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Abstract 

 

Kinesin motors play an indispensable role in intracellular trafficking by driving 

the long-distance transport of protein and vesicular cargoes along microtubules.  My 

thesis work has focused on uncovering regulatory mechanisms that mediate 1) kinesin 

autoinhibition, 2) cargo complex formation, and 3) polarized transport due to preferential 

microtubule track selection.   Kinesin motors generally are kept inactive in the absence of 

cargo.  My work demonstrates that KIF17 (Kinesin-2) is self-inhibited by assuming a 

folded conformation that allows a weak coiled-coil region in its stalk to directly contact 

the motor domain.  This interaction prevents KIF17 from moving on microtubules.  The 

cargo binding tail does not play an inhibitory role, but is nevertheless important in 

regulation as it functions to load KIF17 into cilia.  KIF1A (Kinesin-3) is also inactive in 

the absence of cargo due to inhibitory regions that include the FHA domain and two 

adjacent coiled-coils.  My work further demonstrates that KIF1A motors undergo 

processive motility as dimeric rather than monomeric motors using their neck coil to 

dimerize.  Kinesin motors are relieved of their autoinhibition by cargo binding.  

However, as there are many different cargoes that require transport by the same kinesin 

motor, I have investigated whether specific cargo proteins compete or cooperate with 

each other for transport.  My work shows that while some cargos are transported 

independently, other cargos such as JIP1 and JIP3 do form cooperative complexes with a 

single motor that are essential for efficient transport.  The JIP1/ JIP3/Kinesin-1 complex

 is formed due to an interaction between JIP1 and JIP3 and distinct binding sites on 

Kinesin-1 for each cargo.  Once cargo is loaded, kinesin motors have to transport them to 

their correct subcellular destinations.  I have investigated whether Kinesin-1’s preference 

for certain types of modified microtubules can direct the polarized sorting of cargo into 

the axonal compartment of neuronal cells.  My results indicate that several types of 

microtubule post-translational modifications additively or synergistically mediate 

Kinesin-1’s preference for axonal microtubules and its sorting mechanism.  Overall, my 



 xii

work contributes to our understanding of how kinesin motors are activated and attached 

to their cargos in order to transport them to specific subcellular destinations.
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Chapter 1: 
Introduction 

 
A cell relies on intracellular transport in order to maintain its proper morphology 

and functions.  Molecular motors of the kinesin, dynein, and myosin superfamilies use 

the cell’s microtubule or actin cytoskeletons as highways to transport cargoes to their 

appropriate cellular destinations.  Typical cargos include large organelles, membrane 

bound vesicles of the secretory and endocytic pathways, cytoskeletal components, and 

protein or mRNA complexes [1, 2].  The mechanisms underlying individual motor 

regulation, cargo recognition and release, and sorting to appropriate cellular locales are 

only beginning to be discovered.   

The kinesin superfamily is divided into 14 families that all contain a well-

conserved motor domain [1, 3, 4].  This ~350 residue domain binds and hydrolyzes ATP.  

The motor domain couples this ATPase activity with its ability to attach to and generate 

movement along microtubules.  Many kinesins contain the motor domain (or head) at one 

end, followed by a stalk region containing short or extensive alpha-helical coiled-coil 

regions which function to dimerize the motor.  Cargo binding regions follow, or in some 

cases are intermixed within the stalk, and are quite divergent among the kinesin 

superfamily, and even within families, allowing for diversity in cargo binding and motor 

regulation [2]. The linker region between the motor and stalk is referred to as the neck, 

which in some cases has been shown to be important in motor regulation or determining 

direction of motility [5, 6].  

In considering kinesin mediated vesicular transport, it is helpful to recognize the 

basic steps likely involved (Figure 1.1).  First, kinesin motors must be activated by 

binding to cargo, possibly with the help of other regulatory complexes or post-

translational modifications.  Second, the activated motor/cargo complex binds to 

microtubules and begins processive movement, defined as taking multiple steps along 

microtubules without dissociating.  Third, the motor reaches its destination where it
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dissociates from the microtubule and its cargo.  This step may occur spontaneously or 

may require the help of an “inactivating” complex or post-translational modifications.  

Finally the motor diffuses or is transported in an inactive state back to where it will be 

used again for cargo transport; although it is also possible that the motor is simply 

degraded at this point.   

My research has focused on three specific questions relating to the first two steps 

of this kinesin transport cycle.  1) What are the molecular mechanisms keeping different 

kinesin family members inactive in the absence of cargo?  2)  How do kinesins attach to 

and coordinate the transport of their various types of cargo?  3) Does kinesin’s preference 

for certain types of modified microtubules direct polarized sorting of cargo to the axonal 

compartment of neuronal cells?  To address these questions, I have focused on a small 

subgroup of the kinesin superfamily that are all well documented in their involvement in 

vesicular transport; specifically, Kinesin-1 (also known as conventional Kinesin or 

KIF5); KIF17, a Kinesin-2 family member; and KIF1A, a Kinesin-3 family member 

(Figure 1.2). 

 

AUTOINHIBITION 

Kinesin-1 

 Kinesin-1 was the first kinesin identified and is the most extensively studied of 

the kinesin family members.  It is composed of two heavy chains (KHC), each containing 

an N-terminal motor domain, followed by an extensive coiled-coil stalk with multiple 

flexible hinge regions, and a globular, cargo binding tail.  Two light chains (KLC) bind to 

the heavy chains using heptad repeats and are also composed of six tandom TPR protein-

protein interaction domains that are responsible for binding cargo (Figure 1.2).    

Kinesin-1 is a highly processive motor that coordinates its two motor heads to 

move in an alternating, hand-over-hand stepping manner over long distances.  Each step 

is about 8-nanometers in size, corresponding to the length of a tubulin dimer, the building 

blocks of the microtubule lattice.  Kinesin-1 moves toward the plus-end of microtubules 

or generally towards the cellular periphery [2, 6, 7].   

Because Kinesin-1 uses a considerable amount of ATP to fuel its motility, it is 

essential that this activity be tightly coupled to cargo transport so energy is not 



 3

unnecessarily wasted.  Consistent with the existence of an inactive state, soon after 

Kinesin-1 was identified, cellular fractionation studies revealed that a majority of 

Kinesin-1 resides in the cytoplasm as a soluble protein with inhibited microtubule-

activated ATPase activity [8-10].  Electron microscopy, sedimentation assays, single 

molecule analysis, and FRET stoichiometry have since shown that without cargo bound, 

Kinesin-1 is inactive and folded head to tail [6, 11-19].  This autoinhibited state is 

maintained by the IAK region (consisting of the three amino acids: isoleucine, alanine, 

and lysine) of the KHC globular tail and by KLC, most likely through multiple weak 

electrostatic interactions with the neck and motor regions [6, 12, 14, 19].  These 

interactions in addition to folding the motor lengthwise, head-to-tail, separate the motor 

domains most likely through an unwinding of the neck coiled-coil [18].  Overall, this 

folded conformation prevents the motor from interacting with microtubules or 

exchanging ADP for ATP when not bound to cargo.  

Autoinhibition of Kinesin-1 is relieved by cargo binding.  As the two regions 

shown to mediate inhibition of motor activity, namely the IAK region of KHC’s tail and 

KLC’s TPR domains, are both regions known to mediate cargo binding, it is a compelling 

theory that cargo binding to either, or both, of these regions activates Kinesin-1.  Indeed 

early studies showed that attaching beads to the KHC tail, as a cargo mimic, resulted in a 

motile Kinesin-1 [11, 12].  More recently, Blasius et al. showed that binding of a known 

cargo to either the KHC tail or KLC TPR domains is not sufficient for motor activation.  

Instead binding of two cargos, FEZ to KHC and JIP1 to KLC, is required in order to free 

the microtubule binding and processive motility activities of Kinesin-1 [20].  Cargo 

binding of Dlg to the motor-binding inhibitory domain of kinesin protein, Gakin/KIF13b 

[21], also relieves Gakin’s autoinhibition, suggesting that the mechanism of cargo 

binding directly to regulatory regions is a general mechanism employed by kinesins for 

activation.  Other mechanisms such as phosphorylation or dephosphorylation of kinesins 

have also been suggested to play a role in motor activation or regulation of cargo binding 

[22, 23].     

 As the motility/ATPase activities of other cargo-transporting kinesins must also 

be tightly coupled to cargo transport, the work on Kinesin-1 has led to the general 

hypothesis that kinesin motors are autoinhibited.  Indeed full-length Kinesin-2 family 
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member Osm-3, homologue to mammalian KIF17 [24], and the Kinesin-3 family 

members, KIF1A/Unc104 and KIF13B/GAKIN [21, 25-27], have been shown to be 

autoinhibited.   However regulatory domains and mechanisms for these kinesins are less 

clear than for Kinesin-1.  Because kinesin superfamily members only share the motor 

domain in common [2], the evolution of diverse cargo binding domains and stalk 

structures must have co-evolved with motor regulatory regions and mechanisms.  

Consequently the detailed mechanisms of each kinesin protein are likely to be unique; 

although, the general principles learned from Kinesin-1 regulation may still be 

applicable.   

 

KIF17 

 KIF17 is a homodimer that like Kinesin-1, moves processively towards the plus 

ends of microtubules.  It has been implicated in the transport of NMDA and Kv4.2 

vesicles in the dendrites of neuronal cells and CNG channels in olfactory cilia [28-31].  

The C. elegans homologue Osm-3 is better characterized, playing an essential role in 

ciliary and flagellar transport [32].  Despite the handful of transmembrane proteins or 

protein complexes that are known to be transported by KIF17/Osm-3, only three direct 

binding proteins are known, Mint1, ACT, and NXF2 [29, 31, 33-37].  In the case of 

Mint1 (also known as mLin10 or X11) the extreme C-terminal residues of KIF17 bind 

one of two PDZ domains in Mint1 [31].  This interaction has been shown to be 

additionally regulated by phosphorylation of a nearby serine residue by CaMKII [23].  If 

KIF17 motor regulation is analogues to Kinesin-1, in that, cargo binding domains 

regulate motor function, it is possible these C-terminal residues, or the tail in general, are 

important in mediating autoinhibition (Figure 1.2).  However other unidentified cargo 

binding regions may also exist.   

    Previous work on recombinant Osm-3 in vitro showed that motility is inhibited 

in the absence of cargo, and that the protein may shift from a folded, more compact form, 

to an extended conformation like Kinesin-1.  A small hinge region between two coiled-

coils in the stalk is essential for this folding and regulation [24].  Because inhibition was 

lost when the Osm-3 hinge was removed or mutated, it was hypothesized that a region C-

terminal to the hinge likely interacts with residues in the motor/neck region; yet, the 
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specific domains and interaction mechanisms were not investigated [24].  Because of 

major structural differences between mammalian KIF17 and C. elegan Osm-3, 

specifically in the hinge and the following coiled-coil regions, it is difficult to conclude 

whether the same hinge mediated folding mechanism is likely to be conserved between 

the two homologues.   

My work, detailed in Chapter 2, confirms that KIF17, like Kinesin-1 and Osm-3, 

is autoinhibited,in the absence of cargo.  Processive motility is inhibited by direct contact 

of the motor domains with a region of the coiled-coil stalk that is only somewhat 

conserved with Osm-3.  The cargo binding tail does not play a detectable role in motor 

regulation, but is essential for loading KIF17 into cilia. 

 

KIF1A 

KIF1A and the C. elegans homologue, Unc104, structurally look much different 

from Kinesin-1 and KIF17 because their stalk regions are not composed of large coiled-

coiled regions.  Rather the motor domain is followed by two very short and relatively 

weak coiled-coils, a forkhead-associated (FHA) domain, two more short coiled-coils, a 

large undefined region, and a C-terminal PH domain (Figure 1.2).  Cargo protein Liprin-

α’s binding site includes a section of coiled-coil 2, as well as, a portion of the undefined 

region [38].  The PH domain has been shown to be important in connecting 

KIF1A/Unc104 motors to vesicular membranes via interactions with 

phosphotidylinositols (specifically PtdIns(4,5)P2; [39, 40]).   

Full-length KIF1A/Unc104 is autoinhibited in the absence of cargo [25, 26, 41].  

Inhibition of microtubule binding, and thus motility, is prevented by the FHA domain and 

adjacent c-terminal coiled-coil (CC2), although neither of these domains directly contact 

the motor nor neck domains, leaving the mechanism of regulation largely unknown [25].  

The two coiled-coils adjacent to the motor also have suggested roles in regulating KIF1A 

activity in that they can pair with themselves on adjacent KIF1A molecules to form an 

intermolecular coil (dimer) or pair with each other in an intramolecular coil (monomer) 

(Figure 1.3)[27].   

KIF1A has some of the highest velocities reported for kinesin molecules, running 

between 1-2 µm/second [26, 27, 42, 43]; yet, its mechanism of motility is controversial.  
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KIF1A/Unc104 has been postulated to function as a monomer.  Recombinant and 

endogenous KIF1A proteins act like monomers in sedimentation and gel filtration assays 

[44-46] and truncated KIF1A proteins that are confirmed monomers, have motile 

properties in vitro [47-49].  A novel, biased-diffusion model of motility has been 

proposed to explain the motility of a single-motor driven KIF1A, used in place of the 

hand-over-hand model generally accepted for dimeric, or two-motor driven, kinesins [7, 

47-49].  However, recent studies have brought into question the monomer-based 

movement hypothesis, and suggested instead that KIF1A and/or closely related family 

members do indeed dimerize, but may require high concentrations [26, 41, 45, 50-52].  

Tomishege et al additionally showed this dimerization is likely required for processive 

motility [26].  Thus, a second model has been proposed where KIF1A binding to 

clustered cargos on a vesicle locally concentrates KIF1A and mediates a monomer to 

dimer switch, which has also been suggested, although not yet experimentally supported, 

to activate KIF1A’s motile properties.  In this model, KIF1A moves like Kineisn-1 in a 

coordinated hand-over hand fashion that allows the motors to take successive, 

unidirectional steps along a microtubule without dissociating [25, 26, 39, 40].   

Because of unresolved questions about whether KIF1A moves as a monomer or 

dimer and whether a monomer to dimer transition relieves autoinhibition, I was interested 

in investigating KIF1A’s regulation and motile properties in relation to dimerization state 

using some new and old experimental tools.  My work, and that of my lab colleges, 

detailed in Chapter 3, shows that a significant population of endogenous and 

overexpressed KIF1A exists as a dimer, yet is still inactive for microtubule-based 

motility.  Thus, dimerization is not sufficient to relieve the autoinhibition mediated by the 

FHA domain.  KIF1A constructs without the FHA domain that dimerize via the short 

neck coiled-coil do move at a constant velocity of 1.3 µm/second over long distances.  

Although shorter, monomeric, constructs do display some motile properties, their 

motility is very short in duration and does not require ATP.  Thus we support the 

conclusion that KIF1A moves as a dimer and that motility is regulated by both the FHA 

domain and the neck coiled-coil which functions to dimerize and coordinate the two 

motor heads in the full-length molecule.   
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MOTOR/CARGO COMPLEXES 

 As mentioned above, kinesin cargos take various forms ranging in size from large 

organelles to smaller protein complexes.  Recent work has identified multiple binding 

partners for individual motor proteins and in many cases, these binding partners are 

soluble adaptor proteins that mediate the attachment of motor proteins to membrane-

bound cargoes or other protein or mRNA complexes [2, 53].  KIF17 binds directly to the 

soluble adaptor protein Mint1, which mediates the transport of NMDA receptors through 

complexing first with at least two other adaptors, mLin-2 and mLin-7 [31].  Kinesin-1 

transports the transmembrane proteins APP and ApoER2 via the JIP family of adaptor 

proteins [53-55].  Kinesin-1 also likely transports AMPA receptors via binding to GRIP1 

[56]. 

  The fact that it takes at least two proteins to activate Kinesin-1 and that it is 

easier to see motor binding to a particular cargo than to reconstitute active motility of 

kinesins with that particular cargo in vitro, suggests that cargo/motor complex formation 

and motor activation is often more complex than a single protein interaction or 

phosphorylation event [20, 57].  It is therefore critical to decipher not only the identity of 

cargo proteins and their direct or indirect binding mechanisms to kinesin motors, but also 

the combinations of cargo proteins (and/or other modifications) that are required for 

motor activation and thus truly define a kinesin cargo.  Additionally, as more and more 

direct binding cargo proteins are identified for KLC or KHC, it begs the question of how 

one motor can coordinate and carry out the transport of its many different cargoes at 

specific times and to correct cellular locations.   

In Chapter 4, I set out to investigate the transport of different Kinesin-1 cargoes 

that bind directly to the TPR domains of KLC, specifically JIP1, JIP3, Kidins220/ARMS, 

and PAT1 [54, 58-60] asking the specific question of whether these cargo proteins 

compete or cooperate for transport.  For most cargo combinations, no competition or 

cooperative activity was found, suggesting independent transport by a non-limiting 

Kinesin-1 pool.  Yet, in the case of JIP1 and JIP3, the two cargos cooperate for Kinesin-1 

transport.  JIP1 and JIP3 interact with each other and with independent sites on KLC 

forming a tri-molecular complex that is necessary for both proteins to be efficiently 

transported in neuronal cells.  Thus, the complexities of the Kinesin-1 motor/cargo 
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complex grows as three binding partners, FEZ, JIP1, and JIP3, likely make up a 

functional motor activating and transportable unit.  However, other essential, unidentified 

members of this particular cargo complex could still exist.  JIP1 and JIP3 are scaffolding 

proteins known to bind and modulate the JNK signaling pathway [61], thus the 

JIP1/JIP3/Kinesin-1 transport complex likely contains many additional kinases as well as 

other transmembrane and soluble proteins. 

 

MICROTUBULE PREFERENCE AND ITS ROLE IN POLARIZED TRANSPORT 

 Once a kinesin motor binds cargo and its autoinhibition is relieved, it is able to 

bind microtubules and begin processive transport.  For Kinesin-1, KIF17, and KIF1A that 

involves moving towards the plus-end of microtubules or generally towards the cell 

periphery.  However, like in a city where not all roads lead to one specific destination, in 

a cell, not all microtubule tracks lead to the cargos’ targeted cellular endpoint.  This is 

especially true in polarized cells were cellular compartments that require their own 

unique subset of proteins for proper function, like the axonal and dendritic processes of 

neuronal cells or the basolateral and apical membrane surfaces of epithelial cells, reside 

at rather opposite ends of the cell.  Yet, it is also true in the case of non-polarized cells, 

where although most microtubules point towards the cell periphery, some microtubule 

tracks may still be under construction or are actively being removed and thus poor 

choices for transport.  The necessity to transport cargo to its correct cellular destination 

through the use of complete microtubule roadways, suggest kinesins may have evolved 

intrinsic microtubule preference mechanisms or separate regulatory partners that direct 

them to preferred microtubule tracks and/or cellular destinations.  

 In neuronal cells, Kinesin-1 transports cargo primarily down microtubules of the 

axon [62, 63].   As truncated Kinesin-1 constructs show this same preference for axons 

over dendrites, the axonal sorting cue is thought to reside within the motor/microtubule 

binding interface [62].   However, a separate cargo directed sorting model has also been 

proposed [56].  The first model is especially intriguing when combined with multiple 

studies showing Kinesin-1, in vitro, has a binding preference for microtubules post-

translationally modified by acetylation, detyrosination, and/or polyglutamylation [64-68].  

These same post-translational modifications (PTMs) tend to accumulate on, or mark, 
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stable or long lasting microtubules and are enriched in axons over dendrites [69, 70].  

Thus, this pool of microtubules marked with PTMs and preferred by Kinesin-1, could 

serve as an axonal signal.  This seems to be the case in fibroblast cells, as Kinesin-1 

preferentially uses the subset of microtubules that are acetylated and/or detyrosinated [64, 

67] .  

  In chapter 5, I test the possibility that microtubule modifications direct  

Kinesin-1’s axonal sorting in primary hippocampal neurons.  My results indicate that 

there are probably several types of PTMs that together mediate Kinesin-1’s preference for 

axonal transport.  Drug treatments that increase multiple PTMs (i.e. taxol and GSK3β 

inhibitors), redirect Kinesin-1 to all neuronal processes; however, increasing microtubule 

acetylation alone is not sufficient to alter polarized transport.      

 

DISSOCIATION FROM CARGO AND FATE OF KINESIN MOTORS AT THE 

TRANSPORT DESTINATION 

Once kinesin/cargo complexes have transported along microtubules and reached 

their cellular destinations, kinesin motors must be inactivated and released from cargo 

and microtubules.  The exact order of events, specific mechanisms, or accessory 

regulatory complexes mediating this step are still unclear.   Phosphorylation of the motor 

or cargo is the most experimentally supported mechanism at this time mediating cargo 

release.   Phosphorylation of Kinesin-1 by GSK3β or other unidentified kinases inhibits 

anterograde transport and has been shown to reduce the amount of kinesin bound to 

vesicles [71, 72].  Stagi et al recently showed that the JNK signaling pathway releases 

Kinesin-1 cargoes from microtubules [73].   Phosphorylation of KIF17 at Ser1029 by 

CaMKII, releases cargo protein Mint1 complexed to NMDA receptors likely in the 

vicinity of the synapse where it is needed [23].  

The final step in the kinesin transport cycle requires that the motor return back to 

a place of cargo loading where it can be used again.  Once more, details are very unclear; 

yet, multiple mechanisms have been proposed including diffusion of the motor, 

retrograde transport of the motor in an inactive state by dynein or other minus-end 

motors, or even the possibility that the motor is simply degraded at the transport end-

point ([57, 74, 75]).   
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Figure 1.1:  A simplified model of kinesin transport. 
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Figure 1.2:  Schematic of Kinesin-1, KIF1A, and KIF17.  The catalytic motor domains shown in 
blue are conserved among all kinesin motors while cargo binding and regulatory stalk/tail regions 
are unique.  KHC, kinesin light chain; KLC, kinesin heavy chain; CC, coiled-coil; FHA, 
forkhead-associated domain. (Figure is modified from [2]) 
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Figure 1.3:  Two conformations of KIF1A’s  neck coil (NC) and coiled-coil 1 (CC1).  Only the 
motor, NC, and CC1 regions of KIF1A are depicted.  The NC and CC1 can from an 
intramolecular coiled-coil that may limit KIF1A to a monomeric state.  Alternatively the NC and 
CC1 can form intermolecular coils with their counterparts on a separate KIF1A peptide 
consequently shifting KIF1A to a dimeric state with motor domains well coordinated for motility.  
(Figure is modified from [2]) 
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Chapter 2: 
KIF17’s Coiled-Coil 2 Region Inhibits Processive Motility by  

Directly Interacting with the Motor Domain. 
 

Kinesin motors use the energy of ATP to move membrane-bound organelles and 

protein or mRNA complexes along microtubules.  The activity of kinesin motors in cells 

must be tightly coupled to cargo transport to ensure that energy is not wasted on futile 

movement.  It is additionally important that motors transport the correct cargo, to the 

proper subcellular destination, at the relevant time.   

A large body of work has shown that, in the absence of cargo, Kinesin-1 is 

inactive due to a folded conformation that allows the tail to directly interact with the 

motor domain and neck [1-6].  This interaction prevents Kinesin-1 from binding 

microtubules or exchanging ADP for ATP [5-7].  Additionally, in this autoinhibited state, 

Kinesin-1’s motor domains are separated to ensure that the motor heads are unable to 

coordinate long-distance movement [6].  Studies on the Kinesin-3 family members, 

KIF1A and Gakin/KIF13B, show that these motors are also autoinhibited in the absence 

of cargo.  For KIF1A, a coiled-coil and FHA domain region inhibit microtubule binding, 

while the neck coiled-coil folds with a second coiled-coil to inhibit motility [8, 9].  For 

Gakin, a MGB domain located in the stalk binds the motor domain and impairs motor 

function [10].  Thus, although the precise molecular details may be different between 

kinesins, autoinhibitory mechanisms are commonly used in motor regulation. 

Whether the Kinesin-2 family member, KIF17 is likewise autoinhibited in the 

absence of cargo is currently unknown.  Kif17 is specifically involved in transporting 

vesicles containing NMDA receptors and Kv4.2 channels in the dendrites of neuronal 

cells [11-13], as well as mRNA/protein complexes in multiple cell types [14, 15].  Work 

from C elegans has revealed an important role for the KIF17 homologue, Osm-3, in 

anterograde intraflagellar transport (IFT) which is essential for proper cilia formation, 

maintenance, and function [16-20].  Recently KIF17 has also been implicated in IFT, as it
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carries CNG channels in olfactory cilia, and is crucial for the proper development of 

vertebrate photoreceptors, particularly the sensory outer segment [21, 22].   KIF17 and 

Osm-3 appear to have some unique IFT functions in certain types of cilia, but play a 

redundant role with the Kinesin-2 (KIF3A/B/KAP) in other cases [16, 19, 21, 23].   

Previous work on recombinant Osm-3 in vitro, showed that Osm-3’s motility is 

inhibited in the absence of cargo, and that the protein may shift from a folded, more 

compact form, to an extended conformation like Kinesin-1.  A small hinge region (~15-

20 residues in length) between two coiled-coils in the stalk is essential for this folding 

and regulation, suggesting an autoinhibition mechanism where stalk/tail domains are 

brought into proximity of the motor domain in order to inhibit motility [24].  As KIF17 

and Osm-3 differ most in this hinge region, it is particularly unclear whether Kif17 is 

regulated in the same way.  It is also unclear what regions of the stalk or tail may be 

responsible for negative regulation.  Like Osm-3, KIF17, has an N-terminal motor 

domain, followed by a neck coiled-coil (NC) and coiled-coil 1 (CC1).  In Osm-3 this 

CC1 is followed by the small hinge, but KIF17 has an approximate 300 residue insertion 

of undefined structure.  This region is then followed by two more somewhat weak coiled-

coils (CC2 and CC3) and a tail domain known to directly bind two, KIF17 cargo proteins 

Mint1 (also known as  mLin10 or X11) and NXF-2 (Figure 1, [13, 15, 25]). 

In this study, we confirm that Kif17, in the absence of cargo, is inhibited from 

binding microtubules and moving processively (that is taking many steps along the 

microtubule, without detaching).  Removal of the CC2 region relieves the autoinhibition 

mechanism activating motor functions.  As the CC2 region can inhibit constitutively 

active KIF17 motors in trans, the CC2 region is both necessary and sufficient for 

inhibition of processive motility.  A direct interaction between CC2 and the motor was 

found to be responsible for this negative regulation.  We additionally show that the cargo 

binding tail is required for loading KIF17 into cilia regardless of whether the motor is 

active or inhibited.   
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RESULTS 

Molecular mechanism of KIF17 autoinhibition  

To investigate the regulatory and motile properties of mammalian KIF17 we first 

tested whether full-length (FL) HsKIF17 is able to generate processive movement, or 

whether it is inhibited in the absence of cargo.  Previous studies have shown that active 

kinesin motors often accumulate at the tips of cell processes [9, 26, 27].  Thus, we tagged 

KIF17 on its C-terminus with mCit (monomeric citrine—a yellow fluorescent protein 

variant) and analyzed its subcellular localization in the neuronal-like cell line, CAD.  

KIF17-mCit was localized diffusely throughout the cytoplasm and not concentrated in 

neurite growth cones (Figure 2.2 A, far left images).  Thus we conclude KIF17 is 

inhibited for motility in mammalian cells.   

For the autoinhibited motors, Kinesin-1, KIF1A, and GAKIN/KIF13B; truncation 

studies have been very helpful in identifying the structural domains that inhibit motor 

activity.  Accordingly, we made mCit-tagged truncated versions of KIF17 that ended 

after each predicted coiled-coil region or the middle region of unknown structure (Figure 

2.1 B and C).  Deletion of the C-terminal cargo binding tail (1-846) or CC3 (1-795) had 

no affect on the processive motility of KIF17 (Figure 2.2 A).  Like FL KIF17, these 

truncations when expressed in CAD cells showed a diffuse cytoplasmic localization.  

However, further truncation of CC2 resulted in a drastic change as the 1-738 construct 

accumulated at the ends of neurites.   The ability to accumulate at neurite tips was 

maintained for truncation 1-488, but was lost upon further truncation where the CC1 (1-

369) or the NC (1-347) was removed.  Thus, the CC2 region (738-795) is critical to 

keeping KIF17 in an inactive state where it cannot move processively in mammalian 

cells.  Additionally the NC is not sufficient to maintain KIF17’s processive movement.  

As a second method of testing whether or not FL or truncated KIF17 motors are 

active for processive movement, we tested the KIF17 constructs in an in vitro single 

molecule motility assay.  We tagged the constructs on their C-terminus with three tandem 

copies of mCit and expressed them in COS cells.  This 3xmCit tag results in a better 

signal-to-noise ratio, is less affected by photoblinking, and photobleaches much slower 

than a single mCit tag [28].  Lysates from COS cells expressing KIF17-3xmCit motors 

were added to a casein and BSA coated flow chamber containing polymerized 
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microtubules and assayed on a total internal reflection fluorescence (TIRF) microscope 

for motility.  By timelapse imaging at 100ms intervals, individual motors could be seen 

moving along microtubules (representative tracks are shown in Figure 2.2 E).  Only 

motility events that lasted at least 300ms were included in the analyzed data set to ensure 

that the same motor could be tracked through at least 3 timelapse images.   In order to 

directly compare the number of motility events and the motile properties of velocity and 

track length for each KIF17 motor construct, the amount of expressed protein was 

normalized by western blot and each construct was analyzed for the same total amount of 

time.   

Consistent with the in vivo processivity assay in CAD cells, KIF17(FL)-3xmCit 

and KIF17(1-369)-3xmCit were primarily inactive in the in vitro single molecule motility 

assay (Figure 2.2 B-F).  These motors each showed very few motility events (n=21 and 

n=40 respectively) and when they did move along microtubules, they only moved for 

short distances (average track lengths: FL, 0.36 +/- 0.18 µm; 1-369, 0.45 +/- 0.39 µm) 

(Figure 2.2 C-F).  KIF17(1-738)-3xmCit, on the other had, moved quite efficiently in 

vitro, as a large number of motility events were observed (n=112) (Figure 2.2 B-F).  1-

738 moved with an average speed of 0.77 +/- 0.26 µm/second and for track lengths that 

were as long as 6-7 µm but averaged 1.13 +/- 1.06 µm/event.  These motile properties are 

consistent with previous reports on KIF17 that showed in vitro microtubule gliding 

speeds of 0.8-1.2 µm/second [13] and in vivo KIF17 driven vesicle speeds of 0.76 

µm/second [12].  Although data is not shown for the 1-846 and 1-795 truncations, they 

like full-length had limited single molecule motility.  Thus, the dramatic activation of 

processivity in KIF17(1-738) again points to the critical role played by the CC2 region in 

repressing the processivity of KIF17.     

 

FL and truncated versions of KIF17 dimerize 

 KIF17 has been shown to be a homodimer by gel filtration and sucrose gradient 

centrifugation experiments [13].  A large body of work on Kinesin-1, shows that it 

coordinates its two motor domains to step in an alternating hand-over-hand fashion from 

one tubulin dimer to the next tubulin dimer of the microtubule lattice.  This hand-over-

hand model of processive movement is generally thought to be conserved among cargo 
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transporting kinesins, including KIF17 [29].  As expected from this model, Kinesin-1 

truncations that are monomeric are not processive [28].  Thus it was concerning that 

Imanishi et al reported truncation of Osm-3’s tail domain resulted in unstable Osm-3 

dimers [24].  In order to rule out the possibility that our KIF17 truncations also resulted 

in monomeric motors whose limited processivity would not be due to inhibitory regions, 

but the fact that they had only one motor domain, we analyzed their ability to dimerize 

using co-immunoprecipitation (Co-IP).  As these Co-IP experiments were done with COS 

lysates basically identical to those added to single molecule motility assays, confirmation 

of dimerization by Co-IP is a good indication that our KIF17 motors were able to 

maintain dimerization in the in vitro motility assay.   

We first confirmed that FL KIF17 is a dimer by co-expressing Flag- and mCit- 

tagged versions of FL KIF17 in COS cells.  Cell lysates were then precipitated with 

antibodies to the Flag tag or with control antibodies (IgG).  mCit-KIF17 was pulled down 

with Flag-KIF17 only in the presence of Flag antibodies confirming that FL KIF17 exists 

as a homodimer (Figure 2.3 A).  Similar Co-IP experiments were done for the C-

terminally tagged KIF17 truncations 1-846, 1-738, 1-490, and 1-369, except Myc tags 

and antibodies were used in place of Flag.  In all cases, the mCit-tagged truncations co-

precipitated with their Myc-tagged counterparts in the presence of Myc, but not control, 

antibodies (Figure 2.3 B).  This confirms they maintain the dimeric state of FL KIF17.  

As KIF17(1-369) was able to dimerize efficiently, the NC is sufficient for KIF17 

dimerization.  However, dimerization by only the NC is not sufficient to maintain 

processive motility.   

 

FL KIF17 is prevented from binding microtubules and truncation of KIF17 relieves 

this inhibition 

 The autoinhibition mechanism of Kinesin-1 restricts processive motility by first 

preventing the motor from binding microtubules [1, 6, 30].  Kinesin-1 is made up of two 

heavy chains (KHC) and two light chains (KLC); with the light chains being particularly 

important for preventing the motor from interacting with microtubules in the absence of 

cargo [6, 30].  The ability of kinesin motors to bind microtubules can be tested in live 

COS cells.  Expression of Kinesin-1’s KHC domain alone, at low levels, results in a 
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steady state cytoplasmic localization despite the fact that the motors are binding and 

falling off the microtubules (Figure 2.4 A).  Treating the cells with the non-hydrolysable 

ATP analog, AMPPNP after permeabilizing the cells with sreptolysin O (SLO), causes 

active motors to be trapped on the microtubule because they cannot be released from their 

strong microtubule bound conformation by hydrolyzing ATP to ADP (Figure 2.4 A) [6, 

31].   Co-expression of Kinesin-1’s KHC and KLC domains, however, results in the 

motor being inhibited from binding microtubules, so AMPPNP treatment does not cause 

them to redistribute from a cytoplasmic to a microtubule-trapped localization (Figure 2.4 

A and B) [6]. 

