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Abstract 
 

Strong evidence supports the role of genetic endowment conferring either 

vulnerability or protection to mood disorders.  However, environmental factors 

are also known to play a critical modulating role in such vulnerability. Recent 

reports revealed decreased levels of Fibroblast Growth Factor-2 (FGF-2) gene 

expression in several post-mortem brain regions of subjects with a history of 

major depression.  One of the regions showing profound alterations was the 

hippocampus of these severely depressed subjects.  These reports implicated 

FGF-2 in depression, however they did do not address whether the observed 

dysregulation in FGF-2 expression represents a predisposing factor to the illness 

or a consequence of the disease process.  Given that altered anxiety is observed 

in mood disorders such as depression we examined the potential contribution of 

FGF-2 in two genetically distinct groups of rats selectively bred to differ 

dramatically in their response to novelty and to anxiety-provoking conditions 

(HRs= Low Anxiety/High Response to Novelty vs. LRs= High Anxiety/Low 

Response to Novelty). We demonstrate that the Low-Anxious HRs have 

significantly elevated levels of hippocampal FGF-2 mRNA relative to the High-

Anxious LR’s, and that there exists a highly significant inverse correlation 

between FGF-2 levels and anxiety behavior. Interestingly, FGF-2 expression is 

modulatable by environmental factors that alter anxiety and enhance 



 

 ix 

neurogenesis-- thus environmental complexity (EC) reduces anxiety behavior 

induces FGF-2 expression and promotes neurogenesis in the hippocampus, 

particularly in the High Anxious LR’s.  Moreover, a 3-week treatment regimen of 

administered FGF-2 is highly effective at blunting anxiety behavior, specifically in 

the High Anxious LR’s.  This anxiolytic effect is accompanied by an increase in 

the survival of hippocampal adult stem cells, both neurons and astrocytes, again 

specifically in the LR’s.  Furthermore, we show that the impact of EC on 

hippocampal cell genesis is dependent on the FGF system as FGF blockade 

disrupted the effects of EC on increasing cell proliferation and new cell survival. 

This suggests that hippocampal cell genesis might contribute to modulating the 

anxiolytic effects of FGF-2 and EC. Taken together, these findings implicate 

hippocampal FGF-2 as a novel modulator of anxiety behavior and underscore its 

potential as a new target for the treatment of mood and anxiety disorders.
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Chapter 1  
 

Introduction 
 

It is increasingly evident that behavior, including emotional responsiveness, is 

controlled by the interplay between genetic predisposition and the impact of the 

environment on the individual.  While genetic endowment may confer either 

vulnerability or protection towards a high level of emotional reactivity and stress 

responsiveness, environmental factors are also thought to play a critical 

modulating role.  In particular, early life stress is known to alter emotionality later 

in life.  Moreover, acute psychosocial stress (so-called life events) is often the 

trigger for episodes of severe mood disorders.  However, less is known about the 

protective consequences of the environment and how they might interact with 

genetic vulnerability to anxiety, a behavior often seen altered in mood disorders.  

 

Emotionality refers to the unique constellation and magnitude of the endocrine, 

neural and behavioral responses of an organism in response to environmental 

stimuli that have valence, be it negative or positive.  The hippocampus along with 

its well-known function in learning and memory (Squire, 1992, Jarrard, 1993) is 

one of the key brain structures that modulate these stress responses via its 

negative feedback regulation (Jacobson and Sapolsky, 1991). Exposure to 

sustained stress increases anxiety-like behavior and can lead to various 
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structural and synaptic plasticity changes in the hippocampus (Kim and Yoon, 

1998) (Sapolsky, 2003), including dendritic remodeling and disruption of 

proliferation and survival of adult neurogenesis (McEwen, 2001). Such changes 

are in part thought to underlie the neural mechanisms associated with altered 

cognitive and emotional behaviors seen in mood disorders (Duman, 2002, 

McEwen, 2005). 

 

As mentioned above, genetic as well as environmental factors are thought to 

modulate emotionality.  Genetic influences on emotionality have been evident in 

the selectively bred HR (High Responder) and LR (Low Responder) animals.  

HR-LR animals show characteristic differences in emotional responsiveness to 

novelty where HR animals show higher locomotor response to a novel 

environment as opposed to LRs, which display limited response to novelty.  

These differences in response to novelty have previously been shown to predict 

propensity to drug-taking behavior, where HRs learn to self-administer drug of 

abuse more readily than LRs, including cocaine and amphetamine (Piazza et al., 

1990).  HR-LR animals also show predictable differences in anxiety-like behavior, 

where HRs display low anxiety relative to the highly anxious LRs (Kabbaj et al., 

2000).  Recently, the genetic contribution brought by these behavioral 

phenotypes was demonstrated as selective breeding showed these behavioral 

phenotypes being highly heritable (Stead et al., 2006).  Thus selective breeding 

of HRs and LRs has been shown to confer differences in vulnerability to anxiety-

like behavior.  
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Findings by our laboratory support the role of the hippocampus as a key structure 

modulating differences in propensity to anxiety-like behavior between HR-LR. 

Specifically, HR animals show lower levels of glucocorticoid receptor GR 

expression in the hippocampus relative to LRs.  These differences in 

hippocampal GR are thought to modulate in part such differences in anxiety as 

direct microinjections with a GR antagonist into the hippocampus of LRs reduces 

their anxiety to that of an HR (Kabbaj et al., 2000).  

 

Conversely, HR-LR differences in emotionality are also subject to differential 

propensity to stress impact as social isolation confers an anxiogenic effect in 

HRs without affecting LRs (Kabbaj et al., 2000).  Similarly, restraint stress causes 

HR animals to behave like LR animals.  This suggests that stressful experiences 

may also differentially affect the typical HR-LR anxiety responses.  Moreover, 

differences in HR-LR behavioral responses to environmental stimulation also 

extend to differences in neural responses as observed by immediate early gene 

expression.   

 

Changes in immediate early gene expression in response to stress or 

environmental stimulation are thought to precede short and long-term changes 

resulting from environmental stimulation (Kabbaj and Akil, 2001). Furthermore, 

growth factor gene expression changes resulting from environmental stimulation 

are thought to initiate changes in structural plasticity (Rampon et al., 2000) 

(McClung and Nestler, 2008).   As mentioned above the hippocampus is one the 
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key brain structures showing high responsiveness to stress and environmental 

stimulation.  Such responsiveness has been shown to result in structural 

plasticity changes including changes in dendritic arborization, synaptogenesis 

and neurogenesis.   

 

Growth factors are thought to mediate in part most of these structural plasticity 

changes occurring in the brain (Filus and Rybakowski, 2005, McClung and 

Nestler, 2008).  These include changes in neurogenesis associated with VEGF 

expression as well as changes in dendritic remodeling in response to FGF-2 

(Cao et al., 2004, Rai et al., 2007).  Moreover, the role of growth factors in 

structural plasticity in the hippocampus has been extended by their genetic 

contribution, observed in animals showing overexpression or deletion of growth 

factor genes (Govindarajan et al., 2006) (Raballo et al., 2000, Korada et al., 

2002).  

 

As mentioned above, HR and LR animals show heritable differences in 

emotionality and differences in response to environmental stimulation.  Given 

that growth factors have been singled out as key players modulating structural 

plasticity resulting from genetic contribution and experience, it is reasonable to 

suspect that differences in HR-LR anxiety-like behavior and response to 

environmental stimulation may relate to differences in growth factor expression. 
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Previous work has mostly focused on growth factors such as BDNF and VEGF in 

modulating structural plasticity changes resulting from antidepressant treatment.  

Specifically, changes in anxiety and depression-like behavior have been 

attributed to changes in neurogenesis brought by VEGF and BDNF  (Shirayama 

et al., 2002) (Warner-Schmidt and Duman, 2007) (Schmidt and Duman, 2007).  

However, work in our group has led to a novel set of target growth factors that 

may also participate in modulating differences in anxiety seen in HR and LR.  

 

Previous microarray studies performed by a consortium of researchers that 

includes our laboratory (the Pritzker Consortium) have revealed decreased levels 

of Fibroblast Growth Factor-2 (FGF-2) gene expression in several post-mortem 

brain regions of subjects with a history of major depression (Evans et al., 2004).  

These differences in FGF-2 transcripts seemed to partially reverse with 

antidepressant treatment.  Furthermore, recent, unpublished observations have 

shown that the hippocampus of these severely depressed subjects shows the 

most profound alterations.  

 

While evidence implicating FGF-2 in emotional behavior is limited, studies 

suggest that experiences that affect emotional behavior influence FGF-2 gene 

expression.  For example; rats that were raised by mothers who demonstrated 

better care for their pups, showed higher protein levels of FGF-2 and enhanced 

survival of adult-born neurons (Bredy et al., 2003).  In turn, rats that received 

increased maternal care show reduced endocrine stress responses and better 
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adaptive behaviors towards environmental challenges (Francis and Meaney, 

1999, Menard et al., 2004).  Interestingly, the deficits in hippocampal 

development resulting from decreased maternal care have been shown to be 

rescued by environmental complexity (EC) (Bredy et al., 2004).  EC has also 

been shown to reverse the behavioral, neurogenic and endocrine deficits 

resulting from prenatal restraint stress (Morley-Fletcher et al., 2003, Laviola et 

al., 2004).  While these reports generally support the role of EC in modulating 

emotional behavior, it remains to be determined whether EC increases FGF-2 

expression in the adult hippocampus. Furthermore, prenatal stress has been 

shown to reduce both neurogenesis (Coe et al., 2003), and levels of FGF-2 in the 

hippocampus of adult rats (Molteni et al., 2001), EC reverses the effects of stress 

on neurogenesis (Morley-Fletcher et al., 2003, Laviola et al., 2004).  Given that 

FGF-2 enhances neurogenesis on mature adults and during early development, 

one might predict that the reversal effects of EC may in part be due to a rescue 

of basal levels FGF-2. 

 

Given that anxiety is one of the strong hallmarks of vulnerability to depression in 

humans, it is reasonable to consider that experiences known to reduce anxiety 

and enhance neurogenesis may help elucidate the role of FGF-2 in emotionality.  

Moreover as HR and LR animals show basal differences in emotionality (e.g 

anxiety-like behavior), which are subject to experiential influence, our studies will 

examine the potential role of FGF-2 on emotionality where the genetic and 

experiential contributions are taken into account. 
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Fibroblast Growth Factors 
 

FGF-2 is a member of the FGF gene family composed of 24 proteins that have 

multiple functions including development of the nervous system and 

angiogenesis (Eckenstein et al., 1991).  FGF-2 and other FGF ligands are 

classified as family members based on a central domain conserved region of 

about 120 amino acids which bind heparin (Faham et al., 1996). The typical 

genomic structure of this family is made up of three coding exons ranging from 

5kb to 100kb, where exon one contains the start codon.  The family can also be 

subdivided into three groups.  One subgroup; FGF 1, 2, 9, 16 and 20 lack an NH-

2 terminal signal sequence but they are still transported to the extracellular 

environment, while FGF 11- FGF 14 also lack this signal and remain intracellular.  

The remaining FGF subgroup uses the endoplasmic reticulum-golgi secretory 

pathway to be transported extracellularly.  

  

 The complexity produced by the diversity of family member ligands includes 

different isoforms resulting in some members such as FGF-2 and FGF-3, which 

have additional 5’ transcribed sequences from upstream AUG starting codons 

(Arnaud et al., 1999). These isofoms are said to confer different functions to the 

protein and affect affinity for the FGF receptors.  For example amino terminal 

extensions of bFGF or FGF-2 have been hypothesized to promote nuclear 

targeting of the protein, thereby regulating different functional responses within 

the cells (Bikfalvi et al., 1998). On the other hand, several factors contain a single 

start codon (Gaughran et al.), but exon one is subdivided into two to four different 
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subexons by alternative splicing.  Others use alternative 5’exons, which will 

confer them with alternative amino terminals.  These transcriptional variations 

may also have some implications for receptor affinity and tissue specificity, which 

ultimately may translate to different functional activity. 

 
Fibroblast Growth Factors; Structural Characteristics of FGF-2  
 

FGF-2 has been crystallized and characterized structurally by (Zhu et al., 1991).  

Its structure is important to discuss since its interaction with FGF receptors is 

made up of a terciary complex that also includes interactions with heparan 

sulfate, which can also affect cell activity response.  Several isofoms of FGF 2 

ranging from 18 kDa to 24 kDa have been identified.  The crystal structure of the 

18kDA isoform was determined in the presence and absence of heparan sulfate 

by (Faham et al., 1996).  FGF 2 is composed of 12 antiparallel β-sheets within 

the conserved core domain organized as a pyramidal structure of three groups of 

4 β-sheets. Beta strands 10 and 11 contain several basic residues that form the 

heparin-binding site, which provide protection against denaturing agents 

(Schlessinger et al., 2000).  Heparan sulfate which is found throughout all the 

mammalian tissues, contrary to heparin, will have a role in modulating FGF2 

function and distribution by binding FGF-2 as soon as it is secreted from cells. 

This in turn will affect ligand–receptor binding interaction.  
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Fibroblast Growth Factor-2; Receptors 
 

In the adult, FGF-2 shows prominent expression in the cytoplasm as well as in 

the nucleus of astrocytes throughout the brain, whereas neuronal expression is 

almost exclusive to the hippocampus (Woodward et al., 1992).  Several isoforms 

of FGF 2 ranging from 18 kD to 34 kD have been identified (Nugent and Iozzo, 

2000).  FGF-2 exerts its function by interacting with four receptor types with 

varying affinity depending on ligand and receptor isoforms (Ornitz, 2000, Reuss 

and von Bohlen und Halbach, 2003).  These receptors are trans-membrane 

glycoproteins containing three Ig-like loops (I-II-III) in the extracellular domain 

and a split tyrosine kinase domain.  Three of the FGF receptors, FGFR1, FGFR2 

and FGFR3, are expressed in the brain (Eckenstein, 1994), while FGFR1 is most 

abundantly expressed in the hippocampus (Belluardo et al., 1997). There are two 

binding sights from where bFGF can interact with the FGF receptors.  This gives 

a chance for one FGF-2 molecule to bind to two different receptors at the same 

time or activate a single receptor within two different locations, (Kan et al., 1993). 

This same group has also shown that FGF receptor 1 contains heparan sulfate 

binding sites, and have suggested that this interaction functions to enhance 

FGF2 affinity to receptors (Kan et al., 1999).  Affinity for receptors by FGF-2 and 

other family members is modulated by different factors such as receptor isoforms 

and the types of heparan sulfate proteoglycans on the cell surface, (Guimond 

and Turnbull, 1999), (Lin et al., 1999), (Ornitz et al., 1996), (Spivak-Kroizman et 

al., 1994).  The Ig-III loop is the site of specificity for the receptor, (Johnson et al., 

1991) and it is where isoforms are formed, hatl enhance or decrease the affinity 
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of the receptors 1,2 and 3 for any given FGF.  These isoforms (IIIb or IIIc) are 

formed through alternative splicing of two exons that code for the carboxyl 

terminal half of the loop III.  FGF binding affinity studies have been done in cell 

culture using Baf 3 cells (Ornitz et al., 1996).  The results suggest that FGF-2 has 

a higher affinity for FGF receptors 1IIIc and 3 IIIc and FGF receptor 4 while 

showing very low affinity for isoforms of receptor 2 IIIb and 3 IIIb. 

 

Fibroblast Growth Factor-2; Anatomy 
 

The expression of FGF-2 in the adult brain has been observed by 

immunohistochemistry showing FGF-2 most prominently expressed in astrocytes 

throughout the whole CNS including the hippocampus and the neocortex 

(Woodward et al 1992).  The only reported immunoreactivity of FGF-2 on 

neurons was in the hippocampal formation.   FGF 2 expression was found in the 

cytoplasm as well as in the nucleus of both astrocytes and neurons.  In the rat 

brain FGF-2 is widely expressed across regions with most prominent expression 

in astrocytes.  Anatomical mapping shows FGF-2 synthesizing cells showing high 

co-localization with FGF-2 protein expression (Gonzalez et al. 1995). Thus most 

astrocytes synthesize FGF-2 whereas FGFr1 is mostly neuronal.  Interestingly, 

FGF-2 mRNA shows low abundance in the dentate gyrus, whereas protein 

expression is very high in abundance.  FGF-2 expression in the hippocampus is 

much higher in the CA2 with lower levels of expression observed in the CA1 and 

CA3.  This suggests that FGF-2 action must be relatively localized within each 

hippocampal subregion as its synthesis in astrocytes must impact FGFr1 
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neuronal cells located in the hippocampus.  On the other hand it is also possible 

that FGF-2 synthesized within the hippocampus could be acting outside of this 

region.  This is particularly evident in regions such as the amygdala where FGF-2 

mRNA expression is almost absent, yet high protein expression is observed. 

Moreover, the amygdala shows high levels of FGFr1 expression suggesting that 

FGF-2 stemming from other regions should be acting in these receptors.  This is 

consistent with reports showing FGF-2 as a diffuseable protein.  Moreover, FGF 

receptors are mostly expressed within axonal fibers, thus most of FGF-2 activity 

within the receptors should stem from secreted FGF-2 as oligodendrocytes do 

not synthesize FGF-2. Finally although most of the FGF receptors are expressed 

in the white matter only FGFr1 is expressed in neuronal populations, with high 

levels of expression found in the hippocampus including the dentate gyrus and 

the CA3 subregions. 

 

Fibroblast Growth Factor-2; Cell signaling 
 

Signaling cascades by FGF receptor activation have been determined and 

hypothesized to involve mitogenic activation, but the target molecular pathways 

for specific functions have yet to be determined.  These signals depend on 

receptor isoforms as well as glycoprotein interaction within the cell surface, as 

previously mentioned.   Binding of FGF-2 will activate the receptor, which will 

cause dimerization and autophosphorylation by specific tyrosine residues within 

the receptor.  Then binding of phospholipase C to phosphotyrosine residues will 

mediate signal, through hydrolysis of phosphatidylinositol to inositol-3-phophate 
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and dyacilglycerol (DAG) leading to Ca+ release and subsequent activation of 

PKC.  Another signal transduction pathway involving FGF receptor activation is 

through binding of FGF substrate receptor 2 (FRS2) and/or SHC.  These will stay 

bound to tyrosine residues within the receptor and bind the Grb2-SOS complex 

activating RAS.  In turn Ras recruits RaF-1, which will then phosphorylate MEK, 

followed by phosphorylation of MAPK by MEK, resulting in activation and 

phosphorylation of transcription factors.  Both of these signaling cascades have 

been attributed to FGF-2 function. However many factors mentioned above may 

affect which cell signaling cascades regulate FGF-2 functional responses at 

different times. 

 
Fibroblast Growth Factor-2; Development 
 

Basic FGF or FGF-2 has been shown to play an important role during embryonic 

development of the neocortex and hippocampus of mice (Vaccarino et al., 1999, 

Raballo et al., 2000, Cheng et al., 2002) however its enhancing proliferative 

effects on neurons have not been extensively studied in the adult brain.   

Expression of FGF-2 and its receptors FGFr 1,2 and 3 during development is 

temporally regulated within the ventricular zone (VZ), which is the area from 

where inducing signals for neocortical progenitors occur reviewed by (Ford-

Perriss et al., 2001).  The progenitors cells within the VZ express high levels of 

bFGF whereas migrating cells once they leave the VZ do not.   FGF-2 is 

expressed early during neurogenesis, becoming almost absent by the end, when 

other growth factors such as FGF-7 and FGF-8 increase expression (reviewed by 
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(Dono, 2003).  Most studies on FGF-2’s role in development have focused on 

neocortical progenitor cell cultures whereas its mitogenic and survival effects 

have been documented by (Murphy et al., 1990), (Cavanagh et al., 1997).  

Moreover, (Palmer et al., 1995) (Palmer et al., 1999) showed the neurogenic 

effects of bFGF in vitro from stem cells of adult neocortex an area where only 

glial proliferate during adulthood.    

  

Furthermore studies done by (Korada et al., 2002) showed that FGF-2 knockout 

mice had a decrease of 40% in cortical glutamatergic pyramidal neurons and a 

reduction in the size of their cell bodies, with no effects observed in the 

hippocampus.  These effects were restricted to frontal and parietal cortex.  

Furthermore, FGF-2 injected at Embryonic day 15.5 to null mutants results in an 

18% and 87% increase in the volume and in total number of neurons, 

respectively in the adult cerebral cortex (Vaccarino et al., 1999). Finally studies 

have also demonstrated the role of bFGF in cholinergic sprouting and axonal 

remodeling after entorhinal cortex lesions, (Ramirez et al., 1999) (Fagan et al., 

1997). Taken together these reports exemplify the variety of responses and 

actions FGF-2 provides throughout the brain during development.  However, this 

does not address the variety of neurogenic responses FGF-2 could bring about in 

the postnatal brain. 

 

FGF-2 has mostly been recognized for its mitogenic and survival effects on adult 

stem cell cultures derived from numerous areas of the central nervous system 
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(Palmer et al., 1999). These include areas such as the striatum, neocortex, and 

subventricular zone, which have shown proliferative responses from exposure to 

bFGF, inducing neurons and glia.   However, these neurogenic effects have only 

been reported in vivo during certain developmental periods.  For example single 

peripheral injections of FGF-2 have been shown to enhance hippocampal 

neurogenesis in young rodents, however these effects were not observed in the 

adult (Wagner et al., 1999).  It is possible that repeated injections might be 

required for such effects to take place, since repeated exogenous administration 

of FGF-2 rescues age related decline of hippocampal neurogenesis in mice and 

rats (Jin et al., 2003) 

 

Neurogenesis; Modulation by Environmental Factors 
 

Neurogenesis refers to neuronal birth, differentiation, and short-term survival of 

new neurons.  Neurogenesis occurs well into adulthood in certain areas of the 

brain, including the subventricular zone and the dentate gyrus of the 

hippocampus. In the adult rat hippocampus, neurogenesis occurs in the 

subgranular zone located at the border of the granule cell layer and hilus. New 

neurons in the dentate gyrus migrate into the granule cell layer, extend axons 

into the mossy fiber pathway, make synaptic contacts with targets in CA3, and 

express neuronal markers (van Praag et al., 2002). 

 

It is estimated that in the rat hippocampus the number of granule neurons added 

to the granule cell layer of the dentate gyrus within 1 month is 6% of the total 
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granule cell population, representing 28% and 62% of the afferent and efferent 

neuronal populations respectively (Cameron and McKay, 2001). This represents 

a massive cell turnover, which makes this structure particularly sensitive to 

experience-dependent changes. However, it also renders the dentate gyrus 

particularly susceptible to environmental factors, which could alter hippocampal 

structure and function. Indeed, exposure to negative regulators of hippocampal 

neurogenesis such as stress result in reduced performance on hippocampus-

dependent learning tasks (Luine et al., 1994, Bodnoff et al., 1995, Endo et al., 

1996, Krugers et al., 1997, Shors et al., 2001), while positive regulators such as 

exercise and environmental complexity correlate with improved performance 

(Kempermann et al., 1997, Luine et al., 1998, van Praag et al., 1999a). 

 

It has been shown that when rodents are housed in an enriched environment 

there is an increased in the numbers of new neurons in the dentate gyrus 

(Kempermann et al., 1997, Nilsson et al., 1999). This increase in number of both 

neurons and glia has been attributed to an enhanced survival of new cells as 

opposed to proliferation (Nilsson et al., 1999). Moreover, an increase in 

hippocampal volume has been seen after exposure to a complex environment.  

This suggests that adult neurogenesis facilitates the increase in hippocampal 

volume and that such increase in neurogenesis may help individuals cope better 

with novelty and complexity (Kempermann et al., 1997, Kempermann et al., 

1998). 
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Similarly an increase in neurogenesis is observed in response to hippocampus-

dependent learning whereas no increase is observed following learning tasks 

that do not require the hippocampus (Gould et al., 1999, Ambrogini et al., 2000). 

This has been suggested to result form increased survival of new cells as 

opposed to proliferation, as most untrained animals see a reduction in 

neurogenesis within two weeks (Cameron et al., 1993), whereas animals living in 

a complex environment or trained in hippocampus-dependent learning tasks 

show reduced pyknosis  and increased neurogenesis in the hippocampal 

subgranular zone (Young et al., 1999) (Gould et al., 2000). 

 

Similarly, exercise increased neurogenesis in mice (van Praag et al., 1999a, van 

Praag et al., 1999b, van Praag et al., 2002), while enhancing hippocampal LTP, 

suggests that the integration of these new cells may have an active participation 

in synaptic plasticity.  Indeed it has been show that new cells born in the dentate 

gyrus show similar functional properties to those seen in mature neurons (van 

Praag et al., 2002). Interestingly, running has been shown to have 

antidepressant-like effects in rodents and humans which could therefore be 

mediated in part by increased hippocampal neurogenesis (Hill et al., 1993, Ernst 

et al., 2006).  This leads me to speculate that environmental complexity could 

perhaps have similar antidepressant effects as a result of increased 

neurogenesis, whereas stress could lead to an increase in vulnerability to mood 

disorders as a result of decreased neurogenesis.  
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In the adult hippocampus stress inhibits neurogenesis, and impairs learning and 

anxiety (Kim and Diamond, 2002). In rats, odor of a natural predator suppresses 

proliferation in the dentate gyrus (Tanapat et al., 2001). Similarly, in the 

marmoset stress provoked by introduction of a resident intruder decreases 

neurogenesis in the dentate gyrus (Gould et al., 1998). 

