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Abstract

Whenever an engineering system operates far from its equilibrium position, the control and

actuation scheme can become excessively complicated and power consuming. However, in

a multistable compliant mechanism (MSCM), a passive subsystem can be integrated to af-

ford discrete adaptability in function by providing additional equilibria thereby simplifying

the actuation and control scheme. This dissertation explores the design and application of

devices that exhibit multistability by exploiting compliance in design.

MSCMs have the essential advantages of compliant mechanisms including reduced

part-count, assembly time, wear, and increased precision, durability and reliability. How-

ever, there is no systematic method to design MSCMs and the majority of prior research

is limited to design of specific types of bistable mechanisms. This is due to the fact that

design of MSCMs is not intuitive and it requires enormous computational time to over-

come the complexity of nonlinear behaviors. This study is motivated by the need to design

MSCMs systematically without excessive computational time and complexity.

The design methodology developed in this dissertation has two major components: (i)

generalized methods for synthesizing bistable mechanisms and (ii) synthesis of multistable

mechanisms by combining multiple bistable mechanisms. A mathematical formalism to

ensure bistable behavior is first introduced. Two methods for synthesizing bistable mecha-

nism are developed (i) by choosing “buckled” shape as initial configuration and (ii) by uti-

lizing a reverse-lateral deformation of a clamped-pinned beam to provide bistability. Each

bistable compliant mechanism works as a building block, providing either one or two addi-

tional stable states. A simplified mathematical scheme is introduced to capture essential pa-

rameters of bistable behaviors to aid in synthesis of more sophisticated multistable mecha-

xv



nisms. The methodology enables designers to capture design requirements mathematically,

decompose the problem into feasible sub-problems, synthesize the desired MSCMs from

pre-compiled combination libraries, and efficiently evaluate the designs without computa-

tionally intensive nonlinear FEA. The method also yields robust designs that are insensitive

to manufacturing and other imperfections. The synthesis methodology can benefit a vari-

ety of applications including MEMS, space mechanisms, ergonomic devices, and general

product design. Several novel designs and working prototypes of MSCMs are developed to

demonstrate the effectiveness of the synthesis methods.
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Chapter 1

Introduction

Strength and stiffness coexist in most engineered artifacts. However, strength and flexibil-

ity, the two seemingly opposite properties, coexist within balance in the creatures of the

nature. For instance, trees are capable of bending in strong wind, and this is a clever way

for them to reduce the drag force of wind (Fig. 1.1(a)). Trees grow tall and strong but also

withstand the strong winds with their flexibility [76]. When there is no wind, trees tend to

return to their equilibrium in order to minimize their potential energy.

However, the need to survive strong winds sometimes shifts trees equilibrium to prevent

the tree from collapsing. This is due to the fact that, by nature, objects driven far from

equilibrium tend to develop local states[60] in order to minimize their potential energy.

Equilibrium of a system can shift in either a continuous manner or discrete increments. For

example, a wind-bent tree shown in Fig. 1.1(b) shifts its equilibrium shape adaptively in a

continuous manner to strong wind. A fluid when heated shifts its equilibrium discretely by

vaporizing. The concept of adaptive equilibrium is also included in Darwin’s model[54].

In engineering systems design, when one attempts to create a system that operates far

from a given equilibrium status, the control and actuation system can become excessively

complicated and power-consuming. Such situation can be resolved once the equilibrium

within the system shifts to the current operating range. The idea of a multistable equi-

librium compliant mechanism is described in which a passive subsystem is integrated to

afford discrete adaptability in function by providing additional equilibrium states, while

the actuation and control system remain simple. This dissertation explores the design and
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Figure 1.1 Bent trees: (a) a tree bent by wind and (b) a wind-bent tree.

application of devices that exhibit multistability by exploiting compliance in design.

1.1 Compliant Mechanisms

Stiffness and compliance, two inversely proportional properties of man-made systems, are

utilized and designed separately by different elements in conventional mechanisms. Con-

ventional mechanisms deliver desired force and motion by using rigid links (large stiffness),

kinematic joints (large compliance), and discrete springs. Design theories for conventional

mechanisms have been studied for several decades, and their synthesis methods are well

developed and even extended to design other kinds of mechanisms such as compliant mech-

anisms.

Compliant mechanisms also transfer force and motion by resembling nature’s balanc-

ing tendency of the stiffness and compliance. These mechanisms are ideally designed to be

monolithic, i.e. having no conventional joint. The absence of joints provides the following

benefits [52, 42].

1. Reducing the friction, wear, weight, and backlash.

2. Requiring no lubricant.
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3. Eliminating need for a separate spring to store elastic energy.

4. Resulting fewer links and interconnections, so compliant mechanisms are simpler,

more economical and reliable.

The overall class of compliant mechanisms fits into two main categories depending on

their material continuity (Fig. 1.2): monolithic and non-monolithic. Monolithic compliant

mechanisms are single-piece or jointless flexible mechanisms. The compliant mechanisms

can also be classified into two sub-classes based on the distribution of their compliance:

distributed and lumped compliant mechanisms.

Figure 1.2 Classification of compliant mechanisms [57].

A lumped compliant mechanism is characterized by flexures working as the joints be-

tween rigid members. Since rigid members of these mechanisms can only store a limited

amount of energy, the flexural regions are increasingly subjected to concentrated stress. On

the other hand, a distributed compliant mechanism utilizes most of its material to store elas-

tic energy; thus, the stress is more evenly distributed throughout the mechanism. Examples

of a distributed compliant mechanism and a lumped compliant mechanism are shown in

Fig. 1.3.

A non-monolithic or hybrid compliant mechanism usually consists of traditional joints
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Figure 1.3 Compliant grippers : (a) a distributed compliant gripper [57] and (b) a lumped com-
pliant gripper [61].

(i.e. revolute joints in Fig. 1.2), rigid links and at least one flexible member. Assembly

processes are typically required to manufacture the mechanisms in this category. Lumped

and non-monolithic compliant mechanisms are sometimes called partially compliant mech-

anisms.

1.2 Bistable and Multistable Compliant Mechanisms

The term, multistability, is broadly used in many different fields including physics, dynam-

ics, chemistry, and even in vision science. Some of the definitions of multistability in these

fields are as following:

• Multistability is the property of having more than one stable fixed point [1].

• Multistability means the coexistence of several final states (attractors) for a given set

of parameters [3].

• Multistability is a system property. It refers to systems that are neither stable nor to-

tally unstable, but that alternate between two or more mutually exclusive states over

time [2].
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Although researchers in different fields define multistability in different ways, the un-

derlying concept that they describe is essentially the same. Multistability is a system prop-

erty representing the coexistence of two or more stable states for a given condition; thus,

bistability is a subset of multistability with only two stable states.

The term, ‘multistable compliant mechanism’, is based on the concept that a mecha-

nism can achieve multiple stable positions within its range of motion through compliance,

i.e., elastic deformation of one or more of its members. Since multistable compliant mech-

anisms are a subclass of compliant mechanisms, they offer all the benefits described in

the previous section. The focus of this research is the design of monolithic multistable

compliant mechanisms.

1.2.1 Advantages

Multistable equilibrium compliant mechanisms still have the essential advantages of com-

pliant mechanisms. Such advantages are reduced part count, reduced assembly time, in-

creased precision, increased reliability, reduced wear, reduced maintenance, etc. More im-

portantly, the three main advantages are related to their stability, efficiency, and accuracy.

They are stable because they remain in a stable position over time without a load from

an actuator, and small disturbances do not change the stable position. They are efficient

because each stable position can be reached by relatively uniform actuation forces, so it is

not required to use a proportional actuator. They are accurate because the stable position

will not change once the system is configured, so an open loop motion control is adequate.

Thus, introducing multistability to a system reduces complexity, saves power and also im-

proves the performance and functionality of a variety of devices, including conventional

and compliant mechanisms in micro-systems and macro-systems [40, 27, 30, 7].
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1.2.2 Applications

The majority of known applications for multistable compliant mechanisms are bistable.

Fig. 1.4 shows some examples of bistable compliant mechanisms. Fig. 1.4 (a) shows two

configurations of a bistable stent, a medical device that is inserted into a natural conduit of

the body to prevent a disease-induced localized flow obstruction. This device requires at

least two stable configurations because it must be inflated after the insertion, and is usu-

ally too small to use traditional joints. Fig. 1.4 (b) is a well-know bistable bottle lid that

has two stable positions: opened and closed. Fig. 1.4 (c) is a bistable compliant switch

which mimics the existing bistable conventional switching mechanism. These examples

are monolithic. Some of them exhibit distributed compliance, and some are partially com-

pliant.

Figure 1.4 Applications of bistable compliant mechanisms: (a) a stent [14], (b) a bottle lid [81],
and (c) a switch [40].

A few multistable compliant mechanisms with more than two stable positions have

been designed (e.g. bendable straws [26]). Such multistable compliant mechanisms are not

very prevalent because they are difficult to design. Some of the potential applications of

multistable compliant mechanisms are

• Multistable switches
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• Multistable micro-electro-mechanical systems (MEMS)

• Multi-positioning devices

• Mechanical fuses

Multistable equilibrium mechanisms present a number of advantages in switching ap-

plications. They are used broadly as electrical/mechanical switches, and most traditional

examples are rigid-body mechanisms consisting of springs, rigid links and joints. A multi-

stable compliant mechanism drastically reduces part count. Therefore, a method of synthe-

sizing multistable compliant equilibrium mechanisms would be very valuable in engineer-

ing designs for a broad variety of applications.

MEMS is another area in which multistable equilibrium compliant mechanisms per-

form well. There are many proven advantages of compliant mechanisms at the micro-

level. They can be batch fabricated in a plane requiring no assembly, no need for lubri-

cation, reduced friction and wear, and absence of joint clearance. For example, a MEMS

fastener with multistability is used to assemble micro-parts [27]. MEMS switches and

micro-mirrors are good examples of the applications of multistable equilibrium compli-

ant mechanisms. An example of micro-mirror arrays is shown in Fig. 1.5. These devices

normally consist of top and bottom electrodes. By applying electric potential between the

electrodes, the electrostatic force pulls the top electrode down. Generally, pull-in voltage is

used to maintain the positions. However, by integrating multistable equilibrium compliant

mechanisms into such devices, the switches and mirrors maintain desired positions without

expending energy.

Compliant mechanisms which require variable geometry or power are another promis-

ing area to apply multistability concepts. An adjustable toggle clamp and snap-fits are

examples in this area. Additional stable equilibria give these devices the ability to adjust

the opening size by applying different loads.

In recent years, the collision safety for service robots has become an important issue.
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Figure 1.5 Electro-statically actuated micro-mirror array, from Integrated Photonics Lab. at U.
C. Berkeley.

To resolve the issue, passive compliance is preferred to active compliance because it can

provide faster and more reliable responses to dynamic collision [65, 66]. Snap-through

behavior, one of the nonlinear behaviors of multistable compliant mechanisms, can provide

the required responses for collision safety.

1.2.3 Nonlinearities and Stabilities1

A fishing pole is very flexible and easy to bend when a perpendicular load is applied at the

end of the pole. When the load on the pole is increased, a fisherman usually pulls the pole

backwards to reduce the moment arm so that the pole can support the additional load. This

is a stiffening effect which can be described as one of the nonlinear behaviors of the fishing

pole.

The main differences between linear and nonlinear behaviors are:

• Linear behavior satisfies the properties of superposition.

• Linear behavior has one equilibrium point at the initial state. Nonlinear behaviors

may have more than one equilibrium points including the initial state.

• Nonlinear behavior depends on the loading history. The loading history is critical to

1The terminology and figures used in this section are either taken or modified from [24].
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estimate the final states of the systems.

These differences can also be explained by their response curves (Fig. 1.6).

The overall static behavior of compliant structures can be characterized by a load-

displacement response. The load-displacement response can be drawn in a 2-D plot with a

vertical and horizontal axis. The vertical axis usually represents the load quantity or load

factor, which is a scaling factor of the given input load. The horizontal axis represents dis-

placement quantity. When the displacement is very small at the initial state, the response

can be approximated as a linear behavior. The constant value of the slope of the response

curve is used to estimate the stiffness of the linearized system (Fig. 1.6). Note that a pos-

itive value of stiffness represents stable status and that the initial state of the compliant

mechanism is always stable due to the positive stiffness of its linearized behavior.

Figure 1.6 A typical load-displacement response [24].

However, in general, the actual behavior of compliant mechanisms is nonlinear, and the

nonlinear behavior arises from a number of causes, which can be grouped into the follow-

ing three main categories[8].

1. Geometric nonlinearity.

2. Material nonlinearity.

3. Changing status (boundary conditions including contact).
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There are three classes of geometric nonlinearity: large strains, small strains with finite

displacements and/or rotations, and linearized prebuckling. Geometric nonlinearity is usu-

ally represented by small strains with large displacements and/or rotations, and is the most

common source of nonlinear behaviors in compliant mechanisms. Large strains and lin-

earized prebuckling cause geometric nonlinearity, but these are not common in compliant

mechanisms. Material nonlinearity is related to the nonlinear behaviors of material, such

as plastic, hyperelastic, viscoelastic, and yielding responses. Changing status is usually

caused by changing the boundary conditions, such as follower forces and changes in con-

tact status (e.g. contact to no-contact). A follower force is a force whose direction depends

on the deformed shape. A pressure applied on a surface, in general, is considered as a

follower force because it acts normal to both the undeformed and deformed surfaces.

Among the three sources, the nonlinear behavior in this dissertation represents geomet-

ric nonlinearity. Fig. 1.7 shows some of the nonlinear behavior of compliant structures. R

and F denote the initial or reference state and the failure state, which are the starting and

ending points of the curves. L and T denote the limit and turning points [24].

Figure 1.7 Nonlinear response patterns : (a) stiffening, (b) softening, (c) snap-through, and (d)
snap-back [24].

Figs. 1.7 (a) and (b) are well-know nonlinear responses called stiffening and softening

behaviors.

The snap-through response in Fig. 1.7 (c) combines softening with stiffening (after the

second limit point, L2). The response branch between the two limit points, L1 and L2,
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has a negative stiffness and is, therefore, unstable [24]. Multistability in this response can

be explained by applying a load factor, λ , that represents a preloading condition. The

horizontal line at λ crosses the response curve three times with two positive slopes and

one negative slope between the two. The first positive slope (or positive stiffness) at 1©
represents the first stable status, and the second positive slope at 3© represents the second

stable status. The system is unstable at 2© because the slope is negative, (or negative

stiffness). In the snap-back response in Fig. 1.7 (d), the response curve turns back between

the two turning points. The positive equilibrium (slope) between the two turning points, T1

and T2, may be stable and consequently physically reliable [24].

Load-displacement behaviors of multistable compliant mechanisms are subcases of ei-

ther Fig. 1.7 (c) or (d), but much more complicated. Note that for multistable compliant

mechanisms, the two positive slopes of the curve cross the horizontal axis at λ=0.

1.3 Conclusion

The objective of this research is to create an engineering framework to synthesize multi-

stable compliant mechanisms that achieve desired stable positions.

In spite of the attractive benefits of multistable compliant mechanisms, only few prod-

ucts have been developed because of complete lack of design methods. Due to the complex

nature of nonlinear behaviors and multistable response, there is no intuitive approach to de-

sign multistable compliant mechanisms. In this dissertation, the following two approaches

are developed and investigated.

1. Simplification of nonlinear behavior.

2. Decomposition of multistable behaviors.

The first approach captures the essential nature of nonlinear behavior in a simple math-
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ematical form. The second approach decomposes the multistable behaviors into multiple

bistable behaviors which are relatively easy to design.

1.4 Organization of the Dissertation

This chapter introduced the concept of a multistable compliant mechanism as well as ben-

efits of compliant mechanisms. The next chapter reviews the relevant work in the area of

compliant mechanism design and multistable systems. Chapter 3 addresses research is-

sues for designing multistable compliant mechanisms. It also addresses a general approach

to synthesis multistable compliant mechanisms. Chapters 4 and 5 offer two different ap-

proaches to design bistable compliant mechanisms. Chapter 6 provides a method to syn-

thesize multistable compliant mechanisms by combining bistable mechanisms. Chapter 7

presents two design examples of multistable compliant mechanisms with extreme design

requirements. Finally, Chapter 8 summarizes the contributions, and future work of this

research.

12



Chapter 2

Literature Review

This chapter reviews some of the past work published in the areas related to synthesis of

compliant mechanisms and bistable and multistable equilibrium systems. This chapter is

organized as follows. The following section includes reviews of literature in compliant

mechanisms as well as their synthesis methods. Section 2 is a review of the literature

in compliant mechanisms focusing on nonlinear behaviors. Section 3 is a review of the

literature in multistable mechanisms including bistable compliant mechanisms.

2.1 Synthesis of Compliant Mechanisms

Compliant mechanisms can be classified into two categories depending on the distribution

of their compliance: lumped compliant mechanisms and distributed compliant mechanisms.

A lumped compliant mechanism exploits its elastic deformation at a limited number of

locations, while the rest of its body is rigid. On the other hand, a distributed compliant

mechanism fully utilizes the material elasticity in all members of the system.

The historical backgrounds of the two categories, lumped and distributed compliant

mechanisms, are discussed in the following two subsections.

2.1.1 Lumped Compliant Mechanisms

The use of compliant mechanisms to transmit force and motion has been studied for many

decades. Because the deformable members in compliant mechanisms increase the com-
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plexity of design, researchers have developed appropriate methods to apply existing con-

ventional mechanism design methodologies to design compliant mechanisms. Classical

kinematics design methods can be implemented to design lumped compliant mechanisms

as well as mechanisms with cantilever-like flexible links. This is due to the fact that the

design methodologies of conventional mechanisms have been well developed. Addition-

ally, the majority of conventional mechanical devices have been designed to be rigid, and

the rigid members in the conventional mechanisms can conveniently simplify the design

approaches because of their limited number of kinematic degrees of freedom.

Flexure Hinges

The earliest kinds of compliant mechanisms were designed based on flexures. Since flex-

ures or flexure hinges were well established by Paros and Weisbord [67], they have been

broadly applied in many compliant mechanisms. The advantages of flexure hinges are their

high tolerances to manufacturing error, repeatability, and stability in their ranges of mo-

tion. These advantages are extremely useful in many compliant mechanisms in precision

machinery and instrumentation which require loads that are not high and displacements

that are very small [75].

More detailed study of traditional flexures has been conducted by Lobontiu [56], in-

cluding design methods, material selection, and geometry optimization. Analysis and syn-

thesis of these mechanisms simply represent an extension of the theory that has already

been developed for rigid link mechanisms. Traditional flexures are broadly used in MEMS

devices such as micro-grippers and micro-parallel mechanisms [53, 47, 46]. The most crit-

ical disadvantage is the stress concentration in the flexures because the lumped members

cannot carry the strain energy when the structure is deformed. Since the range of motion

is typically limited by the stress constraint, traditional flexures are limited to small motion

devices.

The availability of living hinges, which are pivot-like short and thin flexures, with plas-
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tic material (e.g. polypropylene) extends the functionalities of traditional flexure mecha-

nisms with less accuracy. A living hinge usually joins two rigid plastic parts together and

works like a rotational joint. This type of hinge is typically manufactured in an injection

molding process that fabricates the three parts simultaneously and monolithically. It is

also possible to use the living hinge to reduce the moment applied to flexible members in

compliant mechanisms[63]. Despite the inaccurate motion behavior, it has been widely

employed in less-demanding applications such as plastic bottle lids.

As an alternative to living hinges, for the design of large-displacement flexures with

higher accuracy, compliant revolute joints that perform the function of bearings have been

developed by Trease, Moon, and Kota [78].

Constraint Based Design

The basic concepts of constraint-based design for general machine design have been intro-

duced by Blanding [16]. The fundamental principle of constraint based design is achiev-

ing desired degrees of freedom by applying the minimum number of constraints required.

The same principle can be applied to design compliant mechanisms. Beam flexures are

broadly used for constraint based design because of their absolute rigidity in certain di-

rections and absolute compliance in other directions [16]. For example, a beam flexure

is used as a means of distributing stress in flexure mechanisms with constraint based de-

sign [10, 9, 20]. A parallel kinematic XY flexure mechanism is designed by applying the

concepts of constraint-based design (Fig. 2.1).

Pseudo-Rigid-Body-Model

Howell and Midha [33, 32] introduced the idea of a pseudo-rigid-body model to simplify

compliant mechanism analysis. In this model, a flexible mechanism is modeled by utiliz-

ing the synthesis method of conventional rigid-link mechanisms. Response behaviors of

flexible beams are estimated by equivalent links, joints and spring. The pseudo-rigid-body
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Figure 2.1 XY flexure mechanism [9].

model approach employs the same advantages of kinematic-based design methods. Ad-

ditionally, the model is applicable to large deformation analysis of compliant mechanism

since it uses a set of parametric equations that approximate the nonlinear load-displacement

behaviors of flexible members; therefore, the large deformation of a compliant mechanism

with a given topology can be predicted without nonlinear finite element analysis.

An example of a flexible segment is shown in Fig. 2.2 with its corresponding pseudo-

rigid-body model. The approximated behavior of the segment can be determined based on

the characteristic pivot, γ , and spring constant, which can be obtained by the geometry and

loading conditions.

In the years following its introduction, pseudo-rigid-body models for many types of

flexible links have been presented [34, 35, 36]. This model has enabled many compliant

mechanisms to be designed and analyzed much more easily than in the past. For example,

snap-fit micro-devices have been designed using the pseudo-rigid-body model [61].
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Figure 2.2 Pseudo-Rigid-Body-Model: (a) A flexible segment and (b) its pseudo-rigid-body
model

2.1.2 Distributed Compliant Mechanisms

For many decades, structural optimization methods have been broadly used largely to de-

sign strong and stiff structures (maximizing the stiffness) with limited volume or weight

of materials (volumetric constraints). Topology optimization identifies the topology of the

structure which can be defined as the number of holes in the solid structure and their ar-

rangement. This optimization approach has been adapted to design compliant mechanisms

and is carried out in two stages to yield distributed compliance: (i) topology synthesis and

(ii) dimensional synthesis.

Typically, the synthesis procedures of compliant mechanisms using the optimization-

based approaches contain the following four steps [59]: (1) design domain specification,

(2) design domain parameterization, (3) topology optimization, and (4) size/shape opti-

mization. Two different optimization schemes are used based on the two different pa-

rameterizations of the design problems. This section provides further details on the two

optimization schemes and the two parameterizations.

Optimization Types

The following two optimization schemes are most widely used for structural optimizations.
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1. Gradient-based Optimization.

2. Discrete Optimization.

Gradient-based optimization is applicable when the design variables are continuous.

Such design variables are material distribution as well as dimensions of components or

members and locations of nodes. Two well known material distribution methods are HDM

(homogenization design method [13]) and SIMP (Solid Isotropic Microstructure with Pe-

nalization [12]).

Since the material distribution methods were introduced for numerical implementations

of the topology design for continuum structures, extensive research to design problems of

compliant mechanisms was conducted by extending the methods. The first applications

of compliant mechanisms synthesis using topology optimization appeared in the work of

Ananthasuresh, Kota, and Gianchandani [6] and Ananthasuresh, Kota, and Kikuchi [7].

The approach based on the maximization of the ratio of mutual strain energy (MSE) and

strain energy (SE) was initiated in Frecker, Ananthasuresh, Nishiwaki, and Kota [25]. Ad-

ditionally, the robustness of optimization convergence is improved by using the spring ap-

proach suggested in Hetrick, Kikuchi, and Kota [31].

The genetic algorithm or GA is the most commonly used method for discrete optimiza-

tion of structural design [29]. GAs have also been used to find the optimal topology in

compliant mechanism designs [77, 79]. Although GAs have been used broadly for their

flexibility in selecting design variables and objective functions, they have encountered dif-

ficulties when the connectivity of the structure is not handled properly.

When using a GA, the load-path approach that relies on the connection paths of the

boundaries and load locations as the design variables resolves this issue [57]. This method

is also utilized for the synthesis of shape morphing compliant mechanisms [58]. A shape

morphing compliant mechanism changes its shape through structural deformation, which

is independent of the problem scale. The least square error between the deformed shape
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and the target shape is used as a design objective. The shape control of external surfaces

has been dealt with in Saggere and Kota [71].

Design Parameterizations

Once the design domain is specified in the first step of the design process, the domain

can be discretized based on either continuous or discrete variables. The continuous or

discrete design variables are used for the gradient based or discrete optimization schemes

respectively. When the design domain is discretized, there are two types of design param-

eterizations which are commonly used in structural optimization [29].

1. Homogenization approach.

2. Ground structure approach.

In the homogenization approach, the design domain is meshed with a 2-D plane or 3-

D solid elements. For gradient-based optimization, either the homogenization method or

SIMP is commonly used. On the other hand, in the ground structure approach, the design

domain is meshed with 2-D or 3-D beam elements. For the gradient-based optimization,

the design variables are the thickness of the beam elements. For GA, the design variable

is the existence of each member which can be defined in binary number (0 and 1). The

advantages and disadvantages of the two approaches are clearly explained by Lu and Kota

[59].