To determine whether inhibition of microtubule binding is also an important step 

used to prevent KIF17 from moving along microtubules in the absence of cargo, we 

tested the microtubule binding ability of KIF17 constructs tagged with mCit on their C-

terminus in live COS cells.  In the absence of AMPPNP, KIF17 constructs: FL, 1-846, 1-

795, and 1-369 are diffusely localized in the cytoplasm similar to their localization in 

CAD cells (Figure 2.4 B).  1-738 and 1-490, are also largely cytoplasmic, but do show 

peripheral accumulation on microtubules, reflecting their ability to move processively.  

Surprisingly, after AMPPNP treatment, a significant portion of KIF17-mCit is present on 

microtubules showing it is active for microtubule binding.  Indeed, all KIF17 truncations 

(1-846mCit, 1-795mCit, 1-738mCit, 1-490mCit, and 1-369mCit) are able to bind 

microtubules as they also accumulated on microtubules after AMPPNP treatment (Figure 

2.4 B).  The percentage of cells showing this microtubule accumulation was somewhat 

higher for the FL-mCit and 1-846-mCit motors than the other truncations (Figure 2.4 D).  

This suggests the possibility that residues 795-846 or CC3 may have some role in 

facilitating microtubule binding, either by interacting directly with the microtubule as has 

been reported in the case of Kinesin-1’s KHC tail domain, or by promoting a 

conformation of the KIF17 motor that is more conducive to microtubule binding and/or 

keeping AMPPNP in the nucleotide pocket.  It should also be noted, that while KIF17 

motors do bind microtubules in the presence of AMPPPNP, all KIF17 constructs 

maintain a pool of motor in the cytoplasm (Figure 2.4B).  This is in contrast to Kinesin-1 

KHC, where AMPPNP treatment traps a vast majority of the expressed motors on 

microtubules, clearing the cytoplasm almost completely (Figure 3.4 B and C).  Whether 
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this indicts that KIF17 does not bind to microtubules as strongly as KHC in the presence 

of AMPPNP, or whether KIF17 motors are partially inhibited for microtubule binding is 

unclear. 

 As the  cargo protein Mint1 has been shown to bind KIF17’s extreme C-terminal 

residues, we considered the possibility that the mCit tag on the tail of FL KIF17 may 

actually mimic cargo binding and thus lead to a partial activation of the motor.  Although 

fluorescent protein tags do not interfere with the autoinhibitory mechanisms of Kinesin-1 

or KIF1A,  attaching beads to the tail of Kinesin-1 does mimic cargo binding resulting in 

an active, processive motor [2, 6, 24, 32].  Thus, we also generated FL KIF17 constructs 

that were tagged with mCit on the N-terminus (or motor) using both short and long 

flexible linkers (4 amino acids (4aa) and 18 amino acids (18aa) in length).  We also used 

a smaller Flag tag in case the bulky mCit protein sterically hindered proper folding or 

regulation.  COS cells expressing these N-terminally tagged FL KIF17 constructs, were 

permeabilized with SLO then treated with AMPPNP.  Attachment of mCit to the motor 

domain with a 4aa linker gave similar results to KIF17-mCit; that is, it was active for 

microtubule binding (Figure 2.4 F).  However, Flag-KIF17, mCit-18aa-KIF17, and mCit-

Flag-KIF17 remained cytosolic after AMPPNP treatment, showing that they were 

inhibited for microtubule binding.  As the smaller Flag tag, or a mCit that is attached with 

a longer linker, is less likely to interfere with motor regulation and/or folding 

conformations, we conclude that FL Kif17 is regulated by an autoinhibition mechanism 

that prevents microtubule binding in absence of cargo.  But unlike other motors tested to 

date, presence of a fluorescent protein with short linkers on the N- or C- terminus of 

Kif17 interferes with autoinhibition, resulting in interaction with microtubules.  As FL 

KIF17 tagged on the C-terminus with mCit or 3xmCit did not active KIF17 for 

processive movement (Figure 2.2), it appears that there two mechanisms to KIF17 

autoinhibition.  First, KIF17 is inhibited from binding microtubules.  The exact region 

that mediates this inhibition is still unclear.  Second, if KIF17 can bind microtubules, it is 

prevented from moving along them by the CC2 region.   
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Further analysis of CC2 

 As truncation results suggest CC2 is capable of negatively regulating KIF17’s 

processive movement, we investigated whether CC2 is also required for negative 

regulation in the context of C-terminal regions using a KIF17 construct with an internal 

deletion of CC2 (∆739-799) (Figure 2.5 A).  In transfected CAD cells, ∆739-799 

accumulated at neurite tips, in contrast to FL KIF17, which was diffusely localized 

primarily in the cell body (Figure 2.5 C).  Thus the CC2 region is both necessary and 

sufficient for the autoinhibition of KIF17.   

 The CC2 region, is a rather weak predicted coiled-coil that contains a few helix 

breaking residues and many charged residues.  To gain a better understanding of how 

CC2’s coiled-coil structure and amino acid make-up contribute to regulation, we made 

two mutation constructs.  First, we mutated the glycine residue at 754 to a glutamate 

(G754E).  In Osm-3 a similar point mutation, G444E, activates the motor for processive 

motility.  In Osm-3 this residue clearly lies in the small hinge between CC1 and CC2.  

KIF17, however, has a ~300 amino acid insertion into this same hinge.  G444 and 

surrounding residues, although not well conserved, align with residues in the C-terminal 

portion of CC2 and in our estimation G444 corresponds best to G754 of KIF17.  The 

G745E point mutant, results in a stronger coiled-coil prediction for the CC2 region 

(Figure 2.5 B).  When expressed in CAD cells, the G754E point mutant accumulated 

strongly to neurite tips, showing this CC2 mutation was sufficient to relieve the 

autoinhibition of full-length KIF17.   

 A stretch of basic residues (KEKHKRRKR) in CC2 is also a rather conspicuous 

feature.  We mutated these nine residues to alanine.  Not surprisingly, this 764-772A 

mutation caused the coiled-coil prediction for CC2 to decrease in strength (Figure 2.5 B).  

When expressed in CAD cells, the 764-772A mutation also showed peripheral 

accumulation in neurites (Figure 2.5 C).  As both increasing and decreasing the strength 

and rigidity of CC2 give the same effect—an active, processive motor—we propose that 

the predicted coiled-coil structure of CC2 is not necessarily a key feature to the 

mechanism by which it mediates KIF17’s autoinhibition.  Rather the charged and less-

than-ideal coil forming residues in CC2 may have specific roles in mediating contact of 

CC2 with other motor regions.  
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CC2 directly interacts with the motor and can inhibit processive motility in trans  

 To test whether CC2 or any of the surrounding C-terminal regions interacted with 

the N-terminal domains of KIF17, we generated a series of constructs (Figure 2.6 A), co-

expressed them in different combinations in COS cells, and then tested their interactions 

via co-immunoprecipitation.  We first tested whether the Myc tagged constructs 

containing KIF17’s undefined middle region and CC2 (466-846), the undefined middle 

region alone (466-738), CC2 and CC3 (735-846), CC2 alone (735-795), or CC3 and the 

tail (801-1028) could pull-down 1-738mCit (a motor construct truncated before CC2) in 

the presence of Myc-antibodies.   We found that 1-738mCit was co-precipitated with all 

Myc-tagged CC2 containing constructs, including the Myc-735-795 construct which 

consisted of only CC2, but not constructs without CC2 (466-738 and 801-1028) (Figure 

2.6 B).  This suggested CC2 was both necessary and sufficient for the contact with 1-

738mCit.   

To further define what region of 1-738mCit CC2 interacted with, we tested 

whether the myc-466-846 construct could pull down constructs containing the motor and 

neck (1-369mCit), the motor domain only (1-347mCit) or CC1 (Flag-370-490) when 

precipitated with Myc antibodies.  These experiments showed that CC2 interacts directly 

with the motor domain as both 1-347mCit and 1-369mCit co-precipitated with myc-466-

846.  The CC1, Flag-370-490 construct was not co-precipitated (Figure 2.6 C).   

To confirm that this contact between the motor domain and CC2 mediates the 

autoinhibited state of KIF17, we investigated whether any of our Myc-tagged construct 

series could inhibit 1-738mCit’s neurite tip accumulation in trans.  CAD cells co-

expressing 1-738mCit with Myc-tagged constructs containing CC2 (466-846, 735-846, or 

735-795) showed no accumulation of 1-738mCit in neurite growth cones (Figure 3.6 D-

E).  However, 1-738mCit expressed alone, or with Myc-tagged constructs lacking CC2 

(466-738 and 801-1028), showed efficient peripheral accumulation.  Taken together these 

results show that the intramolecular interaction of CC2 with the motor domain inhibit 

motor function by preventing it from taking multiple steps along the microtubule. 
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Cargo-mediated activation of Kif17? 

 Evidence from Kinesin-1 suggests that cargo binding relieves its autoinhibition 

mechanism.  Indeed, the regulatory regions that mediate autoinhibition are the same 

regions that bind cargo (KLC TPR domains and KHC tail) [1, 2, 4, 7, 33].  As of yet, no 

cargo has been shown to bind to KIF17’s CC2 region.  Cargo proteins, Mint1 and NXF-2, 

instead bind KIF17’s tail domain (846-1028).  We did explore whether or not binding of 

Mint1 could activate FL KIF17.  Although we saw by co-immunoprecipitation that 

KIF17 and Mint1 did interact, this binding was not sufficient to activate the microtubule 

binding activity of FL KIF17 in our live-cell AMPPNP assay or its ability to move 

processively to neurite tips in CAD cells (data not shown).  Why attachment of mCit to 

the C-terminus of KIF17 is sufficient to relieve the negative regulation on microtubule 

binding, but binding of Mint1 to the tail is not sufficient is unclear.  As activation of 

Kinesin-1 requires the binding of two proteins, JIP1 and FEZ [33], activation of KIF17 

may also require more cargo interactions, likely involving the CC2 region, or a specific 

phosphorylation state, to be relieved of its autoinhibition mechanism.   

 

KIF17 tail domain is essential for sorting KIF17 to cilia 

As Kif17 and Osm-3 have important roles in the intraflagellar transport (IFT) of 

cargo in cilia [19, 20, 22], we questioned whether a regulatory role for KIF17’s cargo 

binding tail could be elucidated in a cilia context.  We thus expressed mCit-tagged, 

KIF17 proteins in an olfactory sensory neuron cell line (Odora , [34]).  Cells were fixed 

and stained with an antibody to acetylated tubulin to identify primary cilia.  FL KIF17, 

regardless of whether the mCit tag was placed at the N- or C-terminus, did not 

accumulate at the cell periphery consistent with it being autoinhibited.  However, FL 

KIF17 did accumulate at the tips of cilia (Figure 2.7).  In contrast, the autoinhibited 

KIF17 constructs, 1-846 and 1-795, were unable to accumulate in cilia or the cell 

periphery.  This suggests that the tail (846-1028) plays an essential role in sorting KIF17 

into cilia.  Indeed, constitutively active truncations that do not contain the inhibitory CC2 

region or the tail (i.e. 1-738 and 1-488) are able to accumulate at the cell periphery in 

olfactory cells, but not in cilia.  This confirms that the tail contains the cilia targeting 

signal.   FL KIF17 with a G754E mutation accumulates both in cilia and at the cell 
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periphery.   Together, these results confirm that in olfactory cells, like neuronal cells, the 

CC2 region is required to negatively regulate motor activity.  However, activating the 

motor by removal or mutation of CC2 is not sufficient to direct the motor to where it is 

most needed in olfactory sensory cells that is to cilia.  The C-terminal tail (846-1028), is 

required for loading KIF17 into cilia.  As the tail is a known cargo binding region, this 

sorting into cilia is likely mediated through interactions with cargo or other IFT 

machinery. 

 

DISCUSSION 

Autoinhibition Mechanism of KIF17 

 We have shown that KIF17 is self-inhibited by assuming a folded conformation 

that allows the weak coiled-coil region of its stalk (CC2) to directly contact the motor 

domain.  This interaction prevents KIF17 from moving on microtubules, but not 

necessarily from having interactions with the microtubule.  The region that negatively 

regulates microtubule binding was not clear from our studies, but could reside in the 

cargo binding tail.  Additionally, the cargo binding tail was shown to be essential for 

sorting KIF17 into cilia.  These data support a model where KIF17 exists in the 

cytoplasm in an autoinhibited state.  Binding of cargo targets the motor to specific 

cellular compartments, like cilia, and relieves the autoinhibitory mechanism allowing 

KIF17 to processively move along microtubules. 

Autoinhibitory mechanisms appear to be a common feature of motor proteins.  

Kinesin-1, KIF1A, GAKIN/KIF13B, Osm-3, and KIF17 have now been shown to be 

autoinhibited in the absence of cargo [1, 8-10, 24, 33].  As only the motor domain is 

conserved among these and other kinesins [35], various divergent stalk/tail regulatory 

regions have been employed to inhibit motor activity.  Despite the fact that these 

unconserved stalk regions may have developed their own methods to inhibit motor 

function, a few generalizations can be made about kinesin autoinhibition mechanisms.  

First autoinhibition often involves two different levels of regulation, prevention of 

microtubule binding and hindered processive motility.  This two-level motor regulation 

has now been shown for Kinesin-1, KIF1A, and KIF17 [1, 4].  For these kinesins, 

sequences can be deleted or mutated that enable microtubule binding, yet the motors are 
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not capable of processive motility.  Alteration of a second sequence activates motility. 

Second, motor activity is negatively regulated by direct interactions of the motor and/or 

neck with C-terminal stalk/tail regions.   

 More data is needed for KIF17 to pinpoint what residues of CC2 and the motor 

domain are responsible for this inhibitory intramolecular interaction.  Additional 

structural data would be especially helpful to understand how this CC2/motor contact 

functions to inhibit the processive motility of KIF17.   Recently, Dietrich et al showed 

that in Kinesin-1, tail residues QIAKPIRP directly interact with the switch 1 region of the 

motor [4].  As the Switch I region participates in nucleotide binding and release [36], this 

interaction likely prevents Kinesin-1’s initial microtubule stimulated ADP release step, 

consequently, preventing Kinesin-1 from productively interacting with microtubules [1, 

4, 5, 7].  As the tail can simultaneously interact with microtubules, it could also function 

to limit processive movement of Kinesin-1 when bound to microtubules [4].  This 

tail/switch I inhibitory interaction mechanism is strikingly similar to how GDI proteins 

function to inhibit small G proteins whose nucleotide binding pocket is similar in 

structure to that of kinesin motors [37, 38].  Thus, although the CC2 region of KIF17 is 

not conserved with the QIAKPIRP containing tail of Kinesin-1, the two kinesins could 

have co-evolved a similar inhibitory switch I-motor interactions.  

 

Comparison of autoinhibition mechanisms of KIF17 and Osm-3  

Osm-3, like KIF17, has been shown to be autoinhibited.  For either motors, 

mutation or deletion of a central stalk region—CC2 for KIF17, or the hinge 2 region 

between CC1 and CC2 in Osm-3—results in an active, processive motor.  For KIF17 we 

show that CC2 functions to inhibit motor activity by directly interacting with the motor 

domain.  Imanishi et al showed that increased motor activity correlated with a less 

compact conformation of the protein.  Thus, they proposed that Osm-3 folds at the hinge 

2 region bringing more C-terminal regions in contact with the motor to mediate 

inhibition[24].  The stalk regions of Osm-3 and KIF17 are fairly well conserved, with the 

exception that KIF17 has a ~300 residue insertion of unknown domain structure, into the 

hinge 2 region.  This insertion makes it difficult to conclude whether Osm-3 and KIF17 

are likely regulated by the same mechanism, or whether they might have a slightly 
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different molecular basis for their autoinhibition.  Both studies mutated a conserved 

glycine (G444, Osm-3; G754, KIF17) to glutamate.  In Osm-3 this glycine and 

surrounding residues compose a region that has no predicted coiled-coil structure.  As 

there are flexible residues, this region is defined as hinge 2.  In contrast, KIF17 has a few 

alterations in the residues surrounding G754 which increase the coiled-coil probability 

for this same region causing it to be grouped with CC2 rather than the ~300 amino acid 

insertion that has no coiled-coil probability.   Future studies will have to determine 

whether the hinge 2/CC2 regions should be considered together as the region that directly 

binds the motor domain, or whether there is a flexible part of KIF17’s CC2 that serves as 

a hinge to facilitate binding of more C-terminal residues of CC2 to the motor domain. 

 

Cargo-mediated activation and sorting of KIF17 

 The inhibitory mechanism of KIF17 is likely relieved by cargo.  Attachment of 

beads as a cargo mimic to Kinesin-1 or Osm-3 activates their processive motility [1, 24, 

32].  In our studies, we saw that attachment of a fluorescence protein to the C-terminus of 

KIF17 was enough of a cargo-mimic to activate the microtubule binding activity of 

KIF17, but not processive motility.  This could indicate that the CC2-motor interaction 

requires additional cargo binding or post-translational modifications in order to be 

broken.   As there are currently no know binding partners for the CC2 region, testing of 

this hypothesis will have to wait.  KIF17’s known direct binding cargo, Mint1 and NXF-

2, interact with the tail region[13, 15, 25].  In the case of Mint1, phosphorylation of a 

serine residue in the tail, by CaMKII, regulates the ability of the cargo to bind KIF17 

[25].  Whether this same phosphorylation event or others play a role in KIF17 motor 

regulation is unknown.   

We show that the cargo binding tail is necessary for KIF17 to accumulate in the 

tips of cilia.  This loading into cilia is likely dependent on interactions with IFT 

machinery, presumably cargo.  As constitutively active motors without the tail were 

unable to accumulate in the distal cilia, loading into cilia is an additional level of 

regulation used by KIF17.  KIF17 has also been shown to be important in vesicular 

trafficking in dendrites.  Cargo binding to the tail of Kinesin-1 has been shown to be 

important for localizing the motor to dendrites as opposed to axons which the Kinesin-1 
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motor intrinsically prefers [27, 39].  It will be interesting to see if cargo binding to 

KIF17’s tail could also be important in sorting KIF17 to dendrites. 

 

MATERIALS AND METHODS 

Plasmids and antibodies:  Full-length or truncated KIF17 constructs tagged with 

mCit , Flag, or Myc were generated by PCR amplification from the Sport6-HsKIF17 

cDNA vector.  PCR products were cloned into the mCit-N1 or C1 vectors (modified from 

Clontech’s EYFP-N1/C1 vectors by replacing EYFP with sequence for monomeric 

Citrine) the 3xmCit-N1 vector  previously described [28], or the pcDNA3-Flag vector 

using convenient restriction sites.  Additional KIF17 internal deletions and mutations 

were made by overlapping PCR.  All plasmids were sequence verified.  KHC-mCit and 

CFP-KLC have been described previously [6].   The following antibodies were used: 

Myc (Sigma and 9E10 hybridoma ascites), Flag (Sigma), GFP (used to recognize mCit; 

Invitrogen), and acetylated α-tubulin 6-11B-1 (Sigma). 

Cell culture and immunofluorescence:  COS and CAD cells were cultured, 

transfected, and processed for immunofluorescence as previously described (COS, Cai 

2007; CAD, Verhey 2001 and Blasius 2007).  Images were collected with a Nikon 

TE2000 microscope using a Plan-Fl 40X/NA 0.75 or a Plan-APO 60X/NA 1.4 objective 

and Photometrics CS ES2 camera.  Odora cells were plated on uncoated glass coverslips 

in DMEM, 10% FBS, and PennStrep then maintained at 33 degrees C, in 5% CO2.  Cells 

were transfected with Lipofectamine 2000.  After 24 hour expression, cells were fixed 

and processed for immunofluorescence as described previously [22].  Images were taken 

on an Olympus Fluoview 500 confocal microscope with a 100x/NA 1.35 objective. 

 Co-immunoprecipitation:  COS cells were first resuspended in lysis buffer 1 

(LB1; 25 mM Hepes/KOH, 115mM potassium acetate, 5 mM sodium acetate, 5 mM 

MgCl2, 0.5 mM, EGTA, 1% Triton X-100, and protease inhibitors; pH 7.4) or in Sabatini 

lysis buffer (SLB; 40mM Hepes pH 7.5, 120 mM NaCl, 1 mM EDTA, 10mM sodium 

pyrophosphate, 10mM ß-glycerophosphate, 50 mM NaF, 0.5% NP40, 0.1% Brij-35, and 

protease inhibitors).  After removing insoluble material by centrifugation at 20,000xg at 

4°C for 10mins, extracts were incubated with the specified antibodies for 2.5-18 hr at 

4°C.  Protein A agarose beads were then added and mixture was incubated for and 
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additional 20-40 mins at 4°C.  Beads were pelleted and washed two times with lysis 

buffer, resuspended in Laemmli sample buffer, and analyzed by SDS-PAGE and Western 

blot. 

In vivo microtubule binding assay:  COS cells were plated onto glass-bottomed 

dishes (MatTek) and transfected with plasmids encoding the proteins of interest.  

Twenty-four hours later, cells were viewed on a Nikon TE2000 inverted microscope.  

Cells were treated with 0.1 µg/ml Streptolysin O in permeabilization buffer 1 (25 mM 

Hepes/KOH, 115mM potassium acetate, 5 mM sodium acetate, 5 mM MgCl2, 0.5 mM, 

EGTA, and 10mg/ml BSA; pH 7.4) for 1 min.  After washing 3 times with Buffer 1, cells 

were incubated with Buffer 1 containing 2mM AMPPNP.  Cell were monitored every 

minute for an additional 15 minutes.  Alternatively, cells were treated with SLO and 

AMPPNP in the presence of taxol for 10 minutes.  Then, cells were fixed with 3.7 % 

formaldehyde and processed for immunofluorescence using Flag antibodies.   

In vitro single molecule motility assays:  Motility assays were performed in 

flow chambers as previously described [28] except P25 buffer (25 mM Pipes/KOH, 1 

mM EGTA, and 2 mM MgCl2, pH 6.8) was used in place of P12.  Briefly, motor proteins 

were prepared by lysing transfected COS cells in SLB with 1mM ATP.  5-10µl cell lysate 

was added to flow-chambers containing taxol-stabilized microtubules and 40-45 µl of 

oxygen scavenger buffer (1 mM DTT, 1 mM MgCl2, 2 mM ATP, 10 mM glucose, 0.1 

mg/ml glucose oxidase, 0.08 mg/ml catalase, 10 mg/ml BSA, and 10 µM taxol in P25).  

An objective-type total internal reflection fluorescence microscope and a back-

illuminated EMCCD camera (Cascade 512B; Roper Scientific) were used to image single 

molecule motility events at intervals of 100 ms.  Single molecule tracking measurements 

for each construct come from at least two independent protein preparations and include 

motile events lasting at least 0.3 seconds.  Velocity and track length measurements were 

obtained using home-made plug-ins written for ImageJ (NIH).   
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Figure 2.1:  KIF17 and Osm-3 coiled-coil prediction and construct schematic.  (A)  Coiled-coil 
prediction for Osm-3 (C. elegan NP_001023308) and domain map.  Gray dotted line, prediction 
using a window of 14 amino acids; Blue line, prediction using a window of 21 amino acids (based 
on COILS; Lupas method [40]). (B)  Coiled-coil prediction for KIF17 (homo sapiens NP_ 
001116291).  (B)  Map of KIF17 domains and construct schematics.  NC, neck coiled-coil, CC, 
coiled-coil. 
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Figure 2.2:  KIF17 processivity is inhibited by coiled-coil 2.  (A)  Cell based-motility assay.  
CAD cells were transfected with full-length (FL) or truncated KIF17 constructs (C-terminally 
tagged with mCit) and differentiated for 40-48 hrs. Scale 20µm.  (B-F)  In vitro single molecule 
motility assay.   COS cells were transfected with 3xmCit tagged FL or truncated KIF17 
constructs.  Motor proteins in cell lysates along with 1mM ATP were incubated with Taxol-
stabilized microtubules and assayed with TIRF microscopy for motility.  (B)  Velocity 
histograms. (C) Track length histograms. (D) Distribution of track lengths as a function of time 
spent in 1-directional motility. (E)  Representative kymographs for each motor construct.  Scale 
bars: Red, 2 µm; Black 1 second. (F) Table of motile properties (mean+/-SEM). 
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Figure 2.3:  Full-length and truncated KIF17 proteins dimerize.  (A-B)  Co-immunoprecipitation.  
COS cells were co-transfected with plasmids encoding Flag and mCit tagged FL KIF17 
constructs (A), or Myc and mCit tagged truncated KIF17 constructs (B).  Lysates were analyzed 
by western blot either directly (input lysate) or after immunoprecipitation with anti-Flag and 
control IgG antibodies (A) or anti-Myc and control IgG antibodies (B). 
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Figure 2.4:  Full-length KIF17 is inhibited from binding microtubules.  Truncation of KIF17 or 
using a fluorescent protein to mimic cargo relieves this inhibition.  (A-F) Live cell microtubule 
binding assay.  COS cell expressing the indicated Kinesin-1 or KIF17 proteins were 
permeabilized with SLO, washed, and treated 15 mins with AMPPNP.  (A) Representative before 
and after AMPPNP treatment images shown for cells expressing Kinesin-1’s KHC (mCit tagged) 
and KLC (CFP tagged, not shown) subunits (left); or the KHC subunit alone (right). Scale, 20µm.  
(B)  Percent of cells where Kinesin-1 relocates from a cytoplasmic to microtubule (MT) bound 
localization after AMPPNP treatment.  Averages from 3 experiments ~50 cells each.  Error bars 
+/- SEM.  (C)  Representative before and after AMPPNP treatment images for FL or truncated 
KIF17 constructs C-terminally tagged with mCit.  Scale, 20µm.  (D)  Percent of cells where 
KIF17 relocates from a cytoplasmic, to microtubule (MT) bound, localization after AMPPNP 
treatment.  Averages from 3-5 experiments ~100 cells each.  Error bars +/- SEM.  (E-F)  Tag type 
and location influences the microtubule binding ability of FL KIF17.   (E)  COS cells expressing 
FL KIF17 tagged on N-terminus with mCit or Flag after 15 mins AMPPNP treatment.  For Flag-
KIF17 cells were additionally fixed and immunostained with anti-Flag antibodies.  Scale, 20µm. 
(F)  Percent of cells with FL KIF17 localized to microtubules (MT) after AMPPNP treatment. 
Flag or mCit tags placed on N- or C- terminus (NT or CT respectively) as indicated.  Error bars 
+/- SEM.   
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Figure 2.5:  Removal or mutation of coiled-coil 2 results in an active, processive motor.  (A)  
Construct schematic of FL KIF17 or constructs with internal deletions or mutations.  Blue region, 
CC2; Red region, CC3.  For G754E and 764-772A constructs, the mutated residue(s) are 
highlighted in yellow and the surrounding residues are shown.  Amino acids within the predicted 
CC2 are boxed in blue.  (B)  Coiled-Coil predictions for constructs in A.  Regions altered by 
deletions or mutations are marked *.  Gray dotted line, prediction using a window of 14 amino 
acids; Blue line, prediction using a window of 21 amino acids (COILS, Lupas Method).  (C)  Cell 
based-motility assay.  CAD cells were transfected with the indicated KIF17 constructs (tagged 
with mCit on C-terminus) and differentiated for 40-48 hrs. Scale 20µm.   
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Figure 2.6:  Coiled-coil 2 inhibits the motor by direct contact and can inhibit in trans.  (A)  
Construct schematic.  NC, neck coil, CC, coiled-coil. (B-C)  Co-immunoprecipitation.  COS cells 
expressing 1-738mCit, 1-369mCit, 1-347mCit, or Flag-370-490 and the indicated Myc C-
terminal fragments were lysed and analyzed by western blot either directly (input lysate) or after 
immunoprecipitation with anti-Myc or control IgG antibodies.   In C, the control and Myc-466-
846 pairs for 1-369, 1-347, or 370-490 are from the same gel.  ** indicates bands due to Myc 
antibody heavy chains. *background bands in total cell lystate. (D-E)  Cell based-motility assay.  
Expression of Myc tagged constructs containing the minimal CC2 region, 735-795, can inhibit, in 
trans, the processivity or tip accumulation of KIF17 1-738.   (D) CAD cells were transfected with 
1-738 mCit alone or with the indicated Myc constructs and differentiated for 40-48 hrs. Scale 
20µm.  (E)  Percentage of cells with 1-738 accumulated at neurite tips in the presence of the 
indicated Myc tagged construct.  Averages from 2-3 experiments, 50-100 cells each.  Students T-
test (with comparison to 1-738mCit expressed alone control) * p<0.1.  Error bars +/- SEM.   
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Figure 2.7:  The KIF17 tail is required for peripheral accumulation in cilia. (A-D) Olfactory cells 
were transfected with the indicated mCit tagged KIF17 plasmids and allowed to differentiate for 
48hrs.  Cells were then fixed and immunostained with anti-acetylated tubulin antibodies to reveal 
cilia location (shown in red).  Full cell images shown in (A), with cilia regions enlarged in (B).  
(C)  KIF17 accumulates at the distal tip of cilia.  A line was drawn down the proximal-to-distal 
length of the cilia shown in B, for mCit-KIF17.  Fluorescence intensity (AU, arbitrary units) of 
mCit-KIF17 was measured and graphed as a function of cilia length.  (D) Quantification of the 
percent of transfected cells that had KIF17 accumulated in cilia.  *Chi-squared test, p < 0.002.  
Acknowledgements:  This figure was generously contributed by Paul Jenkins, from Jeffrey 
Martens’ lab at the University of Michigan. 
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Chapter 3: 
Motile Properties of Dimeric KIF1A Motors  

Upon Release of Autoinhibition 
 

 Molecular motors of the kinesin superfamily use the energy of ATP to move 

along or modify the microtubule cytoskeleton.  Kinesin-3 family members, mammalian 

KIF1A and C. elegans Unc104, specifically couple this ATP driven motility to transport 

many types of intracellular cargo including synaptic vesicle precursors [1-3].  Labeling 

KIF1A or Unc104 proteins with GFP has allowed motors clustered on vesicular 

membranes to be visualized and tracked.  These motors move at 0.8-1.0 µm/second in an 

anterograde direction down axons of murine primary hippocampal neurons or in live 

worms [4-6].  

 To ensure that ATP is not wasted by kinesin motors uncoupled to cargo, kinesin 

motors must be tightly regulated.  Indeed, many studies have shown that the first 

identified, and most well-characterized kinesin motor, Kinesin-1 (also known as 

conventional kinesin or KIF5), is autoinhibited in the absence of cargo ([7-9] and reviews 

[10, 11].  This work has led to the general hypothesis that all cargo transporting kinesins 

must have both active and inhibited states.  Recently more examples of kinesin 

autoinhibition have come to light as the Kinesin-2 family member, Osm-3, and Kinesin-3 

family members, Gakin/KIF13B, KIF1A, and Unc104 are also inhibited [12-17].  

Autoinhibition of KIF1A/Unc104, is mediated by two different regions.  First 

microtubule binding is inhibited by the forkhead-associated (FHA) domain and the C-

terminally adjacent coiled-coil (CC2) [14, 15].  Second, the neck coil (NC) and first 

coiled-coil region (CC1) of Unc104 has been suggested to play a role in the transition 

from a monomeric state incapable of long-distance motility to an active dimeric state 

[14].  Whether this regulatory mechanism is also conserved in mammalian KIF1A has not 

yet been tested.    
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  KIF1A/Unc104 motors have some of the fastest reported velocities and longest 

run lengths of the kinesin superfamily [2, 4-6, 18-20].  However, the most unique or 

controversial quality of KIF1A is that it has been proposed to act as a monomer [16, 21, 

22].  Most cargo transporting kinesins are dimeric and are believed to coordinate their 

two motor heads in an alternating hand-over-hand fashion, moving in 8nm steps down the 

microtubule [23].  However, results from hydrodynamic analysis of recombinant and 

endogenous KIF1A/Unc104 motors suggest they are monomers [2, 17, 19, 24].   Thus, a 

novel motility mechanism was proposed to explain how KIF1A/Unc104’s single motor 

domain could generate processive movement.  In the model, KIF1A/Unc104 diffuses 

along the microtubule with ATP hydrolysis powering a slight rotation of the head that 

provides enough mechanical force to bias diffusion towards the plus-ends of 

microtubules.  The processivity of KIF1A/Unc104 also depends heavily on a positively 

charged K-loop inserted near the motor domain’s microtubule binding interface.  

Electrostatic interactions between this lysine rich region and the negatively charged C-

terminal tails of tubulin help the single-headed motor stay attached in a weak binding 

state while diffusing [16, 21, 22, 25, 26].  