 

Stress and depression are associated with morphological changes in many brain 

regions including the hippocampus (Drevets, 2000, Rajkowska, 2000). For 

example, decreased hippocampal volume has been shown in patients suffering 

from depression (Sheline et al., 1996, Sheline et al., 1999) and post-traumatic 

stress disorder (PTSD) (Bremner et al., 1995, Gurvits et al., 1996, Bremner et al., 

1997).  Recently, similar findings were shown in rats where hippocampal volume 

was negatively correlated with Hippocampal volume (Kalisch et al., 2006). This 

reduction in volume has been attributed to a decrease in neurogenesis (Gould et 

al., 1998). Furthermore, studies have indicated that reduced hippocampal volume 

may predispose to, as opposed to result from, affective disorder as seen in twin 

studies from combat patients suffering from PTSD (Gilbertson et al., 2002).  

Taken together these findings along with the reports above, suggest that both 

experience and genetic propensity interact to produce the vulnerability to mood 

disorders with associated structural plasticity in the hippocampus. 

 

In fact it has been shown that prenatal stress predisposes adults to depression in 

humans and rats (Dugovic et al., 1999, Watson et al., 1999). In support of the 
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role of neurogenesis in such vulnerability (Lemaire et al., 2000) demonstrated 

that prenatal stress induces a life-long reduction in neurogenesis in the dentate 

gyrus of rats. 

 

While stress and depression may reduce hippocampal neurogenesis, possibly 

contributing to reduced hippocampal volume, proliferation is increased after 

chronic administration of antidepressants including SSRIs, (Malberg et al., 2000).  

Antidepressants increase the rate of hippocampal neurogenesis over a period of 

two to three weeks of administration. This is consistent with the time in takes for 

antidepressants to show beneficial effects on mood disorders. This suggests that 

increased adult neurogenesis may be a possible mediator of antidepressant 

action in humans (reviewed by (Duman et al., 2001, Manji et al., 2001, Jacobs, 

2002). 

 

The effects of antidepressants on neurogenesis have been extensively studied in 

animal models. Increases were observed in the rat following administration of 

several classes of antidepressants, while non-antidepressant agents had no 

effect on neurogenesis (Malberg et al., 2000). Furthermore, combined 

antidepressant treatment with stress in tree shrews and rats reverse the effects 

of stress on decreasing proliferation in the adult dentate gyrus, (Czeh et al., 

2001) (Malberg and Duman, 2003).  
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As a result it has been suggested that stress-induced decrease in neurogenesis 

may be an important factor in eliciting depressive episodes (Duman et al., 2001, 

Jacobs, 2002, Kempermann and Kronenberg, 2003).  Reports supporting this 

hypothesis have shown that animal model of stress disrupt cell proliferation and 

cell survival, while antidepressants reverse such effects (Czeh et al., 2002, 

Malberg and Duman, 2003).  Furthermore, it has been shown that the behavioral 

effects of antidepressants are dependent on neurogenesis in the hippocampus 

(Santarelli et al., 2003).  Reports also show that depressed subjects have 

decreased hippocampal volume when compared to normal subjects, whereas 

treated depressed subjects do not show such deficits (Sheline et al., 1996, 

Sheline et al., 1999).  These differences in hippocampal volume could in part be 

due to differences in neurogenesis brought by increased amounts of stress.  

While the above reported data suggest that decreased neurogenesis may 

underlie the behavioral deficits of depression (van Praag et al., 2000), the neural 

mechanisms responsible for decreased neurogenesis are yet to be determined. 

 

It has been well documented in animal models that stress has detrimental effects 

on emotional behavior and decreases hippocampal neurogenesis (Gould et al., 

1997, Tanapat et al., 1998, Malberg and Duman, 2003, Mirescu et al., 2004).  

Moreover, the effects of such stressful experiences are reversed by 

antidepressant treatment (Malberg and Duman, 2003).  Since antidepressants 

represent an effective treatment strategy, their mechanisms of action have been 

used as a point of departure for understanding the etiology of mood disorders 



 

 20 

(Jacobs, 2002).  Thus, increased adult neurogenesis has been suggested as one 

of the mechanisms by which antidepressants exert their beneficial effects on 

behavioral measures of anxiety and depression-like behavior (Santarelli et al., 

2003).  The convergence of evidence, with stress decreasing and 

antidepressants increasing neurogenesis has led to the hypothesis that mood 

disorders may be related to decreased levels of neurogenesis in the 

hippocampus.  However, much remains to be done to fully determine whether 

decreased neurogenesis underlies the emotional distress seen in depression.  

Moreover, it is important to examine the interplay between neurogenesis and 

individual differences in emotionality, and especially the impact of experience on 

these processes, without relying exclusively on a treatment based-hypothesis 

(Grossman et al., 2003).  Non-aversive experiences such as Environmental 

Complexity (EC) show similar effects to antidepressants, including reducing 

anxiety and increasing neurogenesis (Kempermann et al., 1997, Benaroya-

Milshtein et al., 2004).  Understanding the mechanisms of action of EC will 

provide an insight into the neural mechanisms whereby certain types of 

environmental experience can enhance neurogenesis and modulate emotional 

behavior. 

 
Environmental Complexity 
 

Environmental complexity refers to housing conditions facilitating sensory, 

exercise and social stimulation provided by the addition of more animal, toys and 

obstacles in the housing environment (van Praag et al., 2000).  Animals living 
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under such housing conditions have shown many structural and behavioral 

plasticity effects relative to animals living on standard housing conditions.  These 

effects seem to underlie the mechanisms of action of the potential beneficial 

effects of experience, given that EC has been shown to ameliorate the effects of 

animal models of neurological disorders such as Alzheimer’s (AD), Parkinson’s 

and Fragile X among others (Nithianantharajah and Hannan, 2006). 

 

As mentioned above, EC has been shown to have a variety of effects from 

behavioral to cellular and molecular (van Praag et al., 2000).  Initial observations 

made by Hebb in the 1940’s documented that, rats taken from the laboratory 

roaming freely at his house displayed behavioral improvements relative to 

littermates left at the laboratory.  Later on in the 1960’s, Rosenzweig and 

colleagues showed that animals living in a more complex environment showed 

increased brain weight (Bennett et al., 1969).  More recent studies have shown 

EC to increase dendritic branching and length as well as increase the number of 

spines and synapses (Volkmar and Greenough, 1972, Greenough and Volkmar, 

1973).  These findings although reported to occur in various areas of the brain 

such as cortex have been shown to occur in the hippocampus as well (Diamond 

et al., 1976).  Specifically, dendritic density was shown to be increased in the 

dentate gyrus of enriched rats relative to controls (Juraska et al., 1985).  

Similarly, an increase in the number of dendritic spines and dendritic density has 

also been reported in the CA3 region of the hippocampus in response to living in 

a more complex environment (Altschuler, 1979).  These initial anatomical 
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findings preceded what has now become a well-documented paradigm for 

studying experience dependent plasticity.  Moreover the power of such 

experience to alter dendritic remodeling is thought to exemplify the ability of the 

brain for self-repair and adapt to change.  Although the mechanisms by which 

such changes occur are yet to be understood, evidence suggests that EC alters 

the expression of plasticity-related genes including growth factors, which could 

participate in the structural and synaptic plasticity changes occurring in the brain 

(van Praag et al., 2000). 

 

In the hippocampus specifically structural plasticity changes in response to EC 

have been associated with increase in growth factors such as NGF (Mohammed 

et al., 1990).  Moreover, besides changing the expression of genes EC has also 

been known to alter hippocampal dentate gyrus synaptic transmission and 

plasticity related events such as increase EPSPs (Green and Greenough, 1986).  

These changes go in parallel with findings showing increase field potentials 

found in the hippocampus of rats housed in a complex environment (Sharp et al., 

1985).   

 

Most of these changes occurring in the hippocampus have been attributed to the 

positive impact of EC on learning and memory. Moreover the fact that EC 

impacts electrophysiological properties of the hippocampus suggest that changes 

in LTP may be occurring to animals housed under EC (Duffy et al., 2001).  Thus 

given that LTP is a well accepted model for learning and memory (Bliss and 
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Collingridge, 1993) it is prudent to hypothesize that changes in LTP occurring in 

the dentate gyrus of rats (Bronzino et al., 1994) may help explain in part the 

improvement in learning and memory occurring in rats exposed to EC. 

 

The initial studies have more recently been followed by studies showing the 

neurogenic effects of EC (Kempermann et al., 1997).  Such increases in 

neurogenesis in the dentate gyrus of the hippocampus have in part been 

attributed to increases in gene expression of growth factors such as VEGF, NGF 

and BDNF (Young et al., 1999, Cao et al., 2004, Zhu et al., 2006). Interestingly, 

behavioral changes in response to EC have also been attributed to increased 

expression of growth factors after EC (Zhu et al., 2006).  Specifically 

improvements in learning and memory have been related to increases in VEGF 

after EC (Cao et al., 2004).  Moreover, changes in behaviors altered in mood 

disorder such as anxiety have also been shown to be improved upon living in a 

more complex environment (Benaroya-Milshtein et al., 2004).  Given the inherent 

ability of EC in promoting cellular and behavioral plasticity in the intact brain, EC 

has gained more attention as a potential tool for studying the recovery of brain 

disorders (Laviola et al., 2008). 

 

Transgenic mouse models have demonstrated that EC has the ability to reverse 

adverse effects of several neurological disorders.  For example EC housing 

ameliorated the spatial memory deficits and delayed the onset of symptoms in an 

animal model of Huntington’s disease (Hockly et al., 2002, Glass et al., 2004).  
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Interestingly, epidemiological results found that a more stimulating environment 

improved physical, mental and social functioning in human Huntington’s disease 

patients (Sullivan et al., 2001).  Furthermore, transgenic mouse models 

containing the human APOE alleles found in Alzheimer’s disease patients have 

also shown improvement in working memory after housing under EC (Levi et al., 

2003).  These behavioral changes were accompanied by an increase in NGF and 

synaptophysin in the hippocampus, suggesting that behavioral changes could 

result from changes in neural plasticity.  The notion that EC may interact with 

genetic manipulations which model disease implies that experience interacts 

profoundly with genetics in altering vulnerability towards disease.  This suggests 

that psychiatric disorders, which are known to have a strong genetic component, 

are subject to experiential manipulation thus altering their degree of onset.   

 

Psychiatric disorders present an extreme challenge given the inherent complexity 

of gene-environment interactions affecting vulnerability to such disorders.  

Although animal models of psychiatric disease present advantages they explicitly 

rely on drug treatment hypothesis for elucidating their characterization.  For these 

reasons it is important to adopt models that encompass the contribution of 

experience and genetic propensity.  Such models of mood disorders may provide 

a better understanding of the neurobiological underpinnings of such disorders. To 

this end I have adopted the use of the High Responder (HR) Low Responder 

(LR) model characterized by individual differences in anxiety-like behavior in 

conjunction with EC. This model should produce a better understanding of the 
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contribution of both experience and genetic predisposition on vulnerability 

towards mood disorders. 

 

High Responder (HR) and Low Responder (LR) Model 
 

The HR and LR model has previously been described as a model of individual 

differences in emotionality.  Early studies carried out by Piazza and co-workers 

demonstrated a relationship between a behavioral response to a novel 

environment and propensity to self-administer drugs of abuse (Piazza et al., 

1989).  When outbred rats are exposed to the mild stress of a novel environment 

high responder (HR) animals exhibit high rates of locomotion while Low 

Responders (LR) exhibit low rates of locomotion (Piazza et al., 1989).  These two 

groups of animals differ in their drug seeking behavior as HR rats learn to self-

administer psychostimulants faster than LR rats (Dellu et al., 1996, Marinelli and 

White, 2000).  

 

Findings show the HR-LR phenotype predicts differences in response to drugs of 

abuse as HR rats exhibit a heightened behavioral sensitization to amphetamine. 

Reports have also found a positive correlation between locomotor response to 

novelty and the magnitude of sensitization to psychostimulants (Hooks et al., 

1991).  Moreover, differences in the acquisition of self-administration have been 

reported between HR and LRs.  For example, HR rats learn to self-administer 

amphetamine more quickly than LR rats (Piazza et al., 1989, Piazza et al., 1990).  

These differences have also been observed in cocaine self-administration as HR 
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learn to self administer low and high doses of cocaine more rapidly than LRs 

(Kabbaj et al., 2001). It is noteworthy that once LRs achieve a stable pattern of 

self-administration their drug-taking behavior becomes indistinguishable from that 

of an HR.  Thus the HR-LR model has certainly become suitable for examining 

individual differences in the initial part of drug-taking behavior. 

 

Current work is aimed at determining the neural correlates underlying the basal 

differences between HR and LR. Such findings could render an understanding of 

the mechanisms that contribute to the vulnerability of drug abuse.  Initial work 

focused on differences in Dopamine (DA) responses, with HR showing greater 

DA response relative to LR (Piazza et al., 1991).  These findings included basal 

and stress related DA responses (Rouge-Pont et al., 1993) which are 

modulatable by glucocorticoids (Piazza et al., 1996). Interestingly, HRs show a 

more profound release of glucocorticoids in response to stress (Kabbaj et al., 

2000). 

 

However, more recent work by our laboratory has highlighted the importance of 

other neural mechanisms contributing to the phenotypic differences.  Specifically 

our laboratory has rendered the importance of stress molecules associated with 

HR-LR differences, as stress is an inherent component of the novelty response 

and a critical factor in vulnerability to drug taking behavior.  Findings along these 

lines demonstrated HR-LR differences in the expression of several stress related 
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genes such as CRH in the amygdala and hypothalamus, and glucocorticoid 

receptor in the hippocampus (Kabbaj et al., 2000).   

 

Anatomical profiling using immediate early gene expression of c-fos has also 

enabled the characterization of neural activation in HR-LR in response to mild 

stressors.  Relative to LRs, HRs show low expression of c-fos in the CA1 region 

of the hippocampus, while showing high expression in the olfactory area, orbital 

cortex, cingulate cortex, dorsal striatum and the paraventricular nucleus of the 

hypothalamus (Kabbaj and Akil, 2001).  Given that c-fos is a transacting factor 

that alters the expression of other genes, it seems possible that HR-LR might 

show different long-term responses to stress as evidenced by their different 

immediate early gene expression response in different anatomical regions. Thus, 

experiences may render different neural consequences in HRs and LRs, which 

could translate into differences in emotional reactivity in both phenotypes.  

Indeed it has been shown that stress differentially alters HR and LR drug-taking 

behavior.  Thus while HRs typically self-administer drugs more readily relative to 

LRs, after social defeat stress the scenario is dramatically different as HR 

animals appear inhibited (Kabbaj et al., 2001).  Thus, repeated social defeat 

stress, which is known to enhance drug-taking behavior, results in a transient 

inhibition of self-administration in HRs followed by a return to normal drug talking 

behavior.  On the other hand, LR animals, which typically show little response to 

drugs, respond in the opposite manner by showing a dramatic increase in self-

administration thus becoming indistinguishable from HRs. Taken together the 
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HR-LR model reliably demonstrates that stressful experiences may differentially 

impact individual drug taking behavior.  Moreover, the differential neural 

responses observed in HRs and LRs in response to mild stress suggest that 

different neural mechanisms may underlie the propensity for drug taking 

behavior; where in some animals (LR) drugs are seek in response to stress, 

whereas in others drug-seeking is due to their propensity for novelty response.    

 

Although the initial characterization of these phenotypes was revealed in the 

context of vulnerability towards drug taking behavior, more recently the HR-LR 

model has provided insight on the neural correlates associated with emotional 

stress responsiveness to the environment (Piazza et al., 1989, Dellu et al., 1996).  

Our laboratory has shown that these differences in locomotor response to novelty 

also predict differences in anxiety-like behavior (Kabbaj et al., 2000) (Kabbaj and 

Akil, 2001), with HR animals exhibiting lower levels of anxiety behavior in the 

light-dark box test and Elevated Plus Maze (EPM) relative to LRs.  Thus, HR 

animals seem to display high exploration on novel environments that may be 

considered mildly stressful.  Moreover, these behavioral differences are also 

accompanied by differences in corticosterone stress responses where HRs 

exhibit a more prolonged corticosterone response. These different endocrine 

responses are attributed to differences in the negative feedback regulation of the 

HPA axis as HR animals show lower levels of GR expression in the hippocampus 

relative to LRs.  However, it is important to note that such basal differences in 

anxiety-like behavior are also subject to experiential influence, as seen earlier 
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with drug taking behavior.  For example if HRs are socially isolated their behavior 

becomes indistinguishable from that of an LR thus showing a more inhibited 

anxious-like phenotype (Kabbaj et al., 2000).  Similarly, when a stressor is 

imposed such as in restraint stress the low anxiety HR behavioral phenotype 

disappears.  Thus, these results imply that basal HR-LR differences in anxiety-

like behavior are also modulated by experiences that may lead to differential 

changes in gene expression.  Such experiences in turn may translate into 

changes in the expression of genes associated with neural plasticity such as 

FGF-2. 

 

Finally, while much of this literature has relied on outbred animals, our laboratory 

has embarked on an ongoing selective breeding project (now in the 19th 

generation).  This selective breeding project has demonstrated that these 

behavioral phenotypes are highly heritable.  The knowledge gained from our 

selectively bred HRs and LRs has shown that novelty response is a genetically 

heritable trait, which can reliably predict individual differences in anxiety-like 

behavior.  This provides an advantage for ascertaining neural correlates 

associated with HR-LR differences in anxiety-like behavior.  Furthermore the HR-

LR selective breeding project provides a model profiting heavily from genetic 

homogeneity, thus enabling us to better study differences in the propensity 

towards anxiety-like behavior. 
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Elucidating the mechanisms by which experience can interact with genetic 

predisposition to control emotional reactivity is fundamental for understanding 

normal behavior and for explaining the etiology of mood disorders.  Clearly, 

adverse stressful experience has been identified as one of the main epigenetic 

factors leading to the onset of mood disorders (Lopez et al., 1999).  As a result 

much effort has focused on the impact of stress on brain structure and function 

as well as on emotional responsiveness.  However, most of these studies have 

focused on stressors that are aversive, uncontrollable and generally negative for 

the animal. Less is known about the impact of other environmental manipulations 

on emotionality, including changes in the environment that might be considered 

either positive or at least more complex in their valence such as in EC.  This 

dissertation focuses on this latter class of environmental experience and 

examines the potential role of FGF-2 in this process.  Based on reports 

mentioned above I hypothesize that; High levels of hippocampal FGF-2 

brought by genetic inheritance or environmental complexity contribute to 

reduce anxiety-like behavior. 

  

To this end, in my first chapter we examined the link between changes in 

hipocampal FGF-2 gene expression, anxiety behavior and hippocampal cell 

genesis observed after environmental complexity. These initial studies 

investigated whether changes in hippocampal cell genesis and anxiety behavior 

seen after EC were dependent on the FGF system activity.  Following these 

studies chapter 2 examined the direct role of the endogenous hippocampal FGF 
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system on anxiety behavior by examining the impact of an FGF antagonist on 

anxiety. In addition I also investigated the specific role of FGF-2 on anxiety by 

looking at its impact on selectively bred HR-LR animals, a model characterized 

by genetically inherited differences in anxiety-like behavior.  Finally, we conclude 

this dissertation by examining the role of FGF-2 in mediating the gene-

environment interaction on vulnerability to anxiety.  Specifically I investigated 

how FGF-2 can serve as a protective agent on individual vulnerability to anxiety 

as brought by genetic endowment, as seen in HR-LR, or from environmental 

influence, as seen after EC.  Finally, I end this thesis project by investigating the 

role of hippocampal cell genesis as a potential mechanism mediating the 

influence of FGF-2 on vulnerability to anxiety behavior. 
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Chapter 2  
 

FGF-2 is required for the beneficial effects of 
Environmental Complexity on hippocampal cell genesis 

and anxiety 
 

Abstract 
 

Emotionality refers to the unique constellation and magnitude of the endocrine, 

neural and behavioral responses of an organism when exposed to environmental 

stimuli that have valence be it negative or positive.  The hippocampus is one of 

the key brain structures that modulate these responses.  Exposure to sustained 

stress increases anxiety-like behavior and can lead to various structural changes 

in the hippocampus, including disruption of adult neurogenesis. In contrast 

Environmental Complexity (EC), a behavioral paradigm involving communally 

housed animals exposed to various objects and toys, has been shown to 

enhance neurogenesis and reduce anxiety-like behavior. Previous findings 

showing decreased levels of FGF-2 expression in brains of postmortem subjects 

that suffered from major depression have implicated the FGF system as a novel 

target modulating vulnerability to mood disorders.  However, the extent of such 

findings has yet to be linked to behavioral measures of emotionality.  Given that 

altered anxiety is observed in mood disorders such as depression we examined 

the potential contribution of FGF-2 on the anxiolytic and neurogenic effects of 
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EC.   Our results showed that EC increased FGF-2 gene expression and 

neurogenesis in the hippocampus. EC reduced anxiety-like behavior in the 

novelty suppressed feeding test, extending previous findings that used other 

measures of anxiety behavior.  Interestingly, when animals were administered 

with an FGF receptor antagonist during exposure to EC we saw a disruption in 

the anxiolytic effects of EC.  These effects were paralleled by changes in 

hippocampal cell genesis as FGF blockade disrupted the effects of EC on 

increasing cell proliferation and new cell survival.  Taken together our results 

suggest that hippocampal FGF-2 is required for the anxiolytic effects of EC, and 

that neurogenesis might contribute to modulating the anxiolytic effects of EC. 
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 Introduction 
 

While genetic endowment may confer either vulnerability or protection towards a 

high level of emotional reactivity and stress responsiveness, environmental 

factors are also thought to play a critical modulating role.  In particular, stressful 

experiences are known to alter emotionality, and are often recognized as the 

trigger for episodes of severe mood disorders.  However, less is known about the 

protective consequences of the environment and experience on emotionality. 

One particular paradigm well known for showing the protective consequences of 

the environment on emotionality is Environmental Complexity (EC).  Specifically, 

EC has been shown to reduce anxiety behavior (Benaroya-Milshtein et al., 2004). 

Moreover, EC has been reported to improve learning and memory and enhance 

hippocampal neurogenesis, (Nilsson et al., 1999) a phenomenon regarded as a 

key mechanism by which antidepressants exert their behavioral effects on animal 

models of mood disorders (Santarelli et al., 2003). 

 

It has been well documented that stress has detrimental effects on emotional 

behavior and decreases hippocampal neurogenesis (Gould et al., 1997, Tanapat 

et al., 1998, Malberg and Duman, 2003, Mirescu et al., 2004).  Moreover, the 

effects of such stressful experiences are reversed by antidepressant treatment 

(Malberg and Duman, 2003).  Since antidepressants represent an effective 

treatment strategy, their mechanisms of action have been used as a point of 

departure for understanding the etiology of mood disorders (Jacobs, 2002).  

Thus, increased adult neurogenesis has been suggested as one of the 
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mechanisms by which antidepressants exert their beneficial effects on behavioral 

measures of anxiety (Santarelli et al., 2003). 

Studies on the neural and behavioral effects of antidepressants have mostly 

focused on Brain Derived Neurotrophic Factor (BDNF) (Duman, 1998, Shirayama 

et al., 2002, Duman, 2004).  However, recent studies involving our research 

group have shown a down-regulation of FGF-2 in the brains of post mortem 

subjects with major depression (Evans et al., 2004).  Moreover, reports have also 

shown that antidepressant treatment increases FGF-2 expression in the rat 

hippocampus (Mallei et al., 2002).  These findings led us to the hypothesis that 

decreased levels of FGF-2 may be involved in the pathophysiology of severe 

depression and the closely associated increase in anxiety, and that 

antidepressants and anxiolytic drugs may exert their effects by increasing FGF-2 

(Turner et al., 2006, Akil et al., 2008). 

 

FGF-2 is a member of the FGF gene family composed of 24 proteins that have 

multiple functions including development of the nervous system and 

angiogenesis (Eckenstein et al., 1991).  In the adult, FGF-2 shows prominent 

expression in astrocytes throughout the brain, whereas neuronal expression is 

almost exclusive to the hippocampus (Woodward et al., 1992).  FGF-2 exerts its 

function by interacting with four receptor types with varying affinity depending on 

ligand and receptor isoforms (Ornitz, 2000, Reuss and von Bohlen und Halbach, 

2003).  These receptors are trans-membrane glycoproteins containing three Ig-

like loops (I-II-III) in the extracellular domain and a split tyrosine kinase domain.  
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Three of the FGF receptors, FGFR1, FGFR2 and FGFR3, are expressed in the 

brain (Eckenstein, 1994), while FGFR1 is most abundantly expressed in the 

hippocampus (Belluardo et al., 1997).  These receptors are expressed in both 

neurons and glial and may participate in glial and neuronal signaling interactions 

that may have important implications during development as FGFR1 has 

previously been shown to be required for hippocampal growth (Ohkubo et al., 

2004).   

 

FGF-2 has mostly been recognized for its mitogenic and survival effects on adult 

stem cell cultures derived from numerous areas of the central nervous system 

(Palmer et al., 1999).  However, these neurogenic effects have only been 

reported in vivo during certain developmental periods.  For example single 

peripheral injections of FGF-2 have been shown to enhance hippocampal 

neurogenesis in young rodents, yet these effects were not observed in the adult 

(Wagner et al., 1999).  However, repeated exogenous administration with FGF-2 

has been shown to rescue age related declines of hippocampal neurogenesis 

(Rai et al., 2007).   

