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PREFACE 

This dissertation contains six chapters regarding the biochemical studies of the chain 

initiation, HMG β-branching, halogenation, cyclopropanation and decarboxylative chain 

termination in the curacin A pathway (see next page for the structure of this dissertation). 

Chapter 1 is an introduction to the whole project, and some sections are partially adapted 

from our NIH proposal and an ecology manuscript submitted to Applied and 

Environmental Microbiology. Chapter 2 is mainly adapted from our paper published in 

Science regarding the chain initiation steps (Science 2007, 318, 970-974). Chapter 3 is 

adapted from our two papers focused on the polyketide β-branching modification (Journal 

of the American Chemical Society, 2006, 128, 9014-9015; Journal of Biological 

Chemistry, 2007, 282, 35954-35963). Chapter 4 is adapted from our manuscript submitted 

to Nature, which is currently in revision. It tells a story about the cyclopropane formation 

and the vinyl chloride formation in the curacin and jamaicamide pathways, respectively. 

Chapter 5 describes a part of the work on the unusual chain termination, and this work is 

in preparation for publication. In chapter 6, I summarize some points we plan to discuss in 

a review article. Due to the limitation of space, results from some other projects I 

embarked on are not presented here. 



 

vi 

 



 

vii 

 

 

TABLE OF CONTENTS 

DEDICATION ...........................................................................................................  ii 

ACKNOWLEDGEMENTS ......................................................................................  iii 

PREFACE ..................................................................................................................  v 

LIST OF FIGURES ...................................................................................................  ix 

LIST OF TABLES .....................................................................................................  xiii 

CHAPTER 

1.  INTRODUCTION ............................................................................................  1 
 1.1.  BACKGROUND..................................................................................................... 1 
  1.1.1.  Natural Products from Marine Cyanobacteria ........................................ 1 
  1.1.2.  Chemical Diversity of Lyngbya Natural Products................................... 2 
  1.1.3.  Cyanobacterial PKS and NRPS Gene Clusters ....................................... 3 
 1.2.  PRIOR WORK ........................................................................................................ 5 
 1.3.  SPECIFIC AIMS ..................................................................................................... 7 
 1.4.  REFERENCES ........................................................................................................ 8 
 
2.  GNAT-LIKE STRATEGY FOR POLYKETIDE CHAIN INITIATION ..  10 
 2.1.  SUMMARY............................................................................................................. 10 
 2.2.  INTRODUCTION ................................................................................................... 10 
 2.3.  RESULTS ................................................................................................................ 12 
  2.3.1.  Biochemical Assays of AR-GNATL-ACPL Tridomain............................ 12 
  2.3.2.  GNATL Structure and Site-Directed Mutagenesis................................... 16 
 2.4.  DISCUSSION.......................................................................................................... 19 
 2.5.  MATERIAL AND METHODS................................................................................ 20 
 2.6.  SUPPLEMENTARY FIGURES AND TABLES ..................................................... 30 
 2.7.  REFERENCES ........................................................................................................ 43 
 
3.  POLYKETIDE HMG β-BRANCHING .........................................................  45 
 3.1.  SUMMARY............................................................................................................. 45 
 3.2.  INTRODUCTION ................................................................................................... 46 
 3.3.  RESULTS AND DISCUSSION .............................................................................. 48 
  3.3.1.  Functional Identification of ECH1 and ECH2 Enzyme Pair .................... 48 
  3.3.2.  Structural Insights into ECH2 Decarboxylase ......................................... 52 



 

viii 

 3.4.  MATERIAL AND METHODS................................................................................ 61 
 3.5.  SUPPLEMENTARY FIGURES AND TABLES ..................................................... 69 
 3.6.  REFERENCES ........................................................................................................ 76 
 
4.  HALOGENATION, CYCLOPROPANATION AND POLYKETIDE 
DIVERSIFICATION ..............................................................................................  78 
 4.1.  SUMMARY............................................................................................................. 78 
 4.2.  INTRODUCTION ................................................................................................... 79 
 4.3.  RESULTS ................................................................................................................ 80 
  4.3.1.  Two Highly Similar Enzyme Assemblies................................................ 80 
  4.3.2.  AT Replacement-Mediated PKS Hybridization ...................................... 83 
  4.3.3.  HMG β-Branching with ER Saturation................................................... 84 
  4.3.4.  Halogenation and Cyclopropane Ring Formation................................... 86 
  4.3.5.  Regiochemical Control by ECH2s........................................................... 88 
  4.3.6.  Functional Differentiation of ERs........................................................... 91 
  4.3.7.  Loss of Regiochemical Control by Mutation .......................................... 92 
 4.4.  DISCUSSION.......................................................................................................... 94 
 4.5.  MATERIAL AND METHODS................................................................................ 97 
 4.6.  SUPPLEMENTARY FIGURES AND TABLES ..................................................... 113 
 4.7.  REFERENCES ........................................................................................................ 128 
 
5.  DECARBOXYLATIVE CHAIN TERMINATION ......................................  131 
 5.1.  SUMMARY............................................................................................................. 131 
 5.2.  INTRODUCTION ................................................................................................... 131 
 5.3.  RESULTS ................................................................................................................ 134 
  5.3.1.  Resequencing CurM TE Domain ............................................................ 134 
  5.3.2.  CurM AT Assays ..................................................................................... 135 
  5.3.3.  CurM TE Assays ..................................................................................... 136 
 5.4.  FUTURE DIRECTIONS......................................................................................... 137 
 5.5.  MATERIAL AND METHODS................................................................................ 137 
 5.6.  REFERENCES ........................................................................................................ 141 
 
6.  SUMMARY.......................................................................................................  143 
 6.1.  NATURAL PRODUCT ASSEMBLY LINES IN EVOLUTION ............................ 143 
 6.2.  DIFFERENT TYPES OF METABOLIC PATHWAY EVOLUTION...................... 144 
  6.2.1.  Insertion of Gene Assembly by Homologous Recombination ................ 144 
  6.2.2.  Recruitment of New Enzymes to Change Biochemical Schemes ........... 145 
  6.2.3.  Development of New Functions from Old Enzyme Scaffolds................ 145 
  6.2.4.  Diversification of Regiochemical Control for Pathway Ramification .... 146 
  6.2.5.  Synergized Co-Evolution in Multienzyme System ............................... 146 
 6.3.  REFERENCES ........................................................................................................ 146 



 

ix 

 

 

LIST OF FIGURES 

FIGURE                                                                      Page 

 1-1 Lyngbya majuscula. .................................................................................................... 2 
 
 1-2 Cyanobacterial metabolites with their biosynthetic pathways identified by Sherman and 

Gerwick labs ................................................................................................................ 4 
 
 1-3 Curacin A biosynthetic pathway ................................................................................. 6 
 
 2-1 Initiation models containing GNATL and compounds produced by the PKS pathways. 

 .................................................................................................................................... 12 
 
 2-2 Biochemical assays of curA initiation module............................................................ 13 
 
 2-3 Structure of GNATL domain. ...................................................................................... 17 
 
 2-4 Proposed mechanism of the CurA AR-GNATL-ACPL chain initiation module. ......... 19 
 
 2-S1 Protein expression, purification and size-exclusion analysis. ..................................... 30 
 
 2-S2 Acyl transfer in cis for (holo) AR-GNATL-ACPL (WT and H389N) and GNATL-ACPL. 

 .................................................................................................................................... 31 
 
 2-S3 Partial FTMS spectra showing the mass changes of serine477-containing peptide from the 

trypsin digested (apo or holo) AR-GNATL-ACPL and malonyl-CoA loaded (holo) 
AR-GNATL-ACPL. ..................................................................................................... 32 

 
 2-S4 (A) Comparison of the in trans loading activities of AR-GNATL and GNATL for acetyl and 

malonyl-CoAs. (B) GNATL catalyzed decarboxylation of malonyl-ACPL. (C) IRMPD 
spectra showing the PPant ejection products for malonyl-ACPL and acetyl-ACPL.... 33 

 
 2-S5 HPLC analysis of GNATL catalyzed decarboxylation. ........................................... 34 
 
 2-S6 Comparison of the in trans loading activities of the wild type and H389N mutant of 

AR-GNATL-ACPL. ..................................................................................................... 35 



 

x 

 
 2-S7 Partition analysis of the acetyl transfer kcat of AR-GNATL-ACPL (holo) by using Cleland’s 

method. ....................................................................................................................... 36 
 
 2-S8 OMIT map density surrounding the CoA binding tunnel. .......................................... 37 
 
 2-S9 Multiple sequence alignment of GNATL domains from different pathways............... 38 
 
 3-1 HMG enzyme cassettes............................................................................................... 47 
 
 3-2 HMG enzyme cassettes. ECH1 and ECH2 assays for the substrates in CoA and ACP forms.
  .................................................................................................................................... 50 
 
 3-3 CurF ECH2 structure................................................................................................... 53 
 
 3-4 Active site of CurF ECH2. .......................................................................................... 54 
 
 3-5 ECH1/ECH2 coupled enzymatic assays for ECH2 wild type and mutants. ................. 56 
 
 3-6 Comparison of ACP and CoA substrate preference of ECH1 and ECH2..................... 57 
 
 3-7 Proposed CurF ECH2 mechanism............................................................................... 58 
 
 3-S1 Partial sequence alignments of ECH1 and ECH2 from different microorganisms. ..... 69 
 
 3-S2 Mass spectra and UV spectra of CoA compounds. ..................................................... 70 
 
 3-S3 ECH1 substrate specificity and ECH2 regiochemical control. .................................... 71 
 
 3-S4 Analytical size-exclusion chromatography of the CurF ECH2. .................................. 72 
 
 3-S5 Superposition of CurF ECH2 with other crotonase family members. ......................... 73 
 
 4-1 Comparison of enzyme assemblies in the Cur and Jam pathways.............................. 81 
 
 4-2 Halogenation and cyclopropanation in the Cur pathway. ........................................... 85 
 
 4-3 Comparison of ECH2s and ERs in Cur and Jam pathways. ........................................ 89 
 
 4-4 Loss of Cur ECH2-mediated regiochemical control by site-directed mutagenesis. .... 93 
 



 

xi 

 4-5 Impact of enzyme assembly evolution on β-branching chemical diversity. ............... 96 
 
 4-S1 Alignment of AT domains of the sequenced pathways from L. majuscula, including  
  curacin, jamaicamide, barbamide and putative carmabin pathways. .......................... 113 

 
 4-S2 Phylogenetic trees for AT, KS and DH domain sequences of curacin, jamaicamide, 

barbamide and putative carmabin pathways from L. majuscula. ................................ 114 
 
 4-S3 Coomassie blue-stained SDS-PAGE of purified Cur and Jam enzymes..................... 115 
 
 4-S4 HPLC analysis of HMG substrate loading onto (apo) ACP3, (apo) ACPII.................. 116 
 
 4-S5 HMG substrate chirality preference of Cur Hal and ECH1; and O2/α-KG dependence of the 

Cur Hal. ...................................................................................................................... 117 
 
 4-S6 Feeding experiment to demonstrate that Hal chlorination precedes ECH2 decarboxylation. 

.................................................................................................................................... 118 
 
 4-S7 HPLC analysis of ECH1/ECH2 coupled dehydration and decarboxylation to compare the 

rates for the chlorinated and non-chlorinated substrate. .......................................  119 
 
 4-S8 FTICR mass spectra and IRMPD spectra for Jam enzyme reactions. ........................ 120 
 
 4-S9 The UV absorption difference for Cur and Jam ECH2 decarboxylation products. ..... 121 
 
 4-S10 Natural products with different β-branching-associated C=C positions via ECH2 

regiochemical control. ................................................................................................ 122 
 
 4-S11 IRMPD-based quantification to measure the yields of Cur ER cyclopropanation, Jam ER 

saturation, and the ratio of α,β and β,γ C=C products of ECH2s................................ 123 
 
 4-S12 Comparison of Cur and Jam ER saturation by using 3-ACPII substrate. .................... 124 
 
 4-S13 Synthesis of butylamide derivatives as GC-MS authentic standards.......................... 125 
 
 5-1 The terminal olefin formation via decarboxylative elimination mechanisms............. 133 
 
 5-2 The updated curacin A downstream pathway from L. majuscular genome sequencing project.

.................................................................................................................................... 135 
 
 5-3 Ni-NTA purifications of CurM ACP, TE and ST. ....................................................... 136 



 

xii 

 
 5-4 HPLC analysis for the ST and TE assays. .................................................................. 136 
 
 5-5 Imidazole-containing model substrates and the authentic standard for the HPLC analysis of 

terminal olefin products. ............................................................................................. 137 
 
 



 

xiii 

 

 

LIST OF TABLES 

TABLE                                                                       Page 

 2-S1 Kinetic parameters for decarboxylation and acyl transfer........................................... 39 
 
 2-S2 Data collection and Refinement Statistics. ................................................................. 40 
 
 2-S3 Primers for the expression constructs and site mutagenesis. ...................................... 41 
 
 2-S4 MS analysis for decarboxylation and acetyl transfer. ................................................. 42 
 
 3-S1 Data collections. ......................................................................................................... 74 
 
 3-S2 Refinement Statistics. ................................................................................................. 74 
 
 3-S3 Mass calibration results for HMG-ACP (CurB), HMG-ACPII and their associated peaks
  .................................................................................................................................... 75 
 
 4-S1 Primers for the expression constructs. ........................................................................ 126 
 
 4-S2 ESI-FTICR-MS analysis............................................................................................. 127 
 
 5-1 Primers for expression constructs. .............................................................................. 138 
 
 
 



 1

 
 
 
 
 

CHAPTER 1 
INTRODUCTION 

1.1  BACKGROUND 

1.1.1  Natural Products from Marine Cyanobacteria 

Natural products have been playing a crucial role in the development of all classes of 

new pharmaceuticals, especially in the area of oncology. For example, of all cancer drugs 

available during the period 1940-2002, 40% are natural products or natural product derived, 

10% are biologics or vaccines, 20% are synthetics that mimic natural product 

pharmacophores, and just 30% are of unique synthetic origin (1). Representatives for the 

National Cancer Institute’s Developmental Therapeutics Program “strongly advocate 

expanding, not decreasing, the exploration of nature as a source of novel active agents that 

may serve as the leads and scaffolds for elaboration into desperately needed efficacious 

drugs for a multitude of disease indications.” 

Marine cyanobacteria are extraordinarily rich in their production of 

biologically-active and structurally-unique natural products, directly reflecting the 

amazing biosynthetic capacities of these organisms (2, 3). A number of these secondary 

metabolites represent lead compounds in drug discovery programs aimed at providing 

new therapies to treat cancer, bacterial infections, inflammatory responses and in crop 

protection to kill harmful microbial pathogens and insects. The major theme in 

cyanobacterial chemistry is the production of polypeptides modified with various lipid 

components to make diverse lipopeptides. Unusual functional groups are introduced into 

these lipopeptide scaffolds by action of numerous tailoring reactions, including those that 

form heterocyclic rings, oxidations at unusual positions, and halogenation reactions utilizing 

both bromine and chlorine, and occasionally, iodine. 
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The natural products isolated from both aquatic and marine cyanobacteria have been 

one of the richest sources of new clinical candidates and lead compounds for the treatment 

of cancer, and several of these exert their activity through modulation of microfilament 

polymerization processes. For example, a Curaçao collection of Lyngbya majuscula yielded 

a highly potent antitubulin agent, curacin A, which binds at the colchicine binding site on 

tubulin (4, 5). Curacin A has shown significant in vivo antitumor effects in human 

xenografts. However, significant problems with the instability and poor water solubility of 

curacin A have hindered its development as an anticancer lead compound (6). Wipf and his 

colleagues have been applying combinatorial synthesis methods to produce more stable and 

efficacious curacin A analogs (6). 

1.1.2  Chemical Diversity of Lyngbya Natural Products 

The genus Lyngbya consists of filamentous cyanobacteria that cause periodic, but in 

some cases long lasting, blooms in shallow tropical and sub-tropical marine and estuarine 

environments (7, 8). Lyngbya species are prolific producers of secondary metabolites, 

primarily lipopeptides, cyclic peptides, and depsipeptides. Currently, the largest number of 

marine cyanobacterial metabolites comes from diverse strains of a single species, L. 

majuscula (Figure 1-1), obtained at tropical locations worldwide that produce collectively 

over 200 different compounds. Dissection 

of the biosynthetic subunits (e.g. amino 

acids, sugars, fatty acids) that comprise 

these metabolites indicates a range of 1 to 5 

units per molecule, with about 25% of the 

precursors of these compounds derived 

from polyketides or fatty acids, another 

25% from amino acids, and 25% from 

methyl groups likely deriving from 

S-adenosylmethionine (SAM). The 

remaining 25% of the biosynthetic subunits derive from terpenes and sugars, or are of 

uncertain origin. The amino acids are predominately aliphatic (70%), of L stereochemistry, 

N-methylated, and very rarely involve charged side chain residues. For example, many 

Figure 1-1. Lyngbya majuscula. 
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marine cyanobacterial metabolites contain the unique “signature” amino acid, N, 

O-dimethyltyrosine. It can thus be concluded that the roughly 200 metabolites currently 

known from L. majuscula strains form an extraordinarily diverse set of natural product 

structures (3). As such, L. majuscula provides us an intriguing model system for genetic and 

biochemical studies towards understanding the evolution of the biosynthetic genes as well as 

metabolic diversification of natural products. 

Many Lyngbya-derived bioactive secondary metabolites confer competitive 

advantage to the cyanobacteria by deterring grazers, allowing the cyanobacteria to 

overgrow other organisms in benthic habitats (9). In addition to rendering Lyngbya spp. 

unpalatable, bioactive peptides in L. spp. may have additional impacts, such as 

allelopathy against sympatric benthic organisms (9, 10). Also several bioactive 

compounds isolated from L. spp. have been well studied for their pharmaceutical and 

biotechnological applications, but very little is known about their ecological impacts on 

marine environments. Lyngbyatoxin A, an indole alkaloid first isolated from a Hawaiian 

strain of L. majuscula (11), is one of a few compounds subjected to extensive 

investigation for their ecological roles. It was proved to be a protein kinase C activator 

that causes contact dermatitis in humans and acts as a tumor promoter in mice (12, 13). In 

the marine habitat, it acts as a feeding deterrent to generalist grazers, but it stimulates 

feeding in the specialist grazer Stylocheilus striatus (14). Lyngbyatoxin A may have 

detrimental health impacts for generalist marine grazers that come into contact with the 

Lyngbya (15), and as a tumor promoter, it may be involved in fibropapillomatosis, a 

disease of marine turtles that causes internal and external tumorous masses (16). Thus, a 

better understanding of chemical diversity of Lyngbya has many implications for both 

ecosystem and human health. 

1.1.3  Cyanobacterial PKS and NRPS Gene Clusters 

Marine cyanobacteria frequently combine polyketide synthase (PKS) and 

non-ribosomal peptide synthetase (NRPS) pathways to create an amazingly diverse set of 

natural product structures, generally characterized as “lipopeptides”(2, 3, 17). The 

biosynthetic gene clusters recently isolated from marine cyanobacteria by the Sherman and 
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Gerwick labs confirm the highly integrated use of PKS and NRPS pathways, and provide 

information about the unique biosynthetic machinery used by these microbes to introduce 

branching methyl groups, modified amino acids, and halogen atoms to produce diverse 

functionalities. To date, the Sherman and Gerwick labs have been involved in the complete 

cloning, sequencing and biochemical characterization of seven cyanobacterial pathways; 

barbamide (bar) (18) curacin A (cur) (19) cryptophycin (crp) (20), carmabin (car) (Jia et al., 

unpublished), lyngbyatoxin (ltx) (21) jamaicamide (jam) (22), and hectochlorin (hec) (23) 

(Figure 1-2). 

With each new pathway, additional insights were developed into the unique nature of 

the secondary metabolite pathways of these organisms. They contain a wealth of novel gene 

sequences, gene cluster architectures and chain termination motifs. For example, in the 

curacin A and jamaicamide pathways (19, 22), a novel gene cassette was identified to be 

responsible for introduction of a branching carbon to a β-carbonyl compound (e.g. a diketide 

or a ketide-extended amino acid). According to protein database analysis, this eight open 

reading frame (ORF) cassette spanning ~10 kb of DNA is most closely related to an 

HMG-CoA synthase, enoyl-CoA hydratase along with several PKS-associated proteins, 

including tandem ACPs, and an unusual ketoacyl synthase (24, 25). Thus, consistent with 
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Figure 1-2. Cyanobacterial metabolites with their biosynthetic pathways identified by the 

Sherman and Gerwick labs. 
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the feeding experiments, this novel gene arrangement condenses C-2 of an acetate unit with 

the β-carbonyl of a nascent polyketide, and by steps that remain largely undefined at present, 

catalyze the decarboxylation of C-1 resulting in the formation of a cyclopropyl ring in the 

case of curacin A,(19) and a vinyl chloride in the case of jamaicamide (22). Accordingly, 

literature review of known marine natural products provides evidence for the role of this 

gene cassette in the construction of over 50 cyanobacterial metabolites, introducing a wide 

range of functionalities in a pendant carbon atom (cyclopropyl, carbinol, secondary methyl, 

hydroxy methyl, vinyl methyl, terminal vinyl, and terminal vinyl chloride). 

1.2  PRIOR WORK 

Curacin A is a unique polyketide/non-ribosomal peptide natural product discovered 

in 1994 (26). This marine cyanobacterial natural product has attractive features as an 

anticancer lead candidate and was shown (27) to have potent anti-proliferative and 

cytotoxic activity against colon, renal, and breast-cancer derived cell lines. Curacin A has 

been studied extensively for its ability to inhibit tubulin polymerization through 

interaction at the colchicine binding site, and thereby exert its antiproliferative effects on 

cells (4). Simultaneously, there has been considerable interest to produce curacin A by 

total synthesis (28), and to produce synthetic as well as semi-synthetic analogs to explore 

structure-activity relationships (27). Most recently, an elegant combinatorial synthesis 

approach has been applied that has resulted in a chemically-stabilized curacin A 

derivative with improved water solubility characteristics, yet it retains the remarkable 

biological effect of curacin A on microtubules (6). 

Analysis of the precise biosynthetic origin of curacin A has been of great interest, 

and has provided key information to enable a complete genetic analysis of the curacin 

metabolic system (19). Precursor labeling studies using cultured Lyngbya majuscula 

demonstrated that the biosynthetic units for curacin A are acetate and cysteine (29). 

Notable structural features include a cyclopropane ring, thiazoline unit, cis-double bond 

and a terminal alkene residue. Each functional group is introduced by an intriguing set of 

biochemical steps, a subset of which we plan to study and then develop for 

chemoenzymatic synthesis of new metabolites. 
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Recently, we identified and characterized a gene cluster (cur) whose architecture 

and domain organization correlates directly with that expected for curacin A (19). A 

compelling feature of the system is its co-linear set of catalytic domains including a 

loading domain, a series of 14 ORFs (spanning ~75 kb) whose deduced sequences are 

consistent with biochemical elaboration of a cyclopropane ring, a single mixed 

PKS/NRPS bimodular unit, and a series of seven PKS monomodules with a terminal 

thioesterase (TE) domain (Figure 1-3). The cur cluster is unique in that each of the PKS 

multifunctional proteins is monomodular, a feature found in the final two modules of the 

pikromycin PKS (30). We plan to focus on several unique features of the curacin 

pathway. First, we are interested in several early steps including the sequence motif 

(Figure 1-3, Cur A (Hal-ACPI-ACPII-ACPIII), CurB, C, D, E, CurF (ECH-ER)) that likely 

prescribes synthesis of the cyclopropane ring and includes a stand-alone ACP, a putative 

HMG-CoA synthase-like enzyme (CurD), a ketosynthase and two enoyl-CoA hydratases 

(CurE ECH1, CurF ECH2 domain). The ability to understand the mechanistic basis for 

C-2 insertion reactions that provide variant functional group placements in natural 

product systems will be an important component of our planned biochemical studies of 

the jamaicamide system as well due to its identical architecture and extremely high level 

of amino acid sequence identity throughout this motif. Secondly, we are interested in 

understanding the chain initiation process which is most likely mediated by a domain 

showing homology to GNAT superfamily. Finally, we will propose experiments that 

focus on determining the basis for terminal double bond formation and release of curacin 

A, specified by the terminal catalytic domains of CurM. 