The biased diffusion model has been controversial because in vitro experiments 

report that monomeric KIF1A motors move at very slow velocities (0.14µm/second) 

compared to the fast velocities reported for GFP-tagged KIF1A/Unc104 motors 

expressed in vivo [5, 6, 16, 20-23].  Monomeric KIF1A motors  also stall under low load 

(0.15 pN), which is likely not sufficient to drive vesicle transport in a crowed cellular 

environment [21].  Finally, monomeric Unc104 constructs do not show the same biased 

diffusion movement as KIF1A [19, 20].  Thus, a second model for KIF1A/Unc104 

motility was put forth, suggesting that in vivo, KIF1A/Unc104 dimerize on vesicular 

membranes in order to achieve processive transport of cargo.  This model is supported by 

several lines of evidence.  First, studies show that Unc104 constructs artificially 

dimerized by the addition of a leucine zipper or the coiled-coil stalk region of Kinesin-1, 

are highly processive.  The forced-dimer Unc104 motors show motile properties similar 

to other dimeric kinesins and to the motility properties of GFP-tagged KIF1A/Unc104 

motors expressed in vivo [20].  Second, Unc104 proteins can drive the processive 

transport of liposomes by binding phosphotidylinositol(4,5)bisphosphate (PIP4,5P2) 
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molecules.  This processive transport is greatly enhanced by high concentrations of 

PIP4,5P2, or experimental conditions that locally concentrate PIP4,5P2 on the liposome 

membrane.  This suggests locally concentrating the Unc104 motor on cargo vesicles 

facilitates its dimerization and consequently its ability to move processively [4, 27].  

Third, recombinant KIF1A motors expressed in reticulocyte lysates can dimerize [17].  

Finally, the fact that the closely related Kinesin-3 family members, Dictyostelium 

Unc104 (DdUnc104) and Kif1C exist in a dimeric state, also lends support to the 

KIF1A/Unc104 processive dimer model [28, 29].  Yet, a KIF1A motor that is dimerized 

via its own sequences and that moves processively has not yet been demonstrated. 

What are the KIF1A/Unc104 regions that may facilitate dimerization?  The short 

predicted coiled-coils are likely candidates, but as they are much shorter, and in some 

cases, significantly weaker than the extended coiled-coil segments present in other 

kinesin family members, they have largely been overlooked and understudied.  However, 

the NC is likely to be important as mutations in this region, abolished the ability of 

Unc104 forced dimers to move processively, suggesting it must function in some way to 

coordinate the two motor domains of the forced dimer [20].   Additionally cryoelectron 

microscopy studies and studies on synthesized peptides equivalent to the NC of KIF1A or 

Unc104 also suggest this short coiled-coil is capable of dimerization [14, 17, 30]. None 

of the other predicted coiled-coil regions have been implicated in dimerization, but they 

also have not been studied.  

 We set out to examine the overall structure and regulatory regions of KIF1A 

motors and to correlate processive motor activity with dimeric state.  We show that full-

length KIF1A motors can dimerize, but these dimers are still in an autoinhibited state 

where they are prevented from binding microtubules and moving processively.  Our data 

agree with previous studies that this autoinhibition is mediated by the CC2/FHA region 

and CC1.  Dimerization requires the full NC, but likely other coiled-coils contribute.   

Finally, we support the model that KIF1A moves processively as a dimer.  Although we 

observed monomeric motor constructs that moved for short time periods via one-

dimensional diffusion, we show that processive movement for long time periods requires 

dimerization and likely a motility mechanism more reminiscent of kinesins that move 

hand-over-hand.     
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 RESULTS 

Full length KIF1A is inactive in mammalian cells 

 In order to investigate the regulatory mechanisms and monomeric/dimeric state of 

KIF1A, we tagged rat KIF1A with a fluorescent protein (FP) on the N- or C-terminus and 

expressed it in mammalian cells.  Kinesin-1 motors have been successfully labeled and 

studied in their native cellular environment by this approach, thereby avoiding many of 

the pitfalls associated with purifying and labeling kinesin motors in vitro [7, 31].  As 

Unc104 proteins tagged with a FP on their C-terminus are able to rescue the paralyzing 

phenotypes caused by Unc104 mutations in C elegans, the FP tag appears to have no 

deleterious effects on the cargo binding, regulatory, or motility properties of the  

motor [6].    

We first investigated whether full-length KIF1A was able to bind microtubules.  

KIF1A was tagged with a monomeric version of Citrine (mCit, a variant of YFP), and 

expressed in COS cells where it showed a diffuse, cytoplasmic localization  (Figure 3.1 

A).  Previous studies on Kinesin-1 have shown that steady-state expression patterns often 

do not reveal whether the motor is actively binding and moving on microtubules.  

However, by exposing the motors to the non-hydrolysable ATP analog, AMPPNP, active 

motors can be trapped on the microtubule as they are unable to change from a strong 

microtubule bound conformation [7, 32].   Live COS cells were permeabilized with the 

bacterial toxin streptolysin O (SLO) then treated with AMPPNP.  The cytosolic 

localization of mCit-KIF1A was not altered by AMPPNP (Figure 3.1 A and B), revealing 

that full-length KIF1A is inhibited from binding microtubules.  This data agrees with 

previous reports suggesting KIF1A/Unc104 is an autoinhibited motor. 

 

Full length KIF1A forms a compact dimeric protein in mammalian cells 

 As two regulatory mechanisms have been proposed to explain the KIF1A/Unc104 

inhibited state, specifically the presence of inhibitory domains or a monomer-to-dimer 

transition, it is important to determine whether full-length KIF1A exists as a monomer or 

dimer.  Three experimental approaches were taken to address this question, specifically, 

co-immunoprecipitation, chemical crosslinking, and fluorescence resonance energy 

transfer (FRET) stoichiometry.  For co-immunoprecipitation experiments, mCit- and 
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Myc-tagged KIF1A proteins were co-expressed in COS cells. Cells were then lysed and 

immunoprecipitated with either control antibodies (IgG) or antibodies to the Myc tag.  

mCit-KIF1A co-precipitated with Myc-KIF1A in the presence of Myc antibodies but not 

control antibodies.  Similar results were seen for KIF1A motors tagged with mCit on the 

N-terminus and monomeric cyan fluorescent protein (mCFP) on the C-terminus (mCit-

KIF1A-mCFP, Figure 3.1C).  These results support a dimeric, rather than monomeric, 

state for KIF1A when it is expressed in mammalian cells.  

 Chemical crosslinking, the second experimental approach used to test the 

monomeric or dimeric state of KIF1A, has been used previously to demonstrate that 

Kinesin-1 and some Kinesin-3 motors are dimers [20, 29].  Cell lysates from mCit-

KIF1A expressing COS cells were treated with dimethylpimilimidate (DMP) then run on 

a SDS-PAGE gel and blotted for the mCit tag.  The mCit-KIF1A protein ran at the 

expected molecular weight (~170 kD) in the absence of crosslinker, but showed reduced 

mobility in the gel when treated with DMP (Figure 3.1D, lanes 1,2).   The KHC domain 

of Kinesin-1, which is a well proven dimer, also showed an up-shifted bands in the 

presence of DMP when similarly tagged with mCit (Figure 3.1D, lanes 3 and 4).  Control 

experiments with lysates containing the mCit tag alone showed no up-shifted band of 

reduced mobility, proving that the decreased mobility seen for mCit-KIF1A and mCit-

KHC was not due to the tag (Figure 3.1D, lanes 5 and 6).  These results again suggest 

that KIF1A, like Kinesin-1, can exist as a dimer.   

 The final approached used to resolve the KIF1A monomer-dimer question, 

FRET stoichiometry, was chosen as it could also give information about the overall 

conformation of KIF1A.  FRET stoichiometry was recently used to elucidate 

conformational changes that occur in Kinein-1 when it changes from an autoinhibited 

state to an active state [7].  FRET stoichiometry uses three fluorescence images to 

calculate an average FRET efficiency (EAVE; for more details see materials and methods).  

EAVE values vary between 0% (no FRET) for unlinked donor mCFP and acceptor mCit 

fluorophores, and 37% for mCFP and mCit linked by a 16 amino acid polypeptide chain 

[7, 33, 34]. 

 To test the prediction that KIF1A is a dimer, mCFP-KIF1A and mCit-KIF1A 

were co-expressed in COS cells and an average FRET efficiency between the donor and 
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acceptor FPs was calculated.  The motor-to-motor FRET of KIF1A was low, but 

measurable (EAVE = 3.0%) and was very comparable to the motor-to-motor FRET of the 

Kinesin-1 holoenzyme that has its motor domains separated by KLC in its inactive state 

(EAVE = 2.1%, Figure 3.1 E and F) [7] .  As there was a detectable FRET signal for 

KIF1A, these results do not support a monomeric conformation, but rather support the 

idea that KIF1A is dimeric, but in the inactive molecule the motor domains do not reside 

side by side  However, the possibility that KIF1A exists as a mixture of monomers and 

dimers in vivo cannot be excluded.  

 FRET stoichiometry was put to further use in order to test the model that KIF1A 

folds into a compact conformation.  This model is based on previous studies using rotary 

shadowing of recombinant KIF1A [2].  The single motor construct, mCit-KIF1A-CFP, 

was generated in order to put donor and acceptor FPs on KIF1A’s motor and tail 

domains.  When expressed in COS cells with Myc-KIF1A,  mCit-KIF1A-CFP resulted in 

an EAVE that was again low, but detectable (EAVE = 4.8%).  This value was significantly 

different from the motor-to-tail FRET efficiency of the Kinesin-1 holoenzyme, whose 

motor and tail domains are in very close proximity in the folded, inactive state (EAVE = 

15.8%, Figure 3.1 G and H) [7].  These results support the conclusion that KIF1A, in 

native conditions, is not an extended molecule (where we would expect no FRET) nor 

does it have a conformation with the motor or tail domains as closely located as in the 

case of Kinesin-1 (expect high FRET).  Nevertheless, KIF1A is likely folded in a 

compact conformation which places the N-terminal motor and C-terminal tail within at 

least ~8-10 nm of each other.  

 The combination of these results shows that KIF1A can form dimers in vivo, but 

is inhibited from binding microtubules.  Thus, dimerization is not sufficient for motor 

activation and a mechanism other than a monomer-to-dimer transition must be used in 

order to shift KIF1A from and inactive to active state.   

 

Separate mechanisms regulate microtubule binding and processive motility of 

KIF1A motors  

Analysis of the domain structure of KIF1A/Unc104, shows the motor domain is 

followed by two very short coiled-coils (referred to as the neck coil, NC; and coiled-coil 
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1, CC1), a forkhead-associated (FHA) domain, two more short coil-coils (CC2 and 3), a 

large undefined region, and a C-terminal PH domain (Figure 3.2 A and B).  Whether any 

or all of the short predicted coiled-coils are necessary or sufficient for dimerization is 

unknown.  To identify the regions of KIF1A involved in autoinhibition and dimerization 

under native expression conditions, truncated versions if KIF1A were created (Figure 3.2 

B) by placing a mCit tag after CC2, KIF1A(1-726), after CC1, KIF1A(1-491), or after the 

NC, KIF1A(1-393).   

The SLO/AMPPNP assay described above was used first to investigate the 

microtubule binding ability of each truncation.  Live cell imaging of COS cells 

expressing the mCit-tagged KIF1A truncations showed that after SLO and AMPPNP 

treatment, KIF1A(1-726)-mCit remained cytosolic (Figure 3.3 C,D,E), indicating that this 

construct, which has roughly half of the KIF1A residues missing (727-1696), still 

maintains the autoinhibited state of the full-length molecule.  Further truncation of CC2 

and the FHA domain caused KIF1A(1-491)-mCit to relocate from a diffuse cytosolic 

localization, to a microtubule-locked localization after treatment with AMPNP.  Thus, the 

CC2 and FHA domains (residues 492-726) are responsible for keeping KIF1A inhibited 

and unable to interact with microtubules.  These results are consistent with previous work 

on truncated KIF1A/Unc104 [14, 15] which also implicated the CC2/FHA region as 

important in maintaining KIF1A’s autoinhibited state.  Removal of the CC1 domain, 

yielded more interesting results, as KIF1A(1-393)-mCit localized to microtubules even in 

the absence of AMPPNP.  In this case the motor was accumulated on microtubules in the 

periphery of the cell suggesting that it was constantly undergoing processive movement.  

Addition of AMPPNP did result in a shift in the remaining cytosolic KIF1A(1-393) to a 

microtubule bound state which was most apparent in the central regions of the cell.  

Therefore, although the CC2/FHA region prevents KIF1A from binding microtubules, the 

CC1 region may play an additional role in regulating KIF1A’s motile properties. 

To further test CC1’s role in regulating processive motility, we tested all 

constructs in two processive motility assays.  Since multiple studies have demonstrated 

that active kinesin motors often accumulate at the tips of cell processes [15, 35, 36], we 

first analyzed the processive motility of KIF1A in the neuronal-like cell line, CAD.  

Second, we tested processive motility in vitro using a single molecule motility assay.  For 
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this assay, KIF1A constructs were tagged on their C-terminus with three tandem copies 

of mCit for improved signal-to-noise ratio and decreased photobleaching and 

photoblinking [31].  Cell lysates from COS cells expressing the 3xmCit-tagged KIF1A 

constructs were added to a flow chamber containing taxol-stabilized microtubules and 

assayed on a total internal reflection fluorescence (TIRF) microscope.   By timelapse 

imaging at 100ms intervals, individual motors could be seen moving along microtubules.  

Only motility events that lasted at least 500ms were included in the analyzed data set to 

ensure that the same motor could be tracked through 5 timelapse images.   In order to 

directly compare the number of motility events and the motile properties of velocity and 

track length for each KIF1A motor construct, the amount of expressed protein was 

normalized by western blot and each construct was analyzed for the same total amount of 

time.   

As expected from the microtubule binding experimental results, full-length (FL) 

KIF1A and KIF1A(1-726) were inactive for processive movement as they did not 

accumulate at the tips of CAD cell neuronal processes but were instead diffusely 

localized primarily in the cell body (Figure 3.3 A).  They additionally showed very few 

motility events in vitro (Figure 3.3 B-D).   Interestingly, KIF1A(1-491) was also diffusely 

localized in CAD cells and moved only rarely in vitro.  This reveals that while the 

CC2/FHA region of KIF1A regulates microtubule binding of the full-length motor, an 

additional region must control motility.  KIF1A(1-393), on the other hand, showed 

dramatic accumulation to the tips of neuronal processes, with very little cell body 

localization and exhibited a large number of motility events in vitro.  Thus, CC1, or 

amino acids 394-490, must play an inhibitory role in KIF1A, mediating to some degree 

the motility control mechanism.       

KIF1A(1-393)’s average velocity of 1.36 ± 0.04 µm/sec and average track length 

of 1.24 ± 0.06 µm per event (Figure 3.3 D), are comparable to previous in vivo and in 

vitro measurements for KIF1A/Unc104 motors where velocities ranged from 0.8-1.7 

µm/sec with track lengths up to several µm [2, 4-6, 14, 19].  The slight differences in 

velocity and run lengths observed for the FL, 1-726, and 1-491 motors as compared to 1-

393 are likely not significant due to the very few events used to calculate them.  These 
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few motility events are likely due to stochastic activation of the auto-inhibited motors by 

random conformational changes.  

 

The CC1 domain prevents dimerization and processive motility of KIF1A(1-491) 

 What is the mechanism by which processive motility is inhibited in the KIF1A(1-

491) motor?  Results from Albassam et al [14] provide a likely explanation.  Using 

cryoelectron microscopy they noted that CC1 could fold back on the NC forming a 

parallel intramolecular coiled-coil that limited the motor to a monomeric conformation.   

In a second conformation, they reported that the motor was likely dimerized with the NC 

and CC1 forming intermolecular coils with their respective counterparts on the adjacent 

dimer subunit[14].  Thus, the CC1 may inhibit the processive motility of dimeric KIF1A 

by uncoupling its two motor heads.  This would be analogous to the situation in Kinesin-

1 where the KLC subunits prevent processive motility in the inhibited state by unwinding 

the neck and pushing the motor domains apart [7].  In the case of the KIF1A truncation 

(1-491), the CC1 may prevent dimerization altogether.      

 To test this hypothesis and whether or not truncated forms of KIF1A are 

monomers or dimers, chemical crosslinking, co-immunoprecipitation and photobleaching 

experiments were done.  In the absence of crosslinker, all truncations ran at sizes 

representing their approximate molecular weight.  When treated with DMP, however, 

both the (1-726)-mCit and (1-393)-mCit proteins where present in up-shifted bands of 

restricted mobility (Figure 3.4 A), indicating they exist as dimers.  (1-491)-mCit, on the 

other hand, showed only a small fraction of protein shifted to a higher molecular weight, 

with the remaining majority shifted downward to species of faster mobility.  This 

suggests that (1-491) is primarily a monomer.  The novel downshift further indicates that 

the monomer has a compact conformation that permits an intramolecular crosslink.  This 

internal crosslink could be indicative of the parallel coiled-coil between the NC and CC1 

seen by Albassam et al, but could also have occurred elsewhere such as in the motor 

domain.  Co-immunoprecipitation experiments gave similar results with the exception of 

1-491.   Myc- and mCit-tagged versions of the KIF1A truncations were co-expressed in 

COS cells and immunoprecipitated with control antibodies (IgG) or antibodies to the Myc 

tag.  A significant portion of mCit tagged truncations 1-726, 1-508 (a truncation very 
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similar to 1-491, that behaves identically to 1-491 in all assays), 1-491, and 1-393 were 

co-precipitated with Myc constructs of an equivalent length in the presence of Myc 

antibodies.   Thus, 1-726 and 1-393 behave as dimers in both assays, but 1-491 showed 

varied results.   

 The final method used to test the dimeric state of KIF1A truncations involved 

tagging them with 3xmCit tags, then analyzing the fluorescence intensity values of 

individual motors over time as they photobleach.  As each mCit molecule photobleaches, 

the total fluorescence intensity of the motor construct drops at rather consistent intervals.  

Thus, a dimeric 3xmCit-tagged motor would show up to six bleaching steps, whereas, a 

monomeric motor would only have up to three steps.  Dimers and monomers are 

expected to have some variation in their number of bleaching steps as some mCit 

molecules will have the tendency to blink, bleach simultaneously, or bleach prior to 

analysis.  As this assay tests dimerization at the single molecule level, it can potentially 

reveal more information about the pool of motors than the previous assays which treated 

all motors as a group.   

Cell lysates from COS cells expressing 3xmCit-tagged versions of full-length or 

truncated KIF1A motors were added to flow chambers where the 3xmCit-tagged motors 

were adsorbed directly to the coverglass or locked on microtubules in the presence of 

AMPPNP.  The bleaching behavior of single motors over time was recorded in the TIRF 

microscope and the number of bleaching steps for individual fluorescent motors was then 

plotted as a histogram (Figure 3.4 C; representative fluorescence intensity traces are 

shown in Figure 3.4 D).  A truncated Kinesin-1 construct, KHC(1-891)-3xmCit, was used 

as a dimeric motor positive control.  This motor showed a maximum of six bleaching 

steps with a large proportion of the individual motors bleaching with more than three 

steps proving they are dimers.  The histograms for KIF1A full-length (FL), 1-726, and 1-

393 look almost identical to that of KHC(1-891), consistent with the above results that 

they are dimeric. Although truncations 1-491 and 1-508, also had some motors bleach in 

six steps, most of the motors bleached in two or three steps, which is consistent with the 

conclusion that they are monomers.  

Although KIF1A has long been referred to as a monomeric kinesin, the data from 

these three dimerization experiments, provide conclusive evidence that the KIF1A 
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truncations 1-726 and 1-393 (Figure 4) can dimerize similar to the FL protein (Figure 1).  

However, KIF1A constructs that are terminated after CC1, (1-491 and 1-508) are 

primarily monomeric.  Formation of an intramolecular coil between the NC and CC1 

would explain KIF1A(1-491)’s monomeric state, as it contains no other regions capable 

of mediating dimerization.  Formation of a NC/CC1 intramolecular coil in 1-726 and FL 

would not necessarily preclude dimerization as CC2 and/or CC3 could compensate.  The 

small portion of dimers detected for 1-491 are likely due to a intermolecular coiled-coil 

conformation of the NC and CC1.  The discrepancy between the three assays for the 1-

491 construct may be due to individual assay conditions that influence the amount of 

motors forming intra- or inter-molecular coils.  In particular, the binding of bulky 

antibodies to the Myc tag may place strain on monomeric intramolecular coils and favor 

instead intermolecular coils and dimerization.    

 

KIF(1-393) moves processively as a dimer   

 As two models for KIF1A’s processive motility have been proposed, one 

involving the biased diffusion of monomers and the other involving the hand-over-hand 

stepping of dimers, we used two-color TIRF imaging to simultaneously track the motility 

of (1-393) motors labeled with two fluorescent proteins, mCit and mCherry in order to 

conclusively prove that our KIF1A (1-393) truncation moves in its dimeric state.  (1-

393)-3xmCit and (1-393)-3xmCherry motors were co-expressed in COS cells and lysates 

were added to flow chambers with polymerized microtubules.  Although mCit labeled 

motors could homodimerize with other mCit motors and thus show motility events with 

only mCit fluorescence, similar to what one would expect if the motors were monomers, 

these homodimers would be brighter than mCit motors heterodimerized with mCherry 

motors, or mCit motors that were monomers.  For 109, 3xmCit fluorescent spots tracked, 

44 tracked with a corresponding mCherry fluorescent spot (a representative track is 

shown in Figure 3.4 E).  As the mCit fluorescence of these two colored motility events 

was significantly less (356.8 +/- 51.4) than the fluorescence of mCit spots moving 

independently of mCherry spots (513.4 +/- 54.0), a majority if not all of the mCit-only 

spots must also be dimers.  At least two factors may explain why the average mCit 

maximum fluorescence intensity measurements of the mCit/mCherry heterodimers (three 
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mCits and three mCherrys) are not half the fluorescence intensity of mCit homodimers (6 

mCits).  First, self-quenching of mCit fluorescent proteins is more likely to occur in 

homodimeric motors (six mCits) than heterodimeric motors (three mCits).  Second, 

because homodimeric motors are brighter (with six mCits) they also have a wider range 

of fluorescence intensity levels that are detectible above the signal-to-noise threshold for 

analysis than the low levels of mCit fluorescence in the heterodimeric motors (with only 

three mCits).  This is the most conclusive demonstration that KIF1A moves in a 

processive fashion as a dimeric motor.  Previous studies have used Unc104 constructs 

that were forced dimers due to addition of leucine zippers or truncations that contained 

the CC2/FHA or CC1 inhibitory regions and thus had only rare motility events [4, 14, 18, 

20].  

 

Dimerization of KIF1A via the Neck Coil  domain 

 Much of the data supporting or refuting the biased-diffusion model of motility 

have used very short KIF1A or Unc104 constructs that contained only the motor domain 

and limited amounts of the NC.  In some cases the constructs tested were monomers, in 

other cases it was just assumed that they were monomeric (for more details see, Figure 

3.5 A) [14, 16, 20-22].  As KIF1A(1-393) is a dimer, but only 12-24 residues longer than 

some reported monomeric constructs, we sought to determine the minimal amount of NC 

that is required for dimerization and processive motility.  Truncations of KIF1A motors 

with varying amounts of the NC, specifically 1-381, 1-377, and 1-369, were constructed 

based on previously described motors (Figure 3.5A).  These constructs were compared to 

1-393 for their ability to dimerize in crosslinking and photobleaching assays.  When 

lysates from cells expressing the mCit C-terminally tagged truncations were treated with 

the crosslinker DMP and run on a SDS-PAGE gel, only the KIF1A(1-393)-mCit protein 

showed an up-shifted band of reduce mobility as compared to untreated lysates.  

KIF1A(1-381)-mCit, KIF1A(1-377)-mCit, and KIF1A(1-369)-mCit showed no change in 

their electrophoretic behavior when treated with DMP (Figure 3.5 B).  Analysis of 

3xmCit tagged truncations in our photobleaching assay yielded complimentary results.  1-

393 showed a maximum of six bleaching steps with a large proportion of the individual 

motors bleaching with more than 3 steps, whereas 1-381 and 1-369 showed primarily 
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only 2 or 3 bleaching steps (Figure 3.5 C and D).  These results suggest that the presence 

of the entire NC, as well as sequences C-terminal to this region, is required for 

dimerization of mammalian KIF1A.  Even small truncations of the NC region convert the 

motor to a monomeric state.   This is consistent with studies on synthesized peptides 

where several residues beyond G387 were required to prevent dissociation of the coiled-

coil [30]. 

 

Motile characteristics of monomeric and dimeric KIF1A motors 

 We next set out to compare the motile properties of monomeric and dimeric 

KIF1A motors.  We first tested the ability of the NC constructs to bind to microtubules 

under native conditions using the SLO/AMPPNP assay.  COS cells expressing (1-393)-

mCit, (1-381)-mCit or (1-369)-mCit were permeabilized with SLO then treated with 

AMPPNP.  Only 1-393 accumulated at the cell periphery in the absence of AMPPNP; 

however, all three constructs became locked on microtubules in the presence of 

AMPPNP (Figure 3.6, A and B).  Expressing all constructs in CAD cells yielded similar 

results where only the dimeric motor, (1-393)-mCit, accumulated in neurite tips whereas 

the monomeric motors (1-381)-mCit and (1-369)-mCit showed a diffuse localization and 

were limited primarily to cell bodies (Figure 3.6 C).  These results confirm that the full 

NC of KIF1A, which confers the ability to dimerize, is required for processive motility in 

mammalian cells, but not for the ability to bind microtubules. 

 To investigate the motile characteristics of monomeric and dimeric KIF1A 

constructs in vitro single molecule motility experiments were carried out.  Lysates from  

COS cells expressing (1-393)-3xmCit, (1-381)-3xmCit or (1-369)-3xmCit were added to 

flow chambers containing polymerized microtubules and motility events were tracked by 

timelapse TIRF microscopy using 100ms intervals.  Again, only motility events that 

lasted at least 500ms were included in the analyzed data set.  As shown before, in Figure 

3.3, dimeric (1-393)-3xmCit motors produce a large number of motility events  with an 

average velocity of 1.36 µm/sec and an average run length of 1.24 µm/run (Figure 3.6 D-

F).  Because the monomeric truncations 1-381 and 1-369 did not show evidence of 

processive motility in vivo (Figure 3.6 C), we were surprised at the number of motility 

events we observed for these same motors in vitro (Figure 3.6 D-F).  However, the 
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number of observed motility events for 1-381 and 1-369 (n=100 and 93 respectively) 

were significantly reduced as compared to 1-393 (n=376).   The velocity and track 

lengths also differed between the dimeric 1-393 truncation and the monomeric 1-381 and 

1-369 truncations.  Both monomeric motors consistently moved over shorter distances 

than the dimeric 1-393, resulting in average track lengths of 0.42 µm for 1-381, and 1.02 

µm for 1-369.  The velocity profiles where a little more varied, as 1-381 moved at a 

reduced average speed (0.80 ± 0.04 µm/second), but 1-369 moved at an increased 

average speed (1.98 ± 0.17 µm/second, Figure 3.6 D-F).  Analysis of the velocity 

histogram for 1-369 reveals a wide variation in measured velocities with no Gaussian 

distribution characteristic of other processive kinesin motors and the 1-393 velocity data 

(Figure 3.6 D).  The track length histogram for 1-369 (Figure 3.6 E) also deviates from an 

exponential decay profile likely reflecting the huge variation in velocities.   

The rather stringent requirement that motility events had to last at least 500 ms, 

did exclude a large proportion of motility events that were short in duration, particularly 

for the monomeric truncations 1-369 and 1-381.   In order to better understand 

monomeric versus dimeric motility mechanisms, we reanalyzed a subset of our single 

molecule motility assays for the constructs KIF1A (1-369)-3xmCit and KIF1A (1-393)-

3xmCit to include motility events lasting at least 300 msec.  This analysis included more 

short motility events, but potentially more false positives as well.  Inclusion of the short 

motility events, resulted in an expected decrease in the average track lengths for both 1-

369 and 1-393 (0.65 ± 0.04 µm and 0.90 ± 0.05 µm, respectively; Figure 3.7 C).  

However, the increase in average velocity was rather surprising (2.19 ± 0.10 µm/second 

and 1.88 ± 0.07 µm/second, respectively, Figure 3.7 B).  Kymographs showing 

representative motility events for both 1-369 and 1-393 motors are shown in  

Figure 3.7 A. 

 Plotting the single molecule velocity and track length data as a function of time 

spent in 1-directional motility reveals that the motile properties of monomeric KIF1A(1-

369) and dimeric KIF1A(1-393) are truly different (Figure 3.7 D and E).  Monomeric (1-

369)-3xmCit motors spent short periods of time (< 1 sec) moving at a wide variety of 

speeds, over a broad range of distances (Figure 3.7 D and E, middle left panels, red 

circles).  The fact that the measured velocities vary so widely and the track lengths are 
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not dependent on the length of time spent in motion suggests that these motors are 

moving by one-dimensional diffusion.  The dimeric construct (1-393)-3xmCit exhibited 

this same diffusive type of motility for a portion of its motility events (Figure 3.7 D and 

E, top left panels, red circles), but added a second type of motility where motors spent 

longer periods of time (>1 sec) moving at a constant speed of ~1.2 µm/second for 

distances that reflected time spent in motility at this same constant speed (Figure 3.7 D 

and E, top left panels, blue circles).  This second type of motion, moving at a constant 

speed for longer time periods, was the only type of motility seen for a truncated version 

of the Kinesin-1 heavy chain subunit, KHC(1-891)-3xmCit, which is known to be a 

dimeric motor that that utilizes a hand-over-hand motility mechanism to drive its 

processive motility (Figure 7D, E bottom left panel, blue circle).  Taken together, these 

results indicate that KIF1A(1-393)-3xmCit motors display motile properties characteristic 

of both single-headed processivity (which is diffusive) and two-headed processivity 

(which is likely due to a hand-over-hand stepping mechanism). 

 

Dimeric but not monomeric KIF1A motors display ATP-driven processive motility 

A key aspect of single-headed processivity is one-dimensional diffusion that relies 

heavily on a weak binding state to microtubules [22].  This weak binding state occurs 

when the motor has ADP in its nucleotide pocket.  Thus, to distinguish whether 

monomeric 1-369 and dimeric 1-393 KIF1A motors move by one-dimensional diffusion 

or another mechanism, we ran the in vitro single molecule motility assays in the presence 

of ADP rather than ATP.  The motility profile of monomeric (1-369)-3xmCit motors was 

not changed in the presence of ADP (compare middle left and right panels of Figure 3.7 

D and E); confirming that it moves processively by one-dimensional diffusion (but for 

relatively short time periods only).  In contrast, the motile characteristics of dimeric 

motors were highly dependent on nucleotide.  In the presence of ADP, dimeric KIF1A(1-

393) motors continued to display short motility events of various velocities and run 

length (Figure 3.7 D and E, top right panel, red circles) similar to the monomeric, 

diffusive 1-369 motors.  However, the switch to ADP eliminated the ability of dimeric 

motors, KIF1A(1-393)-3xmCit and KHC(1-891)-3xmCit, to move for longer periods of 

time, at a constant velocity and over distances that were dependent on the time spent in 
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motion (Figures 7 D and E, top and bottom panels, respectively, blue circles).  Thus, 

although KIF1A(1-393) motors are dimers, they can move to some extent by one-

dimensional diffusion for short periods of time.  However for longer processive motility 

events, they require their two heads and ATP, reminiscent of other kinesins that use a 

hand-over hand stepping mechanism.   

 

DISCUSSION 

Dimerization of KIF1A 

 KIF1A/Unc104 motors have long been referred to as monomeric kinesins and 

indeed, truncated constructs containing only the motor domain do show diffusion 

mediated, processive motility [16, 21, 22].  The proposal that full-length KIF1A/Unc104 

motors are monomeric comes from gel filtration and sucrose density gradient 

centrifugation experimental that show recombinant and endogenous KIF1A/Unc104 

proteins have mobilities that reflect their inherent molecular weight, and not double it, as 

would be expected if they existed as dimers [2, 17, 19, 24, 37].  Here we have used four 

different assays that each demonstrates a dimeric state for full-length KIF1A expressed in 

mammalian cells (chemical crosslinking, co-immunoprecipitation, FRET, and 

photobleaching).  Although these experiments were done with over-expressed proteins, it 

is unlikely that a monomer-to-dimer switch occurred due to high concentrations, as the 

crosslinking, co-immunoprecipitation, and photobleaching assays involved significant 

dilution.  Similar methods have been applied to show that other closely related Kinesin-3 

family members, specifically, KIF1C and Dictyostelium Unc104, are also dimers [17, 28, 

29].  Our FRET analysis confirms the compact conformation seen for KIF1A/Unc104 in 

electron microscopy studies, which leaves open the possibility that this compact 

conformation impacted the mobility of KIF1A in previous hydrodynamic studies leading 

to the conclusion that KIF1A/Unc104 was monomeric rather than dimeric as we 

conclude.  

 We show that the short NC of KIF1A is sufficient for dimerization and processive 

motility.  Importantly, the full NC and likely several residues C-terminal to the NC are 

required for this dimerization, as constructs containing only part of the NC were shown to 

be monomers in our analysis as well as in previous reports [14, 16, 17, 20-22, 30].  The 
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dimerization and processive motility characteristics of Kinesin-1 are also sufficiently 

mediated by its NC [38, 39], but its other coiled-coils in the stalk domain also function in 

dimerization and regulation [10].  Likewise, KIF1A’s CC1 and CC2 regions have 

additional motor regulatory and dimerization functions.  This is demonstrated in part by 

our results showing that truncation of KIF1A after CC1 (or residue 491), results in a 

primarily monomeric motor that can bind microtubules but cannot move processively.  

CC1 is thus inhibitory to the dimerization of this particular construct, and consequently, 

two-headed processive movement.  Results from Al- Bassam et al give an explanation for 

the monomeric conformation of our KIF1A(1-491) as they show by cryo-EM , that a 

Unc104 construct of similar length formed a parallel intramolecular coil between CC1 

and the NC, limiting it to a monomeric state.  In a slightly different experimental 

condition, the CC1 and NC were able to form dimerizing intermolecular coils [40].  As 

full-length KIF1A and the longer truncation, KIF1A(1-726), were both shown to be 

dimeric in all of our assays, presence of CC1 must not impose a monomeric conformation 

on the full-length molecule.    