 

While evidence implicating FGF-2 in emotional behavior is limited, studies 

suggest that at least during development, there may be an important interplay 

between emotional experiences and FGF2 expression. For example; rats that 

were raised by mothers who exhibited better care for their pups showed higher 

protein levels of FGF-2 and enhanced survival of neurogenesis during adulthood 
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(Bredy et al., 2003).  Since rats that receive increased maternal care show 

reduced endocrine stress responses and better adaptive behaviors towards 

environmental challenges (Francis and Meaney, 1999, Menard et al., 2004), this 

might suggest an association between higher FGF-2 levels and lower anxiety 

behavior. Conversely, prenatal stress has been shown to reduce both basal 

levels of FGF-2 and neurogenesis (Coe et al., 2003) in the hippocampus of adult 

rats (Molteni et al., 2001). Interestingly, the behavioral and endocrine deficits 

resulting from prenatal restraint stress as well as the associated decrease in 

neurogenesis have been reversed by EC (Morley-Fletcher et al., 2003, Laviola et 

al., 2004). Similarly, deficits in hippocampal development resulting from 

decreased maternal care have been shown to be rescued by EC (Bredy et al., 

2004). Together, these studies suggest that during development, both positive 

and negative environmental factors (stress, maternal care, environmental 

enrichment) can exert lifelong impact on both emotionality and hippocampal 

function, including neurogenesis, in the adult animal. They also suggest that 

some of these effects are associated with altered levels of FGF-2 during 

development.  However, they do not firmly establish a causal role of FGF-2 in 

mediating environmental influences on emotional reactivity. 

 

However, it remains unclear whether FGF2 is relevant only during a certain 

developmental time window or whether it plays a key role during adulthood in 

encoding environmental influences and mediating changes in emotional 

responses. While the human postmortem studies uncovered a decrease in FGF-
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2 in severe depression, it was difficult to ascertain whether this was due to a 

genetic predisposition that was present throughout the patient’s life, the impact of 

the illness itself, or some combination of factors.  

 

Thus, in this chapter I asked whether a non-aversive experience that can 

decrease anxiety in the adult animal (EC) can also modulate FGF-2 expression. 

Moreover, we directly test the idea that this alteration in FGF-2 expression is not 

simply a byproduct of the environmental change, but plays a causative role in the 

associated change in anxiety behavior. 

 
Materials and Methods 
 
Animals 
 

Adult Male Sprague-Dawley rats were obtained from our in-house breeding 

colony at the Molecular and Behavioral Neuroscience Institute (MBNI) where we 

have maintained the selectively bred HR-LR lines for over 18 generations. Adult 

rats (300g-400g) around 2 months old were housed two animals per cage (one 

HR, one LR per cage to balance out potential intergroup variance) after 

locomotor screening under a 12 hr light/dark cycle (lights on at 6:00 am) with 

food and water available ad libitum.  Animals were allowed to acclimate to the 

housing conditions for at least 7 days prior to any experiments.  All animals were 

treated in accordance with the National Institutes of Health guidelines on 

laboratory animal use and care and in accordance with the guidelines set by the 
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university committee on use and care of animals (UCUCA) at the University of 

Michigan. 

 

Locomotion Testing 
 

At postnatal day 55-60, adult male rats were screened for locomotor response to 

a novel environment by placing them in a standard size (43×21.5×24.5) clear 

acrylic cage in a different room from where the animals had been housed. 

Locomotor activity was monitored every 5 minutes for 1 hour by two panels of 

photocells connected to a computer. The first panel of three photocells was 

placed at ground level to record horizontal locomotion, with the second panel of 

five photocells located near the top of the cage to determine rearing behavior. 

The locomotion testing rig and motion recording software were created in-house 

at the University of Michigan. Locomotion activity was tested between 9:00 and 

11:30 am. Final locomotion scores were determined by summing horizontal and 

rearing activities. 

 

Environmental Complexity 
 

Rats were housed for 21 days in 3 × 3 × 3 ft stainless steel cages which 

contained different toys, obstacle courses, and enriching stimuli.  Every day, 

animals were exposed to a set up of toys and sensory stimuli as part of their 

housing environment. 
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Novelty Suppressed Feeding Test 
 

Rats were food deprived for 18 hrs prior to testing.  On the next morning, animals 

were placed in an open field for a maximum of 5 minutes with a food pellet 

placed in the middle of the open field, and the latency to grab and start eating the 

food pellet was used as a measure of anxiety.  

 
mRNA in situ Hybridization 
 

At the conclusion of each experiment, rats were sacrificed by rapid decapitation, 

and their brains were removed, snap frozen, and stored at -80 ºC.  Brains were 

cryostat sectioned at -20°C at 20µm and sliced in series throughout the 

hippocampus, mounted on Super Frost Plus slides (FisherScientific) and stored 

at -80°C until processed. In situ hybridization methodology has been previously 

described in detail elsewhere (Kabbaj et al., 2000).  Sections taken every 100µm 

were fixed in 4% paraformaldehyde at room temperature for 1 h, and then 

washed three times in 2X SSC. Slides were processed in a solution containing 

acetic anhydride (0.25%) in triethanolamine (0.1 M, pH 8.0) for 10 min, rinsed in 

distilled water, dehydrated through graded ethyl alcohols (50, 75, 85, 95 and 

100%) and then air dried, all at room temperature. After air-drying, the sections 

were hybridized with a 35S-labeled cRNA probe for FGF-2.  The sequences of rat 

mRNA used for generating probes of genes are complementary to the following 

RefSeq database nos FGF2 (NM_019305, 716-994), and the probe was 

synthesized in our laboratory.  All cDNA segments were extracted (Qiaquick Gel 

Extraction Kit, Qiagen, Valencia, CA), subcloned in Bluescript SK (Stratagene, 
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LA Jolla,CA ) and confirmed by nucleotide sequencing. The FGF-2 probe was 

labeled in a reaction mixture consisting of 1 µg of linearized plasmid, 1X 

transcription buffer (Epicenter Technologies, Madison, WI), 125 µCi of 35S-

labeled-UTP, 125 µCi of 35S-CTP, 150 µM ATP and GTP, 12.5 µM dithiothreitol, 

0.5 ml of RNase inhibitor, and 1.5 µl of T3 RNA polymerase.  The reactions were 

incubated for 120 min at 37ºC, and then 1 µl of DNAse (RNAse free) was added 

to the reaction to incubate for another 15 min at room temperature.  The labeled 

probes were purified using Micro Bio-Spin P-30 Tris Spin Columns (Bio-Rad 

Laboratories), then diluted in hybridization buffer (containing 50% formamide, 

10% dextran sulfate, 3XSSC, 50 mM sodium phosphate buffer, pH 7.4, 

1XDenhardt’s solution, 0.1 mg/ml yeast tRNA, and 10 mM dithiothreitol) to yield 

106 dpm/70 µl.  A cover slip with 70 µl of diluted riboprobe was placed on each 

slide.  Slides were placed in a humidified box with filter paper saturated with 50% 

formamide buffer, and incubated overnight at 55°C.  Following overnight 

incubation, the coverslips were removed, rinsed, and washed twice in 2X SSC for 

5 min each. The sections were treated for 1 h in RNAase A solution (20 µg/ml in 

Tris buffer containing 0.5 M NaCl, pH 8) at 37°C. Following treatment, the 

sections were washed in increasingly stringent solutions of SSC, 2X, 1X and 

0.5X, for 5 min each. The slides were then incubated for 1 h in 0.1X SSC at 

65°C. Finally the sections were rinsed with water and dehydrated through graded 

alcohols, air-dried, and exposed to a Kodak XAR film (Eastman Kodak, 

Rochester, NY, USA). Exposure time of 7 days was experimentally determined to 

maximize signal for the FGF-2 probe.  The films were developed (Kodak D-19; 
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Eastman Kodak, Rochester, NY, USA), and brain section images were captured 

from film with a CCD camera (TM-745, Pulnix) using MCID and relative optical 

densities were determined for each section. Radioactive signals were quantified 

using computer-assisted optical densitometry software (Scion Image Beta 4.03; 

Scion Corporation, Frederick, MD). Integrated densities were found by outlining 

the region of interest from both hemispheres. Optical density measurements 

were corrected for background, and the signal threshold was defined as the 

mean gray value of background plus 3.5× its standard deviation. Only pixels with 

gray values exceeding the above-defined threshold were included in the analysis.  

Optical density measurements were taken for 4 subregions of the hippocampus 

(hippocampal fields CA1-CA3, and the dentate gyrus) from the left and right 

sides of the brain. Data from multiple sections per animal were averaged 

resulting in a mean integrated optical density value for each animal and then 

averaged for each group. 

 

Surgeries and Microinjections 
 

Rats were anesthetized using isoflurane before surgery and a single cannulae 

(22-gauge, Plastics One Inc., VA. USA) was implanted into the left lateral 

ventricle (coordinates from bregma: AP -.9; ML +1.3; DV -1.8) using a stereotaxic 

apparatus. The guide cannulae were anchored to the skull and fitted with an 

obdurator.  Obdurators were removed and 28-gauge injector cannulae were 

inserted extending 1.5mm below the tip of the guide.  The cannulae were 

connected by PE-20 tubing to a Hamilton syringe mounted on a syringe pump 
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(Harvard Apparatus, MA. USA). Rats were microinjected with 100nM dose of the 

FGF receptor antagonist PD173074 (Pfizer) dissolved in artificial cerebrospinal 

fluid (aCSF) or vehicle three times a week for 21 days throughout the duration of 

the EC training period. Total volume of 5ul was infused at a rate of 1.0µl/min, and 

the injector was left in place for an additional 2 min to allow diffusion of the drug. 

Animals were subjected to behavioral testing 24 hours after the last injection.  

Rats were killed by decapitation and the brains were snap frozen in isopentane 

after behavioral testing.  

 

BrdU/ Ki67 Immunohistochemistry 
 

To assess the effect of EC on hippocampal new cell survival, rats were injected 

with Bromodeoxyuridne (BrdU) (Calbiochem) for two days prior to the start of 

training paradigm at a dose of 200mg/kg dissolved in saline.  Twenty-four hours 

post BrdU labeling animals underwent 21 days of EC before being exposed to 

behavioral testing after which they were sacrificed by decapitation and brains 

were snap frozen.  For determining the rate of cell proliferation we performed 

immunohistochemical labeling of Ki-67, which is an endogenous marker of 

ongoing cell proliferation. For BrdU and Ki67 imunohistochemistry a series of 

every 8 sections was cut throughout the entire extent of the hippocampus at 30 

µm and slide mounted.  For Ki-67 DAB staining, sections were postfixed in 4% 

paraformaldehyde for 1hr, followed by a 45 minute incubation in 10mM sodium 

citrate at 90°C.  Sections were then rinsed with PBS and washed in 0.3% 

peroxide followed by blocking with BSA containing 1% goat serum and 0.05% 
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Triton X-100.  Subsequently sections were incubated overnight with rabbit 

polyclonal anti-ki67 (University of Michigan) 1:40000 in BSA.  After PBS washes 

sections were then incubated in biotinylated goat anti rabbit secondary antibody 

1:1000, (Vector labs) followed by Avidin/Biotin complex (Vectastain Elite ABC kit) 

and subsequent DAB reaction for visualization of signal.  For DAB staining of 

BrdU, sections were postfixed in 4% Paraformaldehyde for 1hr, rinsed in PBS 

and washed in 0.3% peroxide.  Sections were then incubated in 50% formamide-

2X SSC at 65°C for 2 hours followed by two 5 minute rinses in 2X SSC.  Slides 

were then placed for 30 minutes in 2N HCL at 37°C and 10 minutes in 0.1M Boric 

Acid at room temperature, followed by rinsing in PBS and blocked with BSA 

containing 1% goat serum and 0.05% Triton X-100.  Sections were incubated 

overnight at room temperature with rat monoclonal anti-BrdU (Accurate) 1:1000 

in BSA. After PBS washes sections were then incubated in biotinylated goat anti 

rat (Vector labs) secondary antibody 1:1000 followed by Avidin/Biotin complex 

amplification (Vectastain Elite ABC kit) and subsequent DAB reaction for 

visualization of signal. Cresyl violet staining was performed for both immuno 

stains and sections were subsequently dehydrated through graded alcohols 

followed by immersion in xylene and then coverslipped with Permount® mounting 

medium.  

 

Cell Counting 
 

For quantification of DAB stained Ki-67 and BrdU cells, slides were initially coded 

and the code was not broken until counts were analyzed to assure that a blind 
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observer performed cell counts.  To estimate the total number of cells we 

followed a modified unbiased stereological procedure used by (Malberg and 

Duman, 2003) where the total number of cells counted per animal was multiplied 

by the reciprocal of the sampling factor.  BrdU and Ki67 cells were counted in the 

granule cell layer and SGZ of the hippocampus on a light microscope under 63X 

objective.  Cells were included in SGZ counts if the cell was near the SGZ or 

touching the SGZ and was excluded if the cell was more than two cell diameters 

from the SGZ.  

 

Statistical Analysis 
 

Behavioral studies and anatomical studies were analyzed by Student t-tests or 

ANOVAs followed by Fishers PLSD post-hoc test comparisons. All data are 

presented as mean + standard error.  Statistical significance was assumed at 

p<0.05. 

 

Results 
 
Environmental Complexity increases FGF-2 gene expression in the 
hippocampus and reduces anxiety like behavior.   
 

To begin to elucidate whether hippocampal FGF-2 expression responds to 

experiences known to reduce anxiety such as Environmental Complexity (EC) we 

examined hippocampal FGF-2 gene expression in animals that were exposed to 

EC or standard housing conditions.  I focused on the hippocampus as FGF-2 

shows prominent neuronal expression in this area, and since enhanced 
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hippocampal neurogenesis has been observed after EC.   As seen in Figure 2-1, 

EC training results in an overall significant increase in FGF-2 expression in the 

dentate gyrus, [t(21)=4.53, p<0.001], CA3 region, [T(21)=3.5, p<0.01], and CA1 

region, [t(21)=5.6, p<0.0001] whereas no significant effects where observed in the 

CA2 region [t(21)=0.23, p=0.82].  Furthermore, as seen in Figure 2-2., EC 

decreased anxiety as shown by a decrease in the latency to feed on the novelty 

suppressed feeding test [t(20)=-2.2, p<.05].  These results were specific to the 

novelty arena as no differences were observed in home cage feeding [T(20)=1.6, 

p>.05] 

 

Environmental Complexity increases cell proliferation and new cell 
survival. 
 

Although EC had previously been linked to an increase in neurogenesis we 

wanted to verify whether such changes paralleled the increase in FGF-2 

expression seen earlier in response to EC on our experimental conditions.  As 

seen in Figure 2-3., EC exposure results in a significant increase in cell 

proliferation in the dentate gyrus as shown by an increase in the number of Ki67 

labeled cells, [t(15)=2.8, p<0.05].  Moreover, there was also an increase in the 

survival of newly born cells in the dentate gyrus as measured by the number of 

Brd-U labeled cells that had incorporated BrdU over 3 weeks earlier [t(15)=3.7, 

p<0.01]. 
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FGF receptor antagonism blocks the effects of Environmental Complexity 
on increasing cell proliferation and survival. 

 

Given that EC led to a significant increase in FGF-2 gene expression in the 

dentate gyrus and enhanced cell genesis, we asked whether FGF-2 played a 

causative role in the change in neurogenesis.  Thus, we used chronic treatment 

with an FGF receptor antagonist to test whether it was sufficient to block the 

effects of EC on increasing cell genesis in the hippocampus.  

As shown in Figure 2-4., under vehicle conditions, EC results in a significant 

increase in cell proliferation and cell survival as shown by an increase in the 

number of Ki67 [F(1,8)=5.8 p<0.05] and BrdU cells [F(1,8)=10.6, p<0.01] 

respectively.  On the other hand when animals were treated with an FGF 

receptor antagonist, EC failed to significantly increase cell proliferation 

[F(1,8),=2.2, p=0.20] and new cell survival [F(1,8)=2.1, p=0.20]. These results 

suggest that FGF receptor activation is required for EC to induce an increase in 

cell genesis in the dentate gyrus of the hippocampus and that the FGF system 

might contribute to the neurogenic effects of EC. 

 

FGF receptor antagonism blocks the anxiolytic effects of Environmental 
Complexity. 
 

Given that we had seen that EC resulted in an increase in FGF-2 expression and 

a decrease in anxiety we aimed to determine whether FGF receptor activation 

was required for EC to reduce anxiety.  For these experiments we used an FGF 

receptor antagonist PD173074 (Pfizer), which was injected 3 times a week 
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throughout the duration of the EC training period.   As seen earlier in our results 

and in part A. of Figure 2-5., under normal conditions EC animals respond with a 

significant decrease in anxiety as shown by a decrease in the latency to feed 

[T(20)=-2.2, p<0.05].  On the other hand, when EC animals are treated with an 

FGF antagonist this significant change in anxiety behavior in lost.  Thus, FGF 

receptor blockade results in a disruption of the anxiolytic effects of EC [T(16)=0.8, 

p>.05].  Taken together these results suggest that FGF receptor activation is 

required for EC to reduce anxiety-like behavior. 

 

Discussion 
 

The present study evaluated the potential role of FGF-2 to modulate the effects 

of experience on anxiety and neurogenesis. Using enrichment as a model of an 

environmental manipulation that is construed as neuroprotective, we determined 

whether FGF-2 was impacted by experience in the adult brain, and whether in 

turn this growth factor played a direct role in experience-dependent modulation of 

anxiety-like behavior and hippocampal neurogenesis.  As previously reported, 

our demonstrate show that exposing animals to a more complex environment, as 

opposed to standard housing conditions, results in a decrease in anxiety-like 

behavior. Moreover, it increases the generation of new hippocampal cells by 

enhancing cell proliferation and cell survival.  Importantly, we demonstrated that 

the exposure to a complex environment was accompanied by a significant 

increase in FGF-2 gene expression in the hippocampus. It was therefore 

reasonable to ask whether this increase in FGF-2 expression played a role in the 
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behavioral and/or neurogenesis alterations resulting from exposure to EC. This 

was tested by administering an FGF receptor antagonist to block the effect of the 

rise in endogenous FGF-2, and to determine whether this would prevent the 

neural and behavioral effects of EC. Our findings suggest that this treatment 

produced a blockade on the effects of EC in cell proliferation and cell survival.  

Moreover, treatment with the FGF receptor antagonist resulted in the disruption 

of the anxiolytic effects of EC.  Taken together our results suggest that FGF-2 

plays a key role as a neural modulator of the protective effects of experience on 

anxiety and hippocampal cell genesis. 

 

The ability of EC to enhance neurogenesis has been reported previously 

(Kempermann et al., 1997) (Nilsson et al., 1999), and has been regarded as part 

of an overall beneficial response of hippocampal circuitry to this treatment (van 

Praag et al., 2000).  Changes in cell genesis in the hippocampus have led to 

intense debate about their relevance to overall hippocampal function, particularly 

as it relates to the underlying mechanisms of mood disorders (Duman and 

Monteggia, 2006).  For example stress, which is regarded as a robust trigger of 

depressive episodes has been shown to decrease proliferation and survival of 

adult stem cells (Gould et al., 1997), whereas antidepressant treatment has been 

shown to increase neurogenesis (Malberg et al., 2000). Furthermore, 

neurogenesis has been proposed as being critical to the behavioral effects of 

antidepressants (Santarelli et al., 2003).  These reports along with others have 

prompted the hypothesis that decreased neurogenesis might in part be the 
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underlying mechanism of affective disorders (Warner-Schmidt and Duman, 

2006).  Nevertheless, these studies are largely correlational as it is difficult to 

manipulate the rate of cell birth, cell survival or cell differentiation in the 

hippocampus in a selective manner, and ascertain the functional impact on any 

given behavior.  However, there is great advantage in determining some of the 

triggers of neurogenesis, and being able to modulate them and study their impact 

on behavior.  

 

Growth factors such as FGF-2 have been shown to respond to antidepressant 

treatments (Mallei et al., 2002) and shown to be differentially down regulated in 

post mortem brains of depressed subjects (Evans et al., 2004).  Furthermore, 

FGF-2 has been shown to enhance neurogenesis in the hippocampus when 

administered exogenously (Wagner et al., 1999, Rai et al., 2007).  Thus, it is 

reasonable to hypothesize that FGF-2 might be one of the factors that might 

modulate the rate of neurogenesis.  However, the role of endogenous FGF-2 in 

the adult hippocampus had not been extensively studied, either as a modulator of 

neurogenesis or as a regulator of emotional responsiveness. 

 

Our initial results support the notion that increased hippocampal FGF-2 gene 

expression induced by EC could participate in the modulation of cell proliferation 

and cell survival.  This was further supported by our second set of experiments, 

which showed that when animals were administered concomitantly with an FGF 

receptor antagonist during exposure to EC, the increased proliferation and 
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survival response was partially disrupted.  These results support the role of FGF-

2 as a modulator of EC’s effect on increasing cell genesis.  This is supported by 

findings showing the same FGF receptor antagonist compound blocking the 

increase cell proliferation responses of FGF-2 in vitro (Skaper et al., 2000).  

Furthermore, they point to FGF-2 as being necessary for EC to increase 

hippocampal cell genesis.    

 

Although our results point to FGF-2 as being a key player in modulating EC’s 

effects on increasing cell genesis it is difficult to ascertain whether the antagonist 

treatment reflects a blockade in FGF-2 activity.  Although this drug has been 

shown to be specific for FGF receptors (Bansal et al., 2003), this compound does 

not necessarily discriminate on which FGF receptor it acts, as it binds to the 

tyrosine kinase domain of all FGF receptors (Mohammadi et al., 1998).  This 

suggests that this compound has the potential to act on many different FGF 

receptor isoforms, including those, which show high and low affinity for FGF-2 

binding and activation.  Three of the four FGF receptors are expressed in the 

brain, each with at least 2 isoforms identified, thus a diverse number of receptors 

could be targeted.  Furthermore, many more FGF ligands are expressed in the 

brain all with different binding affinity and efficiency response to each of the 

receptors (Ornitz et al., 1996). This makes for a plethora of FGF ligand receptor 

interacting combinations that could be targeted and disrupted in response to the 

antagonist.  Conversely it is known that FGF receptor 1 is most abundantly 

expressed in the hippocampus whereas FGFr2 and FGFr3 show a more diffuse 



 

 62 

expression within the white matter (Belluardo et al., 1997).  Furthermore, as we 

saw FGF-2 increases significantly in the hippocampus in response to EC and 

both FGF-2 and FGFr1 have been shown to have a key role in hippocampal 

neurogenesis (Ohkubo et al., 2004) (Cheng et al., 2002).  Finally, reports suggest 

that FGF-2 seems to have a preferential efficiency response in proliferation when 

interacting with FGF receptor 1 as opposed to FGFr2 and FGFr3 (Reuss and von 

Bohlen und Halbach, 2003) (Ornitz et al., 1996).  Thus while it is possible to 

suspect that the effects of the antagonist could be attributed to other FGF ligands 

our results strongly implicate FGF-2 as mediator of the effects of EC on 

increasing cell genesis.  

 

Our results also point to FGF-2 as an active mediator of the effects of EC on 

decreasing anxiety-like behavior.  This is supported by evidence showing the 

FGF receptor antagonist blocking the anxiolytic effects of EC on the novelty 

suppressed feeding test. As seen in our results under baseline conditions EC 

strongly reduces anxiety, whereas in the presence of an FGF receptor antagonist 

treatment this difference disappears. These results strongly implicate the FGF 

system as an important player in the anxiolytic effects of EC.  

 

Although other studies have shown other growth factors such as VEGF and 

BDNF modulating emotional behavior (Shirayama et al., 2002, Warner-Schmidt 

and Duman, 2007) this is the first time the FGF system is implicated in 

experience dependent modulation of emotional behavior.  FGF-2 has previously 
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not been linked to anxiety, however, FGF-2 is well known for responding with 

changes in gene expression particularly in the hippocampus in answer to 

experiences and pharmacological treatments known to modulate anxiety-like 

behavior.  For example hippocampal FGF-2 gene and protein expression 

increases in response to chronic antidepressants (Mallei et al., 2002) and acute 

treatments with diazepam (Gomez-Pinilla et al., 2000) both of which are known to 

reduce anxiety-like behavior. On the other hand FGF-2 gene expression in the 

hippocampus is also decreased after anxiogenic experiences including social 

defeat (Turner et al., 2008), in prenatal stress (Fumagalli et al., 2005) and 

decrease maternal care (Caldji et al., 1998, Bredy et al., 2003).  Interestingly, EC 

has been shown to reverse the anxiogenic effects of maternal separation 

(Francis et al., 2002).  However, it is yet to be determined whether such changes 

are due to increased FGF-2 expression in the hippocampus. Given our findings 

along with the previous reports we hypothesize that FGF-2 is an essential 

mediator of experience dependent anxiety behavior. 

The mechanism by which FGF-2 may modulate experience dependent anxiety is 

yet to be determined.  One hypothesis of depression states that neurotrophic 

factors and neurogenesis are critical players in mediating the behavioral 

responses of antidepressants and suggests that growth factors mediate the 

antidepressant behavioral responses by increasing neurogenesis in the 

hippocampus (Schmidt and Duman, 2007).  In support of this hypothesis, there 

are data showing FGF-2 expression increased in the hippocampus after 

antidepressant treatment (Mallei et al., 2002) as well as evidence showing FGF-2 
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positively modulating hippocampal neurogenesis (Pieper et al., 2005).  Given that 

EC shows similar effects on both increasing neurogenesis and reducing anxiety, 

we hypothesized that EC could work via the same mechanism.   The likelihood 

that FGF-2 mediates the anxiolytic effects of EC via neurogenesis is supported 

by our findings, which show an FGF receptor antagonist to blocking the increase 

in cell genesis after EC, while blocking the anxiolytic effects of EC.  However, our 

results do not rule out the possibility that FGF-2 may act by other mechanisms of 

plasticity such as increasing dendritic arborization given that EC has been shown 

to reduce anxiety independent of neurogenesis (Meshi et al., 2006) and FGF-2 

has been shown before to promote dendrite outgrowth in the hippocampus (Rai 

et al., 2007).  This would be especially plausible given that not only has EC 

previously been shown to promote such plasticity in several brain areas including 

the hippocampus, but other aversive experiences which increase anxiety such as 

stress (Wood et al., 2008) have been shown to have opposite effects (Watanabe 

et al., 1992). 