1.3  SPECIFIC AIMS 

1. To investigate the unusual polyketide chain initiation in the curacin A 

pathway. By collaboration with the Smith group in Life Sciences Institute, we will try to 

understand the catalytic mechanisms of the corresponding enzymes. 

2. To investigate the cyclopropane formation in the curacin A pathway and the 

vinyl chloride formation in the jamaicamide pathway. We need to establish the 

biochemistry of polyketide β-branching, halogenation and cyclopropanation. By 
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collaboration with the Smith group in Life Sciences Institute, we will try to understand 

the catalytic mechanisms of the corresponding enzymes. 

3. To investigate the decarboxylative chain termination in the curacin A 

pathway. By collaboration with the Wipf group at the University of Pittsburgh, we will 

synthesize the substrates for the enzyme assays. By collaboration with the Smith group in 

Life Sciences Institute, we will try to understand the catalytic mechanisms of the 

corresponding enzymes. 
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CHAPTER 2 
GNAT-LIKE STRATEGY FOR POLYKETIDE CHAIN 

INITIATION 
2.1  SUMMARY 

In this chapter, a new biochemical strategy for chain initiation is described for the 

loading module of the curacin A polyketide synthase, an anti-cancer lead derived from 

the marine cyanobacterium Lyngbya majuscula. A central GNAT domain bears 

bifunctional decarboxylase/S-acetyltransferase activity, both unprecedented for the 

GNAT superfamily. A CurA loading tridomain consisting of adaptor-GNAT-acyl carrier 

protein was assessed biochemically, revealing that GNATL catalyzes decarboxylation of 

malonyl-CoA to acetyl-CoA, and direct S-acetyl transfer from acetyl-CoA to ACPL. 

Moreover, the N-terminal AR domain was shown to facilitate acetyl group transfer. 

Crystal structures of GNATL were solved at 1.95Å (ligand-free form) and 2.75Å 

(acyl-CoA complex), showing distinct substrate tunnels for acyl-CoA and holo-ACPL 

binding. Modeling and site directed mutagenesis experiments demonstrated that His389 

and Thr355 at the convergence of the CoA and ACP tunnels participate in malonyl-CoA 

decarboxylation, but not in acetyl transfer. Decarboxylation precedes acetyl transfer, 

leading to acetyl-ACPL as the key curacin A starter unit. 

2.2  INTRODUCTION 

Modular polyketide synthases (PKSs) are large biosynthetic machines that assemble 

structurally diverse secondary metabolites with a broad spectrum of biological activities. 

Multifunctional enzymes catalyze programmed metabolic pathways to assemble 

short-chain acyl-CoA building blocks into complex polyketide products by one step of 

chain initiation followed by multiple steps of chain elongation and processing. Polyketide 
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chain elongation steps are catalyzed by extension modules minimally comprised of three 

essential domains, ketosynthase (KS), acyltransferase (AT) and acyl carrier protein 

(ACP), plus auxiliary processing domains (e.g. ketoreductase, dehydratase, enoyl 

reductase). As in fatty acid synthases (FASs), PKSs catalyze chain extension by a 

decarboxylative condensation reaction. Polyketide chain initiation is catalyzed by a 

loading module that, in all characterized PKSs, consists of domains homologous with 

domains of the minimal extension module. A loading acyltransferase domain (ATL) uses 

an acyl-CoA substrate to load an adjacent ACP domain (ACPL). Typically, the ATL 

substrate is an α-carboxylated acyl-CoA, like the substrate for chain extension, and acyl 

transfer is followed by decarboxylation by a “KSQ” domain within the loading module (1, 

2). Alternatively, in the well studied erythromycin PKS, a trans-acting 

methylmalonyl-CoA decarboxylase acts on α-carboxylated acyl-CoA prior to acyl 

transfer by ATL (3, 4). 

Curacin A, a marine cyanobacterial metabolite from Lyngbya majuscula, is a mixed 

polyketide-non-ribosomal peptide natural product with potent anti-proliferative and 

cytotoxic activity against colon, renal, and breast-cancer derived cell lines (5). The recent 

identification and partial characterization of the biosynthetic pathway for curacin A (6) 

revealed an atypical loading module, in which only the ACP domain (ACPL) resembled 

typical PKS domains. Similar loading modules also occur in the biosynthetic pathways 

for pederin (7), its structural analogues onnamide/theopederin (8), myxovirescin A (9), 

and rhizoxin (10). In these natural product gene clusters, the chain initiation modules are 

structured as: N-terminal ~180 amino acid region of unknown function (referred to 

hereafter as adapter domain (AR), not present in OnnB for onnamide), a variable-length 

linker region, a domain showing homology to GCN5-related N-acyltransferase (GNAT) 

(hereafter referred to as GNATL), and an acyl carrier protein (ACPL) (Figure 2-1). The 

predicted function of all of these GNATL-containing modules was to load an acetyl group 

onto the PKS assembly line (6-10), but the mechanism of this process remained unclear. 

GNAT is a superfamily of N-acetyltransferase enzymes that catalyze acyl transfer to 

a primary amine and function in diverse pathways in prokaryotes and eukaryotes 

including antibiotic resistance, gene regulation, and hormone synthesis (11, 12). 
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Typically, prokaryotic and eukaryotic GNATs have separate binding sites for the acyl 

donor and acceptor substrates, and catalyze direct acyl transfer in the absence of a 

covalent intermediate on the enzyme (11). GNATs are mechanistically and structurally 

distinguished from the polyketide and fatty acid synthase acyltransferase domains that 

function as S-acyltransferases, employ a covalent enzyme intermediate, and belong to the 

α/β hydrolase superfamily (13-16). Thus, acyl transfer to an ACP thiol group represents 

an unprecedented reaction for GNAT enzymes. 

2.3  RESULTS 

2.3.1  Biochemical Assays of AR-GNATL-ACPL Tridomain 

To investigate the atypical PKS chain initiation process, we cloned and 

overexpressed fragments of curA encoding the N-terminal tridomain, AR-GNATL-ACPL. 

  
 
Figure 2-1. Initiation modules containing GNATL and compounds produced by the PKS 
pathways. All GNATL containing modules are predicted to catalyze the loading of an acetyl 
group. AR, adapter domain; GNATL, GNAT decarboxylase. Due to the high similarity of 
pederin, onnamides and theopederin, only onnamide A is shown as the prototype example. 



 13

Several expression constructs were made to include the three components in various 

combinations (Figure 2-2A and Figure 2-S1A, B). Constructs containing ACPL were 

generated in holo form by co-expression with a plasmid encoding phosphopantetheinyl 

transferase (Sfp) from B. subtilis (17); without this plasmid, E. coli produced ACPL in the 

apo form. All constructs lacking the AR domain were readily produced as soluble 

polypeptides, but those including AR (AR-GNATL and AR-GNATL-ACPL) had 

substantially decreased solubility, and the excised AR domain was not obtained in 

 
Figure 2-2. Biochemical assays of curA initiation module. (A) Expression constructs for curA 
initiation module. (B) Substrate loading of (apo and holo) GNATL-ACP, AR-GNATL-ACP and 
DEBS ATL-ACPL. Proteins (30 μM) were incubated with 90 μM CoA substrates, in 50 mM 
MOPS, pH 7.0, at room temperature. The SDS-PAGE gel images for Coomassie blue staining 
are shown above and autoradiography below. (C) FTICR mass spectrum (left) showing the ACP 
serine-containing peptide from the trypsin digested (holo) AR-GNATL-ACP loaded with 
malonyl-CoA, and partial IRMPD spectrum (right) showing the PPant ejection product with 
covalently-linked acetyl group. (D) Partial FTICR mass spectra showing (holo) ACPL-SH (left) 
and (holo) ACPL-NH2 (right) loaded with acetyl-CoA. The N-terminal His-tag of ACPL was 
removed. 10 μM (holo) ACPL-SH (or ~1.5 μM (holo) ACPL-NH2) and 2 μM AR-GNATL-ACPL 
were incubated with 50 μM acetyl-CoA at room temperature for 30 min. 
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soluble form under any conditions tested. Interestingly, solubility was significantly 

greater for the AR-GNATL-ACPL (holo) tridomain than for the apo counterpart (Figure 

2-S1A), suggesting that the phosphopantetheine (PPant) arm of ACPL (holo) stabilizes 

the AR domain. The 63.3-kDa AR-GNATL-ACPL polypeptide is monomeric (Figure 

2-S1C). 

To assess the initiation behavior of the CurA starter unit, the apo and holo forms of 

the CurA tridomain (AR-GNATL-ACPL) and didomain (GNATL-ACPL) were treated 

with radio-labeled acyl-CoAs and analyzed by SDS-PAGE (Figure 2-2B). The holo 

forms of both the tridomain and didomain incorporated radiolabel, whereas the apo forms 

were not labeled, indicating transthioesterification of the acyl group from CoA to the 

PPant arm of ACP. Thus the N-terminal domains of CurA catalyze acyl loading and 

additional proteins are not required. Lack of radiolabeling of the apo forms also indicates 

that loading does not proceed through a covalent enzyme intermediate, consistent with 

the direct-transfer mechanism established for other GNAT family members (3, 11). This 

is in contrast to the “canonical” PKS loading module, typified by DEBS ATL-ACPL (3), 

in which a covalent intermediate is observed for the apo form (Figure 2-2B). The ability 

of the GNATL-ACPL (holo) didomain to load an acyl group demonstrated that the 

catalytic machinery for chain initiation resides within the GNATL domain and not the AR 

domain, which is also supported by the fact that selected mutations within GNATL 

affected the loading behavior of AR-GNATL-ACPL both in cis (Figure 2-S2) and in trans 

(Figure 2-S6) (see below). However, the increased level of acyl-group loading activity by 

the AR-GNATL-ACPL (holo) tridomain (Figure 2-2B and Figure 2-S3) suggests that AR 

is required for efficient acyl transfer. Unexpectedly, both malonyl-CoA and acetyl-CoA 

functioned as substrates for the AR-GNATL-ACPL (holo) tridomain with similar 

efficiency (Figure 2-S2). 

To investigate further the CurA AR-GNATL-ACPL tridomain components, we 

analyzed the products covalently tethered to the PPant arm of ACPL. This was 

accomplished by interrogating mass changes on AR-GNATL-ACPL for in cis acyl 

transfer, or by employing the excised ACPL as the in trans acyl-group acceptor (Figure 

2-2C). Excised ACPL and trypsin-digested AR-GNATL-ACPL samples were examined by 
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Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) and infrared 

multiphoton dissociation (IRMPD) methods (18). First, the ACPL 

phosphopantetheinylation site was established as Ser477 by MS analysis of the 

trypsin-digested AR-GNATL-ACPL (Figure 2-S3), and by generating the corresponding 

S477A ACPL mutant protein. Remarkably, for both malonyl-CoA and acetyl-CoA 

substrates, only an acetyl group was detected on the PPant arm of AR-GNATL-ACPL 

(holo) (Figure 2-2C and Figure 2-S3) or ACPL (holo) (Figure 2-2D and Figure 2-S4A). 

Thus, the CurA GNATL loading module catalyzes both decarboxylation and acyl transfer 

of carboxyl-acyl-CoA substrates. These data reveal a gain-of-function for a GNAT-type 

polypeptide, as well as a divergence from all other characterized PKS loading modules, 

in which the acyl transfer and decarboxylation are catalyzed by separate domains (1, 4). 

Further analysis by HPLC and FTICR-MS demonstrated that all constructs containing 

GNATL (GNATL, GNATL-ACPL and AR-GNATL-ACPL) catalyzed decarboxylation of 

malonyl-CoA, methylmalonyl-CoA, and malonyl-ACPL to generate acetyl-CoA, 

propionyl-CoA (Figure 2-S5) and acetyl-ACPL (Figure 2-S4B).   

Next, kinetic parameters for decarboxylation were measured by HPLC for 

malonyl-CoA and methylmalonyl-CoA and by radio-assay for [1,3-14C]malonyl-ACPL 

(Table 2-S1). The steady-state analysis indicated that malonyl-CoA is the preferred 

substrate. The kcat for malonyl-CoA was ~1.8 s-1, which is ~6-fold and ~49-fold higher 

than those for methylmalonyl-CoA and malonyl-ACPL, respectively. Similarly, the 

catalytic efficiency, kcat/KM, for malonyl-CoA was ~5.25 mM-1s-1, which is ~3-fold and 

~6-fold higher than those of methylmalonyl-CoA and malonyl-ACPL, respectively. 

With clear evidence for a relatively rapid decarboxylation step catalyzed by GNATL, 

we sought to measure the rate of acyl loading by AR-GNATL-ACPL. The in cis acetyl 

transfer rate of AR-GNATL-ACPL (holo) was determined by using [1-14C]acetyl and 

[2-14C]malonyl-CoA substrates. The kcat and KM values were derived by measuring the 

intramolecular acyl transfer rate at a series of acyl-CoA concentrations (Table 2-S1). The 

kcat or KM values for acetyl transfer were similar for acetyl-CoA and malonyl-CoA 

substrates. In contrast, the kcat for acetyl-group transfer was ~780-fold slower than the kcat 

for decarboxylation of malonyl-CoA, suggesting that decarboxylation and acetyl transfer 
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are separated by a slow tri-domain conformational change that leads to effective binding 

of the ACPL PPant arm in the active site (k2 in Figure 2-S7). Taken together with the 

decarboxylation kinetic data, these results confirm that malonyl-CoA decarboxylation 

precedes acetyl transfer to ACPL (holo). In addition, the apparent KM of acetyl-CoA or 

malonyl-CoA for acyl transfer is 80-90 fold lower than the KM of malonyl-CoA for 

decarboxylation, and is dependent on the ratio of rate constants (k1-k6 in Figure 2-S7). 

Since previously described GNAT enzymes catalyze various N-acetylation reactions, 

we tested whether CurA GNATL retained a similar residual activity. We synthesized a 

CurA ACPL-phosphopantetheine analog bearing a terminal NH2 in place of native (holo) 

ACPL-SH (refer to SOM), and tested it for in trans acetyl transfer catalyzed by 

AR-GNATL-ACPL (apo) to excised CurA (holo) ACPL-NH2 (monitored by FTICR-MS). 

A convenient internal standard was supplied by low levels of ACPL-SH in the ACPL-NH2 

preparation (Figure 2-2D), likely due to the activity of endogenous E. coli ACP synthase 

or EntD (19). In contrast to the significant level of acetyl loading on ACPL-SH (Figure 

2-2D), only a trace amount of acetyl-NH-ACPL was detected. In addition, simple alkyl 

amines (e.g. ethylenediamine, butylamine) were tested as substrates for acetyl transfer by 

CurA GNATL, but no N-acetyl transferase activity was detected for any of them. Thus, 

the N-acetyltransfer activity typically associated with GNAT enzymes is almost 

completely attenuated in the Cur AR-GNATL-ACPL chain initiation module.  

2.3.2  GNATL Structure and Site-Directed Mutagenesis 

To advance our understanding of GNATL function and to identify active site 

residues, we determined crystal structures of the excised CurA apo GNATL (ligand free) 

domain and of the corresponding GNATL with added malonyl-CoA (Table 2-S2). 

GNATL (CurA residues 219-439) possesses the GNAT superfamily fold, consisting of a 

central mostly anti-parallel β-sheet flanked by α-helices (Figure 2-3A) (11, 12), and is 

most similar to serotonin N-acetyltransferase (RMSD = 1.9Å for 160 Cα atoms) (20). 

The crystal structures of CurA GNATL provide key insights into the function of this 

unique member of a large and ubiquitous protein family. Two tunnels from opposite faces 

of the protein converge at a position corresponding to the active sites of homologous 
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GNATs (Figure 2-3B). Presumably these tunnels are the binding sites for the 

phosphopantetheine (PPant) arms of the CoA and ACP substrates. To distinguish the two 

tunnels, crystals of GNATL were soaked with malonyl-CoA (Table 2-S2). New electron 

density was observed in only one tunnel, hereafter called the CoA binding tunnel (Figure 

2-S8). The location of the tunnel and the mode of CoA binding, in which the nucleotide 

lies in a surface cleft and the PPant arm extends into the tunnel, are consistent with 

structures of other members of the GNAT superfamily (11, 12). In CurA GNATL, 

 
 
Figure 2-3. Structure of GNATL domain. (A) Structural fold of GNATL domain. (B) 
Substrate tunnels with models (black carbons) of acetyl-CoA (wheat) and PPant arm of 
holo-ACP (orange). Residues Trp249, His389, Thr355, and Arg404 are shown in green carbons. 
(C) Stereo diagram of modeling results overlaid with observed structure showing interaction 
of His389 and Thr355 with thioester carbonyl of acetyl-CoA. Coloring is identical to (B). 
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selectivity for CoA over ACP is imparted by a 5'-diphosphate binding loop (residues 

327-332) and by Arg387 recognition of the 3'-phosphate. Neither of these recognition 

features exists in FeeM, a GNAT superfamily member that uses an acyl-ACP donor 

substrate (21). Compared to the strong density for the CoA nucleotide, density for the 

PPant arm was weaker and indicative of multiple conformations, perhaps due to presence 

of both the malonyl-CoA substrate and the acetyl-CoA decarboxylation product in the 

crystal. No new electron density was observed in the second tunnel, which we designate 

the ACP-binding tunnel. The side chain of conserved Arg404 forms one wall of the 

putative ACP-binding tunnel (Figure 2-3C and Figure 2-S9), and a series of water 

molecules extending to the protein exterior form the opposite wall. The designated 

ACP-binding tunnel overlays well with the acetyl group acceptor site in other GNATs, is 

well matched in length to the fully extended PPant arm of holo ACP (~15Å), and likely 

forms the ACPL PPant arm binding site (Figure 2-3B). The two tunnels meet at conserved 

Trp249, just as many other GNAT family members have their two binding sites separated 

by an aromatic residue (Figure 2-3B and Figure 2-S9). 

We searched for potential catalytic residues for decarboxylation and found His389 

and Thr355 at the junction of the two tunnels (Figure 2-S9 and Figure 2-3C). These 

residues are precisely positioned by hydrogen bonds of His389 to Tyr419, and of the Thr355 

backbone to the Arg404 side chain. All four of these residues are invariant among 

GNATL-containing PKS loading modules (Figure 2-S9). To test the role of His389 and 

Thr355, H389A, H389N and T355V variant proteins were assayed for decarboxylase and 

acetyltransferase activity (Table 2-S1). Decarboxylation was severely impaired by 

substitutions at either site. Specifically, the His389 and Thr355 variants resulted in at least 

100-fold reduction in kcat for decarboxylation of malonyl-CoA to acetyl-CoA and in 

relatively modest changes to KM values. In contrast, substitutions at His389 and Thr355 had 

only modest effects on acetyl transfer activity, demonstrating that these residues do not 

play a critical role in acetyl transfer. 

Based on mutagenesis results and on modeling the PPant arms of acetyl-CoA and 

ACPL (Figure 2-3C and Figure 2-S8), His389 and Thr355 are proposed to stabilize an 

enolate anion intermediate of the decarboxylation reaction. We further propose that the 
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isoenergetic transfer of an acetyl group from acetyl-CoA to ACPL-SH (holo) is catalyzed 

by direct attack of the deprotonated thiolate of ACPL upon acetyl-CoA at the junction of 

the GNATL CoA and ACPL binding tunnels. The buried Arg404 residue at the base of the 

ACPL binding tunnel may facilitate binding of the deprotonated thiol of the acceptor 

PPant arm of ACPL. The N-terminal AR domain, which was stabilized by the PPant arm 

of ACPL, may also assist in delivering (holo) ACPL to GNATL. AR is likely to have a 

common function in GNATL-containing modules based on its highly conserved sequence. 

Based on the studies described above, the mechanism of CurA AR-GNATL-ACPL is 

proposed to involve a series of acyl-CoA-protein, protein-protein, and protein-PPant arm 

interactions (Figure 2-4 and Figure 2-S7) that mediate the unique bifunctional 

decarboxylase/S-acetytransferase activity. It is likely that other novel GNAT members 

will be found with surprising biochemical properties or that previously identified proteins 

will be grouped within this large family. For example, the eryM-encoded 

methylmalonyl-CoA decarboxylase (4) has not been the subject of structural analysis, but 

comparative amino acid sequence analysis now predicts that it contains the GNAT 

scaffold. 

2.4  DISCUSSION 

A significant outcome of the current work is the realization that GNATL-containing 

 
Figure 2-4. Proposed mechanism of the CurA AR-GNATL-ACPL chain initiation module. 
Malonyl-CoA enters the GNATL domain (blue) CoA tunnel (white) and catalyzes 
decarboxylation to acetyl-CoA. The AR domain (light blue) directs the phosphopantetheine arm 
of ACPL (yellow) into the ACP tunnel (yellow) for subsequent acetyl group transfer via 
transthioesterification. 
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modules are not uncommon among previously characterized natural product biosynthetic 

gene clusters, and are well represented within bacterial genome sequences. This 

metabolic strategy thus represents an additional widely employed chain initiation process 

for assembly of important biologically active small molecules. At a comparative level, 

the CurA GNATL has a significantly slower S-acetyltransfer activity than the 

erythromycin PKS ATL. However, L. majuscula has a relatively slow growth rate in the 

marine environment as well as in culture (i.e. doubling time of approximately 10 days) 

(22), and a correspondingly low production of curacin A per unit biomass compared to 

yields of other microbial natural products (e.g. erythromycin via the 

6-deoxyerythronolide B aglycone intermediate) by Saccharopolyspora erythraea (23)). 

Thus, the curacin A PKS assembly line has evolved under environmental constraints and 

organismic needs that reflect its reduced efficiency. 

The work described in this report provides clear evidence for an unprecedented 

bifunctional decarboxylase/S-acetyltransferase role for the CurA GNAT scaffold, which 

significantly broadens the chemical reaction inventory of this well known protein 

superfamily. This newly described method of PKS chain initiation enables malonyl CoA 

to serve as the sole precursor to both initiate and extend the carbon chain of curacin A. 

Moreover, by virtue of the greater rate of acetate versus propionate transfer to ACPL 

following decarboxylation, the GNATL strategy for chain initiation provides an additional 

mechanism to insure fidelity of curacin A chain length. 

2.5  MATERIAL AND METHODS 

Chemicals. [1,3-14C]malonyl-CoA (55 mCi/mmol), [2-14C]malonyl-CoA (55 mCi/mmol), 

and [1-14C]acetyl-CoA (55 mCi/mmol) were from American Radiolabeled Chemicals. 

[1-14C]propionyl-CoA (55 mCi/mmol) was from Moravek Biochemicals. The 

terminal-NH2 analog of pantetheine was synthesize by Michael D. Burkart group at UCSD 

(24). All other chemicals were from Sigma-Aldrich. 