In the full-length molecule, the CC2 domain could function in dimerization and 

compensate for the NC if it is trapped in an intramolecular coil with CC1 rather than a 

dimerizing intermolecular coil with its counterpart on a second molecule.  The formation 

of the NC/CC1 intramolecular coil could be a critical autoinhibitory mechanism used to 

separate and uncoordinated the two motor domains of dimeric KIF1A.  A similar case is 

true for Kinesin-1 where the TPR domains (or for fungal Kinesin-1, the globular tail) 

unwind the neck coil and physically separate the motor domains [7, 41].  Future work is 

required to determine if the NC/CC1 intramolecular coil exists in the inhibited, full-

length KIF1A motor or whether it is just an artifact of truncation.  

 

Autoinhibition of KIF1A 

 Autoinhibition is a common regulatory strategy used in diverse biological systems 

[42, 43].  Autoinhibition of kinesins ensures that in the absence of cargo, motors do not 

hydrolyze excessive ATP in useless motility.  It also allows for temporal and spatial 

control of motor activity, ensuring kinesins are available and ready when needed for 
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cargo loading and transport [10, 11].  Auto-inhibition has now been shown to regulate 

members of the Kinesin-1, Kinesin-2, and Kinesin-3 families [10, 12, 13, 15].   

Consistent with previous studies [2, 14-17, 19], we show that full-length KIF1A 

expressed in mammalian cells is autoinhibited, being incapable of microtubule binding in 

vivo as well as processive motility in vivo and in vitro.  Our work provides the additional 

conclusion that dimerization is not sufficient for activation. Truncation of KIF1A reveals 

that two regions mediate this autoinhibited state.  First the CC2+FHA region prevents 

microtubule binding.  This is consistent with results from Lee et al, who further showed 

that neither the FHA domain nor CC2 is sufficient for inhibition.   Rather, inhibition 

requires a direct binding interaction between the FHA domain and CC2.  As no direct 

contact of this FHA/CC2 linkage with the motor was detected, it is unclear how 

microtubule binding is prevented [15].  Although their evidence is weak, the authors 

suggest the FHA/CC2 interaction limits dimerization and thus a monomer-to-dimer 

switch may be important for activating the full-length motor.  Our results, however, show 

that full-length KIF1A, and the KIF1A(1-726) truncation which contains the FHA/CC2 

region, are convincing dimers but still inhibited for microtubule binding.  Thus 

dimerization is not sufficient for activation.  More structural data is needed to show 

exactly how the CC2/FHA region prevents microtubule binding.  Possibly, the compact 

conformation of inhibited, dimeric KIF1A, places the motor near these regions, allowing 

the CC2/FHA linkage to sterically block access to microtubules.   

 The second region of KIF1A that mediates its autoinhibited state is CC1.  

Removal of CC1 allows KIF1A(1-393) constructs to not only bind microtubules, but to 

also move processively along them.  This finding is again consistent with the results by 

Lee et al [15].   We add however that this processive movement is due to a two-motor 

mechanism, as KIF1A(1-393) constructs labeled individually with mCit or mCherry tags 

move together in a two-color single molecule motility assay and that constructs truncated 

after CC1 are prevented from undergoing processive movement due to the fact that they 

are primarily monomeric.  As mentioned above, CC1 probably functions to inhibit the 

full-length molecule, not by preventing dimerization, but by locally separating and 

uncoupling the two motor heads. 

   

Mechanisms of KIF1A motility 
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 Understanding the processive motility mechanism used by KIF1A/Unc104 has 

been complicated by the fact that KIF1A/Unc104’s regulatory regions (CC1, FHA, and 

CC2) all lie very close to the motor domain in primary sequence.  In contrast, Kinesin-1’s 

motor domain is well separated from the two regions that mediate its autoinhibited state.  

One resides at the opposite end of the same subunit (IAK region of KHC tail), and the 

other is part of a completely separate subunit (TPR domains of KLC) [10].  Thus, 

processive motility of Kinesin-1 can be seen with very limited truncation of KHC.  

Indeed, truncating Kinesin-1 at various places along the stalk results in active, processive 

motors.   In order to deal with KIF1A/Unc104’s more complicated domain makeup, 

researchers studying KIF1A/Unc104 have opted to study the processive movement of 

constructs that contain only the motor domain (sometimes containing a partial NC) or 

longer constructs that contain either one or both of the CC1 and FHA/CC2 inhibitory 

regions.  This has led to two models for KIF1A motility, first that KIF1A moves 

processively as a monomer via one-dimensional diffusion along the microtubule [16, 21, 

22, 44]; and second, that KIF1A moves processively as a dimer, but requires high local 

concentrations in order to dimerize [4, 14, 15, 18, 20].   

Monomeric Motility.  Our data supports the conclusion that monomeric KIF1A 

constructs have the ability to move processively for short time periods via a one-

dimensional diffusion mechanism.  Specifically, we show that the motility of monomeric 

KIF1A(1-369) and (1-381) motors occurs for at a large range of speeds allowing the 

motor to travel various distances.  Additionally, KIF1A monomers can diffuse along the 

microtubule surface in presence of both ATP and ADP, which is a defining characteristic 

of the one-dimensional diffusion model of processivity and consistent with previous work 

[21, 22].  In contrast to our results, previous studies have reported very slow average 

velocities (0.14µm/sec) and long microtubule dwell times for KIF1A monomeric motors 

[16, 21, 22].  This discrepancy is likely explained by the fact that our analysis 1) 

excluded motors that bound to microtubules but did not move and 2) terminated motility 

events if the motor stopped moving but remained attached to microtubules.  

Consequently our results reflect the fact that monomeric, diffusion-based motility never 

lasts more than a few hundred milliseconds.  Because monomeric motors move for only 
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short time periods and as others have reported stall under low loads (0.12 pN) [21], it is 

unlikely to be sufficient to carry cargos long distances in vivo.   

KIF1A is rather unique among the Kinesin superfamily because it shows this one-

dimensional diffusion.  The only other kinesin protein shown to exhibit diffusion along 

microtubules is Mitotic Centromere Associated Kinesin (MCAK), a member of the 

Kinesin-13 family [45].  It’s reported one-dimensional diffusion is similar to KIF1A in 

that can be very fast,  does not require ATP hydrolysis, and is due to electrostatic 

interactions between positively charged residues on the motor domains and negatively 

charged residues on the C-terminal tails of α/β-tubulin [16, 21, 22, 45].  Also like 

KIF1A, the one-dimensional diffusive motion of MCAK is not thought to contribute to 

the motor force that drives cellular function but may serve to position and/or tether the 

motors increasing the probability of a successful event.  For KIF1A this tethering could 

possibly explain why KIF1A dimeric motors have some of the longest reported track 

lengths in single molecule motility assays, running up to 10 µm in a single motility event, 

and on average, about double the track length of Kinesin-1 (Figures 3.3 and 3.7 and [20]).  

Indeed a positive correlation between track length and strength of electrostatic 

interactions with tubulin was clearly demonstrated by Thorn et al who saw increased 

processive run lengths with Kinesin-1 after adding positively charged residues to the neck 

coiled-coil [46].  

Dimeric Motility.  Although we did see monomeric KIF1A constructs move, we 

conclude that KIF1A must dimerize for long distance, long lasting, processive motility to 

occur.  KIF1A(1-393) constructs move as dimers, and in the presence of ATP they travel 

much farther distances at one constant speed (1.36 µm/second) with motility events 

lasting up to several seconds.  This motion occurs with an average velocity and run 

lengths that are comparable to the motility reported for 1) full-length KIF1A/Unc104 

motors in in vitro microtubule gliding assays (1.2 µm/sec [2]; 1.7 µm/sec [19], 1.7 µm/sec 

[20]) and 2) KIF1A/UNC104 driven vesicles in vivo (1.0 µm/sec [5, 6]).  Thus, the 

physiological form that drives processive motion of cargoes in cells is likely to be the 

dimeric motor.  We propose the mechanism driving this dimeric processive motility is the 

conventional hand-over-hand mechanism; yet, we acknowledge that more detailed studies 

are required to confirm this hypothesis. 
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Although similar dimeric processivity has been reported previously [20], this is 

the first time motile properties have been evaluated for a KIF1A/Unc104 construct that is 

dimerized via its own endogenous sequences without the inclusion of inhibitory domains.   

Previous studies that utilized constructs with inhibitory regions concluded that high 

motor concentrations were required to drive KIF1A/Unc104 into a dimeric, active state 

[18, 20].  It is possible, however, that by including inhibitory domains, high 

concentrations of motor were necessary to capture enough rare motility events for 

analysis.  Indeed we saw limited motility events for the inhibited but dimeric full-length 

KIF1A, as well as, the KIF1A(1-726) motor construct which is truncated after CC2.  This 

construct is similar in length to the Unc104(1-653) motor that was used to conclude the 

necessity for high motor concentrations [18, 20].   Although we cannot directly compare 

the protein concentrations used in the two cases, our KIF1A(1-393) motor that is dimeric 

and uninhibited has significantly more motility events when tested at similar expression 

levels to KIF1A(1-726), proving that motility events for KIF1A(1-726) were primarily 

limited by the FHA/CC2 region and not protein concentration.  In the studies of 

Klopfenstein et al who used Unc104 motors truncated after CC1 (Unc104(1-446)), high 

local concentrations may have, indeed, been required to drive the truncated Unc104 

motor into a dimeric, active state.  By adding the PH domain back to the end of their 

truncated Unc104(1-446) motor, they could drive the processive motility of PIP4,5P2 

containing liposomes.  They found that by clustering PIP4,5P2  on membranes by the 

addition of cholesterol, they increased Unc104’s ability to processively move the 

liposomes.  As we and Al-Bassam et al show that the NC and CC1 form an 

intramolecular coil that limits constructs truncated after CC1 to be monomers, locally 

concentrating the Unc104(1-446:PH) motor could facilitate a monomer to dimer switch 

that would allow processive motility of liposomes to occur.  As full-length KIF1A can 

exist as a dimer independent of cargo binding, this “high concentration” model of motor 

activation may be limited in application.  Future studies looking at full-length KIF1A, 

with real cargo, will be necessary to determine whether or not local concentration of the 

motor has any role in regulating activity state or processivity.  
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MATERIALS AND METHODS 

Plasmids and antibodies:  Full-length or truncated KIF1A constructs tagged with 

mCit, 3xmCit, or Myc were generated using convenient restriction sites or by PCR 

amplification from a rat KIF1A cDNA vector (gift of Bruce Schnapp) and cloned into the 

mCit-N1 or C1 vectors (modified from Clontech’s EYFP-N1/C1 vectors by replacing 

EYFP with sequence for monomeric Citrine) the 3xmCit-N1 vector  previously described 

[31], or the pRK5-myc vector.  Rat KIF1A(1-393)-mCit, however, was a gift from Gary 

Banker.  All plasmids were sequence verified.  KHC(1-891)-3xmCit has been described 

previously [31].  The following antibodies were used: Myc (Sigma and 9E10 hybridoma 

ascites), GFP (used to recognize mCit; Invitrogen), HA (12CA5 hybridoma ascites; used 

as control IgG) and FLAG (Sigma, used as control IgG). 

 Cells, transfection and immunoprecipitation:  COS and CAD cells were 

cultured, transfected, and processed for immunofluorescence as previously described 

(COS, [31]; CAD, [47, 48].  For immunoprecipitation experiments, transfected COS cells 

were resuspended in lysis buffer (LB; 25 mM Hepes/KOH, 115mM potassium acetate, 5 

mM sodium acetate, 5 mM MgCl2, 0.5 mM, EGTA, 1% Triton X-100, and protease 

inhibitors; pH 7.4); and, after removing insoluble material by centrifugation at 20,000xg 

at 4°C for 10mins, extracts were incubated with the specified antibodies for 2.5-18 hr at 

4°C.  Protein A agarose beads were then added and mixture was incubated for and 

additional 30-60 minutes at 4°C.  Beads were pelleted and washed two times with lysis 

buffer, resuspended in Laemmli sample buffer, and analyzed by SDS-PAGE and Western 

blot.   

Crosslinking:  For crosslinking experiments cells were lysed in a Borate buffer 

(50mM NaBorate, 100mM potassium acetate, 2 mM MgCl2, 1mM EGTA, 1% Triton X-

100, and protease inhibitors; pH 8.57).  After removing insoluble material by 

centrifugation, lysates were incubated for 30 minutes with 20 mM dimethylpimilimidate 

(DMP, Sigma).  Lysates were then quenched for 10 minutes with an equal volume of 

50mM NH4Cl2 in PBS.  After adding Laemmli sample buffer, crosslinked lysates were 

analyzed by SDS-PAGE and Western blot. 

 In vivo microtubule binding assay:  COS cells were plated onto glass-bottomed 

dishes (MatTek) and transfected with plasmids encoding the proteins of interest.  
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Twenty-four hours later, cells were viewed on a Nikon TE2000 inverted microscope with 

a Plan-APO 60X/NA 1.4 objective and Photometrics CS ES2 camera.  Cells were treated 

with 0.1 µg/ml Streptolysin O in permeabilization buffer 1 (25 mM Hepes/KOH, 115mM 

potassium acetate, 5 mM sodium acetate, 5 mM MgCl2, 0.5 mM, EGTA, and 10mg/ml 

BSA; pH 7.4) for 1 min.  After washing 3 times with Buffer 1, cells were incubated with 

Buffer 1 containing 2mM AMPPNP.  Cells were monitored every minute for an 

additional 15 minutes.     

 The Relocation Index was calculated on a frame by frame basis using ImageJ as 

described [7].  Briefly two image masks were made from the last timelapse frame 

encompassing either the microtubule region (MT) or the rest of the cell, excluding the 

nucleus and regions of aggregated motor (Other).  The total fluorescence pixel 

intensities—SumMT and SumOther—was determined and a ratio (R) of SumMT over 

SumOther was calculated for each frame.  The Relocation index for each frame is defined 

as the percent change of R as compared with R before the addition of AMPPNP.  

FRET stoichiometry:   FP-tagged versions of KIF1A or RnKHC (RnKIF5C) 

were transfected into COS cells.  24 hours later, cells were viewed on wide-field 

microscope equipped for FRET stoichiometry.  FRET stoichiometry uses three 

fluorescence images from a calibrated microscope to calculate three parameters that 

describe each pixel: (a) RM, the mole ratio of acceptor- to donor-labeled proteins, (b) EA, 

the apparent acceptor FRET efficiency (FRET efficiency x fraction of acceptor molecules 

in complex), and (c) ED, the apparent donor FRET efficiency (FRET efficiency x fraction 

of donor molecules in complex).  Because protein expression levels influence the fraction 

of donor or acceptor molecules in FRET complex for non-linked molecules, we analyzed 

cells with RM close to 1.0 and we calculated an average FRET efficiency, EAVE = (ED + 

EA)/2, which is less sensitive to expression ratio [33, 34]. 

In vitro single molecule motility assays and photobleaching analysis:  Motility 

and photobleaching assays were performed in flow chambers created from a 25x25 #1.5 

coverglass and microtubule slide assembled with double-sided tape (~30ul chamber 

volume).  Cy5-labeled microtubules in BRB80 buffer (80mM Pipes/KOH, 1mM EGTA, 

and 2mM MgCl2; pH 6.8) with 10µM taxol were flowed into the chamber, followed by 

addition of 40ul of 0.1mg/ml casein/BRB80 to coat the chamber surfaces.  After 5-10 

minutes, chambers were washed twice in P12 buffer (12 mM Pipes/KOH, 1 mM EGTA, 
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and 2 mM MgCl2, pH 6.8) with 10 µM taxol.  Motor proteins were prepared by lysing 

transfected COS cells in LB with 1mM ATP.  Lysates were cleared by centrifugation at 

20,000xg for 10mins and then flash-frozen by immersion in liquid nitrogen and stored at 

-80°C.   0.25-1µl cell lysate was added to flow-chambers with 50 µl of oxygen scavenger 

buffer (1 mM DTT, 1 mM MgCl2, 2 mM ATP, 10 mM glucose, 0.1 mg/ml glucose 

oxidase, 0.08 mg/ml catalase, 10 mg/ml BSA, and 10 µM taxol in P12; however, in 

photobleaching experiments or motility experiments performed with ADP, the 2mM ATP 

was replaced by 2mM AMPPNP or 2mM ADP respectively).  Then, the chamber was 

sealed with wax and assayed for motility or photobleaching using objective-type total 

internal reflection fluorescence microscopy (TIRFM) on a custom-modified microscope 

(Axiovert 135TV; Carl Zeiss MicroImaging, Inc.) equipped with an 1.45 NA α-plan Fluor 

objective, 2.5x optovar, 505DCXR dichroic and ET510LP emission filters, and a back-

illuminated EMCCD camera (Cascade 512B; Roper Scientific). The 488-nm line of a 

tunable, single-mode, fiber-coupled argon ion laser (Melles Griot) was used for streaming 

images every 100ms for 30-35 second.  For two-color TIRFM, a second 594 nm laser 

diode was coupled with the 488nm laser (535DCXR) for excitation. mCit and mCherry 

fluorescence emissions were first passed though a FT505/590 dual-band dichroic mirror 

and then projected separately onto each halves of the CCD camera by a Dualview beam-

splitter (Optic Insights) equipped with a FT498 dichroic and HQ540/70M and HQ610LP 

emission filters (Filters are all from Chroma Technology Corp).  

 All of the fluorescence imaging analysis, including FRET, Relocation Index, 

single molecule tracking in one or two-colors, and single molecule photobleaching  were 

analyzed using home made plug-ins written for ImageJ (NIH). Single molecule tracking 

measurements for each construct come from at least two independent protein preparations 

and include motile events lasting at least 0.5 or 0.3 seconds. For photobleaching, only 

stationary, diffraction-limited fluorescence spots that were well separated from 

neighboring spots were included in analysis.   Fluorescence intensity (with background 

intensity subtracted) was measured as described previously [31] and plotted as a function 

of time.  Bleaching steps were determined using these individual plots.   
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1:  Full-length KIF1A exists as a dimeric motor that is inactive for microtubule binding 
in vivo.  (A and B)  Live cell microtubule binding assay.  COS cells expressing full-length KIF1A 
tagged with mCit were imaged while permeabilized with SLO and treated with AMPPNP.  (A) 
Still images from a movie, before and after AMPPNP treatment.  (B)  Quantification of the 
percentage of KIF1A fluorescence that changes from a cytoplasmic localization to a microtubule 
(MT)-associated localization (Relocation Index; see materials and methods for details) over time.  
N=16 cells.  Error bars +/- SEM.  (C)  Co-immunoprecipitation.  COS cells were co-transfected 
with plasmids encoding mCit-KIF1A and Myc-KIF1A, or mCit-KIF1A-CFP and myc-KIF1A.  
Lysates were immunoprecipitated with an anti-Myc antibody or control IgG antibody, separated 
by SDS-PAGE, and immunoblotted with anti-Myc and anti-mCit antibodies.   (D)  Crosslinking.  
Lysates from COS cells over-expressing mCit-KIF1A, mCit-KHC, or mCit were treated with or 
without DMP, then separated by SDS-PAGE, and immunoblotted with anti-mCit antibodies.  (E)  
Motor to motor FRET in COS cells expressing mCit-KIF1A and CFP-KIF1A (top panels); or 
Kinesin-1 (mCit-KHC + CFP-KHC +  HA-KLC).  (G) Motor to tail FRET in live COS cells 
expressing mCit-KIF1A-CFP and myc-KIF1A (top panels); or Kinesin-1 (mCit-KHC-CFP + 
Myc-KHC + HA-KLC) (bottom panels).  (F and H)  Average FRET efficiency (Eave) is 
quantitated.  Error bars +/- SEM.   Acknowledgements: Lynne Blasius from the Verhey lab 
contributed the crosslinking data in (D).  The FRET data (E-H) was contributed by Dawen Cai 
also from the Verhey lab.  
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Figure 3.2:  Truncated of KIF1A relieves autoinhibition of microtubule binding.  (A) Coiled-coil 
prediction for KIF1A (NP_032466); Gray dotted line, prediction using a window of 14 amino 
acids; Blue line, prediction using a window of 21 amino acids (COILS, Lupas Method).  NC, 
Neck coiled-coil; CC1-3, coiled-coil 1-3.  (B) Schematic of mCit tagged full-length (FL) and 
truncated KIF1A constructs.  (C-E)  Live cell microtubule binding assay.  COS cells expressing 
truncated KIF1A constructs were imaged while permeabilized with SLO and treated with 
AMPPNP.  (C) Still images from movies taken before and after AMPPNP treatment.  Scale 
20µm. (D) Quantification of the average percentage of KIF1A fluorescence that changes from a 
cytoplasmic localization to a microtubule (MT) associated localization (Relocation Index) over 
time.  Error bars +/- SEM.  1-726, N=17; 1-491, N=11; 1-393, N=12.  (E)  Percent of cells whose 
KIF1A truncations localize to the indicated cellular locations before and after AMPPNP 
treatment.   Averages from 3-5 independent experiments; 50-100 cells each.  Error bars +/- SEM.  
MT, microtubules.    
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Figure 3.3:  Processive motility of truncated KIF1A constructs.  (A) Processive motility in vivo.  
CAD cells were transfected with full-length (FL) or truncated KIF1A constructs and 
differentiated for 40-48 hrs. Representative images are shown.  Scale 20µm.  (B-D)  Processive 
motility in vitro.   COS cells were transfected with 3xmCit tagged FL or truncated KIF1A 
constructs.  Motor proteins in cell lysates were incubated with Taxol-stabilized microtubules and 
single molecule assays were carried out using a TIRF microscope.  (B)  Velocity histograms. (C) 
Track length histograms. (D) Table of motile properties, Average +/- SEM.
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Figure 3.4:  KIF1A truncations dimerize and KIF1A(1-393) moves processively as a dimer.  (A)  
Crosslinking.  Western blot of lysates from COS cells expressing Myc-tagged KIF1A truncations 
1-393, 1-491, and 1-726 treated with or without DMP.  Arrows indicate bands of reduced 
mobility upon crosslinking, arrowheads and construct labels refer to band sizes in the absence of 
DMP.  (B)  Co-immunoprecipitation.  COS cells were co-transfected with plasmids encoding 
Myc and mCit tagged KIF1A constructs of the same length.  Lysates were analyzed by western 
blot either directly (input lysate) or after immunoprecipitation with anti-Myc or control IgG 
antibodies.  (C and D)  Photobleaching analysis of 3xmCit-labeled KIF1A motors.  Lysates from 
COS cells expressing 3xmCit tagged FL or truncated constructs were either locked onto 
microtubules with AMPPNP or absorbed directly to the coverglass of the flow chamber then 
imaged with TIRF microscopy.  (C) Distribution of the number of photobleaching steps for each 
KIF1A construct or a dimeric truncated Kinesin-1 construct, KHC(1-891). (D) Representative 
examples of the stepwise photobleaching occurring over time for 3xmCit-KIF1A or Kinesin-1 
fluorescent spots located within the light-diffraction-limit. AU, arbitrary units.  (E and F)  Two-
color single molecule  motility assay.  COS cells were co-transfected with 3xmCit- and 
3xmCherry tagged KIF1A(1-393) plasmids.  Lysates containing labeled motors were then 
subjected to a two-color in vitro single molecule motility assay.  Kymograph of a representative 
dual-labeled/dimerized KIF1A(1-393) motor moving along a microtubule.  (H) Table indicating 
the number and average spot intensities of dual-labeled (mCit and mCherry) or single-labeled 
(mCit only) motile tracks detected in two-color single molecule motility assays.  
Acknowledgements:  The crosslinking data in (A) was contributed by Lynne Blasius, Verhey 
Lab.
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Figure 3.5:  The full neck coil (NC) and adjacent residues are required for dimerization of 
KIF1A.  (A)  Sequence comparisons of the region around the NC of the KIF1A/Unc104 family.  
Identical residues are in red; similar residues are in orange.   Below the sequence comparison is a 
schematic of KIF1A constructs containing all or portions of the NC  with reference to equivalent 
KIF1A or Unc104 constructs used in previous studies.  (B)  Crosslinking.  Lysates from COS 
cells overexpressing Myc-tagged NC truncations were treated with or without DMP, separated by 
SDS-PAGE, and immunoblotted with anti-Myc antibodies.  Arrow shows the dimer-sized band 
formed only by the longest construct 1-393.  (C and D)  Photobleaching analysis of 3xmCit-
labeled NC constructs by TIRF microscopy.  (C) Histogram of the number of photobleaching 
steps for each 3xmCit tagged NC construct.  (D)  Representative examples of the stepwise 
photobleaching occurring over time for 3xmCit-truncated KIF1A fluorescent spots located within 
the light-diffraction-limit. AU, arbitrary units.  Acknowledgement:  Kristen Verhey compiled the 
alignment and construct schematic in (A).  Lynne Blasius of the Verhey lab contributed the 
crosslinking data in (B).
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Figure 3.6:  Long-distance processive motility, but not microtubule binding, requires KIF1A 
dimerization.  (A-B) Live cell microtubule binding assay.  COS cells expressing truncated KIF1A 
constructs were imaged during SLO permeabilization and AMPPNP treatment.  (A) 
Representative before and after AMPPNP treatment images shown.  Scale 20µm. (B)  Percent of 
cells whose NC constructs localize to the indicated cellular locations before and after AMPPNP 
treatment.   Averages from 2-3 independent experiments; ~50 cells each.  Error bars +/- SEM.  
MT, microtubules.  (C)  In vivo processive motility assay.  CAD cells were transfected with 
truncated KIF1A constructs and differentiated for 40-48 hrs. Scale 20µm.  (D-F)  In vitro single 
molecule motility assay.   COS cells were transfected with 3xmCit tagged truncated NC 
constructs.  Motor proteins in cell lysates were incubated with Taxol-stabilized microtubules in a 
flow chamber and assayed with TIRF microscopy for motility.  Images were taken every 100ms 
and measurements include motile events lasting at least 0.5 seconds.  (D)  Distribution of 
velocities. (E) Track length distribution. (F) Table of motile properties, mean+/-SEM.  
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Figure 3.7:  ATP-dependent processive motility is a property of dimeric but not monomeric 
KIF1A motors.  (A-E)   In vitro single molecule motility assay.  COS cells were transfected with 
dimeric (1-393)-3xmCit or monomeric (1-369)-3xmCit KIF1A constructs.  Motor proteins in cell 
lysates along with 1mM ATP were incubated with Taxol-stabilized microtubules in a flow 
chamber and assayed with TIRF microscopy for motility.  Images were taken every 0.1 seconds 
and measurements include motile events lasting at least 0.3 seconds. (A) Representative 
kymographs.  (B) Velocity histograms.  (C) Track Length histograms.  (D and E)  Comparison of 
monomeric and dimeric motile properties in the presence of ATP or ADP.  Distribution of 
velocities (D) or Track Lengths (E) for KIF1A(1-393), (1-369), or Kinesin-1, KHC(1-891) in the 
presence of ATP or ADP as a function of time spent in 1-directional motility.   
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Chapter 4: 
Cooperative Versus Independent Transport of 

Different Cargoes by Kinesin-1 
 

Motor proteins of the kinesin, myosin, and dynein families utilize the energy of 

ATP hydrolysis to transport organelles, membrane vesicles, and protein complexes along 

the cytoskeleton in order to organize cellular components for proper cell morphology and 

function [1, 2].  Critical to understanding the cellular roles of motor proteins is 

deciphering how motors attach to specific cargoes.  Recent work has identified multiple 

binding partners for individual motor proteins.  In some cases, these binding partners are 

soluble adaptor proteins that mediate the attachment of motor proteins to membrane-

bound cargoes [2, 3].  How motor proteins distinguish cargo partners and bind to specific 

cargoes at specific times and cellular locations is unknown.  

The founding member of the kinesin superfamily, Kinesin-1 (formerly 

conventional kinesin or Kif5), is a heterotetramer composed of two kinesin heavy chain 

(KHC) and two kinesin light chain (KLC) subunits.  Both KHC and KLC have been 

implicated in cargo binding [4, 5].  For KLC, most cargoes bind to the TPR bundle, 

although a role for the alternatively spliced C-terminal sequences has also been 

demonstrated [6, 7].  TPR bundles are protein-protein interaction domains comprised of 

tandem TPR motifs.  Each TPR motif contains a degenerate 34-amino acid repeat 

arranged in two antiparallel α-helices linked by a tight turn.  Adjacent TPR motifs then 

pack against each other to form a half-cylindrical bundle [8, 9].  Structural and 

biochemical analyses of the protein-protein interactions mediated by TPR domains have 

described two distinct mechanisms for partner protein binding.  In several cases, the 

extreme C-terminal residues of the binding partner have been shown to bind in an 

extended conformation to the concave face (groove) of the TPR domain [10-12].  

Alternatively, internal sequences of the partner protein can bind to the loop regions that 

connect helices on the edge of the TPR bundle [13].  Thus, target recognition by TPR 

domains is likely to be versatile and may enable the assembly of multi-protein 
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complexes.  Such an assembly function has been proposed for structurally similar helical 

repeat domains such as armadillo repeats, ankyrin repeats and 14-3-3 proteins [14-17].   

The first cargo proteins identified to bind Kinesin-1 via the TPR bundle were the 

c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins [18-

20].  Based on their sequence similarities, JIP’s can be divided into two classes [21].  

JIP1 (also called islet brain 1) and JIP2 share a similar domain structure consisting of an 

N-terminal JNK-binding domain and C-terminal SH3 and PTB domains.  JIP3 (also 

known as JSAP1) and JIP4 (also known as JLP) contain a JNK-binding domain and 

several coiled-coil domains.  Despite this disparity in domain structure, the JIP proteins 

function as scaffolding proteins to coordinate the cellular localization and activity of JNK 

signaling complexes [21].  Interestingly, the extreme C-terminal sequences of JIP1 and 

JIP2 are required for binding to the TPR bundle of KLC whereas internal segments of 

JIP3 and JIP4 are required for KLC binding [18, 20, 22, 23], suggesting that JIP1 binds in 

the TPR groove whereas JIP3 binds outside of the TPR groove.  Through their 

interactions with Kinesin-1, the JIP proteins likely also play a critical role in membrane 

trafficking as loss-of-function alleles of JIP homologs in C. elegans and Drosophila 

cause defects in axonal transport with phenotypes similar to KHC loss-of-function alleles 

[18, 24, 25].  

In recent years, other cargoes that bind to Kinesin-1 via the TPR bundle have 

been identified, including Kidins220/ARMS, Calsyntenin/Alcadein, Collapsin Response 

Mediator Protein-2, Huntington Associated Protein-1, Alzheimer Precursor Protein 

(APP), torsinA, 14-3-3 and Vaccinia virus’s A36R protein [26-34].  The identification of 

multiple cargoes for Kinesin-1 raises the question of how one motor coordinates the 

transport of its many potential cargoes.  One possibility is that binding sites for different 

cargoes may not be accessible at the same time such that cargoes compete with each 

other for binding and transport (competitive transport model).  A second possibility is 

that different cargoes may undergo cooperative transport whereby one cargo facilitates 

the binding and transport of another cargo (cooperative transport model).  A third 

possibility is that different cargoes neither compete nor cooperate for transport but rather 

are transported independent of each other (independent transport model).  We set out to 

test whether the transport of different cargoes by Kinesin-1 is competitive, cooperative or 
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independent of each other.  Our results suggest that transport of most Kinesin-1 cargoes 

that bind via the TPR bundle of KLC is not competitive but rather independent of each 

other.  However, transport of JIP1 and JIP3 is cooperative due to interactions of JIP1 and 

JIP3 with KLC as well as with each other.  

 

RESULTS 

Independent transport of the JIP proteins and other Kinesin-1 cargoes  

Since many different cargoes have been identified for Kinesin-1 [4, 5], we 

focused on known binding partners of Kinesin-1 rather than organelles that can employ 

multiple motors via unknown linkage mechanisms.  In addition, since both the KHC and 

KLC subunits have been implicated in Kinesin-1 cargo binding, we focused on cargo 

proteins that bind via the KLC subunit, specifically JIP1, JIP3, Kidins220/ARMS, and 

PAT1.  Kidins220/ARMS is a transmembrane protein whose cytoplasmic tail binds to 

KLC [27].  Kinesin-1 activity is required for the transport of JIP1, JIP3 and 

Kidins220/ARMS to neurite tips in neuronal cells [19, 20, 27].  PAT1 was identified as a 

binding partner of KLC in a yeast two-hybrid screen using the TPR motifs of KLC as the 

bait, and the interaction between KLC and PAT1 has been confirmed by Dichtenberg et 

al [35] as well as by co-immunoprecipitation of GST-tagged PAT1 and HA-tagged KLC 

expressed in COS cells (Figure Supp 4.1).   

To test whether distinct cargoes are transported together or independent of each 

other, we first used live cell imaging of fluorescent protein (FP)-tagged cargoes. 