 

In conclusion we present for the first time that the FGF system is an important 

modulator of the impact of EC on decreasing anxiety and hippocampal cell 

genesis. These results support the role of the FGF system as a modulator of 

experience dependent anxiety-like behavior pointing to FGF-2 as a potential 

candidate mediating EC’s impact on anxiety. Although, our results suggest that 

EC requires FGF receptor activity for its anxiolytic impact there cannot be a direct 

comparison between the baseline and antagonist treatment conditions in the 
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current study as both results stem from different experiments. Thus, further 

chapters in this dissertation will use other measures of anxiety to corroborate the 

anxiolytic impact of EC and the specific role of FGF-2 in such effects both acutely 

and chronically.  Moreover, we will also evaluate how individual differences in 

anxiety like behavior relate to hippocampal FGF-2 expression and how this 

affects the impact of EC. 
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Results Figures 
 
Figure 2-1: Environmental Complexity increases FGF-2 gene expression in the 
hippocampus. 

 

 

 
 
 
 
EC significantly increased FGF-2 expression in the Dentate Gyrus, [T(21)=4.53, p<0.001], CA3 
region, [T(21)=3.5, p<0.01], and CA1 region, [T(21)=5.6, p<0.0001] whereas no significant effects 
where observed in the CA2 region [T(21)=0.23, p=0.82](n=11-12 per group). 
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Figure 2-2: Environmental Complexity decreases anxiety-like behavior 

 
A. 

 
 
 

 
B. 

 
 
 
A) EC training decreases anxiety-like behavior as shown by a decrease in the latency to feed on 
the novelty suppressed feeding test [T(20)=-2.2, p<0.05]. B) These results were specific to the 
novelty arena as no differences were observed in home cage feeding [T(20)=1.6, p>0.05] (n=10-12 
per group). 
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Figure 2-3: Environmental Complexity increases hippocampal cell genesis 

 

A. 

 
 
 
B. 

 
 
A) EC significantly increases cell proliferation in the Dentate Gyrus as shown by an increase in 
the number of Ki67 labeled cells, [T(15)=2.8, p<0.05].  B) EC also increase survival of newly born 
cells in the dentate gyrus as measured by the number of Brd-U labeled cells [T(15)=3.7, p<0.01]. 
(n=8-9  per group). 
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Figure 2-4: FGF receptor antagonism blocks the effects of Environmental Complexity on 
increasing cell proliferation and survival 

A. 

 
 
B. 

 
 
A) EC results in a significant increase in cell proliferation as shown by an increase in the number 
of Ki67 cells [F(1,8)=5.8, p<0.05], however such effects are lost when EC animals are treated 
chronically with an FGF receptor antagonist [F(1,8)=2.2, p=0.20].  B) Similarly, EC's significant 
effects on increasing new cell survival [F(1,8)=10.6, p<.01] where lost with concurrent treatment of 
an FGF receptor antagonist [F(1,8)=2.1 p=0.20] (n=5 per group) 
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Figure 2-5: FGF receptor antagonism blocks the anxiolytic effects of Environmental 
Complexity 

 
 
 
 
 
 
 
A.            B. 

 
 
 
Under basal conditions EC animals respond with a significant decrease in anxiety as shown by a 
decrease in the latency to feed [T(20)=-2.2, p<0.05].  On the other hand, when EC animals are 
treated with an FGF antagonist this significant change in anxiety behavior in lost.  Thus, FGF 
receptor blockade results in a disruption of the anxiolytic effects of EC [T(16)=.8, p>0.05] (n=8-10 
per group) 
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Chapter 3  
 

Hippocampal Fibroblast Growth Factor System 
Modulates Anxiety-like Behavior Acutely: Effects in 
Selectively Bred Lines of Rats with Differing Anxiety 

Behavior 
 

Abstract 
 

The fibroblast growth factor (FGF) system, along with other growth factors, has 

been implicated in the pathophysiology of psychiatric illness including 

depression.  Moreover, growth factors such as BDNF have been shown to 

reduce depressive-like behavior, while increasing anxiety behavior.  To further 

characterize the role of the FGF system on anxiety, we tested the effects of FGF-

2 in the High Responder (HR), Low Responder (LR) model of individual 

differences in emotionality, were HR animals show decreased anxiety like 

behavior compared to LR in the Elevated Plus-Maze (EPM). We also tested the 

effects of FGF receptor blockade on anxiety via hippocampal microinjections of 

the PD173074 FGF receptor antagonist.  Acute administration of FGF-2 resulted 

in an overall increase in anxiety, and this was differentially observed in HR 

animals as demonstrated by their decreased time spent in the open arm of the 

EPM.  Furthermore, the role of the hippocampal FGF system in enhancing 

anxiety acutely was supported by the anxiolytic effect of the FGF receptor 
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antagonist PD173074 upon direct microinjection in the hippocampus.  The 

anxiolytic effect of FGF receptor blockade was evidenced by increased time 

spent in the center of the Open Field as well as time spent in the open arms of 

the EPM.  Taken together our results demonstrate a complex role of 

hippocampal FGF-2 in regulating anxiety-like behavior. 
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Introduction 
 

FGF-2 is a member of the FGF gene family composed of 24 proteins that have 

multiple functions including angiogenesis and nervous system development 

(Eckenstein et al., 1991).  In the adult, FGF-2 shows prominent expression in 

astrocytes throughout the brain, whereas neuronal expression is almost 

exclusive to the hippocampus (Woodward et al., 1992).  Several isoforms of FGF 

2 ranging from 18 kD to 34 kD have been identified (Nugent and Iozzo, 2000).   

FGF-2 exerts its functions by interacting with four receptor types with varying 

affinity depending on ligand and receptor isoforms (Ornitz, 2000, Reuss and von 

Bohlen und Halbach, 2003).  These receptors are trans-membrane glycoproteins 

containing three Ig-like loops (I-II-III) in the extracellular domain and a split 

tyrosine kinase domain.  Three of the FGF receptors, FGFR1, FGFR2 and 

FGFR3, are expressed in the brain (Eckenstein, 1994), while FGFR1 is most 

abundantly expressed in the hippocampus (Belluardo et al., 1997).  

  

A current hypothesis proposes that a deficiency in growth factors is a key 

contributor to the pathophysiology of mood disorders (Duman and Monteggia, 

2006).  While previous work had focused on BDNF, findings by our research 

group first demonstrated a down-regulation of several members of the FGF 

family, including FGF-2 in postmortem brains of subjects that had suffered from 

major depression (Evans et al., 2004).  We have recently extended these human 

findings to animals and demonstrated a down regulation of hippocampal FGF-2 

in a social stress model of depression in the rat (Turner et al., 2008a).   
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While our group has established the potential role of the FGF system in mood 

disorders, most studies on antidepressants have mostly focused on the role of 

BDNF as a mediator of the long-term effects of these drugs on behavior and 

mood (Duman, 1998, Shirayama et al., 2002, Duman, 2004). However, reports 

have also shown that antidepressant treatment increases FGF-2 expression in 

rat hippocampus (Mallei et al., 2002).  These findings suggest that decreased 

levels of FGF-2 may be involved in the pathophysiology or the course of severe 

depression, and that antidepressants may exert their effects by increasing FGF-

2. Furthermore, while BDNF has been shown to display antidepressant effects in 

animal models of depression, (Shirayama et al., 2002) recent findings from our 

laboratory show that FGF-2 also exerts antidepressant effects (Turner et al., 

2008b). 

 

While this body of evidence points to a role of endogenous FGF-2 in exerting 

antidepressant effects, it also raises an interesting dilemma:  stimuli that lead to 

increased anxiety such as stress, have also been linked to enhanced FGF-2 

expression.  For example increased hippocampal FGF-2 has been shown in 

response to acute restraint stress (Molteni et al., 2001, Fumagalli et al., 2005). 

Furthermore, exposure to acute predator stress has resulted in increased levels 

of FGF-2 expression as measured by microarray in PVG hooded rats, which 

display high anxiety behavior (Wang et al., 2003). Moreover, manipulations of 

corticosterone levels have been shown to modulate FGF-2 expression in the 

hippocampus.  Specifically, adrenalectomy resulted in decreased FGF-2 
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expression, whereas corticosterone replacement rescued these effects 

suggesting that corticosterone modulates levels of FGF-2 expression in the 

hippocampus (Molteni et al., 2001).  Furthermore, exogenous corticosterone has 

been shown to directly impact and increase FGF-2 expression in the 

hippocampus while corticosterone synthesis inhibition blocked the stress-induced 

FGF-2 response (Frank et al., 2007). 

 

There are some lines of evidence that can help reconcile these two disparate 

findings regarding the relationship between FGF-2 and emotional responses. 

Given the antidepressant effects of FGF-2 noted above, and the increase in 

FGF-2 triggered by classical antidepressant drugs, it is important to note that 

several antidepressants have been known to increase anxiety during the early 

phases of treatment (Bagdy et al., 2001).  Interestingly, while BDNF over-

expressing mice display an antidepressant-like behavioral phenotype, they also 

exhibit an increase in anxiety behavior (Govindarajan et al., 2006).   This 

supports the notion that growth factors may exert antidepressant properties but 

their effects may also extend to enhance anxiety behavior, at least in the short 

term, in a fashion similar to that of antidepressants.  While the antidepressant 

role of FGF-2 has been described (Turner et al., 2008b), its role in modulating 

anxiety has yet to be explored. Thus, the current experiments were aimed at 

exploring the potential impact of hippocampal FGF-2 on anxiety behavior after 

acute administration.  
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While the current studies will explore the potential effects of acute FGF-2 on 

anxiety behavior it is important to also evaluate the chronic effects of FGF-2.  

This is important, as acute treatments with selective serotonin reuptake inhibitors 

(SSRIs) and other antidepressants are known to be anxiogenic (Bagdy et al., 

2001), whereas their antidepressants effects extend to reduce anxiety after 

chronic treatment (Dulawa et al., 2004).  Thus, it is possible that treatments with 

FGF-2 may have a similar response as antidepressants on measures of anxiety, 

where acute administration could serve anxiogenic effects whereas chronically 

they may serve to reduce anxiety.   

 

However, in light of this potential discrepancy, in this chapter we first focus on 

investigating the acute effects of FGF system manipulations on anxiety.  

Specifically we first tested the impact of an FGF antagonist on anxiety acutely as 

previous results from Chapter 2 suggested that FGF receptor activation is 

required for environmental complexity to decrease anxiety.  Finally, we followed 

these studies with acute treatments with FGF-2 in order to test whether FGF-2 

specifically, altered anxiety given that in our previous chapter hippocampal FGF-

2 seemed to correlate with decrease anxiety as a result of EC. Thus, our current 

experiments were aimed at testing whether FGF-2 has a direct role in modulating 

anxiety-like behavior. 
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Materials and Methods 
 
Animals 
 

Male Sprague-Dawley rats (375-450g) were selectively bred based on their 

locomotor response to novelty at our in-house colony at the Molecular and 

Behavioral Neuroscience Institute (MBNI).  Adult rats (85-90 day old) were 

housed two animals per cage after locomotor screening (were an HR animal was 

always paired with an LR animal under a 12 hr light/dark cycle with food and 

water available ad libitum.  Animals were allowed to acclimate to the housing 

conditions for 7 days prior to any experiments.  All animals were treated in 

accordance with the National Institutes of Health guidelines on laboratory animal 

use and care and in accordance with the guidelines of the animal ethics 

committee at the University of Michigan.  

 
Locomotion Testing 
 

For each generation of breeding, naïve animals were handled for three 

consecutive days prior to testing to familiarize them with the investigator, then 

screened for locomotor response to a novel environment by placing them in a 

standard size (43×21.5×24.5) clear acrylic cage in a different room from where 

the animals had been housed.  Locomotor activity was monitored every 

5 minutes for 1 hour by two panels of photocells connected to a computer. The 

first panel of three photocells was placed at ground level to record horizontal 

locomotion, with the second panel of five photocells located near the top of the 

cage to determine rearing behavior. The locomotion testing rig and motion 
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recording software were created in-house at the University of Michigan. 

Locomotion activity was tested between 9.00 and 11.30 am.  Final locomotion 

scores were determined by summing horizontal and rearing activities. 

 

Peripheral FGF-2 Injections 
 

Rats were administered FGF2 (1ng/g, 10ng/g, or 20ng/g i.p.) or vehicle (0.1M 

PBS with .1% BSA). Animals were tested for anxiety-like behavior 8 hrs after 

injection on the Elevated Plus Maze (EPM) test, as it has been shown previously 

that brain levels of FGF2 peak 8 hours post peripheral injections of bFGF 

(Wagner et al.1999).  

 
 
Surgery and Microinjections 
 

Rats were anesthetized using isoflurane before surgery and bilateral guide 

cannulae (22-gauge, Plastics One Inc., VA. USA) were implanted into the dorsal 

hippocampus (coordinates from bregma: AP:-5.0 ML:+3.5 DV:-2.1) using a 

stereotaxic apparatus. The guide cannulae were anchored to the skull and fitted 

with an obdurator. Seven days after surgery, the obdurators were removed and 

28-gauge injector cannulae were inserted extending 1.5mm below the tip of the 

guides. The cannulae were connected by PE-20 tubing to a Hamilton syringe 

mounted on a syringe pump (Harvard Apparatus, MA. USA).  LR rats were 

microinjected with PD173074 (Pfizer) at 1nM, 10nM and 100nM, doses dissolved 

in artificial extracellular fluid (aECF). Total volume of 1ul was infused at a rate of 
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1.0µl/min, and injectors were left in place for an additional 2 min to allow diffusion 

of the drug.  Animals were then subjected to behavioral testing within 5 minutes 

of injection.  Rats were killed by decapitation and the brains were snap frozen in 

isopentane after behavioral testing. The brains were sliced and cresyl violet 

staining was performed to verify the placement of the microinjection cannulae.  

 
Elevated Plus Maze (EPM) 
 

Rats were tested 5 min after the microinjection or 8 hours post peripheral 

injections on the elevated plus maze, which was constructed of black Plexiglas, 

with four elevated arms (70 cm from the floor, 45 cm long, and 12 cm wide).  The 

arms were arranged in a cross, with two opposite arms enclosed by 45-cm-high 

walls, and the other two arms open. At the intersection of the open and closed 

arms, there was a central 12×12 cm square platform giving access to all arms.  

The test room was dimly lit (approximately 40 lux), and behavior was monitored 

using a computerized videotracking system (Noldus Ethovision, Leesburg, VA).  

At the beginning of the 5 minutes test, each rat was placed in the central square 

facing a closed arm. The computerized tracking system recorded the latency to 

first enter the open arm, the amount of time spent in the open arm, closed arm, 

or center square over the course of the 5 minutes test.  Behavior testing was 

performed between 8.00 and 11.30 am. 
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Open Field 
 

The open field maze was a 150×150×50 cm3 white Plexiglas box with the floor 

marked into 16 equals 37.5 cm2 squares.  Testing was conducted under dim light 

(40 lux) and recorded using a computerized videotracking system (Noldus 

Ethovision, Leesburg, VA).  The experiment was started by placing the rat into 

one corner of the open field. The computerized tracking system recorded the 

amount of time spent in the center, periphery, or corner of the test apparatus 

over the course of the 5 minutes test. Behavior testing was performed between 

8.00 and 11.30 am.  

 
Statistical Analyses 
 

Behavioral studies were analyzed by T-test  or Analysis of Variance.  Data are 

presented as mean + SEM and significance was assumed at P<0.05. 

 
Results 
 
Hippocampal FGF receptor blockade decreases Anxiety-like Behavior 
 

To begin examining the role of the FGF system on anxiety we first aimed to 

determine the effects of acute FGF receptor blockade on anxiety-like behavior.  

For these experiments we targeted the dorsal hippocampus due to its high 

density of neuronal FGF receptor expression and given that the hippocampus 

has previously been implicated in modulating individual differences in anxiety 

behavior as seen in HR and LR.  As seen in Figure 3-1., hippocampal 

microinjections with the FGF receptor antagonist PD173074 resulted in an overall 
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decrease in anxiety behavior on the EPM as shown by an increase in the percent 

time spent in the open arm [t(13)= 3.1, p<0.01] and a decrease in the latency to 

enter the open arm, [t(13)= -.2.5, p<0.05].  Moreover, we also evaluated the 

effects of the FGF receptor antagonist PD173074 on the Open Field test, where 

we also observed a decrease in anxiety as seen by an increase in the 

percentage of time spent in the center [t(10)=3.5, p<0.01] and a decrease time 

spent in the corners [t(10)= -2.3, p<0.05].  Finally, we also evaluated the extent of 

the effects of the FGF receptor antagonist on the EPM to determine whether 

such effects varied with doses. As seen in Figure 3-2., we found that the effects 

of the PD173074 compound on decreasing anxiety are partially dose dependent 

with anxiolytic effects progressively increasing with increasing doses.  

Specifically, we saw that the middle dose at 10nM and highest dose at 100nM 

concentration were the most effective at increasing the percentage of time spent 

in the open arm compared to vehicle controls, (p<0.01). 

 
Peripheral FGF-2 Increases Anxiety-like Behavior 
 

Given that we saw an anxiolytic effect in response to hippocampal FGF receptor 

blockade we wanted to distinguish whether acute FGF-2 specifically mediates 

the FGF system’s impact on anxiety behavior in the EPM.  To this end we 

administered FGF-2 or vehicle peripherally (i.p) in HR and LR to test whether this 

impact was also dependent on individual differences in anxiety-like behavior.  As 

seen in Figure 3-3., acute treatment with FGF-2 results in an overall significant 

increase in anxiety-like behavior.  Overall FGF-2 treated animals show an 
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increase in the latency to enter the open arms [F(3,33)=4.7, p<0.05].  Moreover the 

anxiogenic effects of FGF-2 were also evident as shown by an overall decrease 

in the percent time spent in the open arms [F(3,33)=5.6, p<0.05] and a decrease in 

the percent of open arm entries [F(3,33)=5.2, p<0.05].  We also saw a significant 

interaction effect of treatment and phenotype where Fisher’s PLSD post hoc tests 

revealed that FGF-2 treated HR animals showed a differential decrease in the 

percent time spent in the open arms relative to vehicle treated control HRs 

(p<.01).  

 

Following our initial results where FGF-2 resulted in enhancement of anxiety-like 

behavior an acute dose response study was performed to determine whether the 

anxiogenic effects of FGF-2 observed on the EPM where dose dependent.   For 

these purposes FGF-2 was injected at 1ng/g, 10ng/g and 20ng/g to HR and LR 

animals eight hours prior to testing on the EPM.  As seen in Figure 3-4., we saw 

an overall effect of phenotype [F(7,57)=4.7, p<0.001] where HR animals show less 

anxiety behavior relative to LRs as seen by an overall higher percentage of time 

spent in the open arms of the EPM. Furthermore, there was an interaction effect 

of treatment where Fisher’s PLSD post hoc tests revealed that FGF-2 results in a 

differential increase in anxiety at the 10ng/g dose relative to the vehicle treated 

animals as shown by a decrease in the percentage of time spent in the open arm 

(p<0.05).  These results show that FGF-2 shows a dynamic U-shaped curve 

effect on anxiety-like behavior on the EPM as no differences in anxiety were 

observed at the lower (1ng/g) and higher (20ng/g) doses.  Moreover, as seen in 
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our initial experiments there was an interaction effect of phenotype and treatment 

[F(7,57)=5.1, p<0.01].  Fisher’s PLSD post hoc tests revealed that FGF-2 at the 

10ng/g dose differentially increases anxiety in HRs relative to the vehicle treated 

HRs as shown by a decrease in the percentage of time spent in the open arms 

(p<0.0001).  

 

Discussion 
 

The present study demonstrates for the first time the direct role of the 

hippocampal FGF system in modulating anxiety behavior.  Our results show that 

acute exogenous treatment with FGF-2 increases overall anxiety like behavior, 

with anxiogenic effects being stronger in Selectively Bred HR animals, which 

normally display lower anxiety relative to Selectively Bred high anxiety LRs 

(Stead et al., 2006).  Moreover, effects of FGF-2 on anxiety displayed a U-

shaped curve as shown by the anxiogenic effects of the middle dose and lack of 

effects from lower and higher doses.  Finally, in support of the modulatory role of 

the endogenous FGF system on anxiety-like behavior, intra-hippocampal 

blockade of FGF receptor decreased anxiety in the EPM and Open Field Test.  

Taken together the results presented above implicate the hippocampal FGF 

system as key a modulator of anxiety behavior and suggest that acutely FGF-2 

increases anxiety like behavior.  

 

Our findings showed acute peripheral treatments with FGF-2 resulting in an 

overall increase in anxiety in the EPM as shown by an increase in the latency to 
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enter the open arm, a decrease in the percent time spent in the open arms and 

percent of open arm entries.  Furthermore, our results show that FGF-2 

differentially enhanced HR’s anxiety behavior as shown by a selective decrease 

in the percent of time spent in the open arms.  Although our results failed to show 

significant differential effects in the additional measures of anxiety such as the 

latency to enter open arm and open arm entries, our results due point to a trend 

for the anxiogenic effects of FGF-2 to be differential in HR’s.  For example, while 

our results do point to an overall effect of FGF-2 in increasing anxiety, they show 

that HRs display a three-fold change in the latency to enter the open arm 

compared to a two-fold change in LRs.  Furthermore, the trend on the differential 

impact of FGF-2 treatment in HRs is even more evident in the percent of open 

arm entries as HRs show a 37% percent decrease compared to LRs, which show 

a 17% change.  Taken together these results suggest that FGF-2 is more 

effective at increasing anxiety in animals that naturally display lower anxiety such 

as the HRs.  On the other hand its anxiogenic impact on LR animals, which 

naturally display high anxiety is more moderate.  These differences in response 

to FGF-2 could be related to a floor effect of the LR phenotype on anxiety or to 

existing neurobiological differences between HRs and LRs related to levels of 

FGF-2 expression in the hippocampus.  

 

While our results support the notion that FGF-2 modulates anxiety-like behavior, 

our findings with the use of the FGF receptor antagonist specifically point to the 

hippocampal FGF system as a key player in maintaining an endogenous tone of 
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anxiety.  As presented above, intrahippocampal treatment with an FGF receptor 

antagonist resulted in decrease anxiety as shown by a decrease in the latency to 

enter the open arms and an increase in the percent of time spent in the open 

arms.  Furthermore, the anxiolytic effects of FGF receptor blockade were also 

observed in the Open Field test as shown by a decrease in the percent of time 

spent in corners and an increase in the percent of time spent in the center.  

Finally, our results show that FGF blockade effects on reducing anxiety are 

dependent on dose.  Doses of 10nM and 100nM, which have previously shown 

to block FGF-2 mediated effects on proliferation (Bansal et al., 2003), showed 

significant differences on decreasing anxiety, while a lower dose of 1nM was not 

effective at altering anxiety behavior. These results confirm that hippocampal 

FGF receptor activity is required for maintaining an endogenous tone on anxiety 

behavior. 

 

The present study presents two major findings for the first time; acute treatment 

with FGF-2 increases anxiety-like behavior and hippocampal FGF receptor 

blockade reduces anxiety, thus directly implicating a novel function for this 

growth factor in modulating emotional behavior.  Although these findings 

represent a new function for hippocampal FGF-2 by regulating emotionality, 

previous reports also support the role of growth factors in being active 

modulators of emotional behavior.  Specifically, transgenic mice overexpressing 

BDNF show higher anxiety behavior relative to wildtype (Govindarajan et al., 

2006). However, these animals overexpressed BDNF in the entire forebrain while 
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its functional relevance to anxiety was regarded as being modulated by the 

amygdala. 

 

Conversely, our results point to the hippocampus as being an active modulator of 

FGF mediated anxiety behavior.  Although most reports point to the amygdala as 

being the key structure responsible for modulating anxiety, several reports do 

support the role of the hippocampus in anxiety behavior.  It has been suggested 

that the hippocampal lesions produce anxiolytic effects through behavioral 

disinhibition (Bannerman et al., 2002, Bannerman et al., 2004). These reports 

include anxiolytic effects on tests of anxiety such as the novelty suppressed 

feeding test, and the Elevated Plus maze (Bannerman et al., 2002).  Thus our 

results support the notion that the hippocampus is an active player in the 

modulation of anxiety and further elaborate on one specific molecule, FGF-2, as 

being a key modulator.  

 

Finally while FGF-2 acutely was shown to be anxiogenic, it is important to 

consider that opposite effects may occur in response to chronic treatment.  As 

previously mentioned acute treatment with SSRI antidepressants increases 

anxiety (Bagdy et al., 2001) whereas chronically they are anxiolytic (Dulawa et 

al., 2004).  Therefore, it is plausible that FGF-2 may have similar effects on 

anxiety given that FGF-2 increases in response to chronic antidepressant 

treatment (Mallei et al., 2002). Moreover, FGF-2 itself has previously been shown 

to have antidepressant-like effects (Turner et al., 2008b).  Thus, FGF-2 seems to 
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show a therapeutic profile equal to SSRI antidepressants, where it reduces 

depressive like behavior, but not without first increasing anxiety acutely.  This 

leads us to suspect that FGF-2 may have anxiolytic effects after chronic 

treatment.  In support of this notion are the findings from our previous chapter 

showing EC increasing FGF-2, while requiring FGF receptor activation for its 

anxiolytic effects. Consequently, the following chapter will specifically test 

whether chronic FGF-2 reduces anxiety behavior.  Moreover, we will further test 

the extent to which the HR and LR anxiety phenotypes are important factors in 

mediating such effects. 
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Results Figures 
 
Figure 3-1: Hippocampal FGF receptor blockade decreases anxiety-like behavior 

 

A. 