Bacterial strains, media and culture conditions. Escherichia coli DH5α MCR 

(Invitrogen) or XL1-Blue (Stratagene) was used for DNA propagation. Escherichia coli 

BL21 (DE3) and Rosetta (DE3) (Invitrogen) transformed with the derivatives of pET24b, 
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pET28b, pET21b (Novagen) and pMCSG7 (25) were used for protein overexpression in 

Luria-Bertani (LB) medium. Ampicillin (100 μg/mL), carbenecillin (100 μg/mL), 

kanamycin (50 μg/mL), chloramphenicol (25 μg/mL), and apramycin (50 μg/mL) were 

used for the corresponding plasmid construct resistance marker selection in E. coli cultures. 

Plasmid construction and site mutagenesis. The primers used for the plasmid 

construction and site mutagenesis are listed in table 2-S3. AR-GNATL-ACPL, AR-GNATL, 

GNATL-ACPL, GNATL, ACPL and AR genes were amplified from cosmid pLM54 

described in our previous study (6). DEBS loading ATL-ACPL gene was amplified from 

cosmid pBK3 previously described (26). AR-GNATL-ACPL, GNATL-ACPL, and ACPL 

genes were inserted into pET28b plasmid. AR-GNATL, GNATL and AR genes were 

inserted into pET24b plasmid. DEBS loading ATL-ACPL gene was inserted into pET21b 

plasmid similarly as reported (3). All of these pET derivatives were constructed with NdeI 

and XhoI restriction sites. H389A, H389N and T355V site mutagenesis for both GNATL 

and AR-GNATL-ACPL was performed using QuikChange site mutagenesis protocol 

(Stratagene). All the constructs and mutations were verified by DNA sequencing. 

Protein overexpression. A) (apo or holo) AR-GNATL-ACPL, GNATL-ACPL, ACPL 

and corresponding mutants: E. coli BL21 (DE3) was transformed by the 

pET28b::AR-GNATL-ACPL, pET28b::GNATL-ACPL or pET28b::ACPL plasmid to 

overexpress N-terminal His-tagged proteins. The proteins in holo-form were produced by 

coexpression with Sfp plasmid pSG701 (untagged Sfp, under T7 control, chloramphenicol 

resistance). Cells were grown at 30oC to an OD (590 nm) = 0.5-0.6, and then cooled to 

16oC prior to the addition of 1 mM isopropyl-β-D-galactopyranoside (IPTG). The cultures 

were grown at 16oC for another 18-20 h before harvesting. B) AR-GNATL, GNATL, and 

corresponding mutants: E. coli BL21 (DE3) was transformed by the 

pET24b::AR-GNATL or pET24b::GNATL plasmid to overexpress C-terminal His-tagged 

proteins. Cells were grown at 35oC to an OD (590 nm) = 0.5-0.6, and then cooled to 18oC 

prior to the addition of 1 mM IPTG. The cultures were grown at 18oC for another 12-15 h 

before harvesting. C) GNATL for crystallization: E. coli BL21(DE3) was transformed by 

the pET28b::GNATL or pMCSG7::GNATL plasmid to overexpress C- or N-terminal 

His-tagged proteins, respectively. Cells were grown at 37 oC to an OD (600 nm) = 0.6-0.8, 
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and then cooled to 18oC prior to the addition of 0.4 mM IPTG. The cultures were grown at 

18oC for another 12-15 h before harvesting. D) (apo or holo) DEBS ATL-ACPL: E. coli 

Rosetta (DE3) (chloramphenicol resistance) was transformed by pET21b::ATL-ACPL 

(ampicillin resistance) to overexpress the C-terminal His-tagged proteins. (Holo) 

ATL-ACPL was generated by coexpression with Sfp plasmid pRSG56 (kanamycin 

resistance) (27). Cells were grown at 37oC to an OD (590 nm) = 0.5-0.6, and then cooled to 

30oC prior to the addition of 1 mM IPTG. The cultures were grown at 30oC for another 

8-10 h before harvesting. E) E. coli CoAA and H. sapiens PPAT–DPCK: E. coli BL21 

(DE3) was transformed by CoAA (kanamycin resistance) or PPAT–DPCK (ampicillin 

resistance) expression plasmid (gift of Prof. Michael D. Burkart, UCSD) to express 

His-tagged proteins (28). Cells were grown at 37oC to an OD (590 nm) = 0.7-0.8, and then 

cooled to 20oC prior to the addition of 0.8 mM IPTG. The cultures were grown at 20oC for 

another 12-15 h before harvesting. 

Protein purification. Protein purifications were performed at 4oC. Generally, the first 

step Ni-affinity purifications for all His-tagged proteins were performed under the same 

conditions. E. coli cells were harvested by centrifugation (4,000 g, 15 min, 4oC), 

resuspended in the ice cold lysis buffer A (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 10 

mM imidazole, 20% glycerol) and disrupted by sonication on ice. The cell debris was 

removed by centrifugation at 15,000 g for 50 min. The supernatant was gently removed 

and loaded onto the 5 mL HisTrap column (GE Healthcare) preequilibrated with lysis 

buffer A. The resin was washed successively with ~ 10 column volumes of the washing 

buffer B (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 20 mM imidazole, 10% glycerol) to 

remove nonspecifically bound contaminants. Bound proteins were eluted with imidazole 

by a linear gradient of the elution buffer C (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 

250 mM imidazole, 20% glycerol). The eluate was concentrated using Amicon Ultra-15 

(30 kDa, 10 kDa or 5 kDa) centrifugal devices (Millipore). The follow-up purification 

and buffer exchange for different proteins are described below: 

A) (apo or holo) AR-GNATL-ACPL/GNATL-ACPL, AR-GNATL/GNATL and the 

corresponding mutants: the concentrated eluate was loaded onto HiLoad 26/60 Superdex 

200 column (GE Healthcare) equilibrated with the storage buffer D (50 mM PBS buffer, 
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pH 7.5, 200 mM NaCl, 20% glycerol). The fractions were pooled, concentrated, 

flash-frozen in 50-100 μL aliquots in liquid N2, and stored at -80oC for further use. B) 

(apo or holo) DEBS ATL-ACPL: the concentrated eluate was loaded onto HiPrep 26/10 

Desalting column (GE Healthcare) equilibrated with the storage buffer D. The fractions 

were pooled, concentrated, flash-frozen in 50 μL aliquots in liquid N2, and stored at -80oC 

for further use. C) CoAA and PPAT–DPCK: the concentrated eluate was loaded onto 

HiPrep 26/10 Desalting column equilibrated with the storage buffer E (50 mM HEPES, 

pH 7.5, 0.1 M NaCl, 0.5 mM EDTA, 1 mM DTT and 20% glycerol). The fractions were 

pooled, concentrated, flash-frozen in 50 μL aliquots in liquid N2, and stored at -80oC for 

further use. D) His-tag cleaved (apo or holo) ACPL: the N-terminal His-tag of ACPL 

needs to be removed to avoid a 178 Da posttranslational modification in E. coli which 

was reported to be the α-N-6-phosphogluconoylation on N-terminal His-tag (29). Firstly, 

the concentrated eluate was loaded onto HiPrep 26/10 Desalting column equilibrated with 

the storage buffer D. The biotinylated thrombin (Novagen) was added into the pooled 

fractions, and the reaction was incubated at room temperature for overnight to achieve a 

complete cleavage. The reaction mixture was loaded onto 1mL HiTrap Streptavidin HP 

(GE Healthcare) to trap the biotinylated thrombin and the column was successively 

washed with 10 mL storage buffer D. The flow-through fractions were pooled, 

concentrated and reloaded onto HiPrep 26/10 Desalting column equilibrated with the 

storage buffer E. The fractions were pooled, concentrated, flash-frozen in 100 μL aliquots 

in liquid N2, and stored at -80oC for further use. 

The purity of the proteins was analyzed by SDS-PAGE and the protein concentrations 

were determined using the Bradford assay (Bio-Rad). The percentage of the holo form of 

ACPL was analyzed by reverse-phase HPLC using a Jupiter C4 column (250 x 2.0 mm, 5 

μm, 300 Å, Phenomenex). The samples were eluted with a linear gradient from 5% to 

90% of CH3CN (0.1% CF3CO2H)/H2O (0.1% CF3CO2H). According to the HPLC assay, 

60-70% ACPL was converted into holo form by coexpression with Sfp. The holo/apo 

ratio of AR-GNATL-ACPL samples was analyzed by trypsin digestion followed by 

FTICR-MS analysis. More than 90 % AR-GNATL-ACPL was converted into holo form 

by coexpression with Sfp. 
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Preparation of ACPL-NH2. One-pot chemo-enzymatic strategy (28) was used to 

synthesize ACPL-NH2. To simplify the ACPL-NH2 purification, we did not use pyruvate 

kinase and inorganic pyrophosphatase to recycle the ATP. Briefly, a 200 μL reaction 

mixture contains: 20 μL 10x Tris buffer (500 mM, pH 8.0), 20 μL MgCl2 (100 mM), 20 

μL KCl (200 mM), 70 μL His-tag removed apo-ACPL (1 mM), 10 μL recombinant 

Bacillus subtilis Sfp (100 μM), 10 μL ATP (0.2 M), 25 μL terminal-NH2 analogue of 

pantetheine (20 mM), 5 μL CoAA (1.2 mM) and 20 μL recombinant PPAT–DPCK (0.2 

mM). The reaction was incubated at 37oC for 2-3 hours. According to the HPLC analysis 

of the reaction mixture, 10-15% yield of ACPL-NH2 was achieved. 

Two protocols were applied to purify ACPL-NH2 from the reaction mixture. Protocol A: 

The reaction mixture was loaded onto a Source 15PRC reverse phase column (GE 

Healthcare). The protein were eluted with a linear gradient from 30% to 70% of CH3CN 

(0.1% CF3CO2H)/H2O (0.1% CF3CO2H). The ACPL-NH2 fractions was pooled, 

flash-frozen in liquid N2 and lyophilized overnight. The lyophilized ACPL-NH2 was 

redissolved and renatured in the storage buffer D for 1 hour before the assays. Compared 

with protocol B, protocol A has a faster purification and less loss of the protein, but only 

part of lyophilized ACPL-NH2 can be renatured. Protocol B: The reaction mixture was 

loaded onto HisTrap column to trap most of the His-tagged CoAA, PPAT–DPCK and Sfp, 

and the flow-through were pooled, concentrated, diluted 1:5 with 50 mM PBS buffer F 

(pH 8.0, 10% glycerol) and loaded onto 6 mL Resource Q ion-exchange column (GE 

Healthcare). ACPL-NH2 was eluted using a NaCl gradient 50-500 mM over 20 column 

volumes. The purified ACPL-NH2 was desalted by PD-10 column (GE Healthcare) 

equilibrated with storage buffer D, concentrated and checked for purity by SDS-PAGE 

and HPLC. Both protocol A and B can completely remove Sfp, which can interfere with 

the GNATL loading assays. 

HPLC analysis of GNATL decarboxylation of malonyl-CoA. HPLC analysis of the 

decarboxylation was performed using XBridge C18 column (4.6 x 250 mm, 5 μm, Waters) 

on the Gold HPLC system equipped with an autosampler and controlled by 32 Karat 

software (Beckman Coulter). The samples were eluted with a linear gradient from 3% to 

60% of MeOH/H2O (10 mM CH3CO2NH4). For the steady-state kinetic studies, the 
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decarboxylations were examined in 40 μL 50 mM PBS, pH 7.0 at 100 μM, 200 μM, 500 

μM, 1000 μM and 2000 μM malonyl or methylmalonyl-CoA. The GNATL concentrations 

were optimized as 0.11 μM WT, 9.65 μM H389A, 14.6 μM H389N or 12.6 μM T355V 

for malonyl-CoA decarboxylation, and 0.35 μM WT for methylmalonyl-CoA 

decarboxylation. The reactions were incubated at room temperature for 5 min before 

quenched by 40 μL 1M CH3CO2H. 4 μL propionyl-CoA (for malonyl-CoA 

decarboxylation) or 4 μL acetyl-CoA (for methylmalonyl-CoA decarboxylation) was 

added as the internal standard. The reaction mixtures were filtrated by Microcon YM-10 

(Millipore), neutralized by 20 μL 1M NaOH, and stored at -80oC before analyzed by 

HPLC. Control reactions without enzymes were run at the same time. The peak areas of 

the decarboxylation products were normalized based on the internal standards, subtracted 

by the peak areas of the control reactions, and converted to turnovers/second based on 

peak areas of the acetyl or propionyl-CoA standard. 

Radioassays of GNATL decarboxylation of malonyl-ACPL. [1,3-14C]malonyl-CoA (55 

mCi/mmol) were diluted with malonyl-CoA to get 5 mM 20 mCi/mmol 

[1,3-14C]malonyl-CoA. [1,3-14C]malonyl-ACPL was generated by incubating 100 μM 

apo-ACPL with 1 M [1,3-14C]malonyl-CoA (20 mCi/mmol), 4 μM Sfp, 10 mM MgCl2 in 

50 mM Tris-HCl buffer, pH 8.1 at 30oC for 2 h (30). The reaction mixture was desalted by 

PD-10 desalting column equilibrated with storage buffer D and concentrated. The final 

concentration of [1,3-14C]malonyl-ACPL was measured by Bradford assay. The 

steady-state kinetic studies were performed in 20 μL 50 mM PBS, pH 7.0, 1.1 μM WT 

GNATL, at 15 μM, 30 μM, 60 μM, 120 μM and 180 μM malonyl [1,3-14C]malonyl-ACPL. 

The reactions were incubated at room temperature for 5 min before quenched with 60 μL 

30% trichloroacetic acid (TCA) and 60 μL 10 mg/ml bovine serum albumin (BSA). The 

proteins were precipitated by centrifugation, washed twice with 10% TCA, redissolved in 

100 μL formic acid, added into 4 mL scintillation fluid and counted. The amounts of 

radioactivity for the reactions were compared with those of controls and the decreased 

radioactivity were converted to turnovers/second by using [1,3-14C]malonyl-CoA as the 

standard. 

Radioassays of AR-GNATL-ACPL acyl transfer. Acyl transfer of AR-GNATL-ACPL 
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was measured by using acetyl-CoA and (holo) AR-GNATL-ACPL (or the corresponding 

mutants). The kinetic studies were performed in 20 μL 50 mM MOPS, pH 7.0, 1 mM 

DTT, 25 μM (holo) AR-GNATL-ACPL (or the corresponding mutants), at 1 μM, 2.5 μM, 

5 μM, 12.5 μM, 25 μM, 50 μM and 125 μM [1-14C]acetyl-CoA. The (holo) ACPL was 

used in the control reactions to measure the autocatalytic transthioesterification. The 

reactions were incubated at room temperature for 1 min before quenched with TCA. The 

bound radioactivity of AR-GNATL-ACPL and ACPL was measured as above. The bound 

radioactivity of AR-GNATL-ACPL was subtracted by that of ACPL, and converted to 

turnovers/second by using [1-14C]acetyl-CoA as the standard. The acyl transfer rate was 

analyzed by Cleland’s method (31). 

Autoradiographic analyses. The loading of GNATL-ACPL or (DEBS) ATL-ACPL was 

examined by SDS-PAGE followed by autoradiographic analyses. [2-14C]malonyl-CoA 

(55 mCi/mmol) and [1-14C]acetyl-CoA (55 mCi/mmol) were used for AR-GNATL-ACPL 

and GNATL-ACPL loading, and [1-14C]propionyl-CoA (55 mCi/mmol) was used for 

(DEBS) ATL-ACPL loading. The acyl transfer were performed in 50 mM MOPS, pH 7.0, 

1 mM TCEP, 90 μM acyl-CoA, and 30 μM (holo or apo) AR-GNATL-ACPL, 

GNATL-ACPL, or (DEBS) ATL-ACPL. The aliquots were periodically moved from the 

reaction mixture and the proteins were precipitated by TCA, washed by ice-cold acetone 

and dissolved in Tris/glycine/SDS loading buffer. After running the SDS-PAGE, the gels 

were dried and subjected to autoradiography. 

Analysis of ACPL and AR-GNATL-ACPL digestion samples by ESI-FTICR-MS. The 

observed and calculated masses for all the samples were listed in table 2-S4. ACPL 

samples were prepared by loading the reaction mixtures on Source 15PRC reverse phase 

column. The proteins were eluted with a linear gradient from 30% to 70% CH3CN 

(0.05% HCOOH and 0.05% CF3COOH)/H2O (0.05% HCOOH and 0.05% CF3COOH). 

AR-GNATL-ACPL digestion samples were prepared by first removing the CoA thioesters 

from AR-GNATL-ACPL reaction mixtures using Zeba desalt spin column (Pierce) 

equilibrated with the digestion buffer (50 mM NH4HCO3, pH 7.6, 0.1 M NaCl and 10% 

glycerol). 10 μL 2.5 mg/mL AR-GNATL-ACPL sample was digested with 5 μL 0.1 
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mg/mL trypsin (Princeton Separations) at 37oC for 4 hours. The digestion was quenched 

by 0.1% formic acid and desalted by Source 15PRC column. (Performed by Liangcai Gu) 

Mass spectrometric analysis was performed with an actively shielded 7 Tesla 

quadrupole-Fourier transform ion cyclotron resonance mass spectrometer (APEX-Q, 

Bruker Daltonics, Billerica, MA). Target analytes were diluted in an electrospray solution 

(1:1 CH3CN:H2O with 0.1% HCOOH) and directly infused into an electrospray 

ionization (ESI) source (Apollo II, Bruker Daltonics) at a flow rate of 70 µL/h and a 

voltage of - 3.8 kV. A counterflow of hot (240 °C) nitrogen gas was applied to assist 

desolvation of ESI droplets. For accurate mass determination, up to 10 picomoles of 

apomyoglobin (Sigma, St. Louis, MO) was spiked into the ESI solution as internal 

calibrant.  Multiply protonated ions generated from ESI were externally accumulated in 

a hexapole for 1 s and transferred via high voltage ion optics to the ICR cell for analysis. 

All data were acquired with XMASS software (version 6.1, Bruker Daltonics) in 

broadband mode from m/z = 200 to 2000 with 512k data points and summed over 20-30 

scans. Mass spectra were analyzed with the MIDAS analysis software (32). When needed, 

external frequency-to-m/z calibration was performed with a two-term calibration 

equation (33) using two calibration standards (m/z = 622.02895 and 922.00979, from the 

calibration mix G2421A, Agilent Technologies, Palo Alto, CA). For infrared multiphoton 

dissociation (IRMPD), precursor ions were mass-selectively accumulated in a hexapole 

with a 3-5 m/z quadrupole isolation window, transferred to the ICR cell, and irradiated 

for 100-300 ms by 10.6 μm photons at 10 W laser power (25 W CO2 laser, Synrad, 

Mukilteo, WA) for 30-50 scans. (Performed by Bo Wang) 

GNATL preparation and crystallization. In addition to pET24b::GNATL, 

pMCSG7::GNATL was also constructed to facilitate His-tag cleavage (25). 

Selenomethionine-labeled GNATL was produced in BL21(DE3) using SeMet minimal 

media according to the protocol reported (34). The Ni-affinity purification was performed 

in a similar way as mentioned above. The His-tag removal was performed in buffer F (20 

mM Tris pH 7.9, 500 mM NaCl, 20 mM imidazole, 10% glycerol, and 1 mM DTT) by 

incubating GNATL with 2% (w/w) His-tagged TEV protease at 4°C for 24 hr. The 

cleavage mixture was loaded onto HisTrap column, and flow-through fractions were 
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pooled and concentrated. After Ni-affinity purification (or His-tag cleavage), the 

concentrated fractions were loaded onto a HiLoad 16/60 Superdex 75 (GE Healthcare) 

column equilibrated with buffer G (20 mM Tris pH 7.9, 500 mM NaCl, and 10% 

glycerol). Fractions were then combined, concentrated to 13 mg/mL and either flash 

frozen in liquid N2 or stored at 4°C. Crystals were grown in 24-72 hr at 20°C by 

micro-seeding in hanging drops using the vapor diffusion method. Equal volumes were 

mixed of protein solution and mother liquor containing 100 mM Bis-Tris pH 6.8, 100 

mM NaCl, 1.0-1.5 M ammonium sulfate, and 20% glycerol. Apo crystals were harvested 

in loops and directly frozen by plunging into liquid N2. In order to obtain the complex 

structure, apo crystals were grown at 4°C. After crystal growth, malonyl-CoA was added 

to the drop to a final concentration of ~10 mM and incubated for 1 hour before crystal 

mounting and freezing. (Performed by Todd Geders) 

Diffraction Data Collection and Structure Determination. Diffraction data were 

collected at 100 K on GM/CA-CAT beamline 23ID-B at the Advanced Photon Source 

(APS) in Argonne National Laboratory (Argonne, IL). Data were processed using the 

HKL2000 suite (35). Initial phasing was performed using a three-wavelength MAD 

dataset from a single SeMet-labeled protein crystal of His-tagged GNATL. SOLVE was 

used to find the six selenium sites (‹m› = 0.52, score = 37.15) and for MAD phasing 

(overall FOM = 0.53) (36). RESOLVE was used for density modification (overall FOM = 

0.66) and partial automated model building (37, 38). Two CurA molecules were present 

in the asymmetric unit. Modeling was completed manually using COOT (39). 

Refinement was performed using REFMAC5 of the CCP4 suite with TLS (40-42). The 

refined model was used as a probe structure for molecular replacement using PHASER 

with data from malonyl-CoA soaked crystals (43, 44). OMIT density was calculated 

using the program SFCHECK (45). Images and Figures were prepared using PyMOL 

(46). Tunnels were identified by the program CAVER (47). (Performed by Todd Geders) 

Modeling of Acetyl-CoA and ACP PPant Arm into Active Site. Initial atomic 

coordinates and topology files for acetyl-CoA and 4’-phosphopantetheine were generated 

using the PRODRG2 server (48). Acetyl-CoA was positioned into the 1.95Å structure 

using the position of the low-occupancy conformation observed in the malonyl-CoA 
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soaked crystal as a guide. A fully extended 4’-phosphopantetheine was placed within the 

ACP binding tunnel. For both ligands, any overlapping waters were removed before 

energy minimization of an isolated CurA GNATL molecule after the addition of 

hydrogens using the program CNS (49) in 500 steps of conjugate gradient minimization 

using no experimental energy terms and full harmonic restraints. (Performed by Todd 

Geders) 
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2.6  SUPPLEMENTARY FIGUES AND TABLES 

 
Figure 2-S1. Protein expression, purification, and size-exclusion analysis. (A) Expression and 
solubility of GNATL constructs. Protein expression was induced at 20oC for 12 hours. W., whole 
cell lysate; S., supernatant. (B) Constructs after purification. 1. (apo) AR-GNATL-ACPL, 2. (holo) 
AR-GNATL-ACPL, 3. (apo) GNATL-ACPL, 4. (holo) GNATL-ACPL, 5. AR-GNATL, 6. GNATL. 
(C) Analytical size-exclusion chromatography of GNATL constructs. 200 μL ~5mg/mL proteins 
were loaded on Superdex 200 10/300 GL column and eluted by 50 mM PBS, pH 7.5, 0.2 M NaCl 
and 10% glycerol. Partial dimerization of GNATL and GNATL-ACPL was observed, however 
AR-GNATL-ACPL eluted exclusively as a monomer. 