Unfortunately, we were unable to visualize JIP proteins undergoing transport in live cells, 

presumably due to the low number of molecules on a transport cargo [36].  In addition, 

such studies cannot distinguish independent versus competitive transport.  Thus, to test 

whether distinct Kinesin-1 cargo proteins are transported competitively, cooperatively or 

independently of each other, we used competition experiments in neuronal cells.  We 

hypothesized that over-expression of one cargo should result in reduced transport and 

mislocalization of other cargoes if the two proteins compete for Kinesin-1-mediated 

transport, enhanced transport if the two proteins are transported cooperatively, and no 

effect on transport if the two proteins are transported independently.   
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We first explored the effect of over-expression of a cargo protein on the 

localization of its endogenous protein. Such experiments were feasible for JIP3 and 

Kidins220/ARMs using antibodies that recognize the endogenous proteins but not 

truncated KLC-binding constructs. Differentiated CAD cells (a neuronal-like cell line) 

were transfected with plasmids encoding the KLC-binding regions of JIP3 [Myc-

JIP3(138-621), Figure 5 D] or Kidins220/ARMS [cyan fluorescent protein (CFP)-

Kidins220/ARMS(1129-1426), [27] and Figure Supp 4.1].   Over-expression of Myc-

JIP3(138-621) resulted in mislocalization of the endogenous JIP3 protein (Figure 4.1 

A,B) and over-expression of CFP-Kidins220/ARMS (1129-1426) interfered with 

transport of the endogenous Kidins220/ARMS protein (Figure 4.1 C,D). These results 

indicate that competition for Kinesin-1 transport exists between transfected and 

endogenous cargo proteins.  Thus, transport of individual Kinesin-1 cargoes is saturable.  

We then tested the effect of over-expression of a cargo protein on the localization 

of other cargo proteins. Differentiated CAD cells were transfected with plasmids 

encoding GFP-tagged Kidins220/ARMS and the localization of endogenous JIP1 and 

JIP3 proteins was analyzed in transfected and untransfected cells. Over-expression of 

GFP-Kidins220/ARMS had no effect on the localization of JIP1 (Figure 4.2 A,D) or JIP3 

(Figure 4.2 A,E) to neurite tips.  Since Kidins220/ARMS is a transmembrane protein and 

accumulates in the endoplasmic reticulum when over-expressed (Figure 4.1 A), we also 

tested whether over-expression of the KLC-binding region of Kidins220/ARMS as a 

soluble fragment could compete with JIP1 or JIP3 for Kinesin-1 transport.  As with the 

full length Kidins200/ARMS protein, over-expression of CFP-Kidins220/ARMS (1129-

1426) had no effect on JIP1 (Figure 4.2 A,D) or JIP3 (Figure 4.2 A,E) localization.  In the 

converse experiments, over-expression of Myc-JIP1 or Flag-JIP3 in differentiated CAD 

cells had no effect on the localization of endogenous Kidins220/ARMS protein to neurite 

tips (Figure 4.2 B,F).  These results indicate that Kidins220/ARMS and the JIP proteins 

do not compete for Kinesin-1 transport.  Moreover, immunoprecipitation experiments 

indicate that there is no competition between Kidins220/ARMS and JIP1 or JIP3 for 

Kinesin-1 binding (Figure Supp 4.2).  Thus, the transport of distinct Kinesin-1 cargoes is 

saturable but not competitive with other cargoes.  
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Similar experiments were carried out to assess whether PAT1 and the JIP proteins 

could compete with each other for Kinesin-1 transport to neurite tips.  Differentiated 

CAD cells were transfected with plasmids encoding Flag-tagged PAT1 and the 

localization of endogenous JIP1 and JIP3 proteins was analyzed in transfected and 

untransfected cells.  In cells overexpressing Flag-PAT1, the localization of endogenous 

JIP1 (Figure 4.2 C,D) and JIP3 (Figure 4.2 C,E) proteins was similar to that of 

untransfected cells, suggesting that there is no competition between PAT1 and the JIP 

proteins for Kinesin-1-mediated transport.  Similar experiments to investigate the effect 

of JIP1 or JIP3 over-expression on PAT1 localization could not be performed due to a 

lack of suitable antibodies.   

We further analyzed the ability of Kinesin-1 cargoes to be transported 

cooperatively, independently or competitively by analyzing whether cargoes that bind via 

the KHC subunit could compete with JIP1 or JIP3 for Kinesin-1 mediated transport in 

neuronal cells.  Over-expression of p120catenin constructs that bind to KHC (full length 

or an N-terminal truncation ∆N [37]) had no effect on the localization of JIP1 or JIP3 

(Figure Supp. 4.3).  These results indicate there is no competition or cooperation for 

Kinesin-1-mediated transport, but rather that transport of different Kinesin-1 cargoes is 

independent of each other.   

 

JIP1 facilitates JIP3 transport by Kinesin-1 and vice versa 

We next set out to determine whether different JIP proteins, namely JIP1 and 

JIP3, are transported by Kinesin-1 in a competitive, cooperative, or independent manner.  

Differentiated CAD cells were transfected with plasmids encoding Myc-tagged full 

length JIP1.  In cells expressing high levels of Myc-JIP1, the amount of endogenous JIP3 

localized at neurite tips was similar to that in untransfected cells (Figure 4.3 A,C), 

suggesting that there is no competition between JIP1 and JIP3 for Kinesin-1-mediated 

transport.  Surprisingly, in differentiated CAD cells expressing Myc-JIP1 at levels similar 

to the endogenous JIP1 protein (based on localization of the myc-tagged protein to the 

neurite tip), there is a 2 fold increase in the amount of JIP3 at the tips of neurites (Figure 

4.3 B,C).  Similar results were obtained (Figure 4.3 C) upon expression of a truncated 

version of JIP1 that binds both JIP3 and KLC but not JNK [Myc-JIP1(307-711), Figure 
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4.6].  In contrast, low level expression of Myc-JIP1 had no effect on the localization of 

endogenous Kidins220/ARMS and vice versa (Figure 4.2 D,F).  These results suggest 

that JIP1 facilitates transport of JIP3.  

Similar experiments were carried out to test whether JIP3 could affect the 

transport of JIP1 by Kinesin-1.  In differentiated CAD cells expressing high levels of full-

length Flag-JIP3 or a truncated version that binds both JIP1 and KLC [JIP3(138-621), 

Figure 4.6], there was no change in the amount of endogenous JIP1 at neurite tips (Figure 

4.3 D,F).  But in cells expressing low levels of Flag-JIP3 or JIP3(138-621), there was an 

approximately 2-2.5 fold increase in the amount of JIP1 at neurite tips (Figure 4.3 E,F).  

Low level expression of Flag-JIP3 had no effect on the localization of endogenous 

Kidins220/ARMS and vice versa (Figure 4.2 E,F).   Thus, JIP3 facilitates transport of 

JIP1 by Kinesin-1. 

 

JIP1 and JIP3 bind to different sites on the KLC TPR bundle 

To undergo cooperative transport by Kinesin-1, JIP1 and JIP3 may cooperate for 

binding to the KLC subunit.  To test this, Myc-JIP1, Flag-JIP3, and HA-KLC proteins 

were expressed separately in COS cells.  Equal amounts of cell lysates were mixed 

together in various combinations prior to immunoprecipitating KLC with an anti-HA 

antibody.  More Myc-JIP1 and Flag-JIP3 were coprecipitated with HA-KLC when all 

three proteins were present in the mixture than when the JIP proteins were present 

individually (Figure 4.4 A,B).  These results suggest that JIP1 and JIP3 cooperate for 

binding to the KLC TPR bundle and transport to neurite tips. 

Previous studies on TPR-containing proteins identified two mechanisms of 

partner protein binding that may explain, at least in part, how JIP1 and JIP3 can 

cooperate for binding to the KLC TPR bundle.  To identify sites in the KLC TPR bundle 

responsible for the interactions with JIP1 and JIP3, we undertook two approaches.  In our 

first approach, we targeted specific residues for site-directed mutation based on a 

structural model of the KLC TPR repeats (Figure 4.4 C).  The sequences of TPRs 2-5 of 

rat KLC1-C (residues 247 - 411) were overlaid onto known crystal structures of other 

TPR bundles (Figure Supp 4.4).  Residues in the groove and along the edges of the KLC 

TPR bundle that are likely to be involved in partner protein binding (Figure 4 C) were 
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altered to Alanine in the two-hybrid bait vector pGBD [20].  In the BLUE mutant, 

charged residues in the loops that link successive TPR repeats were altered, whereas in 

the ORANGE mutant, charged and/or bulky residues in the tight turns within a TPR 

repeat were altered (Figure 4.4 C).  The YELLOW and GREEN mutations targeted 

residues that (a) are conserved across many TPR bundles and (b) whose side chains have 

been shown to project into the groove of other TPR bundles.  Specifically, the YELLOW 

mutant targeted conserved Asparagine residues which form a continuous ladder through 

the superhelix and play a critical role in binding the C-terminal peptide backbone of 

target proteins [10-12, 38].  The GREEN mutant targeted conserved hydrophobic 

residues in the TPR groove (Figure 4 C).  The ability of the mutant KLC TPR bundles to 

bind JIP1 and JIP3 was then tested in a directed two-hybrid assay.  As shown in Figure 4 

D, mutations along the top of the TPR bundle (BLUE) abolished binding to both JIP1 and 

JIP3.  Interestingly, mutations inside the TPR groove (YELLOW and GREEN) or along 

the bottom of the TRP bundle (ORANGE) abolished JIP1 binding but not JIP3 binding, 

suggesting that the C-terminal residues of JIP1 do indeed bind within the KLC TPR 

groove whereas JIP3 binds via a different site. 

In a second approach to identify residues in the KLC TPR bundle required for 

binding to JIP1 and JIP3, random mutagenesis of the KLC TPR bundle (amino acids 199-

488) was carried out using error-prone PCR (EP-PCR).  Most clones retained the ability 

to interact with both JIP1 and JIP3 in the directed two-hybrid assay.  Sequencing revealed 

either wildtype sequences (e.g. 14A, Figure 4.4 D), single mutations (e.g. 27A, Figure 4.4 

D) or multiple mutations spread across the TPR bundle (e.g. 47A and 63A, Figure 4.4 D).  

We identified several EP-PCR mutants that lost the ability to interact with JIP1 but 

retained an interaction with JIP3 (22A, 28A, 33A, 64A, Figure 4.4 D).  Sequencing of 

these clones showed that a variety of residues are involved in contacting the JIP1 C-

terminal tail.  Surprisingly, only one clone was identified that lost the ability to interact 

with JIP3 but retained an interaction with JIP1 (48A, Figure 4.4 D).  Consistent with 

previous results [23], two pieces of data suggest that the N-terminal half of the KLC TPR 

domain is critical for the KLC-JIP3 interaction.  First, mutations that abolish JIP3 binding 

(clone 48A) are all clustered in the first three TPR motifs and second, a truncated TPR 

domain (clone 28A) that contains only the first 3.5 TPR motifs retains an interaction with 
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JIP3.  The fact that we have identified mutations that selectively abolish JIP1 or JIP3 

binding suggests that the two scaffolding proteins bind to distinct sites and via distinct 

mechanisms to the TPR bundle.  Specifically, these results support the hypothesis that the 

JIP1 C-terminal tail binds in the groove of the TPR bundle whereas internal sequences in 

JIP3 bind outside the groove.  This is the first demonstration that a single TPR domain 

can use distinct surfaces for binding different partner proteins.   

To confirm the binding specificity of these site-directed or EP-PCR mutants for 

JIP1 and JIP3 in mammalian cells, coimmunoprecipitation experiments were performed 

in COS cells as they contain minimal levels of endogenous Kinesin-1 and JIP proteins 

[39, 40].  For these experiments, truncated versions of the mutant KLC proteins were 

created due to ease of cloning, since truncated (amino acids 1-488) and full-length (amino 

acids 1-560) versions of KLC display identical interactions with JIP1 and JIP3 [20].  HA-

tagged wild-type and mutant KLC proteins were coexpressed with either Myc-JIP1 or 

Flag-JIP3.  Lysates were precipitated with antibodies to the Myc or Flag tags.  Similar to 

the results of the directed two-hybrid assay, the YELLOW, GREEN and 33A mutants 

showed reduced binding to JIP1 (Figure 4.4 E, lanes 7-9, Figure 4.4 G) but not to JIP3 

(Figure 4.4 F, lanes 7-9, and Figure 4.4 H), whereas the 48A mutant showed reduced 

binding to JIP3 but not JIP1 (Figure 4.4 E,F, lane 10, and Figure 4.4 G,H).  These results 

confirm that distinct residues in the KLC TPR bundle are responsible for the interactions 

with JIP1 and JIP3.  

 

The two JIP binding sites on the KLC TPR bundle facilitate transport of the JIP 

proteins 

To test whether both binding sites on the KLC TPR bundle contribute to the 

transport of JIP1 and JIP3, we expressed wildtype and mutant KLC TPR bundles in 

differentiated CAD cells.  Over-expression of the wild-type KLC TPR bundle resulted in 

a loss of JIP1 and JIP3 tip localization by trapping cargo away from Kinesin-1 in a non-

motile complex (Figure 4.5 and [20, 41]).  We hypothesized that over-expression of a 

mutant KLC TPR bundle that retains an interaction with JIP3 but lost the interaction with 

JIP1 (e.g. GREEN; Figure 4.4) will have a dominant negative effect on both JIP1 and 

JIP3 transport, and thus neurite tip localization, in the cooperative model, but will 
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selectively abolish only JIP3 transport if the JIP proteins can bind independently to KLC 

(independent model).  As shown in Figure 4.5, over-expression of the GREEN mutant in 

differentiated CAD cells caused a significant decrease in both JIP1 (Figure 4.5 A,C) and 

JIP3 (Figure 5 B,D) tip localization.  Similarly, over-expression of the 48A mutant that 

lost the interaction with JIP3 but retains an interaction with JIP1 (Figure 4.4) caused a 

significant decrease in both JIP1 (Figure 4.5 A,C) and JIP3 (Figure 4.5 B,D) tip 

localization.  In control experiments, over-expression of the BLUE mutant, which lost the 

interaction with both JIP1 and JIP3 (Figure 4.4), had no effect on transport of either JIP 

protein (Figure 4.5).  These results indicate that both JIP1 and JIP3 binding sites of the 

KLC TPR bundle contribute to JIP transport and support the conclusion that JIP1 and 

JIP3 are transported in a cooperative manner by Kinesin-1. 

 

Oligomerization of JIP1 and JIP3  

Binding of JIP1 and JIP3 to distinct sites on the KLC TPR bundle likely 

contributes to their cooperative transport.  Yet the possibility remained that JIP1 and JIP3 

could interact with each other independent of their interaction with KLC.  Binding as a 

JIP1/JIP3 oligomer could allow a stronger interaction with the two binding sites on KLC.  

Previous studies have shown that JIP1, JIP2, and JIP3 homo-oligomerize and that JIP2 

can hetero-oligomerize with JIP1 and JIP3 [40, 42, 43].  To test whether JIP1 can interact 

with JIP3, we performed coimmunoprecipitation experiments in transfected COS cells.  

When lysates expressing Myc-JIP1 and Flag-JIP3 were immunoprecipitated with an 

antibody to the Myc tag, both JIP1 and JIP3 were precipitated (Figure 4.6 B, lane 9).  

Furthermore, the endogenous JIP1 and JIP3 proteins in differentiated CAD cells hetero-

oligomerize as shown by coimmunopreciptation of JIP3 with an antibody to JIP1 (Figure 

4.6 F).  Taken together, these results indicate that JIP1 and JIP3 can form an oligomeric 

complex.  Thus, distinct binding sites on KLC for JIP1 and JIP3 and an interaction 

between JIP1 and JIP3 contribute to cooperative transport.  

To define the regions of JIP1 responsible for the interactions with JIP3 and KLC, 

a series of Myc-tagged truncated and mutant versions of JIP1 were generated (Figure 4.6 

A).  Full length and truncated/mutant JIP1 proteins were coexpressed in COS cells with 

Flag-JIP3 (Figure 4.6 B) or HA-KLC (Figure 4.6 C) and immunoprecipitated with an 
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antibody to the Myc tag.  JIP3 was coimmunoprecipitated with all of the truncated and 

mutated JIP1 proteins that contain an intact PTB domain (Figure 4.6 B, lanes 9-13), but 

not with a construct containing just the SH3 domain of JIP1 (Figure 6 B, lane 14).  These 

results indicate that JIP3 interacts specifically with the PTB domain of JIP1.  This 

binding region is distinct from the JIP1 sequences required for interaction with KLC as 

the coprecipitation of HA-KLC was lost upon mutation (Y709A, Figure 4.6 C, lane 11) 

or truncation (307-701, Figure 4.6 C, lane 12) of the C-terminal residues of JIP1, in 

agreement with previous results [20].  Although the extreme C-terminal residues of JIP1 

are necessary for the interaction with KLC, they are not sufficient, as a construct 

containing only the PTB and C-terminal residues of JIP1 failed to coprecipitate KLC 

(Figure 4.6 C, lane 13).  These data indicate that JIP1 can form distinct interactions with 

JIP3 and KLC. 

To define the regions of JIP3 required for the interactions with JIP1 and KLC, 

Myc-tagged truncated versions of JIP3 were created [(138-621) and (138-433), Figure 4.6 

A].  The truncated JIP3 proteins were coexpressed in COS cells with Flag-JIP1 (Figure 

4.6 D) or HA-KLC (Figure 4.6 E) and immunoprecipitated with an antibody to the Myc 

tag.  While the longer construct, JIP3(138-621) coprecipitated both JIP1 (Figure 4.6 D, 

lane 5) and KLC (Figure 4.6 E, lane 5), the shorter fragment of JIP3 containing residues 

138-433 interacted only weakly with JIP1 (Figure 4.6 D, lane 6) and not at all with KLC 

(Figure 4.6 E, lane 6).  These results suggest that residues 138-433 of JIP3 are partly 

sufficient for the interaction with JIP1; however, residues 433-621 are required for 

complete JIP1 and KLC binding. 

 

A JIP1/JIP3/KLC complex is necessary for efficient JIP1 or JIP3 binding and 

transport 

Previously we showed that KLC’s binding sites for both JIP1 and JIP3 contribute 

to efficient transport of JIPs in neuronal cells (Figure 4.5).  Having defined the regions of 

JIP1 and JIP3 required for binding KLC (Figure 4.6), we next tested whether JIP1 and 

JIP3 binding of the KLC TPR bundle is required for efficient transport of both JIP 

proteins.  In control experiments, high level expression of JIP1 constructs that bind both 

JIP3 and KLC [JIP1(307-711), Figure 4.6] or that bind to neither JIP3 nor KLC 
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[JIP1(307-565), Figure 4.6] had no effect on localization of JIP3 to neurite tips (Figure 

4.7 A,B).  Similar control experiments showed that high level expression of JIP3 

constructs that bind to both JIP1 and KLC [JIP3 full length and JIP3(138-621), Figure 

4.6] did not disrupt JIP1 transport (Figure 4.7 C,D).  In contrast, high expression of JIP1 

proteins that bind JIP3 but not KLC [(307-701), Y709A, and PTB, Figure 4.6], resulted 

in a significant decrease in the amount of JIP3 protein localized at neurite tips (Figure 4.7 

A,B).  In addition, high expression of a JIP3 construct that binds weakly to JIP1 but not at 

all to KLC [JIP3(138-433), Figure 4.6] resulted in a significant decrease in JIP1 levels at 

neurite tips (Figure 4.7 C,D).  These results suggest that although JIP1 and JIP3 can bind 

independently to the KLC TPR bundle, binding of both proteins to Kinesin-1 is required 

for efficient transport of the JIP proteins.  

High expression of Myc-JIP1(307-701) may act to disrupt JIP3 localization by 

preventing an efficient interaction of JIP3 with Kinesin-1.  Upon over-expression of 

Myc-JIP1(307-701) in differentiated CAD cells, less endogenous JIP3 protein was 

coimmunoprecipitated with Kinesin-1 (Figure 4.7 E) as compared to the vector control or 

expression of a JIP1 construct (307-711) that binds to both JIP3 and KLC (Figure 4.7 E).  

These results suggest that high expression of Myc-JIP1(307-701) results in a decreased 

interaction between endogenous JIP3 and Kinesin-1 proteins.  

 

JIP1 is required for JIP3 transport and vice versa 

To further explore the cooperative transport of JIP1 and JIP3 by Kinesin-1, we 

tested whether JIP1 is required for transport of JIP3 and vice versa using RNAi to knock 

down expression of JIP1 or JIP3 in differentiated CAD cells.  To establish the 

knockdown efficiency and specificity of our shRNA plasmids, COS cells were 

cotransfected with mouse Flag-JIP1 or Flag-JIP3 and shRNA plasmids directed against 

JIP1 or JIP3.  An empty shRNA vector was used as a control.  Expression of the JIP1 

shRNA plasmid resulted in decreased Flag-JIP1 expression (Figure 4.8 A, lane 2) 

whereas Flag-JIP3 expression was unaffected (Figure 4.8 B, lane 2).  Expression of the 

JIP3 shRNA plasmid resulted in decreased JIP3 expression (Figure 4.8 B, lane 3) 

whereas JIP1 expression was unaffected (Figure 4.8 A, lane 3).  Immunoblotting the 

same lysates for β-tubulin shows that equal protein levels were loaded.  
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The JIP1 or JIP3 shRNA plasmids were then transfected into differentiated CAD 

cells using a CFP plasmid as a marker for transfected cells.  After 48 hrs, cells were fixed 

and immunostained for endogenous JIP1 or JIP3 proteins.  Transfection of the shRNA 

plasmid against JIP1 resulted in loss of staining for endogenous JIP1 protein (Figure 4.8 

C,E), verifying the efficacy and specificity of the JIP1 shRNA construct, as well as a 

significant decrease in JIP3 localization at neurite tips (Figure 4.8 D,F).  Similarly, 

shRNA-mediated knockdown of JIP3 resulted in a loss of JIP3 staining (Figure 4.8 D,F) 

as well as a significant decrease in JIP1 localization at neurite tips (Figure 4.8 C,E).  In 

the case of JIP3 knockdown, only cells that retained normal neurite morphology were 

selected for quantification since, in some cells, knockdown of JIP3 resulted in a complete 

loss of neurites or the formation of short, thin, and highly branched neurites as previously 

observed [44, 45].  Taken together, the RNAi, dominant negative and 

coimmunoprecipitation experiments support the conclusion that transport of JIP1 and 

JIP3 to neurite tips is dependent on the formation of a JIP1/JIP3/KLC complex. 

 

DISCUSSION  

Cooperative versus Independent transport of Kinesin-1 Cargoes 

To understand how motor proteins function in vesicle transport, it is important to 

determine how motors link to their cargoes and how transport is regulated.  In the case of 

Kinesin-1, recent work has identified many proteins that bind to the KHC and KLC 

subunits [4, 5].  This raises several models for how transport of disparate cargoes by one 

motor might be coordinated.  One possibility is that binding sites for different cargoes 

may not be accessible at the same time, such that cargoes compete with each other for 

transport.  Our results suggest this model is insufficient to describe cargo transport by 

Kinesin-1 as over-expression of cargoes that bind via KLC (Kidins220/ARMS, JIP1/JIP3 

and PAT1) did not compete with other cargoes for transport. In addition, no competition 

was detected between cargoes that bind via KHC and those that bind via KLC 

(p120catenin and JIP1/JIP3, respectively).  Overall, our results support a second model 

for coordination of multiple cargoes - that transport of disparate cargoes is saturable yet 

independent of each other.  The third model, cooperative transport, is viable in the case of 



92 

Kinesin-1 mediated transport of JIP1 and JIP3, as these proteins bind to separate sites on 

the KLC TPR bundle yet facilitate each other’s binding and transport.  

These results are compatible with those of Bracale et al who showed that over-

expression of the KLC-binding region of Kidins220/ARMS does not impair Kinesin-1 

driven transport of vaccinia virus to the plasma membrane [27].  However, Araki et al 

have shown that over-expression of JIP1 caused a reduction in anterograde velocity of 

GFP-Alcadein vesicles and reduced binding of Alcadein to KLC [26].  Likewise, over-

expression of Alcadein caused a reduction in anterograde velocity of APP-GFP vesicles 

[26].  In addition, Horiuchi et al have shown that over-expression of APLIP1, a JIP1 

ortholog, in Drosophila causes defects in axonal transport [24].  Further investigation, 

from the structural to the cellular level, is clearly required to understand how the 

transport of disparate cargoes is coordinated.  

That transport of an individual cargo can be saturated yet not compete with other 

cargoes suggests that the Kinesin-1 motor is not rate-limiting for transport.  It has been 

suggested that the majority of Kinesin-1 protein, particularly in neuronal cells, is not 

participating in microtubule-based transport but rather is in a folded inactive state [4, 39].  

This seemingly excess of Kinesin-1 protein may function to ensure an ample supply of 

motors that can be activated on demand.  A similar mechanism may function in myosin-

driven transport as mammalian Myosin V is also regulated by autoinhibition [46, 47].   

The rate-limiting factor for Kinesin-1 transport may be unidentified accessory 

proteins required for selective cargo loading.  In the case of JIPs, the formation of a 

JIP1/JIP3 oligomer may be rate limiting for Kinesin-1-mediated transport as low level 

expression of either JIP1 or JIP3 enhanced transport of the other JIP protein.  Yet the fact 

that high level expression of either JIP1 or JIP3 did not enhance transport suggests that 

unidentified accessory factors may be diluted out by the over-expressed protein.   

Our results are applicable to other cellular processes in which a diverse set of 

proteins depends on a common component for trafficking within the cell.  Particularly 

relevant are studies showing that the clathrin-mediated endocytosis of disparate receptors 

and their ligands is saturable but not competitive [48].  Recent work has shown that the 

rate-limiting factor is not the common clathrin core components, but rather sorting 

connectors or adaptors that regulate the selective trafficking of specific cargoes [49].  
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Whether kinesin-cargo interactions are regulated by similar mechanisms is unknown.  In 

the case of cytoplasmic dynein, transport of a wide variety of cargoes is thought to derive 

from a diverse set of cargo-binding accessory polypeptides that bind to dynein heavy 

chain [50].  These accessory polypeptides may bind in a mutually exclusive fashion to 

assemble distinct dynein-cargo combinations [51, 52] or may bind simultaneously to 

assemble multi-cargo complexes [53].  While over-expression of the light chain rp3 

displaces the Tctex-1 light chain from dynein and blocks the apical delivery of rhodopsin 

[52], the differential tissue distribution of these light chains suggests that such 

competition may not exist in vivo [54]. 

 

Cooperative transport of JIP1 and JIP3 via a JIP1/JIP3/KLC complex 

Our results show that although JIP1 and JIP3 can interact independently with 

KLC in yeast-two-hybrid and coimmunoprecipitation experiments, they bind with higher 

affinity when part of a complex (JIP1/JIP3/KLC).  This complex is necessary for efficient 

JIP1 and JIP3 transport as evidenced by both RNAi knockdown and dominant negative 

expression experiments.  Our demonstration of an interaction between JIP1 and JIP3 is in 

contrast to a previous report that JIP3 binds to the C-terminal PTB domain of JIP2 but not 

JIP1 [40].  This discrepancy is most likely explained by the fact that the JIP1b splice 

variant (711 amino acids) used in this study contains a complete PTB domain whereas the 

previous study likely used a shorter JIP1a splice variant (660 amino acids) containing 

only a partial PTB domain [43].  Thus, a complete JIP1 PTB domain is required for the 

interaction of JIP1 with JIP3.  

The biological significance of cooperative transport of JIP1 and JIP3 is not clear.  

Some reports have indicated that JIP1 and JIP3 play distinct roles in cellular processes 

such as stress signaling and apoptosis, cell migration, and neuronal development [21, 55].  

In our studies, we noticed that knockdown of JIP1 protein by RNAi resulted in increased 

neurite outgrowth, whereas loss of JIP3 protein resulted in decreased neurite outgrowth, 

similar to a previous report [45, 56].  However, recent reports have suggested that JIP1 

and JIP3 can cooperate to control cellular events such as phosphorylation and 

accumulation of APP at neurite tips [45, 56], axon guidance [57], and JNK activation 

following glucose deprivation [58].  In this respect, cooperative transport of JIP1 and 
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JIP3 by Kinesin-1 could facilitate the inclusion of many proteins into the transport 

complex and crosstalk between unique subsets of JNK regulators and substrates [21, 42, 

59].  Indeed, the macromolecular complex transported by Kinesin-1 via JIP1 and JIP3 

most likely includes multiple other proteins such as members of the JNK cascade and 

transmembrane receptor proteins [21, 60].  

 

Multiple mechanisms for partner protein binding by the KLC TPR domain 

Our experiments indicate that the TPR bundle of KLC uses at least two 

independent regions for partner protein binding.  First, the inside surface of the TPR 

groove binds to the extreme C-terminal residues of JIP1, similar to the binding of other 

TPR repeat-containing proteins such as Hop, PP5, and Pex5 and their interacting partners 

[10-12].  Second, the outer convex surface of the TPR bundle binds to internal residues in 

JIP3, analogous to the binding interface of the TPR-containing protein p67phox and its 

partner Rac [13].  Thus, although previous studies have demonstrated that both the 

groove and outer surfaces of TPR bundles can bind to partner proteins, KLC is the first 

TPR-containing protein known to utilize both mechanisms.  In addition, in the case of 

KLC, these multiple interaction surfaces enable the cooperative assembly of a 

JIP1/JIP3/KLC complex.   

Several features noted in other TPR bundles are important for JIP binding to 

KLC.  First, substrate recognition and engagement by TPR bundles involves a variety of 

residues spread across a large surface area in the groove or along the outside of the TPR 

domain [8].  Consistent with this, single mutations in the KLC TPR domain were not 

sufficient to abolish the interaction with JIP1 or JIP3.  Second, an Asparagine array lines 

the concave face of the bundle and likely contributes to peptide orientation in the groove 

[10-12, 38].  In the case of KLC, mutation of the Asparagine array abolished the 

interaction with JIP1 but not JIP3, supporting the conclusion that the C-terminal peptide 

of JIP1 sits in the KLC TPR groove.   

KLC’s TPR domain is known to mediate binding of Kinesin-1 to other proteins 

including Kidins220/ARMS, Pat1, Calsyntenin/Alcadein, Collapsin Response Mediator 

Protein-2, Huntington Associated Protein-1, APP, torsinA, 14-3-3 and Vaccinia virus’s 

A36R protein [26-34].  In most of these cases, the mechanism of interaction is unknown, 
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as the residues required for binding have not been identified.  In a recent study, quadruple 

mutations at positions L280, L287, A294, and L301 in KLC abolished the interaction 

with JLP, a JIP4 splice variant [23].  Our structural model predicts that these residues 

contribute to helical packing between the second and third TPR motifs.  This is consistent 

with the structural function of residues in similar positions of the Leu7 subclass of TPR-

containing proteins [61].  Thus, it seems likely that the loss of JLP binding was due to 

alterations in overall TPR domain structure rather than a novel leucine zipper interaction 

between KLC and JLP, as was proposed.  Another recent study showed that two 

conserved WDDS motifs in the cytoplasmic C-terminal tail of Calsyntenin/Alcadein are 

required for efficient binding to KLC1 [26, 33].  As one WDDS is internal and the other 

within the last 10 amino acids, Calsyntenin/Alcadein may bind to KLC using either or 

both of the binding mechanisms identified in this study.  Thus, it will be interesting to 

learn whether this diverse group of proteins binds to one of our two identified sites in 

KLC’s TPR domain or whether the TPR bundle contains additional cargo binding 

interfaces.  

 

MATERIALS AND METHODS 

Plasmids:  Plasmids encoding HA (hemagglutinin)-tagged rat KLC1 and the six 

TPR motifs (amino acids 199-488) have been previously described [20, 62].  For co-

immunoprecipitation with JIP1 and JIP3, mutant TPR domains from pGBD-KLC TPR 

were subcloned into pCDNA3-HA-KLC to create truncated mutant KLC proteins (amino 

acids 1-488) using convenient restrictions sites.  For expression of wild-type and mutant 

KLC TPR domains as dominant negative proteins, mutant TPR domains were subcloned 

from pGBD-KLC TPR into pCDNA3-HA-KLC TPR (amino acids 199-488).   

Flag-tagged mouse JIP1, JIP2, and JIP3 [40, 43, 63] were a kind gift of R. Davis 

(University of Massachusetts Medical School).  The splicing variant of JIP1 used in this 

study is JIP1b, also known as islet brain 1(IB1), which contains the full PTB domain that 

the JIP1a variant lacks [43].  Myc-tagged human full length JIP1, as well as the 

truncations or mutants 307–711, Y709A, 307-701, and PTB (554-711) have been 

described previously [20, 64].  Myc-JIP1(307-565) was generated by PCR amplification 

using primers with convenient restrictions sites for cloning into the pRK5-Myc vector.  
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Truncated JIP3 constructs [JIP3(138-433) and (138-621)] were obtained from clones 

identified in a yeast two-hybrid screen [20] and transferred from the two-hybrid prey 

vector pACT2 into the pCDNA3-myc vector.  Flag-PAT1, GST-PAT1(1-351), and GST-

PAT1(352-585) were a gift of J. Dictenberg and G. Bassell (Albert Einstein College of 

Medicine, Bronx, NY).  GFP-Kidins220/ARMS [27] was a gift from G. Schiavo (Cancer 

Research UK).  CFP-Kidins220/ARMS (1129-1426) was subcloned from the full length 

construct using convenient restriction sites.  ECFP-p120catenin and ECFP-

p120catenin∆N2 (deletion of amino acids 28-233) [37] were a gift from K.J. Green 

(Northwestern University, Chicago, IL).   