 

  B. 

 

 

A) FGF receptor antagonist PD173074  decreases anxiety on the EPM as shown by an increase 
in the percent of time spent in the open arm [T(13)= 3.1, p<0.01 and B) a decrease in the latency 
to enter the open arm, [T(13)= -.2.5, p<0.05]. (n=7 per group)  
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Hippocampal FGF receptor blockade decreases anxiety-like behavior 
 

 C. 

 

 
 
C) FGF receptor antagonist PD173074 decreases anxiety on the Open Field as shown by an 
increase in the percentage of time spent in the center [T(10)=3.5, p<0.01] and a decrease time 
spent in the corners [T(10)= -2.3, p<0.05] (n=6 per group). 
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Figure 3-2: Hippocampal FGF receptor blockade decreases anxiety-like behavior 

 

 

 
 

FGF receptor blockade reduces anxiety. FGF receptor antagonist PD173074 decreases anxiety 
in a dose dependent manner were the middle dose at 10nM and the highest doses at 100nM 
concentration were both equally effective at increasing the percentage of time spent in the open 
arm compared to vehicle controls, (p<0.01) (n=7 per group). 
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Figure 3-3: FGF-2 Increases anxiety-like behavior 

 

A. 

 

B. 

 
A) FGF-2 significantly increases anxiety-like behavior as shown by an overall increase in the 
latency to enter the open arms ) [F(3,33)=4.7, p<0.05]. B) FGF-2 anxiogenic effects are also 
observed as an overall decrease in the percent of open arm entries [F(3,33)=5.2, p<0.05]. n=9-11 
per group)  
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FGF-2 Increases anxiety-like behavior 
 

C. 

 

 

C) FGF-2 resulted in an overall decrease in the percent of time spent in the open arms 
[F(3,33)=5.6, p<0.05]. A significant interaction of phenotype and treatment was also observed as 
FGF-2 resulted in a differential decrease in the percentage of time spent in the open arms in HR 
animals (p<0.01).  
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Figure 3-4: FGF-2 increases anxiety in a dose dependent manner in HR animals 

 

 

 
 
 

FGF-2 shows a dynamic U-shaped curve effect on anxiety-like behavior on the EPM.  FGF-2 
differentially increases anxiety at the 10ng/g dose relative to the vehicle treated animals as shown 
by a decrease in the percentage of time spent in the open arm (p<0.05) as no effects were seen 
at higher or lower doses. HR animals show less anxiety behavior relative LRs as seen by an 
overall higher percentage of time spent in the open arms of the EPM [F(1,57)=4.7, p<0.001]. There 
was also an interaction effect of phenotype and treatment [F(7,57)=5.1, p<0.01], where Fisher’s 
PLSD post show FGF-2 at the 10ng/g dose differentially increasing anxiety in HRs relative to the 
vehicle treated HRs as shown by a decrease in the percentage of time spent in the open arms 
(p<0.0001) (n=7-9 per group) 
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Chapter 4  
 

A New Role for FGF-2 as an Endogenous Inhibitor of 
Anxiety 

Abstract 

 

Human postmortem studies have demonstrated that FGF-2 expression is 

decreased in the brain of severely depressed individuals. It remained unclear, 

however, whether this is a consequence of the illness or whether FGF-2 plays a 

primary role in the control of mood and emotions.  In this series of studies, we 

first asked whether endogenous FGF-2 expression correlates with spontaneous 

anxiety, a trait associated with vulnerability to severe mood disorders in humans. 

This was tested in two genetically distinct groups of rats selectively bred to differ 

dramatically in their response to novelty and to anxiety-provoking conditions 

(HRs= Low Anxiety/High Response to Novelty vs. LRs= High Anxiety/Low 

Response to Novelty). We demonstrated that the Low-Anxiety HRs have 

significantly elevated levels of hippocampal FGF2 mRNA relative to the High-

Anxious LRs, and that there exists a highly significant inverse correlation 

between FGF-2 levels and anxiety behavior. We then demonstrated that FGF-2 

expression is modulatable by environmental factors that alter anxiety, thus 

environmental complexity (EC) reduced anxiety behavior and induced FGF-2 
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expression in hippocampus, particularly in the High Anxious LRs.  Finally, we 

directly tested the role of FGF-2 as an anxiolytic and show that a 3-week 

treatment regimen of peripherally administered FGF-2 was highly effective at 

blunting anxiety behavior, specifically in the high anxiety LRs. This treatmen 

effect was accompanied by an increase in survival of hippocampal adult stem 

cells, both neurons and astrocytes, again specifically in the LRs.  Taken together, 

these findings implicate hippocampal FGF-2 as a novel modulator of anxiety 

behavior and underscore its potential as a new target for treatment of mood and 

anxiety disorders. 
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Introduction  
 

The molecular factors that impart either vulnerability or resilience to mood and 

anxiety disorders remain elusive in spite of active efforts to elucidate their genetic 

bases. Gene expression profiling in postmortem human brains represents a 

complementary approach that can uncover molecular changes associated with 

these disorders. Expression profiling of the frontal cortex of severely depressed 

individuals revealed that the fibroblast growth factor (FGF) system was the most 

significantly altered family of molecules relative to controls (Evans et al., 2004). 

This work has since been extended to other brain regions, including the 

hippocampus and amygdala and has shown a consistent decrease of FGF2 

mRNA and FGF-R2 mRNA in most brain regions examined (Akil et al., 2008). In 

particular, the decrease in FGF-2 mRNA has been independently documented in 

the hippocampus (Gaughran et al.), supporting the association between FGF 

system dysregulation and mood disorders.  

 

However, it is difficult to distinguish whether the observed differences represent 

predisposing factors to the illness or are secondary to the disease process. We 

therefore undertook a series of studies using animal models to ask whether 

members of the FGF families can indeed modulate affective behavior, and 

whether they may constitute predisposing factors for individual differences in 

emotional reactivity. Here we focused on the role of the FGF system in anxiety-

like behavior, given that anxiety is one of the hallmarks of depression, that there 

is significant co-morbidity between anxiety and major depression and that there 
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is mounting evidence that the two disorders may be closely associated due to a 

common etiology or risk factors as reviewed by, (Gorwood, 2004).  We focused 

on FGF-2 because it is one of the 22 FGF family members that exhibit the most 

consistent changes in major depression, as well as being one of the best studied 

FGF’s in the central nervous system. FGF-2 exerts its function by interacting with 

four receptors (Ornitz, 2000, Reuss and von Bohlen und Halbach, 2003), three of 

the which, FGFR1, FGFR2 and FGFR3, are expressed in the brain (Eckenstein, 

1994), with FGFR1 being most abundantly expressed in the hippocampus 

(Belluardo et al., 1997). This growth factor is critical in the development of the 

mammalian brain (Raballo et al., 2000), is known to modulate hippocampal 

neurogenesis in the developing brain (Wagner et al., 1999) and has been 

implicated in adult neurogenesis (Pieper et al., 2005) (Palmer et al., 1995) 

 

In order to test the possible role of FGF-2 in affective behavior, we relied on an 

animal model in which we used a genetic selection strategy in Sprague-Dawley 

rats to enhance basal differences in novelty-seeking and spontaneous anxiety 

behaviors (Stead et al., 2006). Thus, after several rounds of breeding, the 

selectively bred line of High Responders (HR) exhibits significantly greater 

exploration of a novel environment relative to oubtred Sprague-Dawley rats, 

whereas the selectively bred line of Low Responders (LR) exhibits significantly 

lower exploration than outbred animals, as well as dramatic differences from the 

selectively bred HRs. As importantly, the two groups display consistent and 

profound differences in all tests of spontaneous anxiety, with HR’s exhibiting low 
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and LR’s exhibiting high anxiety behavior.  Beyond these basal differences due 

to genetic background, we also manipulated environmental conditions, by 

enriching the rats’ environment and increasing its complexity (EC) and asked 

whether this manipulation impacted anxiety behavior in the two selectively bred 

lines. This model then tested both the possible genetic differences in FGF-2 and 

the environmental modulation of its expression. Given the results from these 

endogenous studies, we went on to administer exogenous FGF-2 in order to 

directly test its potential role in modulating anxiety behavior in the two groups of 

rats and ascertain the correlates of this treatment on the proliferation and survival 

of adult newborn cells in the hippocampus.  

Materials and Methods 

Animals 
 

Adult male Sprague-Dawley rats were obtained from our in-house breeding 

colony at the Molecular and Behavioral Neuroscience Institute (MBNI) where we 

have maintained the selectively-bred HR-LR lines for over 19 generations. HR-

LR lines were selectively bred based on their differences in exploratory response 

to novelty a characteristic initially used to predict individual differences in drug 

taking behavior (Piazza et al., 1989). We recently published a description of our 

breeding strategy and an initial behavioral characterization of the HR-LR 

differences in anxiety-like behavior (Stead et al., 2006).  We have also shown 

that this behavior is likely genetic as it shows little change when animals are 

cross-fostered to a mother from the opposing line (Clinton et al., 2007).  An 
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additional set of outbred Sprague-Dawley rats obtained from Charles River was 

used to provide an intermediate phenotype and determine the correlation of 

anxiety behavior and FGF-2 expression in the hippocampus.  Adult rats (300g-

400g) around 2 months old were housed two animals per cage (one HR, one LR 

per cage) after locomotor screening under a 12 hr light/dark cycle (lights on at 

6:00 am) with food and water available ad libitum.  Animals were allowed to 

acclimate to the housing conditions for at least 7 days prior to any experiments.  

All animals were treated in accordance with the National Institutes of Health 

guidelines on laboratory animal use and care and in accordance with the 

guidelines set by the university committee on use and care of animals (UCUCA) 

at the University of Michigan. 

 

Locomotion Testing 
 

At postnatal day 55-60, adult male rats from our selective breeding colony were 

screened for locomotor response to a novel environment by placing them in a 

standard size (43×21.5×24.5) clear acrylic cage in a different room from where 

the animals had been housed. Locomotor activity was monitored every 5 minutes 

for 1 hour by two panels of photocells connected to a computer. The first panel of 

three photocells was placed at ground level to record horizontal locomotion, with 

the second panel of five photocells located near the top of the cage to determine 

rearing behavior. The locomotion testing rig and motion recording software were 

created in-house at the University of Michigan. Locomotion activity was tested 

between 9:00 and 11:30 am. Final locomotion scores were determined by 
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summing horizontal and rearing activities verifying the differential acivity reposne 

to novelty between selectively bred HRs and LRs. (see appendix 4-3) 

 
Light-dark box (LDB) anxiety test 
 

The LDB apparatus is a 30 × 60 × 30-cm Plexiglas shuttle box with a translucent 

cover.  The floor is composed of stainless steel bars suspended above corncob 

bedding.  Each box is divided into two equal-sized compartments by a wall with a 

12 cm-wide open door.  One compartment is painted white and brightly 

illuminated, and the other is painted black with very dim light.  Time spent in each 

compartment is monitored by rows of five photocells located 2.5 cm above the 

grid floor of each compartment, and total time spent in each compartment is 

recorded with a microprocessor. Animals that spend less time in the illuminated 

compartment and more time in the dark compartment are classified as showing 

greater anxiety behavior.  

 

Elevated Plus Maze (EPM) 
 

The elevated plus maze is constructed of black Plexiglas, with four elevated arms 

(70 cm from the floor, 45 cm long, and 12 cm wide). The arms are arranged in a 

cross, with two opposite arms enclosed by 45-cm-high walls, and the other two 

arms open. At the intersection of the open and closed arms, there is a central 

12×12 cm square platform giving access to all arms. The test room is dimly lit 

(approximately 40 lux), and behavior is monitored using a computerized video 

tracking system (Noldus Ethovision, Leesburg, VA). At the beginning of the 
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5 minutes test, each rat is placed in the central square facing a closed arm. The 

computerized tracking system records the latency to first enter the open arm, the 

amount of time spent in the open arm, closed arm, and center square over the 

course of the 5 minutes test. Behavior testing is performed between 8:00 and 

11:30 am. 

 

Environmental Complexity 
 

To increase the complexity of the environment, rats were housed for 21 days in 3 

× 3 × 3 ft stainless steel cages which contain different toys, obstacle courses, 

and enriching stimuli.  The number of toys is increased over the course of the 3 

weeks of EC. Thus, every day, animals are exposed to novel sensory stimuli and 

increased opportunities for exploration as part of their housing environment. 

 

Chronic FGF-2 
 

The Chronic FGF-2 regimen involved the administration of either FGF-2 (5 ng/g, 

i.p) or vehicle (0.1M PBS with 0.1% BSA) every day for three weeks.  Systemic 

injections with this dose have previously been shown to alter neurogenesis 

(Wagner et al., 1999).  The three-week treatment period is used to match the 

duration of the EC housing period.  Animals are then tested for anxiety measures 

starting one day after the last injection. 
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mRNA in situ Hybridization  
 

At the conclusion of each experiment, rats were sacrificed by rapid decapitation, 

and their brains removed, snap frozen in isopentane, and stored at -80 ºC.  

Brains were cryostat sectioned at -20°C at 20µm for the EC studies or 10µm for 

the basal HR-LR studies and sliced in series throughout the hippocampus, 

mounted on Super Frost Plus slides (Fisher Scientific) and stored at -80°C until 

processed. In situ hybridization methodology has been previously described in 

detail elsewhere (Kabbaj et al., 2000). The FGF-2 probe was labeled in a 

reaction mixture consisting of 1µg of linearized plasmid, 1X transcription buffer 

(Epicenter Technologies, Madison, WI), 125 µCi of 35S-labeled-UTP, 125 µCi of 

35S-CTP, 150 µM ATP and GTP, 12.5mM dithiothreitol, 1 µl of RNase inhibitor, 

and 1.5 µl of T3 RNA polymerase. Radioactive signals were quantified using 

computer-assisted optical densitometry software (Scion Image Beta 4.03; Scion 

Corporation, Frederick, MD). Integrated densities were determined by outlining 

the region of interest from both hemispheres. Optical density measurements 

were corrected for background, and the signal threshold defined as the mean 

gray value of background plus 3.5X its standard deviation. Only pixels with gray 

values exceeding the above-defined threshold are included in the analysis.  In 

the present studies, optical density measurements were taken for 4 subregions of 

the hippocampus (hippocampus fields CA1-CA3, and the dentate gyrus) from the 

left and right sides of the brain. Data from multiple sections per animal were 

averaged resulting in a mean integrated optical density value for each animal and 

then averaged for each group. 
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BrdU/Ki67 Immunohistochemistry 
 

To assess the effect of FGF-2 on hippocampal new cell survival, rats were 

injected with BrdU (Calbiochem) once daily for two days prior to the start of 

treatment paradigm at a dose of 200mg/kg dissolved in saline.  Twenty-four 

hours post BrdU labeling animals underwent 21 days of FGF-2 treatment before 

being exposed to behavior testing after which they were sacrificed by 

decapitation and brain were snap frozen.  For determining the rate of cell 

proliferation we performed immunohistochemical labeling of Ki-67, which is an 

endogenous marker of ongoing cell proliferation. For BrdU and Ki67 

immunohistochemistry a series of every 8 sections was cut throughout the entire 

extent of the hippocampus at 30µm and slide mounted.  For Ki-67 DAB staining, 

sections were postfixed in 4% paraformaldehyde for 1hr, followed by a 45 minute 

incubation in 10mM Sodium Citrate at 90°C.  Sections were then rinsed with PBS 

and washed in 0.3% peroxide followed by blocking with BSA containing 1% goat 

serum and 0.05% Triton X-100.  Subsequently sections were incubated overnight 

with rabbit polyclonal anti-ki67 (University of Michigan) 1:40000 in BSA.  After 

PBS washes sections were incubated in biotinylated goat anti rabbit secondary 

antibody 1:1000, (Vector labs) followed by avidin/biotin complex (Vectastain Elite 

ABC kit) and subsequent DAB reaction for visualization of signal.  For DAB 

staining of BrdU, sections were postfixed in 4% paraformaldehyde for 1hr, rinsed 

in PBS and washed in 0.3% peroxide.  Sections were then incubated in 50% 

formamide-2X SSC at 65°C for 2 hours followed by two 5 minute rinses in 2X 

SSC.  Slides are then placed for 30 minutes in 2N HCL at 37°C and 10 minutes 
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in 0.1M boric Acid at room temperature, followed by rinsing in PBS and blocked 

with BSA containing 1% goat serum and 0.05% Triton X-100.  Sections were 

incubated overnight at room temperature with rat monoclonal anti-BrdU 

(Accurate) 1:1000 in BSA. After PBS washes sections were then incubated in 

biotinylated goat anti rat (Vector labs) secondary antibody 1:1000 followed by 

Avidin/Biotin complex amplification (Vectastain Elite ABC kit) and subsequent 

DAB reaction for visualization of signal. Cresyl violet staining was performed for 

both immuno-stains and sections are subsequently dehydrated through graded 

alcohols followed by immersion in xylene and then coverslipped with Permount® 

mounting medium.    For Fluorescent triple labeling we used 1:1000 dilution of rat 

anti-BrdU in combination with 1:1000 dilution of mouse monoclonal anti-GFAP 

(Chemicon). For NeuN labeling we use a primary monoclonal mouse anti-NeuN 

antibody tagged with an Alexa 488 fluor (Chemicon).  For fluorescent secondary 

antibodies we use Alexa 594 goat anti-rat and Alexa 647 goat anti-mouse 

(Invitrogen).  

 

Cell Counting 
 

For quantification of DAB stained Ki-67 and BrdU cells, slides were initially coded 

and the code was not broken until counts were analyzed to ensure that a blind 

observer performed all cell counts.  To estimate the total number of cells we 

followed a modified unbiased stereological procedure used by (Malberg and 

Duman, 2003) whereby the total number of cells counted per animal was 

multiplied by the reciprocal of the sampling factor.  BrdU and Ki67 cells were 
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counted on a light microscope under 63X objective in the granule cell layer and 

subgranular zone (SGZ) of the hippocampus located at the border of the granule 

cell layer.  Cells were included in SGZ counts if the cell is near the SGZ or 

touching the SGZ and excluded if the cell is more than two cell diameters from 

the SGZ.  In triple labeling experiments at least 30 BrdU cells were examined per 

subject to determine the percentage of BrdU positive cells that co-label with 

NeuN or GFAP using a laser scanning confocal microscope.  Laser scans of 

0.5µm serial Z-section planes were visualized using a 63x objective to determine 

the Neuronal or Glial differentiation of BrdU positive cells.  To obtain an estimate 

of the total number of new neurons and new glial cells in the hippocampus of 

each animal, we used the percent of BrdU+ cells co-labeled with NeuN, GFAP or 

neither and multiplied it by the total number of BrdU+ cells for each animal.  

 

Statistical Analyses 
 

Behavioral studies and anatomical studies were analyzed by ANOVAs followed 

by Fishers PLSD post-hoc comparisons. Baseline HR-LR in situ hybridization 

studies were analyzed by Students t-test. Pearson correlation test was used was 

used to evaluate relationship between hippocampal FGF-2 mRNA expression 

and behavioral anxiety measure. All data are presented as mean +/- standard 

error. Statistical significance is assumed at p<0.05. 
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Results 

 
FGF-2 is decreased in the Hippocampus of High Anxious LR animals. 
 

To elucidate the role of FGF-2 in modulating anxiety behavior, we examined 

basal levels of FGF-2 gene expression in the selectively bred HR and LR 

animals, which have been previously shown to display basal differences in 

anxiety behavior.   We specifically began examining the hippocampus as this 

region has been previously shown to be the primary target region modulating 

HR-LR differences in anxiety-like behavior and is a region where FGF-2 shows 

prominent neuronal expression, and exhibits dysregulation in human depressed 

subjects.   As seen in Figure 4-1 A and B, results show that the high anxiety LR 

animals have lower basal levels of FGF-2 expression in the dentate gyrus 

[t(16)=2.58, p<0.05] and CA3 [t(16)=2.12, p<0.05] relative to the less anxious HR 

animals.  No significant differences between HRs and LRs were observed in the 

CA1 or CA2. 

  

In addition to the selectively bred lines, we studied, outbred Sprague-Dawley rats 

that show the full range of distribution of anxiety-like behavior.   We tested them 

on the EPM for the assessment of anxiety behavior, and then measured their 

resting FGF-2 mRNA levels.  We observed a significant positive correlation 

between the levels of FGF-2 expression in the CA2 region of the hippocampus 

and the amount of time spent in the open arm [R ^2= 0.59, p<0.01] Figure 4-1 C, 

suggesting that elevated resting levels of FGF-2 message may be related to low 
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levels of anxiety behavior.  While we did not observe significant differences in 

FGF-2 expression in the CA2 region between HRs and LRs our results in the 

outbred rats parallel an observed tendency for HRs showing higher levels of 

FGF-2 gene expression.  It is possible that significant differences were not 

observed as a result of saturation of exposure during our In situ hybridization 

experiments with HRs and LRs.  This is a result of high density of FGF-2 

expression in the CA2 region, which is greater than anywhere else in the 

hippocampal formation.  

 

Environmental Complexity differentially reduces anxiety like behavior in LR 
animals.  
 

Given that EC has been previously shown to influence emotionality by reducing 

anxiety (Benaroya-Milshtein et al., 2004), we aimed at determining whether this 

manipulation would have differential effects in the HR versus LR animals, given 

their basal differences in anxiety behavior.  This behavioral study was also a 

prelude to assessing the impact of this environmental manipulation on FGF2 

expression in the two lines of rats. To test the effects of EC on anxiety behavior 

in HR and LR animals we used the Light Dark Box (LDB) test and Elevated Plus 

Maze (EPM) test as both of these tests have previously been used to 

characterize the behavioral differences between these phenotypic groups. 

 

As seen in Figure 4-2., there was a significant main effect of EC resulting in an 

overall reduction of anxiety-like behavior in both tests. In the LDB test there was 
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a significant main effect of EC on decreasing anxiety-like behavior, as evidenced 

by an overall increase in the percent time spent in the illuminated compartment 

[F(1,35)=6.02, p<.05]. Interestingly, while HR animals spent an overall higher 

percentage of their time in the Illuminated Compartment relative to LR’s 

[F(1,35)=7.7, p<0.01], this was primarily due to the basal differences (i.e. under 

Control, non-EC conditions) and not the EC condition. This is confirmed by the 

finding of a significant interaction effect between HR/LR phenotype and treatment 

(Control vs. EC) [F(1,35)=6.8, p<0.05].  Post-hoc tests revealed a differential effect 

of EC on LR, with LR EC animals displaying significantly less anxiety behavior 

than LR control animals (p<0.01). Thus, the EC manipulation abolished the 

differences in spontaneous anxiety between HR and LR animals, showing that in 

the Light-Dark test, EC has a selective impact in alleviating the anxiety behavior 

of the High Anxious LRs.  In the EPM, as expected, there was a significant main 

effect of phenotype; whereby HR animals displayed lower anxiety behavior 

compared to LR animals as measured by the percent open arm entries 

[F(1,52)=8.1, p<0.01].  EC resulted in an increase in the percentage of open arm 

entries [F(1,52)=20.0, p<0.0001] indicating the anxiolytic impact of this 

manipulation on both groups in the context to the EPM. 

  

Environmental Complexity differentially increases FGF-2 expression in LR 
animals. 
 

Our previous results indicated that HR animals have higher basal levels of FGF-2 

expression in the hippocampus and display lower anxiety relative to LR animals. 



 

 115 

Given the finding that EC reduced anxiety behavior more consistently in the LR 

animals, we asked whether EC resulted in increased FGF-2 expression in the 

hippocampus, and whether this effect was differential across the two selectively 

bred lines of rats.  

 

Our results in Figure 4-3., show that EC training results in an overall significant 

increase in FGF-2 expression in the dentate gyrus, [F(1,19)=23.3, p<0.001], and 

CA3 region, [F(1,19)=16.7, p=0.001].  Moreover, there was an interaction effect of 

EC housing and phenotypic group on FGF-2 expression in the dentate gyrus, 

[F(1,19)=6.17, p<0.05] and in the CA3 region [F(1,19)=6.4, p<0.05]. Post-hoc 

analysis revealed a differential effect on LR EC animals as compared to LR 

controls within dentate gyrus (p<.0001) and CA3 region (p<0.001). Thus, the high 

anxious LR’s showed a greater impact of EC on both their anxiety behavior and 

FGF2 expression in the hippocampus, leading us to hypothesize that FGF2 plays 

a role in mediating the decrease in anxiety that results from exposure to a 

complex environment.  

 

FGF-2 differentially reduces anxiety-like behavior in LR animals. 
 

Given the results above showing that both genetic endowment and 

environmental conditions modulate hippocampal FGF-2 expression, with higher 

levels being correlated with reduced anxiety behavior, we set out to directly test 

the hypothesis that FGF-2 is a key regulator of anxiety behavior. We therefore 
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administered FGF-2 chronically and asked whether it would alter measures of 

anxiety behavior in both the high anxious LR’s and the low anxious HRs. 