 31

 
 
Figure 2-S2. Acyl transfer in cis for (holo) AR-GNATL-ACPL (WT and H389N) and 
GNATL-ACPL. 20 μM holo enzymes were incubated with 100 μM [2-14C]malonyl-CoA or 
[1-14C]acetyl-CoA in 50 mM MOPS, pH 7.0, at room temperature. The autocatalytic acyl-CoA 
loading rate was measured using excised (holo) ACPL (20 μM). The H389N substitution resulted 
in ~3-fold greater kcat (see table S1) for acetyl transfer in comparison to wild type, perhaps by 
creating a stabilizing polar environment for the CoA thiolate intermediate generated immediately 
after acetyl transfer. 
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Figure 2-S3. Partial FTMS spectra showing the mass changes of serine477-containing peptide 
from the trypsin digested (apo or holo) AR-GNATL-ACPL and malonyl-CoA loaded (holo) 
AR-GNATL-ACPL. 
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Figure 2-S4. (A) Comparison of the in trans loading activities of AR-GNATL and GNATL for 
acetyl and malonyl-CoAs. 15 μM (holo) ACPL was incubated with or without 2 μM AR-GNATL 
or GNATL in 50 μM CoAs and 50 mM MOPS, pH 7.0 at room temperature for 30 min. (B) 
GNATL catalyzed decarboxylation of malonyl-ACPL. 50 μM malonyl-ACPL was incubated with 
or without 1 μM GNATL in 50 mM PBS, pH 7.0 at room temperature for 15 min. (C) IRMPD 
spectra showing the PPant ejection products for malonyl-ACPL (above) and acetyl-ACPL (below). 
1: ACPL-SH, 2: acetyl-ACPL, 3: malonyl-ACPL. 
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Figure 2-S5. HPLC analysis of GNATL catalyzed decarboxylation. 200 μM 
malonyl-CoA/methylmalonyl-CoA and 1 μM GNATL were incubated in 50 mM PBS, pH 7.0, at 
room temperature for 30 min. MMalonyl-CoA, methylmalonyl-CoA. 
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Figure 2-S6. Comparison of the in trans loading activities of the wild type and H389N 
mutant of AR-GNATL-ACPL. 20 μM (holo) ACPL was incubated with 2 μM AR-GNATL-ACPL 
(WT or H389N) in 100 μM CoAs and 50 mM MOPS, pH 7.0 at room temperature for 30 min. 1: 
ACPL-SH, 2: acetyl-ACPL, 3: malonyl-ACPL. Malonyl-ACPL products (3) were observed for the 
malonyl-CoA loading by H389N mutant, which is likely due to the autocatalytic loading without 
decarboxylation. 
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Figure 2-S7. Partition analysis of the acetyl transfer kcat of AR-GNATL-ACPL (holo) by 
using Cleland’s method. 
 

 
A chain initiation mechanism for AR-GNATL-ACPL is proposed above. This mechanism can be 
reduced to mechanism (1) using net rate constants: 
 1 2 4 6k ' k ' k ' k '

1 2 3 4 5E E E E E⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→  (1) 
The net rate constants are 

 
2 4 6 4 6

1 1 2 4 6 6
3 5 3 6 4 6 5 6

k k k k kk ' = k , k ' = , k ' = , k ' = k
k k  + k k  +k k k  + k

 (2) 

The sum of [E4] and [E5] was measured for the acetyl transfer rate, and thus the acetyl transfer kcat 
can be calculated as: 

 

cat 1 2

1 2 4 2 4

2 4

5 5
2 3 4

6 6

1 1=  (assume k >> k ' according to assays)1 1 1 1 1+ + +
k k ' k ' k ' k '

k k     = k kk (1+ ) k (1+ ) k
k k

k →

+ +

 (3) 

The net rate of acetyl transfer is negatively affected by (a) the slow rate of acetyl transfer (k4), (b) 
the partitioning of E4 between product release and reversal, and (c) the partitioning of E3 between 
E2 and E4. Low occupancy of the GNATL ACP tunnel (k2<k3) can significantly decrease the 
acetyl transfer rate and the apparent KM of CoA substrates for acetyl transfer. 
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Figure 2-S8. OMIT map density surrounding the CoA binding tunnel. (A) First CurA 
GNATL molecule in the asymmetric unit (ASU) with acetyl-CoA model drawn in white carbons. 
(B) Second CurA GNATL molecule in the ASU with two alternate conformations of acetyl-CoA 
drawn in white and grey carbons. N- and C-termini are labeled for reference. Tan coloring 
indicates portions of the molecule omitted for clarity in inset. Protein surface is colored by 
electrostatic potential. OMIT density calculated from the final refined model is contoured at 1 σ 
(green) and 3 σ (magenta). Clear density observed for the 3’-ribose phosphate, which interacts 
with Arg387 (not drawn), and the diphosphate linker, which is coordinated by backbone amides of 
residues 327-332 at the N-terminus of helix 3. 
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Figure 2-S9. Multiple sequence alignment of GNATL domains from curacin A (CurA_GNAT), 
onnamide A (OnnB_GNAT, 47.5% identity), myxovirescin A (TaI_GNAT, 44.8% identity), 
rhizoxin (RhiA_GNAT, 43.4% identity), and pederin (PedI_GNAT, 40.7% identity) PKS clusters. 
Secondary structure elements of CurA GNATL are shown above the alignment, colored boxes 
indicate regions designated motifs C, D, A, and B by Neuwald & Landsman, invariant residues 
are red, sites of conservative substitution are blue, and similar residues are green. Every tenth 
residue is underlined. 
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Table 2-S1. Kinetic parameters for decarboxylation and acyl transfer. 
 

Decarboxylation 
GNATL Substrate kcat [s-1] KM [μM] kcat/KM [x103 M-1s-1] 

WT malonyl-CoA 1.8 ± 0.2 340 ± 27 5.25 ± 0.15 
H389A malonyl-CoA 0.018 ± 0.001 238 ± 15 0.077 ± 0.003 
H389N malonyl-CoA 0.025 ± 0.004 1460 ± 140 0.017 ± 0.002 
T355V malonyl-CoA 0.0071 ± 0.002 225 ± 21 0.0031 ± 0.005 

WT methylmalonyl-CoA 0.29 ± 0.07 168 ± 46 1.73 ± 0.07 
WT malonyl-ACP 0.037 ± 0.011 41 ± 13 0.92 ± 0.21 

Acyl transfer  
(holo) AR-GNATL-ACPL

 Substrate kcat [s-1] KM [μM] kcat/KM [x103 M-1s-1] 
WT acetyl-CoA 0.0023 ± 0.0002 4.3 ± 0.2 0.53 ± 0.02 

H389A acetyl-CoA 0.0019 ± 0.0003 4.2 ± 0.3 0.46 ± 0.03 
H389N acetyl-CoA 0.0067 ± 0.0005 14.0 ± 0.3 0.48 ± 0.03 
T355V acetyl-CoA 0.0031 ± 0.0008 5.7 ± 0.5 0.55 ± 0.07 

WT malonyl-CoA 0.0021 ± 0.0004 3.7 ± 0.6 0.58 ± 0.02 
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Table 2-S2. Data collection and Refinement Statistics. 
 
Table S2A – Data Collection 
Parameter  Apo Peak Inflection Remote  Malonyl- 

CoA Soak
Space Group  P3121 P3121 P3121 P3121  P3121 
Dimensions (Å) a, c  91.5, 138.9 91.7, 137.5 91.7, 137.5 91.6, 137.5  91.9, 139.5
X-ray source  23ID-B 23ID-B 23ID-B 23ID-B  23ID-B 
Wavelength λ (Å)  0.97939 0.97934 0.97945 0.96112  0.97939 
dmin (Å)  1.95 2.30 2.30 2.30  2.75 
Unique observations  49,929 30,361 30,365 30,327  18,244 
Rmerge(%)a,b  6.9 (55.5) 7.2 (65.5) 7.1 (63.7) 7.2 (66.6)  9.4 (53.4)
‹I/σ›a  28.9 (5.0) 13.5 (1.5) 14.0 (1.5) 13.6 (1.5)  24.5 (4.9)
Completeness (%)a  99.6 (99.2) 100 (100) 100 (99.9) 100 (100)  99.9 (99.9)
Avg. redundancya  11.2 (11.1) 2.9 (2.9) 2.9 (2.8) 2.9 (2.9)  9.7 (9.8) 
aValues in parenthesis are for outer shell 
bRmerge=∑|Ii-‹I›|/∑Ii, where Ii is the intensity of the ith observation and ‹I› is the mean intensity 
 
Table S2B – Refinement Statistics 
Refinement statistics   
  Apo Malonyl-CoA 

soak 
Data range  50-1.95 50-2.75 
R/Rfree

a  0.172/0.211 0.207/0.251 
RMSD bond length (Å)  0.013 0.008 
RMSD bond angle (Å)  1.382 1.351 
Avg. Protein B-factor (Å2)  39.5 43.1 
Avg. Solvent B-factor (Å2)  47.4 28.8 
Wilson B (Å2)  31.6 60.3 
Ramachandran plotc    
    Favored  97.7 96.4 
    Allowed  3.3 3.4 
    Disallowed  0.0 0.2 
Protein atoms  3432 3356 
Water molecules  460 4 
Other atoms  33 153 
PDB code  2REE 2REF 
aR = ∑|FO-|FC||/∑|FO| where FO is the observed structure factor and FC is the calculated structure 
factor used in the refinement 
bRfree = ∑|FO-|FC||/∑|FO| where FO is the observed structure factor and FC is the calculated structure 
factor from 5% of reflections not used in the refinement 
cFrom output of MOLProbity (Davis et al. 2004 Nucleic Acids Research 32:W615-W619) 
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Table 2-S3. Primers for the expression constructs and site mutagenesis. 
 

Construction Primers 
Primer name Sequences (5’ to 3’) 

AR-GNATL-ACPL-for CATATGCTAGAGTTAATTAATCGT (NdeI) 
AR-GNATL-ACPL-rev CTCGAGTTACTCTGGCTTTGGTAGTAC (XhoI) 
GNATL-ACPL-for CATATGAGTTTAAATTGTTTTGAAAATAAT (NdeI) 
GNATL-ACPL-rev CTCGAGTTACTCTGGCTTTGGTAGTAC (XhoI) 
AR-GNATL-for CATATGCTAGAGTTAATTAATCGT (NdeI) 
AR-GNATL-rev CTCGAGCTTAGTCTGCCGATTTTTTTC (XhoI) 
GNATL-for CATATGAGTTTAAATTGTTTTGAAAATAAT (NdeI) 
GNATL-rev CTCGAGCTTAGTCTGCCGATTTTTTTC (XhoI) 
ACPL-for CATATGAAACTGACAGAAGATATAGAT (NdeI) 
ACPL-rev CTCGAGTTACTCTGGCTTTGGTAGTAC (XhoI) 
AR-for CATATGCTAGAGTTAATTAATCGT (NdeI) 
AR-rev CTCGAGTTTTTGGACTTTTATCAAAC (XhoI) 
(DEBS)ATL-ACPL-for CATATGGCGGACCTGTCAAAGC (NdeI) 
(DEBS)ATL-ACPL-rev CTCGAGGCGGGTTTCCCGTTGTGC (XhoI) 
GNATL7-for (LIC) TACTTCCAATCCAATGCCAGTTTAAATTGTTTTGAAAATAATTATT

ACAATTTGCGCCATCC 
GNATL7-rev (LIC) TTATCCACTTCCAATGCTACTTAGTCTGCCGATTTTTTTCAACTGT

CGC 
Mutagenic Primers  

Primer name Sequences (5’ to 3’) 
H389A-for GGATCCGCTGTTGCGATTTGCCCAGATTCATGGGGCTAAAATTG 
H389A-rev CAATTTTAGCCCCATGAATCTGGGCAAATCGCAACAGCGGATCC 
H389N-for GGATCCGCTGTTGCGATTTAACCAGATTCATGGGGCTAAAATTG 
H389N-rev CAATTTTAGCCCCATGAATCTGGTTAAATCGCAACAGCGGATCC 
T355V-for GGTGTCGAAAAAGTTGTGGCAGTAGTTCTTTGTCGCAATTATCCAG 
T355V-rev CTGGATAATTGCGACAAAGAACTACTGCCACAACTTTTTCGACACC 
S477A-for GATGGAGATGGGCATCGAAGCTTTGGAGTTGCTGGAAC 
S477A-rev GTTCCAGCAACTCCAAAGCTTCGATGCCCATCTCCATC 

 
The restriction sites are underlined; the mismatch bases are in red. 
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Table 2-S4. MS analysis for decarboxylation and acetyl transfer. 

 
Masses are in Daltons. Calc., calculated; Obs., observed; ND, not detected 
*The masses ACP derivatives are calculated without the first methionine for the His6-tag removed protein. 
†[469-484] = ALMEMGIES477LELLELR. 
§PPant ejection product for acetyl-NH-ACP was not detected due to the weak signal of acetyl-NH-ACPL. 

ACPL samples 
ESI-FT-ICR-MS IRMPD (PPant ejection product) 

ACPL* Obs. avg mass Calc. avg mass Obs. [M + H]+ Calc. [M + H]+ 
apo-ACPL 10820.7 10821.1   
holo-ACPL 11160.9 11160.7 216.128 261.127 

acetyl-S-ACPL 11202.5 11202.7 303.138 303.137 
malonyl-S-ACPL 11247.4 11247.2 347.128 347.127 

NH2-ACPL 11144.5 11144.7 244.166 244.166 
Acetyl-NH -ACPL 11186.4 11186.7 ND ND 

AR-GNATL-ACPL trypsin digestion samples 
ESI-FT-ICR-MS IRMPD (PPant ejection product) 

[469-484 + 2H]2+ Obs. mass Calc. mass Obs. [M + H]+ Calc. [M + H]+ 
apo- 1845.97 1845.95   
holo- 2186.05 2186.04 261.127 261.127 

acetyl- 2228.06 2228.05 303.138 303.137 
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CHAPTER 3 
POLYKETIDE HMG β-BRANCHING 

3.1  SUMMARY 

This chapter contains two successive studies towards understanding the mechanisms 

of polyketide HMG β-branching in the curacin A pathway. The first study describes the 

functional identification of a pair of mechanistically diverse enzymes that catalyze the 

successive dehydration (CurE ECH1) and decarboxylation (CurF ECH2) of 

(S)-HMG-ACP to generate a 3-methylcrotonyl-ACP intermediate, the presumed 

precursor of the cyclopropyl ring in curacin A. The reactions catalyzed by ECH1 and 

ECH2 are found in a broad cross-section of microbial natural product gene clusters and 

participate in the introduction of carbon chain branch points and functional group 

diversity as key steps in the HMG-CoA synthase mediated addition of C-2 from acetate 

to the α-carbonyl group of polyketide chains. The second study provides structural 

insights into CurF ECH2 decarboxylation in polyketide chain β-branching. The crystal 

structure of the CurF N-terminal ECH2 domain establishes that the protein is a crotonase 

superfamily member. Ala78 and Gly118 form an oxyanion hole in the active site, which 

includes only three polar side chains as potential catalytic residues. Site-directed 

mutagenesis and a coupled ECH1/ECH2 dehydration/decarboxylation assay established 

critical functions for His240 and Lys86, whereas Tyr82 was non-essential. A 

decarboxylation mechanism is proposed in which His240 serves to stabilize the substrate 

carboxylate and Lys86 donates a proton to γ-C of the acyl-ACP enolate intermediate to 

form the α,β unsaturated isopentenoyl-ACP product. CurF ECH2 substrates were 

synthesized enzymatically, and used in a direct ECH2 assay to show a 20-fold selectivity 

for ACP- over CoA-linked substrates. Specificity for ACP-linked substrates has not been 

reported for any other crotonase superfamily decarboxylase. Tyr73 may select against 
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CoA-linked substrates by blocking a contact of Arg38 with the CoA adenosine 

5'-phosphate. 

3.2  INTRODUCTION 

Polyketides and non-ribosomal peptides are important secondary metabolites 

possessing an array of biological activities and considerable chemical diversity (1-4). 

Type I modular polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) 

systems sequentially elongate and modify a growing ketide or peptide chain as it is 

passed from module to module. The biosynthetic machinery generates tremendous 

chemical diversity in these compounds by use of specific reductive domain combinations 

within modules and/or gene cassettes that encode proteins capable of producing unique 

functionalities. 

Curacin A (1, Figure 3-1A), a marine cyanobacterial metabolite from Lyngbya 

majuscula, is a mixed polyketide-non-ribosomal peptide natural product with potent 

anti-proliferative and cytotoxic activity against colon, renal, and breast-cancer derived 

cell lines (5). Because of its unusual structure, which includes a cyclopropane group, 

thiazoline moiety, cis-alkenyl group, and terminal double bond, we were motivated to 

characterize the unique enzymes responsible for the curacin A assembly.  

Recently, we identified and characterized a gene cluster (cur) from Lyngbya 

majuscula L19 whose architecture and domain organization correlates directly with that 

expected for curacin A biosynthesis (6). Within the cur gene cluster that spans ~65 kbp is 

an ~8 kbp region (CurA-CurF) with striking similarity (80-95% amino acid identity) to a 

comparably-sized section of the jamaicamide 2 (jam) biosynthetic pathway (JamE-JamJ) 

(7). The genes from this region are translated into a set of enzymes containing a predicted 

α-ketoglutarate dependent halogenase (8), a set of three tandem ACPs, and a 

3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HCS)-like gene cassette that 

collectively are likely involved in the introduction of the cyclopropane group in curacin 

A and the vinyl chloride substituent in jamaicamide (6, 7). The HCS-like gene cassette 

encodes five biosynthetic enzymes: an acyl carrier protein (CurB), a putative 

ketosynthase (CurC), an HMG-CoA synthase (CurD), and two putative enoyl-CoA 
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hydratases (CurE ECH1 and CurF ECH2). This novel cassette has recently been identified 

in several additional gene clusters, including the jam pathway from L. majuscula, the 

mupirocin 3 (Mup) pathway from Pseudomonas fluorescens, and the “PksX” pathway 

from Bacillus subtilis (6-9), and is proposed to catalyze addition of C-2 from acetate onto 

the polyketide chain to generate a pendant functional group (Figure 3-1A). 

In the first study (10), we provided evidence for the specific function of the 

CurE/CurF ECH1-ECH2 enzyme pair (Figure 3-1A) in curacin A biosynthesis, and 

demonstrated that they catalyze the successive dehydration and decarboxylation of 

(S)-HMG-ACP 5 to generate a 3-methylcrotonyl-ACP 7 intermediate for the subsequent 

formation of the cyclopropane ring in 8 (Figure 3-1B). Significantly, it is now evident 

from bioinformatic analysis that the ECH1-ECH2 enzyme pair exists widely in different 

 
 
Figure 3-1. HMG enzyme cassettes. A) HMG gene cassettes are proposed to introduce a 
pendant carbon (indicated by red asterisk) from C-2 of acetate to the polyketide chains. 
Amino acid identities of enzymes are shown (%), and acetate labeling patterns are 
highlighted in blue. B) Proposed mechanism for the HMG β-branching in curacin A 
pathway. 
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microbial species and is not necessarily limited to HCS-like gene cassettes (Figure 3-S1). 

Therefore, we believe that the ECH1-ECH2 of the curacin A system represents an 

excellent example of chemistry-directed enzyme evolution, giving rise to “mechanistic 

diversity”(11) within a single protein family. 

Enoyl-CoA hydratases belong to the crotonase superfamily, consisting of a wide 

variety of mechanistically diverse enzymes that exhibit various activities, such as 

hydratase (12), dehalogenase (13), decarboxylase (13, 14), isomerase (15-17), hydrolase 

(14), and carbon-carbon bond formation (14) or cleavage (18, 19). The common 

mechanistic theme of this low-sequence-identity superfamily is the stabilization of an 

enolate anion intermediate of phosphopantetheine-linked substrates by two backbone 

amide groups forming an oxyanion hole (20). A unique feature of the ECH2-like enzymes 

involved in natural product biosynthesis is that they are thought to depend exclusively on 

ACP-linked substrates in vivo. Structural clues that enable these enzymes to discriminate 

between CoA and ACP-linked substrates will increase our understanding of the 

evolutionary changes that have occurred to favor one substrate over another, as well as to 

control functional group diversity in the final natural product. 

In the second study (21), we solved the 1.85Å crystal structure of the wild-type, 

N-terminal ECH2 domain of CurF and the 1.65Å structure of the corresponding Y82F 

variant. Modeling of the substrate of CurF ECH2 was performed and Tyr82, Lys86, and 

His240 were identified as potential catalytic or substrate-binding residues. Site-directed 

mutagenesis in a coupled ECH1/ECH2 dehydration/decarboxylation assay with 

ACP-linked substrates demonstrated that CurF ECH2 His240 and Lys86 are critical to 

catalysis. 

3.3  RESULTS AND DISCUSSION 

3.3.1  Functional Identification of ECH1 and ECH2 Enzyme Pair 

In the cur gene cluster, ECH1 is encoded by curE, and the ECH2 gene is embedded 

in curF as the first domain of the CurF hybrid PKS/NRPS bimodular polypeptide (Figure 

3-1A). Although the sequence identity between cur ECH1 and ECH2 is only 17%, they 
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are predicted to belong to the crotonase superfamily, and contain two consensus 

sequences (Figure 3-S1) essential for the “oxyanion hole” to stabilize enolate anions (20). 

In contrast, the sequence identities in the ECH1 and ECH2 groups compared from various 

biosynthetic systems (Figure 3-S1) are generally above 40%, which suggests that ECH1 

and ECH2 have different functional roles. To identify their precise function, we reasoned 

that the HCS motif would follow a path involving initial assembly of HMG-ACP via the 

reaction of C-2 of acetyl-ACP with acetoacetyl-ACP 4 (catalyzed by HMG-CoA synthase 

(CurD)). The co-linearity of the Cur biosynthetic pathway suggested that the ECH1-ECH2 

pair would operate in late stage construction of the presumed acyl-ACP precursor for 

cyclopropane ring formation. 

To probe the function of ECH1, curE was cloned, overexpressed and purified as a 

30.5 kDa N-His-tagged fusion protein. Next, we sought to excise a functional form of 

ECH2 from the amino terminus of the CurF multifunctional enzyme. This was 

accomplished by choosing an optimized cutting site in the linker region of ECH2 (259 

amino acids) to yield a 29.5 kDa C-His-tagged fusion protein. Additionally, curB was 

cloned, overexpressed and purified in the apo-CurB (acyl carrier protein) form as an 11 

kDa N-His-tagged fusion protein. ECH1, ECH2 and apo-CurB were isolated in soluble 

form from E. coli and purified by Ni-NTA agarose resin. The apo-CurB protein (75 μM) 

was subsequently loaded using HMG-CoA via in vitro phosphopantetheinylation through 

in situ incubation with (R,S)-HMG-CoA (500 μM) and Sfp (4 μM) (22). The 

HMG-holo-CurB was dialyzed against ECH assay buffer to adjust pH and remove excess 

HMG-CoA. 

The in vitro activity of ECH1 and ECH2 were investigated by incubating ECH1, 

ECH2 or both (2 μM each) with (R,S)-HMG-holo-CurB (50 μM) in a series of buffers at 

37oC. ESI-FTMS (Apex-Q instrument, Bruker Daltonics) was applied to detect mass 

change of the acyl group covalently linked to the holo-CurB. We found that in the 

presence of ECH2 alone (Figure 3-2A, c), no new reaction products were observed. In 

contrast, in the presence of ECH1, a peak corresponding to 18 Da loss in molecular mass 

occurred (Figure 3-2A, b), and when both ECH1 and ECH2 were employed, two peaks 

corresponding to 18 Da and 62 Da loss in molecular mass were observed (Figure 3-2A, d). 
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These results suggest that ECH1 catalyzes dehydration of HMG-ACP 5 to 

3-methylglutaconyl-ACP 6 (Figure 3-1B), and ECH2 catalyzes subsequent 

decarboxylation to 7. 