Antibodies: The following antibodies were used: polyclonal and monoclonal 

antibodies to the Myc tag (Sigma C3956, Millipore 06-549, and 9E10 hybridoma ascites), 

HA tag (Sigma H6908, Upstate 07-221, and 12CA5 hybridoma ascites), and Flag tag 

(Sigma F7425 and Sigma F3165);  polyclonal  JIP1 (#152, [20]); polyclonal JIP3 (against 

Drosophila JIP3 (Syd2) N-terminal residues 1–772, or C-terminal residues 1066-1328 

[65], gifts from L.S.B. Goldstein, University of California, San Diego); Monoclonal and 

polyclonal Kidins220/ARMS ([27], gifts from G. Schiavo, Cancer Research UK); 

monoclonal KHC (H2, Covance); and β-tubulin (E7, Developmental Studies Hybridoma 

Bank, Univ. Iowa).  Polyclonal anti-KHC antibodies (B1-1) were generated against the 

KHC motor domain peptide CDKNRVPYVKGCTER (rat Kif5c amino acids 159-172).  

Secondary antibodies for immunofluorescence microscopy, Fluorescein and Rhodamine 

Red-X, were purchased from Jackson ImmunoResearch.  

Structural Model of KLC TPR motifs 1-5.  The sequences of TPRs 2-5 of rat 

KLC1-C (residues 247-411) were overlaid onto crystal structures of other TPR bundles 

(Figure Supp 4), specifically the TPR region of human Pex5 (PDB code 1FCH; residues 

A451-A552) and the TPR region of p67phox (PDB code 1E96; residues B120-B151) using 

the graphics program O [66].  The first TPR of KLC (residues 210-246) was then 

modeled by spatial alignment with the helical regions of Pex5 (1FCH, residues A383-

A445).  The sixth TPR repeat of KLC could not be accurately represented in the model 

through sequence or structural alignments to other TPR regions due to a long insertion 

between the fifth and sixth TPR motifs that is unique to KLC.  
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Directed yeast two-hybrid assay:  A construct containing the six TPR motifs 

(amino acids 199-488) of rat KLC1 in the two-hybrid bait vector pGBD has been 

described [20].  Two-hybrid prey plasmids containing fragments of JIP1 and JIP3 in 

plasmid pACT2 were obtained in a two-hybrid screen [20].  Directed mutation of specific 

residues in amino acids 199-370 of the KLC TPR domain was carried out by Gene 

Synthesis [67].  EP-PCR to generate random mutations in KLC TPR motifs (amino acids 

199-488) was carried out as described [68, 69].  Briefly, the region was amplified by PCR 

reactions in which MnCl2 was substituted for MgCl2.  Amplified products were 

subcloned back into the pGBD-KLC TPR plasmid using convenient restriction sites.  

Mutant clones were picked randomly and mini-prep DNA was transformed into the yeast 

strain AH109 (Clontech).   

 Screening of the mutant TPR’s ability to bind to JIP1 and JIP3 was carried out by 

yeast mating. Yeast strain AH109 expressing wild-type or mutant pGBD-KLC TPR 

clones was mated to yeast strain Y189 expressing pACT2-JIP1(478-711) or pACT2-

JIP3(138-680) in 96 well plates.  Diploid yeast were sequentially plated on double (-leu,-

trp) and triple (-leu,-trp,-his + 3-aminotriazole and -leu,-trp,-ade) drop-out plates.  

Successful mating was evidenced by growth on double drop-out (-leu,-trp) plates.  A 

positive interaction between the KLC TPR domain and JIP1 or JIP3 was evidenced by 

growth on -leu,-trp,-his and on -leu,-trp,-ade drop-out plates.   

Clones that lost the ability to interact with either JIP1 or JIP3 were selected for 

further analysis.  Yeast plasmids were transformed back into E.coli for DNA sequencing.  

A few clones that retained interactions with both JIP1 and JIP3 were also selected for 

DNA sequencing.  In most cases, no mutations were found, however, in some cases 

single or double mutations were found.  Clones that lost the ability to interact with both 

JIP1 and JIP3 were not selected since these could include truncated KLC TPR domains as 

well as misfolded proteins.  

Cell culture and Fluorescence Microscopy:  COS and CAD cells were cultured 

as described [20] and transfected with TransIT-LT1 (Mirus).  Cells were processed for 

immunofluoresence as in [20] and mounted in 50% glycerol, 0.5% n-propyl gallete in 

PBS or using Prolong Gold (Invitrogen).  Images were collected with either an Olympus 

BX51 microscope with UplanFl 60X/NA 1.25 objective and Olympus DP70 CCD 
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camera, or a Nikon TE2000 microscope Plan-Fl 40X/NA 0.75 or a Plan-APO 60X/NA 

1.4 objective and Photometrics CS ES2 camera.  Quantification of neurite tip 

immunofluorescence intensity was done using Image J (NIH).  Neurite tips were hand-

selected with an elliptical selection tool and the average pixel fluorescence intensity was 

measured.  In order to pool values from two or three independent experiments for 

statistical analysis (student’s t-test), measurements within each sample were normalized 

by first subtracting cell background fluorescence (determined from measurements within 

neurite shafts), then dividing each transfected or non-transfected tip measurement by the 

average intensity of all non-transfected neurite tips within the same experimental sample.       

Immunoprecipitation:  COS or CAD cells were resuspended in lysis buffer 

(40mM Hepes pH 7.5, 120 mM NaCl, 1 mM EDTA, 10mM sodium pyrophosphate, 

10mM ß-glycerophosphate, 50 mM NaF, 0.5% NP40, 0.1% Brij-35, and protease 

inhibitors).  Extracts were incubated with the specified antibodies for 2.5-18 hr at 4°C 

then incubated with protein A agarose beads for 20 min at 4°C.  Beads were washed two 

times with lysis buffer, resuspended in Laemmli sample buffer, and analyzed by SDS-

PAGE and Western blot. 

RNAi:  A shRNA (short hairpin RNA) plasmid targeting mouse JIP1 was made 

using DNA oligos designed with a 19mer sense sequence (selected using Dharmacon’s 

website), 9 nucleotide loop, 19mer antisense sequence, and 6T pol III stop sequence 

(sense: 5’-tttGGCTCACCGTGCACTTTAAttcaagagaTTAAAGTGCACGGTGAGC 

Ctttttt-3’ and antisense: 5’-tagaaaaaaGACCGTGTGTCTCGATCATtctcttgaaATGATCG 

AGACACACGGT-3’).  Annealed oligos were cloned into the Bbs1 and Xba1 sites of the 

pU6-puro vector (modified from pU6pro [70] by addition of a puromycin resistence gene 

into the PvuII site).  The shRNA plasmid targeting mouse JIP3 was made the same way 

using a previously verified JIP3 shRNA sequence [71] (sense: 5’-tttGCAGGCCGAG 

GAGAAATTCAttcaagagaTGAATTTCTCCTCGGCCTGtttttt-3’ and antisense: 

5’-ctagaaaaaaCAGGCCGAGGAGAAATTCAtctcttgaaTGAATTTCTCCTCGGCCTG-

3’).  All plasmids were verified by DNA sequencing.  Knockdown efficiency was 

verified by co-transfecting the shRNA or control plasmids into COS cells with Flag-

tagged mouse JIP1 or JIP3 plasmids.  Protein expression of Flag-JIP1 or JIP3 in control 

and knockdown cells was analyzed by Western blot and immunofluorescence. 
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1:  Transport of specific cargo proteins by Kinesin-1 is saturable.  (A,C)  Differentiated 
CAD cells overexpressing the KLC-binding region of (A) JIP3 [Myc-JIP3(138-621)] or (C) 
Kidins220/ARMS [CFP-Kidins220/ARMS(1129-1426)] were fixed and stained for (A) the Myc 
tag and the endogenous JIP3 protein or (C) the Kidins220/ARMS protein.  Arrowheads, neurite 
tips of transfected cells; arrows, neurite tips of non-transfected cells.  Scale bar = 20 µm. (B and 
D)  Quantification of endogenous (B) JIP3 or (D) Kidins220/ARMS fluorescence intensity at 
neurite tips of non-transfected cells (NT) or cells overexpressing the indicated proteins.  * p<0.01.  
Error bars = +/- SEM.  N>100 neurites for each construct.  
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Figure 4.2:  Kinesin-1 cargoes that bind via KLC do not compete with each other for transport.  
(A) Differentiated CAD cells expressing GFP-Kidins220/ARMS or CFP-
Kidins220/ARMS(1129-1426) were stained for the endogenous JIP1 (left set of panels) or JIP3 
(right set of panels) proteins.   FP, fluorescent protein. (B) Differentiated CAD cells expressing 
Myc-JIP1 (left panels) or Flag-JIP3 (right panels) were double labeled for the expressed proteins 
(Myc or Flag tags) and for the endogenous Kidins220/ARMS protein.  (C) Differentiated CAD 
cells expressing Flag-PAT1 were double labeled for the Flag tag and the endogenous JIP1 (left 
panels) or JIP3 (right panels).  Arrows, neurite tips of transfected cells; arrowheads, neurite tips 
of non-transfected cells.  Scale bar = 20 µm.  (D-F)  Quantification of (D) JIP1, (E) JIP3, (F) or 
Kidins220/ARMS fluorescence intensity at neurite tips of non-transfected cells (NT) or cells 
overexpressing the indicated proteins.  N>100 neurites for each construct.  Error bars = +/- SEM.  
(p>0.01 for all transfected constructs).  Acknowledgements: Some data collection for this figure 
was done by Gloria T. Jih, Verhey lab. 
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Figure 4.3:  JIP1 facilitates JIP3’s transport to neurite tips and JIP3 facilitates JIP1’s transport.  
(A and B)  Differentiated CAD cells expressing (A) high levels or (B) low levels of Myc-tagged 
JIP1 were fixed and stained with antibodies to the Myc tag and endogenous JIP3.  Asterisk, cell 
body of transfected cell.  Arrows, neurite tips of transfected cells.  Arrowheads, neurite tips of 
non-transfected cells.  Scale bar = 20 µm.  (C) Quantification of JIP3 fluorescence intensity at 
neurite tips of non-transfected cells (NT) or cells expressing high or low levels of full-length 
(JIP1 FL) or N-terminally truncated JIP1 (307-711). N>75 neurites for each construct and 
expression level.  Error bars = +/- SEM.  * p<0.01.  (D and E)  Differentiated CAD cells 
expressing (D) high levels or (E) low levels of Flag-tagged JIP3 were fixed and stained with 
antibodies to the Flag tag and endogenous JIP1 protein.  (F)  Quantification of JIP1 fluorescence 
intensity at neurite tips of non-transfected cells (NT) or cells expressing high or low levels of full-
length (JIP3 FL) or truncated JIP3 (138-621).  N>150 neurites for each construct and expression 
level.  Error bars = +/- SEM.  * p<0.01. 
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Figure 4.4:  The KLC TPR domain contains distinct binding sites for JIP1 and JIP3 which 
facilitate cooperative binding.  (A and B)  Cooperative binding of JIP1 and JIP3 to KLC.  Lysates 
of COS cells expressing Flag-JIP3, Myc-JIP1, or HA-KLC were combined and analyzed by 
western blot either directly (total lysate) or after immunoprecipitation with an anti-HA antibody.  
(B) Quantification from six independent experiments of the fold increase in JIP1 (J1) or JIP3 (J3) 
pull-down in the absence and presence of the other JIP protein. * p<0.01; Error bars = +/- SEM.  
(C) Structural model of KLC’s TPR motifs 1-5.  The TPRs are depicted as a grey ribbon diagram.  
Residues targeted for mutation are depicted as ball-and-stick.  The conserved Asparagines across 
the concave face are indicated in YELLOW whereas a series of hydrophobic residues that follow 
a similar line are shown in GREEN.  The conserved K(Y/F)K residues within each TPR motif are 
shown in ORANGE whereas the conserved basic residues in the loops that link successive TPR 
motifs are shown in BLUE.  (D) Results of directed yeast-two-hybrid assay.  Yeast expressing 
wildtype or the indicated mutant versions of the KLC TPR domain as bait were mated to yeast 
expressing JIP1 or JIP3 as prey.  The residues targeted for mutation are indicated (BLUE, 
YELLOW, GREEN, and ORANGE).  For random mutation by EP-PCR, the mutated residues 
were determined after sequencing of the indicated clones.  (E-H) Coimmunoprecipitation assay. 
COS cells were transiently transfected with plasmids encoding (E) Myc-JIP1 or (F) Flag-JIP3 
along with wildtype (WT) or indicated mutant (mut)  KLC TPR proteins.  Lysates were 
immunoprecipitated with (E) anti-Myc or (F) anti-Flag antibodies, separated by SDS-PAGE, and 
immunoblotted with antibodies to the HA, Flag, or Myc tags as indicated. (G and H) Western 
Blot band intensities from three independent experiments were quantified using Image J.  Shown 
is the percentage of total KLC (WT or Mut.) that was Co-IPed with (E) JIP1 or (F) JIP3 
normalized to WT. # p<0.05; Error bars = +/- SEM.  Acknowledgements:  The structural model 
of KLC’s TPR bundle (C) was contributed by Jeanne Stuckey from the University of Michigan.  
The yeast-two-hybrid experiment in (D) was contributed by Kelly Griffin, Verhey lab.
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Figure 4.5:  KLC TPR mutants functionally block both JIP1 and JIP3 transport to neurite tips.  
(A and B)  Differentiated CAD cells expressing HA-tagged wildtype (WT) or mutant KLC-TPR 
bundles (GREEN, 48A, BLUE) were double labeled for the HA tag and for endogenous (A) JIP1 
or (B) JIP3 proteins.  Arrows, neurite tips of transfected cells; Arrowheads, neurite tips of non-
transfected cells.  Scale bar = 20 µm.  (C and D) Quantification of (C) JIP1 or (D) JIP3 
fluorescence intensity at neurite tips of non-transfected cells (NT) or cells expressing the 
indicated WT or mutant TPR bundles.  Compared to control non-transfected cells, a significant (* 
p<0.01) decrease in JIP1 or JIP3 staining intensity is seen in cells transfected with the WT, 
GREEN, and 48A TPR bundles, but not the BLUE TPR bundle.  N>200 neurites for each 
construct.  Error bars = +/- SEM. 
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Figure 4.6:  Oligomerization of JIP1 and JIP3.  (A) Schematic illustration of full length or 
truncated JIP1 and JIP3 constructs.  JB, JNK binding domain; PTB, phosphotyrosine binding 
domain; CC, coiled coil; LZ, leucine zipper.  (B and C) Mapping of JIP1 domains.  COS cells 
were cotransfected with the indicated Myc-JIP1 (m-JIP1) constructs and either (B) Flag-JIP3 or 
(C) HA-KLC.  Cells were lysed and protein levels were analyzed by western blot directly (total) 
or after immunoprecipitation (IP) with anti-Myc antibodies.  (D and E) Mapping of JIP3 domains.  
COS cells were co-transfected with a control vector or the indicated Myc-JIP3 (m-JIP3) 
constructs and either (D) Flag-JIP1 or (E) HA-KLC.  Cells were lysed and protein levels were 
analyzed by western blot directly (total) or after immunoprecipitation (IP) with anti-Myc 
antibodies.  (F) Interaction between endogenous JIP1 and JIP3 proteins. Lysates of differentiated 
CAD cells were immunoprecipitated with an anti-JIP1 antibody (IP-JIP1) or with the control pre-
immune serum (IP-PreImm).  The presence JIP3 in the immunoprecipitate was determined by 
immunoblotting with an antibody to JIP3.
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Figure 4.7:  Interaction of JIP1 with KLC is required for JIP3 transport and vice versa.  (A and 
B) Over-expression of JIP1 constructs.  Differentiated CAD cells expressing the indicated 
truncated versions of Myc-JIP1 were immunostained with antibodies to the Myc tag and the 
endogenous JIP3 protein.  Arrows, neurite tips of transfected cells.  Arrowheads, neurite tips of 
non-transfected cells.  Scale bar = 20 µm.  JIP3 fluorescence intensity at neurite tips was 
quantified (B) for non-transfected cells (NT) or cells expressing the indicated JIP1 constructs.  
N>170 neurites for each construct.  Error bars = +/- SEM.  * p<0.01.  (C and D) Over-expression 
of JIP3 constructs.  Differentiated CAD cells expressing full length (FL) Flag-JIP3 or the 
indicated truncated versions of Myc-JIP3 were immunostained with antibodies to the Flag or Myc 
tags and the endogenous JIP1 protein.  JIP1 fluorescence intensity at neurite tips was quantified 
(D) for non-transfected cells (NT) or cells expressing the indicated JIP3 constructs.  N>200 
neurites for each construct.  Error bars = +/- SEM.  * p<0.01.  (E) Effect of JIP1 dominant 
negative constructs on JIP3 binding to KLC.  Lysates of differentiated CAD cells expressing full 
length or the indicated constructs of Myc-JIP1 were immunopreprecipitated (IP) with antibodies 
to the endogenous KHC protein.  Precipitates were analyzed by western blot for the presence of 
the endogenous KHC and JIP3 proteins.
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Figure 4.8:  Knockdown of JIP1 abrogates JIP3 transport and vice versa.  (A and B) Specificity 
of RNAi knockdown.  COS cells were co-transfected with Flag-JIP1 (A) or Flag-JIP3 (B) and 
either an empty shRNA vector or shRNA plasmids targeting JIP1 or JIP3.  The levels of 
remaining JIP1 and JIP3 proteins were determined by immunoblotting total cell lysates with an 
anti-Flag antibody. Equal loading of total protein is indicated by blotting with an anti-β-tubulin 
antibody.  (C and D) Differentiated CAD cells were transfected with a plasmid encoding CFP 
alone or together with JIP1 shRNA or JIP3 shRNA plasmids.  Cells were fixed and 
immunostained with antibodies to the endogenous (C) JIP1 or (D) JIP3 proteins.  Left panels: 
transfection with CFP has no effect on (C) JIP1 or (D) JIP3 tip localization or protein level.  
Middle panels: JIP1 and JIP3 shRNA transfected cells show efficient knockdown of endogenous 
JIP1 or JIP3 respectively.  Right panels: JIP3 shRNA-transfected cells show a defect in JIP1 tip 
localization (C) and JIP1 shRNA-transfected cells have a defect in JIP3 tip localization (D).  
Arrows, neurite tips of transfected cells; arrowheads, neurite tips of non-transfected cells.  Scale 
bar = 20 µm.  (E and F) Quantification of the relative JIP1 (E) or JIP3 (F) fluorescence intensity 
at neurite tips in transfected cells as compared to non-transfected (NT) cells.  N>160 neurites for 
each construct.  Error bars = +/- SEM.  * p<0.01. 
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Figure Supplemental 4.1:  Binding of Kidins220/ARMS and PAT1 to KLC.  (A) Schematic 
illustration of full length Kidins220/ARMS and the truncated, cytoplasmic construct CFP-
Kidins220/ARMS(1129-1426).  Ank, ankyrin repeats; TM, transmembrane domains; SD, SAM 
domain; KLC BD, KLC binding domain as determined by Bracale et al, 2007; PDZ BM, PDZ 
binding motif.  (B) Coimmunoprecipitation of Kidins220/ARMS with KLC.  Lysate from COS 
cells transfected with CFP-Kidins220/ARMS(1129-1426) was mixed with lysate from 
untransfected cells or cells transfected with HA-KLC .  Mixed lysates were then 
immunoprecipitated with anti-HA antibodies and analyzed by western blot.  (C) Schematic 
illustration of PAT1 and truncated GST-PAT1 constructs. (D) GST-PAT1(1-351) or GST-
PAT1(352-585) recombinant proteins were mixed with lysates from COS cells that had been 
transfected with HA-KLC or left untransfected.  Mixtures were immunoprecipitated with anti-HA 
antibodies and analyzed by western blot.  KLC binds within amino acids 1-351 of PAT1. 
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Figure Supplemental 4.2: Kidins220/ARMS does not compete with JIP1 or JIP3 for binding to 
KLC.  Lysates of COS cells expressing Myc-JIP1, Flag-JIP3, CFP-Kidins220/ARMS(1129-
1426), and HA-KLC were combined and analyzed by western blot either directly (total lysate) or 
after immunoprecipitation with an anti-HA antibody.  (A and B) Kidins220/ARMS and JIP1 do 
not compete for binding to KLC. (A) Representative western blot of co-immunoprecipitation of 
JIP1 and Kidins220/ARMS with KLC. Co-precipitation of Kidins220/ARMS with KLC (lane 6) 
or of JIP1 with KLC (lane 7) is not altered by the presence of the other cargo protein (lane 8). (B) 
Quantification of five independent experiments. Error bars = +/- SEM. p>0.05 for all 
combinations.  (C and D) Kidins220/ARMS and JIP3 do not compete for binding to KLC. (C) 
Representative western blot of coimmunoprecipitation of JIP3 and Kidins220/ARMS with KLC.  
Coprecipitation of Kidins220/ARMS with KLC (lane 6) or of JIP3 with KLC (lane 7) is not 
altered by the presence of the other cargo protein (lane 8). (D) Quantification of six independent 
experiments.  Error bars = +/- SEM.  p>0.05 for all combinations. 
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Figure Supplemental 4.3:  p120catenin, a KHC-binding Kinesin-1 cargo, does not compete with 
JIP1 or JIP3 for transport.  (A) Differentiated CAD cells expressing CFP-p120catenin or an N-
terminally truncated version of p120-catenin, ∆N, were stained for endogenous JIP1 (left panels) 
or JIP3 (right panels).  Arrows, neurite tips of transfected cells; arrowheads, neurite tips of non-
transfected cells.  Scale bar = 20 µm.  (B and C) Quantification of JIP1 (B) or JIP3 (C) 
fluorescence intensity at neurite tips of non-transfected cells (NT) or cells transfected with the 
indicated p120catenin construct.  N>100 neurites for each construct.  Error bars = +/- SEM.  
(p>0.01 for all transfected constructs). 
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Figure Supplemental 4.4:  Alignment of the structural model of KLC TPR repeats 1-5 with 
known TPR domain structures. The sequences of TPRs 2-5 of rat KLC1-C were overlaid onto the 
known crystal structures of human Pex5 and p67phox.  The first TPR of KLC (residues 210 –246) 
was then modeled by spatial alignment with the helical regions of Pex5. The sixth TPR repeat of 
KLC could not accurately be represented in the model through sequence or structural alignments 
to other TPR regions due to a long insertion between the fifth and sixth TPR motifs that is unique 
to KLC.  (A) Ribbon diagrams depicting the structural alignment of the TPR domains of p67phox 
residues B2 – B186 (red, PDB code 1E96) aligned with the model of KLC1, residues 210 – 411, 
shown in yellow.  (B) Manual alignment of the Cα atoms of the TPR region of the KLC1 
structural model with four known TPR crystal structures.  Yellow, KLC1 residues 210 – 411. 
Magenta, PP5 residues 19 – 170 (PDB code: 1A17). Blue, Hop residues A2 – A118 (PDB code 
1ELW). Red, p67phox residues B2 –B186 (PDB code 1E96). Green, Pex5 residues A420 – A602 
(PDB code 1FCH). Depicted in brown are the co-crystallized binding partners of Hop (Hsp70 C-
terminal peptide (C5 – C12), PDB code 1ELW) and p67phox (peroxisomal targeting peptide (C1 – 
C5), PDB code 1E96).  Acknowledgement:  This figure was generously provided by Jeanne 
Stuckey, University of Michigan. 
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Chapter 5: 
Microtubule Post-Translational Modifications  

Direct Kinesin-1 into Axons 
 

 Unidirectional signal transduction by neuronal cells is intimately linked to their 

highly polarized morphology.  The biogenesis and maintenance of distinct axon/dendrite 

compartments depends on transport of specific vesicles and proteins along microtubules 

to their proper cellular locations.  Despite much effort, it is still unclear how polarity is 

established.  Several signaling pathways and proteins have been identified that control 

neurite outgrowth and/or axon specification including: the PI3K/Akt/GSK3β pathway; 

the Par3/Par6/aPKC complex; SAD kinases; Ras, Rac, Cdc42, and Rap1b small GTPases; 

APC, and CRMP-2 [1, 2].  Many of these signaling pathways regulate components of the 

actin cytoskeleton to facilitate growth cone motility, as well as components of 

microtubule-based transport systems for targeted delivery of vesicles and protein 

complexes [1, 2].  As specification and maintenance of neuronal polarity rely on 

microtubule-based transport, understanding the molecular mechanisms responsible for 

the polarized transport of kinesin motors to axons and/or dendrites is critical to 

understanding neuronal organization and polarity.  

 The process of cellular polarization has been studied in cell culture, typically with 

primary hippocampal neurons [3].  Unpolarized (stage 1) cells start their differentiation 

process by extending multiple apparently identical neurites (stage 2).  Polarity is 

established a short time later when one neurite undergoes a period of rapid extension and 

becomes the axon (stage 3).  The remaining neurites will then become dendrites (stages 4 

and 5).  

 Upon polarization (stage 3), several signaling components become localized to 

the growth cone of the developing axon (Par3/Par6/aPKC complex, APC, PIP3, JIP1, as 

well as members of the Rho family GTPases: Rac, Cdc42, and Rap1b and some of their 

activating GEFs)  [4-15].  Several mechanisms have been proposed to account for this
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polarized localization including 1) selective transport down the axon by kinesin motors, 

2) selective degradation by the ubiquitin/proteasome system in minor neurites, or 3) 

localized activation or production of signaling components in the developing axon [1, 2, 

16-21].  In the case of selective microtubule transport, the Kinesin-1 motor and its cargo 

protein JNK-interacting protein (JIP)-1 accumulate preferentially in the developing axon 

[11, 16, 17].  Kinesin-1 also transports CRMP2, a protein essential for axon specification 

[22].  The Kinesin-3 family member, Gakin, delivers PIP3-containing vesicles via its 

interaction with the PIP3-interacting protein, PIP3BP, thus contributing to the PIP3 

accumulation that initiates signaling cascades important for axon specification [13, 15, 

23].  Finally the Kinesin-2 family member, KIF3, has been implicated in transporting 

proteins essential for axon elongation and specification (APC and the Par3 complex), but 

whether this involves selective transport to the developing axon, or general transport to 

all neurites is still unclear [4, 14].   

 How the developing axon in stage 3 is chosen from apparently equivalent neurites 

in stage 2 is still unclear.  Recent work has shown that kinesin motors can distinguish 

between apparently equivalent neurites in stage 2, even before morphological 

differentiation has taken place.  Using live cell imaging of fluorescently-tagged, 

constitutively active versions of the Kinesin-1 motor KIF5C, Jacobson et al showed that 

Kinesin-1 accumulates in a subset of neurites in a very dynamic fashion [16].  The 

Kinesin-1 cargo JIP1 also localizes to a subset of neurites in nonpolarized cells and may 

play a role in axonal specification and growth [11, 24].  Thus, the selectivity of 

endogenous and over-expressed Kinesin-1 motors for specific neurites is one of the 

earliest known molecular differences between seemingly equivalent neurites in stage 2 

cells. 

What are the molecular signals that drive the selective transport of Kinesin-1 

motors in neurites of unpolarized stage 2 neurons and axons of polarized stage 3 neurons?  

Recent work has raised the possibility that Kinesin-1 “reads” biochemical cues that 

specify a qualitatively and/or functionally distinct set of microtubule tracks in selected 

neurites and axons.  Previous work has shown that stage 3 axons are enriched in stable 

microtubules as compared to minor neurites [25, 26].  Stable microtubules comprise a 

subset of the total microtubules in cells whose low turnover enables a long half-life (t ½ = 
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hours) as compared to dynamic microtubules (t ½ = minutes).  Stable microtubules are 

resistant to depolymerization by microtubule-destabilizing drugs such as nocodazole and 

become marked by a variety of post-translational modifications (PTMs) in an age-

dependent manner.  Thus, stable microtubules may serve as an axonal signal for Kinesin-

1.  In support of this possibility, in vitro assays have shown that Kinesin-1 has a binding 

preference for microtubules containing the PTMs of acetylation, detyrosination, and 

polyglutamylation [24, 26-30].  In addition, hyperacetylation of microtubules can 

misdirect Kinesin-1 transport of JIP1 in stage 2 primary hippocampal neurons [24].  

Whether one particular microtubule PTM or a combination of PTMs provides a 

biochemical cue that directs Kinesin-1 to the developing axon in stage 3 cells is 

unknown.  Here we test the possibility that microtubule acetylation directs Kinesin-1 

axonal sorting by analyzing the transport of expressed constitutively active Kinesin-1 

motors and endogenous Kinesin-1 cargoes in primary hippocampal neurons.  We show 

that Kinesin-1 can be influenced by microtubule acetylation in stage 2 neurons but not in 

stage 3 neurons.  Rather, in stage 3 neurons, Kinesin-1 “reads” axonal cues that can 

override the acetylation input.  This axonal cue can be incorporated into dendrites by low 

concentration taxol treatment or inhibition of GSK3β.  Both treatments correlate with an 

increase in multiple microtubule PTMs.  These results suggest that multiple microtubule 

biochemical inputs may create a “code” that directs kinesin motors to specific subcellular 

destinations.  

 

RESULTS 

Kinesin-1 prefers neurites and axons with higher levels of modified microtubules 

Kinesin-1 has been shown to preferentially transport down axons in stage 3 and 

later primary hippocampal neurons [16, 17].  However, the molecular mechanism for this 

axonal sorting is unknown.  It is possible that the mechanism is related to a specific 

property of the microtubule population in axons.  Previous work has shown that axons 

contain a higher percentage of stable microtubules than dendrites [25, 26].  Thus, we 

asked whether the microtubule PTMs often associated with stable microtubules are 

enriched in axons.  To do this, we stained stage 3 primary hippocampal neurons with 

antibodies that recognize the known microtubule PTMs of α-tubulin acetylation, α-
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tubulin detyrosination, and polyglutamylation of both α- and β-tubulin.  The ratio of 

modified tubulin to total tubulin in the axon was compared to minor neurites.  The levels 

of acetylated α-tubulin and polyglutamylated α-tubulin were significantly higher in the 

developing axon than in the minor neurites (Figure 5.1 A and B).  Other labs have also 

demonstrated accumulation of  detyrosinated microtubules in axons (Gary Banker, 

personal communication).  We conclude that microtubule PTMs are enriched in axons 

and therefore may provide a biochemical cue for Kinesin-1 that drives polarized 

transport.  

We then tested whether the microtubule PTMs are also enriched in minor neurites 

chosen by Kinesin-1 in unpolarized stage 2 primary hippocampal neurons.  Recent work 

has shown that one neurite in stage 2 neurons is often enriched in stable microtubules 

[25].  Yet it is unknown whether the presence of stable microtubules and/or the PTMs 

that mark this subpopulation correlate with the presence of proteins known to accumulate 

in one neurite of stage 2 neurons.  As Kinesin-1 is one of the earliest known markers of 

the newly specified axon and often localizes to one or a few stage 2 neurites, we tested 

whether the preferential trafficking of Kinesin-1 motors also correlates with increased 

levels of microtubule PTMs.  We used constitutively active versions of Kinesin-1 (CA-

Kinesin-1) that contain a dimeric motor domain required for microtubule-based motility 

but lack the C-terminal tail domains required for autoinhibition and cargo-binding 

[Kif5c(1-560) or Kif5c(1-509)].  When tagged with fluorescent proteins and expressed in 

neuronal cells, such truncated motors provide a direct readout of Kinesin-1 activity 

regulated primarily by the microtubule/motor interface [16, 17, 31].  Stage 2 hippocampal 

neurons expressing CA-Kinesin-1 were fixed and stained for total α-tubulin and the 

various PTMs.  The ratio of modified tubulin to total tubulin was then compared between 

neurites with or without significant CA-Kinesin-1 accumulation.  For the acetylation and 

polyglutamylation modifications, the level of modified tubulin was higher in neurites 

with CA-Kinesin-1 accumulation than in neurites that lack CA-Kinesin-1 (Figure 5.1 C-

E).  These results suggest that the preferential accumulation of microtubule PTMs in one 

neurite of stage 2 neurons may serve to direct Kinesin-1 trafficking into that neurite, thus 

promoting axon growth and specification.   

 



 122

Microtubule acetylation influences the localization of the Kinesin-1 cargo JIP1 in 

unpolarized (stage 2) but not polarized (stage 3) neurons 

 That microtubule PTMs regulate Kinesin-1 transport is supported by recent data 

showing that hyperacetylation of microtubules in stage 2 primary hippocampal neurons 

results in a misdirection of Kinesin-1 transport [24].  In this study, the localization of the 

Kinesin-1 cargo JIP1 in fixed cells was used as a read-out of the activity of the 

endogenous Kinesin-1 motor.  In primary neurons, the localization of JIP1 to a subset of 

neurites in stage 2 cells, and to the developing axon in stage 3 cells, is dependent on 

Kinesin-1 activity [11, 24, 32].  Stage 2 primary hippocampal neurons were treated with 

125nM trichostatin A (TSA), a general deacetylase inhibitor, or with 5-10µM tubacin, a 

specific inhibitor of the tubulin deacetylase HDAC6, for 3 hours to hyperacetylate 

microtubules (Figure 5.2 C, F).  Cells were then fixed and stained for acetylated tubulin 

and the endogenous JIP1 protein.  In control cells, JIP1 was localized to a subset of 

neurites whereas hyperacetylation resulted in a redirection of JIP1 to a greater percentage 

of neurites (Figure 5.2 A and B, [24]).  Thus, preferential transport of JIP1 to a subset of 

neurites by the endogenous Kinesin-1 motor can be influenced specifically by the 

acetylation PTM present on microtubules.  

 We thus tested whether microtubule acetylation can influence Kinesin-1 transport 

of JIP1 to axons in stage 3 neurons.  Stage 3 primary hippocampal neurons were treated 

with TSA or tubacin and then fixed and stained for the endogenous JIP1 protein.  

Surprisingly, in polarized stage 3 neurons, increased acetylation (Figure 5.2 D and E) had 

no effect on JIP1 transport.  In both control and treated cells, JIP1 accumulated 

exclusively in the developing axon and not minor neurites (Figure 5.2 D and E).  These 

results suggest that the PTM of α-tubulin acetylation is not sufficient to provide the 

biochemical cue that drives axonal transport of Kinesin-1.  

