of the complex variable
2 =x + iy (see Figure 3c) in such a ménner that the points of the unit
circle || = 1 correspond to points on the unit circle lil = 1 forming the
exterior boundary of the annulus, and the points of the (two-sided) circular
arc thﬁth) correspond to points of the circle |z| = ro forming interiof
boundary of the annulus. Then the functions U(2), V(2), and W(z) obtained
from the functions U({), V({) and W({), respectively, by the change of
variable in (2.4) are analytic in the annulus and their real parts u, v,
and w, respectively; satiefy the following conditions on the boundaries of

the annulus:
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(1) On the circle |z| = ro: v - wtanx = wee tamx,
(2.5)

(2) On the circle |z2]=1: u=v=w=0.
Moreover, the integral formulae in (1.14) when expressed in terms of Z

become:

o) = § [ [+ 0] ot 2,
V(a) = éé@j [1- &&(2)] a(s) as, (2.6)

W(z) =-f%)’c(z) dx |

where G(z) is an analytic function of 2z in the annulus and is related to the

function F(3) of equation (1.14) by the equation

F(s) = g% v (2.7)

The equivalent problem for the annular region is, therefore, that of deter-
mining a function G(2) which is analytic in the annulus and such that the
real parts u, v, and w of the analytic functions U(z), V(z), and W(z),
respectively, defined by the integral formulae (2.6) satisfy the conditions
(2.5) on the boundary of this region. It is important to note that the
function G(z) is necessarily continuous on the circle |2l = 1. This follows
from the continuity of the function F(z) on the unit circle of the ¢ -plane
and the fact that the derivative g'(z) of the mapping function is continuous
for |zl = 1.

A further modification of the statement of the problem is found
desirable. Since the functions V(2Z) and W(Z) are analytic in the annulus

and have single valued real parts in this region, the function

H(z) = V(z) - W(z) tamx (2.8)
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also enjoys the same properties. By equation (2.5), the real part of this

function is constant on the boundary of the annulus, in fact:

(1) on |zl = 7o, R {E(2)}
(2) on |21 =1, R{H(2)f

V., tana,
(2.9)

n

0.

Conversely, if H(z) satisfies the first of these conditions, the functions
U(2), V(z) and W(z) will obviously satisfy the first of the conditions (2.5).
It is readily shown that the converse is also true for the second boundary
condition. 1In other words, the boundary conditions (2.9) are completely
equivalent to those of (2.5). Moreover, by equations (2.6) and (2.8),

H(z) is exprepsed in terms of G(2) by the equation:

8(z) = [1(z) a(2) az, (2.10)

where

1(2) = -3{ 8 [(2) - 1] + 21 g(2) tam | - (2.11)

Thus, in view of the preceding observations, the problem of the

conical flow over the arrow wing consists of determining the function G( z)

which is analytic in the annular region ro < |)z])<1 and continuous on the

circle )z| = 1, and which is such that the real part of the function H(z)

defined by equation (2.10) is single valued and satisfies the condition (2.9)

on the boundary of the annulus. The functions U(Z2), V(2) and W(Z) represent-

ing the components of the "complex velocity" of the flow are obtained from
the solution of this problem by means of equation (2.6). It is necessary,

of course, to select the appropriate constants of integration in the integral
formulae of equation (2.6) in order that the components u, v and w of the

real velocity vanish on the circle |2 = 1.



2.2 Conformal Mapping of the (£,%9)-Domain onto the Annulus

The conformal mapping of the doubly-connected region of the
{-plane (Figure 3a) bounded externally by the unit circle and internally
by the circular arc (= § E,?E) onto the annulus is effected in two steps.
The first step is accomplished by the linear fractional transformation
def‘iﬁed by equation (1.22) or by the equation

g_.fi + ib

where b is the intercept of the circular arc with the M-axis and is given
by (2.2). This relation maps the region of theg-plane bounded by the unit
circle onto the region bounded by the unit circle in the plane of the com-
plex variable gl = § 1+ 171 in such a manner that the points of the circle
in the §—plane defined by equation (2.1) correspond to the points of the
real axis in the §l-pla.ne. The edge points (¢§E, 7E) are thereby mapped
into two symmetrically situated points (-_PglE, 0) on the rea1§ 1-axis (see
Figure 3b).

In Section 1.3, it has been pointed out that the mapping effected
by (2.12) is equivalent to the non-Euclidean rotation of the flow space
about the X-axis, defined by equation (1.18), where qQ is given by (1.22a),

namely

It is evident that as a result of applying (1.18), the plane Y = Z tany
containing the wing is "rotated” into the plane Y, = 0. It-'is evident
further that the edges of the wing, which in the plane Y = Z tanx form an

angle 2y (see Figure 2), are "rotated" into the lines

BX, = 423 tanhj’, (2.13)
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where, in accordance with the second of equation (1.21),
~ny ~S
B tanaf gecqy = ta.nh] sech .,

The wing edges (2.13) in the (Xy, Y;, 2;) space correspond to the edge
points (¢§1E, 0) on the real §1-axis intheg 1-plane. Since this corre-
spondence 1s established by means of equation (1.10), it follows from these

The circular region ] S ll €1 in the §;-plane with the sym-
metrically placed slit on the real axis is then mapped onto the annular
region ro € |z} £ 1 in the plane of the complex variable z = x + iy by

means of the Jacobi elliptic function
1]
Sl = -k sn (.2_511_ logz, - 1KIi; k.), (2.15)
n 2

2K1

ik
whére —= lo -—
ni gz 2

is the argument, and kl is the modulus of this function;

K; and K{ are the two complete elliptic integria.ls of the first kind belonging

to k and the complementary modulus k]'_, respectively. (The transition from
the { -plane to the z-plane via the § 1-plane is shown in Figure 3.) The
radiue ro of the interior circular boundary of the annulus is determined by

the equation
K1

r, = e Kl (2.16)

The points of this circle are mapped into the slit extending from 'ﬁ:; to
-’V k) along the real axis in the sl-pla.ne in such a manner that the points

z = +rol correspond respectively to the points § 1 =3)k1. This is



immediately evident on setting z = roei9 in (2.15). For then

31 = -k en (-2? 0; ki),

whence it follows15 ) that Sl is real for all values of 6 (real) and, in

particular, that for @ = -.’25, 0, and X, the values of §1 are -l/kl, 0, and
2

- Vk]_, respectively. Hence, the desired mapping function is completely

defined on gsetting

]/I:—l' = §1E = tanh-;: ) (2.17)

It is readily verified that by equation (2.15) the points of the
unit circles in theS 1-plane and the z-plane correspond to one another and
that, in particular, the points g‘ 1 = + 1 are mapped into the points z = i,

respectively. For, on setting z = eie, equation (2.15) becomes

whence for 6 = 1—-;- the valtes of § 1 are -T-l’ respectively. Alsol5)

— ]
2K1 iKy 1
=-yk gn (—= 6 + —=; k1) = - I =}
S1 1 om (= 5 k1) Vky en (%Kl o - iKl; k)
LS 2

J

where S 1 represents the conjugate of the complex number Sl. Therefore,

for points z = e1® on the unit circle about the origin in the z-plane,

Sk =§1ST1 =1,

whence the corresponding point in the g 1-Plene also lies on the unit circle

about the origin.