One of the well-known drawbacks of the homogenization approach is the point con-

nection between two elements (Fig. 2.3(a)). The point acts as a rotational joint, and the

resulting ultra-thin structural elements create high stress concentrations and pose manufac-

turing challenges (Fig. 2.3(b)). In many cases, additional post-processing is required for

the final design interpretation [68, 69].
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Figure 2.3 A hinge feature: (a) a gripper design using SIMP [61], (b) point connections between
elements, and (c) a flexure after a post-processing step.

In the ground structure approach, since beam elements cannot utilize the full design

space, node locations as well as beam thicknesses can be design variables. Because there

can be an excessively large number of design variables, the synthesis process is divided

into two processes: 1) topology synthesis and 2) dimensional synthesis. Topology synthe-

sis provides a functional design that satisfies the input/output or force/motion specifications

within a specified space. Dimensional synthesis completes the design to comply with per-

formance requirements such as maximum stresses, geometrical advantage or mechanical

advantage, size constraints, and buckling constraints [42].

The schematic overviews of the two processes are shown in Fig. 2.4.

2.2 Nonlinearity in Compliant Mechanisms

Researchers have used linear beam elements and considered bending to improve the anal-

ysis accuracy for 2-D compliant mechanisms [44]. In many cases, a significant number

of structures in compliant mechanisms are under nonlinear deformation due to geome-

try nonlinearity, material nonlinearity, or boundary nonlinearity. However, nonlinearity in

compliant mechanisms has been explored only by a few researchers [45, 43]. Joo and Kota
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Figure 2.4 A schematic overview of the design of compliant mechanisms: (a) topology synthesis
and (b) dimensional synthesis [57].

presented a nonlinear formulation for the dimensional synthesis of compliant mechanisms

using tapered beam elements. Since mechanisms intrinsically provide large deflections,

they should be modeled using large displacement theory. Path generating mechanisms

have been treated in Saxena and Ananthasuresh [72]. A design methodology for nonlinear

springs that match a prescribed stiffness has been studied by Vehar and Kota [80, 79].

2.2.1 Buckling and Snap-through Behaviors

When beams undergo compression, snap-through behavior can occur. This is also a geo-

metric nonlinearity problem. However, snap-through behavior in compliant mechanisms

has not been studied sufficiently. Some of the MEMS literature mentions designing snap-

through behaviors on the micro-level by utilizing bistable equilibria. Because of the dom-

inance of surface friction forces inherent at the micro-scale, many MEMS devices cannot

use hinges or joints. Thus, they rely on compliance to allow motion, and one must account

for their elastic strain energy [41]. Some designs incorporating bistability use the concept

21



of buckling [74].

In general, bistability is induced by buckling phenomena. The associated snap through

behavior depends on imperfections of the system. In other words, when a system is unsta-

ble, it can be sensitive to the imperfections in manufacturing processes, operating condi-

tions, and boundary conditions. In order to reduce sensitivity to the imperfections, many

designs in the literature rely on one or more of the following conditions: (a) using rigid

members [38, 70], (b) inducing residual stress [23], and (c) using multiple living hinges

[40]. These are the conditions which effectively reduce their sensitivity toward imperfec-

tions, ensuring bistability. For example, a mechanism designed with symmetric boundary

condition without any of the aforementioned conditions may not be able to exhibit bistable

behavior since the first buckling mode of a symmetrical mechanism is anti-symmetrical

and will destroy the potential energy barrier between the stable positions [70]. Addition-

ally, using rigid members and multiple living hinges increases stress concentrations, and

relying on residual stress makes it difficult to control the accuracy of the stress level.

2.3 Bistable and Multistable Compliant Mechanisms

Depending of the number of stable equilibria, multistabilities in compliant systems can be

divided into two categories: 1) bistabilities and 2) multistabilities with more than two stable

configurations. A considerable amount of research has been done on multistable linkage

mechanisms, including rigid-link and pinned-truss mechanisms, but MSCMs are essen-

tially different from multistable linkage mechanisms. Rigid-link mechanisms have finite

degrees-of-freedom (DOFs) whereas compliant mechanisms have virtually infinite DOFs.

The literature on multistable compliant mechanisms is mostly restricted to bistable mecha-

nisms. Most of the bistable-related literature has been presented for decades. Howell and

Midha used a pseudo-rigid-body model to design a bistable compliant slider-crank mech-

anism (Fig. 2.5)[37]. In their model, a flexible mechanism link was modeled by utilizing
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the synthesis method of conventional rigid-link mechanisms. A theory to generate bistable

behavior in a certain class of compliant structures that directly resemble four-bar linkages

has been established [40, 39]; however, the theory deals with each energy storage spring

separately.

Figure 2.5 A bistable compliant slider-crank mechanism [37].

Kollata, King, and Campbell [51] demonstrated the bistable behaviors of distributed

compliant structures. However, there is a design limitation because topology information

must be specified before optimization. Dixit and Campbell developed a bistable compliant

MEMS relay [21]. However, in this method, beams cross into each other at the second

stable configuration. To generate multistable equilibria without difficulties, magnetic fields

have been applied to the systems. Limaye, King and Campbell [55] demonstrated mul-

tistability in a magneto-static field. Fig. 2.6 shows a multistable system with an array of

magnets [48].

King et al. [48] described the numerical optimization and synthesis of a system com-

posed of energy storage elements from energy domains, including magnetism and mechan-

ical rotation and translation. With only mechanical springs and linkages, King et al. [49]

used an optimization approach to demonstrate a specific four-bar linkage problem with

more than two stable equilibria. A four-bar linkage mechanism with eight springs attached

to the links for the demonstration is shown in Fig. 2.7.

The approach utilizes Monte Carlo mapping to acquire data that can be used as a base-
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Figure 2.6 A multistable system consisting of an array of magnets [48].

Figure 2.7 Multistable four-bar linkage demonstration problem [49].

24



line case for optimization. However, the enormous computational time demanded by the

complexity with infinite DOF compliant mechanisms makes it difficult to take advantage

of the approach. Using pin-jointed bar elements, Ohsaki and Nishiwaki [64] presented an

approach that generates pin-jointed multistable compliant mechanisms. In their approach,

an unstable equilibrium state acts like a pseudo-stable state by locking the actuator. Fig. 2.8

shows three ”stable” positions of a multistable gripping mechanism.

Figure 2.8 A pin-jointed multistable compliant mechanism [64].

Although some research on design syntheses of bistable has appeared in the literature

[51, 40, 33, 39, 55, 48, 49, 64], there is a lack of any demonstration of multistable (specially

greater than two stable equilibria) compliant mechanisms.

With the handicap imposed by the computational time and complexity particularly due

to complex nonlinear behavior, it is necessary to find an efficient method that can be applied

to multistable compliant mechanisms. In this dissertation, a simplified mathematical ap-

proach that enables multistable compliant mechanisms to be synthesized by a combination

of multiple bistabilities is developed.
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Chapter 3

Overview of Synthesis Methodologies

The purpose of this research is to synthesize compliant mechanisms which yield multi-

stable equilibrium positions. This chapter outlines general considerations in the synthe-

sis of multistable compliant mechanisms and defines various steps and objectives of the

methodologies presented in the subsequent chapters.

3.1 Motivation

In engineering systems design, a fundamental challenge remains: how do engineers design

systems to achieve high accuracy and efficiency when the systems are in different operating

modes? This challenge is even critical when a system is operated far from its equilibrium

state because its control system can be excessively complicated and the actuation system

often requires a great deal of power to hold the state. Introducing multistability can not

only reduce complexity and save power, but can also improve performance and expand

the functionality of a variety of mechanical devices including conventional and compliant

mechanisms in various systems.

A multistable system has more than one stable equilibrium configuration in which it

can remain without any external input. The idea of multistable systems is that a passive

subsystem (i.e. a multistable mechanism) is integrated to provide adaptability in function,

while the actuation and control system remain unchanged.

Multistable mechanisms provide three main advantages. First, they are stable; the stable

position can be maintained without expending energy from the actuator and small distur-
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bances do not change the stable position. Secondly, they are efficient; each stable position

can be reached by relatively uniform actuation forces, so a proportional actuator is not

required to reach each stable position. Finally, they are accurate; the stable position will re-

main unchanged once the system is configured, so an open loop motion control is possible.

These advantages can be enhanced when multistable mechanisms are integrated with

compliant mechanisms. Such mechanisms are called multistable compliant mechanisms

(MSCMs). Each stable configuration of a MSCM is defined when its potential energy

is at one of its local minima, so the amount of energy stored in the MSCM must be a

nonlinear function of its position in order to have such multiple local minima. Design of

such devices is not yet intuitive and requires the enormous computational time demanded

by the complexity of the nonlinear finite element analysis.

Therefore, this study is motivated by the need to design MSCMs logically and system-

atically without the handicap imposed by the computational time and complexity.

3.2 General Approach

Although researchers have broadly used topological and structural optimization methods

to design compliant mechanism, designing MSCM presents difficult challenges in these

methods because of the limitations in obtaining all statically stable and unstable configu-

rations. Therefore, it is necessary to divide a problem to sub-problems which have fewer

stable and unstable positions. Thus, the overall procedure of the methodology is divided

into two steps: (1) synthesizing bistabilities and (2) synthesizing multistability from the

multiple bistabilities.

To perform the first step, two approaches are introduced in this dissertation. First,

bistabilities can be obtained by choosing the ”buckled” configurations as initial stable con-

figurations, and by letting unbuckled shapes be unstable configurations. When a structure

is unstable, it buckles in one of two symmetric buckling modes in order to be in a stable
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state. When the unstable structure buckles with finite displacements, the strain energy in

both stable states is the same and is smaller than the strain energy in its unstable state.

Therefore, in a bistable structure, an unstable state always exists between two stable states.

A bistable compliant mechanism can be designed using one of the buckled configurations

as an initially unstressed configuration. This approach is discussed in Chapter 4.

The other approach utilizes a clamped-pinned beam. In certain loading conditions,

a clamped-pinned beam provides bistability. By using the clamped-pinned beam, which

provides bistability, as a part of a compliant mechanism, the compliant mechanism can be

bistable. This method is introduced in Chapter 5.

Once a bistable mechanism is generated, multistability is realized by combining multi-

ple bistabilities in series in conjunction with rigid members to constrain relative displace-

ments. Each bistable mechanism works as a building block, producing either one or two

additional stable configurations when combined with other building blocks. Therefore,

n bistable building blocks generate up to 2n stable positions. For example, two bistable

building blocks provide either three (2 + 1) or four (22) stable positions. A simplified

mathematical scheme was developed to capture essential parameters of bistable behaviors,

such as load-thresholds that cause the jump from one to the next stable position, and to

derive multistable behavior.

3.2.1 Synthesis Procedures

Fig. 3.1 shows the overall flowchart of the synthesis approach for multistable compliant

mechanisms. It contains three main components: (1) decomposing multistability require-

ments into multiple bistable compliant mechanism designs, (2) designing bistable compli-

ant mechanisms, and (3) combining the bistable complaint mechanisms to achieve desired

multistable mechanisms. First, a design domain is decomposed to several sub-domains for

bistable compliant mechanisms, and is combined after obtaining the sub-solutions. This

process includes two components, (1) and (3). Second, the sub-domains are designed sep-
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arately to obtain desired bistabilities. This process corresponds to component (2).

Figure 3.1 Flowchart for the design process of multistable compliant mechanisms

Step 1. Define a design domain and design requirements. Design requirements can

include the number of stable equilibria, corresponding actuation loads, equilib-

rium positions, etc.

Step 2. Decide the number of bistable behaviors that need to be combined to synthesize

desired multistability. Based on the number of bistable behaviors, a combina-

tion type that satisfies the design requirements is selected from the combination

type library. The library contains combination tables described in Chapter 6

and Appendix C.
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Step 3. Divide the design domain into several sub-domains. The number of the sub-

domains must be same as the number of the bistable behaviors chosen in Step

2. Fig. 3.2 depicts a design domain that is divided into three sub-domains. This

step is explained in the next subsection.

Step 4. Design bistable compliant mechanisms. If there are topologies that satisfy the

design requirements in the design library, a designer can use them to perform

dimensional synthesis. If there is no proper topology in the library, bistable

compliant mechanisms for the sub-domains are designed in this step. In this

dissertation, two approaches for topology synthesis are introduced: using topol-

ogy optimization and using bistability of a clamped-pinned beam. Details are

explained in the chapters 4 and 5.

Step 5. Finalize the design of a multistable compliant mechanism. The designed bistable

compliant mechanisms are placed to the equivalent sub-domains. The multi-

stable behavior of the final design can be obtained from the combination type

library.

3.2.2 Design Domain Decomposition

To acquire multistability from multiple bistable compliant mechanisms, the following de-

composition procedure is applied. Fig. 3.2(a) shows a design problem of a multistable

compliant mechanism (MSCM) which has a load input, F , and n stable equilibria, e1 ∼ en.

Fig. 3.2(b) shows the MSCM which consists of three sub-domains of bistable equilibrium

system (or compliant mechanisms), BES1, BES2, and BES3. Two rigid connectors (R-C)

are used to divide the design domain of MSCM to sub-domains. As shown in Fig. 3.2(b),

only one bistable compliant mechanism contains the load input, and only one of the other

bistable compliant mechanisms contains a fixed boundary. Fig. 3.2(c) depicts how each

design problem of the three bistable compliant mechanisms is defined separately. BES1 is
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Figure 3.2 Design domain decomposition procedures.

designed by treating the other two bistable compliant mechanisms as rigid bodies. The load

input, F , locates at the same location of Fig. 3.2(a). BES2 and BES3 can be designed by

applying the same assumptions. By combining the three bistable compliant mechanisms,

a desired multistable behavior can be obtained. The details of combining multiple bistable

behaviors to synthesize a multistable behavior are discussed in Chapter 6.

3.3 Scope of Research

The goal of this research is to develop a generalized methodology for synthesizing multi-

stable systems, focusing on compliant mechanisms which have more complex nonlinearity

than conventional mechanisms. The focus of this research lies in the two synthesis prob-

lems: (1) the synthesis of bistable compliant mechanisms and (2) the synthesis of multista-

bility from combination of multiple bistable compliant mechanisms.

The scope of this research is defined by the following:
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Static Analysis The synthesis approaches and analysis methods considered in this disser-

tation are limited to static responses. Considering static responses is more effective

and efficient to identify all stable equilibria than considering dynamic responses.

Static jumps in static responses requires extremely short period of time to jump in

dynamic responses. Considering dynamic responses may miss the next stable equi-

librium due to inertia effects.

Synthesis of Bistable Compliant Mechanisms In the design of compliant mechanisms,

typical procedures include two processes: topology synthesis and dimensional syn-

thesis. In this dissertation, topology optimization is applied to synthesis of bistable

compliant mechanisms. Dimensional synthesis to match desired bistable behav-

iors can be performed by using size and shape optimization with nonlinear analysis

[79, 42].

2-D Planar Compliant Mechanism A two-dimensional frame, which is the simplest form

of an element, can be used to model the nonlinear response, including large deforma-

tion and buckling analysis is used in this dissertation. A planar multistable compliant

mechanism can provide either in-plane translational or rotational multistable behav-

ior which are used as example examples in subsequent chapters. Understanding two-

dimensional problems allows us to extend the approach to general three-dimensional

problems.

Finite Element Model Beam elements are formulated based on Euler-Bernoulli (slender)

beam theory. The Euler-Bernoulli beam has the slenderness, a dimensional ratio of

cross-section to the length, which is typically less than 1/15. If the slenderness is

greater than 1/15, we cannot ensure the multistability of designed multistable com-

pliant mechanisms. In order to verify the final design, Timoshenko beam elements

which satisfy for both thick as well as slender beams are used to consider the trans-

verse shear deformation [5]. The difference between the Timoshenko beam and the
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Bernoulli beam is that the Timoshenko beam includes the effect of the shear stresses

on its deformation. In other words, Timoshenko beam theory is an extension of the

Euler-Bernoulli beam theory to allow for the effect of transverse shear deformation.

Implementing Timoshenko beam theory will improve the design approaches intro-

duced in this dissertation.

Effect of Imperfection An unstable system can be sensitive to imperfections in manufac-

turing processes, operating conditions, boundary conditions, and etc. Multistable

compliant mechanisms always encounter unstable status because an unstable status

exists between two stable states at all time. Some imperfection sensitivity analyses

are included to analyze bistable compliant mechanisms. The synthesis methodolo-

gies in this dissertation do not consider sensitivity analysis. However, a robust design

method that is insensitive to imperfections is introduced.
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Chapter 4

Synthesis of Bistable Compliant Mechanisms Using
Buckled Configurations

4.1 Introduction

The behavior of multistable mechanisms is by nature very complex compared to mecha-

nisms which have a single stable position. The least complex response can be obtained

from bistable mechanisms, which are a subset of multistable mechanisms. The simplest

conventional rigid-link mechanism with two stable equilibria is studied in this chapter.

Similar studies have been done before [41, 32, 39]; but they are limited to application of

pseudo-rigid-body modeling to the existing rigid link mechanisms. The study in this chap-

ter not only provides a basic understanding of behaviors of bistable mechanisms but also

supports the introduction of a unique approach applying buckling phenomena to the design

of bistable compliant mechanisms.

4.2 Organization of This Chapter

In the next section, the characteristics of bistable compliant mechanisms are discussed,

and then four-bar linkage mechanisms with torsional springs on each joint are introduced.

Two case studies, (i) bistable four-bar mechanisms and (ii) slider-crank mechanisms, are

then presented and the results are compared to the beam buckling problem. Finally, a new

approach for the topology synthesis of bistable compliant mechanisms is introduced with
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two design examples; (i) rotational bistable compliant mechanisms and (ii) translational

bistable compliant mechanisms.

4.3 Understanding the Characteristics of Bistable Com-

pliant Mechanisms

A bistable system is a system with two stable equilibrium states. Its stable positions corre-

spond to the local minima of the potential energy curve of the system. This is analogous to

the ‘ball on the hill’ shown in the Fig. 4.1. The potential energy of the ball depends on its

position on the hill and hence on x. The potential energy, U , is

U(x) = mgh(x) =−Fgh(x). (4.1)

where m is the mass of the ball, g is the acceleration of gravity and y = h(x) is the equation

that defines the height of the hill at x. Thus, the equilibrium positions are located where

∂h(x)/∂x = 0. Hence,

∂U
∂x

= mg
∂h
∂x

= 0 (4.2)

The stable positions (solid balls) are located at the local minima of the hill, i.e., locations

where

∂ 2U
∂x2 = mg

∂ 2h
∂x2 > 0. (4.3)

Eqn.(4.2) and (4.3) are the necessary and sufficient conditions for local minima of the

potential energy function, U , respectively.

The gravitational force, Fg, acting on the ball can be seen as the action of the gravita-

tional field that is present at the location of the ball. Since the gravitational force is in the
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(a) Potential energy

(b) Load-displacement

Figure 4.1 Potential energy curve and load-displacement curve of a bistable equilibrium system.

potential field, it is a conservative force equal and opposite to the gradient of a potential.

By ignoring the friction on the surface, the external force applied to the ball to hold the

stable position can be obtained by Eqn. (4.2).

Fexternal =−Fg
∂h
∂x

=
∂U
∂h

∂h
∂x

= 0 (4.4)

The derivative of Eqn. (4.4) at stable positions can be obtained by Eqn. (4.3).

∂Fexternal

∂x
=

∂ 2U
∂x2 > 0 (4.5)

So far we have only discussed about the gravitational force, but this limitation is not

necessary. Eqn. (4.4) and (4.5) must be satisfied for any conservative force including a
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spring force, Fs. Since the external load applied to a spring is equal and opposite to the

spring force, the following equations can be derived for the stable equilibria of the spring.

Fexternal = −Fs =
∂U
∂x

= 0 (4.6)

∂
∂x

Fexternal = −∂Fs

∂x
=

∂ 2U
∂x2 > 0.

The equilibria, e1and e2, in Fig. 4.1(b) satisfy the conditions described in Eqn. (4.6).

Therefore, load-displacement responses can be used to identify stable equilibria: they are

located where the load input is zero and the slope is positive. In other words, each stable

configuration of the system is defined when its potential energy is at one of its local minima;

alternatively, the stiffness of the system is positive without an external load input.

As shown in Fig. 4.1(b), in general, bistability requires snap-through behavior to transi-

tion from one stable configuration to the other. Snap-through behavior can be characterized

by the static jump shown in Fig. 4.1(b). A static jump occurs when the load is increased and

reaches the load threshold which is defined as the required load to jump from one stable po-

sition to the other. Snap-through behavior normally causes a large amount of displacement

and rotations and, therefore, should be considered as a geometrically nonlinear problem.

This is true for all bistable mechanisms including rigid-link and compliant.

Snap-through behavior also corresponds to the phenomenon of buckling or instability of

structures. The similarity and relationship between the buckling of structures and bistability

of four-bar linkage mechanisms is discussed in the remainder of this chapter.
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4.4 Exploiting Bistability in Conventional Four-bar Link-

age Mechanisms

The four-bar linkage mechanism is the simplest possible closed-loop mechanism with one

degree of freedom, and has numerous uses in industry ranging from automobile engines to

small toys. A general four-bar linkage mechanism with torsional springs on each joint is

shown in Fig. 4.2. In the figure, ri and ki are defined as the length of a given link and the

stiffness of a torsional spring respectively. Min is the moment applied to the input link or

driver, r2. r1 is called the ground link or frame, r3 is called the coupler link, and r4 is called

the follower link.

Figure 4.2 Four-bar linkage mechanism with rotational springs at each joint.

4.4.1 Bistability of Grashof Four-bar Linkage Mechanisms

Four-bar linkage mechanisms with springs at each joint can provide bistability. These

mechanisms can be classified based on Grashof’s criterion [22] as shown in Fig. 4.3:

Grashof and Non-Grashof mechanisms. At least one of the links in a Grashof mechanism

can rotate through a full revolution, but no link can does in a non-Grashof mechanism. A

Grashof mechanism satisfies the following inequality condition.

s+ l ≤ p+q, (4.7)
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Figure 4.3 Classification of four-bar linkage mechanisms.

where s and l are the shortest and longest links respectively, and p and q are the lengths of

the other two links. The equality condition of Eqn. 4.7 is sometimes used for a change-point

four-bar linkage mechanism. A non-Grashof mechanism satisfies

s+ l > p+q. (4.8)

Jensen et al [39] discussed the requirements for bistable behaviors of Grashof, Non-Grashof,

and change-point mechanisms independently.

Grashof mechanisms can be divided into four subtypes as shown in the Fig. 4.3. In the

figure, a toggle position occurs when the driver and coupler are lined up. One of the toggle

positions are depicted in the figure. The condition lining up two adjacent links is essential

to provide an unstable state in a mechanism. This concept is discussed later in this section.

It is not within the scope of this study to investigate all types of four-bar linkage mech-
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anisms. Instead, the study in this section is limited to consideration of two types of Grashof

mechanisms, and the idea can be extended to design bistable compliant mechanisms. To

utilize one full revolution of the input link as the design range of two bistable configura-

tions, and to reduce the difficulty of handling the immovable configuration, the first two

types (the left two in Fig. 4.3) of Grashof mechanisms are used. The two types are

Type 1. A crank-crank mechanism which is obtained when the shortest link is the ground

link, and

Type 2. A crank-rocker mechanism which is obtained when the shortest link is the input

link.

These two Grashof mechanisms with crank inputs have two circuits but cannot reach

immovable configuration. The circuit with the positive geometric inversion [22] is only

considered in the analysis in this section.

Figure 4.4 Load-displacement curve of a typical bistable four-bar linkage mechanism.

Fig. 4.4 shows a desired load-displacement response of Type 1 and Type 2 Grashof

mechanisms. The horizontal axis in the curve represents the rotation of θ2 and the vertical

axis indicates the input moment to r2. The design requirements are
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the initial stable position : θs = θs1,

the second stable position : θs = θs2 = θs1 +∆θs,

the actuation load : Min = M1−2. (4.9)

where, ∆θs is defined as the rotation angle between the stable equilibria and the design

variables are

the length of each link : ri,

the spring constant of each torsional spring : ki.

To obtain a bistable behavior, the necessary and sufficient conditions must be satisfied.