 

Microtubule acetylation does not influence the motility of CA-Kinesin-1 motors in 

polarized (stage 3) neurons 

That alterations in microtubule acetylation influence JIP1 localization in stage 2 

cells but not in stage 3 cells could be explained by differences in the cellular environment 

(e.g. axonal retention of JIP1) other than Kinesin-1 transport.  Thus, to test directly 
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whether acetylation influences Kinesin-1 motors in stage 3 neurons, we analyzed the 

effects of increased acetylation on CA-Kinesin-1 motors.  Primary hippocampal neurons 

were electroporated with CA-Kinesin-1-EGFP at the time of plating.  Upon reaching 

stage 3, the cells were treated with DMSO control, 2µM tubacin, or 100nM TSA and then 

observed using time-lapse live-cell imaging.  Before treatment, CA-Kinesin-1 

accumulated specifically in the developing axon.  After treatment with TSA or tubacin 

for 1 to 2 hours, no movement of CA-Kinesin-1 motors to minor neurites was observed 

(Figure 5.3 A and B) despite significant increases in the levels of acetylated tubulin 

within the same time period (Figure 5.3 C).   

An alteration of CA-Kinesin-1 localization in this experiment would require that 

CA-Kinesin-1 motors localized at the tip of the developing axon return to the cell body 

before choosing minor neurites.  Thus, we performed a second set of experiments 

designed to allow newly-made CA-Kinesin-1 motors equal opportunity to choose 

hyperacetylated axons or minor neurites without the need to first diffuse out of the axon.  

Stage 3 or stage 5 mouse hippocampal neurons were treated for 3-4 hours with DMSO, 

125nM TSA, or 10µM tubacin.  The cells were then transfected with CA-Kinesin-1-

mCherry together with YFP to illuminate the entire cell, and allowed to express the 

exogenous proteins under additional treatment for 4-5 hours.  CA-Kinesin-1 motors 

accumulated preferentially in the developing axon and not in minor neurites in both 

control and treated stage 3 cells (Figure 5.3, D and E).  Similarly, CA-Kinesin-1 motors 

accumulated in axons rather than dendrites in stage 5 cells (Figure 5.3 E).   

 Thus, although increased microtubule acetylation can influence Kinesin-1 

transport in stage 2 cells (Figure 5.2), it did not alter the preferential localization of the 

Kinesin-1 cargo JIP1 or the preferentially transport of CA-Kinesin-1 motors to axons in 

polarized cells (Figures 5.2 and 5.3).  Hyperacetylation caused by deacetylase inhibitors 

also did not cause multiple axons.  Treating cells with 5µM tubacin from 3hrs after 

plating until 6 days in vitro does not increase the percentage of cells with multiple axons 

(Figure 5.3 F and [25]).  We conclude that acetylation is not the primary signal that drives 

axonal trafficking of Kinesin-1.  Rather, Kinesin-1 apparently recognizes some other 

biochemical property of microtubules present in axons that is absent or decreased in other 

processes (minor neurites or dendrites).   
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Taxol treatment alters microtubule modifications and selective Kinesin-1 transport 

in both stage 2 and stage 3 primary hippocampal neurons 

Although changes in microtubule acetylation are not sufficient to alter the 

preferential transport of Kinesin-1 to axons in polarized cells, treatment of differentiated 

neurons (stage 5) with low doses of the microtubule-stabilizing drug, taxol, has been 

shown to redirect CA-Kinesin-1 motors to dendrites [17].  In our hands, treatment of 

stage 5 primary hippocampal neurons did indeed result in the accumulation of CA-

Kinesin-1 motors in both dendritic and axonal growth cones (Figure 5.4 A and C).  This 

effect was also seen earlier in differentiation, as treatment of stage 3 neurons with low 

levels of taxol also resulted in accumulation of CA-Kinesin-1 motors in minor neurites 

(Figure 5.4 B and C).  These results suggest that promoting microtubule stabilization in 

non-axonal processes is sufficient to override the axonal signal used by Kinesin-1.  

We next explored the dynamics of taxol-induced changes in microtubule PTMs 

and Kinesin-1 transport.  Primary hippocampal neurons that had been electroporated with 

CA-Kinesin-1-mCit at the time of plating, were treated with DMSO control or with 10nM 

or 100nM Taxol and observed using time-lapse live cell imaging.  In unpolarized stage 2 

cells where Kinesin-1 was initially evenly distributed throughout the cell, the motor 

accumulated in all neurite tips within 10-20 minutes after taxol treatment (Figure 5.5 A, 

B, and D), but not after DMSO treatment (data not shown, Figure 5.2 A and B).  In 

treated cells, CA-Kinesin-1 fluorescence stayed relatively constant in all neurite tips for 

the duration of the recording (Figure 5.5 A and B) ; whereas, some untreated cells 

showed transient activity of CA-Kinesin-1 towards one or a few neurites over time as 

previously reported [16] .  It is interesting that in these stage 2 cells, although there are 

plenty of microtubule tracks for constitutively active Kinesin-1 to take to the ends of 

neurites, Kinesin-1’s processivity is still limited.  Upon taxol treatment the biochemical 

properties of the microtubules must be altered such that Kinesin-1 finds the tracks more 

suitable and quickly responds by accumulating at neurite tips.  

In polarized stage 3 cells, CA-Kinesin-1-mCit showed a similar change in 

trafficking upon taxol treatment.  Prior to treatment, most CA-Kinesin-1 was 

accumulated in the axon with only a minor portion present in the cell body.  Within 10-20 

mins of taxol treatment, the minor neurites showed a significant accumulation of CA-
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Kinesin-1 (Figure 5.5 C and D).  The CA-Kinesin-1 fluorescence in minor neurites 

continued to increase at a gradual rate over the 4 hour period imaged.  At the end of the 

imaging period, CA-Kinesin-1 was accumulated at the tips of 95% of axons and 66% of 

minor neurites.  However cells treated with DMSO had CA-Kinesin-1 in axons only 

(98% of axons, 3% of dendrites) (Figure 5.5 E and F). 

 To determine the changes in microtubule PTMs occurring over this time course of 

taxol treatment, a mix of stage 2/stage 3 primary hippocampal neurons were treated for 0-

60 minutes with 100nM Taxol.  Cells were collected, lysed, run on SDS-PAGE gel, and 

then immunoblotted for total β-tubulin and for specific tubulin modifications (acetylated 

α-tubulin, detyrosinated  α-tubulin, or polyglutamylated tubulin).  Like TSA or tubacin 

treatment, taxol treatment caused a rapid (within 7.5 min) increase in the level of α-

tubulin acetylation (Figure 5.5 G).  Importantly, taxol treatment also caused a rapid 

(within 7.5 min) increase in the other known microtubule PTMs, detyrosination of α-

tubulin and polyglutamylation of α- and β-tubulin (Figure 5.5 G).  Importantly, this is the 

same time scale of taxol treatment that results in alterations in CA-Kinesin-1 trafficking 

in unpolarized stage 2 neurites and polarized stage 3 minor neurites.  These results 

demonstrate that alterations in microtubule stability and/or PTMs regulate the selective 

transport of Kinesin-1 in both unpolarized and polarized neurons.  

We thus asked what effects taxol treatment has on the transport of endogenous 

Kinesin-1 motors and on neuronal polarity.  Stage 2 and Stage 3 primary hippocampal 

neurons were treated with DMSO control or with 10nM or 100nM taxol for 3 hours.  The 

cells were then fixed and stained with antibodies to the Kinesin-1 cargo, JIP1, and 

acetylated α-tubulin.  In stage 2 cells, taxol treatment resulted in redistribution of JIP1 

from a subset of neurites to the majority of neurite tips (Figure 5.6 A and B).  In stage 3 

cells, taxol treatment caused JIP1 to accumulate in both future dendrites and axons, rather 

than just specifically in axons, as seen in control cells (Figure 5.6 C and D).  To 

determine the PTM changes associated with this treatment, a mixture of stage 2 and 3 

cortical cells were treated with 10 or 100nM taxol for 3 hours.  Cells were then collected, 

lysed, and analyzed by western blot.  Taxol treatment resulted in a significant increase in 

the amount of tubulin acetylation, detyrosination, and polyglutamylation (Figure 5.6 E; 

increased acetylation levels also visible by immunofluorescence Figure 5.6 A and C).   



 126

Microtubule stabilization induced by long-term taxol treatment is also sufficient 

to induce multiple axons in differentiated neurons.  Staining of cells with antibodies to 

the axonal marker Tau-1 and the dendritic marker MAP2 demonstrates that untreated 

cells have a single Tau-1-positive axon leaving the cell body whereas taxol-treated cells 

have multiple Tau-1-positive axons that protrude from the cell body (Figure 5.6 F and G; 

[25]).  Thus, taxol treatment results in changes within the microtubule cytoskeleton that 

dictate an axonal-like morphology and assemblage of proteins.   

 

Inhibition of GSK3β signaling abolishes selective Kinesin-1 transport in stage 3 

primary hippocampal neurons 

Alterations in axon/dendrite identity can also be induced by pharmacological 

inhibition of the protein kinase GSK3β.  In hippocampal cells, inhibition of GSK3β 

specifically toward primed substrates like APC and CRMP-2 can induce the formation of 

multiple axons or alternatively axons with increased branching [33-35].  The ability to 

form multiple axons suggests the possibility that events downstream of GSK3β activity 

limit the occurrence of microtubule based “axonal” signals.  We first tested whether CA-

Kinesin-1 motors could recognize and follow the cues provided by the multiple axons 

generated upon GSK3β inhibition.  Cells that were nucleofected with CA-Kinesin-1-mCit 

at the time of plating were cultured in 5µM of the GSK3β inhibitor SB216763 for 6 days.  

Staining cells with antibodies to the axonal marker Tau-1 and the dendritic marker MAP2 

demonstrates that pharmacological inhibition of GSK3β resulted in a significant increase 

in the number of cells with multiple axons (Figure 5.7 A), consistent with previous 

reports [33, 35].  When the treated cells were stained with an antibody to GFP to enhance 

the mCit signal on CA-Kinesin-1-mCit, the active Kinesin-1 motors accumulated in all 

axonal tips (Figure 5.7 B), suggesting GSK3β inhibition generated genuine axons 

containing the microtubule based axonal cue recognized by Kinesin-1.  

 We next asked whether Kinesin-1 could be redirected into the minor neurites of 

early polarizing neurons (stage 3) or the dendrites of fully differentiated (stage 5) neurons 

using shorter time periods of GSK3β inhibition.  Stage 3 or 5 neurons were treated for 2-

4 hours with DMSO control or with 5-10µM SB216763.  Cells were then lipofectamine 

transfected with CA-Kinesin-1-mCherry together with YFP as a whole cell marker.  After 
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additional treatment and expression time of 4-6 hours, cells were fixed and imaged.  

Inhibition of GSK3β for a total of ~ 8 hours resulted in significant CA-Kinesin-1-

mCherry accumulation in minor neurites (stage 3) or dendrites (stage 5) in addition to the 

axon (Figure 5.7 D-F).  Finally, we tested whether GSK3β inhibition could influence 

Kinesin-1 transport in unpolarized stage 2 cells.  Treating stage 2 cells with 10µM 

SB216763 increased the percentage of neurites with JIP1 accumulation (Figure 5.7 G and 

H). 

  As inhibition of GSK3β resulted in an increase in “axonal signal” recognized by 

Kinesin-1, we tested how microtubule PTMs were altered with GSK3β inhibition.  Cells 

were treated with 5-10µM SB216763, lysed, run on SDS-PAGE gels, and then 

immunoblotted for total α-tubulin and for the known tubulin PTMs (acetylated α-tubulin, 

detyrosinated  α-tubulin, and polyglutamylated tubulin.)  Similar to taxol treatment, 

inhibition of GSK3β with 5-10 µM SB216763 resulted in an increase in all microtubule 

PTMs (Figure 5.7 I and J).  We conclude that increased microtubule modifications upon 

inhibition of GSK3β could serve as a signal to influence Kinesin-1 transport in polarized 

primary hippocampal neurons.  

 

DISCUSSION 

Role of microtubule PTMs in regulating Kinesin-1 transport 

 Kinesin-1 has been shown to have increased binding to and motility on acetylated 

microtubules over non-acetylated microtubules [24].  Hyperacetylation of microtubules 

(due to inhibition of the tubulin deacetylase HDAC6) can influence kinesin transport in 

unpolarized cells, promoting transport of the Kinesin-1 cargo, JIP1, to a greater 

percentage of neurites (Figure 2, [24]).  These results indicate that acetylated 

microtubules do play a positive role in regulating the kinesin-1/microtubule interaction.  

However, our results show that hyperacetylation has no effect on kinesin-1 transport in 

polarized cells, as assayed by both the localization of JIP1 and over-expressed CA-

Kinesin-1 motors.  Additionally hyperacetylation does not alter polarity in neuronal 

cultures as one would expect if acetylation provided the key “axonal” signal to 

microtubule motors (this study and [25]).   
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 In polarized cells, it seems the microtubules have additional biochemical signals 

that direct Kinesin-1 transport even in the presence of high levels of microtubule 

acetylation.  Our data shows that the selective transport of Kinesin-1 in polarized neurons 

correlates with increased levels of multiple microtubule PTMs in the axon compared to 

minor neurites.  Thus, another microtubule biochemical modification (i.e. detyrosination, 

polyglutamylation, or other PTMs or microtubule properties not directly tested) or a 

combination of these modifications could provide the “axonal” signal to Kinesin-1.  

Detyrosination, polyglutamylation, and presence of MAPs each have suggested 

regulatory roles in the kinesin-1/microtubule interaction [24, 26-30, 36, 37].  

Additionally, low concentration taxol treatment and GSK3β inhibition (both treatments 

which can transform dendrites into axons) result in increased levels of all PTMs tested.  

In the case of HDAC6 inhibition, where only the level of acetylation is increased, the 

additional biochemical changes occurring on the microtubules of the developing axon, 

must override the hyperacetylation of minor neurites or dendrites allowing Kinesin-1 to 

correctly transport only to the axon. 

 Previous work has shown that Kinesin-1 reacts to the presence of microtubule 

post-translation modifications other than acetylation.  Kinesin-1 shows preferential 

binding to detyrosinated microtubules over tyrosinated microtubules [24], and is more 

likely to transport along detyrosinated tracks than the total number of microtubule tracks 

in a fibroblast cells [29].  Detyrosination microtubules also have been implicated as 

playing an essential role in the cellular localization of recycling endosome compartments 

and the kinesin mediated trafficking of TfR vesicles from these endosomal compartments 

to the plasma membrane [38].  The carboxypeptidase that removes the c-terminal tyrosine 

of α-tubulin has yet to be identified; but tubulin tyrosine ligase (TTL) replaces it, 

resulting a continuous detyrosination/tyrosination cycle [39-41].  In TTL knockout mice, 

the level of detyrosinated tubulin is artificially high, and results in perinatal death due to 

disorganized neuronal networks.  In culture, cortical or hippocampal neurons from these 

mice polarize at a faster rate than wildtype cells and have a small but significant increase 

in the number of cells with multiple axons.  Additionally growth rates of axons and minor 

neurites were increased, but also more erratic [42].   These results suggest that 

microtubule detyrosination may be important for normal polarization and neurite growth.  
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However, because the effect on individual cells is small other microtubule properties may 

also contribute to or dominate the axonal signal.  Future experiments are required to test 

whether detyrosination plays a specific role in directing Kinesin-1 to axons. 

Polyglutamylation is another tubulin modification that could influence Kinesin-1 

trafficking.  Polyglutamylation of α-tubulin influences transport of synaptic vesicles by 

the kinesin family member KIF1A [27].  Kinesin-1 has been shown to have a binding 

preference for microtubules that can be glutamylated [24, 30].  In polarized epithelial 

cells, polyglutamylated microtubules provide preferred tracks for Golgi-to-plasma 

membrane vesicle transport.  The presence of these polyglutamylated tracks require 

septin2 fibers [43], which have been shown in yeast to coordinate polarized membrane 

growth [44, 45].  It is important to note that polyglutamylation has much more variety 

than other post-translational modifications.  Glutamylation occurs on both α- and β-

tubulin and involves the addition of one to six glutamates [40, 41, 46].  Early work has 

suggested that Kinesin-1 and other MAPs may have preference for certain glutamate 

chain lengths [30, 47].  Although recently the family of proteins involved in 

polyglutamylation of both α- and β-tubulin has been identified [48], the enzymes that 

function specifically in developing neurons has not been fully elucidated. Thus, 

alterations of the levels of polyglutamylation in neuronal cells will have to wait until the 

enzymes are more fully characterized.  

Since one can only study tubulin post-translational modifications in fixed cells, it 

is still unclear whether the dynamic changes in kinesin-1 motility seen in stage 2 cells, 

where the motor switches rapidly between apparently identical neurites, are related to 

changes in microtubule stability and/or tubulin post-translational modifications.  Yet, we 

were able to show that the relative levels of acetylated and polyglutamylated tubulin is 

higher in neurites that accumulate kinesin than in the other neurites.   

Also unclear are the signaling cascades that promote PTMs on select microtubules 

or neurites.  Our data suggests that the signaling pathways leading to GSK3β inhibition in 

the axon, which have already been shown to play a role in axon specification and 

maintenance [1, 33], may be sufficient to increase the levels of tubulin post-translational 

modifications in one neurite.  This stabilization of microtubules and increase in PTMs is 

likely due to multiple downstream targets of GSK3β.  APC and CRMP2 bind, stabilized, 
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and/or promote growth of microtubules—activities that are inhibited by GSK3β 

phosphorylation and are required for axon specification and growth [1, 14, 34, 35, 49].   

Additional targets of GSK3β are Tau, MAP1b, MAP2, and neurofilaments [1].  Rac 

activity is also essential for axon specification and growth and may be tied to GSK3β 

activity through positive feedback loops [1, 7, 50].  Rac has been shown to promote 

microtubule growth and stabilization in the axon by locally inhibiting the microtubule 

severing/destabilizing protein stathmin/Op18 [6].   

 

Other regulators of selective Kinesin-1 transport 

Although there is evidence Kinesin-1 is directly influenced by microtubule PTMs, 

we cannot rule out the possibility that the axonal signal may consist to some extent on 

properties secondary to changes in microtubule structure such as the presence or absence 

of MAPs. Previous studies have well established that axonal versus dendritic 

microtubules have differences in the localization patterns and phosphorylation states of 

various MAPs.  Recent work using single molecule in vitro assays has shown that tau 

provides road blocks for Kinesin-1, leading to kinesin dissociation from microtubules or 

reduced attachment rates [36, 37].  In neurons, with over-expressed MAPs, cargo 

transport of all types is significantly reduced, but can be rescued by dissociation of MAPs 

from microtubules by phosphorylation [51].  In fibroblasts, MAP4 plays an inhibitory 

role in vesicle trafficking that is independent of its role in microtubule stability [52].  

Interestingly, microtubule PTMs and MAPs may functionally antagonize each other so 

that PTMs promote and direct kinesin-based transport whereas MAPs inhibit the same 

transport events.  The association of certain MAPs with microtubules has been shown, 

but not always consistently, to be altered upon taxol treatment or GSK3β inhibition.  

Treating cells that are overexpressing tau with taxol (1µM) causes tau to rapidly 

dissociate from microtubules [53].   Another study showed treating neurons with 10µM 

taxol interferes with the binding of some but not all endogenous MAPs (increase binding 

of endogenous tau, but less binding of Map2 and charin MAPs) [54].  Additionally 

GSK3β activity is known to regulate the binding of multiple MAPs such as MAP1b, Tau, 

APC, and CRMP-2 [1, 34, 35, 49, 55]. 
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MATERIALS AND METHODS 

Plasmids and Antibodies:  CA-Kinesin plasmids, KHC 1-509 mCit and KHC 1-

560 mCit, mCherry, or YFP, were generated from rat Kif5c using PCR or convenient 

restriction sites and subcloned into the β-actin expression vector (S. Impey; [16]).  All 

constructs were sequence verified.  For western blots and immunofluorescence the 

following antibodies were used: β-tubulin E7 (Developmental Studies Hybridoma Bank), 

α-tubulin DM1α (Sigma) or ab18251 (Abcam); acetylated α-tubulin 6-11B-1 (Sigma 

T6793), or a rabbit polyclonal antibody we generated against a α-tubulin peptide;  

detyrosinated α-tubulin ab24622 (Abcam) or a rabbit polyclonal antibody we generated 

against a α-tubulin c-terminal peptide; polyglutamylated tubulin, GT335 (recognizes 

mono- and poly-glutamylated α- and β-tubulin; Gift of  Carsten Janke).  Polyclonal anti-

GFP (Invitrogen) was used in some immunofluorescence experiments to enhance the 

GFP signal of transfected CA-Kinesin.  Antibodies to neuronal polarity markers Tau-1 

(Milipore MAB375) and MAP2 (Milipore AB5622) as well as JIP1 152 [56] were also 

used for immunofluorescence.   

Cell Culture:  Primary hippocampal cultures were prepared from either E16 CD1 

embryonic mice or E18 embryonic rats as described in [57].  Neurons from mice were 

cultured in Neuralbasal media with B27 supplement and neurons from rats were cultured 

in DMEM with N2 supplement.  Identical experiments performed in both mouse or rat 

neurons gave the same results.  Transfection of DNA plasmids was done either at time of 

plating via electroporation using the Amaxa Nucleofector 1, or 1-5 days after plating 

using lipofectamine2000.  Cells were treated for the indicated times and concentrations 

with Taxol (Sigma); the tubulin deacetylase inhibitors trichostatin A (TSA; Sigma), or a 

close structural analog of tubacin, MAZ1370, that is more potent in cell-based assays and 

referred to in the text as tubacin for simplicity (R. Maxitschek, personal communication); 

or the GSK3β inhibitor SB216763 (Sigma).   

Microscopy and Image Processing:  Live cell imaging. Cells were plated on 

glass-bottom dishes (MatTek) coated with poly-D-lysine and cultured in glial conditioned 

media.  Cells were maintained at 32-34 degrees C for the duration of recording using an 

objective warmer and a Nikon TE2000 microscope with a Plan-APO 60X/NA 1.4 

objective and Photometrics CS ES2 camera.  Fixed cells. Cells were processed for 
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immunofluorescence as described [32].  Images were taken on Nikon TE2000 

microscope with Photometrics CS ES2 camera or an Olympus BX51 microscope with an 

Olympus DP70 CCD camera.  Images were processed with NIH Image J software, 

Metamorph, or Photoshop.  Neurites were counted positive for JIP1 or CA-Kinesin-1 

accumulation if the fluorescence intensity (due to immunostaining or fluorescent protein 

tags) in the growth cone was three-folds higher than the fluorescence intensity of the 

neurite shaft. 
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FIGURES 
 
 

 
Figure 5.1: Axons and Stage 2 neurites preferred by Kinesin-1 have higher levels of modified 
microtubules.  (A)  Immunofluorescence of Stage 3 hippocampal neurons probed with antibodies 
to α-tubulin and either acetylated, or polyglutamylated tubulin.  (B) Quantification of the ratio of 
PTMs to total tubulin in axons or minor neurites.  (Student’s T-test: Acetylation p=0.00001; 
Polyglutamylation p=0.0005).  (C)  Immunofluorescence of Stage 2 hippocampal neurons 
expressing CA-Kinesin-1-mCit stained with antibodies to α-tubulin (top) and acetylated α-tubulin 
(middle).  CA-Kinesin-1 accumulates only in a subset of stage 2 neurites (bottom).  (D)  
Quantification of the acetylated α-tubulin to total α-tubulin ratio along the proximal to distal 
length of each stage 2 neurite shown in C.  CA-Kinesin-1 accumulated in neurite 1, which has the 
highest relative level of acetylated tubulin.  (E) Quantification of the ratio of PTMs to total 
tubulin in stage 2 neurites with or without CA-Kinesin-1 accumulation.  (Student’s T-test: 
Acetylation p=0.02; Polyglutamylation p=0.003).  Scale for all images=20µM
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Figure 5.2: Microtubule acetylation influences JIP1 localization in unpolarized stage 2 
hippocampal neurons but not in polarized stage 3 neurons.  (A and B)  Stage 2 hippocampal 
neurons were treated for 3 hours with DMSO, 125nM TSA, or 5-10µM tubacin.  (A) Cells were 
fixed and stained for antibodies to endogenous JIP1 and acetylated α-tubulin.  Scale=20µM.   
(B)  Quantification of the percent of stage 2 neurites with JIP1 tip accumulation.  Error bars= 
SEM.  Student’s T-test: **p<0.05 *p<0.01.  (C)  Stage 2 cortical cells were treated 3 hours with 
DMSO, 125nM TSA, or 10µM tubacin.  Cells were then collected, lysed, and analyzed by 
western blot using antibodies to acetylated α-tubulin or total α-tubulin.  (D and E)  Stage 3 
hippocampal neurons were treated for 3 hours with DMSO, 125nM TSA, or 10µM tubacin.  (D) 
Cells were fixed and stained for antibodies to endogenous JIP1 and acetylated α-tubulin.  Arrows, 
growth cones of minor neurites.  Arrowheads, axonal growth cones.  Scale=20µM.  (E)  
Quantification of the percent of stage 3 minor neurites and axons with JIP1 tip accumulation.  
Error bars= SEM.  Student’s T-test: p>0.05 for all conditions.  (F)  Stage 3 cortical cells were 
treated 3 hours with DMSO, 125nM TSA, or 10µM tubacin.  Cells were then collected, lysed, and 
analyzed by western blot using antibodies to acetylated α-tubulin or total α-tubulin. 
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Figure 5.3: Microtubule acetylation does not influence CA-Kinesin-1 motors in polarized stage 3 
primary hippocampal neurons.  (A)  Stage 3 hippocampal neuron expressing CA-Kinesin-1 
shown at the indicated times before (-15 min) and after (15, 30, 45 and 60 mins) treatment with 
250nM TSA.  CA-Kinesin-1 does not accumulate in minor neurites upon TSA treatment.  (B) 
Quantification of the experiment in A. (C)  Stage 3 hippocampal cells were treated from 0-2 
hours with 125nM TSA.  Western blots of cell lysates were probed with anti-acetylated α-tubulin 
or total α-tubulin antibodies.  (D)  Stage 3 hippocampal cells were treated for 2-4 hours with 
DMSO, 125nM TSA, or 10µM tubacin.  Cells were then lipofectamine transfected with CA-
Kinesin-1-mCherry and YFP. Cells were allowed to express the truncated kinesin under 
additional treatment for 4-5 hours then fixed and imaged.  Scale=20µM.  (E)  Quantification of 
the percentage of stage 3 minor neurites or stage 5 dendrites that have accumulation of CA-
Kinesin-1-mCherry in growth cones after treatment described in D.  Error bars=SEM.  Students 
T-test: p>0.05 for all conditions.  (F) Quantification of the percentage of hippocampal neurons at 
6DIV with >1 axon after being cultured in 5µM tubacin from time of plating. 
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Figure 5.4: Taxol treatment redirects CA-Kinesin-1 motors to dendrites in polarized cells. (A-C)  
Stage 5 (A) or Stage 3 (B) hippocampal cells were treated for 2-4 hours with DMSO, 10nM or 
100nM taxol.  Cells were then lipofectamine transfected with CA-Kinesin-1-mCherry and YFP. 
Cells were allowed to express the truncated kinesin under additional treatment for 4-5 hours then 
fixed and imaged.  Arrows indict axonal processes leaving the cell body. (C) Quantification of the 
percentage of stage 3 minor neurites or stage 5 dendrites that have accumulation of CA-Kinesin-1 
mCherry in growth cones.  Error bars=SEM.  Students T-test: *p<0.01.   
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Figure 5.5:  Within minutes, taxol treatment redirects Kinesin-1 to minor neurites and increases 
the levels of modified microtubules.  (A and C)  Stage 2 (A) or Stage 3 (C) hippocampal neuron 
expressing CA-Kinesin-mCit.  Time lapse before and after 0-30 minutes of treatment with 100nM 
taxol.  CA-Kinesin redistributes to all Stage 2 neurite tips and some Stage3 minor neurites upon 
taxol treatment.  (B) Quantification of the percent of total fluorescence in each stage 2 neurite 
from the cell in A.  (D) Quantification of the percentage of stage 2 neurites or Stage 3 minor 
neurites and axons that have increased CA-Kinesin-mCit accumulation after 1 hour taxol 
treatment.  Error bars=SEM. Student’s T-test *p<0.01 **p<0.05  (E and F)  Time course 
quantification of DMSO (E) or 10nM taxol (F) treatment-induced dendritic accumulation of CA-
Kinesin over a 4 hour treatment period.  (G)  A mix of Stage 2/Stage 3 hippocampal neurons were 
treated for 0-1 hr with 100nM taxol.  Cell were collected and cell lysates were analyzed by 
western blot with antibodies to acetylated α-tubulin, detyrosinated α-tubulin, polyglutamylated 
tubulin, or total β-tubulin.  Scale bars=20µM .  Acknowledgements:  (E) and (F) were contributed 
by Catherine Jacobson from Gary Banker’s lab at Oregon Health and Science University. 
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Figure 5.6:  Taxol treatment causes a redistribution in the localization of JIP1 and the formation 
of multiple axons.  A and C)  Stage 2 (A) or Stage 3 (C) hippocampal neurons were treated for 3 
hours with DMSO, 10nM, or 100 nM taxol then fixed and stained with antibodies to JIP1 and 
acetylated α-tubulin.  Arrows=growth cones of stage 2 neurites or stage 3 minor neurites.  
Arrowheads= axonal growth cones.  Scale=20µM.  B and D)  Quantification of the percentage of 
stage 2 neurites (B) or percentage of stage 3 minor neurites or axons (D) with JIP1 accumulation 
after DMSO or taxol treatment.  Error bars=SEM.  Student’s T-test *p<0.01.  E)  A mix of Stage 
2/Stage 3 cortical neurons were treated for 3hrs with DMSO, 10nM Taxol, or 100nM Taxol.  Cell 
were collected and cell lysates were analyzed by western blot with antibodies to acetylated α-
tubulin, detyrosinated α-tubulin, polyglutamylated tubulin, or total β-tubulin. Polyglutamylated 
lanes are from the same blot.  F and G)  Culturing cells in taxol results in the formation of 
multiple axons.  Hippocampal neurons were cultured in DMSO, 1nM taxol, or 2.5nM taxol from 
time of plating until 6DIV. F)  Cells were fixed and probed with antibodies to Tau or Map2.  
Arrows indict axonal processes leaving the cell body.  G) Quantification of the percentage of 
neurons with >1 axon.  Error bars=SEM.  Students T-test:  **p<0.05, *p<0.01.  Scale=20µM for 
all images. 

F G
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Figure 5.7: GSK3β inhibition influences Kinesin-1 transport in polarized cells and results in 
increased levels of modified microtubules.  (A and B)  Long-term GSK3β inhibition results in 
multiple axons in many cells.  Hippocampal neurons were cultured in DMSO or 10µM SB216763 
from time of plating until 6DIV.  (A) Cells were fixed and probed with antibodies to Tau or 
Map2.  Arrows indict axonal processes leaving the cell body.  (B) Quantification of the 
percentage of neurons with >1 axon.  Error bars=SEM.  Students T-test:  *p<0.01.  (C)  Kinesin-1 
accumulates in the growth cones of all the axonal processes made by long-term GSK3β 
inhibition.  Hippocampal cells were electroporated with CA-Kinesin-mCit at time of plating and 
cultured in 5µM SB216763 for 6 days.  Cells were then fixed and probed with antibodies to mCit.  
Arrows indict axonal processes leaving the cell body.  (D-E)  Stage 3 hippocampal cells were 
treated for 2-4 hours with DMSO, 5µM or 10µM SB216763.  Cells were then lipofectamine 
transfected with CA-Kinesin-mcherry and YFP. Cells were allowed to express the truncated 
kinesin under additional treatment for 4-5 hours then fixed and imaged.  (F)  Quantification of the 
percentage of stage 3 minor neurites or stage 5 dendrites that have accumulation of CA-Kinesin-
mCherry in growth cones.  Error bars=SEM.  Students T-test: **p<0.05, *p<0.01.  (G and H)  
Stage 2 hippocampal cells were treated for 8 hours with DMSO or 10µM SB216763.  (G) Cells 
were fixed and stained for antibodies to endogenous JIP1 and acetylated α-tubulin.  Scale=20µM.  
(H)  Quantification of the percent of stage 2 neurites with JIP1 tip accumulation.  Error bars= 
SEM.  Student’s T-test: *p<0.01.  (I)  Stage 3 hippocampal neurons were treated for 0-2 hrs with 
5µM SB216763.  Cells were then collected, lysed, and analyzed by western blot with antibodies 
to acetylated α-tubulin, detyrosinated α-tubulin, or total β-tubulin.  (J)  Stage 3 cortical neurons 
were treated for 8 hrs with 5µM or 10µM SB216763.  Cell lysates were then analyzed by western 
blot with antibodies to acetylated α-tubulin, detyrosinated α-tubulin, polyglutamylated tubulin, or 
total β-tubulin. All bands probed with similar antibody came from the same gel. Scale=20µM for 
all figure images. 
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Chapter 6:  
Conclusion 

 
The first kinesin motor was identified in squid axons about 20 years ago [1].  

Since then, much work has been done to elucidate the chemo-mechanical properties and 

identity of kinesin superfamily members [2-4].  However many details are still unclear 

regarding the general and specific mechanisms used by individual members of the kinesin 

superfamily for motor regulation; cargo recognition, loading, and unloading; polarized 

sorting; microtubule track selection; and coordination of multiple motors.  The work that 

has been described in Chapters 2-5 of this dissertation, addresses some of the remaining 

questions regarding KIF1A and KIF17 autoinhibition and motility, coordination and 

make-up of Kinein-1/cargo complexes, and Kinesin-1’s polarized sorting in neurons.   