  

As illustrated in Figure 4-4., our results show the expected difference in the 

HR/LR phenotype in the LDB test. Importantly, they reveal an overall anxiolytic 

effect of FGF2 treatment. Thus, HR animals overall spent more time in the 

illuminated compartment of the LDB [F(1,46)=38.5, p<0.0001].   Moreover, FGF-2 

treatment resulted in an overall increase in the percent of time spent in the 

Illuminated Compartment of the LDB, [F(1,46)=5.9, p<0.05].  More importantly, 

there was an interaction effect of treatment with phenotype [F(1,46)=5.6, p<0.05].  

Post-hoc analysis revealed FGF-2 treatment having a significant anxiolytic effect 

in FGF-2 treated LRs relative to vehicle treated LRs (p<0.01), whereas no 

significant effect of FGF2 treatment was observed in the HR rats.  

 

A similar pattern was seen in the EPM. Thus, a significant interaction effect of 

chronic FGF-2 treatment x phenotype was observed on measures of anxiety 

behavior in the EPM, including percent of open arm entries [F (1,46)=7.2, p<0.01] 

and percent of time spent in the open arm [F(1,46)=6.1, p<0.05].  Further post-hoc 

analysis revealed that LR animals differentially benefited from the anxiolytic 

effects of chronic FGF-2 treatment, whereas HR animals did not. Thus, FGF2-

treated LRs showed a significant increase in the percent of open arm entries 

(p<0.01) and in the percent of time spent in open arms (p<0.01) relative to 
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vehicle treated LRs. No significant effects were seen when comparing these 

measures in FGF2-treated versus vehicle-treated HRs.  

 

FGF-2 differentially increases new cell survival in LR animals. 
 

Given that EC is well known for increasing neurogenesis and that it produced a 

significant increase in FGF-2 gene expression in the dentate gyrus, it was 

reasonable to hypothesize that increase in neurogenesis post EC may be 

mediated at least in part by FGF-2.  Indeed, exogenous treatment with FGF-2 

has been shown to increase neurogenesis in the dentate gyrus of the 

hippocampus (Wagner et al., 1999, Pieper et al., 2005). Our specific question 

was whether the treatment protocol that we used, chronic peripheral FGF-2 

administration, would alter hippocampal neurogenesis and if it would do so in a 

manner that correlates with the alterations in anxiety behavior—i.e. more 

markedly in the LR rats that are more responsive to the treatment.  

 

As shown in Figure 4-5., HR and LR animals show a non-significant tendency to 

exhibit basal differences in number of BrdU labeled cells (2739 +/- 295 in HR and 

2061 +/-127 in LR) (p=.08).  Chronic treatment with FGF-2 results in a significant 

overall increase in new cell survival in the Dentate Gyrus as shown by an 

increase in the number of Brd-U labeled cells [F(1,16)=18.5, p<0.001].  

Interestingly, chronic administration of FGF-2 produced little change in the total 

number of BrdU cells in HR’s (3270 +/- 306, an 18% increase). By contrast FGF-

2 produced a substantial increase in the total number of BrdU labeled cells in the 
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LR rats (up to 3802 +/- 286) representing a 46% increase. Thus, there was a 

significant interaction of treatment x phenotype  [F(1,16)=5.2, p<0.05].  

 

It is noteworthy that these results where independent of an increase in cell 

proliferation, as we observed no differences between HR and LR in proliferation 

as chronic FGF-2 failed to increase the number of Ki67 labeled cells [F(1,16)=1.1 

p>0.05]. Thus, it appears that HR and LR lines exhibit a tendency towards a 

basal differences in the survival of adult born cells, with the more anxiety prone 

LR’s showing lower rates of survival.   Thus, FGF-2 treatment increases cell 

survival only in the LR animals, in conjunction with their more consistent 

decrease in anxiety behavior.  

 

FGF-2 differentially alters differentiation of adult stem cells in the 
hippocampus of LR animals.  
 

Given the differential increase in cell survival in LRs in response to FGF-2, we 

evaluated the pattern of differentiation of the surviving BrdU labeled cells by 

obtaining an estimate of the total number of neurons and astrocytes generated in 

the hippocampal dentate gyrus as a function of treatment with FGF-2.  

 

Statistical analysis of the data summarized in Table 4-1 shows several main 

effects as well as interaction between HR/LR phenotype and the impact of FGF-2 

treatment on the various stem cell populations. Beyond the tendency for the 

basal differences in total number of BrdU labeled cells described above, HR and 
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LR animals exhibit basal differences in the proportions of cells where BrdU is co-

labeled with NeuN, GFAP or neither (Figure 4-6 A &C).  In particular, relative to 

LRs, HRs show a higher number of new astrocytes generated in the dentate 

gyrus across both vehicle and FGF-2 conditions [F(1,16)=27.1, p<0.0001] and this 

is particularly due to the basal difference in newly born astrocytes (235 + 25  in 

HR vs. 62 + 4 in LR) as shown by post-hoc analysis (p<0.0001) . 

FGF-2 treatment results in an overall increase in the number of new astrocytes 

[F(1,16)=33.1, p<0.0001] and new neurons [F(1,16)=20.2, p<0.001], but the impact is 

different as a function of the HR/LR phenotype. Thus, there were significant 

interaction effects in the number of newly generated neurons [F(1,16)=9.7, p<0.01], 

astrocytes  [F(1,16)=9.6, p<0.01], as well as on undifferentiated cells [F(1,16)=9.5, 

p<.01]. 

 

 As noted above, in the HR animals, chronic administration of FGF-2 produced 

little change in the total number of BrdU+ cells, and Table 4-1., and Figure 4-

6B., show that this held true especially for neurons (13% increase) with a slightly 

greater increase in astrocytes (23%). Interestingly, the small population of BrdU 

labeled cells that was co-labeled with neither marker increased the most post 

FGF-2 (52%; p<0.01) in the HR population.  Such differential increase resulted in 

a disruption of the basal differences between HRs and LRs as under vehicle 

conditions LRs show a higher number of undifferentiated cells (p<0.01) relative to 

vehicle HRs. 
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By contrast, in the LR animals, FGF-2 produce a substantial increase in BrdU 

labeled cells, and Table 4-1., and Figure 4-6B., show that this represented a 

doubling of neurons (201% increase over basal; p<0.0001), and a remarkable 

four-fold increase in astrocytes (398% over basal; p<0.0001). The population of 

BrdU labeled cells that was co-labeled with neither marker decreased slightly 

(12%) in LRs. Thus, as depicted in Figure 4-6D, the relative proportions of 

neurons, astrocytes and “neither” was altered by FGF-2 particularly in the LRs, 

with what appears to be a relative proportional increase in astrocytes at the 

expense of uncommitted cells. 

Discussion 

The present study establishes for the first time a role for hippocampal FGF-2 in 

modulating anxiety behavior, and suggests a mechanism for this role via the 

modulation of hippocampal neurogenesis. Our findings are as follows: a) 

selectively bred HR animals, which naturally show lower anxiety-like behavior 

compared to selectively bred LR’s, exhibit higher basal levels of hippocampal 

FGF-2 relative to their LR counterparts. Moreover, in an outbred population, 

higher levels of FGF-2 mRNA predict lower anxiety behavior; b) Exposure to an 

environmental manipulation which increases complexity of the physical 

surrounds of an animal, decreases anxiety behavior and leads to increased 

expression of FGF-2 mRNA. The impact of EC on FGF-2 hippocampal 

expression was seen selectively in the more anxious LR animals, who also 

exhibited a more consistent decrease in anxiety behavior post EC as manifested 

in both the EPM and the LDB; c) chronic administration of exogenous FGF-2 
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decreases anxiety behavior and this is seen only in selectively bred LR’s ; d) 

chronic administration of exogenous FGF-2 increases new cell survival in the 

hippocampus without altering proliferation. This is associated with in an overall 

increase in neurogenesis and glial genesis.  Once again, this effect is seen 

primarily in the LR animals. These results strongly implicate hippocampal FGF-2 

as a modulator of anxiety behavior. Moreover, they show that this modulation can 

take place as a result of a genetic predisposition (HR express more FGF-2 

basally than do LR’s) but that environmental factors, specifically an enriched 

environment, can also induce it, essentially compensating for the genetic 

vulnerability in the more anxiety-prone animals. Finally, this body of work 

suggests that treatment with exogenous FGF-2 or its analogues, or more broadly 

altering the FGF system, may benefit individuals prone to high anxiety. 

 

While FGF2 had not been directly implicated in the control of anxiety, several 

strands of evidence give this view face validity. First, as, indicated above, we and 

others have found that several FGF family members including FGF-2 are 

decreased in the brains of post mortem subjects suffering from major depression 

(Evans et al., 2004),(Gaughran et al., 2006, Akil et al., 2008). Moreover, recent 

animal studies from our group and others support its relevance to depression, as 

FGF-2 is decreased in social defeat, an animal model of depression (Turner et 

al., 2006) and both FGF-2 and related molecules function as antidepressants in 

the Porsolt Swim Test (Turner et al., 2008b). Moreover, chronic classical 

antidepressant drugs have been shown to increase FGF-2 expression (Mallei et 
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al., 2002) and to enhance neurogenesis (Malberg et al., 2000). Thus, this body of 

work is consonant with the current hypothesis that a deficiency in growth factors 

represents a vulnerability factor for mood disorders (Duman and Monteggia, 

2006) and that the induction of growth factors is critical to the effectiveness of 

antidepressant drugs (Warner-Schmidt and Duman, 2007), along with the 

possibility that neurogenesis plays a critical role in antidepressant action 

(Santarelli et al., 2003). Taken together, these findings suggest that decreased 

levels of FGF-2 may be involved in the pathophysiology of depression, and that 

antidepressants may exert their neurogenic effects by increasing FGF-2. 

However, in spite of the close co-morbidity between anxiety disorders and major 

depresive disorders, much less has been done to establish the role of FGF-2 in 

modulating anxiety. More importantly, the findings here suggest that the impact 

of FGF-2 is not only seen under pathological conditions but in the context of 

natural variation in anxiety-like behavior and that it is modulated by relatively mild 

environmental changes (e.g increasing complexity).  

 

The differential impact of Environmental Complexity on FGF-2 and anxiety in LRs 

suggest that some experiences may only benefit certain individuals that have a 

high genetic propensity for anxiety like that observed in the selectively bred LRs 

(Stead et al., 2006). Given the evidence showing FGF-2 decreasing anxiety, it is 

possible that HRs did not show less anxiety in the LDB given the lack of 

beneficial increase in FGF-2 in response to EC.  This could potentially be related 

to a ceiling effect that may have precluded the HR’s increase in hippocampal 
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FGF-2. Although, no differential impact on anxiety in LRs was observed on the 

EPM in response to EC, our results do point to LRs being favored.  Normally, 

LRs show 25% percent open arm entries whereas in response to EC this number 

increases to 47%, representing almost a two-fold decrease in anxiety.  On the 

other hand, HRs low anxiety performance went from 41% to 55%, thus 

resembling a more modest change in anxiety behavior which could alternatively 

be explained by increased expression of BDNF or VEGF in response to EC 

(Young et al., 1999) (Cao et al., 2004).  

 

In support of the role of FGF-2 as a modulator of anxiety, our results indicate that 

chronic exogenous FGF-2 treatment is sufficient for reducing anxiety in LRs.  

This novel role for FGF-2 is supported by anxiolitic treatments increasing FGF-2 

expression in the hippocampus (Gomez-Pinilla et al., 2000, Mallei et al., 2002) 

and by our findings showing EC increasing FGF-2 expression and reducing 

anxiety in LRs.  They also expand on the potential role of endogenous FGF-2 in 

modulating experience dependent anxiety behavior.  In support of this notion 

social defeat decreases FGF-2 expression in the hippocampus (Turner et al., 

2008a) and increases vulnerability to anxiety (Kinsey et al., 2007). Furthermore, 

rats suffering low maternal care during development show low levels of 

hippocampal FGF-2 (Bredy et al., 2003) and high anxiety (Caldji et al., 1998).  

However it is unknown whether such differences in anxiety are due to differences 

in hippocampal FGF-2.  
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Our results also demonstrate that FGF-2 increases neurogenesis by enhancing 

new cell survival selectively in LRs.  These findings are consonant with previous 

findings showing exogenous FGF-2 salvaging cell survival deficits (Rai et al., 

2007).  Interestingly, effects of FGF-2 on survival were independent of changes 

in cell proliferation.  These results parallel findings showing decrease 

hippocampal cell survival with no changes in cell proliferation after social defeat 

(Thomas et al., 2007).  They also expand on reports showing decrease FGF-2 

and low cell survival in the hippocampus of rats suffering from low maternal care 

(Bredy et al., 2003) and support our findings showing LRs with a tendency 

towards low cell survival.  Taken together our results suggest that LR’s low levels 

of hippocampal FGF-2 expression may lend high vulnerability to low cell survival 

which could in turn lead to a decrease in the generation of new neurons and new 

astrocytes.  

 

In the adult, FGF-2 shows prominent expression in astrocytes throughout the 

brain, whereas neuronal expression is almost exclusive to the hippocampus 

(Woodward et al.).  Although FGF-2 has mostly been related to neurogenesis, 

FGF-2 has also been noted to modulate the number of glial cells in the 

hippocampus (Cheng et al., 2002).  This is consistent with our findings showing 

an increase in both glial genesis and neurogenesis. However, it is worth noting 

that FGF-2 showed a larger increase in glial genesis as seen by a four-fold 

increase compared to a two-fold increase in neurogenesis. This suggests that 

FGF-2 shows a preferential increase in glial genesis. 
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 While we are not aware of FGF-2 being directly linked to hippocampal astrocyte 

differentiation, several findings have shown it modulating the expression of GFAP 

in the cortex (Reuss et al., 2003) and to synergistically participate with cilliary 

neurotrophic factor (CNTF) in promoting astrocyte differentiation (Song and 

Ghosh, 2004).  Furthermore, phenotypic analysis of BrdU+ cells support the role 

of FGF-2 in astrocyte differentiation as HR animals show an overall higher 

pattern of glial differentiation relative to LRs.  Interestingly, observed differences 

in astrocyte differentiation between control HR and LR were lost after FGF-2 

treatment.  This suggests that FGF-2 modulates the differentiation of new cells 

generated in the hippocampus translating into an enhancement of astrocytes.  

 

In conclusion our results suggest that FGF-2 plays a role in modulating anxiety 

behavior by increasing the rate of cell survival and in turn promoting the 

generation of new astocytes and neurons.  This is supported by our data showing 

LR animals, which display increased anxiety behavior as having lower basal 

levels of FGF-2 relative to the less anxious HR.  However, when LR’s 

endogenous levels of FGF-2 are increased either by EC or by exogenous 

treatment they respond with less anxiety lending their behavior become similar to 

that of an HR animal.  Moreover, FGF-2 anxiolytic effects were accompanied by 

increased new cell survival that in turn promoted the preferential increase in new 

astrocytes.  This again made the LR’s resemble that of an HR phenotype as HR 

show a higher number of newly generated astrocytes. Thus the results above 

suggest that low levels of hippocampal FGF-2 expression in LRs contribute to 



 

 126 

low survival rates of newly generated astrocytes, making them more prone to 

high anxiety behavior.  Taken together the present study supports the role of 

FGF-2 as a novel mediator of anxiety-like behavior and a potential novel 

treatment target for assisting individuals showing high anxiety behavior.   
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Results Figures 
Figure 4-1: FGF-2 is decreased in the Hippocampus of LRs 

A. 

 

B. 

 

C. 

 

A) LR animals show decreased FGF-2 expression in the Dentae Gyrus [t(16)=2.58, p<0.05]  and 
CA3 regions of the hippocampus [t(16)=2.12, p<0.05] (n=9-10 per group). B) Representative 
images from HR and LR animals showing basal FGF-2 expression in the hippocampus. C) 
Correlation of FGF-2 expression in the hippocampal CA2 region and time spent in the open arm 
[R^2=0.53, (p<0.01] (n=11). 
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Figure 4-2: Environmental Complexity differentially reduces anxiety-like behavior in LR 
animals 

 

A.  

 

B. 

 

 

A) Overall HR animals displayed lower anxiety behavior compared to LR animals as measured by 
their increase in the percent time spent in the Illuminated Compartment [F(1,35)=7.7, p<0.01]. 
There was also a significant main effect of EC on decreasing anxiety-like behavior as shown by 
an increase in the percent time spent in the Illuminated Compartment [F(1,35)=6.02, p<.05]. There 
was also an interaction on the time spent in the illuminated Compartment [F(1,35)=6.8, p<0.05]. 
Post-hoc tests revealed a differential effect on LR EC trained versus LR control animals (p<0.01) 
(n=13-15 per group).  B) There was also a main effect of phenotype in the EPM as HR animals 
showed an higher percent of open arm entries [F(1,52)=8.1, p<0.01].  Main effects of EC in the 
EPM also show an overall increase in the percentage of open arm entries [F(1,52)=20.0, p<0.0001].   
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Figure 4-3: Environmental Complexity differentially increases Hippocampal FGF-2 
expression in LRs. 

 

     A. 

 
 

 

 

 

 

 

 

 

A) EC results in an overall significant increase in FGF-2 expression in the dentate gyrus, 
[F(1,19)=23.3, p<0.001], and CA3 region, [F(1,19)=16.7, p<0.0001]. There was also an interaction 
effect of EC housing and phenotypic group on FGF-2 expression in the dentate gyrus, 
[F(1,19)=6.17, p<0.05] and CA3 region [F(1,19)=6.4, p<0.05]. Post-hoc revealed a differential effect 
on LR EC animals as compared to LR controls within dentate gyrus (p<0.0001) and CA3 region 
(p<0.001). (B) Representative images of FGF-2 expression in the hippocampus of HR and LR 
animals after control and EC housing (n=5-6 per group). 

 B. 
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Figure 4-4: FGF-2 differentially reduces anxiety-like behavior in LRs 

 

A. 

 

B. 

 

A) Overall main anxiolytic effects of phenotypes and treatment were observed in the LDB, as HR 
[F(1,46)=38.5, p<0.0001] and FGF-2 treated animals [F(1,46)=5.9, p<0.05] spent more time in the 
illuminated compartment. Interaction effects of treatment and phenotype where also observed in 
the LDB [F(1,46)=5.6, p<0.05].  Post-hoc analysis revealed FGF-2 treated LRs showing less 
anxiety relative to vehicle treated LRs (p<.01).  B) There was an interaction of FGF-2 treatment 
and phenotype group on reducing anxiety as measured by an increase in the percent of open arm 
entries in the EPM [F(1,46)=7.2, p<0.01] and posthoc analysis revealed effects in LR FGF-2 treated 
animals relative to LR vehicle controls (p<.01) (n=11-15 per group). 
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FGF-2 differentially reduces anxiety-like behavior in LRs 

 
C. 
 

 
 

C) Interaction effects were also observed in the percent of time spent in the open arm [F(1,46)=6.1, 
p<0.05].  Analysis by post hoc revealed LR FGF-2 treated animals differentially showing an 
increase in the percent time in open arms (p<0.01) (n=11-15 per group). 
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Figure 4-5: FGF-2 diferentially increases new cell survival 

 

A. 

 

B.  

 

A) Chronic FGF-2 results in an overall significant increase in new cell survival in the dentate 
gyrus as shown by an increase in the number of Brd-U labeled cells [F(1,16)=18.5, p<.001]. 
Furthermore there was an interaction of treatment and phenotype group [F(1,16)=5.2, p<.05], as LR 
FGF-2 treated animals showed an increase in cell survival relative to LR vehicle treated animals 
(p<.001) B) No significant effects were observed in cell proliferation as chronic FGF-2 failed to 
increase the number of Ki67 labeled cells [F(1,16)=1.1 p>.05], (n=5 per group). 
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Figure 4-6:FGF-2 differentially alters cell differentiation 

A. 

 

B. 

 

A) Overall main effects showed HR animals showing higher number of BrdU+ astrocytes relative 
to LRs [F(1,16)=27.1, p<0.0001].  An interaction effect was also observed on the number of 
undifferentiated cells [F(1,16)=9.5, p<0.01] with post-hoc tests revealing that under vehicle 
conditions LRs show a higher number of undifferentiated cells (p<0.01) relative to vehicle HRs. B) 
Upon FGF-2 treatment HR animals showed a differential increase in the number of 
undifferentiated cells (p<.01) eliminating basal differences between HRs and LRs on the number 
of undifferentiated cells. Overall main effects showed FGF-2 treated animals showing an increase 
in the number of new neurons [F(1,16)=20.2, p<0.001] and astrocytes [F(1,16)=33.1, p<.0001], with 
significant interactions observed in the number of new neurons and astrocytes respectively 
[F(1,16)=9.7, p<0.01] [F(1,16)=9.6, p<0.01].  Post-hoc analysis revealed that FGF-2 treatment 
differentially increased the number of neurons (p<.0001) and new astrocytes (p<.0001) in LRs 
(n=5 per group).   

HR/FGF-2 LR/FGF-2 

    HR/Veh LR/Veh 

 * 
* 

 * 

  * 
* 
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FGF-2 differentially alters the pattern of cell differentiation 

 

C. 

 

 D. 

 

C) HR animals showed a greater proportion of astrocyte differentiation [F(1,16)= 5.77, p<0.05] 
whereas LRs show an overall increase in the percent of undifferentiated BrdU labeled cells 
[F(1,16)= 7.73, p<0.05]. D) Overall FGF-2 treatment effects in the percent of undifferentiated cells 
[F(1,16)= 9.1, p<0.05] and its interaction [F(1,16)= 26.9, p<0.001] resulted in a disruption of HR/LR 
differences in astrocyte and undifferentiated cells.  Post-hoc revealed FGF-2 treatment decreased 
the percent of undifferentiated cells selectively in LRs ( p<.0001) (n=5 per group). 

 * 
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Table 4-1: FGF-2 differentially alters cell differentiation in HR and LR animals 

 

 
Table 4-1 shows the total number of BrdU+ neurons, astrocytes and undifferentiated cells along 
with their standard error of the mean in parenthesis.  Overall main effects showed HR animals 
showing higher number of BrdU+ astrocytes relative to LRs [F(1,16)=27.1, p<0.0001].  An 
interaction effect was also observed on the number of undifferentiated BrdU+ cells [F(1,16)=9.5, 
p<0.01] with post-hoc tests revealing that under vehicle conditions LRs show a higher number of 
undifferentiated cells (p<0.01) relative to vehicle HRs. Upon FGF-2 treatment HR animals 
showed a differential increase in the number of undifferentiated cells (p<.01) eliminating basal 
differences between HRs and LRs on the number of undifferentiated cells.  Overall main effects 
showed FGF-2 treated animals showing an increase in the number of BrdU+ neurons 
[F(1,16)=20.2, p<0.001] and astrocytes [F(1,16)=33.1, p<.0001], with significant interactions 
observed in the number of BrdU+ neurons and astrocytes respectively [F(1,16)=9.7, p<0.01] 
[F(1,16)=9.6, p<0.01].  Post-hoc analysis revealed that FGF-2 treatment differentially increased 
the number of new neurons (p<.0001) and astrocytes (p<.0001) in LRs (n=5 per group). 
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 Appendix 4-1: Representative images of Ki67 and BrdU labeled cells 

 

A. 

 
 
 

B. 

 
 
 
A) Representative image of a cluster of ki67 labeled cells marked with arrowheads. (Scale bar 20 
µm.) B) Representative image of BrdU labeled cells marked with arrowheads. (Scale bar 10µm).  
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Appendix 4-2: Representative images of neurogenesis and glial genesis 

 

A. 

 

B. 

 

A) Representative confocal images of BrdU/NeuN co-labelled cells and BrdU/ GFAP co-labeled 
cells (scale bar 10µm).  red labeling are BrdU positive cells, blue labeling are GFAP positive cells 
and green are NeuN positive cells. B) Arrowhead points to BrdU/NeuN co-labeled verified in 
xy,/xz axis axis. 

   yz 

  xz 
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Appendix 4-3: Differences in locomotor response to novelty in selectively bred HR and LR 
animals. 

   

Selectively bred HR and LR animals show reliable differences in locomotor response to novelty  
[t(136)=522.1, p<0.0001].   

 

 

 

 

 * 
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Appendix 4-4: Differences in anxiety response to EC and FGF-2 are not related to changes 
in overall activity. 

 

A. 

 

  
 

B. 

 

A) Selectively bred LR animals show no significant differences in general activity response to EC 
on the EPM [t(9)=4.09, p=0.07].  B) FGF-2 does not impact activity in the EPM [t(25)=0.64, p=0.81].  
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Chapter 5  
 

Discussion 
 

The present dissertation encompasses a series of studies demonstrating a novel 

role for endogenous hippocampal FGF-2 as a mediator of anxiety-like behavior.  

In support of this concept, we show that an experience such as housing in a 

complex environment, construed to be neuroprotective, reduces anxiety while 

requiring hippocampal FGF receptor activation for such effects.  Moreover, FGF-

2’s role in reducing vulnerability to anxiety was further validated in animals 

showing genetic propensity to high anxiety.  Specifically, LR animals, which are 

genetically predisposed to exhibit high anxiety behavior, have low basal levels of 

hippocampal FGF-2 gene expression whereas their counterparts, the low anxiety 

HRs, show high basal levels of hippocampal FGF-2.  Importantly, upon exposure 

to EC, FGF-2 expression in the hippocampus of LRs becomes significantly 

increased as their anxiety levels become reduced.  Moreover, when the high 

anxiety LRs where treated chronically with exogenous FGF-2, their anxiety 

behavior was reduced to a level comparable to that of HRs, mirroring the impact 

of EC on these selectively bred animals.  Thus, LR’s appear to be genetically 

“FGF2 deficient” and more anxiety-prone, and treatments including direct 
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administration of exogenous FGF2 or exposure to a manipulation that induces 

endogenous FGF2 reverse the anxiety phenotype.  Taken together these results 

demonstrate for the first time that FGF-2 serves as endogenous modulator of 

anxiety behavior, and that its effects are partially determined by genetic factors 

but are readily modulatable by experience.     