15) cf. E. T. Whittaker and G. N. Watson, Modern Analysis, 4th Ed., London,
1935, pp. 493 et seq.
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By combining equations (2.8) and (2.11), the function g(z) in
equation (2.4) which accomplishes the desired mapping of the doubly connected
region in the §-plane onto the annulus in the z-plane is, therefore, given

by the equation

3= g(z) = b= Yk sn (Z15k1) , (2.18)
1+ ib Ykysn (2;;k) ’
where )
[}
, 2K1 iKy
e 10 Z - —— @ 2.1
Z, = — g 5 (2.19)

It should be observed that the circles concentric to the circular
boundaries of the annulus are mapped by the transformation of equation (2.15)
into a set of algebraic curves of the fourth degree in the § 1-plane called
cyclids. Similarly, the rays 6 = constant in the z-plane are mapped into
cyclids which together with the first set form a net of orthogonal curve
families. As shown in Figure 4, each cyclid consists of two closed oval
branches surrounding the four foci i]/EI; + l/ ky; the oval branches en-
circling the line segment between +]f§1 and -]fiz and lying within the unit
circle l§1}= 1 correspond under the transformation (2.15) to the circles
concentric to the boundaries of the annulus and having radii between the
velues 1 and r,. The cyclids and their three dimensional generalizatioms,
the cyclidic surfaces, have been studied in greét detail by Darboux, by
Hblzmﬁller[;i], by Klein and Bocher [l&], They are important in the present
investigation insofar as they constitute the appropriate system of
curvilinear coordinates for the domain inside of the Mach cone when the
obstacle is either a plane arrow wing or, as in the case treated in Part III,

an elliptic cone.
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2.3 Determination of the Properties of the Function G(z)

It is shown in this section that the function G(z) representing
the solution of the problem formulated in Section 2.1 for the conical
flow over the arrow wing is expressible in terms of an elliptic function.
The derivation depends on the special form that the boundary conditions
(1.4) and (1.6) take when expressed as the conditions satisfied by the
function H(z) in equation (2.9). Most important, it is shown that these
condifione are not sufficient in the case of the arrow wing to specify
completely the solution G(z), but must be supplemented by an additional
condition such as the finiteness of the total normel force coefficient of
the wing. It is shown in Part III that for the case of a body in the shape
of an elliptic cone without sharp edges no supplementary condition is
necessary. The boundary conditions (1.4t) and (1.6) are in this case
gufficient to determine the flow over the cone completely.

Since the function H(z) is analytic and bounded within the
annulus r,< |2z|<1 (except possibly in the neighborhood of the points
corresponding to the wing edges; namely, 2 = froi) and its real part is
constant on the circular boundaries, it follows, in accordance with the
general properties of an analytic function, that the derivative H'(2)
exists and is continuous at all points of these circles (except possibly
at the edge points z = ir,i). Therefore, the function h(z) is defined bj

the equation

h(z) = z H'(2Z), (2.20)
or by the equation
2
H(Z) = wy, tana +5 h(y) dv (2.21)
T v
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where the constant of integration is dictated by the first of the boundary
conditions (2.9). Then the function h(z) is continuous on the boundary of
the annulus, except possibly at the points z = tr i, and, by the second of
equations (2.9), |

1
S‘ h(x)

To

= Wy tano, (2.22)

w|&

Consequently, along the circle [z | = 1, where z = ei®,

RiH(z)g =Ri15

whereas, on the circle lz] = r,, where z =r
e

h(ei"f) dcr$;
0

i
o® G:

aiH(z)% - Wy, tana =ZR{1$ h(relf) d?}.

0]

Since the boundary conditions (2.9) require that these quantities vanish
identically, it follows that the imaginary part of the function h(z) is
zero at all points on the circular boundaries of the annulus, and therefore
that the values of the function h(z) are real on these circles,

Zeros of the function h(z) are readily found by writing it in

the form
h(z) = z L(z) G(z) (2.23)

with the aid of equations (2.10), (2.11) and (2.20). The function L(z)
when expressed in terms of ¢ by means of the relation (2.4) is a quadratic

function of ¢ ; namely,

L-=- %g BRY - 1) + eigtana} ) (2.24)
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The two simple zeros of this function® namely,

§= +_|’l _ tancy -1 tand
- B2 B

are evidently distinct and lie on the unit circle in the§ -plane provided

that

tan< B = tan(n/2 -/k), (2.25)

where Iu,is the Mach angle defined in equation (1.3). Consequently, for
angles of attack @ consistent with this condition, the function L(z)
possesses two simple zeros on the circle lzl =1 in the z-plane. It is
evident that these points are symmetrical with respect to the real axis
in this plane, say at the points z = c, c (see Figure 3). Since the
function G(z) is continuous on the circle [zl = 1, it follows that the
function h(z) possesses zeros of at least the first order at the points
z =c, c on the circle |z| = 1.

In addition to the limitation imposed on the magnitude of the
angle of attack o by the inequality (2.25); namely, that ag n/2 -Hs
it is also necessary that Q< Iu, in order that the arrow wing be contained
entirely within the Mach cone. It is evident that the second inequality
automatically implies the first for large values of M (small Iu,). However,
the first inequality restricts the range of values of the anéle of attacic
for which the subsequent results are applicable when the Mach number of
the flow is near unity (i.e., when r&is near n/2). It is readily verified
that both of these inequalities are satisfied simultaneously if the follow-
ing inequality is satisfied:

sin 2a

m( 1. (2.26)
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Consider now the analytic continuation of the function h(z)
throughout the entire zQplane. Since h(z) is real and continuous on the

circular boundaries of the annulus (except possibly at the points z = troi),

it follows from the principle of reflection16) that the extended function
h(z) is analytic in the whole of the z-plane (except possibly at the
points z = ir,1 and their successive reflections with respect to the circles

the annulus ;
bounding » ), real on the circles (see Figure 5),

‘zl=r,0n 9 (n=0, i’ly ‘_’,\2, o e .)‘

and such that for any point z =T within the annulus

« o« =h(T)) =h(¥) =h(Tp) =... =h(Tio) =..., (2.27)

whers‘tl is the reflected imagel7)‘of‘t with respect to the circle [z’ = Toj
T_o 18 the reflected image ofT] with respect to the circle lz] =1,y

is the reflected image of T, with respect to the circle |1z} = ro'l; and,

in general, Tﬁan is the reflected image of Ty with respect to the circle

lz[ = ro'n+l. Therefore
é.,z, - r°2 - 1 —*ro-a - _ r°—2n+2
l fc‘ ) 't"_a t:k b ?-211 T e o0y

and

16) See, for example, E. J. Townsend, Functions of a Complex Variable,
Holt, New York, 1915, p. 255.

17) The point z" is said to be the reflected image of z' with respect
to the circle (2| = a if 2' 3" = a2,
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Hence, since z =T is any arbitrary point of the annulus, it follows

from the last equation and equation (2.27) that for all values of z
h(z) = h(ro'2n z), n=0, %1, 2, . . . (2.28)

On the other hand, since h(z) is continuous in the annulus, it
is necessarily a periodic function of arg(z) with the period 2n. Conse-
quently, the function h(z) as well as its analytic extension also satisfies

the following relation for all values of z:
H(z) = h(ze®™d), neo, 41, 42, . . . . (2.29)
As in equation (2.19), set
; éKl

Z log 2 - i
1 ni &

SE-N

‘'
and define the function hj (%)) of the complex variable Z) = X3 UYL, in

terms of the extended function h(z) by the relation

hy(2q) = 5%1' h(z) . (2.30)

Then, except possibly at the points corresponding to the edge points and
at the points derived from these by successive reflections with respect
to the circular boundaries of the annulus, the function hy(2;) is analytic
throughout the entire zj-plane. Moreover, as a consequence of equations

(2.16), (2.28).and (2.29) it follows that

hl(Zl + niKi) = hl(ll) and hl(zl + thl) = hl(zl),

(2.31)
(my n =0, 41, +2, . . .).

Hence, hj(z1) is a doubly periodic function of 2z with the periods 4Kj



and ,1Ki, and consequently is completely defined by its values in the |
| .