The necessary condition can be satisfied if the input load at the two stable positions, θs1 and

θs2, is zero. The sufficient condition can be satisfied if the slope at the unstable position,

θu, is negative. Alternatively, a positive load input at θ f can satisfy the sufficient condition

if θ f is located between θs1 and θu. Based on the design requirement and variables, the

optimization problem to obtain the desired bistable behavior is formulated as

Minimize : f (ri,ki) = ω1 · f1 +ω2 · f2 +ω3 · f3

subject to : 1 < ri < ∞

0 < ki < ∞. (4.10)

where ωi are the weighting factors and
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f1 = {Min(θu)}2 +{Min(θs2)}2 +
{

Min(θ f )−M1−2
}2

f2 = ∑ri

f3 = ∑ki. (4.11)

where θu is an angle at an unstable state, and θ f is an angle at the load-threshold. The first

and the second terms in f1 represent the necessary conditions at stable and unstable posi-

tions of the potential energy. The last term in f1 represents two conditions; the sufficient

condition of the local minima of the potential energy and the desired load-threshold.

The design requirements and the initial values of two design examples are listed in

Table 4.1.

Table 4.1 Design requirements and initial values of two design problems for bistable four-bar
linkage mechanisms

Case θs1 θs2 M1−2 ωi initial ri initial ki

Case 1 30◦ 60◦ 10 [1,0.01,0.01] [4 1 5 6] [1 3 2 1]

Case 2 10◦ 20◦ 10 [1,0.01,0.01] [4 1 5 6] [1 3 2 1]

The two optimal solutions for each bistable four-bar linkage mechanism are shown in

Fig. 4.5 and 4.6. The thicker links represent the initial configuration and the thinner links

indicate the second stable position. Fig. 4.5 (a) shows two stable configurations of the Type

1 mechanism for Case 1. In the figure, the torsional spring with the largest spring constant,

k2, is located on the opposite side of the shortest link, r1. The spring with the second largest

spring constant, k4, is located at the opposite joint from k2. The other two spring constants

are zeros. Even though the configurations are different, this condition is true for all of the

mechanisms in Fig. 4.5 and 4.6. Note that the largest spring constant is much greater than

the second largest spring constant. The ratio of the two spring constant is discussed in the

next subsection.
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Figure 4.5 Two optimal solutions of Case 1: (a) Type 1 and (b) Type 2

Figure 4.6 Two optimal solutions of Case 2: (a) Type 1 and (b) Type 2

The unstable equilibrium configuration should be between the initial and the second

stable equilibria. Therefore, at the unstable equilibrium, r1 and r4 are close to being in

line for Fig. 4.5(a) and 4.6(a); and the mechanisms are close to their toggle positions in

Fig. 4.5(b) and 4.6(b). The dotted lines in Fig. 4.5(a) and (b) indicate the positions when

the two adjacent links are in line. Now, suppose the r2 in Fig. 4.5(a) is a ground link and

r1 is a moving link, this is known as a kinematic inversion [22]. Performing this kinematic

inversion results in the mechanism shown in Fig. 4.5(b). This is true for the mechanism

shown in Fig. 4.6 as well. Therefore, based on the optimal geometries and kinematic inver-

sion, we can conclude the following.
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A four-bar linkage mechanism can be bistable if its two adjacent links, which can

be in line, include a torsional spring, ks, and the other torsional spring, kl , which is

much stiffer than ks, is located at the opposite joint from ks.

This is the necessary condition for a bistable four-bar linkage mechanism. Based on the

necessary condition, all possible bistable four-bar linkage mechanisms can be obtained;

they are listed in Table 4.2.

As discussed before, all bistable Grashof four-bar linkage mechanisms are similar and

can be obtained through either kinematic inversion or mirroring from any one of the classes

in Table 4.2. The four-bar linkage mechanisms in Table 4.2 have a spring that has the

largest spring constant. The other spring which has smaller spring constant is located at the

opposite joint of the spring.

4.4.2 Bistability of Slider-crank Mechanisms

The optimal designs in the previous subsection show that two springs are located at two

opposite joints in a bistable four-bar linkage mechanism. One of them has much larger

stiffness than the other. In this subsection, the optimal results are verified by introducing a

slider-crank mechanism.

A slider-crank mechanism is a special type of four-bar linkage mechanisms obtained

by making the follower link infinite in length. Fig. 4.7(a) shows the initial configuration

of a slider-crank mechanism in its toggle position. In the figure, l1 and l2 are the lengths

of the two links. kθ is the spring constant of the torsional spring connecting the two links.

kδ is the spring constant of the translational spring located at the end of l2. The load, F1

is applied to the end of the spring, kδ , and the displacement at the loading point is defined

as δ1. Since Fig. 4.7(a) represents the initial configuration, the potential energy stored in

the two springs must be zero at that point. When the load, F1, is greater than the critical

load, the mechanism will turn into one of its buckled configurations (Fig. 4.7(b)) with the
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Table 4.2 Classification of bistable Grashof four-bar linkage mechanisms.
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displacement at δ1 = ∆0.

Figure 4.7 A slider-crank mechanism with two springs: (a) initial configuration and (b) buckled
configuration.

Assuming that the loading point is fixed at δ1 = ∆0, the potential energy stored in the

mechanism at the configuration shown in Fig. 4.7(b) is no longer zero. The potential energy

is stored in the two springs, k+
θ and k+

δ . The potential energy and the work done by F1 can

be calculated as the following equation. Note that the same length, l, is used for the lengths,

l1 and l2, to simplify the problem.

U = 2kθ θ 2 +
1
2

kδ (2l−2l cosθ −δ1)
2

W = F1δ1. (4.12)

where l = l1 = l2.

The total potential energy can be obtained by adding the potential energy stored in the

springs and the potential energy of the force.

PE = U−W. (4.13)

Taking the first derivative with respect to θ and δ1 yields
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∂PE
∂θ

= 4kθ θ +2kδ (2l−2l cosθ −δ1) l sinθ

∂PE
∂δ1

= −kδ (2l−2l cosθ −δ1)−F1. (4.14)

The equilibrium position is obtained by setting Eqn.(4.14) equal to zero. There can be

multiple solutions in this problem. Since we are looking for unstable state of the system at

θ = 0, the equilibrium of the mechanism is

θ = 0

F1 = kδ δ1. (4.15)

To identify the critical condition to have bistable behavior, Hessian, H, of the potential

energy is calculated as follows.

H =




4kθ +4kδ l2 sin2 θ +2kδ (2l−2l cosθ −δ1) l cosθ −2kδ l sinθ

−2kδ l sinθ kδ


 . (4.16)

where Hessian is defined as

H =




∂ 2PE
∂θ 2

∂ 2PE
∂θ∂δ1

∂ 2PE
∂δ1∂θ

∂ 2PE
∂δ 2

1


 . (4.17)

Eqn. 4.16 must be negative definite to make the system unstable. The determinant of

the Hessian is

−(−4kθ −4kδ l2 sin2 θ −2kδ (2l−2l cosθ −δ1) l cosθ
)

kδ −4k2
δ l2 sin2 θ . (4.18)
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Eqn.(4.18) must be zero at the critical condition. Substituting the equilibrium (Eqn.(4.15))

conditions into the above equation yields

kθ
kδ

=
l
2

∆0. (4.19)

where δ1 is replaced with ∆0. This is the critical condition to have bistability at δ1 = ∆0. In

order to ensure bistable behavior,

kθ
kδ

<
l
2

∆0. (4.20)

The stiffness ratio, kθ/kδ , is an important parameter to ensure bistability.

If the force, F2, is applied to the joint as shown in Fig. 4.7(b), the mechanisms that

satisfy the above condition must provide bistability. The second stable configuration must

be symmetric to the configuration shown in Fig. 4.7(b). One can identify the bistability

from the load-displacement (F2 vs. δ2) curve. The load-displacement curves of Fig. 4.7(b)

with various stiffness ratio, kθ/kδ , are shown in the second column of Table 4.3. Here,

∆0 = 1 and l = 8 are used to obtain the curves. As shown in the table, the bistable behavior

(F2 vs. δ2) can be shown when kθ/kδ < 4.0.

Fig. 4.8 shows the same configuration as shown in Fig. 4.7(b). However, there is no

potential energy stored in two springs at the position. Thus, the configuration shown in the

Fig. 4.8 is the initial configuration with zero potential energy. If the force, F3, is applied to

the joint as shown in the figure, can the mechanism provide bistability?

Figure 4.8 Initial configuration of a slider-crank mechanism with two springs.

The right column of Table 4.3 shows the load-displacement (F3 vs. δ3) curves of Fig. 4.8
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Table 4.3 Load-displacement curves for various stiffness ratio, kθ /kδ .
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with various stiffness ratio, kθ/kδ . In this case, to have the bistability, the stiffness ratio

must be smaller than 0.8. Therefore, to ensure the bistability of the mechanism shown in

Fig. 4.8,

kθ
kδ
¿ l

2
∆0. (4.21)

Based on the analysis in this subsection, it is also possible to find the definition of the

stiffness ratio for four-bar linkage mechanisms discussed in the previous subsection. A

correlation between a four-bar linkage mechanism and a slider-crank mechanism can be

obtained if the follower of the four-bar linkage mechanism is infinitely long. The corre-

sponding stiffness ratio for the four-bar linkage mechanisms is ks/kl . The sufficient condi-

tion to ensure bistability of the four-bar linkage mechanisms is

ks

kl
¿ 1. (4.22)

Eqn.(4.22) supports the optimal configurations of bistable four-bar linkage mechanisms

obtained in the previous subsection. In each mechanism, the largest spring constant is much

greater than the second largest spring constant in Fig. 4.5 and 4.6.

4.4.3 Tristable Four-bar Linkage Mechanism

The third row of Table 4.2 has the largest spring constant at k4. If the location of the largest

spring constant can switch between k1 and k4, the four-bar linkage mechanism can have

tristable behavior. It is possible to use contact conditions for both springs. The contact

conditions change the potential energy discretely, so that it can provide multistability as

shown in Fig. 4.9.

Fig. 4.10 shows a tristable switch by applying the contact condition to k1 and k4.

Fig. 4.10 (b) is the initial configuration of the tristable switch. Fig. 4.10 (a) is another

stable configuration when k4 is active. Fig. 4.10 (c) is the other stable configuration with
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Figure 4.9 A multistable behavior by applying contact conditions.

Figure 4.10 Tristable four-bar switching mechanism.

active k1. This concept is also addressed in Chapter 5 to design a multistable switch using

clamped-pinned beams.

4.5 Bistability of Buckled Configurations

The necessary condition for a four-bar linkage mechanism to have bistable behavior is that

two adjacent links are lined up (e.g. a toggle position) in the feasible range of motion. The

other two ends are free to rotate but the relative motion between the two ends is constrained

by a spring with large stiffness.

There is a similarity between a toggle position of four-bar linkage mechanisms and a

buckled shape of a beam. The relative motion between the two ends of a buckled clamped-

clamped beam is zero (infinite stiffness) and the curvatures at the two clamped ends are

infinite (no strain energy stored at the ends). The two buckled shapes of the clamped-

clamped beam are symmetric and identical. Fig. 4.11 shows the two stable configurations
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of the buckled beam.

Figure 4.11 Bistability of a buckled beam (an oil-canning problem).

In the figure, if a load-threshold, F , is applied at the center of the buckled beam, the

second stable configuration can be obtained.

In this section, a buckled configuration is used as an initial configuration of a bistable

compliant mechanism. A beam can be buckled by many different physical conditions.

However, the load, F , cannot provide the buckling condition. The approach used to gen-

erate a buckling configuration from the load, F , is introduced in Fig. 4.12. Fig. 4.12 (a)

shows the two desired stable positions of a buckled beam. In Fig. 4.12(b), the same load,

F , is applied to a straight beam in the opposite direction to the original direction of the

load. Then a static structural analysis is performed to find the static displacement of the

beam (Fig. 4.12(c)). The displacement results are added to the original shape of the beam

shown in (b). The load, F , on the updated geometry can provide internal forces to make

the beam buckled as shown in Fig. 4.12(d). The internal forces are used to perform the

buckling analysis for the initial shape. Finally, one of the buckled configurations will be

used as the initial configuration (Fig. 4.12(e)).

4.5.1 Modal Strain Energy

Suppose a system has an unstable state, it should be bistable because an unstable state

always exists between two stable states. In structural analysis, when a structure is unstable,

it buckles. In other words, an unstable structure tends to deform to its stable status using its

buckled shape. When an unstable structure is buckled with finite displacement, the strain

energy at both stable states is the same and not zero (the dashed line in the Fig. 4.13).
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Figure 4.12 Buckling analysis procedure to obtain buckled configurations. (a) desired buckled
configuration, (b) applying load to the initial shape, (c) performing static analysis, (d) applying load
to the deformed shape, (e) applying internal forces to the initial shape in order to determine the
buckled configuration.

Figure 4.13 Strain Energy change when one of the buckled configurations is used as an initially
unstressed configuration.

53



When one of the buckled configurations is used as an initially unstressed configuration,

the strain energy at the initial shape is zero and the strain energy at the other shape is

increased (the solid line in the Fig. 4.13). If the strain energy at the second shape increases

more than the energy barrier, the bistability will be lost. Losing bistability depends on

the design parameters of the structure, such as thicknesses of the beams and locations of

the points. Therefore the energy barrier (Fig. 4.13) between the two stable states must be

maximized.

The idea of modal strain energy is that, by maximizing it, the energy barrier can be max-

imized. Additionally, no nonlinear static analysis is required to determine the magnitude

of the energy barrier. The modal strain energy, VM, is defined as

VM = x̄T
1 Kv. (4.23)

where x̄T
1 is the first buckling mode, K is the stiffness matrix of the structure, and v is the

displacement at the input node when a unit load input is applied. Fig. 4.14 shows the finite

element formulations for the static analysis, the static analysis with a unit load, and the

buckling analysis of a compliant structure. KG in Fig. 4.14(c) is the geometric stiffness

matrix, and λ is the eigenvalue or the critical load factor of the input load, p.

Figure 4.14 (a) static analysis: Ku = f, (b) static analysis with unit load input: Kv = 1, and (c)
buckling analysis: (K+λiKG) x̄i = λp

The topology optimization formulation can be posed as follows:
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Maximize VM = x̄T
1 Kv (4.24)

subject to t j min ≤ t j ≤ t j max

g = Volume/Vmax−1≤ 0.

The variable t j represents cross-sectional thickness of each line element. The line ele-

ment contains more than two beam elements. The total volume constraint, expressed by g,

is applied to maintain a specified total volume fraction of the mechanism.

4.5.2 Finite Element Model

In order to synthesize topology of a bistable compliant mechanism based on the objective

function in Eqn.(4.25), a finite element method is applied to perform the buckling analy-

sis. The buckling analysis model includes rigid bodies and the analysis step described in

Fig. 4.12 is used. For the buckling analysis, unlike the static analysis, there must be at

least two elements to represent a beam. Because the shape function of the beam element is

formulated as a third order polynomial, it cannot represent the buckling modes. Buckling

modes are usually expressed in sinusoidal functions and require at least a fifth order poly-

nomial to represent the modes. The Taylor series expansions of the sinusoidal functions,

sinx and cosx, are following.

sinx = x− x3

3!
+

x5

5!
− . . . , (4.25)

cosx = 1− x2

2!
+

x4

4!
− . . . .

Using two elements per beam can provide the sinusoidal function effectively without

using higher order polynomials.

55



2-D Beam Element

Derivation for element matrices for 2-D beam element can be found in many textbooks on

FEA. This section summarizes the matrices related to the research based on the Scattering

method [18].

The model of a beam element is shown in Fig. 4.15.

Figure 4.15 2-D beam element in the x− y plane.

The element displacement vector can be expressed as

ue =
{

u1 u2 u3 u4 u5 u6

}T

(4.26)

The total displacement vector is

U = ∑
All

ue (4.27)
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The elemental stiffness is shown in the following equation.

Ke =
E
l




A −A 0 0 0 0

A 0 0 0 0

12 I
l2 −12 I

l2 6 I
l 6 I

l

12 I
l2 −6 I

l −6 I
l

Sym 4I 2I

4I




, (4.28)

where A = bh, bh3

12 , E is an elastic modulus, and l is the length of an element.

In order to calculate the global stiffness matrix, the elemental coordinates must be trans-

formed to the global coordinates. This can be done by using the transformation matrix.

Te =




cosθ 0 sinθ 0 0 0

0 cosθ 0 sinθ 0 0

−sinθ 0 cosθ 0 0 0

0 −sinθ 0 cosθ 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (4.29)

The global stiffness matrix can be obtained by

K = ∑
All

sct
(
TT

e KeTe
)

(4.30)

where the function, sct, is the scattering function[18].

2-D Rigid Element (MPC)

A multipoint constraint (MPC) is a linear equation relating displacement degrees of free-

dom [73]. Using MPC, it is possible to model a rigid element between two node points.
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Consider the rigid element that connects two points as shown in Fig. 4.16.

Figure 4.16 Rigid member (MPC) in the x− y plane.

The following kinematic relations can be obtained based on the assumption of small

rotation of the rigid element.

u2 = u1− ly ·u5 (4.31)

u4 = u3 + lx ·u5

u6 = u5

where lx and ly represent the distance between the two points in the x and y directions

respectively.

The MPC relations can be expressed as the following matrix and equation.

Re =




1 −1 0 0 −ly 0

0 0 1 −1 lx 0

0 0 0 0 1 −1




(4.32)

Reu = 0 (4.33)
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Buckling Analysis

In general, the objective of a linear buckling problem is to obtain a load scale factor, λ ,

such that the following equation is satisfied.

(K+λiKG) x̄i = λp, (4.34)

where KG is called a geometric stiffness matrix and is obtained by

KG = ∑
All

sct
(
TT

e GeTe
)
, (4.35)

where Ge is the elemental geometric stiffness matrix.

The elemental geometric stiffness matrix can be calculated as

Ge = Fe




0 0 0 0 0 0

0 0 0 0 0

6
5l − 6

5l
1

10
1
10

6
5l − 1

10 − 1
10

Sym 2
15 l − l

30

2
15 l




(4.36)

where Fe is an internal load applied to a beam element. It can be obtained from a static

analysis.

In this subsection, the necessary formulations for 2-D beam elements, rigid beam ele-

ments, and buckling analysis are explained. Based on the formulations, Eqn.(4.25) is used

to obtain topologies of bistable compliant mechanisms in the following subsection.

4.5.3 Topology Synthesis Using Buckling Configurations

The goal of topology synthesis for bistable compliant mechanisms is to identify the best

possible topology that can provide bistable behavior. The work presented in this subsection
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is based on the early stage of the development of topology synthesis using the buckling

configuration.

Two examples, a rotational and translational bistable compliant mechanism, are pre-

sented here. To perform the topology synthesis, design domains and desired directions of

the bistable behaviors must be established. Fig. 4.17 shows the design domains for the two

problems.

Figure 4.17 Bistable compliant mechanisms design: (a) rotational bistable compliant mechanism,
and (b) translational bistable compliant mechanism.

The design domain shown in Fig. 4.17 (a) is for a rotational bistable compliant mech-

anism. The four boundaries of the design domain are fixed. The solid square at the center

represents a rigid area where the input torque is applied. Fig. 4.17 (b) shows the design

domain of a translational bistable compliant mechanism. The top, bottom, and right sides

of the domain have fixed boundary conditions. The solid triangle on the left side of the

domain is the rigid member where the input load is applied.

Rotational and Translational Bistable Compliant Mechanism Design

Once the design domain is defined, it is discretized using beam elements. Since the design

domain shown in Fig. 4.17 (a) is cyclic symmetric, only the right-top portion of the design

domain is discretized with an additional boundary condition at the center. Also the upper
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half of Fig. 4.17 (a) is considered to be discretized. Fig. 4.18 shows a reduced design

domains of the rotational and translational cases.

(a) (b)

Figure 4.18 Design domain discretization: (a) the right-top corner of the design domain in
Fig. 4.17 (a), and (b) the upper half of the design domain in Fig. 4.17 (b)

A 2×2 fixed-node modular ground structure is used for each discretization. There are

28 lines in the ground structure. However because each line must have at least two beam

elements to perform the buckling analysis, the total number of beam elements used in the

discretization is 56. The number of design variables is still 28 because the two elements

in each line have the same cross section. In the specific cases shown in Fig. 4.18, some of

the lines that do not affect the final design are removed (i.e., the lines inside the rigid area,

and the lines on the fixed boundary). There are now 19 design variables in each discretized

design domain.

Matlab, a commercial mathematical software package, is used to solve the optimiza-

tion problem of Eqn.4.25. It is possible to use a gradient-based optimization since the

design variables (thicknesses) are continuous. Sequential quadratic programming (SQP) is

used for the gradient-based optimization algorithm and finite-difference approximation is

applied to calculate the gradients of the objective function and constraint. Alternatively,
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sensitivity analysis of the buckling modes can be performed using the equations in Ap-

pendix E to provide the gradients to the algorithm.

Using this framework, a finite element analysis code was developed in the Matlab

environment. The buckling analysis was performed by following the steps described in

Fig. 4.12. Fig. 4.19 shows the optimal topology of the problem shown in Fig.4.18. Fig. 4.20

shows the final topologies based on the optimal topologies shown in Fig. 4.19.

(a) (b)

Figure 4.19 The optimal topology of the right-top corner of a bistable compliant mechanism
(SQP).

The genetic algorithm (GA) is one of the most commonly used methods for discrete

optimization to find the optimal topology in compliant mechanism design. To use a GA

for the problem in Fig.4.18, two discrete values are used for the thickness of each beam

element. By using two values, we can avoid encountering difficulties with the connectivity

of the structure. Also, the volume constraint in Eqn.4.25 is not applied. Some of the results

from the GA for the two design problems are shown in Fig. 4.21 and 4.22.

As shown in the above examples of rotational bistable compliant mechanisms, a buck-

led mode of the beam connecting the rigid area with a pin joint at the center and a fixed

boundary provides bistability. Fig. 4.23 shows a simple bistable latching mechanisms us-

ing this buckled configuration. The initial configuration is used as a closed position of the
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(a) (b)

Figure 4.20 The optimal topology of a rotational bistable compliant mechanism.

Figure 4.21 The optimal topology of the right-top corner of a rotational bistable compliant mech-
anism (GA): (a) VM = 0.23461 (b) VM = 0.22842.
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Figure 4.22 The optimal topology of the right-top corner of a translational bistable compliant
mechanism (GA): (a) VM = 0.25522 (b) VM = 0.23594.

latching mechanism (top) and the latch is in the open position when the mechanism has the

second stable state (bottom). The arrow in Fig. 4.23(b) indicates the direction of the load

applied to the rigid body of the mechanism to have the closed position.

(a) the initial stable (close) configuration

(b) the second stable (open) configuration

Figure 4.23 A rotational bistable compliant mechanism: The initial stable and the second stable
configurations [ME551 design project: a bistable trunk latch].
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Based on the result shown in Fig. 4.22 (b), a translational bistable compliant mecha-

nism was fabricated by using waterjet machining. The prototype is made of Homopolymer

Polypropylene. The two stable configurations are shown in Fig. 4.24.

Figure 4.24 A translational bistable compliant mechanism: (a) the initial stable configuration, and
(b) the second stable configuration.

4.5.4 Effect of Imperfections

An unstable system can be sensitive to the imperfections in manufacturing processes, oper-

ating conditions, boundary conditions, and even material properties. A system with more

than one stable state always encounters an unstable state because the unstable status must

exist between two stable states.

In order to design multistable compliant mechanisms, nonlinear finite element analysis

without considering imperfections is not safe to estimate the actual behavior because the

effect of the imperfections is sometimes very critical. The effect of imperfections can

(1) change the unstable behavior, (2) shift/remove the stable position, and (3) reduce the

actuation loads.

There are several methods to apply imperfect conditions to finite element models in-
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cluding the followings: (1) applying numerical imperfections, (2) implementing physical

imperfections, (3) adding buckling modes. Numerical imperfections can be applied to a

symmetric structure by meshing it asymmetrically. If the imperfection is already known

(e.g. imperfection due to the manufacturing tolerances at specific locations) it can be added

to the original model by adjusting some of the nodal locations. Utilizing buckling modes

as imperfect geometry is also commonly used for imperfection analysis. Fig. 4.25 shows

how buckling modes can be added to the original geometry.

Figure 4.25 Implementing buckling modes to the original geometry: (a) preparing nonlinear anal-
ysis to obtain the bistable behavior of a perfect geometry, (b) solving for linear buckling modes, (c)
accumulating obtained modes to the original geometry.

Fig. 4.25(a) shows the original bistable problem with perfect geometry. By performing

a linear buckling analysis, a number of buckling modes can be obtained (e.g. Fig. 4.25(b)).

The buckling modes are added to the original perfect geometry based on the following

equation.

xupdate = x0 +∑ωix̄i. (4.37)

where x0 and xupdate are the original and updated geometries respectively. x̄i and ωi are

ith buckling mode and the corresponding weighting value respectively. In general, the first

66



buckling mode is critical and it can adequately represent the general imperfection. The

imperfection parameter, α , in Fig. 4.25 (b) is usually smaller than the thickness of the

beam (less than 1%). If the maximum displacement of the first buckling mode is defined as

x1max, the weighting value for the first mode is

ω1 = α/x1max. (4.38)

By solving the problem with the same load/boundary conditions shown in Fig. 4.25

(a) and the updated geometry in Fig. 4.26 (c), it is possible to obtain nonlinear behavior

considering imperfections.