Next, we also demonstrated that ECH1 and ECH2 are able to accept and catalyze 

dehydration and decarboxylation of (R,S)-HMG-CoA (Figure 3-2B), which suggests that 

 
 
Figure 3-2. ECH1 and ECH2 assays for the substrates in CoA and ACP forms. A) 
FTICR spectra, 50 μM (R,S)-HMG-ACP, 2 μM ECH1, ECH2, or both, at 37oC for 3 h. 
Experimental most abundant mass: 5-ACP, 11325.8; 6-ACP, 11307.8; 7-ACP, 11264.8. B) 
UV 275 nm traces of (a) standards: 5-CoA and 7-CoA (MC-CoA), 0.5 mM (R,S)-5-CoA 
treated with (b) 2 μM ECH1, (c) 2 μM ECH2, (d) 2 μM ECH1 and ECH2 at 37oC for 3 h. The 
CoA peak shoulders and the following minor peaks are possibly due to CoA aggregation. 
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the two enzymes recognize the phosphopantetheine arm from CoA as well as holo-ACP. 

Importantly, this finding facilitated structural identification of the dehydration and 

decarboxylation products from the reaction. Specifically, 0.5 mM (R,S) HMG-CoA was 

incubated with the ECH1, ECH2 or both (2 μM each) in 30 mM Bis-Tris buffer, pH 6.5 at 

37 oC for 3 hours, and the reaction mixtures were analyzed by HPLC equipped with a 

photodiode array detector and an ESI-LTQ mass spectrometer (ThermoFinnigan). UV 

spectral analysis of the HMG-CoA substrate, and the following dehydration and 

decarboxylation steps, revealed a significant absorption increase at 260 nm for both 

dehydration and decarboxylation products (Figure 3-S2). This increase is consistent with 

an α,β C=C bond formation in an acyl-CoA thioester (23). In addition, MS/MS analysis 

confirmed that the dehydration product was 6-CoA, and we did not pursue the further 

clarification of the C=C configuration. To determine regiochemistry of the double bond 

in the decarboxylation product, we synthesized 3-methyl-3-butenoyl-CoA and used 

commercially available 7-CoA (Sigma) as authentic standards. HPLC co-injection 

showed that the decarboxylation product is 7-CoA (Figure 3-S3A). 

Finally, we investigated the substrate preference of ECH1 by comparing the 

conversion ratio of (R,S)-HMG-CoA and (S)-HMG-CoA which was generated by 

HMG-CoA reductase (24). Based on HPLC traces, the conversion ratio of (S)-HMG-CoA 

is 2-fold higher than that of (R,S)-HMG-CoA (Figure 3-S3B), which indicates that 

(S)-HMG is the natural ECH1 substrate (25). 

In summary, the CurE/CurF ECH1-ECH2 enzyme pair from the curacin A 

biosynthetic pathway was functionally identified as a mechanistically diverse enzyme 

pair. We demonstrated that CurE ECH1 catalyzes dehydration of (S)-HMG-ACP 5 to 

form 3-methylglutaconyl-ACP 6, and CurF ECH2 catalyzes decarboxylation of 6 to 

generate 3-methylcrotonyl-ACP 7, the presumed precursor for cyclopropyl-ACP 8 

formation in curacin A. The detailed steps leading from 3-methylcrotonyl-ACP to the 

cyclopropane ring are the subject of ongoing studies in our laboratory. It is noteworthy 

that, to date, only two members of crotonase enzyme superfamily, methylmalonyl-CoA 

decarboxylase (MMCD) (26) and CarB (27) were reported to catalyze loss of carbon 

dioxide. Thus, identification of the reaction catalyzed by CurF ECH2 provides a new 
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example of this novel biotin-independent decarboxylase in secondary metabolism. 

3.3.2  Structural Insights into ECH2 Decarboxylation 

Structure Determination  Initial crystal screening with a polypeptide including 

residues 1-257 of CurF produced crystals that diffracted to only ~3.8Å, but an N-terminal 

truncation including residues 17-257 yielded crystals that diffracted to beyond 2Å. The 

structure was solved by MAD phasing using selenomethionyl CurF ECH2 (Table 3-S1). 

The resulting model was refined against the 2.0Å dataset in crystal form I and used to 

solve the structures by molecular replacement in crystal form II (Table 3-S2). 

Structure of the N-terminal ECH2 Domain of CurF  The CurF ECH2 domain 

possesses the crotonase core fold (residues 17-209) consisting of a central mostly parallel 

beta sheet flanked by alpha helices (Figure 3-3A). Roughly perpendicular to the main 

beta sheet (β1, β2, β3, β5, β7) are short beta strands (β4, β6, β8) that are a hallmark of 

the crotonase superfamily. Crotonase superfamily members can be classified into one of 

three structural classes based on the conformation of the helical C-terminus (14, 20). The 

helical C-terminus (α9, α10, α11) of CurF ECH2 has the “self-association” fold seen in at 

least eight other crotonase family members (15-17, 19, 28), including the two with 

biotin-independent decarboxylase activities, methylmalonyl CoA decarboxylase (MMCD) 

(26) and carboxymethylproline synthase (CarB) (14). 

Quaternary Structure of the ECH2 Domain of CurF  The trimer structure 

fundamental to the crotonase superfamily occurs in both crystal forms of ECH2 (Figure 

3-3B). Subunit contacts are virtually identical in the two crystal forms. A total of 15% of 

the solvent-accessible surface area of the monomer is buried in the ECH2 trimer (total 

buried surface area per monomer = 1050 Å2). The extensive buried surface and the lack 

of water in the subunit interface together indicate that the trimeric association observed in 

the crystal structure reflects a true quaternary structure for the protein. However, in 

solution CurF ECH2 also displayed concentration-dependent dissociation (Figure 3-S4), 

indicating a dynamic equilibrium between trimeric and lower oligomeric states. 

Active site  Despite less than 20% sequence identity with other crotonase family 
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members of known structure, strong structural similarity of the CurF ECH2 domain to 

 
Figure 3-3. CurF ECH2 structure. A), stereo diagram of the monomer of the CurF ECH2 
domain with the active site chamber indicated by an asterisk. B), trimeric structure of the 
CurF ECH2 domain with the active site chamber indicated by an asterisk. C), multiple 
sequence alignment of ECH2-like decarboxylases from gene clusters encoding the 
biosynthesis of curacin (CurF), bacillaene (PksI, 44% identity), virginiamycin M (VirE, 36% 
identity), myxovirescin A (TaY, 43% identity), mupirocin (MupK, 39% identity), 
jamaicamide (JamJ, 59% identity), pederin (PedI, 36% identity), and sequences of the two 
structurally characterized crotonase superfamily decarboxylases (CarB [17% identity] and 
MMCD [15% identity]). Secondary structure elements of CurF are shown above the 
alignment, residues of the oxyanion hole are indicated by triangles below the alignment, 
invariant residues are red, sites of conservative substitution are blue, and similar residues are 
green. Every tenth residue is underlined.aggregation. 
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crotonase superfamily members enabled us to align the structures and to identify critical 

elements of the active site, including the substrate binding tunnel, active site oxyanion 

hole, and active site chamber. Structural alignments with several other crotonase family 

members (Figure 3-S5) clearly indicate that the backbone amides of residues Ala78 and 

Gly118 form the oxyanion hole. These residues follow conserved Gly77 and Gly117, which 

have backbone conformations only accessible to glycine. In this manner, the peptide 

planes of residues 77-78 and 117-118 are oriented so their amides can stabilize the 

 
 
Figure 3-4. Active site of CurF ECH2. A) refined 2Fo - Fc electron density contoured at 1 σ 
from wild type CurF ECH2 domain. The water molecule present in the oxyanion hole is shown 
with dashed lines to the backbone amides of Ala78 and Gly118. Residues His240, Lys86, and 
Tyr82 are shown in the foreground. B) stereo diagram of substrate (gray) modeling results 
highlighting polar residues within8Åofthe modeled substrate carboxylate group. The loop 
connecting helices α2 and α3 covers the active site. 
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proposed enolate anion intermediate by hydrogen bonding. In the crystal structures, a 

water molecule occupies the oxyanion hole (Figure 3-4A). Attempts to obtain crystal 

structures of complexes with product analogues were unsuccessful. The substrate of CurF 

ECH2 was then modeled into the active site (see Methods). Only three polar side chains 

(Tyr82, Lys86 and His240) are present within the primarily hydrophobic active-site chamber 

(Figure 3-4B). 

Decarboxylase Activity with ACP-linked substrate  Based on the active site and 

substrate modeling, residues Tyr82, Lys86 and His240 were selected for mutagenesis. 

Proteins possessing Y82F, K86A, K86Q H240A, or H240Q were produced and assayed 

for activity against ACP-linked substrates in a coupled ECH1/ECH2 assay (10). 

Substitution of Tyr82 by Phe led to two-fold reduction in product formation in comparison 

to wild-type (Figure 3-5), indicating that Tyr82 plays little or no role in catalysis. On the 

other hand, product formation was reduced more than 20-fold in the K86A, K86Q, 

H240A, and H240Q variants compared to wild-type. FT-ICR mass spectrometry 

confirmed that the ECH1 and ECH2 products were produced from the ACP-linked 

substrate (Figure 3-5C, Figure 3-S6) (10). The 1.65Å crystal structure of the Y82F 

variant of CurF ECH2 showed a similar position for the phenyl ring within an otherwise 

undisturbed structure. Although stable, the CurF ECH2 K86A, K86Q, H240A, and 

H240Q variants have not yielded crystals. 

Decarboxylase Activity Preference for ACP-linked Substrates over CoA-linked 

Substrates  CurE ECH1 activity towards (R,S)-HMG-CoA or (R,S)-HMG-ACP yielded 

very similar 3-methylglutaconyl-ACP and 3-methylglutaconyl-CoA yields (Figure 3-6). 

CurF ECH2 activity towards 3-methylglutaconyl-ACP or 3-methylglutaconyl-CoA 

yielded significantly better activity with the ACP-linked substrate (~3% CoA conversion 

versus >70% conversion, respectively) (Figure 3-6). 

The N-terminal ECH2 domain of CurF possesses the crotonase superfamily fold. As 

is seen with the two other structurally characterized crotonase family members 

possessing biotin-independent decarboxylase activity (CarB (14) and MMCD (26)), the 

C-terminal helical domain folds back upon the monomer in a “self association” fold (15). 
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Thus the active site chamber is formed exclusively by residues within one monomer of 

the trimer. 

The diversity of chemical reactions catalyzed by crotonase family members and 

their highly divergent sequences result in little if any conservation within the active site 

chamber. Nevertheless, the close structural similarity with other crotonase family 

members suggests strongly that Ala78 and Gly118 form the oxyanion hole of CurF ECH2 

(Figure 3-S5). The site-directed mutagenesis results show that Lys86 and His240 play 

crucial roles in catalysis (Figure 3-5). We propose a decarboxylation mechanism in which 

 
 
Figure 3-5. ECH1/ECH2 coupled enzymatic assays for ECH2 wild type and mutants. A) 
HPLC chromatograms showing the (R,S)-HMG-CurA-ACP(II) and associated species before 
and after ECH1/ECH2 coupled reactions at 37°C for 1 h; the peaks correspond to 
(R,S)-HMG-CurA-ACP(II) (peak 1), 3-methylglutaconyl-CurA-ACP(II) (peak 2), and 
3-methylcrotonyl-CurA-ACP(II) (peak 3). B) comparison of the peak areas of 
3-methylcrotonyl-CurA-ACP(II) for ECH2 wild type and mutants. The data were subjected to 
normalization and base-line subtraction before the peak area calculation, and the assays were 
duplicated. C) FTICR-MS identification of the ACP-linked substrate and products. Only the 
preferred substrate for ECH1,(S)-HMG-ACP, is shown in the reaction scheme. 
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the oxyanion hole anchors the substrate in the active site and stabilizes the enolate anion, 

His240 hydrogen bonds with the substrate carboxylate, and Lys86 is the proton donor to the 

C-4 position of the decarboxylated substrate (Figure 3-7). The hydrophobic environment 

of the active site chamber enhances the reactivity of these groups. 

Other than Lys86 and His240, Tyr82 is the only polar side chain within the active site 

chamber. However, elimination of the phenolic hydroxyl by substitution with Phe had 

 
 
Figure 3-6. Comparison of ACP and CoA substrate preference of ECH1 and ECH2. A) 
CoA-dependent activities. HPLC traces were monitored at 254 nm. 50 µM (R,S)-HMG-CoA 
or 3-methylglutaconyl-CoA was treated with 2 µM ECH1 or ECH2. B) ACP-dependent 
activities. HPLC traces at 280 nm. 50 µM (R,S)-HMG-ACP or 3-methylglutaconyl-ACP was 
treated with 2 µM ECH1 or ECH2. Peak 1,(R,S)-HMG; peak 2, 3-methylglutaconyl; peak 3, 
3-methylcrotonyl. The yields of CoA (A, peak 2) or ACP (B, peak 2) for the reactions of CoA 
(A, peak 1)/ACP (B, peak 1) treated with ECH1 are similar ( 10-15% conversion of substrate 
to product), but the yields of CoA (A, peak 3) and 3-ACP (B, peak 3) treated with ECH2 are 
significantly different ( 3% for the CoA substrate and >70% for the ACP substrate). 
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only a two-fold effect on product formation, indicating that Tyr82 does not play a major 

role in substrate hydrogen bonding or proton donation. Interestingly, Tyr140 of MMCD 

was proposed to hydrogen bond with the carboxylate group of methylmalonyl CoA in a 

mechanism analogous to that outlined above (26). Tyr82 of CurF ECH2 and Tyr140 of 

MMCD are not in analogous parts of the protein structures. Significantly, Tyr82 is not 

conserved among sequences of decarboxylases in the crotonase superfamily (Figure 

3-3C). 

His240 is conserved in all decarboxylases encoded by HCS cassettes and also in 

carboxymethylproline synthase (CarB) (Figure 3-3C). His240 is in an excellent position to 

assist catalysis by hydrogen bonding with the carboxylate leaving group (Figure 3-7A). 

In liganded CarB, His229 is in an identical position to His240 of CurF ECH2, and also was 

proposed to function as a general base in decarboxylation (14). The importance of His240 

in catalysis was demonstrated in the H240A and H240Q variants of CurF ECH2, in which 

catalysis was severely impaired (Figure 3-5). His240 of CurF ECH2 is the only invariant 

polar residue within the active site chamber, and we propose that it acts as a general base 

here and in all other ECH2-like decarboxylases of HCS cassettes (Figure 3-3C). An 

analogous His does not exist in MMCD. The equivalent helix to α10 of CurF ECH2, 

which contains His240, is further from the active site chamber in MMCD and forms 

extensive trimer contacts with the adjacent monomer. 

After decarboxylation, proton donation to the substrate C-4 carbon to form 

 
 
Figure 3-7. Proposed CurF ECH2 mechanism. His240 stabilizes the substrate 
carboxylate (A), and Lys86 donates a proton to the decarboxylated intermediate (B) to 
form the product (C). The oxyanion hole is formed by the backbone amides of Ala78 
and Gly118. 
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isopentenyl-ACP is necessary for enolate collapse to the ∆2 unsaturated product (Figure 

3-7B). Lys86 is the most likely proton donor in CurF ECH2, given the relatively fixed 

position of the enolate anion in the oxyanion hole during substrate binding and the 

hydrophobic nature of the active site chamber. Lys86 resides on helix α2, and has the 

necessary flexibility and reach to accommodate proton donation at the C-4 carbon of the 

substrate (Figure 3-4B). His240 is not a candidate proton donor because it appears unable 

to reach the C-4 carbon of the decarboxylated intermediate, as required for subsequent 

product formation, and also unable to move closer to the C-4 carbon. Its backbone is held 

in place as part of the long helix α10 and its side chain is positioned by a hydrogen bond 

with the carbonyl of Thr147 (Figure 3-4A) deep within the active site chamber. In contrast, 

Lys86 is located on helix α2, the most mobile part of the CurF ECH2 structure as seen in 

distinctly higher crystallographic temperature factors. This region of the crotonase fold is 

generally mobile and is completely disordered in some structures. 

Proton addition to the C-4 carbon following decarboxylation should produce an α,β 

unsaturated product, whereas proton addition to C-2 should yield the β,γ product (Figure 

3-7). Examples of both reaction routes exist, based on the structures of the PKS products. 

Thus, the mechanism of ECH2 is a key determinant of the regiochemistry of the ultimate 

product of each pathway. The active site chambers of other ECH2-like decarboxylases 

appear equally as hydrophobic as the CurF ECH2 active site with the exception of the 

loop between helices α2 and α3 (residues 89-95 of CurF, Figure 3-3C). This region 

covers the active site (Figure 3-4B), but differs in length and sequence among the ECH2 

decarboxylases (Figure 3-3C). It is uncertain whether all residues aligned with CurF 

89-95 constitute the α2-α3 loop in these decarboxylases, or whether some of them are 

part of a longer helix α3, as in CarB and MMCD (Figure 3-S5). Variability in the α2-α3 

loop is expected among the ECH2 decarboxylases. Each enzyme must possess a unique 

conformation to accommodate its substrate, often bulkier than the methyl group of the 

CurF ECH2 substrate. In addition, a unique proton donor must be positioned to generate 

specifically an α,β or β,γ unsaturated product. Candidate proton donors include Lys80, 

Asp83 or Asp84 of PksI, His68, Asp73 or Asp77 of VirE, Cys74 or Asp75 of TaY, Asp79 or 

Asp82 of MupK, Glu88, Glu89, Lys92 or Asp95 of JamJ, and Asp2949, Lys2954, Asp2962 or 
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Glu2963 of PedI (Figure 3-3C). 

The CurF ECH2 domain is the first structurally characterized crotonase family 

member that acts preferentially upon ACP-linked substrates. Product formation in vitro 

with a CoA-linked substrate was significantly less robust than with an ACP-linked 

substrate (Figure 3-6), but the effect of each amino acid substitution was identical in 

ACP- and CoA-based assays (data not shown). Despite the strong preference for 

ACP-linked substrates by CurF ECH2, structure alignment with other crotonase 

superfamily enzymes having CoA ligands (Figure 3-S5) revealed remarkably few 

structural changes in the CoA-binding region. Structural motifs that would recognize the 

adenine ring and overall backbone conformation around the adenosine portion of CoA are 

identical to other structurally characterized crotonase enzymes. One notable difference in 

CurF ECH2 is the position of the Tyr73 side chain. In the CoA-dependent enzymes, a 

basic side chain occupies this space and interacts with the 4-phosphate of pantothenic 

acid and the 5'-phosphate of the adenosine portion of CoA. In the ECH2-like 

decarboxylases from HCS cassettes that operate with presumed ACP-linked substrates, 

Tyr73 of CurF is conserved as a bulky phenylalanine or tyrosine residue (Figure 3-3C), 

whereas in the CoA-dependent enzymes the analogous position is always a smaller 

alanine, serine, or valine residue. Thus it appears that CoA is a poorer substrate of CurF 

ECH2 in part because the Tyr73 side chain has displaced a basic side chain (Arg38 in CurF) 

from the CoA binding site. CurF ECH2 containing an alanine substitution at the Tyr73 site 

was not soluble and has frustrated efforts to directly test this hypothesis. The relatively 

small number of changes and persistent structural conservation implies a relatively recent 

evolution of protein function towards ACP-linked substrates. 

An intriguing outcome of the CurF ECH2 structure is the apparent symmetry 

mismatch between its trimeric structure and the fundamentally dimeric structure of 

several downstream domains in the CurF polypeptide (enoyl reductase, ketosynthase, 

dehydratase) (6, 29). The CurF ECH2 domain possesses the crotonase “self-association” 

fold with the active site fully formed by each monomer and also demonstrates a capacity 

for trimer dissociation in solution (Figure 3-S4). Thus, the ECH2 domain may be 

monomeric in the context of full-length CurF, similar to the bacterial fatty acid 
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β-oxidation multienzyme complex in which an N-terminal monomeric crotonase domain 

is fused to a dimeric dehydrogenase domain (28). Nevertheless, existence of the classical 

crotonase trimer in the isolated ECH2 domain (Figure 3-3B) is strongly suggestive of a 

trimeric ECH2 within full-length CurF. This could be accomplished in either of two ways. 

CurF could be a hexamer containing two ECH2 trimers flexibly tethered to three dimers 

of the downstream domains. Alternatively, CurF could be a dimer in which ECH2 forms a 

heterotrimer with ECH1 (CurE). Determination of the oligomeric organization of CurF is 

an ongoing investigation. 

In summary, the crystal structure of the N-terminal ECH2 domain of CurF 

PKS-NRPS multifunctional protein from Lyngbya majuscula possesses a crotonase fold. 

Structural alignments identified Ala78 and Gly118 as forming the oxyanion hole, whereas 

substrate modeling identified His240, Lys86, and Tyr82 as potential catalytic residues. Site 

directed mutagenesis and functional analysis using a coupled ECH1/ECH2 

dehydration/decarboxylation assay demonstrated that His240 and Lys86 are critical for 

catalytic activity. Based on assay results, sequence conservation with decarboxylases 

from other HCS cassette-containing biosynthetic systems and comparisons with other 

structurally characterized crotonase decarboxylases, His240 is proposed to be the general 

base involved in decarboxylation and Lys86 is proposed to donate a proton to the C-4 

position of product. These structural features enable CurF ECH2 to specifically generate 

the α-β alkene regiochemistry in formation of the key isopentenyl-ACP product during 

curacin A biosynthesis. 

3.4  MATERIAL AND METHODS 

Chemical synthesis of 3-methyl-3-butenoyl-CoA. 3-methyl-3-butenoic acid was prepared 

by oxidizing 3-methyl-3-buten-1-ol (Fluka) using CrO3/H2SO4. Analytical data: 1H NMR 

(300 MHz, CD3Cl): δ =1.83 (s, 3H), 3.06 (s, 2H), 4.88 (s, 1H), 4.94 (s, 1H). 

3-methyl-3-butenoyl-CoA was generated by the thioesterification reaction of coenzyme A 

(protocol from Professor Christopher T. Walsh). 6.5 μL 3-methyl-3-butenoic acid solution 

(100 mg/mL acid in THF), 200 μL (benzotriazol-1-yloxy) tripyrrolidinophosphonium 

hexafluorophosphate (PyBOP) suspension (66.5 mg/mL in THF) and 8.87 μL 
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N,N-diisopropylethylamine (DIPEA) were combined before adding 200 μL CoA solution 

(50 mg/mL). Reaction mixture was stirred for 3-5 hours at room temperature. The mixture 

was loaded onto a preparative C18 column, and eluted with the gradient of 5-50% 

CH3OH/H2O (10 mM NH4OAc). Further purification was performed using a 

semipreparative C18 column and the gradient of 5-40% CH3OH/H2O (10 mM NH4OAc). 

Analytical data: ESI-MS (-ve): expected [M-H]-: 848.2, found: 848.3. 

Enzymatic synthesis of (S)-HMG-CoA. (S)-HMG-CoA was enzymatically generated 

using HMG-CoA reductase as previously described (24). The 15 ml reaction mixture 

contained 60 mM Tris-HCl, pH 7.9, 60 mM (R,S)-mevalonate, 5 mM NAD+, 1 mM CoA 

and 150 mM HMG-CoA reductase. 60 mM pyruvate and lactate dehydrogenase (200 units) 

were added to regenerate NAD+. The reaction was stirred at room temperature for 3 hours 

and monitored at UV 340 nm. The precipitate and enzymes were removed from the 

solution using a 10 kDa cutoff membrane (Amicon Ultra, Millipore). The filtrated solution 

was applied to a preparative C18 column using the elution gradient of 3-60% CH3OH/H2O 

(10 mM NH4OAc). The collected fraction containing (S)-HMG-CoA was evaporated and 

lyophilized. (S)-HMG-CoA was further purified by a semipreparative C18 column using the 

elution gradient of 3-30% CH3OH/H2O (10 mM NH4OAc). Analytical data: ESI-MS (-ve): 

expected [M-H]-: 910.2, found: 910.3. 