L 'y, |
period rectangle (see Figure 6 . The e R[N -
[
]
shaded region in this figure corre- ! |
_______ W —— - — —p — —
| 1! |
sponds to the shaded regions in { 'K |
: |
| |
Figure 3.): - TiKi/z T
Xy
_2Kl g Xl< 2Kl -2K) —Kll/; 2 ; K, 2K, .
K' K' —— ‘._IZA _——
- 2—§Y1< —21- : -6, -iK;/Z +C, i

|
FIG. 6 Z, -PLANE
It should be noted that the lower half of this.rectangle is mepped onto the

annulus ro < tz]ﬁ 1 in the z-plane by the transformation (2.19) in such a
manner that the Mach circle IZI = 1 corresponds to the side y) = -_K_i

and the circle lzl = ro corresponds to the real axis y; = O; in particular,
the wing edge pdinta z = tr,i1 are mapped into the points z; = 4K, respective-

ly. It should also be observed that as a consequence of equation (2.2%)

hy (21) =By (%q). (2.32)

Since the function hl(zl) is real at points on the real axis, this relation
is also a direct consequencé of the principle of reflection. Thus by
means of equﬁtions (2.31) and (2.32), the function hy(z;) is completely
defined at all points of the z;-plane in terms of its values in the half
of the period rectangle which is mapped into the annulus in the z -plane.
Furthermore, the function hy(z;) vanishes at the two points, say

z =c; and —EI, on the side y; = -%i corresponding to the two zeros

z = ¢ end c, respectively, of the function h(z) on the circle |z[ =1 in

the 2-plane.
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It is well knownla) that a doubly periodiq function is either
everywhere constant or possesses infinite singularities in each period
parallelogrem. Since hy(z;) has zeros at z; = c; and -c;, the first
alternative would imply that hl(zl) is everywhere equal to zero. As a
consequence, H(z) would, in accordence with equations (2.20) and (2.30)
be everywhere constant. The latter situation is inconsistent with the
boundary conditions (2.9) satisfied by H(z). Therefore hl(zi) cannot
remain bounded in a pefiod rectangle - nor, indeed, in the half-period
rectangle corresponding to the annulus - but must possess certain in-
finite singularities (poles) in the rectangle. Hencé, hl(zl) is an
elliptic function of the variable zy. As such, it is completely determined,
apart from a constant multiplier, by the locations and orders of its
zeros and poles in a period rectangle - and, consequently, by the loca-
tions and orders of its zeros and poles in the half-period rectangles
corresponding to the annulus in the z-plane and, consequently, to the
original domain of disturbance around the wing in the flow space.

Since the velocity components u, v, and w derivable from
hy(2q) by means of equations (2.6), (2.23) and (2.30) are continuous
throughout the domain in the flow space, including the points of the
Mach cone, and at all points of the arrow wing not lying along an edgel9),
it follows that the poles of the elliptic function hl(zl) are restricted
to lie at the points of the zj-plane corresponding to the wing edges;
that is, at the points 2, = iK;. However, neither the order of these

poles nor the order of the zeros of hl(zl) at the points 2; = ¢; and -Ei

18) Whittaker and Watson, loc. cit. Liouville's-theorem, p. 431

19) See footnote 5, page 6.
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are prescribed by the boundary conditions (2.9). Nor, for that matter,

are the disposition and order of other possible zerosgo) of hl(zl) pre-
scribed by these boundary conditions. It is shown in the following paragraph
that as a consequence of the boundary conditions (2.9) the residues of

the poles of hl(zl) are necessarily equal to zero, but, other than this,

no further limitations are placed on the orders of the poles by these
conditions. Therefore, the function hl(zl) is not uniquely determined by
the boundary conditions (2.9). Consequently the conical flow past the arrow
wing is not completely determined by the boundary conditions formulated

in equations (1.L) and (1.6) for the general flow problem from which the
equations in (2.9) are derived. On the other hend, it is shown in Section
2.6 that the normal force exerted on a finite portion of the wing is
finite only if the order of the poles of hj(z)) is at most equal to twogl).
Since the residue of each pole must be zero, the order of the poles is

then exactly two. The elliptic function hl(zl) is thereby uniquely determined
by the addition of this supplementary condition. As a consequence of
equation (2.23), the function G(Z) representing the solution of the problem
ié then also uniquely determined. Hence, among all the conical flows

over the arrow wing satisfying the boundary conditions in equations (1.h)

and (1.6), there is a unique one for which the normal force coefficient

of the wing is finite. The particular functions hy(2;) and G(z) which

determine the flow with finite 1ift coefficient are given in the following

section.

20) It is known that the sum of the orders of the zeros in a period
parallelogram is equal to the sum of the orders of the poles.
Whittaker and Watson, loc. cit., p. 432.

21) As a consequence of this restriction, the possibility that the
singularities at the wing edges are essential singular points is
precluded.



41

In order to prove that the residue of each of the poles of
the elliptic function hy(2) is zero, let this function be represented

in the neighborhood of a pole, say z; = Ky, in the form

h(%) = fm fm-1_ e SN (2),
114 (21-Ky)m  (z1-Kp)m-1 (2-K1) !

where the coefficlents ag, 8m_1s - - -5 8], &re constants, and ho(zl) is a
continuous function of 2; in the neighborhood of z; = K;. Since the
values of hl(zl) are real at all points of the real axie“in the zl-plane¢
the coefficients &, 8n_1s + + 3 8, are real and the values of the
function ho(zl) are also real at points of the real axis. Therefore, by
eqﬁations (2.19), (2.21) and (2.30), the values of the function H(z) at
points in the vicinity of the point z = iry in the z-plane corresponding

to a wing edge are given by an expression of the form:

H(z)

21
Woo tane + iS hy(») dn |
0

w tano - 1 ap - 1am-1
[+ < .
(m-1)(%1-K7)m-1 (m-2)(2zp-Kp)m-2

Z)

0

= w tany + ia] log(z1-K1) + iHp(z) a

where 2z, = 2Ki/ni loge - iKi/E and Hy(z) is & function whose values are
real at points on the circle lzl = r,. Hence, at points on the circle
lz\ = r, where z = roeig in the vicinity of the edge point z = r i, the

values of the real part of the function H(z) are given by
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R {H(z)} = votana + R 1a; logfe ~ x/2)} .

Since the second term in this expression experiences a finite Jjump of
magnitude ta;n on passing through the edge point %) = rol where 0 = n/2,
the function B(z) cannot satisfy the second of the conditions in equation
(2.9) unless a1 = 0; that is, unless the residue of the pole of hl(zl) at
the point z; = Ky is zero. A similar argument shows that the residue of
the pole at z; = -K; is also zero. Hence, the residues of the poles of

hy(21) at the points z = +K; are zero and, consequently, these poles must

be at least of the second order.

2.4 Determination of the function G(z)

In the preceding section, it is shown that the function G(z) is
expressible in terms of an elliptic function hl(zl) of the variable

g = 2K1/n1 log 2z - iKi/Q having the following properties:’

() Periods LK; and iK{.
(b) Poles with zero residue at z; = Ky .

(c) Zeros at the points 2y = c; and -¢; (see Figure 6)
at which the fupction L in equation (2.24) vanishes .

(d) Real for real values of 2z,

Functions possessing these properties are readily constructed with the aid
of the Jacobi elliptic functions. In this section the function G(2) corre-
sponding to the particular elliptic function hl(zl) having poles of second
order is derived. For, as shown in Section 2.6, the lift coefficient of
the wing is not finite for a conical flow corresponding to & function with
poles of order greater than two at the points corresponding to the wing

edges.
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Consider the elliptic functionee)

This function has the periods hKl and iKi. It has poles of first order at
z; = #K; and is real for real values of z). In fact, this function is real

on all four sides of the period rectangle (see Figure 6):

x) = +2K; and y; = #K{/2
and is such that

(-21) = T(71) = T(z;)
Therefore the derivative

T'(21) = g—zl T(21)

has the same periods and has second order poles with zero residues at

z, = K. Moreo&er, the derivative is also real for real values of 2.

On the other hand, the function T2(zl) also possesses these same properties.
Hence it follows from the general properties of elliptic functions that the
most general doubly periodic function with the periods hKl, iKi, having
second order poles with zero residues at z; = #K;, and which is real for

real values of Z] is a real multiple of the function

T2(g1) + A'T'(%)) - A

)

where A and A' are real constants. However, this function will vanish at

the two symmetrically placed zeros Z; = c; and JEE only if

22) Here use is made of the conventional notation for the quotients of the
Jacobi elliptic functions; e.g., dc(zgsky) = dn(zl;kl)/cn(zl;kl),etc.
It should be remarked that the procedure at this point can be somewhat

simplified by making use of Gauss' transformation introduced in Section 3.2.
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Hence, the function hy(z;) possessing the appropriate properties (a) to
(d) listed above and whose poles aré of the second order is defined by

the equation23)

by (7)) = B[12(z) - 4] - (2.34)
where A is the real constant defined by the equation

A =T2(cy) = T2(-) , (2.35)

and where B is a real constant. The constant factor B is determined by
the boundary conditions (2.9). Thus, by substituting (2.34) in equations
(2.22) and (2.30), it is found that the constant B has the value given by

the equation

Ve tar0 , (2.36)
AKl - 2(le1 + El)

where Ei is the complete elliptic integral of the second kind'corresponding
to the complementary modulus kieu).