0

0

Displacement

L
oa

d

Load vs. Displacement with Imperfection

with imperfection

without imperfection

Increasing 
the imperfection
parameter

Figure 4.26 Load-displacement curves with and without imperfections.

Fig. 4.26 shows how a bistability can be lost due to imperfection. The load-displacement

curve with perfect geometry has much greater actuation load than the one with the imper-

fect condition. If the imperfection parameter, α , is increased, it is possible to lose the

bistability because the second stable position can disappear as shown in Fig. 4.26. Even

though Fig. 4.26 is an extreme example, the imperfection analysis must be performed to
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design bistable and multistable compliant mechanisms. However, imperfection analysis is

not easy to implement with gradient-based optimization problems because of the difficulty

obtaining the gradients of the objective and constraint functions with imperfections.

Therefore, it is desirable to design bistable compliant mechanisms that are less sensitive

to imperfections. A design method for robust bistable compliant mechanisms that are not

sensitive to imperfection is introduced in the following chapter.

4.6 Conclusions

In this chapter, first, the bistability of conventional four-bar linkage mechanisms with tor-

sional springs on each joint was presented. There are two active torsional springs, which

have non-zero stiffness values, among the four springs on each joint. Two spring constants,

ks and kl , are related to the necessary and sufficient conditions of bistable four-bar link-

age mechanisms. A slider-crank mechanism with two springs was also investigated as a

special type of a bistable four-bar linkage mechanism. The necessary and sufficient con-

ditions show how their unstable positions are related to the buckling modes of compliant

structures. The similarity between the toggle position of the slider-crank mechanism and

the buckling modes of the clamped-clamped beam shows that the first buckling mode of a

compliant structure can be used to make it bistable.

The first buckling mode is used as the initially unstressed stable configuration of a

bistable compliant mechanism. In order to apply the idea of utilizing the buckling mode

to the topology synthesis, a modal strain energy formulation is introduced. Maximizing

modal strain energy raises the energy barrier between two stable positions and, in turn,

increases the possibility of having bistability.

A rotational and translational bistable compliant mechanisms are designed by maxi-

mizing the modal strain energy. Based on the results of the topology optimization, two

prototypes were fabricated. These demonstrate that utilizing the first buckling modes can
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provide bistability.

This methodology enables users to design a bistable compliant mechanism with desired

behavior using a topology synthesis approach. However, normally, bistability that includes

buckling behavior is very sensitive to imperfections in manufacturing processes, operation

conditions, and boundary conditions. This is because the effect of imperfections can change

the unstable behavior, shift/remove the stable position, and reduce the actuation loads.

In the following chapter, a design method for robust bistable compliant mechanisms is

introduced.

69



Chapter 5

Robust Design of Bistable Compliant Mechanisms Using
the Bistability of a Clamped-Pinned Beam

The work presented in this chapter is the first step towards development of a method for

synthesizing robust bistable mechanisms with distributed compliance. The bistability of a

cantilever beam under various loading conditions is introduced by solving a large defor-

mation problem. Through such analysis, it is possible to identify conditions under which a

beam will exhibit bistable behavior that is not sensitive to imperfections arising from manu-

facturing errors or boundary conditions. A compliant mechanism, designed as a counterpart

to the cantilever beam, will impose load-displacement conditions on the cantilever beam to

obtain bistability.

5.1 Introduction

This research investigates a new approach to the design of bistable compliant mechanisms

using the bistability of a clamped-free beam. Bistability plays an important role for a va-

riety of applications since energy is applied only to move the mechanism from one stable

position to another and no energy needs to be expended once a stable position is reached.

The behavior of a bistable compliant mechanism, in general, is highly non-linear and re-

lies on the buckling phenomenon. The buckling phenomenon involves instability of the

structure, and the instability is usually triggered by local buckling. In other words, local

buckling can dominantly produce bistability in an entire structure. The concept presented

here is to use a single clamped-pinned beam to create local buckling resulting in a bistable

70



mechanism. Additionally, buckling is very sensitive to imperfections in manufacturing

processes, operating conditions and boundary conditions. By utilizing the behavior of a

simple clamped-free beam, a method is presented for designing bistable mechanisms that

are robust against such imperfections

A solution for large deformation of a simple clamped-free beam is first obtained to

study its bistable behavior under various loading conditions. If the load is greater than the

critical buckling load, the beam can be deflected not only in the normal direction but also in

a ’reverse-lateral’ (RL) direction. The RL deformation will be a major topic of discussion

in this chapter. First, an initially straight beam must be bent to a certain curvature under

the action of the applied force. In the second loading condition, the partially bent beam is

further loaded so that it buckles in the RL direction into a stable position. The magnitude

and direction of the forces in both loading conditions that are conducive to bistability are

thus determined. A compliant mechanism is then designed such that its output generates

desired forces on the beam to deform it in the RL direction. We demonstrate that the RL

deformation is less sensitive to the imperfections and ensures bistable behavior.

Using clamped-pinned beams, two design examples (translational and rotational cases)

of bistable compliant mechanisms are presented. Results show very good correlation be-

tween the finite element analysis and experimental tests on prototypes.

5.2 Organization of This Chapter

In the next section, bistability of a clamped-free beam is first introduced, and then an ana-

lytical solution is derived for the large deformation of the beam. Following this, a method

for designing of a bistable mechanism using the clamped-free beam is discussed. Two case

studies, (i) symmetrical and (ii) asymmetrical bistable mechanisms, are introduced, and the

analytical results are compared to the experimental tests and FEA results.
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5.3 Bistability of a Clamped-Free Beam

5.3.1 Reverse-lateral Deformation

In general, a linear buckling analysis is performed to identify the stability of a structure.

The first buckling mode and corresponding critical load represent the unstable state of the

structure. Unlike the linear buckling analysis, the buckled status in a nonlinear analysis

represents the stable status of a structure under given boundary and loading conditions. For

example, the straight beam described in Fig. 5.1(a) has the buckled configuration, A1 or

B1, once a critical buckling load, Pcr, is applied in the axial direction at the free-end of the

beam. These configurations are identical and symmetrical to each other. Either of the two

configurations corresponds to the stable status of the beam under the given boundary and

loading conditions. The buckling direction, A1 or B1, usually depends on imperfections,

such as disturbances to the off-loading direction, defects in the structure, tolerance errors in

manufacturing, or imperfect boundary conditions. The buckled status retains the similarity

to the linear buckling in terms of its mode shapes. Note that the first linear buckling mode

represents stable equilibrium for a large deformation, while higher order buckling modes

do not.

B1 A1

B2

A2

Pcr P P> cr
ϕ

(a) (b)

Figure 5.1 Two stable stages of a beam with a force applied at the tip.
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If a force with an angle, φ , is applied to the free end of the beam, the bistability of this

condition differs somewhat compared to the axial loading condition. Fig. 5.1(b) describes

the two stable configurations of the loading (these are not buckled cases). Configuration A2

shows a normal static deformation, and configuration B2 shows the reverse-lateral (RL) de-

formation of A2. These configurations are uniquely defined by the vector P. Configuration

B2 satisfies the static equilibrium of the given condition, but it can only be reached with ad-

ditional history of the loading or boundary condition, such as the initial load, displacement,

or the velocity at the free end. Since the two configurations are unique and stable, any

configuration between these two is not stable. Therefore, any position of the free end, other

than these two positions, indicates instability. The reverse lateral deformation is useful in

the design of bistable mechanisms as will be shown in the following sections.

5.3.2 Solution for a Clamped-free Beam with a Reverse-lateral Defor-

mation

In large deformation problems with cantilever beams under various loading conditions, the

axial load is scaled to solve bending problems [32, 15, 50]. However, in this section, a large

deformation solution for an RL deformation is derived by scaling vertical directional loads.

An RL deformation of an initially straight cantilever beam with the length l is shown in

Fig. 5.2. A load P is applied to the free end. This load can be described as a combination

of Px and Py,

Px = Pcos(φ) = F,

Py = Psin(φ) = nF.
. (5.1)

where n = tanφ . The magnitude of P can be calculated as F
√

1+n2

In the figure, a and b are defined as the x distance from the y-axis and the y distance

from the x-axis to the end of the beam respectively. The notation s indicates the tangential

distance along the deformed beam, and d is the distance from the initial to the final position
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Figure 5.2 Problem definition of a reverse-lateral deformation.

of the beam end. θ is the angle between the slope and the x-axis along the beam, and θe is

the value of the angle, θ , at the end of the beam.

When a cantilever beam has an RL deformation, a strict relationship between θe and n

can be found. Fig. 5.3(a) shows an unstable equilibrium status of an RL deformation. The

load P is pointing to the clamped end of the beam. Therefore, there is no reaction moment

at the clamped end. This condition is identical to the buckling condition of a pinned-pinned

beam, and θe can be calculated as 2 tan−1(n). Once the position of the load is lower than

the unstable equilibrium position (i.e., Fig. 5.3(a)) as shown in Fig. 5.3(b), the direction of

the moment at the clamped end becomes opposite to the stable direction and the deformed

shape no longer has the first buckling mode. The structure is unstable and will find the

other stable position, as described in Fig. 5.1(b) A2. Additionally, θe cannot be greater

than or equal to the loading direction as shown in Fig. 5.3(c). The corresponding θe is

the maximum and can be obtained as π + tan−1(n). Therefore, the following condition is

always true for the RL deformation:

2 tan−1(n) < θe < π + tan−1(n). (5.2)

Similar to the normal deformation shown in Fig. 5.1(b) A2, using an elliptic integral

solution [32], with the assumption that the beam is linearly elastic and inextensible, the de-

flection of the free end in the aforementioned problem can be obtained. Note that Eqn. (5.2)
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Figure 5.3 Illustration of the relationship between θe and n.

should be applied to the entire procedure of this analysis. The moment along the deformed

beam is given by

M(s) =−nF (a− x(s))+F (b− y(s)) . (5.3)

The curvature, κ , is defined as the rate of change of the slope angle of the curve with

respect to distance along the curve. κ can be obtained using the following relationship of

the Bernoulli-Euler equation, which states that the curvature is proportional to the bending

moment:

κ =
dθ
ds

=
M
EI

(5.4)
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Given that the above relationship is available in many solid mechanics textbooks [19,

11], it is not discussed in detail here. Substituting Eqn. (5.3) into Eqn. (5.4), and differen-

tiating with respect to s results in

dκ
ds

=
F
EI

(
−dy

ds
+n

dx
ds

)
. (5.5)

Using Eqn. (5.4) and applying the chain rule of differentiation, the left side of Eqn. (5.5)

can be written as

Left side of Eqn. (5.5) =

dκ
ds

=
d2θ
ds2 =

d
ds

dθ
ds

=
d

dθ

(
dθ
ds

)
dθ
ds

=
dκ
dθ

κ =
d

dθ
κ2

2

The relationships between x and y, and θ and s are given by the differential equations

dx/ds = cosθ and dy/ds = sinθ respectively. These relationships are always true given

that dx, dy, and ds are infinitesimal. Substituting these relationships into the right side of

the equation results in

Right side of Eqn. (5.5) =

F
EI

(
−dy

ds
+n

dx
ds

)
=

F
EI

(−sinθ +ncosθ)

At this point, by substituting the left and right sides, Eqn. (5.5) can be rewritten and

rearranged as

d
dθ

(
κ2

2

)
=

F
EI

(ncosθ − sinθ) . (5.6)

Integrating Eqn. (5.6) with respect to θ yields
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κ2

2
=

F
EI

∫
(ncosθ − sinθ)dθ

=
F
EI

(nsinθ + cosθ)+Ce, (5.7)

where Ce is a constant in the integration, i.e., it can be found by applying the condition at

the end of the beam. Given the curvature at the end of the beam is zero and setting the slope

angle at the end as θe, Ce can be obtained as

Ce =− F
EI

(nsinθe + cosθe) . (5.8)

Substituting Eqn. (5.8) into Eqn. (5.7) and solving for κ yields

κ =

√
2

F
EI

(nsinθ + cosθ −nsinθe− cosθe)

=
√

2
α
L

√
nsinθ + cosθ −nsinθe− cosθe =

dθ
ds

, (5.9)

where α2 = FL2

EI is the dimensionless form of the input force, F .

Reorganizing the equation for α yields

√
2

α
L

∫ L

0
ds =

∫ θe

0

dθ√
nsinθ + cosθ −nsinθe− cosθe

. (5.10)

Solving for α yields

α =
1√
2

∫ θe

0

dθ√
nsinθ + cosθ −nsinθe− cosθe

. (5.11)

Substituting the relationships between x and y, and θ to Eqn. (5.9) results in
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κ =
dθ
dx

cosθ

=
√

2
α
L

√
nsinθ + cosθ −nsinθe− cosθe, (5.12)

and

κ =
dθ
dy

sinθ

=
√

2
α
L

√
nsinθ + cosθ −nsinθe− cosθe. (5.13)

Rearranging these equations yields

a
L

=
1√
2α

∫ θe

0

cosθdθ√
nsinθ + cosθ −nsinθe− cosθe

, (5.14)

and

b
L

=
1√
2α

∫ θe

0

sinθdθ√
nsinθ + cosθ −nsinθe− cosθe

. (5.15)

Eqn. (5.14) and (5.15) show the dimensionless displacements of the beam end. These

dimensionless displacements and loads are not geometry or material dependent. Numerical

integration using Gaussian quadrature is used to solve Eqn. (5.11), (5.14) and (5.15) nu-

merically. Alternatively, these integrals can be solved using the elliptic integral tables [17]

(See Appendix D for these equations).

In Fig. 5.4(a) and (b), the dimensionless variables for the horizontal and the vertical

displacement are plotted. The lines in the plots are the response curves when n varies from

−2.0 to 2.0. Since n = tanφ is monotonic and odd function for−π/2 < φ < π/2, the signs

of n and φ must be same. Negative n indicates that normal deformations (φ < 0) occur,

and positive n is for RL deformations (φ > 0). When n = 0, only axial load is applied
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to the clamped-free beam (φ = 0). If n is smaller than zero, the response curves start

from the origin of the coordinates and increase monotonically. In the case of a positive n

value, the curves are convex functions and do not start from a zero displacement or zero

load. These convex curves have dimensionless loads of minimum values, and the minimum

values are the required loads for the given loading angle, n, to have the RL deformations. It

is conceivable that the minimum load for n = 0 is equal to the linear buckling or critical load

of the beam (Fig. 5.4). Since the linear buckling load for this system is Fcr = π2EI/4L2,

the critical dimensionless load is α2 = π2/4≈ 2.47. This is the minimum load required to

trigger any RL deformation.

Fig. 5.5 shows the minimum required loads to activate RL deformations for various

values of n. These loads are only available for positive n values. It is important to note that

the dimensionless load in the figure is for the load F and not for P. P can be calculated

using Eqn. (5.1) once F is known.

Unlike the normal deformation in which the starting points are always the same, the RL

deformation has a different deflection path. Combining the results of Fig. 5.4(a) and (b)

produces the deflection paths at the end of the beam. Fig. 5.6 shows these paths for various

values of n. The normal (n < 0.0) and the RL (n > 0.0) deformations are compared in

Fig. 5.6(a) and (b) respectively. The starting points of the normal deformation are identical

at the point [x/L = 1,y/L = 0] and are spread out once θe increases. In contrast, the

RL deformation path has a unique starting point (◦) for each value of n. It also has a

unique initial point (?) for the minimum load. For a more specific representation of the

deformation, we can look at n = −1.0 and 1.0 (Fig. 5.7). In Fig. 4.1(b), the initial point

is located in the middle of the deflection path. Once P increases without changing its

direction, the beam end will move along the deflection path by decreasing its x/L value. It

may be able to follow its positive x/L direction, if there is a displacement condition forcing

this direction.

There are two factors that should be noted from the figures: the maximum stresses and
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Figure 5.4 Dimensionless displacement of the free-end vs. dimensionless load for the loading
direction, n = 0.0 · · ·1.2.
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Figure 5.5 Minimum dimensionless load for the loading direction, n =−2.0 · · ·2.0.

the recovery energy. Since the moment arm for a negative n value is greater than that for

a positive n value, the maximum stress at the fixed end is smaller with a positive n. With

a negative n value, the maximum stress always occurs at the clamped end. With a positive

n value, the maximum stress occurs where the maximum curvature is located. If the same

minimum loads P (Fig. 5.7) are applied to the cases with n =−1 and 1, the stress at the fixed

end of the case with positive n is always smaller than the stress for negative n. To recover to

the original shape by following the paths, the applied force for a negative n value decreases.

However, the applied force for the RL deformation increases dramatically. Fig. 4.1(a) and

(b) show this graphically. The slopes for positive n values are stiff and require large loads

when the displacement becomes zero. This implies that there is a potential energy barrier to

go over. And the smaller the positive value n is, the stiffer the slope becomes. This implies

that the bistability of the RL deformation is robust. On the other hand, the slopes for the

negative n values are decreased gradually without any barrier on the load input.
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Figure 5.6 Feasible deflection paths of the free-end for the loading direction: (a) n =−2.0 · · ·0.0,
(b) n = 0.0 · · ·2.0.
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Figure 5.7 Deflected shapes for (a) n =−1.0 and (b) n = 1.0.
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If a load P is applied with an angle of 45◦, up to the minimum loading, there is a unique

solution for the deformation. When the load is greater than the minimum load, there are

multiple solutions. The combined solution for n = −1.0 and 1.0 illustrates (Fig. 5.8) the

range of feasible solutions is divided into the two regions of unique and multiple-solution

regions.

P

P

unstable
unique
solution

multiple
solutions

multiple
solutions

Figure 5.8 Feasible range of the deflection when load P applied with an angle of 45◦.

5.4 Design of Bistability Using a Clamped-Pinned Beam

The RL deformation of a cantilever beam can be used to design bistable mechanisms by

applying a pin joint at the end because the pin joint does not provide a moment to the end of

the beam. Fig. 5.9(a) shows a clamped beam and an undefined mechanism that are labeled

A and B respectively. These two bodies are pin-jointed to each other. Body B has input and

output nodes.

To achieve bistability in the entire mechanism, the deformed position and the reaction
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Figure 5.9 Conceptual drawing of a bistable compliant mechanism with a clamped-pinned beam.

force at the pin-joint of Body B must satisfy the RL condition of Beam A. The displace-

ments at the joint should be identical and the reaction loads should be equal and opposite.

The topology design of Body B is not discussed in this chapter. It can be designed using

topology optimization with nonlinear analysis [44].

To utilize the RL deformation to generate bistabilities, it is necessary to define the

second stable configuration. In this section, the deformation vector of the end of the beam

is chosen. To describe the vector, the dimensionless parameters d and γ are used. These two

parameters are illustrated in Fig. 5.2 and can be calculated respectively, using the following

two equations:

d
L

=

√(
1− a

L

)2
+

(
b
L

)2

, (5.16)
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and

γ =
π
2
− tan−1

(
1−a/L

b/L

)
. (5.17)

Fig. 5.10 shows the relationship between these two parameters for various values of n.

These curves are plotted based on the fact that the θe is greater than the minimum values

(Eqn. (5.2)) and is smaller than π . Once n and γ are determined, d/L can be graphically

found using the figure.
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Figure 5.10 Relationship between γ and d/L for various values of n.

5.4.1 Design of Bistability Using Two RL Deformations

In certain cases, n and γ have a relationship. For example, if two identical clamped-pinned

beams are used and connecting using a living hinge (Fig. 5.11), there are symmetrical RL
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deformations, and the relationship is

n = C cotγ . (5.18)

with C = 1. The positive constant C varies once an asymmetrical condition is applied.

Both stable configurations of the symmetric case are depicted in Fig. 5.11. Applying

Eqn. (5.18) to Fig. 5.10 produces a bijective relationship between d/L and γ . This relation-

ship is exact for the symmetric condition and plotted in Fig. 5.12. This relationship does

not depend on any properties related to cross-section and material properties.

Figure 5.11 Both stable configurations of a symmetrical bistable mechanism.
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Figure 5.12 Relationship between γ and d/L for a symmetrical condition.
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It is important to note that utilizing the two identical RL deformations in Fig. 5.11

is more robust to provide bistable behavior than utilizing the first buckling mode of a

clamped-clamped beam shown in Fig. 4.25 (a). The essential factor producing the robust-

ness is the small stiffness of living hinge at the center. The torsional stiffness of the living

hinge is much less than bending stiffness of the two beams and provide sufficient condition

(Eqn.(4.21)) to ensure bistability as discussed in Chapter 4. As shown in Table 4.3, min-

imizing the torsional stiffness of the living hinge, kθ , is desired to ensure the bistability.

Maximizing the translational stiffness, kδ , is satisfied by fixing the ends of the two beams

in Fig. 5.11.

Table 5.1 presents analytical and experimental results of four cases that were uniquely

defined by their included angles of Γ, where Γ = 2γ . The results are in good agreement

with error of less than 5%. The material used in the tests is Nylon66. The results of the

finite element analysis for the four cases are shown as the load-displacement responses in

Fig. 5.13

Table 5.1 Comparison of the results from Fig. 5.12 and experimental tests for various values of
the included angle, Γ.

Desired d/L γ n Γ = 2γ d/L
(Fig. 5.12) [rad] Eqn. (5.18) [degree] (experiment)

0.27 1.40 0.17 160◦ 0.25

0.50 1.22 0.37 140◦ 0.48

0.81 1.05 0.57 120◦ 0.77

1.05 0.83 0.91 95◦ 1.05

Fig. 5.14 shows prototypes of the four cases in their initial and second stable configura-

tions. These prototypes are made of Homopolymer Polypropylene which has greater ma-

terial nonlinearity than Nylon66. Therefore the second stable positions are slightly larger

than the values shown in Table 5.1.

For the case with asymmetrical RL deformation shown in Fig. 5.15, the following two

relationships need to be satisfied in the global coordinates:
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Figure 5.13 Load-displacement plots for four symmetric problems [ANSYS]

~PA = −~PB

~dA = ~dB (5.19)

It may be convenient to use an approximated solution since it is not easy to obtain

the directions, n, of the reaction forces, P, at the pin-joint intuitively. The relationship in

Fig. 5.12 can be used to solve asymmetric problems because the constant C in Eqn. (5.18)

for one body is less than 1 and the value for the other body is greater than 1, and the average

C for both beams will be close to the value 1. A linear trend line for Fig. 5.12 was selected

to solve this problem. The approximated relationship is

di =−1.1372γiLi +1.9183Li (i = A,B) (5.20)

89



(a) 160◦ (b)

(c) 140◦ (d)

(e) 120◦ (f)

(g) 95◦ (h)

Figure 5.14 Bistable mechanisms using symmetric RL deformed beams. = (a) 160◦, (b) 140◦, (c)
120◦, and (d) 95◦. 90



Figure 5.15 Two stable configurations of an asymmetric bistable mechanism.

The following dimensions are used to estimate the displacement of the pin-joint.

LA = 4.538[in]

LB = 6.034[in]

Γ = γA + γB = 127◦ = 2.22[rad]

. (5.21)

Substituting these values into Eqn. (5.20) to solve for d yields

d = dA = dB = 3.40[in]. (5.22)

The dimensionless displacement d/L for the beam, A, is

dA/LA = 0.749. (5.23)

Our results were confirmed using a FEA tool, ANSYS, and experimental tests. The

deformed configuration and the load-displacement curve are shown in Fig. 5.16. The result

showed dA/LA = 0.770 which correlated well with the value attained from experimental

testing, 0.766. These values show that the estimated displacement is within an error range
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of 2∼ 3%. Alternatively, this problem can be solved using an optimization algorithm.
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Figure 5.16 (a) Deformed result of an asymmetrical problem, and (b) load-displacement curve for
the asymmetrical example.

So far, bistable behaviors that produce translational motions are discussed in terms of

the vector d shown in Fig. 5.2. In the next subsection, a rotational bistable compliant

mechanism is designed using the RL deformation.

5.4.2 Design of a Rotational Bistable Compliant Mechanism Using RL

Deformation

A rotational bistable compliant mechanism can be designed by arranging the RL defor-

mations cyclic-symmetrically. Instead of using a flexible beam as the counterpart of RL

deformation, in this case, a rigid body is used. For example, a circular rigid body can be
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the counterpart of the RL deformation, and another annular rigid body can work as a fixed

boundary of the beam. The relative rotation of the two rigid bodies can provide bistability.

A 90 degree section of a rotational bistable compliant mechanism is shown in Fig. 5.17.

Figure 5.17 Rotational bistable compliant mechanism design

In the figure, θs is defined as the angle between the two stable positions, and θinc is the

included angle between the initial configuration of the RL beam and the line that connects

the end of the beam and the center of the rigid circle. L, R, and Rd are the length of the RL

beam, the radius of the rigid circle, and the radius of the inner bound of the annular rigid

body respectively.