Bacterial strains, media and culture conditions. Escherichia coli DH5α MCR 

(Invitrogen) was used for DNA propagation. Escherichia coli BL21 (DE3) (Invitrogen) 

transformed with the derivatives of pET24b and pET28b (Novagen) was used for protein 

overexpression in Luria-Bertani (LB) medium. Ampicillin (100 μg/mL), Kanamycin (50 

μg/mL), Chloramphenicol (25 μg/mL), and Apramycin (50 μg/mL) were used for the 

corresponding plasmid construct resistance marker selection in E. coli cultures. 

Cloning, site-directed mutagenesis and protein overexpression. CurB, CurE and 

CurF-ECH2 (1-259 amino acid) genes were amplified from cosmid pLM54 described in 

our previous study (6) and inserted into pET24b and pET28b plasmids by the NdeI and 

XhoI restriction sites. The oligo pairs used for PCR amplification are the following: CurB 

((F) 5’-ATT GGA GTT CAT ATG AGC AAA GAA CAA GTA-3’, (R) 5’-CAA CAA 
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CTC GAG CAA TTT TGC TGC AAA TCA G-3’), CurE ((F) 5’-GAA CAC TAT CAT 

ATG TAT TAC AAA ACC ATA-3’, (R) 5’-GAT TCA CTC GAG GTT CTG CCA TGG 

GTA ATA-3’) and CurF-ECH2 ((F) 5’-CAT ATG GCA GAA CTG AAT TTG AAT-3’, 

(R) 5’-CTC GAG AAA CTC TTG CTG AAT ACG ACT-3’). The plasmid constructions 

were sequenced to confirm that they contained no errors. E. coli BL21 (DE3) was 

transformed by the expression plasmids, pET28b::CurE, pET24b::CurF-ECH2 and 

pET28b::CurB, to express N-His-tagged CurE, C-His-tagged CurF-ECH2, and 

N-His-tagged CurB. 0.8 liter cultures were inoculated with 8 ml of an overnight culture 

grown at 37oC. For CurB and CurF-ECH2, the cultures were grown at 35oC to an OD (600 

nm) = 0.5, and then cooled to 18oC prior to the addition of 

isopropyl-β-D-galactopyranoside (IPTG) (final concentration is 1 mM). The cultures were 

grown at 18oC for another 10-12 h. In order to increase the solubility of CurE, the pG-KJE8 

chaperone system (TaKaRa) was used to coexpress the chaperones in E. coli according to 

the instruction manual. 2.0 mg/mL L-arabinose and 5 ng/mL tetracycline were added to the 

culture to induce the chaperone expression. The culture was grown at 30oC to an OD (600 

nm) = 0.3-0.4, and cooled to 22oC before the addition of IPTG (0.5 mM). The culture was 

grown at 18oC for another 7-8 h prior to harvesting.  

The plasmid pMCSG7::CurFd17 was generated by PCR amplification of coding 

sequence corresponding to residues 17-257 of CurF from the pML9 cosmid DNA (6) and 

inserted into the vector pMCSG7 (30). The plasmid pMCSG7::CurFd17 was transformed 

into BL21(DE3) and grown at 37°C in 2xYT media to an OD600 of 0.6-0.8 in 2 L baffle 

flasks. The cultures were adjusted to 18°C, IPTG was added to final concentration of 0.4 

mM, and allowed to grow 8-16 h with shaking. Cells were harvested by centrifugation 

and cell pellets were frozen immediately at -20°C. SeMet-labeled protein was produced 

in BL21 (DE3) using SeMet minimal media according to the protocol of Guerrero et al. 

(31). Site-directed mutagenesis was performed by QuikChange method (Stratagene) with 

the primers: Y82F: (F) 5’-CAT CAG GGG CTA GCA AAG AAT TTT TAA TTA GAA 

AGA CTA GGG GTG AA AG-3’, (R) 5’-CTT CAC CCC TAG TCT TTC TAA TTA 

AAA ATT CTT TGC TAG CCC CTG ATG-3’; K86A: (F) 5’-GGG GCT AGC AAA 

GAA TAT TTA ATT AGA GCG ACT AGG GGT GAA GTA GAA G-3’, (R) 5’-CTT 

CTA CTT CAC CCC TAG TCG CTC TAA TTA AAT ATT CTT TGC TAG CCC C-3’; 
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K86Q: (F) 5’-GGG GCT AGC AAA GAA TAT TTA ATT AGA CAG ACT AGG GGT 

GAA GTA GAA G-3’,(R) 5’-CTT CTA CTT CAC CCC TAG TCT GTC TAA TTA 

AAT ATT CTT TGC TAG CCC C-3’; D95A: (F) 5’-GGG GTG AAG TAG AAG TTC 

TTG CTT TAT CAG GGT TGA TAC-3’, (R) 5’-GTA TCA ACC CTG ATA AAG CAA 

GAA CTT CTA CTT CAC CCC-3’; D95N: (F) 5’-GGG GTG AAG TAG AAG TTC 

TTA ATT TAT CAG GGT TGA TAC-3’, (R) 5’-GTA TCA ACC CTG ATA AAT TAA 

GAA CTT CTA CTT CAC CCC-3’; H240A: (F) 5’-GAA GCT ATC AAA AAA GAA 

CTA GAA ATA GCC CAG GTA ACC TTT AAC CAA CC-3’, (R) 5’-GGT TGG TTA 

AAG GTT ACC TGG GCT ATT TCT AGT TCT TTT TTG ATA GCT TC-3’; H240Q: 

(F) 5’-GAA GCT ATC AAA AAA GAA CTA GAA ATA CAA CAG GTA ACC TTT 

AAC CAA CC-3’, (R) 5’-GGT TGG TTA AAG GTT ACC TGT TGT ATT TCT AGT 

TCT TTT TTG ATA GCT TC-3’. All constructs were verified by DNA sequencing. 

CurA (2057-2146)-ACPII with a C-terminal His6-tag was constructed by inserting 

synthetic DNA (a kind gift from Christopher Calderone and Christoper T. Walsh, 

Harvard Medical School) into pET29a using NdeI and XhoI restriction sites. Protein 

overexpression of CurA ACPII was performed as described for CurB ACP. 

Protein purification. Protein purification was performed at 4oC. E. coli cells bearing an 

expression construct were harvested by centrifugation (4,000 x g, 15 min, 4oC), 

resuspended in the lysis buffer (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 10 mM 

imidazole, 20% glycerol) and disrupted by sonication. The cell debris was removed by 

centrifugation at 15,000 × g for 50 min. The supernatant was gently removed and loaded 

onto at the Ni-NTA agarose column pre-equilibrated with lysis buffer. The resin was 

washed successively with at least 5 column volumes of the washing buffer (50 mM PBS 

buffer, pH 8.0, 300 mM NaCl, 20 mM imidazole) to remove nonspecifically bound 

contaminants. Bound proteins were eluted with the elution buffer (50 mM PBS buffer, 

pH 8.0, 300 mM NaCl, 250 mM imidazole). The eluate was concentrated using Amicon 

Ultra centrifugal devices (Millipore) and immediately loaded onto the PD10 desalting 

column (GE Healthcare) pre-equilibrated with the storage buffer (50 mM PBS buffer, pH 

7.5, 200 mM NaCl, 20% glycerol). The proteins were flash-frozen in liquid N2 and stored 

at -80oC for further use. The purity of the protein was analyzed by SDS-PAGE and the 

protein concentrations were determined using the Bradford assay (Bio-Rad Protein assay, 
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Bio-Rad). 

The protein purification for X-ray structural studies was performed in a similar way. The 

cell pellet from 1 L of culture was resuspended in 35 mL of buffer A (20 mM Tris pH 7.9, 

500 mM NaCl, 10% glycerol, 20 mM imidazole). Cellytic Express (200-300 mg) was 

added prior to lysis by sonication (Sigma-Aldrich). Lysate was cleared by centrifugation 

at >38,000 x g for 45 minutes. Supernatant was filtered by 0.45 μm filter, loaded onto a 5 

ml HisTrap (GE Healthcare) Ni-NTA resin column, and washed with 10 column 

volumes of buffer A. Protein was eluted with ~200 mM imidazole by a linear gradient of 

buffer B (20 mM Tris pH 7.9, 500 mM NaCl, 10% glycerol, 750 mM imidazole). For 

His-tag removal, fractions were pooled, buffer exchanged with buffer A containing 1 mM 

DTT, and incubated at 4°C for 24-72 h with 2% (w/w) His-tagged TEV protease. The 

reaction mixture was reloaded onto the HisTrap column and flow-through fractions were 

pooled, concentrated, and loaded onto a HiLoad 16/60 Superdex 75 (GE Healthcare) 

column equilibrated with 20 mM Tris pH 7.9, 500 mM NaCl, and 10% glycerol. 

Fractions were then combined, concentrated to 20 mg/ml and either flash frozen in liquid 

N2 or stored at 4°C. 

FTMS analysis. Multiply protonated (R,S)-HMG-CurB ACP with or without ECH1 

and/or ECH2 treatment was generated by electrospray ionization (ESI) at 70 µL/h (Apollo 

ion source, Bruker Daltonics, Billerica, MA) of a solution containing 2.5 μM 

(R,S)-HMG-CurB (1:1 CH3CN:H2O with 0.05% HCOOH and 0.05% CF3COOH). To 

accurately determine the masses of HMG-CurB ACP and the species associated with the 

loss of H2O and (H2O + CO2) from (R,S)-HMG-CurB ACP a calibration standard 

(G2421A, Agilent Technologies, Palo Alto, CA) was mixed with the sample (30-fold 

dilution of the standard) for internal calibration. All mass spectra were collected with an 

actively shielded 7 Tesla quadrupole-Fourier transform ion cyclotron resonance (FT-ICR) 

mass spectrometer (APEX-Q, Bruker Daltonics). Ions produced by ESI were externally 

accumulated in a hexapole for 1 s, transferred via high voltage ion optics, and captured in 

an Infinity ICR cell (32) by gated trapping. This accumulation sequence was looped 32 

times. The ESI capillary voltage was set to -3.8 kV. Nitrogen drying gas (200-250°C) 

was employed to assist desolvation of ESI droplets. The collision cell gas pressure (Ar) 
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was kept at 4.5 × 10-6 mbar, which is slightly lower than the standard pressure used for 

this instrument (6-7 × 10-6 mbar). All data were acquired with XMASS software (version 

6.1, Bruker Daltonics) in broadband mode from m/z = 200 to 2000 with 512k data points 

and summed over 16 or 32 scans. Mass spectra were analyzed with the MIDAS analysis 

software (33) Internal frequency-to-mass calibration was performed by Microsoft Excel 

with a two-term calibration equation (34) using the masses of two peaks (m/z = 

622.02895 and 922.00979) resulting from the calibration standard. The theoretical and 

calculated masses are listed in table 3-S3. (Performed by Haichuan Liu) 

HPLC and mass spectrometry analysis. The ECH activity assays using HMG-CoA 

substrate were performed by incubating 500 μM HMG-CoA and 2 μM ECH1, ECH2 or 

both in 30 mM Bis-Tris-HCl buffer, pH 6.5 at 37oC for 5 h. Before the LC-MS analysis, 

the reaction mixtures were filtered using a 10 kDa cutoff membrane (0.5 ml, Amicon 

Microcon, Millipore) to remove the enzymes. The filtered mixtures were analyzed by 

HPLC using a reverse-phase column chromatography (XBridge C18, 3.5 μm, 2.1x150 

mm, Waters). The LC-MS was performed on the ThermoElectron Surveyor HPLC 

system equipped with the ThermoElectron Finnigan ESI-LTQ mass spectrometer. The 

isolation width for MS/MS-fragmentation was 1.5 and the normalized energy was set to 

28%. 

Crystallization. Crystals were grown in 24-72 h at 4°C by micro-seeding in hanging 

drops using the vapor diffusion method. Equal volumes were mixed of protein solution 

and mother liquor containing 1.3-1.8 M sodium malonate pH 7.0, 50 mM HEPES pH 6.8, 

and 0-25 mM 2-ethanamidoethyl 3-methylbut-2-enethioate. Crystals were harvested in 

loops and directly frozen by plunging into liquid N2. Both trigonal (P321) and 

rhombohedral (R32) crystals grew in the above crystallization condition from the same 

seed stock. (Performed by Todd Geders) 

Data collection and structure determination. Diffraction data were collected at 100 K 

on GM/CA-CAT beamlines 23ID-B and 23ID-D at the Advanced Photon Source (APS) 

in Argonne National Laboratory (Argonne, IL). Data were processed using the HKL2000 

suite (35). Initial phasing was performed using a three-wavelength MAD dataset from a 
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single trigonal wild-type SeMet-labeled protein crystal. SOLVE was used to find the four 

selenium sites and for MAD phasing (‹m› = 0.47, score = 25.07) (36). RESOLVE was 

used for density modification (overall FOM = 0.69) and partial automated model building 

(37, 38). In both crystal forms, one ECH2 subunit was present in the asymmetric unit. 

Modeling was completed manually using COOT (39). Refinement was performed using 

REFMAC5 of the CCP4 suite with TLS (40-43). The refined model was used as a probe 

structure for molecular replacement using PHASER with data from rhombohedral 

crystals (43, 44). (Performed by Todd Geders) 

Sequence and structure analysis. Sequence alignments were performed by T_COFFEE 

(40). Figures and structure alignments were generated with PyMOL (45). Surface area 

calculations were calculated using AREAIMOL (46). Identification of structural 

neighbors was performed by a DALI search (47). (Performed by Todd Geders) 

Structure alignment and substrate modeling. Cα atoms of the crotonase core domain 

of CurF ECH2 (residues 18-222) were aligned with the analogous core region of liganded 

crotonase family members carboxymethylproline synthase ((14), PDB code 2A81, 

RMSD=2.3Å for 167 Cα), methylmalonyl-CoA decarboxylase ((26), PDB code 1EF9, 

RMSD=1.7Å for 153 Cα), 1,4-dihydroxy-2-naphthoyl-CoA synthase ((48), PDB code 

1Q51, RMSD=1.6Å for 138 Cα), rat enoyl-CoA hydratase ((12), PDB code 1DUB, 

RMSD=1.8Å for 156 Cα), and 4-chlorobenzoyl-CoA dehalogenase (13), PDB code 

1NZY, RMSD=2.0Å for 163 Cα) (Figure 3-S5). Initial atomic coordinates and topology 

files for the substrate 3-methylglutaconyl moiety attached to 4-phosphopantetheinic acid 

were generated using the PRODRG2 server (49). Using the conformation of 

4-phosphopantethenic acid bound to rat ECH as a guide (PDB code 1DUB), the substrate 

thioester oxygen was fixed at the position of a water molecule in the oxyanion hole of 

wild-type CurF ECH2. Three water molecules overlapping the modeled substrate were 

removed. The model was refined by energy minimization using the program CNS (50) in 

500 steps of conjugate gradient minimization with no experimental energy terms, no 

crystallographic symmetry restraints, and fixed main chain positions after addition of 

polar hydrogens. (Performed by Todd Geders) 
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ECH1/ECH2 coupled enzymatic assay. The activities of the CurF ECH2 wild type and 

variants were measured in the ECH1-ECH2 coupled assay, as previously reported (10). In 

brief, 50 μM (R,S)-HMG-CurA-ACPII was incubated with 2 μM ECH1 and ECH2 (WT or 

variants) in 50 mM Tris-HCl (pH 7.5) at 37oC for 1 h. The reactions were terminated by 

10% formic acid immediately before loading the reaction mixture on the Jupiter C4 (5μ, 

300 A) reverse phase column (Phenomenex) and the proteins were eluted with CH3CN 

(0.05% HCOOH and 0.05% CF3COOH)/H2O (0.05% HCOOH and 0.05%CF3COOH). 

The chromatogram peaks were normalized by 32 Karat software (Beckman Coulter) and 

subjected to base-line subtraction before peak-area calculations. 

Preparation of 3-methylglutaconyl-CoA and ACP. In order to separate the dehydration 

and decarboxylation steps catalyzed by ECH1 and ECH2, 3-methylglutaconyl-CoA was 

prepared by enzymatic dehydration of (R,S)-HMG-CoA. (R,S)-HMG-CoA was incubated 

with ECH1 at 37oC for 5 h, and the dehydration product was isolated using XBridge Prep 

C18 column (Waters, 10 x 250 mm, 5 μm) under the similar HPLC conditions reported 

(10). The fractions were pooled and lyophilized. ~0.5 mg 3-methylglutaconyl-CoA was 

generated from 6 mg (R,S)-HMG-CoA. 3-methylglutaconyl-ACP was prepared with the 

Sfp protocol (10). 

ECH1 and ECH2 assays for ACP and CoA substrates. (R,S)-HMG-CoA/ACP and 

3-methylglutaconyl-CoA/ACP were employed to test the ECH1 and ECH2 activities. 2 

μM ECH1 or ECH2 was incubated with 50 μM ACP or CoA substrates in 50 mM 

Tris-HCl (pH 7.5) at 37oC for 1 h. The CoA samples were analyzed by XBridge Prep C18 

column (Waters, 4.6 x 250 mm, 5 μm) and eluted with MeOH/H2O (10 mM 

CH3COONH4), and ACP samples were analyzed by Jupiter C4 column and eluted with 

CH3CN (0.05% HCOOH and 0.05% CF3COOH)/H2O (0.05% HCOOH and 0.05% 

CF3COOH). 
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3.5  SUPPLEMENTARY FIGURES AND TABLES 

 
A

B

 
 

Figure 3-S1. Partial sequence alignments of ECH1 (A) and ECH2 (B) from different 
microorganisms. The two consensus sequences highlighted in red were reported to contribute to 
the formation of the oxyanion hole in the crotonase superfamily. The identical amino acids are 
highlighted in green. CurE, F: Lyngbya majuscula; JamI, J: Lyngbya majuscula; MupJ, K: 
Pseudomonas fluorescens; PksH, I: Bacillus subtilis; Bpse6_01000426, 01000427, Burkholderia 
pseudomallei; BpseP_02004602, 02004603: Burkholderia pseudomallei; BPSS1000, 1001: 
Burkholderia pseudomallei; BTH_II1668, 1669: Burkholderia thailandensis; Npun02005238, 
02005239: Nostoc punctiforme. 
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Figure 3-S2. Mass spectra (A) and UV spectra (B) of CoA compounds. 5, (HMG)-CoA (a), 6, 
(3-methylglutaconyl)-CoA (b) and 7, (3-methylcrotonyl)-CoA (c). The mass spectra and UV 
spectra were recorded at the retention times of the corresponding HPLC peaks after the 
background subtraction. 
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Figure 3-S3. ECH1 substrate specificity and ECH2 regiochemical control. A) HPLC 
chromatograms at 260 nm for ECH1 and ECH1 assays and co-injection with the standards. (a) 
Authentic standards: 7 (3-methylcrotonyl)-CoA and 3-methyl-3-butenoyl-CoA; (b). ECH1/ECH2  
coupled assay using (R,S)-HMG-CoA; (c) the co-injection of (b) and 7-CoA. B) HPLC 
chromatograms at 275 nm for ECH1 assays using (R,S)-HMG-CoA and (S)-HMG-CoA. Reaction 
conditions: 500 μM HMG-CoA, 2 μM ECH1, at 37oC for 1.5 hours. 5-CoA: HMG-CoA, 6-CoA: 
3-methylglutaconyl-CoA. 
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Figure 3-S4. Analytical size-exclusion chromatography of the CurF ECH2. Change in 
apparent molecular weight is seen at loading concentrations below 5 mg/mL. Normalized A280

 absorbance trace is shown for a 100 μL injection onto a 24 mL Superdex 200 10/300 GL column 
at the indicated protein concentration: black (10 mg/mL), blue (5 mg/mL), magenta (1 mg/mL), 
and red (0.25 mg/mL). Elution volumes for molecular weight standards are shown at the top. 
Similar elution patterns are seen with trimeric rat mitochondrial Δ3-Δ2-enoyl-CoA isomerase (1,2) 
and 4-hydroxycinnamoyl-CoA hydratase/lyase from Pseudomonas (3,4).  
1. Palosaari, P. M., Kilponen, J. M., Sormunen, R. T., Hassinen, I. E., and Hiltunen, J. K. (1990) 

J. Biol. Chem. 265(6), 3347-3353  
2. Hubbard, P. A., Yu, W., Schulz, H., and Kim, J. J. (2005) Prot. Sci. 14(6), 1545-1555  
3. Mitra, A., Kitamura, Y., Gasson, M. J., Narbad, A., Parr, A. J., Payne, J., Rhodes, M. J., Sewter, 

C., and Walton, N. J. (1999) Arch Biochem. Biophys. 365(1), 10-16  
4. Leonard, P. M., Brzozowski, A. M., Lebedev, A., Marshall, C. M., Smith, D. J., Verma, C. S., 

Walton, N. J., and Grogan, G. (2006) Acta Crystallogr. D 62(Pt 12), 1494-1501  
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Figure 3-S5. Superposition of CurF ECH2 with other crotonase family members. A, Stereo 
diagram of the superposition of wild-type CurF ECH2 

(green) with MMCD (magenta), CarB 
(yellow), MenB (pink), rat ECH (grey), 4-chlorobenzoyl CoA dehalogenase (blue). The 
4-phosphopantetheine arms observed in the structures are shown in stick representation. The view 
is from the same orientation as Figure 3-4, with helix α3 present in front. B, Wild-type CurF 
ECH2 

is shown in cartoon representation (green). The water molecule in the oxyanion hole is 
shown as a red sphere with yellow dashed lines to backbone amides. The phosphopantetheine arm 
portion of the ligand from each structure in the superposition is shown with carbon coloring 
corresponding to the structure shown in A.  
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Table 3-S1. Data Collection. 
 