The value of the constant A in equation (2.35) depends on the
position of the zeros of the function L(2) in the Z,-plane; that is, it
depends on the location of the points designated 2] =¢; and —EI (see Figure

6). Writing equation (2.24) in the form

23) It is immediately evident that arbitrarily many functions satisfying
the properties (a) to (d) can be constructed by adding a real constant
to an appr;griate linear combination (containing real constants) of the
functions T<(z;), T'(z1), their first, and higher derivatives; the con-
stants being adjusted so that the function possesses the desired zeros.
Each such function gives rise to a conical flow over the arrow wing
satisfying the boundary conditions (1.4) and (1.6). However, except
for multiples of the function in (2.3k4), all those functions have poles
of higher order than the second and therefore yield flows for which
the coefficient of 1ift is infinite.

24) cf. Whittaker and Watson, loc. cit., pp. 517 et seq.
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L= - 1p%(8%-1)2 + 2 tany
2 B(g2-1) - 2i¢ tano

and meking the substitutions defined in equation (2.18), one obtains,
after considerable manipulation, the following expression for the function

L in terms of the variable 2y

(1-k1)2 + Ltklp2
(1+k;) (1-kp)2

L = 2ib csc 20

[T2(z1) - A1] cnzjdnz)

i s (2.
Ll - ibYk; sn ’21] 2 [T(z’l) - 21‘[/ Ky (1+k; )p sc zlndzﬂ (2.37)
where
2
gt (2.38)

and A, is a real constant defined by .the equation

hkl(l+k1)2 p2

A =
(1-k1)2 + hklpe *

It is immediately evident from this that the zeros z; = ¢ and -EE of the

function L in the 3z;-plane are among the roots of the equation

T2(z) - A; =0 ,

whence

() = T(-q) = Ay

Hence, on comparing this with equation (2.35), it follows that the constant

A in equation (2.34) is given by the equation:

bk (1+k; ) %p°

A=Ap=
(l-kl)2 + hklpe

(2.39)
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Finally, the function G(z) representing the particular solution
of the problem of the conical flow over the arTow wing for which the normal
force coefficient is finite is obtained from equations (2.23), (2.30), (2.35),
(2.37) and (2.39); namely,

2
G(z) = -1 A B(1-X1)°K1  gin 20
Yok (1+k1) pen

(1-1b Yiyen 21)2 [1(21)-21 Yk (14K )p sc zqndzy]
z cnz) dnzy

s (2.h40)

where z; = 2Kl/ﬂi log 2z = iKi/Q and the constants b, B, p, and A are given
respectively by equations (1.22a), (2.36), (2.38) and (2.39).
With the aid of equations (2.21) and (2.40), the function H(z)

when expressed in terms of the variable 2z becomes
H(z)) = W, tany + iBi_[¢°(215kl) + k2cd(zl;k1)] en(2)5kq)
-2E(z3ky) + [2(1+ky) - A] Zl} ; (2.41)
where E(Zl;kl) is the fundamental elliptic integral of the second kind25).

2.5 Determination of the Function W(2z) and the Values of the Velocity
Component w along the Wing Surface

In accordance with the last of equations (2.6), the component

W(z) of the complex velocity is given by the integral

W= - }MG(V)va
1

where the choice of the lower limit is consistent with the condition that

25) c¢f. Whittaker and Watson, loc. cit., p. 517.
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the real part of function W(z) venish along the circle lzl =1; it
should be remarked that in order to satisfy the latter requirement it

is sufficient to select any point on the circle |2| = 1 as the initial
point of the path of integration. Making use of the expression obtained

for G(2) in equation (2.40), the component W(z) can be written in the form:
W(z) = i N [dc(il;kl) - klcd(zl;kl)] - PH(z) + Q-log z} sin 2a |
(2.42)

where z; = 2K;/ni log z - iKi/E and the real constants N, P and Q are

defined by the equations

~
gopta(l-k)(1-®)p B _p(1-¢®) sinny
q2[(1-k1)2+hklp2] 2 q2(14p° sinh?y)
P =1/2 _ﬁ}:k1)2q2+hklpe = 1 gg+pasinhaif
2

de[(lhkl)2+hklp?] q2(1+pasinh%i3 ’

g oLk AKN A BE (1-¢°)
& on 12 (1+p2s1nh?f)
in which
q = 8in@ (2.43)
sinfu

The constants B, p and A are defined in equations (2.36), (2.38) and
(2.39), respectively.
The expression for the real part of W(z); i.e., the component w

of the additional velocity, is particularly simple at points on the circle

lz| = r, = e~7K] /4K1 corresponding to the wing surface. For these points

A%H(z)% el

w;otana. Therefore, for z = r,
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W = -C x,,_g_i_n___ag [dc(?ﬂ 0;k1) - kyed(ZK1 O;kl)] - Dw_sin®x, (2.4k4)
b4 R

where

C = (1-¢2) sinh?7 _
(1 + peinn?y) [2(kyKf + B{) - AK{] °

(2.45)

o . AKfa™® - kp(igK{ + Ef)

Making use of the relation in equation (2.15) between points of the
gl-plane and the z-plane, the values of w at points along the segment of
the real.glfaxis corresponding to the surface of the wing are obtainable

from equation (2.44) in the form

2
6] - -Viaa) cvestnzm 131 o o
h =0+ B Y0 -¢5) (1-k3%)
(2.46)
in 20 1485 2
= + Jky(1-k;) C ¥ee 821 - Dv, sin“a

| —

=0- B 2 2

A V03D (1-k8)

The first of these expressions represents the values of w along the upper

side of the segment of the real axis (corresponding to the "lower" surface
of the wing), and the second, the values of w on the lower side of this

segment (corresponding to the "upper" surface of the wing).

2.6 Calculation of the Normal Force Coefficient C, for the Arrow Wing

In the linearized theory of the flow of gases at supersonic
speeds, the difference Ap between the pressure at any point in the stream

‘and the pressure throughout the undisturbed region of the flow ahead of
the leading points of disturbance is given by26)
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bp = -p Vo, W |

where p ., is the density of the gas in

the undisturbed region. Therefore, the

total normal force applied to the Y

triangular tip of the arrow wing

(see Figure 7) is given, within the FIG. 7 ‘(

limits of accuracy attainable by the linear theory, by the integral
etanaf

-1/2 Poo Voo B o (W - W) A&X
—stanr
vhere wo and w; are the values of the velocity component w on the positive
and negative faces (relative to the sense of the Y-coordinate), respectively,
and where 8 is the altitude of the triangular tip. The nondimensional
normal force coefficient C, obtained by dividing this expression by the

2

stagnation pressure 1/2 Pog Yo ~ 8nd the area g2 te.nr of the portion of the

wing surface under consideration is given by

8 tana*
t
Cn=-§Lw.l (wo - wp) &X .
~J -8 tany

The relation between the X-coordinate of a point on the surface
of the wing along the line Y « constant = s sinx, Z = constant = s cosq,
and the § 1-coordinate of the corresponding point on the segment of the
real axis in the g 1-plane can be obtained in the following form from

equations (1.10) and (2.12).

5

1+§]2_

~S
X = 28 s8inxx cscha

26) Sauer, loc. cit., p. 23
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The normal force coefficient can be written in terms of an integral over
the segment of the real fl-axis between the points - Jk; and + Vkl as

follows:

(2.47)

where, making use of the notation employed in equation (2.46),

M = [w171=0+ —[‘371:0_ ) (2.48)

In accordance with equations (2.15) and (2.19), the relation
between the §1-coordinate of a point on the segment of the real axis in
the §1—plane corresponding to the wing surface and the xl-coordinate of the
corresponding point on the real axis in the zj-plane (see Figure 6) is

given by the equation

§1 = -7k on (xpsq).