In this case, Eqn. (5.16) and (5.17) are still true, and the relationship between n and γ

is described as

n = arctan
(

γ +
θs

2
− π

2

)
. (5.24)

In the rotational bistable compliant mechanism design, since γ and d in Fig. 5.2 are not

directly related to the design, other design variables are used. For example, if θs and R are

given as
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θs = 17◦

R = 20[mm],

the relationship between Rd and θinc can be obtained by using Fig. 5.18(a). The curves

in Fig. 5.18(a) and (b) are unique to the given values of θs and R. Since, Fig. 5.18(a)

and (b) are dependent on each other, selecting a point on the curve in Fig. 5.18(a) will fix

the equivalent point on the curve in Fig. 5.18(b). For example, if θinc = 162◦ is selected,

the Rd is fixed at 41.5[mm] and the corresponding RL beam is defined by the length, L =

22.13[mm], and the angle, n = 0.018, as shown in Fig. 5.18(b).
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Figure 5.18 (a)The relationship between Rd and θinc, and (b) the relationship between L and n
when θs = 17◦ and R = 20[mm].

The stress distribution along the beam at the second stable configuration can be obtained

by summating the stress due to the moment and force at the cross section as the following
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equations. Note a rectangular uniform cross section along the beam is used.

σ(s) =
Eh
2

κ(s)
︸ ︷︷ ︸

stress due to moment

+
Eα2h2

12L2 cos(θ(s))
︸ ︷︷ ︸

stress due to force

, (5.25)

where E and h are Young’s modulus and the in-plane thickness of the beam respectively.

All other variables, κ(s), α , and θ(s), can be calculated once L and n are selected from

Fig. 5.18(b).

Fig. 5.19 shows a prototype of the rotational bistable compliant mechanism based on

the example shown in Fig. 5.18. Fig. 5.19(a) and (b) display the initial and the second stable

configurations respectively. The angle between the two stable positions is slightly (< 1◦)

greater than 17◦ due to the nonlinear material properties of Homopolymer Polypropylene.

(a) the initial stable position (b) the second stable position

Figure 5.19 A rotational bistable compliant mechanism using RL deformed beams.

A tool to design rotational bistable compliant mechanisms using RL deformations is

developed based on the design approach covered in this subsection. A user can specify the

design requirements, such as θs and R, as the inputs of the design tool. Once the value n

is selected by the user, the other dimensions, L, Rd , and θinc, can be obtained as design

outputs of the design tool. From the obtained dimensions, stress information along the

RL deformed beam can be evaluated and plotted. This tool is developed in the Matlab

environment. The GUI of the design tool is shown in Fig. 5.20 with an example problem.
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Figure 5.20 A rotational bistable compliant mechanism design tool.

The design tool shown in Fig. 5.20 has three panels. The axis in the left panel provides

the 90 degree section of the final design of the rotational bistable compliant mechanism.

The larger and the smaller circles represent the annular and circular rigid bodies respec-

tively. The RL beam and its deformed shape are shown as a straight solid line and curved

broken line respectively. The initial and the second stable positions are shown on the cir-

cular rigid body. The two curves in the center panel provide for users to select the value

of n. Once the value, n, is chosen, the other dimensions, L, Rd, and θinc, are automatically

determined. Once the initial design is finalized, users can estimate the stress distribution

along the deformable members in the rotational bistable compliant mechanism by using

the right panel of the tool. In the procedure, users must provide the sectional and mate-

rial properties. Note that the maximum stress during the operation can be higher than the

maximum shown in the panel.

Design of bistable compliant mechanisms using RL deformations has been discussed

in this section. In the following subsection, multistable compliant mechanisms that have
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more than two stable states are designed using RL deformations

5.4.3 Design of Tristable Compliant Mechanisms Using RL Deforma-

tion

By applying the same concept used to design the tristable switch in Chapter 4 (Fig. 4.10),

it is possible to utilize contact conditions to generate tristability using RL deformations.

Fig. 5.21 shows a tristable switch that contains two RL beams. Fig. 5.13 (b) is the initial

state, and Fig. 5.13 (a) and (c) are the other two stable configurations. In each stable state

shown in (a) and (c), only one beam is in its active position of RL deformation. The other

beam is inactive and stays with its initial shape that is constrained by the contact condition

applied to the beam. Using the contact condition, the instant center of the rigid body is

fixed. Therefore the tristable switch can be designed using the same approach applied to

design a rotational bistable compliant mechanism discussed in the previous subsection. It

is also possible to use the design tool introduced in the previous subsection.

Figure 5.21 A tristable compliant switching mechanism.

A multistable compliant mechanism can be designed by combining multiple bistable

compliant mechanisms in series [62]. A series combination of the two bistable mecha-

nisms produces up to four stable equilibria. When the two bistable compliant mechanisms

are identical, it is possible to design a tristable compliant mechanism because the two stable

equilibria among the four are overlapped. Three stable configurations of a series combi-

nation of two identical rotational bistable compliant mechanism are shown in Fig. 5.22.
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Further details to synthesize multistable compliant mechanisms are discussed in Chapter 6.

(a) e1 (b) e2 (c) e3

Figure 5.22 A multistable rotational compliant mechanism using RL deformed beams.

5.5 Conclusions

In this chapter, the use of the bistability of a clamped-free beam to design bistable compliant

mechanisms has been discussed. A reverse lateral (RL) deformation has been introduced

to describe the bistability of the beam with various directions of loading. An analytical

solution for a large amount of deformation in the beam has been obtained using numerical

and elliptic integrations. The solution has been provided as several response plots. This

study has also shown that an RL deformation is less sensitive to imperfections, such as

disturbances to the off-loading direction, defects in the structure, tolerance errors in manu-

facturing, or imperfect boundary conditions, compared to a normal deformation.

The large deformation solution of the clamped-free beam has been applied as a re-

quired behavior for the clamped-pinned beam in the design of bistable compliant mecha-

nisms. In case studies, two design examples were presented: a translational and rotational

bistable compliant mechanisms. The exact solution was used to evaluate symmetrical trans-

lational bistable compliant mechanisms. Additionally, linear approximation was applied to

calculate an asymmetrical bistable compliant mechanism. Here, for translational bistable
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compliant mechanisms, only an exact solution for a symmetrical case with two RL defor-

mations has been provided. The exact solution for the asymmetrical case with additional

design variables of the ratio (lB/lA) can provide a convenient mode of design. However, an

approximate solution for an asymmetrical case shows sufficient accuracy. Its accuracy can

be reduced once the ratio of the lengths of the beams becomes very small or large. A design

approach for rotational bistable compliant mechanisms with RL deformations has been ex-

plained. A design tool for rotational bistable compliant mechanisms has been used. The

results of experimental tests and finite element analysis are found to be in good agreement

with the analytical solutions.

The design approaches introduced in this chapter enables the user to (i) design bistable

translational compliant mechanisms with two RL deformations by utilizing provided plots

and (ii) design rotational compliant mechanisms with rigid bodies as the counterparts of

the RL deformation. Either a single beam or a rigid body is used as a counterpart for the

RL deformed beam to provide bistability; In fact the counterpart can be another compliant

mechanism that can generate the same reaction force to the RL deformed beam to ensure

bistability.
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Chapter 6

Synthesis of Multistable Compliant Mechanisms (MSCM)

6.1 Introduction

In this chapter, a mathematical approach to synthesize multistable compliant mechanisms

(MSCM) by combining multiple bistable equilibrium mechanisms is presented. The behav-

ior of a bistable compliant mechanism, in general, is highly nonlinear. Using combinations

of such nonlinearities to capture the behavior of multistable (more than two stable posi-

tions) compliant mechanisms can be quite challenging. So far, no definitive method has

been developed to overcome this difficulty. To determine multistable behavior, a simplified

mathematical scheme capturing the essential parameters of bistability, such as the load-

thresholds that cause the jump to the next stable position, is introduced in this chapter.

More specifically, various types of bistabilities are identified and categorized by character-

izing the essential elements of their complicated deformation pattern. This mathematical

simplification enables designers to characterize bistable mechanisms by using piecewise

lower-order polynomials and, in turn, synthesize multistable mechanisms.

Three case studies involving combinations of two, three, and four bistable behaviors

are presented for the purpose of generating multistable mechanisms with up to 16 stable

positions. The methodology of combining multiple bistable behaviors enables designers

to design a compliant mechanism with a desired number of stable positions. A design

example of a rotational quadristable compliant mechanism consisting of two bistable sub-

mechanisms is presented to demonstrate the effectiveness of the approach.
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6.2 Organization of This Chapter

In the next section, nonlinear behavior of MSCMs is discussed. In the following section,

a simplified model by using mathematical expressions is introduced. Then, a method of

synthesizing multistability from multiple bistabilities is described. Following this, three

case studies that involve a combination of two, three, and four bistable behaviors to generate

multistable behaviors are discussed. Finally, to demonstrate the synthesis methodology, a

rotational multistable compliant mechanism is designed.

6.3 Understanding the Characteristics of MSCMs

6.3.1 Understanding the Characteristics of MSCMs1

A multistable system is a system with more than two stable equilibrium states. Its stable

positions correspond to the local minima of the potential energy curve of the system. This

is analogous to the ‘ball on the hill’, as shown in Fig. 6.1. The potential energy of the ball

depends on its position on the hill and hence on x. The potential energy is

U(x) = mgh(x), (6.1)

where m is the mass of the ball, g is the acceleration of gravity and y = h(x) is the equation

that defines the height of the hill at x. Thus, the equilibrium positions are located where

∂h(x)/∂x = 0. Hence,

∂U
∂x

= mg
∂h
∂x

= 0. (6.2)

The stable positions (solid balls) are located at the local minima of the hill, i.e., locations

1Some of the explanations in this section are based on the explanations in Section 4.3.

101



(a) Potential energy

(b) Load-displacement

Figure 6.1 Potential energy and load-displacement curves of a multistable system.

where

∂ 2U
∂x2 = mg

∂ 2h
∂x2 > 0. (6.3)

The gravitational force, Fg, acting upon the ball can be regarded as the action of the

gravitational field that is present at the location of the ball. Because the gravitational force

is in the potential field, it is a conservative force equal and opposite to the gradient of a
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potential. The gravitational force is expressed as follows:

Fg =−∂U
∂h

=−mg (6.4)

By ignoring the friction on the surface, the external force applied to the ball to hold the

stable position can be obtained by Eqn. (6.2).

Fexternal =−Fg
∂h
∂x

=
∂U
∂h

∂h
∂x

= 0. (6.5)

Its derivative at stable positions can be obtained by Eqn. (6.3). Hence,

∂Fexternal

∂x
=

∂ 2U
∂x2 > 0. (6.6)

The first equality condition of Eqn. (6.4) is generally true for all conservative forces.

Additionally, Eqn. (6.5) and (6.6) are required conditions to the local minima of the po-

tential energy due to the conservative forces. These conditions must also be satisfied for a

spring force, Fs, because it is a conservative force. Since external load applied to a spring

is equal and opposite to the spring force, the following equations can be derived for stable

equilibria of the spring:

Fexternal = −Fs =
∂U
∂x

= 0 (6.7)

∂
∂x

Fexternal = −∂Fs

∂x
=

∂ 2U
∂x2 > 0.

The equilibria, e1, e2 and e3, in Fig. 6.1(b) satisfy the conditions described in Eqn. (6.8).

Therefore, load-displacement responses can be used to identify stable equilibria, which are

located where the load input is zero and the slope is positive. In other words, each stable

configuration of the system is defined when its potential energy is at one of its local minima

(potential energy curve), or the stiffness of the system is positive without any external load
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input (load-displacement curve).

The characteristics of multistable systems can be described by the potential energy

curve and the load-displacement curve. The characteristics can be characterized by three

attributes: the number of stable configurations (e.g., position and shape), the mechani-

cal properties at the configurations (e.g., stiffness and natural frequency), and the corre-

lations between the stable equilibria (e.g., actuation load, static jump, energy barrier, and

energy change between two stable equilibria). Here, the actuation load is defined as a load-

threshold that causes the jump from one stable position to the next; it can be identified with

the aid of a load-displacement curve (Fig. 6.1(b)). Some of the characteristics, such as the

stable position and actuation load, become design requirements.

6.3.2 Nonlinear Behavior of MSCM

In general, multistability requires snap-through behaviors to reach different stable config-

urations. Snap-through behaviors normally cause large displacements and large rotations,

which require geometric nonlinear analysis. This requirement is true for any mechanism,

rigid or compliant. Nonlinear problems cannot be solved in a single step and require it-

erative algorithms such as the Newton-Raphson method or a modified Newton-Raphson

method. However, in some nonlinear buckling problems, such methods cannot be used by

themselves because the tangent stiffness matrix may become singular and cause conver-

gence difficulties. Such nonlinear buckling analyses are required when the structure either

collapses completely or snaps-through to another stable configuration. For such situations,

an alternative iteration method is required.

Path following, load-control and displacement-control methods can be used for collapse

or snap-through behavior. An example of a bistable mechanism is shown in Fig. 6.2. A

partially rigid and partially flexible curved beam with pinned-fixed boundary conditions is

illustrated in the figure. A buckled configuration of the straight beam is utilized to find the

initial curvature of the flexible member. When the moment is applied at the pinned end, the
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other stable configuration is reached by means of snap-through behavior.

M
+θ Rigid member

Flexible member

Figure 6.2 A simple bistable compliant mechanism.

Of the three methods, the load-control method is the most appropriate for our problem

since it provides the simplest response curve. Fig. 6.3 shows the load-displacement curves

of the problem described in Fig. 6.2. Fig. 6.3(a) is obtained with a path-following method,

such as Arc-length or Riks method [8, 4]. The complicated curve representing the post-

buckling behavior may not depict a real situation. Fig. 6.3(b) shows the same response

curve obtained with the displacement-control method. Fig. 6.3(b) is obtained by increasing

and decreasing the displacement monotonically. The displacement-control method reduces

the complexity but does not eliminate negative slopes. On the other hand, the load-control

method captures the essential characteristics, as shown in Fig. 6.3(c), stripping away the

unnecessary complexity including the negative slopes of Fig. 6.3(a) and (b). Fig. 6.3(c)

is obtained by gradually increasing the input load to the maximum positive load and then

decreasing it to the minimum negative. There are several advantages of the load-control

method: the response curve is always either stable or marginally stable (zero or positive

slope) during the nonlinear analysis, and the complicated post-buckling behavior is elimi-

nated without affecting the key parameters such as the stable positions and actuation loads.

In the rest of the chapter, the load-control method is used for nonlinear finite element anal-

ysis.

An example of load-displacement curves for an MSCM with four stable equilibria is

illustrated in Fig. 6.4. In general, a multistable compliant mechanism with n-stable equilib-

ria has the following representative characteristics: n equilibrium positions, ei, and 2(n−1)

actuation loads, Fi− j, which are the required loads to jump from ei to e j. Each stable equi-
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(a)

(b)

(c)

Figure 6.3 Load-displacement curves of : (a) solved using path following method, (b) solved
using displacement-control method, and (c) solved using load-control method. (ABAQUS).
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librium, ei, is circled in the figure. The six dotted arrows parallel to the load (F) axis rep-

resent load-thresholds (actuation loads). When the load reaches the load-thresholds, there

will be a sudden displacement or static jump. There are six corresponding static jumps de-

picted by the dotted arrows parallel to the displacement (x) axis. Note that the complicated

post-buckling behavior is not shown in the figure.

F1-2

F2-3

F3-4

F2-1

F3-2
F4-3

e1 e2 e3 e4

F

x

Stable equilibrium

Hysteresis by controlling load

Static jump

Actuation load

Figure 6.4 Illustration of the nonlinear behavior of a multistable compliant mechanism with four
stable equilibria.

6.3.3 Simplified Mathematical Expression of Bistable Behavior

To represent the essential parameters such as stable positions and actuation loads, the

bistable behavior is mathematically expressed with an approximated piecewise-continuous

function, F(δ ), which is described in Eqn. (6.8). The piecewise-continuous function is

plotted in Fig. 6.5. The sub-functions, f1(δ ), f2(δ ) and f3(δ ), which are required to sat-

isfy the matching conditions in Eqn. (6.10), represent the key parameters of the bistable

behavior. The parameters A and B in Eqn. (6.8) denote the displacements where the static

jumps start. The sub-functions f1(δ ) and f3(δ ) represent the stable intervals and are third-

order polynomials. The sub-function f2(δ ) between the two stable intervals represents the

unstable region and is a fourth-order polynomial. The input load at the initial (δ = 0)

equilibrium and the second (δ = β ) stable equilibrium must be zero, and the slope at the
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displacement where the static jump starts must be zero. Additionally, the function must

satisfy the prescribed value of the actuation load as follows:

F(δ ) =





f1(δ ) δ < A

f2(δ ) A≤ δ < B

f3(δ ) B≤ δ

. (6.8)

F(0) = F(β ) = 0,

∂F
∂δ

∣∣∣∣
δ=A

=
∂F
∂δ

∣∣∣∣
δ=B

= 0, (6.9)

F(A) = F1−2, and F(B) = F2−1.

Fig. 6.5 depicts an example of the approximated function, F(δ ), of the bistable behavior

shown in Fig. 6.3(a). It is important to note that f2(δ ) in Fig. 6.4 is not meant to capture

the post-buckling behavior of Fig. 6.3(a) but, instead, represents the instability between

the stable intervals. Most of the bistable behaviors can be simplified with such piecewise-

continuous functions. Furthermore, some simple bistability can be expressed as a single

third-order polynomial.

Figure 6.5 Piecewise-continuous function representing the key parameters (stable positions and
actuation loads).
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6.4 Combining Multiple Bistable Behaviors in Series

There are two ways to combine bistabilities: parallel and series combinations. A parallel

combination of bistable behaviors changes the existing key parameters and helps designers

synthesize new bistable mechanisms from existing bistable compliant mechanisms. To

generate multistability from existing bistable compliant mechanisms, bistable behaviors

are combined in series.

To show how the concept of combining bistable systems can synthesize multistability,

the simplified mathematical expressions of bistable behavior were introduced in the pre-

vious section. The approach simplifies the complicated structural bistabilities into simple

representation that enables easy verification of the desired multistability.

To begin, two translational 1-D bistable systems, which are shown in Fig. 6.6(a) and (b),

are defined. The second stable equilibrium position is at β1 in one system and at β2 in the

other system. The forces, Fi, and the displacements, δi, are parallel to the intended direction

of motion of each bistable system. The two bistable systems are combined in series to form

the multistable system shown in Fig. 6.6(c). This combination can be accomplished by

applying a rigid connector between the bistable systems. Note that if n bistable behaviors

are combined in series, up to 2n stable positions can be obtained. This phenomenon is

explained in the following section.

Two third-order polynomials are used to express the bistabilities. The two bistable

systems are called as BES1 and BES2, and their mathematical expressions are as follows:

BES1 :F1(δ1) = K1δ1 (δ1−α1)(δ1−β1) (6.10)

BES2 :F2(δ2) = K2δ2 (δ2−α2)(δ2−β2) .

where αi and βi are the unstable and stable equilibrium positions of each bistable system

respectively, and the Ki values are constants proportional to the actuation loads, Fi.
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(b)
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Figure 6.6 (a)(b)Two bistable systems and (c) a combined multistable system.

The potential energy, Ui, stored in each bistable system is the total recoverable mechan-

ical energy and can be written as

Ui =−
∫

~Fs ·d~δi =
∫

~Fi ·d~δi. (6.11)

The total potential energy, Utot , can be obtained by

Utot = U1(δ1)+U2(δ2) = U1(x1− x2)+U2(x2), (6.12)

where Utot has four (= 22) local minima, as expected, at

(x1,x2)min = (0,0),(β1,0),(β2,β2),(β1 +β2,β2). (6.13)

Because the only controllable coordinate is x1, the corresponding x2 depends on the po-

tential energy path. Hence, the accessibilities of the four local minima are path-dependent.

The accessibilities are discussed in detail in the following case studies.
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6.4.1 Combining Bistable Behaviors with Different Actuation Loads

For two bistable systems connected in series, four distinct types of combination are possible

on account of the magnitudes of the actuation loads of the increasing and decreasing load

steps. The four types of bistability combinations are defined as

β1 > β2





|Fac1A |< |Fac2A |




|Fac1D |< |Fac2D | : TYPE12

12

|Fac2D |< |Fac1D | : TYPE12
21

|Fac2A |< |Fac1A |




|Fac1D |< |Fac2D | : TYPE21

12

|Fac2D |< |Fac1D | : TYPE21
21

where βi and Faci are illustrated in Fig. 6.7 and explained in Table 6.1. For convenience,

the bistable behavior with the larger interval between the two stable equilibria is defined as

BES1.

Table 6.1 Actuation loads and equilibrium positions defined in two bistable systems.

Bistable Actuation Load Actuation Load Unstable 2nd
System of Increasing of Decreasing Equilibrium Stable

Load Step Load Step Equilibrium

BES1 Fac1A Fac1D α1 β1

BES2 Fac2A Fac2D α2 β2

Figure 6.7 Load-displacement curves of two bistable behaviors (TYPE21
21).
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The integers next to TYPE symbolize the bistable behaviors. The bistable behavior

with the largest β is set as integer 1 or BES1. The superscript and subscript represent the

increasing and decreasing load steps respectively. The sequence of integers corresponds

to the ascending order of the magnitude of the actuation loads. For example, TYPE213
312

consists of three bistable behaviors and their actuation loads have the following relation:

β1 > β2 > β3

|Fac2A|< |Fac1A |< |Fac3A |& |Fac3D |< |Fac1D |< |Fac2D |

Again, the bistable behavior with the largest interval, β1, is set as BES1 and the small-

est, β3, is set as BES3. Thus far, only the inequality conditions of actuation loads are

considered. When multiple bistable mechanisms are combined to have the same actuation

load, the inequality conditions may still apply. The details are discussed in Appendix A.

6.4.2 Numerical Procedure to Determine the Combined Multistable

Behavior

The following case study illustrates the multistabilities of TYPE21
21. Load-displacement

plots for the bistabilities are obtained by using Eqn. (6.10) or (6.11)). Potential energy

contour plots (for example, Fig. 6.8) are generated by combining the potential energy func-

tions of the two bistable systems (Eqn. (6.11) or (6.12))). The path on the potential energy

contour can be calculated by the following procedure:

Step 1. Set the iteration number, i = 0, total number of increment, n, and the maximum

displacement of x1, xn
1. Specify the displacement increment as ∆x1 = xn

1/n.

Step 2. Set the starting point at (x0
1,x

0
2) = (0,0) which is the initial stable position.

Step 3. Set i = i+1, and xi
1 = xi+1

1 +∆x1.

Step 4. Evaluate the initial point, xi
0 = (xi−1

1 ,xi−1
2 ), for the optimization problem defined
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in Step 5.

Step 5. Define the unconstrained optimization problem of

Minimize : fi = Utot(x1,x2) at x1 = xi
1,

and solve for x2min.

Step 6. Update the initial value, xi
2 = x2min.

Step 7. If i < n, then go to Step 3. Otherwise continue.

Step 8. Plot xi
0 for i = 0 . . .n.

The load-displacement curve of the combined multistability with the displacement-

control method is obtained from the potential energy path, and then it is converted to a

load-displacement curve with the load-control method.

Maple™, a commercial mathematics software package, is used to solve and visualize

the results of the problems. The optimization package included in the software is used to

obtain the potential energy paths. A sequential quadratic programming (SQP) algorithm is

used for the unconstrained nonlinear programs.

6.5 Case Study 1: Combining Two Bistable Behaviors

In this section, we present a case study of combining two bistable behaviors. The system

illustrated in Fig. 6.6(c) is used for the analysis. In TYPE21
21, the actuation loads for both

the increasing and decreasing displacement steps of one system, BES1, is greater than the

actuation loads for the other system, BES2. Fig. 6.7 depicts the behaviors of TYPE21
21. Us-

ing the global coordinate systems, the total potential energy is calculated with Eqn. (6.11)

and (6.12), and the corresponding contour plot is shown in Fig. 6.8(a). There are four local

minima at the points, e1, e2, e3, and e4, as shown in the figure. The potential energy paths,

which are obtained by using the optimization procedure described in the previous section,

are plotted on the contour plot. When x1 increases monotonically, the potential energy
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(a)

(b)

Figure 6.8 Potential energy contour plot and potential energy (PE) path for TYPE21
21. (b) repre-

sents the two axes (x1 and PE) isolated from the normal three axes, i.e. (x1, x2, PE). The vertical
lines, in (b) correspond to the jumps of x2 in (a).
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stays on the route of e1 → A → B → C → D → e3 → G → H → L. When x1 decreases,

potential energy follows a different route of e4 → a → b → c → d → e2 → g → h → l.