 

Interestingly, FGF-2’s anxiolytic impact after chronic treatment stands in contrast 

to its anxiogenic impact upon acute treatment.  Thus, acute treatment with FGF-2 

increased anxiety-like behavior with particularly strong effects in the HR animals.  

This contradictory dilemma harks back to a profile of action often seen upon 

acute treatments with antidepressants (Bagdy et al., 2001). Initially, some 

antidepressant treatment regimens lead to acute anxiogenic effects before 

presenting their beneficial effects on depression and anxiety after two to three 

weeks of treatment (Dulawa et al., 2004).  This same the scenario occurred in 

our results whereby acute FGF-2 treatment was anxiogenic, whereas chronic 

FGF-2 treatment exhibited the anxiolytic response elicited by antidepressants 

and EC. This is consistent with other findings from our laboratory that showed 

that FGF-2 also has antidepressant effects (Turner et al., 2008b). Our results 

also suggest that FGF-2 may be acting in a neurotransmitter-like fashion, or at 

least mediating its behavioral effects by modulating neurotransmitter systems.  

Furthermore, they suggest that chronic FGF-2 may be mediating its anxiolytic 

impact by modulating structural plasticity, as has been proposed for chronic 

antidepressants such as SSRIs.  
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In support of this notion, our results show chronic FGF-2 increasing hippocampal 

cell genesis, by means of increasing cell survival and promoting the generation of 

new neurons and especially new astrocytes.  Similarly, HRs, which naturally 

show high levels of hippocampal FGF-2 gene expression show a tendency for 

high levels of hippocampal new cell survival while showing significantly more 

newly generated astrocytes. These results parallel effects seen after EC, wherein 

increases in cell proliferation and cell survival were observed. This led to the 

hypothesis that FGF-2 may be mediating the cell survival effects seen after EC.  

This hypothesis was tested and supported by the studies described in Chapter 2, 

which demonstrated that an FGF antagonist injected into the hippocampus 

disrupts the effects of EC on increasing hippocampal cell genesis.  However, 

both proliferation and cell survival were disrupted by the antagonist, which blocks 

the effects of all the FGF’s that impact on hippocampal receptors.  This indicates 

that while FGF-2 may be mediating the cell survival effects seen after EC, other 

FGF ligands may be participating in the modulation of EC’s impact on cell 

proliferation.  

 

The fact that FGF-2 increases hippocampal cell genesis and reduces anxiety 

presents an interesting scenario.  Thus, as mentioned above, chronic 

antidepressant treatment increases hippocampal FGF-2 gene expression (Mallei 

et al., 2002) and hippocampal cell genesis (Malberg et al., 2000) while reducing 

anxiety.  Similarly, EC increases neurogenesis reduces anxiety and increases 

hippocampal FGF-2 gene expression.  This suggests that the long-term 
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behavioral impact of both EC and antidepressants may rely on FGF-2, and that 

this growth factor exerts its effects on behavior, at least in part, by altering 

hippocampal cell genesis.  

 

The combination of using the HR-LR model and altering environmental 

complexity offers an excellent opportunity to assess both the genetic and the 

environmental factors critical in modulating vulnerability to mood disorders. 

Furthermore, these paradigms allowed the use of non-pharmacological strategies 

to demonstrate the role of endogenous FGF-2, and uncovering its function in 

modulating anxiety behavior. Key elements that have emerged in common with 

antidepressant mechanisms of action include alterations in expression levels of 

growth factors and enhanced cell genesis in the adult hippocampus.  Thus, a 

deficiency in growth factor function has been hypothesized to increase 

vulnerability to clinical depression, and antidepressants have been proposed to 

mediate their behavioral effects by increasing growth factor support, which in turn 

can alter neural plasticity including enhancement of neurogenesis. Indeed this 

appears to be the case for FGF-2, as its expression levels are low in the brains of 

severely depressed individuals, and this decrease is less marked in subjects who 

had received SSRI treatment (Evans et al., 2004) (Gaughran et al., 2006). The 

current results led us to hypothesize that a similar set of mechanisms may be 

mediating vulnerability to anxiety, an affective response that is closely linked to 

depression.  Consequently, the results of this dissertation led to the following 

extension of the previous human and animal studies:  Endogenous hippocampal 
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FGF-2 decreases vulnerability to anxiety. It does so, at least in part, by altering 

hippocampal neuroplasticity, increasing survival of adult stem cells and 

particularly the generation of new astrocytes, which may in turn provide better 

support for general hippocampal function.  

 

The above synopsis of the results presented in this project serves as a prelude to 

the discussion and general conclusions of this dissertation. 

 

Role of FGF-2 as Regulator of Anxiety 

 

As part of the results presented in this project I report that FGF-2 presents 

seemingly contradictory effects on anxiety-like behavior. In particular, during 

acute administration FGF-2 increases anxiety behavior, a result consistent with 

our findings showing that acute FGF receptor antagonism in the hippocampus 

reduces anxiety.  However, these acute results stand in contrast to our findings 

that chronic FGF-2 treatment leads to decreased anxiety, and this is 

accompanied by increased survival of newly born cells in the adult hippocampus.  

While I propose that both of these effects are mediated by the hippocampus, our 

results present a puzzling discrepancy that we aim to explain with two distinct 

mechanism of action: acute effects of FGF-2 which involve immediate 

neurotransmitter-like action, and chronic effects of FGF-2 which involves 

structural plasticity-related changes within the hippocampal circuitry.  

Furthermore, I will also discuss how the HR and LR trait differentially interacts 



 

 148 

with the mechanisms of action of FGF-2 in modulating anxiety acutely and 

chronically.  

 

While the acute anxiogenic effects of FGF-2 may raise questions about its 

potential for long term treatment of anxiety and depression, it is worth mentioning 

that a similar response pattern is observed with antidepressant treatments.   

Thus, acute treatment with selective serotonin reuptake inhibitors (SSRIs) has 

been shown to cause acute anxiogenic effects (Bagdy et al., 2001), while it is 

well known that chronic antidepressants reduce anxiety (Dulawa et al., 2004). 

Taking the antidepressant treatment paradigm as a model, we can draw parallels 

to arrive at possible mechanistic explanations of the acute versus chronic 

behavioral responses to FGF-2.   On the other hand, alternate mechanisms 

linking FGF-2 to acute stress responses may also provide a viable mechanistic 

explanation of the acute anxiety responses.  

 

It is known that effective treatment regimens with SSRIs require chronic 

administration in order to see improvements in behavioral responses in humans. 

Thus most of the literature has focused on the neural plasticity mechanisms 

involving the effects of antidepressants on reversing behavioral responses 

reminiscent of depression such as anxiety.  One of the most studied and perhaps 

most widely accepted neural mechanism suggested to mediate antidepressant 

action is hippocampal cell genesis, as antidepressants such as SSRIs are well 

known to increase neurogenesis (Malberg et al., 2000).  Interestingly, 



 

 149 

hippocampal FGF-2 expression is increased in response to chronic 

antidepressants (Mallei et al., 2002).  Furthermore, previous reports showed 

FGF-2 enhancing cell proliferation and cell survival (Wagner et al., 1999) (Rai et 

al., 2007). 

 

Thus, there is mounting evidence pointing to a possible role of FGF-2 in 

mediating the hippocampal cell genesis response seen after antidepressant 

treatment.  Our results in Chapter 3 support this idea as chronic FGF-2 increased 

hippocampal new cell survival.  Furthermore, we showed that experiences 

reducing anxiety such as EC require FGF-2 to increase cell genesis.   On the 

other hand experiences known to negatively impact anxiety, which serve as 

depression models, such as social defeat, (Kinsey et al., 2007)  have been 

shown to decrease FGF-2 expression in the hippocampus (Turner et al., 2008a).  

Furthermore, social defeat also decreases hippocampal new cell survival 

(Thomas et al., 2007).  Given that the effects of antidepressants on modulating 

anxiety take two to three weeks to be observed, it is reasonable to suggest that 

changes in hippocampal neurogenesis could in part be the underlying 

mechanism of such changes in behavior.  Furthermore, the relevance of FGF-2 

in reducing anxiety added to its positive impact on hippocampal cell genesis 

leads us to hypothesize that chronic FGF-2 modulates anxiety in part via an 

enhancement of hippocampal cell genesis. 
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While the evidence linking FGF-2 to potential plasticity mechanisms reducing 

anxiety under chronic conditions is considerable, sparse reports also implicate 

this growth factor in modulating anxiety behavior under acute conditions.  For 

example, previous studies show an increase of hippocampal FGF-2 gene 

expression in response to anxiogenic stimuli, such as acute restraint (Fumagalli 

et al., 2005).  Moreover, corticosterone administration up-regulates FGF-2 in the 

hippocampus (Molteni et al., 2001) and stress-mediated increases in 

hippocampal FGF-2 require corticosterone responses (Frank et al., 2007). These 

reports suggest that hippocampal FGF-2 may participate in modulating acute 

stress related behavioral responses and that such acute modulation works in 

concert with modulators of anxiety behavior such as glucocorticoids (Wei et al., 

2004). 

 

FGF-2’s acute anxiogenic behavioral effects may well result from an endogenous 

neural stress response within the hippocampal circuitry.  Corticosterone provides 

an alerting and regulatory response to the organism when encountering 

threatening environmental or physiological stimuli (Wei et al., 2004). This, in turn, 

triggers an up-regulation of FGF-2 expression, as the FGF-2 gene predominantly 

responds to glucocorticoid receptor (GR) (Molteni et al., 2001). We hypothesize 

that this induction of FGF-2 by glucocorticoids may provide an endogenous 

protective and adaptive response to highly stressful stimuli. FGF-2 is known to be 

a necessary player in neurotrophic and neurogenic support after injury 

(Yoshimura et al., 2001), and it may play a similar neurotrophic and neurogenic 
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support role after stressful conditions, preparing the hippocampal circuitry for 

coping with imminent changes occurring in the organism’s external environment.  

Thus FGF-2 may provide an endogenous trophic support in response to 

stressors such as novelty or anxiogenic stimuli. Thus stress may induce FGF-2 

(this can also be the stress of an enriched environment), which could initially 

trigger an anxiogenic response.  In turn FGF-2 induces astrocytes, which contain 

more FGF-2 that can also be protective and lead to resilience against anxiety 

after long term treatment. 

 

The notion that FGF-2 may serve to protect the neural circuitry when an 

organism is confronted with an environmental threat is exemplified in FGF-2’s 

prevention of excitotoxic cell death (Mattson et al., 1995) via inactivation of 

NMDA receptors on hippocampal neurons (Boxer et al., 1999).  Interestingly, 

glucocorticoids reduce hippocampal cell proliferation via NMDA receptor 

activation (Cameron et al., 1995). On the other hand, glucocorticoids increase 

hippocampal FGF-2.  Thus the inactivation of NMDA receptors by FGF-2 could 

be seen as part of a negative feedback response regulating stress-related neural 

activity.  FGF-2’s inactivation of NMDA receptors may constitute a cellular 

protective response within the hippocampus, resulting from acute stress 

conditions.  In turn the anxiety behavioral response elicited by FGF-2 may help 

preserve the subsequent survival of new cells by limiting the exposure of the 

individual to additional threatening stimuli.  This endogenous mechanism would 

help counteract or reduce the deleterious effects of glucocorticoids and NMDA 
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activity such as the decrease in cell proliferation that results in response to 

stressors (Gould et al., 1997). 

 

While the current studies did not directly test the idea that acute stress is both 

anxiogenic and induces FGF-2, the impact of acute stress on FGF-2 expression 

has been previously demonstrated (Molteni et al., 2001). We suggest that the 

direct injection of FGF-2 into the hippocampus mimics the later stages of this 

proposed process—it generates an acute anxiety response while setting into 

motion the neuroprotective mechanisms that become evident upon repeated 

administration of the growth factor.  

 

Alternatively, the mechanism underlying the differential pattern of anxiety after 

acute and chronic FGF-2, may well be related to a neurotransmitter-like 

modulation of anxiety similar to that of serotonin.  This is particularly appealing 

given that acute injections with 5-HT1A receptor agonists directly into the 

hippocampus increase anxiety (File and Gonzalez, 1996).  Furthermore, chronic 

treatment with SSRIs antidepressants also reduces anxiety (Dulawa et al., 2004).  

This change in behavioral effects from being anxiogenic acutely to being 

anxiolytic chronically has been attributed to changes in serotonergic transmission 

activity. Initially drugs acting on somatodendritic 5HT1A autoreceptors directly 

such as agonists or indirectly such as SSRIs lead to a decrease in the release of 

serotonin at the synaptic cleft in the terminal projection areas. By contrast, 

chronic treatment with such drugs leads to a desensitization of 5HT1A 
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somatodendritic autoreceptors and subsequent disinhibition (File et al., 2000), 

lending to a sensitization of postsynaptic receptors, thereby decreasing anxiety.  

Given that FGF-2 follows a similar pattern from acutely being anxiogenic to 

chronically being anxiolytic, we reason that perhaps a mechanism of action of 

“cross-talk” between the FGF-2 and the serotonin system could be taking place.  

Furthermore, the fact that FGF-2 increases in response to chronic SSRI 

treatment supports the notion that FGF-2 may be acting in the synaptic 

restructuring of the serotonin system (Mallei et al., 2002).  Thus, acutely FGF-2 

may enhance anxiety by enhancing the response brought by decrease in post-

synaptic serotonergic release in the hippocampus.  On the other hand chronic 

treatment with FGF-2 may promote a sensitization of hippocampal postsynaptic 

5HT1A receptors, which may contribute to reduce anxiety.  This is especially 

plausible given that FGF-2 has previously been shown to be required for 

behavioral sensitization to drugs of abuse and it has been suggested that it does 

so in concert with neurotransmitters (Flores and Stewart, 2000).  These changes 

in serotonin receptor sensitization may in turn provide a venue for increasing cell 

genesis in the hippocampus seen in response to chronic antidepressants 

(Malberg et al., 2000). 

 

Differential responses to FGF-2 in HR and LR 

 

When presenting our results relating to the acute anxiogenic and chronic 

anxiolytic responses to FGF-2 we observed that these effects showed strong 
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interactions with the HR-LR phenotype.  Specifically, under acute administration, 

FGF-2 had a differential anxiogenic response in HR animals converting the low 

anxiety HR animal into a high anxiety LR-like phenotype.   On the other hand, 

when FGF-2 was injected chronically, the typically high anxiety behavior of LRs 

changed to resemble that of an HR animal.   This result was particularly intriguing 

as HR animals show higher basal levels of FGF-2 relative to the high anxiety 

LRs.  Thus, chronic FGF-2 administration appears to rescue the low levels of 

FGF-2 in the hippocampus of the LR animals, rendering them HR-like in terms of 

anxiety behavior. 

 

Thus, it appears that low levels of hippocampal FGF-2, as seen in LRs, may 

enhance vulnerability towards high anxiety-like behavior.  Conversely, high levels 

of FGF-2 in the hippocampus can decrease the vulnerability to anxiety, be it by 

genetic endowment as seen in HRs or by chronic administration as seen in the 

LRs repeatedly treated with FGF2.  Moreover, this same set of mechanisms can 

be invoked in conjunction with environmental complexity, a treatment that led to a 

differential increase in FGF-2 in LRs in addition to a differential decrease in their 

anxiety-like behavior.  This further supports the view that the high anxiety 

behavior seen in LRs could be attributed to low levels of FGF-2.   Thus, EC may 

provide an alternative approach to decreasing vulnerability to anxiety-like 

behavior by increasing hippocampal FGF-2 in animals such as LRs that are 

basally deficient in the expression of this growth factor.  
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By contrast, the acute anxiogenic effect of FGF-2 in HR’s, along with its lack of 

anxiolytic effectiveness when administered chronically to these same animals, 

suggest that FGF2 may not be a universally effective strategy for reducing 

anxiety behavior.  In HRs the support of FGF- 2 seems to be built as part of their 

genetic endowment and inducing or delivering more FGF-2 may perhaps 

“saturate” the system. Thus, acutely, FGF2 readily elicits in HR’s the anxiety 

response discussed above, whereas chronically FGF2 appears ineffective in 

altering anxiety behavior in these animals—they appear “treatment resistant”.  It 

is therefore reasonable to suggest that an optimal level of FGF-2 is required for 

effectiveness in controlling anxiety behavior. This level is achieved under basal 

conditions by the HRs and is only reached by LR’s under enriched conditions 

such as EC.  

 

 While this may be the case under basal conditions, it is conceivable that, under 

stressful conditions, FGF-2 treatment might prove beneficial even to the HR 

animals. It should be noted that in response to strong stressors such as social 

defeat, HR’s behavior comes to resemble that of LR’s (Kabbaj et al., 2001). 

Indeed, certain stressors have a stronger impact on HRs than they do on LR’s.   

Remarkably these same manipulations decrease hippocampal FGF-2 expression 

(Kabbaj et al., 2001). Thus it is conceivable that the differential impact of stress in 

HRs might be associated with an increased requirement for FGF-2.  In other 

words, under normal circumstances HRs exhibit low vulnerability to anxiety 

behavior, in part due to high hippocampal levels of FGF-2.  However, HR animals 
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are highly reactive to their environment, and a chronic stressor may both lead to 

profound behavioral changes and deplete the stores of FGF2 in the HRs. Thus, it 

would be critical to determine whether manipulations such as social defeat have 

a particularly strong impact on FGF2 expression in the HR animals, and whether 

they would now profit from FGF2 treatment at least as much, or possibly more 

than, the LR animals.  

 

This scenario is plausible as antidepressant treatment in humans is only effective 

when clinically needed, whereas its administration in a non-depressant individual 

may not prove beneficial and may carry untoward side effects, such as increased 

anxiety.  This is important because when addressing vulnerability it is imperative 

to take contextual conditions into account as well as individual genetic 

endowment.  Thus, the FGF-2 treatment strategy for anxiety may be beneficial to 

LRs under normal circumstances whereas in HRs the treatment may be effective 

only under stressful conditions.  One particular piece of evidence to support such 

an idea is that while HR and LR differ on basal levels of anxiety under normal 

conditions, when exposed to stronger stressors the typical behavioral responses 

seen in HRs become more LR-like (Kabbaj et al., 2001). It is possible that under 

such circumstances we might see FGF-2 having an anxiolytic response in HRs 

and perhaps that a chronic treatment might be a viable alternative.  

 

Finally, it is worth mentioning that under normal conditions laboratory animals 

such as HRs and LRs live in environments of reduced complexity and have 
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severe limitations of physical activity compared to their wild counterparts.  The 

above studies showing increased neurogenesis and reduced anxiety following 

FGF-2 and EC could therefore be viewed as a decrease in neurogenesis and an 

increase in anxiety following environmental deprivation (Gould et al., 2000).  

Similarly, it could be viewed that HRs are less affected by environmental 

deprivation as opposed to LRs, and exposure to EC rescues the stressful impact 

of living in such deprived conditions.  Thus the apparent genetic differences 

between HRs and LRs may not necessarily account for the basal differences in 

FGF-2 expression, but in response to the environmental deprivation.  It could be 

that environmental deprivation has a bigger toll on LRs, that translates to a 

decrease in FGF-2 expression in the hippocampus, which in turn results in an 

increase in anxiety. Furthermore it could be that such effects of environmental 

deprivation were normalized by FGF-2 and EC in LRs whereas no correction was 

necessary in HRs as they might be more resilient to the negative impact of 

environmental deprivation.  

 

 In conclusion, FGF-2 has different effects in HRs and LRs on anxiety behavior.  

Although the selectively bred HR and LR animals provide an excellent model of 

genetic vulnerability to anxiety, it is also appealing to have these animals as a 

potential pharmacogenomics model.  This is viable to the extent seen in our 

results with FGF-2 as well as in previous studies where HR and LR animals 

showed a differential response profile to antidepressants (Jama et al., 2008). It is 

also critical to assess their responsiveness under appropriate contextual 
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conditions, for example examining treatment responses under basal versus 

stressful conditions. Such an approach would provide a more complete 

characterization of the differential treatment responsiveness of HR and LR 

animals.  

 

The hippocampus as a mediator of anxiety-like behavior 
 

Our results suggest a novel role for the FGF system in the modulation of anxiety-

like behavior that may be mediated by the hippocampus.  The hippocampus has 

mostly been studied for its role in learning and memory (Scoville and Milner, 

2000), and we recognize that the hippocampus has not particularly been 

considered as a key region responsible for modulating anxiety-like behavior.  

However, recent evidence suggests that the hippocampus may play a functional 

role in modulating anxiety-like behavior.  For example, hippocampal lesions and 

direct intra-hippocampal pharmacological treatments have been shown to alter 

anxiety-like behavior (Bannerman et al., 2004, Engin and Treit, 2008).  In the 

following section, we will focus our attention on the role of the hippocampus in 

modulating anxiety-like behavior.   

 

The fact that hippocampal FGF-2 modulates anxiety-like behavior was initially 

supported by our findings that showed HR-LR basal differences in FGF-2 

expression in the hippocampus. HRs, which typically exhibit low levels of anxiety-

like behavior, displayed higher expression of FGF-2 in the hippocampus than 
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LRs.  Moreover, hippocampal FGF-2 increased in response to EC, which we 

showed to be anxiolytic, supporting the supposition that high expression of 

endogenous FGF-2 in the hippocampus results in a phenotype with decreased 

anxiety-like behavior.  Finally, FGF-2 itself reduced anxiety-like behavior further 

validating its ability to modulate anxiety-like behavior.  However, these results 

were correlational, as FGF-2 was not shown to directly act on the hippocampus.   

 

Nonetheless, one particular set of results, which unequivocally implicated the 

hippocampus in anxiety-like behavior, was the effects of direct microinjections of 

an FGF receptor antagonist.  In this set of studies, we saw that intra-hippocampal 

microinjections with an FGF receptor antagonist significantly reduced anxiety-like 

behavior.  These results are in agreement with the anxiogenic effects observed 

following systemic FGF-2 injections and suggest that the hippocampus may play 

a functional role in regulating anxiety-like behavior.  Furthermore, the 

microinjection study also pointed to the specific importance of the hippocampus 

in modulating individual differences in anxiety-like behavior. Here, we saw that 

the acute anxiogenic effects of FGF-2 were more prominent in HRs, whereas the 

chronic anxiolytic effects of FGF-2 were observed in LRs. 

 

The role of the hippocampus in modulating individual differences in anxiety-like 

behavior has previously been shown in the HR an LR model (Kabbaj et al., 

2000).  Specifically, HR and LR animals have been shown to exhibit differences 

in hippocampal glucocorticoid receptor (GR) expression. In this example, LRs 
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displayed higher expression of GR relative to HRs.  These differences in 

hippocampal GR expression are, in part, responsible for the HR-LR differences in 

anxiety as hippocampal microinjections with a GR antagonist have been shown 

to disrupt individual differences.  Furthermore, several models known to show 

individual differences in anxiety-like behavior have yielded results reminiscent of 

hippocampal differences found between HR and LR animals.  For example, 

offspring of dams that exhibited decreased maternal behavior show increased 

anxiety-like behavior relative to offspring of mothers that exhibited greater 

maternal attention (Caldji et al., 1998).  Although these differences are not 

necessarily dependent on differences in the hippocampus, there is evidence that 

adult offspring of mothers that exhibited differences in maternal behavior display 

differences in hippocampal gene expression and morphology similar to those 

observed between HR and LR animals. To this end, animals with reduced 

anxiety-like behavior and greater maternal behavior showed higher levels of 

FGF-2 and higher rates of cell survival in the hippocampus (Bredy et al., 2003).   

Taken together, the results presented in this dissertation along with a few 

previous studies suggest that the hippocampus is a strong modulator of 

individual differences in anxiety-like behavior. 

 

Although the functional relevance of the hippocampus in anxiety-like behavior is 

still controversial, several reports support this function in addition to its primary 

role in learning and memory.  Previously, lesion studies have shown the 

hippocampus to be involved in anxiety-like behavior. For example, hippocampal 
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lesions resulted in decreased anxiety-like behavior (Bannerman et al., 2002).   

Interestingly, evidence supports an anatomical segregation within the 

hippocampus, whereby the ventral hippocampus is predominantly involved in 

anxiety modulation and the dorsal hippocampus is predominantly involved in 

learning (Bannerman et al., 2004).   

 

Studies have demonstrated that ventral lesions decrease anxiety-like behavior 

with no effects observed in the dorsal hippocampus (Bannerman et al., 2003). 

Specifically, anxiolytic effects of lesions to the ventral hippocampus have been 

demonstrated in a series of tests of anxiety-like behavior including the novelty-

suppressed feeding test, the light-dark box test, the social interaction test and the 

elevated-plus maze.  On the other hand, when the dorsal hippocampus was 

lesioned, deficits were observed in spatial learning and memory without any 

observable effects on anxiety-like behavior.  Interestingly, ventral hippocampal 

lesions did not affect spatial learning.  Accordingly, several authors have 

attributed a double dissociation of the effects of ventral and dorsal hippocampal 

lesions, where the dorsal hippocampus participates on spatial learning and 

working memory tasks and the ventral hippocampus has a preferential role in 

anxiety-like behavior (Bannerman et al., 2004).   