Therefore, the expression for the normal force coefficient of the arrow
wing can also be written in terms of an integral over the segment of the

real axis between X = -2Ki and X = +2K1 as follows:

2K,
~ 2 .
Cp = -2 Yfxp Sothy f AW cn(xy 3k )dn(xy;k;) l-klsra1 121:1!1)2 dx; .
Voo oKy [l+klsn (xl;kl):l

It is shown in Section 2.3 that the component W of the complex
velocity has singularities of the nature of poles at the points 23 = +Kj
corresponding to the wing edges. Therefore, the velocity component w

representing the real part of this function which appears in the integrand



51

of the integral defining the normal force coefficient C,, becomes infinite
at the two points on the path of integration corresponding to x; = K.
However, the Jacobi elliptic function cn(¥;k;) has simple zeros at

V= #K;. Consequently, the normal force coefficient C, is finite if and
only if the poles of the function W(z) at the edges of the wing are at
most of the first order. Since in accordance with equations (2.6) and

(2.23)

L(Z

h(z) = --W'(z);(__.2 )

it follows that the normal force coefficient Cp for the arrow wing is finite

if and only if the poles of the function h(z), and consequently also those

of the elliptic function hl(zl), are at most of the second order. The only

function hl(zl) which satisfies this condition is shown in Section 2.3 to
be of the form given by equation (2.34), and the corresponding component
W(z) of the complex velocity with the simple poles is given by equation
(2.42).

The value of the normal force coefficient corresponding to the
function W(z) obtained in Section 2.3 is readily obtained with the aid of
the formula in equation (2.47). Thus, making use of the values of the
velocity component w along the upper and lower side of the segment of the
real axis in the Sl-plane corresponding to the wing surface given by
equation (2.46), the increment Aw in the velocity across the wing surface

is given by the equation

Aw =[W]71=o+ -[v] %1=0-

5 (2.49)

- . 2@(1-1{1) C Ve 8in 20 | 1 +€L ' .
P 1/ e1m81) (kg 1)
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Making use of the properties of symmetry of the integrand of the integral
in equation (2.47) and introducing the variable X; by means of the rela-

tion

$1 = -Viq en(xyiky),

the expression for the coefficient Cn can be written in the form27)
Ky 5
4 1-ky8n“(x4;k
c, = 8 (1K) ¢ LOWF sinZ 180 (xsk)
n 1 1 B ) 1
l+k18n (xl;kl)

0

Since
Ky

1-kien?(x1;k1) L x
1tk en(xp5ky) ¢ 2(1+k1)

the normal force coefficient C, is easily placed in the form given in

the following equation

Q
L}

+4aC' sin 20 | (2.50)

where

o = (1-g2) tanhy/2

(l+p281nh2i) 2(k1Ki+E') - AK:I_ * (2.51)

27) See footnote 22 regarding possible simplifications by the introduction
of a new variable by means of Gauss' transformation considered in
Section 3.2.
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PART III. SUPERSONIC FLOW PAST AN ELLIPTIC CONE AT ZERO ANGLE OF ATTACK

3.1 Statement of the Problem,

In this part of the report there is constructed an exact solution of
the linearized conical flow equations for the case of the flow past a body in
the shape of an elliptic cone whose axis of symmetry cbincides with the direction
of the undisturbed stream velocity w__, ahead of the body. Following the general
theory in the first part of the report, the conical body is assumed to be con-
tained entirely within the Mach cone attached to its vertex. This problem is a
natural generalization of the problem of Karman and Mqore [1] for the flow past
a circular cone at zero angle of attack and therefore amply deserves the attention
given it here. In addition, the problem of the flow past the elliptic cone has
many points in common with the flow past the arrow wing treated in Part II since
the latter surface may be regarded simply as the limiting case of an elliptic
cone. This connection between the two problems has already been referred to in
Section 2.2.

In accordance with Section 1.2 the problem is referrred to a doubly-
connected region of the ¢ -plane (see Figure 1) into which the region of the
XYZ-space between the material cone and the Mach cone is projected by the trans-
formation (1.10). The problem in this form is to determine the function F(¢ )
such that the components of velocity u, v, andw forming the real part of the .
complex functions U(S ), V(& ), and W(¢& ) defined by the “Weierstrass integral
formulae" in (l.lh):eatisfy the boundary dondition; (1,15) and 1.16) on the
boundaries of the region in the g -plane, In this case, the imner boundary of
the region correponding to the elliptic cone is an oval curve belonging to the
family of cyclids referred to in Section 2.2. This family of curves algo includes

as a number the outer circular boundary of the region.
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In the treatment of the problem of the elliptic cone presented
here, use is made of the system of curvilinear coordinates in the § -plane
which employs as a set of coordinate lines the family of cyclids to which
the immer boundary of the doubly-connected region belongs. In other words,
by a method of conformal mapping, this region of the { -plane is mapped
periodically into a strip in another plane in such a manner that the femily
of cyclids corresponds to -parallel lines in this plane. It is shown that the
system of curvilinear coordinates in the § -plene corresponds to a system of
non-orthogonal elliptic cone coordinates in the XYZ-space. One of the
families of coordinate surfaces is the set of elliptic comnes which is pro-
Jected by the transformation (1.10) into the family of cyclids in the

g’-plane and which contains the material cone as a member.

3.2 The Elliptic Cone Coordinuates Appropriate to the Problem.

It was asserted in Section 2.2 that an elliptic cone in the XYZ-
space is projected by the transformation (1.10) into a cyclid in the<; -plane
which surrounds the foci iVEI and is contained within the unit circle

'g‘ = 128). Several of these cyclids are indiéated in Figure 4. It was also

indicated in that section that the relation

§ = Yy sn(zy3k)) (3.1)

maps the doubly-connected region of the & -plane within the unit circle
into a rectangle in the 2)-plane (see Figure 6) in such a menner that the
cyclids of Figure 4 correspond to the lines parallel to the real axis in the
plane of the complex variable Z) =X+ iyl. It is shown in this section

that the lines X = const. and ¥ = const. correspond to two femilies

o8)

Since the elliptic cone under consideration has zero engle of attack, the

distinction between the § and S . planes of Part II is not necessary here,

Therefore the §1fplane of Part”II will be denoted in this part simply as
the & -plane.
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of surfaces in XYZ-space which together with the surfaces R = const. defined in
equations(l.IOa) #ywm o triple system of coordinate curfaces, the material
cone belonging to the family of elliptic cones corresponding to the lines
X = const.
Separating the real and imaginary parts of the complex quantities
in equation (3.1) by making use of the addition theorem for the Jacobi elliptic

function sn(zl, k12] 29) ,iie following equations are obtained:

§ - _V—i— snxlcniyldniyl,
1, 1 2.2 2
1 kl 87X, 80 iyl

sniylc.nxldnx1

M=
l-k:L 8n°x, sn iyl

and, after slight changes, also the equation

2 21
§,_+ r sn xl - 8n vy
"] 1-k 28n2x snei ‘

1 188 1y

By substituting these equations into equations (1.10) and (1.10a) the
following relationships between the Cartesian coordinates X, Y and Z of the

flow space and the parameters X5 ¥q» and R are obtained

snx cniy¢dni
BX = -2RYk 1 s,
1 1-k snex l+k sngiy
1 1 1 1l
— CNE dnx] sni '
BY = 21R iy L = 23'1 , (3.2)
1~klsn Xy l+%Pn iyl
1+k,80°% 1-k snziy
z=pr_1__1 "1 71,

2 2
l-klsn X, 1+klan iyl

29)
Cf. Whittaker and Watson, loc. cit. p. 4ok,
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Inspection‘reveale that each coordinate 1s a product of factors depending
separately on X15 Yys and R. In particular, each of the six factors which
depend upon the perameters xl apd MY mey be considerably simplified by means
of Gauss' transformetion of the Jacobi elliptic functions. 30) In such
| & transformation thevratio Ki/Kl of the fractional periods is doubled. Conse-
quently, the modulus k1 of the elliptic functions is also changed, and the
. independentvvariable undergoes & change. in scale. The following table gives

: a:camplete review of the changes:

= (l + kl)zl’ ‘ (3'3)
_2)k 1.1, 1 .Yk
k l " kl or i E(W 1+V l)} (501‘)
1+k'*—2_;
1+ kl
K= (L+ KK, K =2 (1+k)K
' 3.5)
E' .ol
K K
' sn(zy;k;)
en(zj5k) = (3 + kl)L + kyene(z)3K)
en(z;k) = on(z 3k )dn(z 5k, ) ,  (3.6)
1+ klene(zlskl)
l-k ena(z sk )
dn(z{;k) = —2 i U

1+ klsnz(zl;kl)
In each relation the quantities on the right-hand side are in terms of the

parameters employed in the development in Part II while the new variables,

30) _
The formulae for Gauss' transformation of the Jacobi elliptic functions
can be found in R. Fricke, Die Elliptischen Funktionen, Leipzig (1922),

Vol. 2, pe93.
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moduli and periods introduced by Gauss' transformation are on the left-

hand side.
| Making use of the relations (3.3) to (3.6), the expressions for
the Cartesian coordinates in (3.2) become when expressed in terms of the

complex variable -zi = xi + iyi as follows:
BX = -kR sd(x!;k) cn(iyi;k),
BY = ikRed(x{;k) sn(iyj3k), (3.7
Z = Rnd(xi;k)_dn(iyi;k).