The straight lines parallel to the x2-axis represent various static jumps of x2. Fig. 6.8(b)

represents the two axes (x1 and Potential Energy) isolated from the normal three axes, i.e.

(x1, x2, Potential Energy). The vertical lines, in Fig. 6.8(b) represent the jumps of x2 in

Fig. 6.8(a).

Fig. 6.9 illustrates the behaviors of the MSCM. The solid square at the right-hand side

represents the current location of x2, whereas the other square represents x1 as it steadily (or

monotonically) increases. The behavior follows the solid line in Fig. 6.8(a). Fig. 6.9(A−H)

shows the three static jumps of x2 in the contour plot. The first jump is from left to right

(A−B); the second jump is from right to left (C−D); and the third jump is from left to

right again (G−H). The jump to the left indicates that there is a negative load applied to

x2. This jump occurs when the magnitude of Fac1D is greater than the magnitude of Fac2D .

The displacements of x1 when x2 jumps are approximated since the negative slopes of the

load-displacement curve are simplified. If we rely solely on the positive slopes to obtain

the load-displacement curve of the load-control method, the approximation does not affect

the response.

Two load-displacement curves for the combined multistable system are obtained (Fig. 6.10).

Fig. 6.10(a) is plotted by assuming that the displacement at the input node, x1, is controlled

(Displacement-control). The curve in Fig. 6.10(b) can be obtained by assuming that the in-

put load is repeatedly increased and decreased (or relaxed) in several different ways to find

all possible stable equilibria in the system (Load-control). The load-displacement behavior

obtained by the load-control method can also be obtained by taking the positive slopes of

Fig. 6.10(a) and setting the negative slopes to zero. This response follows some parts of the

paths that are traced in Fig. 6.18(a) because the static jumps occur simultaneously for both

x1 and x2 even though δ1 and δ2 jump independently.

In the Fig. 6.10(b), when the load increases from the initial stable equilibrium, e1, x1
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x1 x2

(e1)

(A)

(B)

(C)

(D)

(G)
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x
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Figure 6.9 Deformed configurations of BES1(x1) and BES2(x2) of TYPE21
21 when x1 increases

steadily.

can go up to A. A further increase in the load causes a static jump of x1 in the system

from A to A‘. If the load decreases from point A‘, the second stable equilibrium, e2, can

be obtained. Conversely, if the load is continuously increased from point A‘, x1 reaches

d and then jumps to d‘. If the load is reduced at this point, the fourth stable equilibrium,

e4, can be reached. If the load is decreased, x1 reaches a and then jumps to a‘. Further

reduction makes x1 arrive at D and then jump to D‘. If the load at a‘ is increased, the

third stable equilibrium, e3, can be located. Alternatively, Fig. 6.10(b) can be obtained by

using the load equilibrium of the system and solving the optimization. The disadvantage of

this approach is that the problem must be solved iteratively to obtain all accessible stable

equilibria. A summary table is provided at the end of this section for the load-displacement
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curves of all four types of combination defined in the previous section.

(a)

(b)

Figure 6.10 Load-displacement curves of the combined multistability: (a) displacement control
and (b) load control.

All four local minima appear in TYPE12
12 and TYPE21

21. However, in some cases, not

all the local minima can be reached. As shown in the potential energy contour plots in

Fig. 6.11, only three of the four stable equilibria can be reached in TYPE21
12 and TYPE12

21.

Thus, TYPE12
12 and TYPE21

21 are suitable for designing quadristable systems through the

combination of two bistable behaviors. On the other hand, TYPE21
12 and TYPE12

21 are suit-

able for generating tristable systems.

Table 6.2 summarizes the multistable behaviors of all four types. This table can also be
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(a) TYPE12
21 (b) TYPE21

12

Figure 6.11 Potential energy contour plot and potential energy path for TYPE12
21 and TYPE21

12.

used to combine more than two bistable behaviors as described in the following case study.

6.6 Case Study 2: Combining Three Bistable Behaviors

In this case study, three bistable behaviors are combined to synthesize a multistable system

with five stable equilibria. A schematic drawing of the combined translational multistable

system is illustrated in Fig. 6.12. Third-order polynomials are used to represent the bistable

behaviors and are plotted in Fig. 6.13. This combination is TYPE231
312.

β1 > β2 > β3

|Fac2A|< |Fac3A |< |Fac1A |& |Fac3D |< |Fac1D |< |Fac2D |

Because the combined system has three degrees of freedom, the potential energy con-

tour plot cannot be visualized. However, the procedure described in the previous sec-

tion enables us to generate the potential energy vs. displacement curve can be gener-
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Table 6.2 Summary table for the combination of two bistable behaviors in series (n = 2).

TYPE Load-displacement
Number of

Stable Equilibria

4
12 |Fac1A|< |Fac2A |
12 |Fac1D |< |Fac2D |

3
12 |Fac1A|< |Fac2A |
21 |Fac2D |< |Fac1D |

3
21 |Fac2A|< |Fac1A |
12 |Fac1D |< |Fac2D |

4
21 |Fac2A|< |Fac1A |
21 |Fac2D |< |Fac1D |

x1 x2

F

BES1 BES2

x3

BES3

Figure 6.12 Combined multistable system consisting of three bistable systems.

ated (Fig. 6.14). The corresponding load-displacement curve in Fig. 6.15 shows that there

are five accessible stable equilibria (5 solid circles). In general, the combination of three

bistable mechanisms in series can produce up to eight (= 23) stable equilibria, though three

(= 8−5) of the stable equilibria are not reachable in this combination as illustrated by the

three dotted circles.

The potential energy curve is obtained by using the optimization procedure described

earlier, and the load-displacement curve can be calculated from the potential energy curve.

Alternatively, it is possible to obtain an approximated shape of the load-displacement curve

by using Table 6.2. The details are explained Appendix B.
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Figure 6.13 Load-displacement curves of three different bistable behaviors (TYPE231
312).

Figure 6.14 Potential Energy vs. displacement curve of combined multistable system behaviors
(TYPE231

312).
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Figure 6.15 Load-Displacement curve of the combined multistability with controlling the load
behaviors (TYPE231

312).

All 36 types of combinations of the three bistable behaviors (n = 3) are summarized

in Appendix C. The load-displacement behavior and the total number of stable equilibria

for each type are provided. Table 6.3 shows the number of stable equilibria in a matrix

form. Since the matrix is symmetric, the superscript and subscript need not be specified.

As shown in the table, when the orders of the superscript and subscript are identical, the

combined system has the maximum number of stable equilibria (2n = 8). On the other

hand, when the orders of the superscript and subscript are in an opposite order, only the

minimum number (n + 1 = 4) of stable positions can be realized. All other types exhibit

between five and seven accessible stable equilibria. This outcome is always true for all

other cases including combinations of more than three bistable behaviors and combinations

of two bistable behaviors.

6.7 Case Study 3: Combining Four Bistable Behaviors

In this case study, four bistable behaviors (n = 4) are combined to synthesize a multistable

system with 16 stable equilibria. Piecewise continuous functions, which are used to rep-

resent the bistable behaviors, are plotted in Fig. 6.16. The multistable system satisfies the
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Table 6.3 Matrix for number of stable equilibria for combinations of three bistable mechanisms.

TYPE 123 132 213 231 312 321

123 8 6 6 5 5 4

132 6 8 5 4 7 5

213 6 5 8 6 4 5

231 5 4 6 8 5 6

312 5 7 4 5 8 6

321 4 5 5 6 6 8

following conditions and its combination is TYPE4321
4321.

β1 > β2 > β3 > β4

|Fac4A |< |Fac3A |< |Fac2A|< |Fac1A |& |Fac4D |< |Fac3D|< |Fac2D |< |Fac1D |

Figure 6.16 Load-displacement curves of four bistable behaviors.

Since the superscript and the subscript of the TYPE are in the same order, the maxi-

mum number (2n = 16) of stable equilibria is expected in this type. The combined load-

displacement curve is plotted in Table 6.4. Since there are too many combinations to be

listed, only combinations with minimum (n + 1 = 5) and maximum (2n = 16) numbers of
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stable equilibria are listed in the table.

Table 6.4 Summary table for the combination of two bistable behaviors in series (n = 4).

TYPE Load-displacement
Number of

Stable Equilibria

5
4321
1234

... 574 more types 5∼16

16
4321
4321

6.8 Example: Quadristable Equilibrium Rotational Com-

pliant Mechanism

The goal of this example is to combine two bistable rotational compliant mechanisms to

synthesize a multistable mechanism with four stable equilibrium positions. Additionally,

the results of a nonlinear structural analysis will be compared to the results of the mathe-

matical approach described in the previous section.

Fig. 6.17 shows two rotational compliant mechanisms, BiCM-inner and BiCM-outer,

whose initial shapes are the stress-free buckled configurations of straight beams. In the

same sense that BES1 is combined into the rigid body of BES2 in Fig. 6.6, BiCM-inner

is substituted for the rigid portion of BiCM-outer to produce the multistability. The two

bistable behaviors are plotted in Fig. 6.18. The plots are obtained with the load-control

method.

Unlike the translation mechanisms in Fig. 6.6, the combined rotational compliant mech-

anism is not easily visualized with two rigid-flexible beams. By applying a cyclic symmet-
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M2

θ2

Rigid member

Flexible member

M1

θ1

r1=10 r2=35

R1=40 R2=70

BiCM-inner

BiCM-outer

Figure 6.17 Two bistable compliant mechanisms of different dimensions (size and proportion)

−10 0 10 20 30 40 50
−50

0

50

θ1 (degree)

M1

(a)

−4 −2 0 2 4 6 8 10 12 14
−50

0

50

θ2 (degree)

M2

(b)

Figure 6.18 Load-displacement curves for the bistable compliant mechanisms. (a) BiCM-inner,
and (b) BiCM-outer. Key parameters are marked as circles. (ABAQUS)
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ric condition, however, the combined mechanism can be formed. Fig. 6.19 shows a cyclic

symmetric model of the combined rotational MSCM.

Figure 6.19 Combined multistable equilibrium rotational compliant mechanism with four stable
equilibria.

The simplified mathematical expressions of the two bistable behaviors can be obtained

by using the matching condition described in Eqn. (6.10). The piecewise-continuous func-

tions that satisfy the key parameters in Fig. 6.18 are

M1 =





5.20θ1−0.26θ 2
1

−16.0+9.45θ1−0.63θ 2
1 +0.01θ 3

1

560.0−38.40θ1 +0.64θ 2
1

θ1 < 10

10≤ θ1 < 30

30≤ θ1

M2 =





15.0θ2−3.75θ 2
2

3.17+12.98θ2−4.11θ 2
2 +0.29θ 3

2

1024.16−275.51θ2 +18.37θ 2
2

θ2 < 2.0

2.0≤ θ2 < 7.5

7.5≤ θ2

(6.14)
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where θ1 and θ2 are defined in Fig. 6.17. The two functions are plotted in Fig. 6.20(a).

From Eqn. (6.11) and (6.12), the total potential energy can be calculated. The po-

tential energy path is obtained by using the procedure described in the previous section.

Fig. 6.20(b) shows the multistable behavior of the combined compliant mechanism. Non-

linear structural analysis of the combined system is performed with the aid of ABAQUS,

which is a commercial finite element analysis software package. Due to the snap-through

behaviors, the design of the combination is evaluated by using hybrid beam elements

(B31H), which allows us to handle slender beams, the axial stiffness of which is very large

compared to the bending stiffness [5]. In order to apply the load-control method, STABI-

LIZE option is activated. This option helps the solver to continue with the solution even

when the tangential stiffness matrix becomes singular [4].

(a)

(b)

Figure 6.20 (a) Simplified mathematical functions of the two bistable behaviors, and (b) the com-
bined results from Maple software.
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The multistable hysteresis of the combined compliant mechanism is plotted in Fig. 6.21

and its stable configurations are shown in Fig. 6.22. All the key parameters are matched to

the curve from a mathematical approach. Hence, for an evaluation of the combined mul-

tistable compliant mechanism, it is not necessary to perform nonlinear structural analysis.

The mathematical approach offers an efficient evaluation and is less cumbersome because

of the nonlinear analysis that is needed to synthesize multistable compliant mechanisms.

−10 0 10 20 30 40 50
−50

0

50
Load vs. Displacement curve

Rotation (degree)

e4e3e2e1

Figure 6.21 Load-displacement curves for the combined multistable compliant mechanism using
nonlinear analysis (ABAQUS).

6.9 Design of Tristable and Quadristable Compliant Mech-

anisms by Combining Two Bistable Compliant Mech-

anisms

To verify the multistabilities of combined bistable behaviors in series, two rotational bistable

compliant mechanisms are designed and manufactured. Among the four combination types

of two bistable behaviors, TYPE21
21 and TYPE21

12 are demonstrated in this section.
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(a) at e1 (b) at e2

(c) at e3 (d) at e4

Figure 6.22 Four stable configurations of the rotational multistable compliant mechanism.
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6.9.1 Experimental Verification of the Two Combination Types, TYPE21
21

and TYPE21
12

Combining two bistable behaviors generates up to four stable positions. TYPE21
12 and

TYPE21
21 have three and four active stable configurations respectively. The conditions of

TYPE21
12 and TYPE21

21 are described in the third and fourth rows of Table 6.2. Fac1A and

Fac1D are the actuation loads of increasing and decreasing load steps respectively, for BES1

which has the largest interval between the two stable equilibria. Fac2A and Fac2D are the ac-

tuation loads of increasing and decreasing load steps for BES2. The combination TYPE21
21

has greater actuation loads of BES1 for both increasing and decreasing load steps. The ac-

tuation load of BES1 for increasing load step in TYPE21
12 is greater than the load of BES2,

and the actuation load of BES2 for decreasing load step is greater than the load of BES1.

The combined load-displacement responses are illustrated in Table 6.2. Note that the third

stable position of TYPE21
12 is not active.

Two rotational bistable compliant mechanisms are designed using the first buckling

mode of a pinned-clamped partially rigid and partially flexible beam. The buckled config-

uration is shown in Fig. 6.2. Instead of using a single beam with a pin joint at one end, by

introducing cyclic symmetric condition of four repeated beams, the pinned end is able to

be removed. Two rotational bistable compliant mechanisms can be combined in either the

in-plane (single layer) or out-of-plane (multilayer) direction. In order to demonstrate the

two types of combination, TYPE21
12 and TYPE21

21, using two bistable mechanisms, the mul-

tilayer combination is used in this report. The disadvantage of the multilayer combination

is that more than one part is necessary. The single layer combination can be manufactured

monolithically but it increases the in-plane size. An example of the single layer combina-

tion is shown in Fig. 6.40 at the end of this chapter.

One of the two rotational bistable compliant mechanisms is shown in Fig. 6.23. There

are four flexible beams and two rigid bodies. One of the rigid bodies will be connected to
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the other rotational bistable compliant mechanism.

Figure 6.23 Rotational bistable compliant mechanism.

The prototypes shown in this chapter are made of homopolymer polypropylene and

fabricated by waterjet machining.

6.9.2 Digitizing Multistable Behaviors

To describe the individual behaviors of the bistable mechanisms composing the combined

multistable mechanism, digitizing multistable behaviors is introduced. Digitizing multista-

bility can be done by utilizing the binary property of bistable behaviors.

Digitizing Bistability

Since a bistable system has only two stable equilibria, it is possible to use binary number to

describe its current state. Because the displacement and the potential energy at the initial

stable position is zero, the corresponding binary number of the initial stable position is

defined as 0. And the other stable position can be described as a binary number, 1. Note

that a bistable system is active when its current status is defined as 1. Table 6.5 shows the

summary of digitizing bistability using binary numbers.
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Table 6.5 Digitizing bistability.

Stable Position BES

Initial Stable Position 0

Second Stable Position 1

Digitizing Multistability

Each stable position of a multistable system has a unique binary number. Thus, it is possible

to identify active and inactive bistable systems. For example, if the current stable position

of a multistable system has {1011}, the second bistable system is not active and all other

bistable systems are active. Table 6.6 shows how the system can be digitized using the

binary numbers. Digitizing multistability is also useful to identify the number of bistable

systems in the combined multistable system. In the example in Table 6.6, there are four

bistable systems since four binary numbers are used to describe current status.

Table 6.6 An example of digitizing multistability: 1011.

Stable Position BES1 BES2 BES3 BES4

Initial Stable Position 0 0 0 0

Second Stable Position 1 1 1 1

6.9.3 Combining Two Rotational Bistable Compliant Mechanisms

Two different combination types can be produced by stacking and bolting the two rota-

tional bistable compliant mechanisms together. By matching the opposite faces of the two

mechanisms together, TYPE21
21 can be produced. TYPE21

12 can be made by setting the

two mechanisms to face the same direction. The two combination types are illustrated in

Fig. 6.24. BES1 is at the bottom and BES2 is at the top.

Fig. 6.25 shows the prototype made of two polypropylene bistable mechanisms. The

configuration shown in the figure has BES1 with the initial stable status at the bottom
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(a) TYPE21
12 (b) TYPE21

21

Figure 6.24 Two combinations of the rotational bistable compliant mechanisms.

and BES2 with the second stable status at the top. Therefore, BES2 is active and the

configuration in the figure can be digitized as {01}.

Figure 6.25 Combining two bistable compliant mechanisms in series: {01}

Combination TYPE21
21

The combination TYPE21
21 is depicted in Fig. 6.24(a). It has the following relations between

the two bistabilities.
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|Fac2A|< |Fac1A |
|Fac2D |< |Fac1D |

Both actuation loads for increasing and decreasing displacements of BES1 are greater

than the actuation loads for BES2. The load-displacement behaviors of the two bistable

compliant mechanisms are shown in Fig. 6.26. In the figure, approximated piecewise con-

tinuous functions are used to represent the bistable behaviors.

Figure 6.26 Load-displacement responses of the two bistable mechanisms.

Based on the approximated piecewise continuous functions, the potential energy stored

in the multistable compliant mechanisms is obtained and plotted in Fig. 6.27. The equilib-

rium routes are shown in the contour plot. All four local minima of the potential energy

can be identified by the potential energy curve in Fig. 6.28.

The load-displacement relation can be obtained by differentiating the potential energy

curve with respect to the displacement. The load-displacement response using the load

control method is depicted in Fig. 6.29. If the input load is increased gradually, the second

stable position, e2, can be obtained. The fourth stable position, e4, can be reached if the

load is increased further. If the input load is decreased from the stable position at e4, one

can find the third stable position, e3. The initial stable position, e1, can be obtained by
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Figure 6.27 Potential energy contour plot and the equilibrium paths of the combined multistable
mechanism, TYPE21

21.

Figure 6.28 Potential energy curve of the combined multistable mechanism, TYPE21
21.
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decreasing the load again.

Figure 6.29 Load-displacement behavior of the combined multistable mechanism, TYPE21
21, using

the load-control method.

Each stable configuration of the multistable compliant mechanism is shown in Fig. 6.30.

The initially stable position, e1, is located at 0◦. The second stable position, e2, is locateed

at 28◦ and only BES2 is active. BES1 is active when the multistable mechanism is in its

third stable position and the angle is 33◦. At e4, both BESs are active and the fourth stable

position is at 61◦.

(a) at e1{00} (b) at e3{01} (c) at e2{10} (d) at e4{11}

Figure 6.30 Four stable configuration of the combined multistable mechanism, TYPE21
21: (a) 0◦,

(b) 28◦, (c) 33◦, and (d) 61◦.
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Combination TYPE21
12

The combination TYPE21
12 is depicted in Fig. 6.24(b). It has the following relations between

the two bistabilities.

|Fac2A|< |Fac1A |
|Fac1D |< |Fac2D |

The actuation load for increasing displacement of BES1 is greater than the actuation

load for increasing displacement of BES2. For decreasing displacement, the actuation

load for BES2 is greater than the one for BES1. The two bistable behaviors are shown in

Fig. 6.31. Note that the direction of the displacement of BES2 is opposite to the direction

of the displacement of BES1 in this case.

Figure 6.31 Load-displacement responses of the two bistable mechanisms.

The potential energy curve of the combined system has three local minima as shown in

Fig. 6.32 so there are three active stable positions. The initial position of this combination

is located between the other two stable positions since BES2 has the opposite behavior.

Fig. 6.33 shows the potential energy contour plot and the equilibrium routes of the

combined system. The three stable positions, e1, e2 and e4, are located on the equilibrium

routes. There is, however, another local minimum that does not exist in the potential energy
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Figure 6.32 Potential energy curve of the combined multistable mechanism, TYPE21
12.

curve in Fig. 6.32. The local minimum, (e3), is a hidden stable equilibrium of the system.

The parentheses indicate that the local minimum is hidden. The hidden stable position can

be accessed when the two bistable compliant mechanisms are active simultaneously.

Fig. 6.34 shows the load-displacement curve of TYPE21
12. The load axis is located be-

tween the two stable equilibria, e1 and e4. It has both negative and positive stable positions.

The hidden stable position cannot be reached by applying an input load to the system. The

only way to reach the position is applying a load to the connected rigid bodies between the

two rotational bistable compliant mechanisms. Fig. 6.35 shows the three stable configura-

tions and the hidden stable configuration.

6.9.4 Combining Four Bistable Compliant Mechanisms

In this section, four bistable compliant mechanisms are combined in series and demon-

strated. The same two TYPE21
21 bistable systems are combined in series as shown in

Fig. 6.36. Two bistable compliant mechanisms are connected rigidly.

Fig. 6.37 shows the initial stable position and the stable configuration with the maxi-

mum rotation angle. The maximum angle can be reached when all four bistable mecha-

nisms are active. Therefore the binary numbers for the maximum rotation is {1111}.
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Figure 6.33 Potential energy contour plot and the equilibrium paths of the combined multistable
mechanism, TYPE21

12.

Figure 6.34 Load-displacement behavior of the combined multistable mechanism, TYPE21
12, using

the load-control method.
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(a) at e2{00} (b) at e4{10} (c) at e1{01} (d) at (e3){11}

Figure 6.35 Four stable configuration of the combined multistable mechanism, TYPE21
12: (a) 0◦,

(b) 33◦, (c) −28◦, and (d) 5◦.

Figure 6.36 Combining four bistable compliant mechanisms in series.
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(a) at e1{0000} (b) at e16{1111}

Figure 6.37 Multistable compliant mechanisms using four bistable compliant mechanisms.

6.9.5 Combining Two Bistable Mechanisms Orthogonally

So far, combinations using two layers are considered. However, the direction of combina-

tion is not restricted when multiple layers are used. As mentioned earlier, two rotational

bistable compliant mechanisms can be combined in either in-plane or out-of-plane direc-

tions. In this subsection, two other directions of combination are introduced: orthogonal

and in-plane directions.

Combining bistable mechanisms in two orthogonal directions produces a biaxial mul-

tistable compliant mechanism. Fig. 6.38 shows the initial configuration of the combined

compliant mechanism. The two bistabilities are orthogonal and activated independently.

Therefore there are always four accessible stable configurations. Each stable configuration

can be described using unique binary numbers. The initial stable configuration shown in

Fig. 6.38 is {00}.

Fig. 6.39 shows three stable configurations of the combined biaxial multistable com-

pliant mechanism. The two bistable degrees of freedom are depicted with a triad in the

figure.
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Figure 6.38 Two axes rotational multi-bistable compliant mechanism.

(a) at e1{00} (b) at e2{10} (c) at e3{11}

Figure 6.39 Biaxial rotational multistable mechanism.
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Fig. 6.40 shows four stable configurations of a rotational quadristable compliant mech-

anism. The two rotational bistable compliant mechanisms are combined in the in-plane

(single layer) direction. The main advantage of the single layer combination is that the

multistable compliant mechanism can be manufactured as a single piece.

(a) at e1{00} (b) at e2{10}

(c) at e3{01} (d) at e4{11}

Figure 6.40 Four stable configurations of the combined multistable mechanism, TYPE21
21: (a) 0◦,

(b) −18◦, (c) −36◦, and (d) −54◦.

6.10 Conclusions

In this chapter, a mathematical approach of synthesizing multistability by combining mul-

tiple bistable mechanisms in series has been presented. The nonlinear behaviors of bistable

compliant mechanisms are simplified to piecewise-continuous functions. The simplifica-
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tion process eliminates the complicated post-buckling behavior of each bistable compliant

mechanism. By controlling the input node of the combined mechanism, the potential en-

ergy path from the total potential energy of the system can be obtained.

The mathematical basis of the proposed design synthesis methodology focuses on shap-

ing the load-displacement curves of the multistable systems so that the resultant curves

appropriately match the desired properties. The example problems showed that the load-

displacement curve obtained from the potential energy path can adequately represent the

key parameters and the hysteresis of combined multistable compliant mechanisms. The

methodology enables the user to (i) reflect the design requirements in a mathematical ex-

pression, (ii) decompose the problem into feasible sub-problems, (iii) synthesize the de-

sired MSCM from a building block library (for example, Table 6.2 and Appendix C, and

(iv) efficiently perform an evaluation without computationally intense nonlinear structural

analysis.