  Crystal Form I  Crystal Form II 
Parameter  SeMet wt Peak Inflection Remote  SeMet wt Y82F 
Space Group  P321 P321 P321 P321  R32  R32 
Dimensions (Å) a, 
c 

 105.4, 
46.3 

105.6, 
46.1 

105.7, 
46.1 

105.8, 
46.2 

 106.2, 
118.5 

106.1, 
119.5 

X-ray source  23ID-B 23ID-B 23ID-B 23ID-B  23ID-D 23ID-D 
Wavelength λ (Å)  1.0332 0.97942 0.97956 0.95373  1.0332 1.0332 
dmin (Å)  2.0 2.30 2.40 2.30  1.85 1.65 
Unique 
observations 

 20,390 13,394 11,842 13,379  22,402 31,221 

Rmerge(%)a,b  6.3 (68) 10.1 (66) 10.2 (71) 8.8 (67)  7.2 (57) 6.1 (61) 
‹I/σ›a  36.2 (3.6) 18.3 (2.9) 18.4 (2.7) 18.9 (2.3)  27.7 (4.3) 34.7 (3.7)
Completeness 
(%)a 

 99.9 
(100) 

100 (100) 100 (100) 100 (100)  100 (100) 99.9 
(100) 

Avg. redundancya  11.0 
(10.4) 

5.9 (5.8) 5.9 (5.8) 5.9 (5.6)  11.0 
(10.3) 

10.9 (9.6)

aValues in parenthesis are for outer shell 
bRmerge=∑|Ii-‹I›|/∑Ii, where Ii is the intensity of the ith observation and ‹I› is the mean intensity 
 
 
Table 3-S2. Refinement Statistics 
 
Refinement statistics  Form I Form II 
  SeMet wt SeMet wt Y82F 
Space Group  P321 R32 R32 
Data range  50-2.0 50-1.85 50-1.65 
R/Rfree

a  0.202/0.250 0.169/0.206 0.167/0.204 
RMSD bond length (Å)  0.011 0.012 0.012 
RMSD bond angle (Å)  1.245 1.249 1.316 
Average Protein B-factor 
(Å2) 

 29.6 22.8 21.5 

Average Solvent B-factor 
(Å2) 

 44.6 41.0 40.0 

Wilson B (Å2)  33.2 25.6 23.6 
Ramachandran plotc     
    Favored  98.8% 99.2% 98.3% 
    Allowed  1.2% 0.8% 1.7% 
    Disallowed  0.0% 0.0% 0.0% 
Protein atoms  1899 1895 1894 
Water molecules  145 184 307 
PDB code  2Q2X 2Q34 2Q35 
aR = ∑|FO-|FC||/∑|FO| where FO is the observed structure factor and FC is the calculated structure 
factor used in the refinement 
bRfree = ∑|FO-|FC||/∑|FO| where FO is the observed structure factor and FC is the calculated structure 
factor from 5% of reflections not used in the refinement 
cFrom output of MolProbity.
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Table 3-S3. Mass calibration results for A) HMG-ACP (CurB), B) HMG-ACPII and their 
associated peaks corresponding to the loss of H2O and (H2O + CO2). The masses of the most 
abundant isotopes of the 8+-15+ charge states were used for mass calculation. 
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CHAPTER 4 
HALOGENATION, CYCLOPROPANATION AND 

POLYKETIDE DIVERSIFICATION 
4.1  SUMMARY 

The chemical diversity of natural products is fueled by the emergence and ongoing 

evolution of biosynthetic pathways in secondary metabolism (1-5). However, the 

co-evolution of enzymes as functional assemblies for metabolic diversification is not well 

understood, especially at the biochemical level. Here, two parallel enzyme assemblies 

with an extraordinarily high sequence identity, including a halogenase domain (Hal), a 

3-hydroxy-3-methylglutaryl (HMG) enzyme cassette and an enoyl reductase domain (ER) 

in the curacin A (Cur) and jamaicamide (Jam) pathways catalyze the formation of 

β-branched cyclopropane and vinyl chloride moieties respectively, in their final products. 

Bioinformatic analysis indicated that their corresponding genes were inserted into 

modular polyketide synthases (PKSs) via acyltransferase (AT) domain replacement. The 

Hal from CurA, and dehydratases (ECH1s), decarboxylases (ECH2s) and ERs from both 

Cur and Jam were biochemically assessed to determine the mechanism of cyclopropane 

and vinyl chloride group formation. In the Cur pathway, ECH1, ECH2 and ER were 

presumed to catalyze successive dehydration, decarboxylation, and α,β C=C (enoyl 

thioester) saturation from an (S)-HMG substrate tethered to a tandem acyl carrier protein 

tridomain (ACP3), to generate isovaleryl-ACP3. Unexpectedly, this polyketide 

β-branching scheme was modified by introduction of a γ-chlorination step on (S)-HMG 

group mediated by Cur Hal, a non-haem FeII, α-ketoglutarate (α-KG)-dependent 

halogenase (6). CurF ER was found to specifically catalyze an unprecedented 

cyclopropanation reaction of the chlorinated substrate. In contrast, regiochemical control 

by Jam ECH2 selectively generates the β,γ C=C (enoyl thioester) of the 
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3-methylglutaconyl-ACP3 decarboxylation product, thus forming a vinyl chloride, and 

rendering the Jam ER redundant. Moreover, site-directed mutagenesis experiments 

demonstrated that Tyr82 of Cur ECH2 is crucial for regiochemical control. Thus, the 

combination of chlorination and polyketide β-branching, coupled with mechanistic 

diversification of ECH2 and ER leads to formation of the cyclopropane and vinyl chloride 

functional groups. These results show how the unique interplay of modular PKS domain 

integration and β-branching enzyme evolution generates functional group diversity in 

secondary metabolites. 

4.2  INTRODUCTION 

The tremendous biosynthetic capability of nature is well exemplified by structurally 

diverse secondary metabolites that help their hosts, typically microorganisms and plants, 

to survive and thrive in particular environmental niches by mediating a broad range of 

ecological and physiological interactions (1-5). The biosynthesis of secondary 

metabolites is “diversity-oriented” (1, 5, 7), targeting the variable environment by 

producing a vast array of complex chemical structures (8). This enormous productivity is 

largely fueled by the rapid evolution of biosynthetic genes and functional alteration of the 

corresponding enzymes (3, 4). As such, the evolutionary history of metabolic gene 

assemblies informs the origin of their biosynthetic diversity. However, tracing the 

ancestral forms of multiple genes as a functional collective is elusive, especially when 

they are dispersed in the genome. Biosynthetic genes from microbial hosts are usually 

clustered in their genomes, and as such are ideal for evolutionary and functional studies 

(4). To date, our understanding of the evolution of biosynthetic systems is largely limited 

to the genetic level. Recently, an expansion of sequencing information is providing rapid 

access to natural product biosynthetic enzymes, which is enabling efforts to trace the 

origin of metabolic diversity and to exploit biochemical diversity. 

Modular PKSs originated from fatty acid synthases (FASs) and serve as a paradigm 

for secondary metabolic systems that are successful in natural selection to expand 

chemical diversity. These giant biosynthetic machines are modularized assembly-lines 

catalyzing highly programmed metabolic pathways. The chain extension modules 
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minimally comprise three essential domains—ketosynthase (KS), AT, ACP—plus 

auxiliary processing domains (e.g., ketoreductase (KR), dehydratase (DH), and ER) for 

β-keto group modification. Chemical diversity of the final products tends to be generated 

by introduction of variation in chain initiation, extension and termination steps (9-11). 

Similar to other enzymes in secondary metabolism, PKS catalytic domains show 

significant substrate tolerance to expand pathway chemical diversity (9). Moreover, PKS 

systems are prone to form hybrids with other biosynthetic elements, such as 

nonribosomal-peptide synthetase (NRPS) modules, and recently reported HMG enzyme 

cassettes (12, 13). The metamorphic properties shown in these composite systems drive 

metabolic diversification, but, remain poorly understood.  

The curacin and jamaicamide marine cyanobacterial metabolites from Lyngbya 

majuscula are mixed-polyketide nonribosomal-peptide natural products with potent 

anticancer and sodium channel blocking activities, respectively (14, 15). The parallel 

components of the Cur and Jam biosynthetic pathways (Figure 4-1a) provide an unusual 

opportunity to investigate the biosynthetic origin of chemical diversity, in the form of 

cyclopropane ring formation for curacin and vinyl chloride formation for jamaicamide 

(14, 16). Studies on the function and selectivity of these highly parallel biosynthetic 

systems form the subject of this report. 

4.3  RESULTS 

4.3.1  Two Highly Similar Enzyme Assemblies 

The two parallel, highly conserved Cur and Jam pathway enzyme assemblies are 

incorporated into the early PKS modules, and are predicted to catalyze β-branching type 

modification of the growing chain elongation intermediate (14, 16). These unusual 

embedded domains and discrete enzymes span from CurA to CurF and from JamE to 

JamJ, and are grouped into three subsets (Figure 4-1a): (1) Hals embedded in CurA and 

JamE; (2) HMG enzyme cassettes containing ACP3 tridomains (tandem ACPI, ACPII and 

ACPIII) embedded in CurA and JamE, discrete CurB and JamF ACPIVs, CurC and JamG 

KSs, CurD and JamH HMG-CoA synthase-like enzymes (HCSs), CurE and JamI ECH1s, 

ECH2s embedded in CurF and JamJ; and (3) ERs embedded in CurF and JamJ 
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immediately adjacent to ECH2s (Figure 4-1a). Comparative analysis of these Cur and Jam 

 
 
Figure 4-1. Comparison of enzyme assemblies in the Cur and Jam pathways. a, 
Formation of cyclopropane and vinyl chloride functional groups. b, Comparative sequence 
identities of the HMG-type enzyme assemblies. The aligned DNA sequences are located at the 
boundaries of these two highly related regions. c, Formation of 3-ACP3 in the Cur pathway, 
and hypothesized reactions for 4-ACP3, 5-ACP3 and 6-ACP3. The β-branching carbon atoms 
are highlighted in red. 
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enzymes revealed that the sequence identities of the Hals, ACP3s, ACPIVs, KSs, HCSs 

and ECH1s are extraordinarily high (~90%), whereas the ECH2s and ERs show 

significantly lower sequence identity (~60%) (Figure 4-1b). 

Cur and Jam Hals show low homology (less than 20% sequence identity) to the 

α-KG-dependent non-haem enzyme superfamily, the members of which usually catalyze 

oxidation reactions (17). Some recently characterized halogenases belong to this 

superfamily (18-20) and are able to catalyze halogenation of unactivated carbon atoms 

(19-23) through a non-haem FeIV=O intermediate (24, 25). The presence of a β-branched 

vinyl chloride in the jamaicamide structure suggested that Jam Hal was responsible for 

the key halogenation step. By analogy, it suggested that transient halogenation might be 

crucial for curacin cyclopropane ring formation (6, 19). 

HMG enzyme cassettes have been demonstrated to catalyze polyketide β-branching 

to generate a pendant methyl or ethyl group from a polyketide β-carbonyl (12, 13, 26). As 

shown for curacin A (Figure 4-1c), the AT loads a malonyl group from malonyl-CoA to 

CurB ACPIV, and the KS catalyzes subsequent decarboxylation of malonyl-ACPIV to 

acetyl-ACPIV. HCS then catalyzes condensation of C-2 from acetyl-ACPIV and 

acetoacetyl-ACP3, to form (S)-HMG-ACP3 (1-ACP3). As we have shown previously, 

ECH1 catalyzes dehydration of 1-ACP3 to 3-methylglutaconyl-ACP3 (2-ACP3), followed 

by ECH2 mediated decarboxylation to generate 3-methylcrotonyl-ACP3 (3-ACP3) (12). 

Notably, chain elongation intermediates on ACP3 are presumed to undergo multiple 

modification steps before transfer as substrates to downstream enzymes. Presumably, the 

tridomain ACP3 facilitates metabolic efficiency, as suggested in other FAS and PKS 

systems bearing tandem ACPs (27, 28). 

Sequence analysis of Cur and Jam ERs (Figure 4-1b) suggested that each functions 

with the adjacent HMG enzyme cassette based on a presumed ability to catalyze 

reductive conversion of α,β C=C (enoyl thioester) in 3-ACP3 to isovaleryl-ACP3 

(4-ACP3). They show ~50% sequence identity to the other PKS ERs in Cur and Jam 

pathways, and belong to the acyl-CoA reductase family that catalyzes 

NADPH-dependent reduction of α,β C=C (enoyl thioester) in acyl-CoAs or acyl-ACPs 
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(29). These two ERs are located upstream of CurF and JamJ KS, an unusual location as 

ERs typically reside between AT and ACP domains in PKS modules. A similar location 

was reported for TaO ER in the myxovirescin A biosynthetic pathway, also predicted to 

catalyze reduction of the α,β C=C (enoyl thioester) of the corresponding ECH2 

decarboxylation product (30). Thus, the Cur and Jam HMG cassette enzymes including 

ACP3, ACPIV, KS, HCS, ECH1, ECH2 and ER comprise an integrated functional 

assembly for polyketide chain β-branching. Some HMG-type cassettes in other pathways 

lack one or more enzymes, and are occasionally found to have a dispersed architecture 

(31-33). 

Our previous work on Cur ECH1 and ECH2 revealed enzymatic formation of 

3-ACP3 (12, 34), a presumed precursor for (1R, 

2S)-2-methylcyclopropane-1-carboxyl-ACP3 (5-ACP3) (Figure 4-1c), but the precise 

steps leading to cyclopropane ring formation remained to be established. This initial 

study raised a number of additional questions: (1) What is the timing and regiochemistry 

of the presumed Hal reaction, and what is the specific substrate?  (2) Is Cur ER involved 

in reduction of 3-ACP3?  (3) How is the pendant vinyl chloride formed in the Jam 

pathway, and what is the key control point for the introduction of this functional group?  

As previously proposed, could 3-methyl-3-butenoyl-ACP3 (6-ACP3) be generated from 

3-ACP3 isomerization (6) or by differential regiochemical control of double bond 

formation during ECH2 decarboxylation (34)? 

4.3.2  AT Replacement-Mediated PKS Hybridization 

Bioinformatic analyses of cur and jam cluster sequences suggested that the DNA 

fragment that encompasses the parallel Cur and Jam 

AT-Hal-ACPI-ACPII-ACPIII-ACPIV-KS-HCS-ECH1-ECH2-ER-KS-AT gene assembly 

might have been introduced into the polyketide pathway by AT domain replacement 

(Figure 4-1b). Based on the DNA and amino acid alignments of CurA—CurF and 

JamE—JamJ regions, we found that the highly similar regions, with clear demarcation in 

their DNA and protein sequences, extend from the N-termini of the ATs in CurA and 

JamE, through the C-terminal “post-AT linkers” (35) of the ATs in CurF and JamJ 
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(Figure 4-1b). Moreover, the two sites that delimit these regions are conserved for the 

ATs from the sequenced cur and jam gene clusters isolated from unique strains of L. 

majuscula (Figure 4-S1). Recent bioinformatic studies indicate that these highly similar 

sequences could promote AT domain replacement by homologous recombination (36, 37). 

Thus, this gene assembly could have been introduced by a “di-AT replacement”, which 

could represent a prevalent strategy for pathway expansion or contraction in modular 

PKS systems. 

To further probe our hypothesis, we constructed phylogenetic trees for KSs, ATs 

and DHs of the sequenced pathways from L. majuscula. The CurF and JamJ KSs within 

the proposed di-AT replacement are most closely related, but in contrast the CurA and 

JamE KSs outside this region are distant (Figure 4-S2). CurA and JamE ATs as well as 

CurF and JamJ ATs reveal extraordinarily high similarity (86% and 79% sequence 

identities, respectively). As expected, the CurF and JamJ DHs, which are outside the 

di-AT replacement region, show a relatively distant relationship, with the JamJ DH being 

most similar to DHs from the putative carmabin pathway (~70% sequence identity). 

Overall, this phylogenetic analysis is consistent with the di-AT replacement hypothesis. 

4.3.3  HMG β-Branching with ER Saturation 

To assess CurF ER function as a putative reductase, the embedded domain was 

excised and cloned as an N-terminal GST-tagged fusion protein. We also overexpressed 

and purified the CurA ACP3 tridomain and each excised single domain (ACPI, ACPII and 

ACPIII) as apo proteins (Figure 4-S3). 1-ACPs were generated as previously described12, 

and substrate loading was examined by HPLC (Figure 4-S4). The ACPI, ACPII and 

ACPIII have nearly identical amino acid sequences, and each was efficiently loaded with 

the HMG substrate. Thus, for convenience we chose excised CurA ACPII, as well as 

ACP3, for subsequent enzyme assays. 

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and 

infrared multiphoton dissociation (IRMPD) methods were applied to detect mass changes 

to the HMG substrate covalently linked to the ACP phosphopantetheine (PPant) arm (38). 

Cur ER function was assessed by coupling it with the Cur ECH1 and ECH2 reactions. As 
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reported, Cur ECH1 catalyzed the reversible dehydration of 1-ACPII to generate 2-ACPII, 

and Cur ECH2 catalyzed decarboxylation of 2-ACPII to generate 3-ACPII, corresponding 

 
Figure 4-2. Halogenation and cyclopropanation in the Cur pathway. a, Partial 
FTICR mass spectra (12+ change state of ACPII) for Cur Hal, ECH1, ECH2 and ER 
reactions. 1-ACPII was incubated with Hal for 2 h to generate the γ-Cl-1-ACPII 
substrate. Reactions were incubated at 30oC for 2 h for the 1-ACPII substrate and 30 
min for the γ-Cl-1-ACPII substrate. Asterisks denote unidentified species. b, IRMPD 
spectra for the PPant ejection products (PEPs) of 3-ACPII and 4-ACPII. c, IRMPD 
spectrum for the PEP of γ-Cl-1-ACPII and its theoretical isotopic distribution. d, 
IRMPD spectra for the PEPs of  γ-Cl-3-ACPII and 5-ACPII. e, GC-MS analysis of the 
enzyme products after butylamine cleavage, and comparison with authentic standards. 
For optimal sensitivity, the chromatograms were recorded at selective ion mode (SIM) 
by monitoring 55, 57, 83, 115, 155 and 157 atomic mass unit (amu). Retention times 
of the products were confirmed by co-injection with authentic standards. 
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to 18- and 62-Dalton mass losses from 1-ACPII, respectively (Figure 4-2a). Cur ECH1 

shows substrate preference for (S)-HMG-ACPII over (R)-HMG-ACPII (Figure 4-S5), 

which is consistent with our previous results using the CoA-linked substrates (12). With 

Cur ER and NADPH, a 2-Dalton mass addition was observed for 3-ACPII (Figure 4-2a 

and 2b), corresponding to saturation of the α,β enoyl thioester to generate 4-ACPII. No 

saturation product was detected by using Cur ER and NADH as cofactor. 

To confirm the structure of the Cur ER reaction product tethered to ACP3, we 

cleaved it from the PPant arm with butylamine to generate the corresponding butylamide 

derivative. Gas chromatography (GC)-MS analysis was performed and the readily 

separable isomers were compared and correlated with authentic standards (39). We used 

1-ACPII and 1-ACP3 as substrates for Cur ECH1, ECH2 and ER reactions. According to 

the retention time and mass spectrum of the product, its structure was confirmed as 4 

(Figure 4-2e). These experiments demonstrated that a reductive step catalyzed by Cur ER 

is included in the polyketide β-branching series of reactions and that ER is a component 

of the HMG enzyme cassette. Based on this analysis, 4-ACPII had been assumed to be a 

direct precursor of 5-ACPII, which was disconfirmed by the results shown below. 

4.3.4  Halogenation and Cyclopropane Ring Formation 

In assessing the role of Cur Hal in cyclopropane ring formation we considered the 

more evident role for the Hal in the analogous Jam pathway. In this system, chlorination 

evidently occurs on the pendant carbon generated by β-branching. Thus for Cur Hal, we 

reasoned that cyclopropane ring formation likely involves transient halogenation as in 

coronatine biosynthesis, where the chloride serves as a leaving group for intramolecular 

nucleophilic substitution (19). However, timing of the chlorination event remained to be 

established, and the identity of the Cur pathway ring-forming enzyme was not evident 

from bioinformatic analysis. 

An important clue about the timing of chlorination at the β-branching carbon came 

from previous precursor-incorporation studies in curacin A biosynthesis. NMR data on 

curacin A labeling by [2H3,2-13C]acetate indicated that the β-branching carbon that forms 
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cyclopropane was labeled by only one deuterium atom (α-isotope chemical shift at C20, 

0.295) (16), which was previously interpreted as an anomalous result. Reconsideration of 

these data revealed that chlorination should occur before ECH2 catalyzed decarboxylation. 

Otherwise, the pendant carbon atom would be labeled by either one or two deuterium 

atoms by 2:1 ratio (Figure 4-S6). 

To identify the function of Cur Hal, we constructed the single-domain Hal and the 

tetradomain Hal-ACP3 as N-terminal His-tagged proteins (Figure 4-S3). Cur Hal eluted 

as a dimer from an analytical size-exclusion column. Following His-tag removal by 

thrombin cleavage, the metal content of Hal was analyzed by inductively coupled plasma 

(ICP)-MS. After reconstitution with a mixture of metal ions and α-KG, more than 90% of 

Hal was bound exclusively to Fe2+, which indicated that it functions as an FeII-dependent 

enzyme. Thus, anaerobic purification coupled with α-KG/FeII-reconstitution was 

employed, as was previously reported to retain optimal activities of α-KG-, O2- and 

FeII-dependent halogenases (19-21). 

We tested seven acyl-ACP substrates to establish the substrate identity for Cur Hal, 

including malonyl-ACPIV, acetyl-ACPIV, 1-ACPII, 2-ACPII, 3-ACPII, 4-ACPII and 

6-ACPII. Consistent with the [2H3,2-13C]acetate precursor incorporation experiment noted 

above, we observed the formation of the mono-chlorinated species exclusively on 

1-ACPII to generate γ-Cl-1-ACPII. The chlorinated product was confirmed by FTICR-MS 

and IRMPD (Figure 4-2a and 2c) analysis, and corroborated by GC-MS (Figure 4-3c, see 

below). Moreover, Cur Hal showed evident chirality preference toward the 

(S)-HMG-ACPII (1-ACPII) substrate, as expected based on previous studies of Cur ECH1 

substrate selectivity (Figure 4-S5). In the absence of α-KG or O2, no chlorinated product 

was detected with Cur Hal in the presence of HMG substrate (Figure 4-S5). 

Next, we sought to investigate how chlorination of 1-ACPII affects efficiency of the 

downstream reaction sequence with the HMG cassette enzymes. 1-ACPII was converted 

to γ-Cl-1-ACPII by Hal and reacted sequentially with Cur ECH1, ECH2 and ER. ECH1 

dehydrated γ-Cl-1-ACPII and the γ-Cl-2-ACPII product was decarboxylated by ECH2 to 

generate γ-Cl-3-ACPII (Figure 4-2a). Unexpectedly, no saturation product was observed 
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for Cur ER. Instead, we saw a 34-Dalton mass reduction from γ-Cl-3-ACPII (Figure 4-2a 

and 2d), demonstrating the elimination of chlorine in the product. This result suggests 

that the product could be 3-ACPII, 5-ACPII or 6-ACPII. These experiments also revealed 

that the ECH1/ECH2-coupled dehydration and decarboxylation rate was significantly 

increased with the chlorinated substrate (Figure 4-S7), which might be due either to the 

electron-withdrawing effect of the γ-chlorine atom which stabilizes the negative charge 

on the intermediate of ECH2 decarboxylation or to a more effective binding position of 

the chlorinated versus non-chlorinated substrate in the ECH2 active site. 

The experimental design to determine the final product in the presence of both Hal 

and HMG-cassette enzymes was streamlined by developing a one-pot reaction using Cur 

Hal-ACP3, ECH1, ECH2 and ER. Cur (apo) Hal-ACP3 was loaded with 1-CoA, desalted, 

and mixed with Cur ECH1, ECH2 and ER in an anaerobic environment. The reaction was 

initiated by exposing the mixture to air. To confirm the structure of the final product, we 

cleaved the acyl group from the Hal-ACP3 PPant arms with butylamine and compared the 

derivatives with the authentic standards by GC-MS. Direct correlation was made to a 

single species identified as the cis-2-methylcyclopropane-1-carboxyl compound (Figure 

4-2e), demonstrating the formation of 5-ACP by an unprecedented ER-catalyzed 

cyclopropanation reaction. 

4.3.5  Regiochemical Control by ECH2s 

Ascertaining the role of chlorination in the cyclopropane ring formation during 

curacin biosynthesis strongly suggested that a similar chlorination event occurs in the 

Jam pathway. Given the extraordinarily high similarity between Cur and Jam Hals (92% 

sequence identity), we surmised that the two pathways diverge after chlorination, 

resulting in differential catalytic processes in the terminal step to preserve a vinyl 

chloride moiety in jamaicamide. Compared to Cur and Jam Hals and ECH1s, Cur and Jam 

ECH2s and ERs have lower sequence identities (59% for ECH2s and 65% for ERs), and 

likely function as key branch-point determinants. Accordingly, excised forms of Jam 

ECH2 and ER were constructed, expressed and purified in the same way as the Cur 

enzymes (Figure 4-S3). We also expressed and purified Jam ECH1 to generate substrate 
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for Jam ECH2/ER reactions. We investigated the functions of Jam enzymes with Cur 

substrates starting from 1-ACP or γ-Cl-1-ACPII to establish the key branch-point that 

controls the introduction of the β,γ vinyl chloride group. 