This work has shed light on both general mechanisms conserved among the kinesin 

superfamily, as well as, more specific mechanisms that regulate only individual family 

members. 

 

AUTOINHIBITION 

Autoinhibition of kinesins ensures that in the absence of cargo, motors do not 

hydrolyze excessive ATP in useless motility.  It also allows for temporal and spatial 

control of motor activity ensuring that kinesins are available and ready when needed for 

cargo loading and transport.  As the motor domain is the only region conserved among 

the kinesin superfamily, new regulatory regions and mechanisms must have evolved as 

novel cargo binding and structural domains were added to the basic motor core.  By 

comparing the results from my KIF1A and KIF17 autoinhibition studies with those done 

previously on KIF1A, Osm-3, Kinesin-1, and Gakin/KIF13b, some general mechanisms 

of autoinhibition stand out as being conserved among all or a subset of these studied 

kinesins.
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1) Separate mechanisms mediate inhibition of microtubule binding and processive 

motility. 

Studies using deleted or mutated versions of Kinesin-1 or KIF1A suggest that 

autoinhibition is mediated by two independent mechanisms.  The first mechanism 

prevents the motor from binding microtubules.  In Kinesin-1 this is mediated by the KHC 

tail, but reinforced by the KLC domains [5-8].  In KIF1A it is mediated by the FHA 

domain and CC2 (Chapter 3 and [9, 10]).  The second mechanism prevents the 

coordinated stepping of the two heads in cases where the motor does bypass the first 

inhibitory mechanism.  The proposed model for this motor uncoupling involves an 

unwinding of the neck coiled-coil, allowing for a physical separation of the motor 

domains.  KIF1A prevents processive motility or motor coordination through the 

formation of an intramolecular coiled-coiled between the NC and CC1 of the adjacent 

stalk (Chapter 3 and [9]).  Evidence for this intramolecular coiled-coil has only been seen 

thus far in truncated proteins, so its presence and role in the motor regulation of full-

length KIF1A requires further verification.  In Kinesin-1, the KLC TPR domains push the 

motor domains apart, unwinding the neck in the process [5].  Yet, in the case of fungal 

Kinesin-1 that does not have KLC subunits, the KHC tail has also been suggested to play 

this inhibitory role by binding to a non coiled-coil conformation of the neck [11].  

Although Kinesin-1 and KIF1A utilize both inhibitory schemes in a similar way, it is 

possible other kinesins use only one mechanism, or that the same type of motor activity 

(i.e. microtubule binding or processivity) is inhibited in a slightly different way.   

 

2) Motor function is inhibited via direct contact of the motor or neck domains with 

C-terminal tail or stalk regions 

Evidence from Kinesin-1, KIF17, KIF1A, and Gakin show that the inhibition 

mechanisms outline above are often mediated by direct intramolecular contacts involving 

a small region of the tail or stalk and either the motor or neck domains.  In the case of 

Kinesin-1, a positively charged coiled-coil region of the KHC tail contacts a highly 

negative patch in the neck.  This facilitates a second contact of the IAK tail residues with 

the switch I helix of the motor domain [6, 11-13].  KIF17 also likely employs an 

electrostatic interaction mechanism, as the very positively charged CC2 directly interacts 
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with the motor domain (Chapter 2).  Finally the MBS region of Gakin’s stalk has been 

shown to contact the motor domain inhibiting the microtubule stimulated ATPase activity 

[14].  KIF1A’s intramolecular coiled-coil is the most unique, but once again represents a 

case where the neck is bound by a C-terminal stalk region [9].     

An autoinhibition mechanism mediated by direct contact requires that the motor 

protein has some degree of structural flexibility in order to allow the protein to fold back 

on itself.  Kinesin-1 employs hinges, with glycine and proline residues, in order to break 

up its extended coiled-coil regions permitting the protein to fold lengthwise head to tail 

[12].  Osm-3 (the C. elegans homologue of KIF17) appears to have a similar mechanism, 

as the presence of a 15-20 residue hinge between coiled-coil 1 and 2 is required for 

folding it into a more compact inhibited conformation [15].  Comparison of Osm-3 and 

KIF17 structures and regulatory mechanisms bring some ambiguity to this model of 

Osm-3 inhibition, however, as the hinge region of Osm-3 is right next to and somewhat 

analogous to the CC2 in KIF17 that, in chapter 2, was shown to interact directly with the 

motor domain.  Whether this region in Osm-3 truly acts as a structural hinge or as a direct 

motor regulatory region requires further study.  Electron microscopy studies on 

recombinant KIF1A suggest that rather than folding lengthwise head to tail, KIF1A 

alternatively forms a very compact, more globular structure [16, 17].  As no direct 

contact has been found between the motor domain and the FHA domain, which has been 

shown to inhibit microtubule binding [10], we can only guess at the regulatory 

mechanism.  However, one possibility is that the compact conformation of KIF1A places 

the FHA domain near the motor allowing it to block access of the motor to microtubules 

via steric hindrance.    

 Unanswered Questions.  Although for each motor analyzed thus far, direct 

contact of an inhibitory domain with either the motor or neck domains has been 

discovered, more detailed studies are required to learn the exact contact sites as well as 

the particulars of how these interactions result in inhibited motor functions.   Does 

binding of the stalk/tail region to the motor or neck 1) prevent access of one or both 

motor domains to microtubules 2) prevent the exchange of ADP for ATP from the 

nucleotide binding pocket thus locking the motor in a weak microtubule bound state or 3) 

inhibit ATP hydrolysis.  Additionally do these events occur by directly blocking access to 
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the motor’s active sites or through more indirect mechanisms, such as allosteric 

conformational changes?  More structural knowledge of individual stalk/tail regions as 

well as full-length molecules would be helpful to gain understanding of how the motor 

folds on itself and inhibits the motor. 

 

3)  Cargo binding relieves autoinhibition.   

Gakin provides the simplest example thus far where binding of cargo relieves 

motor inhibition.  Binding of a single cargo, Dlg, to the MBP region of Gakin which 

directly interacts with the motor domain, allows the motor to move along microtubules 

and hydrolyze ATP [14].  The FHA domain of Gakin was also identified as a cargo 

binding site for phosphotidylinositol(3,4,5)trisphosphate binding protein (PIP3BP) [18], 

but whether binding to this site also relieves Gakin’s autoinhibitory mechanism remains 

to be seen.  The case of Kinesin-1 reveals some of the complexities of motor/cargo 

complexes as binding of two proteins is necessary to relieve autoinhibition.  FEZ binds to 

KHC’s tail IAK region and JIP1 binds the TPR domains of KLC [19].   Whether other 

cargo proteins can replace the role of FEZ or JIP1 in motor activation requires further 

study.   

Kinesin-1 and Gakin show that inhibitory regions are equivalent to cargo binding 

regions.  How this model will change when considering all cargos and potential binding 

sites remains to be seen.  In the case of KIF17 and KIF1A the potential correlation 

between inhibitory regions and cargo binding domains is lacking primarily due to the 

lack of evidence as to cargo identity and the locations of cargo binding domains.   

Unanswered Questions.  As implied in this discussion, there are still many open 

questions in regards to this cargo mediated activation model.  The biggest hole resides in 

the identity of specific cargos for each motor.  Beyond that, additional questions remain 

such as:   How many separate binding cargos are needed to achieve full activation for 

each motor?  Where on the motor do they bind?  If they don’t bind directly to inhibitory 

regions, how is motor conformation altered in order to achieve activation?  Are there 

proteins that serve solely as motor regulatory proteins rather than cargo that have other 

functions at the transport destination?   
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KIF1A motility:  Long distance, processive movement requires two heads.   

Although KIF1A has motile properties as a monomer, where it can take advantage 

of electrostatic interactions between the positively charged K-loop in its motor domain 

and the negatively charged tubulin tails of the microtubule lattice in order to glide along 

microtubules without the need of ATP [20-22], my results show KIF1A only moves 

efficiently over long-distances as a dimer (Chapter 3 and [23]).  The kinesin motor 

MCAK has also been shown to move in a “biased-diffusion” manner [24].  In both cases, 

the diffusional motion does not require energy, has velocities ranging from very fast to 

very slow, is due to electrostatic interactions, and does not contribute to the force driven 

cellular function of the motor.   Thus for any long range movement, using a hand-over-

hand stepping mechanism, where at least one head is always strongly attached to the 

microtubule ensures that the motor does not dissociate prematurely.   

What then is the role for the added diffusion ability?  The electrostatic interaction 

that permits diffusion likely functions as a tether to accelerate rebinding of the unbound, 

actively stepping motor domain, thus, reducing the chance of complete detachment.  This 

tethering would in general increase the processivity or distance traveled by the motor and 

possibly explain why KIF1A has some of the longest run lengths in single molecule 

motility assays, running up to 10µm in a single run, and on average about double the run 

length of Kinesin-1 (Chapter 3 and [23]).  Indeed a positive correlation between run 

length and strength of electrostatic interactions was clearly demonstrated by Thorn et al 

who saw increased processive run lengths with Kinesin-1 after adding positively charged 

residues to the neck coiled-coil [25].  

Microtubule-based diffusion or tethering may have additional in vivo roles beyond 

increasing processivity.  Vesicles in a cell often undergo “salutatory” motion where they 

have periods of rapid movement followed by pauses where little displacement occurs 

[26].  Pausing is likely a result of motors encountering barriers, or road blocks, in their 

path.  If the motor diffuses along the microtubule in various directions, it may find a way 

to negotiate around the barrier without completely dissociating from the microtubule.   
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Specific future directions for KIF17 

My studies on KIF17 show that the coiled-coil 2 region (CC2) inhibits the 

processive motility of KIF17 by directly binding to the motor domain.  To gain a better 

understanding of how the CC2 region of KIF17 inhibits motor activity, it would be useful 

to narrow down the specific residues in CC2, as well as in the motor domain that mediate 

this interaction.  I identified the region between 738 and 795 as containing the inhibitory 

and motor binding region.  It is unlikely that this entire 57 residue CC2 region is essential 

for motor binding and/or inhibition.  In support of this hypothesis, mutating CC2 reside 

G754 to glutamate or residues 764-772 to alanine was sufficient to relieve motor 

inhibition.  These mutations could have relieved autoinhibition by removing essential 

amino acids necessary for the motor domain/CC2 binding interface or for structural 

conformations necessary to bring essential CC2 region residues into contact with the 

motor domain.  To distinguish these two possibilities it would be necessary to test 

whether a CC2 construct with these mutations is still able to interact with the motor. 

In order to find the minimal region of CC2 that is important for motor domain 

binding and/or autoinhibition a few approaches could be undertaken.  1)  Making more 

mutations within CC2 (such as by spacing alanine mutations in 5 or 10 amino acid 

stretches throughout CC2).  2)  Making truncations that end within the CC2 region (such 

as 1-785 and 1-775).  3) Making KIF17 constructs with small internal deletions within 

CC2.  Or 4) testing short peptides spanning part of the CC2 region for their ability to bind 

the motor domain or inhibit the processive motility of active KIF17 constructs in trans.  

Each of these approaches could point out important and non-essential residues for 

autoinhibition and motor binding.  Once a smaller region of CC2 has been identified, 

crosslinking CC2 peptides to the KIF17 motor domain followed by mass-spectrometry 

and/or cryo-EM could be used similar to the recent study on Kinesin-1 [13] to determine 

where exactly on the motor domain the CC2 region binds.  If it is analogous to Kinesin-1 

[13], the motor’s switch-I region is a likely CC2 binding interface, but other motor 

regions are also possible.   

Another major future question regarding KIF17 autoinhibition is how the motor is 

activated and specifically whether cargo binding is sufficient for this activation.  KIF17’s 

cargo proteins, Mint1 and NXF-2, bind the C-terminal tail [27, 28] that in our studies 
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showed little sign of motor inhibition and certainly no direct motor domain contact.  It is 

possible however, that binding of cargo to this tail region sterically blocks the ability of 

CC2 to contact the motor.  However my studies also suggest that binding of Mint1 alone 

to KIF17 is not sufficient to activate the motor.  Yet, it is possible that other proteins that 

bind Mint1 play a role in KIF17 activation, or alter the conformation of Mint1, such that 

when it is in a multi-protein complex, it is sufficient to activate KIF17.  Thus testing 

whether co-expression of KIF17 with Mint1, mLin2, and mLin7, or alternatively, 

truncated forms of Mint1 are sufficient to activate the motor would be required before a 

role for Mint1 in KIF17 activation could be ruled out.   

Alternatively Mint1 may need other cargo proteins to independently bind KIF17 for 

activation.  Indeed Kinesin-1 requires that two cargo proteins bind in order to release it 

from autoinhibition.  It is possible that CC2 itself serves as a cargo binding region.  As 

more direct binding partners and cargo binding sites are identified for KIF17 it will 

become clearer whether the CC2 regulatory region is itself a cargo binding domain and 

the mechanisms by which KIF17 inhibition is released.   Yeast-two hybrid assays have 

proven very useful in identifying kinesin cargos and thus this experimental method 

should be applied to KIF17’s CC2 region or other domains in order to find novel binding 

partners that can be studied for their role in activating KIF17 for microtubule binding 

and/or motility.   

KIF17’s cargo binding tail (847-1028), although likely not a major player in motor 

autoinhibition, was shown to be necessary for KIF17’s localization to the peripheral tips 

of cilia.  Presumably this cilia accumulation is due to the loading of KIF17 into cilia by 

IFT cargo or IFT machinery that regulates cilia access.  As KIF17 accumulated at the 

peripheral tips of cilia, rather than throughout cilia, this interaction with IFT 

cargo/machinery likely also activated KIF17 motor activity.  However, it has not yet been 

tested whether the motor activity of KIF17 is necessary for this accumulation or whether 

KIF17 is able to hijack a ride on IFT cargo driven by other motors.  Thus testing a motor 

dead KIF17 construct in the cilia localization assay would be helpful.  If a motor dead 

KIF17 is unable to accumulate in cilia, then one could conclude that the IFT machinery 

activates KIF17 to move itself into cilia.  Using the tail of KIF17 as bait in a yeast-two-

hybrid assay using a prey cDNA library from olfactory cells or other cilia containing cells 
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could serve to identify the IFT cargo that KIF17 binds directly to in order to get into cilia 

and/or connect to IFT complexes so it can transport them.  

 
Specific future directions for KIF1A 

 My work on KIF1A shows that it is an autoinhibited motor that moves 

processively as a dimer rather than a monomer.  One limitation to my studies (and indeed 

all previous studies) is that full-length KIF1A is inactive and thus KIF1A’s motile 

properties cannot be studied without making large truncations to remove autoinhibitory 

domains.  My processive KIF1A construct (1-393) includes only about 1/4 of KIF1A’s 

total protein residues.  In order to confirm that full-length KIF1A also moves 

processively as a dimer (and not as a monomer using one-dimensional diffusion), it 

would be helpful to evaluate a full-length KIF1A construct that is relieved of 

autoinhibition.  KIF1A constructs with single point mutations in either the FHA or 

coiled-coil 2 (CC2) domains have been shown to accumulate at neurite tips, suggesting 

that they are processive motors [10].  By testing these full-length, but uninhibited 

constructs in dimerization and one- or two-color single molecule motility assays, I would 

expect the motile properties of full-length KIF1A to look similar to dimeric KIF1A(1-

393) rather than monomeric KIF1A(1-369).  This additional data would more 

conclusively confirm that KIF1A moves processively over long distances as a dimeric 

motor and although it may have some ability to move via one-dimensional diffusion, this 

type of movement is erratic and short in duration and not likely to be the mechanism that 

allows for vesicular transport.   

 My work further shows that KIF1A autoinhibition is mediated by the CC2/FHA 

region that prevents microtubule binding, as well as by the CC1 region which inhibits 

processive motility.  It is likely that CC1 inhibits processive motility by forming an 

intramolecular coiled-coil with the neck coil (NC).  This intramolecular coiled-coil 

conformation rather than an intermolecular coiled-coil conformation would be sufficient 

to separate and uncoordinated the motors domains such that two-headed processive 

motility would be impossible.  Evidence for both intermolecular and intramolecular 

conformations has been seen by cryo-EM, yet only with truncated proteins [9].  Thus it 

remains to be seen whether full-length KIF1A also utilizes the intramolecular NC/CC1 
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conformation to limit processive motility.  The FRET stoichiometry studies shown in 

Chapter 3 do lend support to the hypothesis that the motor domains are separated in the 

full-length dimeric KIF1A molecule; however, more solid proof of the intramolecular 

coil is still necessary.   

Kinesin-1 also has separated motor domains in its autoinhibited conformation.  

This conformation has been validated by a combination of crosslinking studies and FRET 

stoichiometry [5].  A similar type of crosslinking experiment could be applied to KIF1A.  

For Kinesin-1 a cysteine residue was added to the NC such that when two KHC peptides 

dimerized via coiled-coil formation a chemical crosslinker locked the closely located, 

novel cysteines together.  If KIF1A with a cysteine residue added to the NC region 

crosslinked in dimeric form with disulfide linking chemical crosslinkers, an 

intermolecular NC/CC1 conformation would be confirmed.  If no crosslinked product 

was found, an intramolecular NC/CC1 conformation would be plausible.  Utilizing a full-

length, but uninhibited, KIF1A construct (such as a FHA or CC2 mutation) as a positive 

control for the intermolecular conformation would lead to greater proof that a negative 

result in this assay was indicative of an intramolecular NC/CC1 conformation, especially 

if motor-to-motor FRET stoichiometry also revealed a higher FRET value for a mutant, 

uninhibited KIF1A construct compared to the wild-type, autoinhibited KIF1A.   

The most open questions for KIF1A autoinhibition, like that of KIF17 

autoinhibition, is the mechanism by which inhibition is relieved and specifically whether 

cargo binding serves as the switch.  KIF1A has two regions known at this point in time to 

function in cargo binding.  The PH domain and liprin-α binding region.  The C-terminal 

PH domain connects KIF1A to vesicles by binding to phosphotidylinositol (4,5) 

bisphosphate  (PtdIns(4,5)P2) lipids [29, 30].  As there does appear to be some specificity 

in the type of vesicles KIF1A carries, additional regulatory partners must exist to limit 

promiscuous binding.  Indeed protease studies have revealed that protein components 

play a role in KIF1A vesicle binding [29, 30].  Where these essential protein components 

bind is less clear except that the cargo protein, liprin-α, binds to a part of CC2 but 

requires additional C-terminal residues [31]. 

The PH domain and indeed the entire second half of KIF1A has no observable 

motor regulatory role (Chapter 3 and [10]), implying that the model that all cargo binding 
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domains equal inhibitory domains is incorrect.  However, clustering of PtdIns(4,5)P2 

molecules on vesicular membranes does enhance the motile properties of KIF1A, 

suggesting that whatever conformational changes are promoted upon two PH domains 

interacting with lipids in close proximity, help to activate the motor [29].   

 As the liprin-α binding domain overlaps with CC2, binding of liprin-α to CC2 

may be sufficient to relieve KIF1A autoinhibition.  This hypothesis could be easily tested 

by co-expressing liprin-α with full-length KIF1A in COS and/or CAD cells then testing 

whether KIF1A is active for microtubule binding with the SLO/AMPPNP assay or 

whether it can move processively into neurite tips.  If liprin-α is not sufficient to activate 

KIF1A, it may still play a role in motor activation with the help of other cargo binding 

proteins.  As FHA domains are also protein-protein interaction domains, the FHA domain 

of KIF1A is another potential cargo binding region.  It may be very informative to use the 

FHA domain (with or without the CC2 region) as bait in yeast-2 hybrid or GST-pull 

down experiments to search for novel KIF1A cargos and/or regulatory partners. 

  
Important contributions to the field of kinesin regulation 

By providing two more examples of kinesin motors that are regulated by 

autoinhibition, as well as elucidating some of mechanistic details by which this negative 

regulation occurs, my work on KIF17 and KIF1A helps the kinesin field better 

understand how the basic, conserved motor domain of kinesin proteins can be inhibited 

by so many unique stalk/tail regions.  My work on KIF17 shows that processive motility 

is inhibited by the CC2 region directly interacting with the motor.  As the cargo binding 

tail is essential to sorting KIF17 into subcellular compartments such as cilia, KIF17 has a 

level of regulation in addition to autoinhibition that is important for cargo transport.  My 

work on KIF1A shows that this motor is an inhibited dimer, not a monomer as has long 

been proposed and points to the limitations of studying the motile properties of motor 

constructs that are too short or contain inhibitory regions.  Dimerization is necessary for 

long-distance motility, but is not likely a step involved in KIF1A motor activation, with 

the exception that separated motor domains need to be coupled and coordinated before 

productive transport can occur.  The strength of my studies resides in the fact that I used 

both in vivo and in vitro techniques to assay motor inhibition mechanisms.  Thus the 
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conclusions benefit from the fact that proteins were studied in a native environment free 

from many of the troubles of protein purification but also at the single molecule level 

where the properties of individual motors could be analyzed rather than simply looking at 

groups of motors at a steady-state level. 

 

CARGO COMPLEXES 

Kinesin cargos take various forms ranging in size from large organelles, to small 

protein complexes.  For the first 10-15 years after the discovery of kinesin motors, 

attempts to identify direct binding cargos were rather fruitless.  Recently however, there 

has been an explosion in the number of identified direct or indirect binding partners for 

specific kinesins and some of the exact binding mechanisms have been elucidated.  As 

there are at least 13 Kinesin-1 cargo proteins currently known to bind specifically to the 

TPR domains of KLC, not to mention the handful of others that bind KHC’s tail [19, 32-

44], an obvious question arises of how one motor can coordinate and carry out the 

transport of its many different cargoes.  Results described in Chapter 4 and other studies 

suggest that cases of cooperative transport and competition exist. 

In a cooperative transport model, the motor could combine independently binding 

cargo proteins into one multi-protein complex.  This assembly function could bring 

together only specific subgroups of cargo, or allow for endless cargo combinations.  The 

first scenario appears to function in the case of Kinesin-1 cargos JIP1 and JIP3.  Both 

cargo proteins bind to KLC’s TPR domains at independent sites, yet, because they also 

interact with each other they require co-transport within the same complex (Chapter 4, 

[45]).  As JIP1 and JIP3 also function as scaffolding proteins for the kinases and 

substrates of the JNK signaling pathway [46], this same JIP1/JIP3/Kinesin-1 transport 

complex potentially contains may additional proteins, both soluble and transmembrane, 

that may have additional roles in cargo complex formation and/or release [40, 47].    

In a competitive transport model, cargos binding to the same kinesin binding site, 

or to mutually exclusive binding sites may result in cargo competition.  This scenario has 

been shown for the two Kinesin-1 cargos, Alcadein and a JIP1/APP complex [33].  On 

the other hand, my results shown in Chapter 4, as well as data from other research 

groups, show that while over-expression of a single Kinesin-1 binding cargo can saturate 
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and inhibit the transport of its own endogenous counterpart, it does not necessarily 

saturate all other cargos [35, 45].  Thus, competition between cargos is likely limited to 

certain cargo subsets and may often be a negligible factor due to the existence of a large 

pool of inactive kinesins seen in cellular fractionation and autoinhibition studies [1, 12, 

48].  A case where the kinesin pool may be limiting for certain cargos resides in the 

hypothesis that different Kinesin-1 splice variants contain unique cargo binding sites.  

There are two gene isoforms of KLC, KLC1 and 2, and both of these are known to have 

multiple splice variations in the C-terminal cargo binding region [49-51].  Thus cargo that 

bind a specific splice variant may show competition with cargo binding that same splice 

variant but not cargos using other splice variants.  This hypothesis remains to be tested, 

however, due to the lack of evidence for specific cargo that bind specific splice variants.  

Other factors that may be limiting to transport of a specific cargo, or subgroups of cargo, 

would be cooperative binding partners or other accessory proteins used to facilitate 

binding and/or transport.  

 

Specific future directions for Kinesin-1 cargo complexes. 

My work on JIP1/JIP3/Kinesin-1 complexes showed that JIP1 and JIP3 bind 

KLC’s TPR bundle using unique binding sites.  JIP1 binds inside the TPR groove and 

JIP3 binds outside the TPR groove.  As the binding sites of other KLC TPR binding 

proteins have not been mapped in more detail than to the TPR domain in general, it is 

unknown whether other Kinesin-1 cargoes use one of the two TPR binding sites 

identified for JIP1 or JIP3 or whether there are other cargo binding interfaces on the TPR 

bundle.   It would be simple to test other known KLC binding cargos with the KLC 

mutants described in chapter 4 using yeast-two-hybrid or co-immunoprecipitation assays 

in order to further map their binding interfaces.  Additionally, as the error-prone PCR 

mutants generated for binding experiments with JIP1 and JIP3 had multiple point 

mutations, interesting constructs such as 48A should be further investigated and broken 

down into individual point mutations in order to determine which residues make up the 

binding interface and which residues are inconsequential.  

My work additionally shows that JIP1 requires the presence of JIP3 in its Kinesin-

1 transport complex (Chapter 4 and [45]).  Previous studies have additionally shown that 
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it takes at least two proteins, FEZ and JIP1, in order to relieve the autoinhibition state of 

Kinesin-1 [19].    Together these studies exemplify some of the complexities of Kinesin-

1/cargo transport, as at least three Kinesin-1 binding partners likely play a role in 

activating Kinesin-1 for long-distance motility.   Although these three binding partners 

have been shown to be essential in separate studies, it has yet to be shown whether they 

are indeed in the same complex.  Co-immunoprecipitation experiments could be helpful 

in validating the presence of all three Kinesin-1 binding cargos in the same complex.  If 

precipitation of endogenous JIP1 or JIP3 pulled down FEZ or precipitation of 

endogenous FEZ pulled down JIP1 and JIP3 it could be concluded that indeed they are all 

part of the same complex.  Additionally, it has been shown that JIP1 and FEZ can 

activate Kinesin-1 in a single molecule motility assay resulting in more motility events 

than when only Kinesin-1 is added.  As JIP3 is also likely a part of this same complex 

and is necessary for JIP1 transport by Kinesin-1, one would expect that addition of JIP3 

to the JIP1/FEZ/Kinesin-1 mix in a single molecule motility assay may result in even 

more motility events. 

Finally, it is unclear what combinations of other Kinesin-1 cargo may be capable 

of activating Kinesin-1 for microtubule binding or long distance transport.  Can KHC tail 

binding cargos such as FEZ and p120catenin be mixed and matched with KLC binding 

cargos such as JIP1/JIP3 or Kidins220 in order to activate Kinesin-1 or do only certain 

combinations constitute a Kinesin-1 activating cargo complex?  Different Kinesin-1 

cargo combinations could be tested by expressing them together in COS cells and testing 

microtubule binding using an SLO/AMPPNP assay, or alternatively, in vitro microtubule 

binding assays or single molecule motility assays could be done with mixtures of 

Kinesin-1 with different Kinesin-1 cargo combinations.  

 

Important contributions to the field of cargo complexes and general  future 

directions 

Most cargo/Kinesin studies up to this point have focused on the identification of 

cargo and mapping of binding sites.  My work, detailed in Chapter 4, is one of the first to 

investigate the relationships that exists between different cargo proteins that share the 

same motor.  This work showed that JIP1 and JIP3 bind to separate sites on the KLC TPR 
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bundle, yet facilitate each other’s binding and transport.  As JIP1, JIP3, and FEZ are 

necessary to activate Kinesin-1 for long range transport, it is possible that a single 

Kinesin-1 interacting protein, may not be able to act as a full kinesin “cargo”, that is a 

cargo capable of fully activating the motor.  Although more research is still needed to 

identify Kinesin-1 cargo and their indirect or direct binding mechanisms, future research 

in the area of motor/cargo complexes will need to address how multiple interactions 

within a cargo complex, either between cargo and motors, or cargo and cargo, function to 

assemble a complete cargo complex that has the capacity to activate motors for efficient, 

long range transport.   

 

MICROTUBULE PREFERENCE 

Once kinesins are loaded with cargo, they must transport that cargo to its proper 

cellular destination.  Although there are multiple mechanisms that mediate polarized 

membrane sorting, one involves the use of “smart” motors, or motors that have the 

intrinsic ability to move towards one particular cellular destination.  Although all kinesin 

motors have a basic method of directionality dictating whether they move towards the 

plus-end or minus-end of microtubules, some motors appear to have the additional ability 

to move towards particular cellular locations or alternatively to reside in limited cellular 

compartments.  The most evidence for this is in neuronal cells, which have two types of 

processes each requiring very different protein subsets to carry out their particular 

functions, specifically axons and dendrites.  Kinesin-1 has been shown to move 

preferentially into and down the axon process, generally avoiding the more abundant 

dendrites (Chapter 5, [52, 53]).  KIF1A on the other hand, transports down all processes 

showing no apparent partiality [52].  MKLP, KIF21b, and KIF17 have all been shown to 

be enriched in dendrites over axons, and at least in the case of MKLP and KIF21b this 

dendritic localization appears to be due to active motors preferentially moving into the 

dendritic compartments ([27, 53-56], Gary Banker personal communication, and Verhey 

lab unpublished data).  As evidence in support of the “smart” motor model comes 

primarily from studies using constitutively active, truncated kinesin constructs, the 

mechanism mediating preferential sorting to axonal or dendritic compartments is thought 

to reside within the motor/microtubule binding interface [53]. 
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For Kinesin-1 there is a growing body of evidence showing it has the intrinsic 

ability to pick up small variations that appear on only a subset of all possible microtubule 

tracks.  In vitro, Kinesin-1 has been shown to have improved binding and in some reports 

better motility on microtubules post-translationally modified by acetylation, 

detyrosination, or polyglutamylation [57-61] .  In fibroblasts, the subset of microtubules 

used by kinesin-1 is the same subset that is marked by the post-translational 

modifications (PTMs) of acetylation and detyrosination ([60] and Verhey lab unpublished 

data). 

 

Important Contributions and Future Directions on Kinesin-1 and microtubule 

PTMs. 

My results in Chapter 5, show that Kinesin-1’s preference for axonal microtubule 

tracks in polarized neurons, and those of one or a small subset of neurites in unpolarized 

neurons also correlates with higher levels of modified microtubules.  As altering only one 

modification, acetylation, could influence Kinesin-1 transport in unpolarized cells but not 

polarized cells, it is likely that Kinesin-1’s axonal preference resides in the additive or 

synergistic combination of multiple modifications that each slightly enhance Kinesin-1’s 

binding or motile properties on microtubules.   Indeed the drug treatments of taxol, a 

microtubule stabilizing compound, or SB216763, a GSK3β inhibitor, both increased the 

levels of multiple microtubule PTMs throughout axons and dendrites leading to a loss of 

Kinesin-1’s axonal preference.  As GSK3β inhibition is necessary for axon specification 

and maintenance [62], these results further suggest that increased levels of microtubule 

PTMs may be a key factor to axon identity.  Although there is evidence Kinesin-1 is 

directly influenced by microtubule PTMs, we cannot rule out the possibility that the 

axonal signal may consist to some extent on properties secondary to changes in 

microtubule structure such as the presence or absence of MAPs.  However, MAPs have 

also been shown to have a preference for certain microtubule modifications, so their 

polarized compartmentalization may also depend on biochemical cues inherent to the 

microtubules they bind [63, 64].   

It is thus proposed that microtubule modifications make up a tubulin code, similar 

to the modifications on histones [65, 66].  This code would mediate microtubule 
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functions specific to certain subsets of microtubules, such as in directing Kinesin-1 to 

axons.  It is likely that various kinesin superfamily members will react to this tubulin 

PTM code in different ways.  For example, as some smart motors move preferentially 

towards the axon, others move preferentially toward dendrites.  Thus these two sets of 

motors may have opposite binding preferences for modified or unmodified microtubules 

or alternatively no preference at all.  Indeed, in fibroblast cells, KIF1A and KIF17 appear 

to walk on all microtubules regardless of the presence or absence of modifications or 

even whether or not the microtubules are still growing (Verhey lab unpublished data).  

Additionally, in neurons with reduced amounts of α-tubulin polyglutamylation, the 

binding affinity to microtubules was differentially altered for a subset of kinesins and 

MAPs [59]. 

Obviously we are only at the very beginning of validating this tubulin code 

hypothesis and its role in directing kinesin polarized transport in neurons and other cell 

types.  As Kinesin-1 is one of the lone kinesins tested for binding or varied ability to 

move along microtubules with different types of tubulin modifications, other kinesins 

with different sorting patterns need to be investigated in both in vitro biochemical assays 

and in vivo correlative assays.  Indeed, even the sorting preferences of different kinesins 

need further validation.   

Studying the cellular function of microtubule modifications in the past has largely 

been limited by the fact that most of the enzymes that modify tubulin where unknown.  In 

the past few years, the tubulin deacetylase (HDAC6) and the polyglutamylating and 

polyglycylating enzymes (TTLLs) have been discovered.  Thus, the role of 

polyglutamylation on Kinesin-1 transport in neurons can now be tested by over-

expressing or knocking down different combinations of polyglutamylating enzymes and 

determining whether Kinesin-1’s axonal sorting is modified.  Likewise, the role of 

detyrosination in Kinesin-1 polarized axonal transport can be similarly investigated by 

over-expressing TTL, (tubulin tyrosine ligase) the enzyme that replaces the tyrosine 

residue onto the C-terminus of α-tubulin, or by using primary neurons from TTL 

knockout mice.  Experiments such as these will provide much information in the future as 

to the specific roles played by individual tubulin modifications.   
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