In this chapter, only the actuation load and the stable positions have been considered

as design requirements. If there is need for additional characteristics, such as the stiffness

at a stable equilibrium position, higher order polynomials may be needed to represent the

bistable behavior. Finally, to utilize the method described in this chapter as a generalized

synthesis methodology of MSCMs, design methodologies for bistable compliant mecha-

nisms are necessary. Design of bistable compliant mechanisms were discussed in Chapters

4 and 5.
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Chapter 7

Design Examples

This chapter presents two design examples of multistable compliant mechanisms both of

which demonstrate the utility of synthesis methodology described in the previous chapters:

(i) utilizing RL deformation and (ii) utilizing buckling modes. The first design example is

limited by size constraint, and the second example is governed by large loading conditions.

7.1 Meso-scale Rotational Multistable Compliant Mecha-

nisms

In this section, RL deformation is used to design a rotational multistable compliant mech-

anism. Since a RL deformed beam solution is based on Euler-Bernoulli beam theory, the

behavior the beam is accurate when the beam is slender enough. It is recommended to use

a beam with slenderness ratio, L/h, greater than 20, where L is the length of the beam and

h is the thickness of the beam. This ratio is sometimes more critical than stress constraints

in order to design bistable compliant mechanisms.

The scope of this case study is based on the following assumptions:

i. A bistable compliant mechanism will be designed by using the design tool for RL

deformation that is introduced in Chapter 5.

ii. The actuation load is not considered in the design since it can be multiplied by the

number of cyclic symmetric beams and is proportional to the out-of-plane thickness

(scalability).
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7.1.1 Design Specifications

Small size rotational multistable compliant mechanisms are very useful in many devices

with doors, covers or lids. Such devices include notebook PCs, hand-held devices, and

small size lockers. More than two stable positions are desired in these devices since their

purpose is not only opening or closing but also adjusting the intermediate orientations.

In this case study, design specifications for a small size rotational multistable compliant

mechanism are following.

i. Footprint of the mechanism : Each bistable compliant mechanism will be designed

in a 1cm × 1cm footprint. These are meso-scale devices whose sizes or lengths are

usually greater than 100 micron and smaller than 1cm.

ii. Number of stable equilibria : The maximum number of stable equilibria is four, so

at least two bistable compliant mechanisms are required.

iii. Combination type : All four stable equilibria are activated. Combination TYPE21
21

will be used in this case study.

iv. Range of Motion : Desired range of motion of a combined rotational multistable

mechanism is 70 degrees. Two rotational bistable mechanisms with 30 degree and

40 degree between the two stable equilibria will be designed.

v. Materials : Living hinges are be used in order to provide the function of pin-joints

presented in RL deformations. In general, polypropylene is used in wide variety

of applications with living hinges. Manufacturing processes of polypropylene can

be achieved via extrusion or injection molding which are well suited for to mass

productions.

Once the two rotational bistable compliant mechanisms are designed based on the above

specifications, they will be combined using the method introduced in Chapter 6 in order to

synthesize multistability. Since TYPE21
21 is desired for combined multistable behavior, the

fourth type (the last row) in Table 6.2 is used. TYPE21
21 have the following relation:

145



β1 > β2

|Fac1A |> |Fac2A|& |Fac1D |> |Fac2D |
where βi and Faci are illustrated in Fig. 6.7 and explained in Table 6.1.

The two rotational bistable compliant mechanisms are

• BES1: A rotational bistable mechanism that has a 40◦ angle between two stable

equilibria, and

• BES2: A rotational bistable mechanism that has a 30◦ angle between two stable

equilibria.

Note that the actuation loads for BES1 is greater than the actuation loads for BES2.

7.1.2 Design of Two Rotational Bistable Compliant Mechanisms

BES2: A rotational bistable mechanism that has a 30◦ angle between two stable equi-

libria

A design tool for rotational bistable compliant mechanisms has been developed based on

the solution for RL deformations derived in Chap. 5. Fig. 7.2 shows the design tool dis-

playing the current design problem. The variables shown in the design tool are defined in

Fig. 5.13 and is repeated here in Fig. 7.1.

Two input values are required to use the design tool: an angle between two stable

positions and a radius of the rigid circle. The angle between stable positions is 30◦. The

radius of the inner rigid circle is set as 2mm. Based on the input values, two curves, L vs.

n and Rd vs. θinc, can be obtained as shown in Fig. 7.2. Note that Rd must be less than

5mm since the footprint of the mechanism is defined as 1cm × 1cm. However, since the

rotational bistable compliant mechanism requires an annular rigid body, Rd smaller than

4.5mm is used. L must be as long as possible to maximize slenderness. Now the value,

n, must be chosen. Since increasing n yields decreasing L, smaller n is desired. However,

decreasing n also causes increasing Rd which increases the size of the mechanism. In this
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Figure 7.1 A rotational bistable compliant mechanism using RL deformation.

Figure 7.2 Design and analysis results of Rotational Bistable CM Design Tool for BES2
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case, the following values are chosen.

n = 0.005 (7.1)

L = 2.426[mm]

Rd = 4.274[mm]

θinc = 149.714◦

Based on the dimensions obtained, a 90 degree section of BES2 is displayed in Fig. 7.2.

It shows the initial (solid line) and the second (dotted line) stable positions. So far, the

thickness of the RL beam is not considered. To obtain the bistable behaviors at the final

design, the RL beam must be a slender beam. The in-plane thickness, t, is selected based on

the definition of slender beam (L/h > 20). Manufacturing limitations must be considered

in this process. In this problem, h=0.1mm is used.

Fig. 7.3 (a) and (b) show the load-displacement and strain energy plots of BES2 respec-

tively. Nonlinear structural analysis was performed using a displacement control method.

Note that a displacement control method is better than a load control method in this case

since RL deformation is less sensitive to the imperfection and does not have complex non-

linear behaviors. Two stable configurations of the RL deformation with Von Mises stress

are shown in Fig. 7.4. In the figure, meshed elements represent the RL beam of BES2, and

the solid line represents the inner rigid circle. Note that clockwise rotation is the positive

direction. As shown in the figure, the maximum stress (30MPa) along the beam closely

matches the value obtained using the design tool.

The number of beams along the circle and the out-of-plane scale factor are determined

based on the load requirement. Since BES2 requires smaller actuation loads than BES1,

only three beams are placed cyclic symmetrically. The out-of-plane thickness is 6.35mm

for both BES1 and BES2. Note that the input torque shown in Fig. 7.3(a) is shared by all
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(a)

(b)

Figure 7.3 Nonlinear FE analysis for BES2 : (a) load-displacement response and (b) strain energy
plot [Ansys].
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Figure 7.4 Two stable positions of a RL beam of BES2 and stress results.

three RL beams of BES2. The final design of the rotational bistable compliant mechanism

with a 30◦ angle between stable positions is shown in Fig. 7.5

BES1: A rotational bistable mechanism that has a 40◦ angle between two stable equi-

libria

BES1 can be designed by using the same procedure applied to design BES2. Since greater

actuation forces are required for BES1, four RL beams are used. Since four RL beam

can be placed equally in a square, the maximum value of Rd is increased (∼5.5mm). The

radius of the rigid center is 2.5mm and the required angle between two stable positions is

40◦. From the obtained curves, L vs. n and Rd vs. θinc, shown in Fig. 7.5, the following

dimensions are chosen.
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Figure 7.5 BES2: a rotational bistable compliant mechanism with a 30◦ angle between stable
positions

Figure 7.6 Design and Analysis results of Rotational Bistable CM Design Tool for BES1.
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n = 0.005 (7.2)

L = 3.048[mm]

Rd = 5.212[mm]

θinc = 139.714◦

A 90 degree section of BES1 is displayed in Fig. 7.6 based on the above values. In the

second design, h = 0.11mm is used.

Fig. 7.7 shows the load-displacement and strain energy plots of BES1. As shown in

the Fig. 7.7(a) and (b), the second stable position is located at the desired angle, 40◦. The

second stable position of BES2 is also located at 30◦ (Fig. 7.3). Note that as the slenderness

ratio is decreased to below 20, the second stable position is decreased to below the desired

value, and if the slenderness ratio is less than 10, the second stable position will disappear

(Fig. 7.8). Therefore designers must consider the slenderness ratio to use RL deformations.

Two stable configurations of BES1 and Von Mises stress are shown in Fig. 7.9. In the

figure, meshed elements represent the RL beam of BES2, and the solid line represents the

inner rigid circle. Note that clockwise rotation is the positive direction.

Four RL beams are placed equally in BES1. The same out-of-plane thickness is used.

The final design of the rotational bistable compliant mechanism with 40◦ angle between

stable positions is show in Fig. 7.10.

7.1.3 Design of a Rotational Multistable Compliant Mechanism

Two rotational bistable compliant mechanisms designed in the previous subsection are

combined as described in Chapter 6. Combining the inner rigid circles of both bistable com-

pliant mechanisms together provides the effect of series combination of two bistable behav-

iors. The combined configuration of two compliant mechanisms is shown in Fig. 7.11. Note
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(a)

(b)

Figure 7.7 Nonlinear FE analysis for BES1 : (a) load-displacement response and (b) strain energy
plot.
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Figure 7.8 Bistable behavior related to slenderness ratio.

Figure 7.9 Two stable positions of a RL beam of BES1 and stress results.
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Figure 7.10 BES1: a rotational bistable compliant mechanism with a 40◦ angle between stable
positions

that combination types depend on orientations of the bistable compliant mechanisms, so the

orientations should be carefully considered. This is also discussed in Chapter 6 (Fig. 6.24).

Figure 7.11 The combined rotational multistable compliant mechanism.

Fig. 7.12 (a) and (b) show the load-displacement and strain energy plots of the com-

bined rotational multistable compliant mechanism respectively. A nonlinear analysis with
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a displacement control method is performed by using Ansys. The four stable equilibria can

be obtained at the local minima of the strain energy curve. In the load-displacement curve,

they are also located where the load inputs are zero and the slopes are positive.

In general, multistable behaviors cannot be solved by using displacement control method

because of the vertical jump shown in Fig. 6.10(a). In this example, vertical jumps are spe-

cially handled by adjusting the number of substeps in the nonlinear analysis. Note that

these vertical jumps did not appeare in the bistable behaviors of RL deformations. Users

can take the advantage of the synthesis method described in Chapter 6, because nonlinear

analysis is not required to evaluate the combined multistable compliant mechanism.

The first and the last stable configurations of the rotational multistable compliant mech-

anism are shown in Fig. 7.13. To visualize these configurations, the out-of-plane thickness

of BES1 is scaled to match the difference in the numbers of beams used for load sharing.

Also, the Von Mises stress on the two RL beams is shown in Fig. 7.13. Note that the initial

configuration of the RL beams are facing oppositely for TYPE21
21. TYPE21

12 can be made by

combining the two in the same orientation. The multistable behavior of TYPE21
12 is shown

in the third row of Table 6.2. TYPE12
12 and TYPE12

21 cannot be obtained from the two rota-

tional bistable compliant mechanisms designed in this section because the actuation loads

for BES1 is greater than the actuation loads for BES2.

7.1.4 Discussion

A detailed design procedure for a meso-scale rotational multistable compliant mechanism

is presented in this section. Two rotational bistable compliant mechanisms, BES1 and

BES2, were designed separately and combined using the synthesis method described in

Chapter 6. TYPE21
21 is used to obtain four stable equilibria. The final design has very thin

cross sections (∼ 0.1mm) of RL beams.

There are limitations to design of small-size multistable compliant mechanisms using

RL deformations. They are
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(a)

(b)

Figure 7.12 Nonlinear FE analysis for the combined rotational multistable compliant mechanism
: (a) load-displacement response , and (b) strain energy plot.
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Figure 7.13 The first and the fourth stable positions of the combined rotational multistable com-
pliant mechanism and its stress results.

i. Limitation due to the slenderness ratio : All design methods based on the Euler-

Bernoulli have this limitation. The slenderness ration must be greater than 15 (20

recommended) [5]. Using the recommended value of the ratio, designers can esti-

mate the minimum thickness of RL beams once the overall size of design domain is

defined.

ii. Limitation due to the minimum feature size : This limitation is due to the manufac-

turing constraints.

iii. Limitation due to the stress constraint : Although this is a critical constraint in many

design problems, above two limitations are more critical in the design problem de-

scribed in this section. This limitation is also dependent on the material properties.

Manufacturing processes of polypropylene can be achieved via extrusion or injection

molding which are well suited for to mass productions.
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7.2 Multistable Cargo Door Design using a Multistable

Compliant Joint

The goal of this case study is to design a rotational multistable compliant mechanism that

can tolerate a large input load. In general, living hinges are not applicable because they

cannot sustain a large load. In this section, a buckled configuration is used to design a

rotational multistable compliant mechanism.

The scope of the case study in this section is limited by the following assumptions:

i. The bistable compliant mechanism will be designed by using the bistability of the

buckled configuration shown in Fig. 4.23.

ii. The magnitude of the load to be supported establishes the number of cyclic symmet-

ric beams to be engaged for load sharing and the out-of-plane thickness.

7.2.1 Design Specifications

A cargo door is a door used to load or unload cargo. It is usually very heavy and requires

a large amount of effort to open and close. Fig. 7.14 (a) shows the traditional cargo door

with a pneumatic door opening system. In this section, a rotational multistable compliant

mechanism will be designed to provide four stable positions of a cargo door as shown in

Fig. 7.14 (b).

In this case study, design specifications for a rotational multistable compliant mecha-

nism are following.

i. Footprint of the mechanism : It is desired to be small enough so that it can be place

inside a vehicle along the hinge-line.

ii. Number of stable equilibria : There are four open-positions of the cargo door. The

four are equally distributed in the range of motion, 75◦.

iii. Combination type : In order to have four successive stable positions, combination

TYPE321
123 is desired. So three rotational bistable compliant mechanisms must be
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Figure 7.14 Minivan cargo-door: (a) rigid-link mechanism with a pneumatic door opening sys-
tem, and (b) rotational multistable compliant mechanism.

designed and combined. Combinations of three bistable behaviors are listed in Ap-

pendix C.

iv. Range of Motion : Desired range of motion of combining three rotational bistable

mechanisms is 75◦. Three identical bistable compliant mechanisms that have 26◦

between two stable positions are used.

v. Materials : A material which has a high ratio of yield stress to elastic modulus, σy/E,

is desired. Titanium is used in this example. Table 7.1 has σy/E ratios of selected

metals. Glass fiber reinforced polymer (GFRP) and carbon fiber reinforced plastic

are other choices.

vi. Loading condition : The height of the cargo door is 1.5 m (∼ 5 feet), and its weight

is 34.0 kg (∼ 75 lb). The load due to the gravitational acceleration is applied to

the center of the door. The maximum moment applied to the multistable compliant

mechanism is 250 Nm.

7.2.2 Design of a Rotational Multistable Compliant Mechanism

Fig. 7.15 shows the input load due to the weight of the cargo door and the desired behavior

of the multistable compliant mechanisms. The input load is a function of θ , which is
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Table 7.1 Ratios of yield stress to elastic modulus of metals.

Material Young’s Modulus (GPa) Yield Stress (MPa) σy/E×1E3

Aluminum 70 50 0.714
Copper 130 210 1.615
Gold 79 100 1.265
Iron 211 350 1.658
Lead 16 12 0.750

Nickel 170 195 1.147
Silver 83 170 2.048

Tantalum 186 200 1.075
Tin 47 200 4.255

Titanium 114 1170 10.263
Tungsten 411 620 1.508

Zinc 105 200 1.904

defined as an angle from the horizontal axis to the door. The input load is

Min = Mmax cosθ . (7.3)

Figure 7.15 Desired behavior of the multistable compliant mechanism and the door.

The cosine curve in Fig. 7.15 is decreased as θ increases. The stable equilibria can

be found wherever the two curves intersect each other. There are four stable equilibria,

θ1 ∼ θ4. Additionally, at θ = θmax, the door is in its closed position.

Three rotational bistable compliant mechanisms will be combined based on the method

introduced in Chapter 6. However, using TYPE321
123, three identical bistable compliant
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mechanisms will be used. The rotational bistable mechanism shown in Fig. 4.23 is made

of Titanium and has 26◦ angle between the two stable equilibria. The length of the beam

is 8cm. The in-plane and out-of-plane thicknesses are 1mm and 4mm respectively. The

actuation load of the bistable mechanism is 0.285 Nm. The load-displacement response

of the bistable compliant mechanism is shown in Fig. 7.16. Note that the load is scaled

to give a safety factor of 1.2. To match the scale, the out-of-plane thickness is increased

to 10.4cm. Two rotational bistable mechanisms with 20 beams (load sharing) are used for

each bistable behavior. The actuation load for the new rotational bistable mechanism is

296Nm.

Figure 7.16 Load-displacement curves of the multistable compliant mechanism and the door.

From the load-displacement curve in Fig. 7.16, the approximated piecewise continuous

function is

Mi =





60.0φi−3.0φ 2
i

−411.734+165.306φi−11.709φ 2
i +0.229φ 3

i

2145.0−180.0φi +3.7φ 2
i

φi < 10

10≤ φi < 24

24≤ φi

(7.4)

The combined multistable behavior is plotted in Fig. 7.17. The entire range of motion
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is about 75◦, and the four stable equilibria are equally distributed with 23◦ angle.

Figure 7.17 Load-displacement curves of the multistable compliant mechanism and the door.

The combined rotational multistable compliant mechanism is shown in Fig. 7.17.

Figure 7.18 A combined rotational multistable compliant mechanism. (diameter 23cm, length
36cm)

Fig. 7.18 shows how the multistable compliant mechanism can be attached to the cargo

door.
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Figure 7.19 A cargo door that has two rotational multistable compliant mechanisms located at
both ends.

7.2.3 Discussion

This section presents the detailed design of a multistable compliant mechanism under a

specified loading condition. The equilibria of the multistable compliant mechanism under

a loading condition can be found by locating the intersection of two load-displacement

curves. In order to design a rotational quadristable compliant mechanism which can be used

as a multistable joint of a cargo door, three identical bistable compliant mechanisms were

designed. They were combined to provide four stable equilibria. One of the advantages of

using multiple identical bistable behaviors is that some of the stable equilibria are sharing

their positions. Therefore manufacturing imperfections do not affect the stable positions.

Rotational bistable compliant mechanisms are designed by using buckled configurations.

A cyclic symmetric condition is applied to match the required actuation load. Also the

out-of-plane thickness is scaled to match the required actuation load.

There can be some limitations to manufacture the rotational bistable compliant mecha-

nism designed in this section due to the high aspect ratio. The limitations can cause manu-

facturing imperfections. However since there are many beams located cyclic symmetrically

in the bistable compliant mechanism, sensitivity to the manufacturing imperfection is not

critical.
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Chapter 8

Conclusions, Contributions and Future Work

8.1 Conclusions

The purpose of this dissertation is to establish a generalized mathematical framework for

synthesis of multistable compliant mechanisms. A multistable compliant mechanism is a

mechanism that can achieve multiple stable states within its range of motion through elastic

deformation. It offers enormous advantages in terms of its stability, efficiency and accuracy.

In addition, it has all the benefits that compliant mechanisms offer. In spite of attractive

benefits and advantages, there has been no systematic method to design multistable compli-

ant mechanisms. Existing methods to design multistability with conventional mechanisms

require enormous computational time, and these methods do not apply to design compliant

mechanisms that have more than two stable equilibria. Additionally, analysis of nonlin-

ear behaviors of multistable compliant mechanisms is very complex and challenging. This

research was motivated by the need to design multistable compliant mechanisms systemat-

ically without excessive computational complexity. This is accomplished by developing a

mathematical formulation that captures the essential characteristics of nonlinear behaviors

needed to design multistable compliant mechanisms.

The conclusion which can be drawn from this research is that synthesizing multista-

bility can be decomposed into following two steps: (1) synthesizing bistabilities and (2)

synthesizing multistability from the multiple bistabilities. In order to synthesize bistable

compliant mechanisms, two new and systematic methods have been developed: (i) using

165



buckling modes as the initial stable configurations of the bistable compliant mechanisms,

and (ii) utilizing the bistability of a clamped-pinned beam. The case studies in the chapters

4 and 5 demonstrated realization of the above two approaches. This study also introduced a

mathematical approach to synthesize multistability by systematic combinations of bistable

compliant mechanisms. Piecewise lower-order polynomials are used to represent nonlinear

behaviors of bistable compliant mechanisms. The case studies in Chapter 6 demonstrated

effectiveness of the method.

Some prototypes were fabricated and tested based on the case studies. The fabricated

designs validated that the synthesis methodology introduced in this dissertation provides a

viable method to create multistable compliant mechanisms from multiple bistable compli-

ant mechanisms.

8.1.1 Summary of the Synthesis Methodologies

Synthesis of Bistable Compliant Mechanisms

Two synthesis approaches for bistable compliant mechanisms were discussed in chapters 4

and 5. The first approach described in Chapter 4 utilized buckling configurations as initial

configurations of bistable compliant mechanisms. In order to utilize buckling configura-

tions, a modal strain energy formulation is introduced. The modal strain energy represents

an energy barrier between two stable positions. Using topology optimization, topologies

that satisfy desired bistabilities can be obtained by maximizing the modal strain energy.

In topology optimization, design domains are discretized using modular ground structures.

Unstable behaviors of beams are sensitive to imperfections, which may eliminate the de-

sired bistabilities. Additional investigations regarding the effects of imperfections in Chap-

ter 4 show how imperfections can eliminate bistabilities.

To reduce the manufacturing complexity and the sensitivity to imperfections, a reverse-

lateral (RL) deformation of a clamped-pinned beam was introduced in Chapter 5. RL

beams were used to design rotational and translational bistable compliant mechanisms in
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the chapter. Bistable compliant mechanisms designed by using RL beams have robust bista-

bilities and are insensitive to imperfections. However, the drawback of using RL beams is

that they require pin-joints. This can be overcome by utilizing flexures or living hinges

instead of pin-joints to realize monolithic bistable compliant mechanisms.

Synthesis of Multistable Compliant Mechanisms

The mathematical analysis introduced in Chapter 6 has demonstrated the validity of the hy-

pothesis that combining bistabilities can generate multistabilities. Chapter 6 explains why

a load-control method is effective and efficient to represent bistable behaviors compared to

displacement-control and path-following methods. The load-control method was used to

formulate the simplified mathematical expressions of bistable behaviors. This mathemati-

cal simplification enables designers to characterize bistable mechanisms by using piecewise

lower-order polynomials and, in turn, synthesize multistable mechanisms.

Behaviors of combined multistable compliant mechanisms depend on combination types.

Combination types were defined by the magnitude of actuation loads for each bistable be-

havior. The mathematical analysis performed in Chapter 6 showed that the number of

stable equilibria as well as equilibrium paths is affected by combination types. Based on

the combination types, combinations of two, three, and four bistable behaviors have been

demonstrated. A library of feasible combinations was created. The methodology described

in Chapter 6 can be extended to combine as many bistable behaviors as required. However,

it seems reasonable to conclude that the combination table of three bistable behaviors is

sufficient to design multistable compliant mechanisms with up to 8 stable equilibria.

8.1.2 Contributions

This research is the first known attempt to develop a method to synthesize multistable com-

pliant mechanisms which have more than two stable equilibria. Previous research in multi-

stable compliant mechanism design is limited to design of bistable compliant mechanisms.
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This is due to the fact that nonlinear analysis for multistable compliant mechanisms is much

more complicated and limited by difficulties in numerical analysis including nonlinear fi-

nite element methods. Central to this research is a mathematical framework that captures

the complex nonlinear behaviors of bistable and multistable compliant mechanisms. A key

enabler for this is simplification of nonlinear behaviors in mathematical forms.

This dissertation provided three new and significant contributions to the following fields

of compliant mechanism design.

1. Synthesis of Multistable Compliant Mechanisms Using Combination of Multiple

Bistable Compliant Mechanisms: The methodology enables designers to (i) repre-

sent the design requirements in a mathematical expression, (ii) decompose the prob-

lem into feasible sub-problems, (iii) synthesize the desired multistable compliant

mechanisms from combination libraries (e.g., Table 6.2 and Appendix C), and (iv)

efficiently perform an evaluation without computationally intense nonlinear struc-

tural analysis.

2. Topology Synthesis of Bistable Compliant Mechanisms Using Buckling Modes: The

method allows designers to (i) generate topologies of bistable compliant mechanisms

using optimization methods, and (ii) perform analysis without nonlinear (large defor-

mation) FEM.

3. Topology Synthesis of Bistable Compliant Mechanisms Using Clamped-Pinned Beams:

The bistability of RL deformation provides the foundation to (i) design translational

and rotational bistable compliant mechanisms using, and (ii) reduce imperfection

sensitivity and hence robust designs of bistable and multistable compliant mecha-

nisms.