Finally, it is convenient to introduce the complex variable 31)

z = X + iy by means of the relation
C e
2z =2 =K. (3.8)

The expressions for.the'Cartesian coordinates (3.7) become when expressed in

forms of z as follows:

8% = X Ren(%sk) cn(1y;k),
BY = ikRen(x;k) sn(iy;k). (3.9)
Z = 515 R dn(x;k) dn(iy;k)

Making use of equations (3.1, (3.8), and the last of equations (3.6),
the transformation from the doubly-connected region in the § ~-plane to the

plane of the complex variable z is found to be given by the relation:

. dn(z3k) - k'
§ k zn(z;k) ' (3.10)

—7 , _
3 )The complex variable z introduced at this point snouid not be identified

with the variable z used in Sections 2.1 to 2.4 on the solution of the
problem for the arrow wing. No confusion should result because of its use
in the two senses for the two separate treatments.
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It is immediately evident from this relation that the points of the unit

circle [ SI =1 in the ¢ -plane correspond to points of the line y = -K'

in the z-plane between x = o and x = BK; the mapping of the unit circle onto

the line y =-K' is repeated periodically in segfiments of length kK. Also

the points of the (two sided)slit along the real axis in the < -plane be-

tween S = +’ﬁc1 and -VE]._ correspond to the points of the real axis in the
z-plane between x = o and x = K, Hence, the doubly connected-region of

the g -plane bounded on the exterior by the unit circle and on the interior

by the slit along the real axis between § = + T/El is mapped into the folluow-

ing rectangle in the z-plene by means of the relation (3.10):

o< x< ¥K , K'< y o. (3.11)

The formulase (3.9) can evidently be considered as relations between
the Cartesian coordinates (X,Y,Z) of a point in the flow space and a system
of curvilinear coordinates (x,y,R). The geometric significamce of this point
of view becomes clear when the surfaces for which either x,y, or R is constant
are determined, Thus, by eliminating successively the pairs x and R, y and R,

and x and y from equations (3.9) the following three equations are obtained:

2 2 2
B°X . _BY Z 0, (3.12)

(y;k')  k2ec®(y;k')  dc2(ysk')

-_p%&2 8% B _, ) (3.13)
k2cn2(x§k) kesne(xgk) dne(x;k)

72 - p2(x2 + Y?) = R° . (3.14)

The first of these equations represents a family of elliptic cones around
the Z-axis. The major axes of the cross sections of these cones by planes
perpendicular to the Z-axis are horizontal (i.e., parallel to the X-axis).

The second equation determines a family of elliptic cones around the X-axis,
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vhile the third represents a family of hyperboloids of revolution about the
Z-axis. These three families of surfaces constitute the coordinate surfaces
for the system of éoordinates (x, ¥, R). These surfaces are not orthogonal
in the ordinary Fuclidean sense. Theréin lies their greatest disadvantage.
However, their advantage lies in the fact that the differential equation |
(1.2) becomes separable when expressed in terms of the variables of x, y, and R.

Consider, in particular, the family of elliptic ccmes (3.12)
corresponding to the lines y = const. in the z-plane. As the value of y

approaches -K', the corresponding cone approaches the Mach come, namely,
B2(x2 +Y%) -22=0 . (3.15)

On the other hand, as the value of y approaches zero, the corresponding cone
approaches the arrow wing formed by a sector in the XZ-plane. Thérefore,
the cones (3.12) cooresponding to the parallel lines in the z-plane between
the lines y = O and y =-K' sweep out the region of XYZ-space between the
Mach cone and the plane sector. Let the surface of the symmetrically placed

conical obstacle in the flow space be given by the equation

-22=0, (3.16)

where a > b and, since the body is entirely contained within the Mach come,
Bb< Ba< 1. (3.17)

This cone is included in the family of elliptic conee (3.12) and corresponds
to a particular value of y, say y = - Yor provided that k' and ¥, are defined

by the equations

kve - l - 2232
1 - p2p2

J

.18
8n(yosk') = +b . (3-19)
a



It is evident from the preceding discussion that the XYZ-space

between the Mach cone and the material cone is mapped into the rectangle

<
=

N

o € x € IK, v5y%o0, (v, S K') , (3.19)

in the z-plane bj ‘means of the coordinate transformation in (3.19) provided
that k' and y, are defined by (3.18). This mapping is effected in such a
manner that the Mach cone corresponds to the side y = o and the material
cone, to the side y = -y,. Aé a consequence, with these values of k' and
Yos the transformation (3.10) effects a mapping of the doubly-connected
region in the S -plane bounded by the unit circle and the oval-shaped
cyclid corresponding to the material cone onto the rectangle (3.19) in

the z-plane, the unit circle and the cyclid corresponding respectively

to the sides y =-K'and y = -y,.

3.3 Formulation of the Problem in Terms of the Elliptic Cone Coordinates.

The functions U(S ), V({ ), and W($ ) of the complex variable
vhich are defined in Section 1.2 and whose real parts are the components
of the velocity u, v, and w, respectively, are readily expressed in terms
of the variable z. Thus, by substituting in the formulae (1.14%) the value
of \S given by equation (3.10), the corresponding "Weierstrass integral

formulae" for the functions U, V, and W in terms of the variable z becoméa)
U= - Tx%‘f dez G(z) dz,

\

- i_-_ﬁ_ f nsz G(z) dz, (3.20)

=
]

1
o f csz G(z)dz,

32)The function G(z) defined here should not be confused with that defined
in Section 2.1 in connection with the separate problem of the arrow wing.
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where G(z) is an analytic function of z in the rectangle (3.19)of the z-plane

and is related to the function F({ ) of equations (1.14) by the equation

P(3) = a(z) (&) (3.21)

.

It is also convenient to express the functions U, V, and W in terms

of the complex variable z' = x' + iy' defined by the equation
z' = +2 + iK', (3.22)

When expressed in terms of this variable equations (3.20) become

<
[}

-1 %.f cnz' Ci(z') dz' ,

<
1]

- iﬁf snz' Gy(z') dz°', (3.23)

Ti;" dnz' G, (z') dz' ,

where the relation between the function G,(z') and the function F(S) in

equat.ione (1.14) is given by the équa.tion
F(S) = ¢ (z") (%25,-)“2 . (3.24)

Actually these relations are used in the form:

du aw
T -~ Poedt g o
| (3.25)
a¥_= - Bk' sdz' dW_
dz! dz!

The boundary conditions (1.4) pertaining to the material cone are
easily expressed in the form which the componente of velocity u, v, and w

must satisfy on the side y = ¥, of the rectangle in the z-plane. The function

denoted by S(X, Y, Z) in equation (1.4) is in this case understood to
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represent the left-hand member of equation (3.16) or the left-hand member
of equation (3.12) in which y = -Yo- Thus, making use of the relations (3.9)

and setting y = -yo, the boundary condition (1.4 ) assumes the form:

B dn (yo5k') cd(x;k)u + Bk' ds (y,5k') sd(x;k)v - w = W, . (3.26)
k k

This condition is a linear expreSSion in the functions u, v, and w. However,
the presence of the variable x in the coefficients of this expression gives rise
to considerable complications in the procedure for determining the functions
u, v, and w. There is some advantage in the fact that the functions cd(x;ik)
end sd(x;k) which are present in the coefficients of this expression are also
present in the relations (3.25).