 

Although the reports mentioned above support the notion that the ventral 

hippocampus is involved in the modulation of anxiety, it is important to mention 

that such conclusions go beyond anxiety, and extend their findings to fear 
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learning.  As several of the above-mentioned results suggest that the ventral 

hippocampus modulates anxiety-like behavior, further results also suggest that 

ventral hippocampal lesions reduce freezing behavior after cued and contextual 

fear conditioning (McHugh et al., 2004).  Thus, it is important to make a 

distinction between fear conditioning and anxiety-like behavior and acknowledge 

that studies often include fear conditioning as a measure of anxiety even though 

fear conditioning has a learning component. In this dissertation, none of the 

measures of anxiety used involved learning, as the anxiety tests were chosen to 

be representative of spontaneous anxiety.  Furthermore, previous findings that 

ventral hippocampal lesions altered freezing on cued and contextual fear 

conditioning supports the notion that an interaction with the amygdala is crucial 

for modulation of fear and anxiety.  Thus, the ventral hippocampal modulation of 

both anxiety and fear has an intricate circuitry associated with the amygdala, 

especially given that connections between the hippocampus and amygdala are 

via the ventral hippocampus (Ishikawa and Nakamura, 2006).  This is particularly 

important as lesions within the ventral hippocampal subregion may well be 

affecting input and outuput connections that can actively participate in complex 

interactions between the amygdala and cortical regions (Ishikawa and 

Nakamura, 2003). 

 

 Although fear and anxiety seemingly go hand in hand, it is important to 

distinguish between the two in order to determine the role of the ventral 

hippocampus in anxiety-like behavior, as the distinction is of utmost importance 
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to review in this dissertation.  “Fear refers to a phasic response to explicit 

conditioned aversive cues whereas anxiety is a more tonic response to diffuse 

unconditioned aversive cues or situation” (Bannerman et al., 2004).  Although the 

above-mentioned reports suggest a favored role for the ventral hippocampus in 

anxiety-like behavior, it is more appropriate to state that the ventral hippocampus 

participates in the modulation or inhibition of fear associated responses that may 

also be behaviorally present on measures of anxiety.  Such assumptions are 

supported by studies which suggest a role for the hippocampus in “behavioral 

inhibition” as defined by an adaptive process whereby an organism suppresses 

behaviors that are not appropriate when confronted with mildly stressful stimuli 

(Bannerman et al., 2004). 

 

The evidence above citing the ventral hippocampus as a key component of the 

hippocampal modulation of anxiety-like behavior appears to be in conflict with the 

results presented in this dissertation given that administration of an FGF 

antagonist into the dorsal hippocampus reduced anxiety-like behavior in both the 

elevated-plus maze and open field test.  However, it is worth noting that we did 

not verify whether injections into the ventral hippocampus would have similar or 

more pronounced anxiolytic effects. Nonetheless, the majority of the literature 

supports the preferential role of the dorsal hippocampus in spatial learning and 

memory (Bannerman et al., 2003). However, there is substantial evidence 

supporting the role of the dorsal hippocampus in various measures of anxiety-like 

behavior. The role of the dorsal hippocampus in mediating anxiety-like behavior, 
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is supported by studies showing direct microinjections having profound effects on 

both increasing and reducing anxiety-like behavior that varies by 

neurotransmitter system (Engin and Treit, 2008).  One such recent finding 

reported that direct microinjection of substance P into the dorsal but not the 

ventral hippocampus had anxiolytic effects on the several anxiety tests (Carvalho 

et al., 2008). Moreover, dorsal hippocampal activation of the GABAregic system 

with several agonists resulted in anxiolytic effects (Rezayat et al., 2005). While 

benzodiazepine antagonists are able to block the anxiolytic effects of GABA-A 

agonists, no effects were observed when the compounds were microinjected 

alone. This suggests that although GABA modulates anxiety in the dorsal 

hippocampus, GABA-A receptors do not maintain a tonic modulation of anxiety-

like behavior in the dorsal hippocampus.  Similarly, as presented earlier in this 

chapter, other neurotransmitters systems, such as the serotonergic and 

cholinergic systems, have been shown to actively play a role in the modulation of 

the impact of the dorsal hippocampus on anxiety-like behavior.  Specifically, 

dorsal intra-hippocampal microinjections with 5-HT1A agonists, such 8-OH-

DPAT, showed an anxiolytic effect.  Moreover, indirect acetylcholine agonists, 

such as the acetylcholinesterase inhibitor physostigmine, also showed anxiolytic 

effects following microinjection into the dorsal hippocampus (Engin and Treit, 

2007).  

 

Although we attribute endogenous FGF-2 mRNA differences in the hippocampus 

to differences in anxiety it is important to note that other anatomical regions may 
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also be participating in such behavior.  Moreover, it is possible that the effect of 

the FGF-2 protein may extend to other input and output regions connecting to the 

hippocampus.   

 

As mentioned earlier, FGF-2 is widely expressed in the rat brain including other 

regions associated with anxiety-like behavior such as amygdala, locus coeriliues, 

dorsal raphe and medial prefrontal cortex.   Anatomical mapping of FGF-2 has 

shown that FGF-2 synthesizing cells show colocalization with FGF-2 protein 

expression in areas such as the hippocampus (Gonzalez et al. 1995).  However, 

it has been shown that FGF-2 mRNA shows low abundance in the dentate gyrus, 

whereas protein expression is very high in abundance.  Importantly, though the 

expression of FGF-2 and FGFr1 in the hippocampus is much higher in the CA2 

and CA3 respectively.  Thus given that FGF-2 is a diffuseable protein it is 

possible that FGF-2 could also be acting outside the dentate gyrus.  This is 

highly probable given that FGF receptors are mostly expressed within axonal 

fibers and that the dentate gyrus itself show low protein expression of FGF 

receptors.  Thus it is plausible that FGF-2 synthesize in the dentate gyrus could 

be acting in other sub-regions of the hippocampus or other anatomical locations 

within the brain.   This is particularly possible for regions in which FGF-2 

synthesizing cells are found in low abundance such as the amygdala and dorsal 

raphe.  Thus such regions may require the synthesis of FGF-2 stemming from 

the hippocampus.  However, in support of our effects of chronic FGF-2 on 

neurogenesis and anxiety FGFr1 mRNA is highly expressed in the dentate gyrus.  
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Although these findings do not parallel the low protein expression of this receptor 

it is well known that FGFr1 is required for hippocampal neurogenesis (Ohkubo et 

al 2004). 

 

Taken together, these reports further support the role of the hippocampus as a 

key modulator of anxiety-like behavior and expand on the possibility that FGF-2 

may be acting in concert with several transmitters systems within the 

hippocampal circuitry to modulate anxiety-like behavior. Furthermore, the 

hippocampus may be the site whereby chronic FGF-2 can modulate anxiety-like 

behavior.  Finally, the anxiolytic effect of FGF-2 may be related to the effect of 

FGF-2 on cell genesis.  Differences in cell genesis following FGF-2 favor an 

increase in cell survival followed by a preferential increase in glial cell 

differentiation. 

 

Differential impact of FGF-2 on hippocampal cell genesis 
 

Chronic FGF-2 increased new cell survival selectively in LRs.  These findings are 

consistent with previous findings that showed exogenous FGF-2 rescued deficits 

in cell survival in middle aged animals (Rai et al., 2007).   The fact that LRs 

showed lower cell survival than HRs is also consistent with reports of decreased 

FGF-2 and decreased cell survival in the adult hippocampus of offspring of 

mothers with reduced maternal behavior (Bredy et al., 2003).  Taken together, 

LR’s low expression of hippocampal FGF-2 may be associated with lower cell 
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survival which could, in turn, lead to decreased cell genesis, particularly in the 

production of astrocytes.  

 

The impact of FGF-2 on cell genesis has mostly been associated with 

neurogenesis; however, our results showed that chronic FGF-2 could 

preferentially modulate the number of glial cells in the hippocampus.  Following 

FGF-2 treatment, there was a four-fold increase in the production of new 

astrocytes compared to a two-fold increase in neurogenesis.  These results are 

consistent with FGF-2 knockout animals exhibiting a reduction in both glial 

genesis and neurogenesis (Cheng et al., 2002). Although there were a 

significantly lower number of BrdU labeled astrocytes in LRs, FGF2 promoted the 

differentiation of both neurons and astrocytes and preferentially increased glial 

genesis in LRs. Thus, FGF-2 preferentially promoted glial differentiation in LRs.   

 

Phenotypic analysis of BrdU+ cells in vehicle-treated animals supports the role of 

FGF-2 in astrocyte differentiation, as HR animals showed an overall higher 

pattern of glial differentiation of BrdU+ cells relative to LRs. Interestingly, HR and 

LR control animals exhibited differences in astrocyte differentiation. However, 

treatment with FGF-2 ameliorated these baseline differences in astrocyte 

differentiation.  To our knowledge, FGF-2 has not previously been directly linked 

to astrocyte differentiation; however, several findings have shown FGF-2 to 

modulate the expression of GFAP in the cortex (Reuss et al., 2003) and to 

synergistically participate with CNTF in promoting astrocyte differentiation (Song 
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and Ghosh, 2004). This suggests that FGF-2 may modulate differentiation of 

newly-generated cells in the hippocampus, and this modulation may translate 

into an enhancement of GFAP-expressing astrocytes. 

 

Several reasons could explain why FGF-2 showed a preference to promote the 

differentiation of GFAP-positive BrdU cells.  As mentioned above, FGF-2 may 

participate in a regulatory mechanism that supports the promotion of glial fate 

determination.  Additionally, FGF-2 may also be promoting an increase in the 

GFAP-expressing primary Type B progenitor cell pool (Zheng et al., 2004) 

(Doetsch, 2003) 

 

The subgranular zone of the dentate gyrus contains two types of dividing cells 

that give rise to new neurons.  The slowly dividing Type B cells that express the 

intermediate filament GFAP, and the Type D precursor cells that express 

markers of differentiating neurons (Doetsch, 2003).  The duration of our 

experimental design enabled us to see the terminal differentiation of BrdU 

labeled cells. Here, neuronal differentiation was corroborated with NeuN co-

labeling, and an increase in the astrocyte differentiation was verified with GFAP 

co-labeling.  However, the apparent increase in astrocyte differentiation may 

actually reflect an increase in the GFAP expressing Type B cell pool and not 

necessarily the number of astrocytes. The majority of cells generated in the 

dentate gyrus are neurons resulting from the Type B and Type D stem cell pool. 
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The GFAP-expressing progenitors reside within the subgranular zone and can be 

further categorized into two subtypes as follows: radial glial-like cells and 

horizontal cells.  Radial cells extend prominent processes along the granule cell 

layer as well smaller processes at the base of the subgranular zone.  The 

horizontal cells lie at the base of the subgranular zone and lack radial processes 

(Ma et al., 2005).  The radial GFAP astrocytes are sometimes referred also as 

the Type 1 progenitors and act as the primary slowly dividing progenitors that 

give rise to the Type D progeny which ultimately become new neurons (Doetsch, 

2003). These radial GFAP astrocytes cells interact extensively with clusters of 

type D cells which snuggle themselves within the radial processes and migrate 

their way into the granule cell layer.  Based on our data, it is plausible that 

chronic FGF-2 may have enhanced the ability of the Type B GFAP-expressing 

cells to self-renew and thereby increased the stem cell pool in LR animals 

(Doetsch et al., 2002).  

 

The pattern of division of Type B cells in vivo is unknown; hence, it is not clear 

whether type B cells divide symmetrically, asymmetrically or both.  However, 

factors such as FGF-2 and epidermal growth factor (EGF) are thought to be 

essential constituents of the stem cell niche where GFAP-expressing Type B 

cells are thought to maintain the structural milieu. Interestingly, FGF-2 and FGF 

receptors are thought to be required for proliferation of Type B cells (Zheng et al., 

2004). As mentioned above, growth factors are known to have positive effects on 

cell proliferation and self-renewal, as well as significantly impact cell fate 
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determination (Palmer et al., 1999). Thus, FGF-2 could act by promoting the self-

renewal of Type B cells along with promoting cell survival.  This, in turn, would 

lead to an increase in GFAP-labeled dividing cells as seen in LRs.   

 

Although the above scenario presents an alternative explanation to the 

preferential increase in the number of GFAP-positive cells, some cells could have 

become typical or horizontal astrocytes, whereas other cells could have become 

Type B cells.  Thus, an increase in GFAP-expressing BrdU cells could be merely 

one of the responses observed after FGF-2 treatment.  

 

There is scarce evidence to suggest that FGF-2 has an impact on type B cells in 

the hippocampus. More than likely, multiple cells responded to FGF-2.  Although 

this has not yet been shown in vivo with FGF-2, there is evidence that another 

growth factor, EGF, has distinct effects on proliferation and differentiation on 

Type B and Type C cells in the subventricular zone.   

 

The subventricular zone stem cell categorization presents some similarities to the 

dentate gyrus neural stem cells.  In the subventricular zone (SVZ), Type B cells 

are GFAP-expressing slowly dividing cells, whereas as the Type C cells are 

transit amplifying cells similar to the type D cells in the hippocampus. The Type D 

cells ultimately become type A neuroblasts.  EGF resulted in an increase in type 

C cell self-renewal due to an increase in proliferation and a stop in neuroblast 

production (Doetsch et al., 2002).   Thus, EGF both increased proliferation and 
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had a negative effect on the production of new neurons.  Although this was not 

the case in our results because the increase in GFAP cells was not at the 

expense of new neurons, it presents a scenario where specific cell types respond 

to growth factors in characteristic ways to regulate differentiation.   

 

In a different example with a growth factor similar to FGF-2, platelet-derived 

growth factor (PDGF) had a direct impact on Type B cells of the SVZ.  

Specifically, type B cells express the PDGF receptor and respond with increased 

proliferation upon ligand binding and result in a differentiation pool composed 

mostly of oligodendrocytes (Hart et al., 1989).  This is interesting because, as 

mentioned previously, the Type B neural stem cells give rise to Type C or Type D 

cells and the result is usually the generation of new neurons.  Thus, growth 

factors seem to play a regulatory role in neural stem cell differentiation in a 

manner that is cell-type specific, as well as growth factor specific whereby certain 

stimuli may promote glial or neuronal differentiation or neither. Finally, growth 

factors may regulate the balance of new neurons generated by promoting the 

differentiation of glial cells, by promoting self-renewal or by stopping the 

differentiation of neuroblasts. 

 

The multi-faceted ability of growth factors is particularly applicable given that HR 

animals responded with an increase in non-differentiated cells.  In HRs, FGF-2 

provided the stem cell niche with an excess of FGF-2, which ultimately led to an 

arrest in the differentiation of new neurons without affecting the survival of new 
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cells.  That is, FGF-2 perhaps may have provided the ingredients necessary for 

new cell survival.  FGF-2 may also have activated Type B cells or other 

molecules within the niche to respond in manner that was not conducive to the 

generation of new neurons similar to the above-mentioned example with EGF in 

the SVZ.   

 

Another remaining question is how LR animals may have benefited from an 

increase in new GFAP-expressing cells and a decrease in the number of 

undifferentiated cells. Perhaps FGF-2 activated a quiescent stem cell niche in 

LRs that resulted from low levels of FGF-2.  The prolonged low levels of FGF-2 in 

the subgranular zone may have inhibited the self-renewal or proliferation of Type 

B cells, which in turn, may have prevented the generation of new cells.  It is 

plausible that, upon treatment with FGF-2, the niche may have responded in a 

such that new GFAP Type B cells were recruited in order to promote the 

generation of new neurons (Song et al., 2002).   

 

An alternative scenario could also help explain how the deficit in GFAP-

expressing BrdU labeled cells was rescued upon FGF-2 treatment in LRs.  

During the aging process, the overall levels of FGF-2 in the dentate gyrus 

decrease dramatically.  Furthermore, a decrease in the rate of cell survival in the 

dentate gyrus has also been reported (Shetty et al., 2005).  Moreover, aging rats 

suffer from delayed neuronal differentiation of newly generated cells in the 

dentate gyrus (Rao et al., 2005).  This delayed differentiation of neurogenesis 
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has been attributed to the decrease in the levels of FGF-2 in the dentate gyrus.  

Interestingly, the deficits in the levels of FGF-2 in the dentate gyrus have been 

explained by a decrease in the number of FGF-2 synthesizing astrocytes (Shetty 

et al., 2005).  Thus, it is plausible that a similar phenomenon may be occurring in 

the dentate gyrus of LRs, where we have observed low levels of FGF-2.  The 

decrease in FGF-2 observed in LRs could be negatively impacting the 

differentiation of newly generated cells by slowing the progress of differentiation 

thus leading to a higher number of undifferentiated cells under basal conditions.  

Consequently, treatment with FGF-2 may have restored the deficits in cell 

survival and the progress of differentiation leading to more neurons and 

astrocytes. 

 

This reestablishment of an active stem cell niche coupled with the recruitment of 

Type B cells via treatment with FGF-2 could help explain the increase in new cell 

genesis in LR animals.  I hypothesize that such restoration could lead to an 

increase in neurons and astrocytes within the hippocampal dentate gyrus. This 

increase in new hippocampal cells could potentially contribute to a decrease in 

anxiety-like behavior in LR animals. 

 

These ideas present an interesting question of whether FGF-2 itself is prompting 

neurogenesis or whether an increase in astrocyte cells synthesizing FGF-2 are 

doing so.  Our hypothesis is that it is a combination of both so that; FGF-2 

induces astrocytes, and in turn astrocytes synthesize FGF-2 in a self-amplifying 
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the process.  The chronic treatment with FGF-2 provided an increase in the 

survival of FGF-2 synthesizing astrocytes, which in turn provide the support for 

Type B cells to divide and promote the survival of new neurons.  Thus the effects 

of chronic FGF-2 are two-fold one direct and one indirect.  The direct impact of 

chronic FGF-2 is to promote the survival of astrocytes cells synthesizing FGF-2.  

Upon increase availability of such astrocytes newly dividing cells are recruited 

and promoted to differentiate into neurons by the FGF-2 that has been 

synthesized from the newly survived astrocytes.  Such mechanisms provides a 

self amplifying process of the effects of FGF-2 on new cell survival and 

differentiation. 

 

Final Conclusions 

 

FGF-2 expression was previously shown to be decreased in the brain of severely 

depressed individuals (Evans et al., 2004, Gaughran et al., 2006). However, it 

remained unclear whether this was a consequence of the illness or whether FGF-

2 plays a primary role in the control of mood and emotions. I, therefore, 

undertook a series of studies using animal models to ask whether members of 

the FGF family can indeed modulate   emotionality, and whether they may 

constitute predisposing factors for individual differences in emotional reactivity.  

In this dissertation I focused on the role of the FGF-2 in anxiety-like behavior, 

given that there is significant co-morbidity between anxiety and major depression 

and that there is mounting evidence that the two disorders may be closely 
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associated due to a common etiology or risk factors (Gorwood, 2004).  In order to 

test the role of FGF-2 in anxiety, I relied on two animal models; one which relied 

on genetic selection strategy in Sprague-Dawley rats to enhance basal 

differences in anxiety-like behavior (Stead et al., 2006) and another which made 

environmental conditions more complex.   These models enabled us to test both 

the possible genetic role of FGF-2 and its implication as a result of environmental 

modulation.  Furthermore, we administered FGF-2 in order to directly test its role 

in modulating anxiety-like behavior and its impact on hippocampal cell genesis. 

 

The discussion above recapitulates the findings supporting the novel role of 

hippocampal FGF-2 in mediating anxiety-like behavior and hippocampal cell 

genesis.  We have found that endogenous FGF-2 reduced vulnerability to 

anxiety-like behavior by genetic propensity, as seen in HRs, and by impact of 

experience, as seen in LRs following EC. In summation, EC selectively increased 

FGF-2 and reduced anxiety-like behavior in LRs. More importantly, we saw that 

treatment with FGF-2 differentially reduced anxiety in LRs.  Furthermore, the 

functional role of hippocampal FGF-2 in experience-dependent anxiety-like 

behavior was supported by the fact that an FGF receptor antagonist blocked the 

anxiolytic effect of EC. Taken together, our results present FGF-2 as a novel 

mediator of individual differences and experience-dependent anxiety-like 

behavior.   
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Moreover, we expanded on the role of hippocampal FGF-2 on mediating anxiety-

like behavior by showing the selective impact of FGF-2 on hippocampal cell 

genesis in LR animals.  First, we showed that exposure to EC resulted in higher 

rates of cell proliferation and cell survival in the hippocampus.  Moreover, FGF-2 

facilitated a selective enhancement in cell survival in LR animals.  Thus, chronic 

treatment with FGF-2 for a period of three weeks increased cell survival in the 

hippocampus of LRs.  These results followed a similar pattern seen in response 

to three weeks of EC where we observed increased FGF-2 expression in LRs.  

The increase in new cell survival following FGF-2 resulted in a preferential 

increase in newly generated astrocytes in the hippocampus.   Therefore, FGF-2 

may reduce anxiety-like behavior by increasing the production of new astrocytes 

in the hippocampus.   

 

In support of this dissertation, recent results from our group support the 

importance of the FGF system in depression research, as FGF-2 has been 

demonstrated to act as an antidepressant in the Porsolt Swim Test (Turner et al., 

2008b).  Furthermore, antidepressant drugs have been shown to increase FGF-2 

expression (Mallei et al., 2002) and to enhance neurogenesis (Malberg et al., 

2000). Our body of work is consistent with the current hypothesis that a 

deficiency in growth factors represents a vulnerability factor for mood disorders 

(Duman and Monteggia, 2006) and that the induction of growth factors is critical 

to the effectiveness of antidepressant drugs (Warner-Schmidt and Duman, 

2007).  
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Surprisingly, this dissertation also suggests that EC may mimic the effects of 

FGF-2 and that its behavioral effects may resemble that of antidepressants. EC 

functioned to rescue LRs low expression of hippocampal FGF-2, and the result 

was an increase in hippocampal cell genesis and a subsequent reduction in 

vulnerability to anxiety. These results also support the hypothesis that low 

expression of FGF-2, as a result of genetic propensity and/or environmental 

influence, may contribute to the vulnerability of a depression-like phenotype, as 

increased anxiety is often observed in major depressive disorder (MDD).   

 

In summary, decreased levels of FGF-2 may be involved in the pathophysiology 

of mood disorders, and antidepressants or EC may exert their effects on 

hippocampal cell genesis by increasing FGF-2.   More importantly, our findings 

suggest that FGF-2 is not only a mediator of mood disorder pathology but may 

also influence the vulnerability to anxiety-like behavior in the context of genetic 

propensity or environmental influence.  
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Future Directions 
 

In my discussion above I suggest that hippocampal FGF-2 reduces vulnerability 

to anxiety via an enhancement of cell genesis in the hippocampus.  While I 

provide evidence to support such a hypothesis it is apparent that most if these 

data is correlational and a direct role of hippocampal cell genesis on behavior is 

not directly provided.  As a result future studies should be aimed at exploring the 

direct role of hippocampal cell genesis on anxiety behavior.  To this end potential 

studies should tackle directly the blockade of ongoing hippocampal cell genesis.  

By blocking ongoing hippocampal cell genesis either with viral vectors at aimed 

killing dividing cells or chemical agents we could then test the effects of such 

treatment on anxiety behavior.  Such studies could potentially show whether 

neurogenesis is required for decrease anxiety-like behavior.  

     

Based on the evidence presented above and our conclusions, future translational 

studies should also be aimed at testing the potential therapeutic value of models 

reminiscent of EC on individual differences in anxiety.  One interesting study 

could potentially identify individual differences in anxiety behavior using 

behavioral measures such as those used during clinical trials.  One example 

would be to characterize individual differences in anxiety with questionnaires or 

similar measures.  Once individuals with high anxiety are differentiated from 

those with low anxiety, a potential next step could be to the test the impact of 

models similar to EC on their anxiety behavior.  More importantly if such studies 
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do show some promise it would be interesting to follow them with genetic testing 

to identify potential genetic markers predictive of such treatment response. 

These would include the potential identification of single nucleotide 

polymorphims (snps) on the FGF-2 gene to see if they predict differences in high 

versus low anxiety or treatment response.  One other translational study could 

also test the impact of FGF-2 on anxiety behavior in high anxiety human 

individuals.   

 

In conclusion future studies should be aimed at testing the potential therapeutic 

value of EC models in human anxiety patients.  These studies could potentially 

provide a novel treatment strategy for treatment resistant populations suffering 

form anxiety disorders.  
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Appendix 5-1: Schematic model: FGF-2 reduces anxiety-like behavior   

 

 

Schematic model of my hypothesis: Hippocampal FGF-2 reduces anxiety behavior by 
promoting glialgenesis and neurogenesis in the hippocampus. Low levels of hippocampal 
FGF-2 brought by genetic endowment contribute to a vulnerable phenotype as seen in LRs. 
Increasing hippocampal levels of FGF-2 by exogenous treatment or environmental complexity 
increases the survival of adult born cells which in turn lead to an increase in the generation of 
new astrocytes and new neurons.  This net increase in astrocytes and neurons provide an overall 
support to the hippocampal circuitry helping reduce anxiety.  
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Appendix 5-2: Representative images of TypeB GFAP expressing cells 

 

 

Arrowhead marks a GFAP expressing cell (blue) wrapping around BrdU/NeuN (red/green 
respectively) positive cell, resembling Type B cells.  Arrow marks a GFAP expressing cell (blue) 
resembling horizontal astrocyte cells 
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Appendix 5-3: Representative model of the hippocampal stem cell niche. 

 

 
 
Cell types found in the subgranular zone of the dentate gyrus as part of the stem cell niche. 
GFAP expressing cells (blue) wrapping around granule cell layer, resembling Type B cells.   
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