Additional contributions of this work include:

• Optimization formulation for maximizing modal strain energy : Modal strain energy

has been defined to represent energy barrier between two stable states. By maximiz-

ing modal strain energy, a designer can find the optimal topology which can provide
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bistability.

• A Matlab based design tool for designing rotational bistable compliant mechanisms

using RL deformation: Designers can use the tool to synthesize a rotational bistable

compliant mechanism without solving the elliptic integral nor performing nonlinear

analysis.

• Formulation of guidelines for designing translational bistable compliant mechanisms

using RL deformation: Designers can use the chart (Fig. 5.10) to design a transla-

tional bistable compliant mechanism without solving either the elliptic integral or

using nonlinear analysis.

• Analytical solution of an RL deformed beam and its visualization tool based on a

Matlab environment: An analytical solution of RL deformation is implemented in

a visualization tool. The visualization tool can be used to understand the behavior

of RL deformation, such as deformed shapes, the path of the end of the beam, the

load-displacement behavior, and the stress distribution.

• Digitizing bistability and multistability using binary number: The idea of digitiz-

ing multistability is that a unique binary number for each stable equilibrium can be

identified by the corresponding equilibrium configuration of the combined bistable

compliant mechanisms.

• Several novel bistable and multistable compliant mechanisms were designed. (Pro-

visional patent filed)

8.2 Future Work

This study lays the foundation for future work on designing multistable compliant mech-

anisms. The future research can be divided into two main directions: (1) improving and

expanding current methods of designing bistable and multistable compliant mechanisms

and (2) exploring areas of application in multistable compliant mechanisms.
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8.2.1 Improving Design Methodologies of Multistable Compliant Mech-

anisms

Improving the Current Bistable Compliant Mechanism Synthesis Method

In Chapter 4, a Genetic Algorithm was applied to the topology optimization of bistable

compliant mechanisms using buckling modes. A gradient based optimization is also ap-

plicable and reduces the computational time. When a gradient based optimization is used,

the design variable can be the thickness of each beam of the ground structure. The upper

and lower bounds of the design variables must be greater than zero, and the threshold value

of the thickness can be chosen by the designer. The guidelines to acquire sensitivities of

eigenvalues and eigenvectors of buckling analysis are described in Appendix E.

Counterpart Design of Reverse Lateral Deformed Beam

In Chapter 5, rigid bodies and RL deformed beams were used as counterparts of RL defor-

mation to generate bistable behaviors. However, the counterparts do not need to be limited

to these two types. As explained in the chapter, counterparts of the RL deformation can

be designed using nonlinear topology optimization. In this case, response behaviors of the

counterpart mechanisms must match the load-displacement requirement for RL deforma-

tion, which are first established by solving elliptic integral.

Decomposing Multistability to Multiple Bistabilities

The question as to how designer can select the best decomposition type remains open.

A multistable compliant mechanism with n stable equilibria can be decomposed in many

different types of combinations. For example, a quadristable behavior can be decomposed

into either two (e.g. TYPE21
21) or three (e.g. TYPE123

321) bistable behaviors. The selection of

the types of combinations depends on the application and the user preference.
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Synthesis of Three Dimensional Multistable Compliant Mechanisms

Multiple bistable compliant mechanisms can be synthesized in three-dimensional prob-

lems. Three-dimensional problems can be divided into single-DOF and multi-DOF prob-

lems. Single-DOF problems can be investigated by expanding the design theory of two-

dimensional problems described in Chapter 6.

8.2.2 Areas of Applications

Existing multistable mechanism (e.g. a multistable switch) that can benefit from compliant

mechanisms should be explored to take advantage of the synthesis methodologies devel-

oped in this research. Space applications including pointing and orienting mechanisms,

MEMS, flow control adaptive surfaces are other application of multistable compliant mech-

anisms. Ergonomic devices which require precise multistable behaviors are possible areas

where multistable equilibrium compliant mechanisms can be well integrated.
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Appendix A: Combining Bistable Behaviors with Identical

Actuation Loads

When the actuation load of each bistable system is identical, it is difficult to apply a pre-

viously defined types of combinations. Ideally, once the input load reaches the actuation

load, each bistable system should be actuated at the same time. However, in the combined

system, it is not possible to simultaneously make more than two bistable systems unstable.

This problem can be illustrated by using a linear buckling analysis of two identical beams

combined in series.

Fig. 1 illustrates two buckling problems and their boundary conditions: (a) has a single

beam with an axial loading, and (b) has two identical beams combined in series. Only axial

displacement is allowed at the end of each beam. The material and geometry properties are

defined in the figure. The analytical solution of the eigenvalue problem of (a) is

Pcr = 4
π2EI

L2 = 65.7973,

where, Pcr is the critical load, E is Young’s modulus, I is the area moment of inertia of the

cross section, and L is the length of the beam. The critical load is obtained from the first or

the smallest eigenvalue.

Figure 1 Beam buckling analysis: (a) a single beam and (b) two beams in series.

The second problem can be solved with the same analytical method. The first and the

second eigenvalues are the same. However, these repeated eigenvalues have different mode
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shapes (orthogonal eigenvectors). Since only one mode shape is required to identify the

buckled shape at the smallest eigenvalue, either one of the repeated eigenvectors can be

used.

Fig. 2 describes the buckling mode shapes of the problems: (a) is the first buckling mode of

the single beam, (b) is one of the smallest repeated eigenvalues of the combined problem,

and (c) is the other buckling mode. The buckling mode shapes and the critical forces are

obtained by using a finite element analysis with 20 elements per beam. Given that only

one of the two subsystems is dominantly changed to its unstable status, we can deduce that

after the initially actuated subsystem is fully collapsed, the other subsystem is turned into

its unstable status.

Figure 2 Buckling modes and their critical loads: (a) one beam, (b)(c) two beams.

This behavior is even clearer when an imperfection is included in the analysis. Even

though the designs of two bistable systems are identical, their actual behaviors are not be

same with respect to the actuation loads and stable positions. This outcome is true because

imperfections occur during manufacturing and in use. Whenever one of the actuation loads

is smaller than the other, it is possible to apply the combination types defined in Chapter 6.
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Appendix B: Alternative Approach to Obtain Multistable

Behavior

The combined multistable behavior in Fig. 6.15 is found by using the optimization pro-

cedure described in Chapter 6. Alternatively, the multistable behavior can be obtained by

using the relations between two out of the three bistable behaviors (Fig. 3) and their com-

bined behaviors in Table 6.2. The solid arrows in Fig. 3 and 4 indicate the direction in

which the input load is increasing. The dotted arrows indicate that the load is decreasing.

Whenever the input load increases or decreases, a pair of bistabilities with the two small-

est actuation loads must be activated first. For example, when the load, F , increases in

Fig. 6.12, the first pair includes BES2 and BES3. The corresponding type is TYPE12
21 as

depicted in Fig. 3, and its behavior appears first as shown in Fig. 4. The second pair (BES1

and BES3), whose combination is TYPE21
21 has a higher load threshold and is activated

only when the input load reaches this value. When the load decreases, the third pair (BES1

and BES3) has the two smallest actuation loads and appears first as TYPE21
21. The other

pair (BES1 and BES2) with the relation of TYPE21
12 is then derived when the load decreases

further.

Figure 3 Relationship chart between the two out of three bistable behaviors.
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Figure 4 Load-Displacement curve of TYPE231
312 and behaviors for two bistabilities in the curve.
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Appendix C: Combinations of Three Bistable Behaviors
(n = 3)
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Appendix D: Elliptic Integral Solution for Reverse Lateral

Deformation

The following elliptic integrals have been derived by the elliptic integral tables of Byrd and

Friedman [16].

Equation (17) is reduced to

α =
1√
2

∫ θe

0

dθ√
nsinθ + cosθ −nsinθe− cosθe

=
1√
2

H1

Equation (20) is reduced to

a
L

=
1√
2α

∫ θe

0

cosθdθ√
nsinθ + cosθ −nsinθe− cosθe

=
1√
2α

(H2− pH1−nH3)

Equation (21) is reduced to

b
L

=
1√
2α

∫ θe

0

sinθdθ√
nsinθ + cosθ −nsinθe− cosθe

=
1√
2α

H3
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where,

H1 = g
(
Fk +Fλ ,k

)

H2 = 2pg
(
Ek +Eλ ,k

)

H3 =
g
p2

(
−µn

(
Fk +Fλ ,k

)−b(µ + p)H4
√

2p(µ + p)cosλ
)

H4 =
1
k2

(
Ek +Eλ ,k−

(
1− k2)(

Fk +Fλ ,k
))

and,

µ = −(nsinθe + cosθe)

p =
√

n2 +1

k =
µ +n

2p

g =

√
2
p

λ = sign(n) · sin−1

√
p−1
µ + p

Fk = F(k) : Complete elliptic integral of the first kind

Fλ ,k = F(λ ,k) : Incomplete elliptic integral of the first kind

Ek = E(k) : Complete elliptic integral of the second kind

Eλ ,k = E(λ ,k) : Incomplete elliptic integral of the second kind

where, n and θe are defined in Fig. 5.2. The function, sign(n), is defined as

sign(n) =





−1 , if n < 0

0 , if n = 0

1 , if n > 0
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Appendix E: Sensitivity of Buckling Load and Correspond-

ing Mode [28]

A linear prebucking problem can be expressed as

[K+λG]Φ = 0. (1)

where K and G are the global stiffness and geometry matrixes. λ and Φ are the eigenvalue

and corresponding eigenvector. The first eigenvalue is the critical load factor of the input

load and the eigenvector is the buckling mode of the eigenvalue. This problem can be

solved as the following:

[(K+G)+ γK]Φ = 0

K−1 (K+G)Φ =−γΦ (2)

where,

γ =
1−λ

λ
. (3)

Solving the eigenvalue problem of Eq. 2 yields

λ =
1

γ +1
, (4)

and the eigenvector can be calculated based on the following normalization.

ΦT GΦ = 1. (5)
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The sensitivity of the eigenvalue with respect to the design variables, x, is

∂λ
∂x

=
−ΦT

{(
∂K
∂x +λ ∂G

∂x

)
Φ+λ ∂G

∂u Φ∂u
∂x

}

ΦT GΦ(= 1)

= −ΦT
{(

∂K
∂x

+λ
∂G
∂x

)
Φ+λ

∂G
∂u

Φ
∂u
∂x

}
. (6)

The sensitivity of the eigenvector with respect to the design variables, x, is

∂Φ

∂x
=−1

2

(
ΦT ∂G

∂x
Φ+ΦT ∂G

∂u
Φ

∂u
∂x

)
Φ−ΦT GyΦ+y (7)

where the vector, y, can be calculated from the following equation.

λ
∂G
∂u

Φy =−
(

∂K
∂x

+λ
∂G
∂x

)
Φ+

∂λ
∂x

GΦ+λ
∂G
∂u

Φ
∂u
∂x

(8)

186



Bibliography

187



[1] Multistability - nature.com. http: //www. nature. com /nrg /journal /v2 /n4 /glossary
/nrg0401 268a glossary.html, 2008.

[2] Multistability - wikipedia. http: //en. wikipedia. org /wiki /Multistable, 2008.

[3] Theoretical physics / complex systems - multistability. http: //www. icbm. de /kom-
plsyst /9905.html, 2008.

[4] ABAQUS.Inc. Abaqus analysis user’s manual. ABAQUS Version 6.6 Documentation,
2006.

[5] ABAQUS.Inc. Abaqus theory manual. ABAQUS Version 6.6 Documentation, 2006.

[6] G. K. Ananthasuresh, S. Kota, and Y. Gianchandani. A methodical approach to the
design of compliant micromechanisms. Technical Digest. Solid-State Sensor and Ac-
tuator Workshop, pages 189–92, 1994.

[7] G. K. Ananthasuresh, S. Kota, and N. Kikuchi. Strategies for systematic synthesis of
compliant mems. In ASME Winter Annual Meeting - Symposium on MEMS, Dynamics
Systems and Control, volume 2, pages 677–686, 1994.

[8] ANSYS.Inc. Nonlinear structural analysis. ANSYS Documentation - Structural Anal-
ysis Guide, 2005.

[9] Shorya Awtar and Alexander H. Slocum. Constraint-based design of parallel kine-
matic xy flexure mechanisms. Journal of Mechanical Design, 129(8):816–830, 2007.

[10] Shorya Awtar, Alexander H. Slocum, and Edip Sevincer. Characteristics of beam-
based flexure modules. Journal of Mechanical Design, 129(6):625–639, 2007.

[11] J Barber. Intermediate Mechanics of Materials. McGraw-Hill, Boston, 2001.

[12] M. P. Bendsøe. Optimal shape design as a material distribution problem. Structural
and Multidisciplinary Optimization, 1(4):193–202, 1989.

[13] M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design
using a homogenization method. Comput. Methods Appl. Mech. Eng., 71(2):197–
224, 1988.

[14] P. A. Besselink. Bistable spring construction for a stent and other medical apparatus.
United States Patent 6,488,702, (9/012,843), 2002.

[15] K. E. Bisshopp and D. C. Drucker. Large deflection of cantilever beams. Quarterly
of applied Math, 3(3):272–275, 1945.

[16] Douglass L. Blanding. Exact constraint machine design using kinematic principles.
ASME Press, New York, 1999.

[17] P. F. Byrd and M. D. Friedman. Handbook of Elliptic Integrals for Engineers and
Physicists. Springer-VerLag, Berlin, 1954.

188



[18] J. Chessa. Programing the finite element method with matlab. Technical report,
Northwestern University, 2002.

[19] S. H. Crandall, N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of
Solids. McGraw-Hill, New York, 1978.

[20] Martin L. Culpepper and Gordon Anderson. Design of a low-cost nano-manipulator
which utilizes a monolithic, spatial compliant mechanism. Precision Engineering,
28(4):469–482, 2004.

[21] N. Dixit and M. Campbell. Automated synthesis of bi-stable compliant relays. 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference; Austin, TX; USA; 18-21 Apr, page 1, 2005.

[22] A. G. Erdman, S. Kota, and G. N. Sandor. Mechanism design analysis and synthesis.
Prentice Hall, Upper Saddle River, N.J., 2001.

[23] W. Fang and J. A. Wickert. Comments on measuring thin-film stresses using bi-layer
micromachined beams. Journal of Micromechanics and Microengineering, 5(4):276–
281, 1995.

[24] C. A. Felippa. Nonlinear finite element methods - course note. http: //www. colorado.
edu /engineering /CAS /courses.d /NFEM.d/, 2007.

[25] M. I. Frecker, G. K. Ananthasuresh, S. Nishiwaki, and S. Kota. Topological synthesis
of compliant mechanisms using multi-criteria optimization. Journal of mechanical
design Transactions of the ASME, 199(2):238–245, 1997.

[26] F. B Friedman. Drinking tube. United States Patent 2,094,268, 1936.

[27] A. Geisberger and M. D. Ellis. Storing mechanical potential in a mems device using
a mechanically multi-stable mechanism. United States Patent 7,012,491 B1, 2006.

[28] L. A. Godoy, E. O. Taroco, and R. A Feijoo. Second-order sensitivity analysis in
vibration and buckling problems. International Journal for Numerical Methods in
Engineering, 37(23):3999–4014, 1994.

[29] P. Hajela and E. Lee. Genetic algorithms in truss topological optimization. Interna-
tional journal of solids and structures, 32(22):3341–3357, 1995.

[30] R. H Harris. Buckling spring torsional snap actuator. United States Patent 4,118,611,
1978.

[31] J. A. Hetrick, N. Kikuchi, and S. Kota. Robustness of compliant mechanisms topology
optimization formulations. SPIE, 3667:244–254, 2000.

[32] L L Howell. Compliant Mechanisms. John Wiley & Sons, Inc., 2001.

189



[33] L. L. Howell and A. Midha. A method for the design of compliant mechanisms with
small-length flexural pivots. ASME Journal of Mechanical Design, 116(1):280–290,
1994.

[34] L. L. Howell and A. Midha. Parametric deflection approximations for end-loaded,
large-deflection beams in compliant mechanisms. ASME Journal of Mechanical De-
sign, 117(1):156–165, 1995.

[35] L. L. Howell and A. Midha. Parametric deflection approximations for initially curved,
large-deflection beams in compliant mechanisms. In ASME Design Engineering Tech-
nical Conferences, volume 96-DETC/MECH-1215, 1996.

[36] L. L. Howell, A. Midha, and T. W. Norton. Evaluation of equivalent spring stiff-
ness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms.
ASME Journal of Mechanical Design, 118(1):126–131, 1996.

[37] L. L. Howell, S. S. Rao, and A. Midha. Reliability-based optimal design of a bistable
compliant mechanism. ASME Journal of Mechanical Design, 116(4):1115–1121,
1994.

[38] B. Jensen, M. Parkinson, K. Kurabayashi, L. Howell, and M. Baker. Design optimiza-
tion of a fully-compliant bistable micro-mechanism. In International Mechanical
Engineering Congress and Exposition, New York, NY, 2001. ASME.

[39] B. D. Jensen and L. L. Howell. Identification of compliant pseudo-rigid-body four-
link mechanism configurations resulting in bistable behavior. ASME Journal of Me-
chanical Design, 125:701–708, 2003.

[40] B. D. Jensen, L. L. Howell, and G. M. Roach. Bistable compliant mechanism. United
States Patent 6,215,081 B1, (US6215081B1), 2001.

[41] B. D. Jensen, L. L. Howell, and L. G. Salmon. Introduction of two-link, in-plne,
bistable compliant mems. In Proceedings of the 1998 ASME Design Engineering
Technical Conferences. ASME, 1998.

[42] J. Joo. Nonlinear Synthesis of Compliant Mechanisms: Topology and Size and Shape
Design. PhD thesis, University of Michigan, 2001.

[43] J. Joo and S. Kota. Topological synthesis of compliant mechanisms using nonlinear
beam elements. Mechanics Based Design of Structures and Machines, 32(1):17–38,
2004.

[44] J. Joo, S. Kota, and N. Kikuchi. Nonlinear synthesis of compliant mechanisms: Topol-
ogy design. In Proceedings of the 2000 ASME Design Engineering Technical Confer-
ences, 2000.

[45] J. Joo, S. Kota, and N. Kikuchi. Large deformation behavior of compliant mecha-
nisms. In ASME Design Engineering Technical Conferences, DETC 2001, 2001.

190



[46] B. H. Kang and J. T. Wen. Design of compliant mems grippers for micro-assembly
tasks. In International Conference on Intelligent Robots and Systems, Beijing, China,
2006.

[47] B. H. Kang, J. T. Wen, N. G. Dagalakis, and J. J. Gorman. Design optimization for a
parallel mems mechanism with flexure. In 2004 ASME Design Engineering Technical
Conferences, Salt Lake City, Utah USA, 2004.

[48] C. King, J. J. Beanpan, S. V. Sreenivasan, and M. Campbell. Multistable equilib-
rium system design methodology and demonstration. Journal of Mechanical Design
(Transactions of the ASME), (6):1036, 2004.

[49] C. W. King, M. I. Campbell, J. J. Beaman, and S. V. Sreenivasan. Synthesis of mul-
tistable equilibrium linkage systems using an optimization approach. Structural and
Multidisciplinary Optimization, 29(6):477–487, 2005.

[50] M. Kjell. Numerical results from large deflection beam and frame problems anal-
ysed by means of elliptic integrals. International Journal for Numerical Methods in
Engineering, 17(1):145–153, 1981.

[51] E. Kollata, C. King, and M. Campbell. Design synthesis of multistable compliant
structures. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Confer-
ence, Albany, New York, Aug. 30-1, 2004.

[52] Sridhar Kota and G. K. Ananthasuresh. Designing compliant mechanisms. Mechani-
cal Engineering-CIME, v117(11):93–96, 1995.

[53] W. H. Lee, B. H. Kang, Y. S. Oh, H. E. Stephanou, A. C. Sanderson, G. Skidmore,
and M. Ellis. Micropeg manipulation with a compliant microgripper. In IEEE Inter-
national Conferences on Robotics and Automation, 2003.

[54] C. T. Leondes. Intelligent Systems: Technology and Applications,Six Volume Set.
CRC Press, Inc., 2002.

[55] A. A. Limaye, C. W. King, and M. I. Campbell. Analysis of multiple equilibrium
positions in magnetostatic field. Proceedings of the ASME Design Engineering Tech-
nical Conference, 2 B:1289–1297, 2003.

[56] N. Lobontiu. Compliant mechanisms: Design of flexure hinges. CRC Press, 2002.

[57] K. J. Lu. Synthesis of Shape Morphing Compliant Mechanisms. PhD thesis, Univer-
sity of Michigan, 2004.

[58] K. J. Lu and S. Kota. Design of compliant mechanisms for morphing structural
shapes. Journal of Intelligent Material Systems and Structures, 14(6):379–391, 2003.

[59] K. J. Lu and S. Kota. Topology and dimensional synthesis of compliant mechanisms
using discrete optimization. Journal of Mechanical Design, 128(5):1080–1091, 2006.

191



[60] M. P. Murphy and L. O’Neill. What is Lift? The Next Fifty Years. Cambridge Univer-
sity Press, New York, USA, 1995.

[61] Y. S. Oh. Snap-fit based microassembly with a compliant gripper. Master thesis of
mechanical engineering, Rensselaer Polytechnic Institute, 2003.

[62] Y. S. Oh and S. Kota. Synthesis of multistable equilibirum compliant mechanisms us-
ing combinations of bistable mechanisms. In Proceedings of the 2007 ASME Design
Engineering Technical Conferences, Las Vegas, NV, 2007. ASME.

[63] Y. S. Oh and S. Kota. Robust design of bistable compliant mechanisms using the
bistability of a clamped-pinned beam. In Proceedings of the ASME 2008 International
Design Engineering Technical Conferences, New York, NY, 2008. ASME.

[64] M. Ohsaki and S. Nishiwaki. Shape design of pin-jointed multistable compliant mech-
anisms using snapthrough behavior. Structural and Multidisciplinary Optimization,
30(4):327–334, 2005.

[65] J. Park, Y. Lee, J. Song, and H. Kim. Safe link mechanism based on passive compli-
ance for safe human-robot collision. 2007 IEEE International Conference on Robotics
and Automation, pages 1152 – 1157, 2007.

[66] J. Park, Y. Lee, J. Song, and H. Kim. Safe joint mechanism based on nonlinear
stiffness for safe human-robot collision. 2008 IEEE International Conference on
Robotics and Automation, pages 2177–2182, 2008.

[67] J. M Paros and L. Weisbord. How to design flexure hinges. Machine Design, pages
151–156, 1965.

[68] C. B. W. Pedersen, T. Buhl, and O. Sigmund. Topology synthesis of large-
displacement compliant mechanisms. International Journal for Numerical Methods
in Engineering, 50(12):2683–2705, 2001.

[69] C. B. W. Pedersen, N. A. Fleck, and G. K. Ananthasuresh. Design of a compliant
mechanism to modify an actuator characteristic to deliver a constant output force.
Journal of Mechanical Design, 128(5):1101–1112, 2006.

[70] J. Qiu, J. H. Lang, and A. H. Slocum. A curved-beam bistable mechanism. Micro-
electromechanical Systems, Journal of, 13(2):137–146, 2004.

[71] L. Saggere and S. Kota. Static shape control of smart structures using compliant
mechanisms. AIAA Journal, 37(5):572–579, 1999.

[72] A. Saxena and G. K. Ananthasuresh. Topology synthesis of compliant mechanisms
for nonlinear force-deflection and curved path specifications. Transactions of the
ASME, Journal of Mechanical Design, 123(1):33–42, 2001.

[73] H. G. Schaeffer. MSC.Nastran Primer for Linear Analysis. MSC.Software Corpora-
tion, 2001.

192



[74] W. K. Schomburg and C. Goll. Design optimization of bistable microdiaphragm
valves. Sensors and Actuators, 64:259 – 264, 1998.

[75] Stuart T. Smith. Flexures elements of elastic mechanisms. Gordon & Breach, Ams-
terdam, 2000.

[76] V. Steinberg. Hydrodynamics: Bend and survive. Nature, 420(6915):473, 2002.

[77] B. Trease. Topology Synthesis of Compliant Systems with Embedded Actuators and
Sensors. PhD thesis, University of Michigan, 2008.

[78] B. Trease, Y. Moon, and S. Kota. Design of large-displacement compliant joints.
ASME Journal of Mechanical Design, 127(4):788–798, 2005.

[79] C. Vehar. Generalized Synthesis Methodology of Nonlinear Springs For Prescribed
Load-Displacement Functions. PhD thesis, University of Michigan, 2008.

[80] C. Vehar and S. Kota. Generalized synthesis of nonlinear spring for prescribed load-
displacement functions. In ASME Design Engineering Technical Conferences & Com-
puter and Information in Engineering Conference, volume DETC2006-99657, 2006.

[81] C. J. Wood. Bistable hinge with reduced stress regions. United States Patent
6,321,923, 2001.

193