The boundary condition (1.6) pertaining to the Mach cone becomes
in the z-plane simply the condition that the functions u, v, and w vanish

along the side y = 0 of the rectangle in the z-plane. Thus, for y =0
u=v=wv=0, (3.27)

As a consequence of the foregoing discussion, it follows that the
problem of determining the conical flow past an arbitrary cone represented by
equation (3.16) corresponds to determing the analytic functions U(z),

V(z), and W(z) which satisfy the relations (3.25) throughout the‘rectangle
(3.19) in the z-plane and whose real parts u, v, and w, respectively, satisfy
the boundary conditions (3.26) dnd (3.27) on the sides y ==y, and y = 0,
respectively, of this rectangle. The procedure of determining the solution
of the problem in this form is to express the functions U(z), V(z),and W(z)
in terms of Fourier series in the‘compléx varisble z with period 4K, and

then to evaluate the coefficients by means of the differential relations

(3.25) and the boundary conditions (3.26) and (3.27).
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3.4 Special Fourier Series Employed in the Solution.

In view of the fact that the elliptic cone y = -y, does not have an

angle of attack, the velocity components w, u, v possess the following symmetry

properties:

w u v
X =0 symmetric symmetric antisymmetric
x=K " symmetric antisymmetric symmetric

This is evident when one remembers that x = O means Y = O or the plane of the
major axes, and x = K means X = O or the plane of the minor axes of the ellipses
Z = const.

Therefore let the functions u, v, and w be expressed in the following

form:

)
Co(K' 4+ ¥) +Z Cnshinx (K' + y)] cos nix
K K ’

W=
1
u = 3 Ansh[(z‘n + ) (K* + y)] ces (2n + l)ax (3.28)
' X X
v =

5% anh[gen + V)x (K' + yﬂ sin (2n + 1)ax
f X X

Since the complex velocities W, U, V are needed in (3.25) they will be recorded

here:

[
W=-1C,2' - iZE Cpsin nnz'
) K

[ o
U= - 12 Agein (20 + 1)xz' (3.29)
' K ’
[
V= - 17 Bpcos (2n + Linz'
, X

It will be found convenient to write all these Fourier series as series of
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exponential functions proceeding from - oo to +oo0 . For (3.29) one gets:

+© i nx z'
W= - 1C 2" 1/2'Z'c K ;¢ =-C
= - el - n® 3 %en ¥ Un
P 20+ 1 g
U -1/2 Ae ¢ K ;a = -A 0
= ne > Bonsl n., (505 )
e 2n+ 1%
V= - 1/2 e 2 K ;B 1=+
Bn 5 Pon-l By .
-~

The accent on the sum sign of the first formula indicates that the term with
n = o is absent, The three series (3.28) may be written

cP9

nxx
K Vs
v = Z Nne‘
-0o
+» i2n +1lnx
Z 2 K
u = Lee (3.31)
-0
oo jon + 1 x x
v = Z Mne K ’
~e
with
= .S ' = N
N, =1/2Cgsh .21':"' (' +y) =+8,
N, =C, (K' + yo) ,
Ln = 1/2 Anrn = 4+ L_n_l , (3.32)
Mn = 1/21 B, Ton=- M.

’

h2n+11_ t
8 5 K(K+yo),

-
"

The relations (3.25), as well as the boundary condition (3.26) call for the

Fourier development of the elliptic functions cd and ed or x or z' which are
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33)

in the text books. When written as series of expotentials, they are:

>
* 1(2n +1)x z'
cdz' =Z a,e 2K ’
-De

flag i(2n + 1)x 2'
sdz' = ] Bpe 2K (3.33)
-~ 0
with
n
o, = _= (-1)

KK sh(en + 1)x k'  ’
2K

n
By = _=X (-1)
21kk'K ch(en + L)x &' *
2K

3.5 Solution in Terms of Fourier Series.

The relations (3.25) make it possible to express the series coefficients
A, and B, in terms of C,. We introduce the derivatives with the respect to z' of

the series (3.30) and also the series (3.33) into (3.25) and obtain:

i2n+ 1 n 2!

-in S (2n+ 1)A e 2
gz (e,

Ri=

— i2n+1lxz — i Mnz'
=BZ ape 2 K (-100-%%2 e K ),
” M

In the series product we rename indices as follows:

n+m=n';m=A;n=n"-x . (3.34)

35)Cf. Whittaker and Watson, loc. cit., p. 511.. The formula for the Fourler

series of cnu on this page contains a typographical error: The exponent
of q in the denominator should be 2n + 1 instead of 2n - 1.
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Then
— j2n + 1 2!
Z (n+1)ae 2 K
mn
2n + 1 xn en' ¢ 1 ¢
i z! i '
e 2 K - 2
=+ B(Cq Z one + K ; % @ 1 MCpe ).
Therefore
i 1,
A = _KQ T (Coom + _"a.f ; an_hxc)\) . (3.35)
Similarly:
LiKk! 1 x
Bn = ™ P on + 1 (CO Bn + -Q_K; ﬁn-x ch) . (3-36)

We shall now treat the boundary condition (3.26) in the same way. Using the
series (3.31) for the real velocities and the series (3.33) (but for the real

argument x) we get:

i2n+1_£Z 12’“"'1.1'1.
e

EdnyZ e 2 K 2 K Ly
k ‘om/an —
gentlnx s+l nx
k! 2 K i3
+Lk—dsyo Bne . Mpe 2 K
innx
- N e K =W

Now we rename indices as follows:
m+n +1l=n"yms),n=n"-)\-1

/7

vhereupon the last formula becomes:

{nrx n'nx
K B any, Z Z °’~n'-x-1 Lye B

jn'nx S
i on X
dBYQZ Z Bn! “\-1 M)\e K -Z Nne K = woo
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By comparing coefficients the following equations result:

E any, Z % -nly, - dsyOZ Br-n M\~ Fn = v, J‘n, (3.37)

In this system it is sufficient to regard n as going from O to co , because
all the expotential series are actually cosine series.
The last step is to express the LA and M, in terms of the C)\ by

means of (3.32), (3.35), and (3.36). We introduce the following abbreviations:

> v-l v+l
)‘/"“ Z 2y + 1 )I'V ’
(3.38)

6, =2 By B

A V=X Py

,"Z'Qv+l Tv .
Y=~ 00

The result of the substitution is for n = o:

2°Kany, o - 2pPk'PRaeyy o -<K-+y°)§ ¢
kx kxn oo

(3.39)

s

S 2 512 |
+%{ ;L dnyo/‘so -Q-E_deyo/u. G;/‘&} c/"=w°°

and for n> o:

12
(2 gy o - 2 ey, 5, | o

+Z{ %2 dny, )LSM}L Qi dsy, /u. }

’A—
-1/2eh (K' +y,) Ch=0 .

(3.40)

The sums with respect to o vhich at present run over all positive and negative

values may be written as sums from zero to infinity. With

5, = +
AT o T ey (3.41)
ZXJ," x’r_'l' GJK, )‘_ )



the equation system becomes

K g2
ig;ti any, Soo = LnTK dey, Z,, -(K'+ y°)} %o

(2] o » )
+ Z {%"dnyo/"soft’ E.a_:'_z _deyo “’Zo/,.} C, =w

ft:l ". e

{Eia_ﬁ dny, Spe - ei%i asy, Z, } C, (3.42)
S ( g2 2

+/~Z~{1§F "o - Fap ‘?‘2%"‘“’0#2«#} *

-l/QBhEE“.(K'+yo) c,=0 .

For this it is more convenient to write

E ST N (3.43)

g2 | %2
L LA

2 '
s =B any S - P.Q_f‘_;‘i. dey, 2, (3.14)

2 12
&p = EE dnyof‘snft' Bik_ dsyo/“’znulu,
- 1/2 o0 B (k1yy,) -

The infinite series S and will be dealt with in Appendix .
The #olution of (3.4h4) proceeds as follows: After having calculated

the coefficients 8, “ for an elliptic cone of given eccemtricity (k) and

flare (yo) subjected to a windstream of given speed (v, ,B) the infinite

linear equation system (3.43) must be solved for the coefficients C The se

i *
coefficients are then substituted into the first equation (3.4L4). The
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component w of the additional velocity -- the only one which is important
for the calcuation of the drag -- is then completely known. Should the
camponents u and v also be desired, the Fourier coefficients A, and B, may

be found from formulae (3.35) and (3.36).

3.6 BNumerical Example.

In order to test the practicability of the sclution a numerical ex-
ample was calculated. Unfortunately time and help were lacking to test,
through calculation of several examples, the fastness of the convergence as a
function of the parameters such as Mach number, eccentricity, flare angle,
etc. As soon as values for these parameters have been decided upon, the
coefficients of the infinite linear equation system (3.43) which are given
through (3.44) and (3.38) can be calculated.

Since the coefficients a, increase rapidly with increasing indices,

{U.-
it is convenient to divide the nth equation by its diagonal coefficient & ne
The thus normalized equation system is

Z
P

N .
a o =W a.'l $

n/u. /n- ©0 00 no o (3.1»5)

where

N
a

np = an/t/aim .

Finally it was found convenient to symmetrize the matrix by multiplying

(3.45) vy alrfk and summing with respect to n. In this way one gets:

Ak)&c/‘- = Ry E (3.96)

where

N N
A = % Bk ®nu (3.47)
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is evidently symmetricih). The solution of the ‘equation system (3.46) can

be effected in several ways. First a successive-approximation scheme fashioned

35)

after the Liouville-Neumann method for solving integral equations was
employed. However, the convergence was found to be slow and the fluctuation,
especially for the higher QM- , to be considerable. Therefore, the following
method was employed56): In the first three equations (k = o, 1, 2) all terms

with ,/..)2 were neglected and Co as well as C, computed. Then the equations

1
with k = 2, 3, 4 were taken, and terms with /¢>h-were neglected. ' In the terms
with /¢.= o and 1 the Just calculated Co and Cy were used. From these equations
Co and 03 were obtained. The calculation was continued in this fashion but
since C3 was already of order 10°h of Co the accuracy attained was regarded as
sufficient. As a check the so determined values of CP’ were re-substituted into
(3.45) and the residues, or differences of the left sides minus the right sides

'were calculdated.

TABLE I
n Residues of Equation (3.45)
o} .00002
1 - .00004
2 - .00000k4
3 ,00001

Table of residues, i.e.; of the differences of
the left hand sides of (3.45) using the calcula-
ted values (3.51) minus the right hand sides.

sh)While a symmetric matrix is advantageous one has to accept the disadvantage
that now every equation of (3.h3) has a right hand side. There is little
doubt that the solution scheme to be described immediately could have been
applied to (3.45) directly.

35)Cf. Whittaker and Watson, loc, cit., p. 221.
36)This method is due to Mr. H. Schamp who carried out the numerical
calculations.
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Since these residues were found to be satisfactorily small, the thus obtained

C, values vwere regarded as final.

’b

In the actual numerical example the following values were used:

B =1, w~=1f2~c,M=V§. . | (3.48)
By taking |
k = .316227; k2 = .1, k' = .948681; k'@ = .9, (3.49)
K = 1.6124; K' = 2.5781 ,

a one-parameter family of elliptic cones 1s selected which contains cones
approximating the (circular) Mach cone down to ean arrow wing of zero thickness

for which

tgy = .316227; y = 17°33

a'being the Euclidean semi-flare angle (see Section 2.1). Finally we choose

one particular cone of this family as material cone by taking

3, = 1.0383; .2‘."_ Er-fo-15 . (3.50)

Its flare is characterized by the ray along the top vertex

BX = k sd yo.Z
which is naw37)

X = .37133%

and by the ray along the side

BX = k Bd y5.2

which is now

X = 47482

ﬁ)‘131111':1:10 functions were computed by means of the tables: L. M. Milne-
Thomson, Die Elliptischen Funktionen von Jacobi, Berlin, 1931.



The two semi-flare angles which belong to these rays are 20°28' and 25°24!'
respectively. The coefficients of the linear equation system (3.43) or of
the systems (3.45) (3.46) derived therefrom are given in Tables IT and III.

The solution by means of the method just described is:

CO = .27522 y
Cl = '0073""50 p)
(3.51)
C, = 000051826 ,
03 = ,000012955 .

Each of these coefficients must yet be multiplied by w_, or 1/50. These, then,
are the Fourier coefficients of the velocity component w of the first formula
(3.28).

Since C, is only about .04 of C, & good approximation would be to
put w = C, (K' + y) and to calculate u end v from (3.25). This is not very
surprising since the elliptic cone chosen for the present numerical test does
not possess a very marked eccentricity. It is to be expected that for cones

more closely approximating the arrow wing the convergence will be less rapid.
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APPENDIX TO PART III

Alternative Expressions for SM»

£
The series S%. and Z)\ are of prime importance for the cal-
/V
culation of the coefficient matrix & p of (3.43). For rapid calculation

and for high values of the indices it is sometimes convenient to use formulae
different from (3.38). The following developments are carried out on the
gseries S)\/.. only. Completely analogous formulae - suppressed here may be
derived for Z’"/‘" . We may write S)‘)“' using (3.33):

+00
S’*/t— B %_Z:(av»x ¥ av+x)(av Vs ¥ av+/-.) Z,‘r—:]‘_‘ s (3.52)

with
b= sh (2v +1)0) '
vhere  is used as abbreviation for (x/2K)(K' 4 y,). Let, in this ap-
pendix, a prime stand for the derivative with respect to ')7 .
Then :
S)ifa. = %Z (@y, 5 + o, +x)(av-/u + av+/¢. )
) e£2(v'>‘)+l]7

e(2;’ +1)/7

1 22

=3 e 7Z a, (av_/‘_ +av+/‘
1
2

+ SaM‘Zavﬂ (a, R + av+/;) eL"‘f"*””]?
= % QQX"Z a (ab.ﬂ_/“_ + ae'+x+),) e(2¢+l)’7
(2@'+l)7

1l -2Ms
t3e Z as_(ae,_.x_’u + as'-M/J e
Let us use the abbreviation
(2e°+1)
Tg = Z U .k 5 © K

DA

-(2¢ +1)7
Ok % ° P



Therefore
-2K
Tx (1 -e 1 ) =2 Z Or x %6 ch(2¢ +l)7

= ]
5,0

Going back to the more general s,: we have

' 1.2
S)‘,“'=20 "' (Tlu-x+T-/«.-7~.)
-2\
+%e i (TM/A. +Th-/«.))

for which one may write:

ch( g +\ -\
Sop i‘iL%—cm,L-x PREW: ,ﬂ) S'/ux,o} (3.53)

This identity shows that it.-is merely necessary to have a formula for

S! o Sucha formule will now be derived. From (3.33) it is seen that
, .

N _
Z on+l 2‘.__12+1 Xz
cd(z+1yl) =L o e( +1) (2n )Ef

where yl is some real parameter small enough not to destroy convergence.

Multiplying this series and (3.33) ve get:

( 2/‘- +1) 1)\12

cdz * cd(z+iy,) = Z Z a K ,

a
-\
e
and therefore

cdz cd( z+iyl) + cd( .z-iyl)} =

ZZ (a -7~.°’ +a/‘”‘ ,“)ch(a)u+1)-k—e K
A
-2 s T (3.54)
A N0

The function on the left is therefore a generating function for the S): 0
)

To obtain an expression for S)" 0 in closed form we merely have to develop
)
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the elliptic function on the left in a Fourier series. This is done by
the standard procedure38) of integrating around the period rectangle and
taking residues at the poles z = K + iK' + iy;. The result is
ARy
Y sh K].
| - - rmm— . ! ———— -

S)\,O = ( 1) Kk2 CS(yl,k ) kﬂK' " (3'55)

sh <

From this S may be obtained by integration with respect to y. From
’ }

X,0
(3.55) and (3.53) one may readily extrapolate the S sums for large values

of the indices.

28) cf. Whittaker and Watson, loc. cit., p. 510.
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