For both 1-ACPII and γ-Cl-1-ACPII substrates, Jam ECH1 and ECH2 catalyzed 

successive dehydration and decarboxylation steps as expected (Figure 4-3a, and Figure 

 
Figure 4-3. Comparison of ECH2s and ERs in Cur and Jam pathways. a, Partial 
FTICR mass spectra for Cur and Jam ECH1, ECH2 and ER reactions with 
γ-Cl-1-ACPII substrate. The reactions were incubated at 30oC for 30 min. b, IRMPD 
spectra for the PEPs of γ-Cl-6-ACPII and γ-Cl-4-ACPII. c, GC-MS analysis to identify 
the structures of Cur and Jam ECH2 products. The chromatograms were recorded at 
selective ion mode (SIM) by monitoring 57, 117, 154 and 189 amu. The retention 
times of products were confirmed by co-injection with authentic standards. d, 
Comparison of catalytic efficiencies for cyclopropanation and saturation by Cur and 
Jam ERs. The product yields were measured by IRMPD-based quantification. 3-ACPII 
was used as substrate for Cur ER saturation, and γ-Cl-3-ACPII was used as substrate 
for Cur ER cyclopropanation and Jam ER saturation. Assays were performed in 
triplicate. 
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4-S8a). However, when Jam ER was added, only ~20% of the saturated product was 

detected for the non-chlorinated substrate (derived from 1-ACPII, Figure 4-S8b). 

Remarkably, no mass change was observed for the corresponding chlorinated substrate 

(derived from γ-Cl-1-ACPII), suggesting that the Jam ECH2 product is not a substrate for 

Jam ER. Based on FTICR-MS and IRMPD results (Figure 4-3a, 3b, and Figure 4-S8), the 

product of Jam ECH2 was consistent with either γ-Cl-6-ACPII (β,γ C=C; enoyl thioester) 

with a vinyl chloride group, γ-Cl-3-ACPII (α,β C=C; enoyl thioester) or a mixture of both.  

To probe the key branching points in these related systems further, we selectively 

exchanged the Cur and Jam ECH1/ECH2/ER enzymes in coupled reactions with the 

γ-Cl-1-ACPII substrate. When Cur and Jam ECH1s were switched in the coupled reaction, 

no change in the product profile was observed. However, when Jam ECH1 and ECH2 

were coupled to Cur ER, only the Jam ECH2 decarboxylation product was detected, in 

accord with the Jam ECH1/ECH2/ER reaction (Figure 4-3a). UV spectral comparison of 

Cur and Jam ECH2 decarboxylation products revealed that their UV absorption patterns 

are slightly different between 250 and 280 nm (Figure 4-S9), which reflects isomeric α,β 

or β,γ C=C (enoyl thioester) functionality in the products (γ-Cl-3-ACPII and 

γ-Cl-6-ACPII). 

To determine the structures of the decarboxylation products, one-pot reactions using 

Cur Hal-ACP3, ECH1 and Cur or Jam ECH2s were performed as described above. After 

butylamine cleavage of the products from the ACP3, each butylamide derivative was 

analyzed by GC-MS and compared with the authentic standards. For the reaction 

including Cur ECH2, the main product contained primarily an α,β C=C in the E 

configuration, with trace amounts of the β,γ C=C products (Figure 4-3c) quantified to be 

~3% (Figure 4-4b, see below). In contrast, reactions using Jam ECH2 showed a high 

regiochemical control to generate exclusively the β,γ C=C product, with ~85% in the E 

configuration and ~15% in the Z configuration (Figure 4-3c). The exclusive E 

configuration of the vinyl chloride C=C in jamaicamide natural products (14) suggests 

that the minor Z configuration product is likely due to utilization of the curacin substrate, 

which is less sterically hindered than the jamaicamide substrate. Notably, Jam ECH2 
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decarboxylation had lower regiochemical control using the non-chlorinated substrate, and 

generated ~80% β,γ C=C and ~20% α,β C=C products, which further explains the partial 

enoyl reduced product observed following Jam ECH1, ECH2 and ER reactions with this 

substrate (Figure 4-S8b). Given the normal function of ER to catalyze only α,β C=C 

(enoyl thioester) saturation, the selective formation of β,γ C=C product by Jam ECH2 

renders Jam ER redundant in the biosynthesis of jamaicamides. In general, α,β C=C 

ECH2 products are energetically preferred and frequently identified or predicted in other 

pathways (13, 26, 30, 40-42), except the pathways of pederin and its structural analogs 

(33, 43) that are predicted to generate β,γ C=C products (Figure 4-S10). 

4.3.6  Functional Differentiation of ERs 

Although Jam ER cannot function with the β,γ C=C thioester substrate, we sought to 

test whether it can catalyze cyclopropanation when presented with γ-Cl-3-ACPII bearing 

an α,β C=C. Thus, Cur ECH1 and ECH2 were coupled to Jam ER, but only the saturated 

product, γ-Cl-4-ACPII, was observed (Figure 4-3a, 3b). Thus Jam ER has the activity of a 

canonical PKS ER, α,β C=C saturation. 

The distinct functions of Cur and Jam ERs, despite the redundant nature of Jam ER 

within the Jam pathway, motivated us to compare the catalytic efficiencies of Cur ER 

cyclopropanation vs. Jam ER saturation of the chlorinated substrate, and the efficiencies 

of cyclopropanation of the chlorinated substrate vs. saturation of the non-chlorinated 

substrate by Cur ER. This was accomplished using time-course studies of catalytic 

efficiencies by measuring product yields under uniform reaction conditions. It was not 

possible to measure enzyme kinetic parameters (kcat and KM) due to the tendency of ER to 

aggregate and the solubility limits of ACP-tethered substrates. Thus, γ-Cl-3-ACPII was 

employed to assess cyclopropanation by Cur ER, compared to reduction by Jam ER, and 

3-ACPII was used to compare reductive efficiency of the Cur and Jam ERs. 

IRMPD-based MS analysis (e.g. peak abundance of PPant ejection products (PEPs) (38)) 

provided a convenient method to quantify the yields of ER saturation products that 

correspond to a 2-Dalton mass change (Figure 4-S11). Similarly, Cur ER-catalyzed 

cyclopropanation was quantified by using 4-ACPII, prepared by loading (apo) ACPII with 
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4-CoA, as an internal standard for 5-ACPII.  

We found that Jam ER saturation and Cur ER cyclopropanation of γ-Cl-3-ACPII are 

faster by ~400-fold and ~50-fold, respectively, than is Cur ER saturation of 3-ACPII 

under identical experimental conditions (Figure 4-3d). For the 3-ACPII substrate, Jam ER 

saturation is ~240-fold faster than is Cur ER saturation (Figure 4-S12). This comparison 

confirmed that Jam ER has retained a canonical α,β enoyl reduction function, in contrast 

to the unprecedented activity of Cur ER cyclopropanation. 

4.3.7  Loss of Regiochemical Control by Mutation 
To understand the regiochemical control of ECH2-catalyzed decarboxylation, the crystal 

structure of Cur ECH2 was solved recently (34). Only three polar residues, Lys86, His240, 

and Tyr82, are present in the nonpolar active site chamber, which is nevertheless water 

accessible (Figure 4-4a). As suggested by modeling with the non-chlorinated substrate 

and further supported by site-directed mutagenesis experiments, Lys86 and His240 are 

critical to catalysis (34). His240 is conserved for all known ECH2s in HMG enzyme 

cassettes, but Lys86 and Tyr82 are located in a hypervariable region (α2–loop–α3, 

residues 82-98) and are not conserved in Jam ECH2 (34). As a follow-up analysis, Cur 

ECH2 was modeled with the chlorinated substrate (Figure 4-4a), and the catalytic 

efficiencies of the wild type (WT) and mutants of Cur ECH2 were compared using the 

chlorinated substrate γ-Cl-2-ACPII. Moreover, we measured the ratios of the two possible 

decarboxylation products, γ-Cl-3-ACP and γ-Cl-6-ACP. 

Similar to our previous assays (34), ECH1/ECH2-coupled dehydration and 

decarboxylation of γ-Cl-1-ACPII was analyzed to compare the catalytic efficiencies of 

WT and mutant Cur ECH2s. It was immediately evident that their catalytic activities were 

significantly increased with the chlorinated substrate (Figure 4-4b) (34), possibly due to 

γ-Cl stabilization of the carbanion intermediate. As we observed previously for the 

non-chlorinated substrate under similar reaction conditions, the K86Q, K86A, H240Q 

and H240A variants had significantly decreased activities (Figure 4-4b). This suggests 

that His240 and/or Lys86 may draw the γ-carboxyl group away from the substrate in the 

transition state of ECH2 decarboxylation through hydrogen-bond formation (Figure 4-4a). 
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The alanine substitutions at Lys86 and His240 had higher activity than the corresponding 

 
 
Figure 4-4. Loss of Cur ECH2-mediated regiochemical control by site-directed 
mutagenesis. a, The hypervariable region (magenta) of Cur ECH2 and the active site 
chamber modeled with the chlorinated substrate. The S-configuration of the γ-carbon 
is preferred based on modeling results. b, Activity and regiochemical control of ECH2 
WT and Cur ECH2 mutants. γ-Cl-1-ACPII was used as the substrate for all reactions. 
(Left) HPLC analysis for ECH1/ECH2 coupled dehydration and decarboxylation. All 
reactions were quenched after 10 min incubation at 30oC. (Right) IRMPD-based 
quantification to measure the percent of β,γ C=C products. The coupled ECH1/ECH2 
reactions were incubated for 45 min before treated with Jam ER for 45 min at 30oC. 
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glutamine substitutions (Figure 4-4b, left panel), possibly due to the small side chain of 

alanine allowing space for water molecules to stabilize the γ-carboxyl group or to donate 

a proton to the presumed enolate intermediate. Cur ECH2 Y82F and Jam ECH2 WT had 

similar activities to Cur ECH2 WT, indicating that Tyr82 is not essential to the 

decarboxylation step. 

Next, we measured the ratio of α,β and β,γ C=C decarboxylation products to 

investigate whether the site-directed mutations can elucidate a basis for double bond 

regiochemical control by Cur ECH2. Changes in the ratio of α,β and β,γ C=C products 

were assessed by measuring UV absorbance ratios (A280nm/A250nm, Figure 4-S9) for HPLC 

peaks corresponding to ECH2 decarboxylation products (Figure 4-4b). Measured peak 

ratios for Cur ECH2 WT, K86Q, K86A, H240Q and H240A are ~1.75, for Jam ECH2 WT 

the ratio is 2.23, but for Cur ECH2 Y82F it is 1.85. The intermediate value for Cur ECH2 

Y82F suggests a mixture of α,β and β,γ C=C products. These products can be 

distinguished directly by using Jam ER as a reagent to selectively reduce α,β C=C 

(Figure 4-3b, and Figure 4-S11) followed by IRMPD to quantitate the product ratios. The 

level of β,γ C=C product (γ-Cl-6-ACPII) for Cur ECH2 WT, K86Q, K86A, H240Q and 

H240A was ~3% of the total product formed, but was ~30% of total product formed by 

Cur ECH2 Y82F (Figure 4-4b). Thus, replacing the Tyr82 hydroxyl group with a hydrogen 

atom resulted in substantially reduced regioselectivity during Cur ECH2 decarboxylation. 

As previously proposed, product regiochemistry is controlled by a protonation step 

leading to collapse of the presumed enolate intermediate (34). While the proton donor has 

not been identified, we propose that a hydrogen bond from the Tyr82 hydroxyl group to 

the Glu92 backbone carbonyl stabilizes the hypervariable loop, thereby blocking the 

entrance of water to protonate the α-C of the substrate to generate the β,γ C=C product 

(γ-Cl-6-ACPII). Regiochemical control of the protonation step for Jam ECH2 remains 

unclear since its crystal structure is not yet available. However, site-directed mutagenesis 

experiments described above suggest that this hypervariable region in ECH2s plays an 

important role for regiochemical control. 

4.4  DISCUSSION 
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The Cur and Jam pathways enable us to witness the remarkable process of metabolic 

pathway evolution based on comparative biochemical analysis of their β-branching 

enzyme assemblies. What determines the evolution of chemical diversity in natural 

product pathways?  This issue is particularly difficult to address in marine environments 

where host-microbe or predator-microbe interactions are poorly understood. In the case 

of a free living marine microorganism such as Lyngbya majuscula, it is clear that their 

large genomes contain high potential for natural product biosynthesis based on the 

presence of many distinct secondary metabolic pathways (22, 44). How these systems 

have developed within an individual cell, and how small or large fragments of DNA 

might participate in horizontal gene transfer remains unknown. However, that these 

events occur is evident by patterns of gene duplication, insertion and mutation, and 

moreover, by the close genetic and biochemical relationship between selected sets of 

biosynthetic components. Despite the structural relationships, subtle changes in amino 

acid sequences of only two members (e.g. ECH2 and ER) of the 10 component 

β-branching enzyme system are ultimately responsible for the divergent chemical 

outcomes (Figure 4-1a). Thus, based on the genomic information and biochemical 

insights gained in the current study, a scenario of pathway evolution can be surmised. As 

a primary event, we propose that horizontal gene transfer resulted in insertion of an HMG 

gene assembly (Figure 4-1b) whose translation results in a full set of β-carbonyl reaction 

chemistry. This preformed metabolic system includes the Hal, discrete ACP (e.g. ACPIV), 

KS, HCS, ECH1, ECH2 and ER, and specifies formation of a saturated β-methyl 

substituent during polyketide chain elongation (Figure 4-5a). The canonical example of 

this process can be found in the myxoveriscin A pathway where the full complement of 

enzymatic activities (except Hal) results in a pendant β-ethyl group at C16 in the 

28-membered ring system (30). 

Based on the initial biochemical characterization of the HMG-cassette multi-step 

process, variation in β-branching biochemistry is observed in a growing number of 

microbial secondary metabolic pathways. The functional group outcome is largely 

predictable from bioinformatic analysis. For example, mupirocin and bacillaene contain 

vinyl methyl substituents that reflect an HCS assembly devoid of an ER domain (13, 41), 
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consistent with the architecture of their respective biosynthetic gene clusters. More 

unusual combinations of HCS assemblies are found in the leinamycin and bryostatin 

biosynthetic gene clusters (31, 32) that diverge considerably from the canonical example, 

where the formation of a β-branched HMG-ACP is followed by further elaboration of 

this intact subunit in the absence of dehydration/decarboxylation, or decarboxylation 

steps, respectively. 

Where do Cur and Jam HMG assemblies reside in the spectrum of current examples 

leading to unique functional group chemistry?  These two systems reveal clear evidence 

for two types of metabolic pathway evolution that result in unique biochemical functions 

and divergent paths for functional group assembly. Both HMG cassettes contain Hal 

domains that were evidently recruited, and embedded in a modular PKS to impart new 

 
 
Figure 4-5. Impact of enzyme assembly evolution on β-branching chemical diversity. a, 
Proposed ancestral forms of the enzyme assemblies in Cur and Jam pathways. b, 
Differential regiochemical control by ECH2. c, The functional diversification of ERs. 
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chemical diversity. Recent studies on this class of α-KG dependent non-haem 

halogenases have been reported as discrete enzymes within natural product pathways (6, 

19-22), but this integrated domain represents an unprecedented example of pathway 

diversification. Although our initial analysis of the ECH1 and ECH2 catalyzed steps 

utilized HMG-ACP as substrate (12), we have demonstrated that the preferred substrate is 

γ-Cl-1-ACP3. This halogenation step represents the point of divergence in the Cur and 

Jam pathways (Figure 4-5a) where substantial amino acid sequence variation is found in 

comparison of the respective ECH2 and ER enzymes (Figure 4-1b). Pathway 

diversification is reflected in select amino acid sequence changes that ultimately control 

alternate double bond regiochemistry in the curacin and jamaicamide products. 

Regiochemical control is the product of a protonation step accompanying enolate 

collapse after ECH2-mediated decarboxylation (Figure 4-5b). In this case, the 

ramifications of pathway evolution inform downstream steps in unexpected ways. 

Specifically, the Cur ER domain with its unusual placement outside a canonical PKS 

module has revealed itself to be a cyclopropanase, where hydride addition to the 

α,β-enoylthioester (γ-Cl-3-ACP3) is followed by nucleophilic displacement of the 

chlorine atom leading to this highly strained and unusual functional group in secondary 

metabolism (Figure 4-5c). In contrast, our results demonstrate that the Jam ER domain, 

although still functional as a traditional reductase on the curacin α,β enoylthioester 

substrate, has evolved into a redundant enzyme on the alternative β,γ-enoylthioester 

substrate thus retaining the vinyl chloride functional group in jamaicamide. These parallel 

yet distinct systems demonstrate the mutability of enzymes within complex metabolic 

pathways, and reveal their metamorphic properties for creating chemical diversity in 

biologically active natural products. 

4.5  MATERIAL AND METHODS 

The chemical synthesis of the butylamide derivatives as GC-MS authentic standards 

is outlined in Figure 4-S13. Butylamide derivatives, 8, 10, 12 and 14 were synthesized 

from carboxylic acids 7, 9, 11 and 13, respectively. 

General Protocol A. Chemical synthesis and spectroscopic data of 

N-butyl-3-methylbutanamide (8). A solution of carboxylic acid 7 (200 mg, 1.96 mmol) 
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in 20 mL of CH2Cl2 was treated with butylamine (160 mg, 2.19 mmol), HOBt (340 mg, 

2.5 mmol), EDC hydrochloride (480 mg, 2.5 mmol) and i-Pr2NEt (1.1 mL, 6.5 mmol). 

The reaction mixture was stirred at room temperature for 15 h, concentrated in vacuo, and 

partitioned between cold (0˚C) 1 N HCl (100 mL) and Et2O (100 mL). The aqueous 

phase was further extracted with Et2O (2 x 100 mL). The combined organic extracts were 

washed with brine (150 mL), dried (MgSO4), concentrated in vacuo, and purified by 

chromatography on SiO2 (1:1, hexane/EtOAc) to provide 8 (250 mg, 80%) as a white 

powder: 1H NMR (400 MHz, CDCl3) δ 3.15 (dd, J = 12.9, 7.1 Hz, 2 H), 1.96-2.09 (m, 1 

H), 1.93 (d, J = 7.6 Hz, 2 H), 1.35-1.41 (m, 2 H), 1.22-1.28 (m, 2 H), 0.85 (d, J = 6.5 Hz, 

6 H), 0.83 (t, J = 7.3 Hz, 3 H); MS (ESI) calculated for [M+H]+ 158.15, found 158.14. 

Spectroscopic data for N-butyl-3-methylbut-2-enamide (10). 1H NMR (400 MHz, 

CDCl3) δ 5.46-5.50 (m, 1 H), 3.18 (dd, J = 13.5, 6.3 Hz, 2 H), 2.06 (s, 3 H), 1.74 (s, 3 H), 

1.37-1.44 (m, 2 H), 1.22-1.31 (m, 2 H), 0.84 (t, J = 6.5 Hz, 3 H); MS (ESI) calculated for 

[M+H]+ 156.13, found 156.12. 

Spectroscopic data for N-butyl-3-methylbut-3-enamide (12). 1H NMR (400 MHz, 

CDCl3) δ 4.87-4.89 (m, 1 H), 4.79-4.81 (m, 1 H), 3.15 (dd, J = 13.6, 6.5 Hz, 2 H), 2.86 (s, 

2 H), 1.70 (s, 3 H), 1.34-1.42 (m, 2 H), 1.21-1.29 (m, 2 H), 0.83 (t, J = 7.3 Hz, 3 H); MS 

(ESI) calculated for [M+H]+ 156.13, found 156.12. 

Spectroscopic data for (1R,2S)-N-butyl-2-methylcyclopropane-1-carboxamide (14) 

and its racemic mixture of cis- and trans-isomers (cis,trans-14). The enantiomerically 

pure acid 13 was a gift from Timothy M. Ramsey (Novartis Institutes for Biomedical 

Research, Inc.). The racemic mixture of cis- and trans-isomers of 14 was generated from 

2-methylcyclopropanecarboxylic acid. Data for 14: 1H NMR (400 MHz, CDCl3) δ 3.15 

(dd, J = 13.7, 6.6 Hz, 2 H), 1.36-1.44 (m, 2 H), 1.21-1.31 (m, 2 H), 1.21-1.31 (m, 1 H), 

0.96-1.04 (m, 1 H), 0.99 (d, J = 6.1 Hz, 3 H), 0.84 (t, J = 7.3 Hz, 3 H), 0.78-0.85 (m, 1 H), 

0.44 (ddd, J = 7.7, 6.1, 3.6 Hz, 1 H); MS (ESI) calculated for [M+H]+ 156.13, found 

156.13. (Performed by Amol Kulkarni) 

Spectroscopic data and chemical synthesis of 

(E)-N-butyl-4-chloro-3-methylbut-2-enamide (18). (E)-4-Bromo-3-methylbut-2-enoic 
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acid (16): To a solution of 3,3-dimethylacrylic acid (200 mg, 2.0 mmol) in CCl4 (10 mL) 

was added freshly recrystallized NBS (391 mg, 2.2 mmol, 1.1 equiv) followed by 

benzoyl peroxide (24.2 mg, 0.05 equiv). The reaction mixture was heated at reflux for 1 h, 

cooled to room temperature, and filtered to remove succinimide. An aliquot was removed 

for 1H NMR analysis, and the remainder of the solution was poured into a separatory 

funnel and washed with H2O (2 x 20 mL) and brine (1 x 20 mL). The organic layer was 

dried (Na2SO4) and the solvent was removed in vacuo to afford a mixture (371 mg) of 

isomeric allylic bromides as a pale yellow oil. A solution of the crude oil (371 mg, 2.07 

mmol) in water (2 mL) containing 82.8 mg (2.07 mmol) of NaOH was stirred at room 

temperature for 1 h and was then extracted with CH2Cl2 (2 x 2 mL). The aqueous layer 

was acidified with 6 N HCl (1 mL) and extracted again with CH2Cl2 (2 x 5 mL). The 

combined organic extracts were washed with brine (5 mL), dried (Na2SO4), and 

concentrated in vacuo to afford the desired carboxylic acid 16 (88 mg, 24%) as a pale 

yellow oil. This compound was carried on to the next step without further purification.  

(E)-4-Chloro-3-methylbut-2-enoic acid (17): A solution of bromo acid 16 (360 mg, 2.01 

mmol, 1.0 equiv) in CH2Cl2 (5 mL) was cooled to 0˚C, treated with t-butyl ammonium 

chloride (1.12 g, 4.02 mmol, 2.0 equiv) and stirred at 0˚C for 24 h. The mixture was 

concentrated in vacuo to afford a viscous pale yellow oil. Purification by chromatography 

on SiO2 (2% MeOH/CH2Cl2 containing 0.5% AcOH) provided the desired acid 17 (215 

mg, 79%) as a colorless oil.  

(E)-N-Butyl-4-chloro-3-methylbut-2-enamide (18): To a solution of carboxylic acid 17 

(40.0 mg, 0.297 mmol) in CH2Cl2 (0.5 mL) was added oxalyl chloride (0.377 g, 2.97 

mmol, 10.0 equiv). The reaction mixture was heated at a gentle reflux for 2 h, allowed to 

cool to room temperature, and concentrated in vacuo to afford a viscous pale yellow oil. 

After addition of THF (0.5 mL), the solution was cooled to 0˚C, treated with a mixture of 

triethylamine (45 mg, 0.45 mmol, 1.5 equiv), butylamine (24 mg, 0.37 mmol, 1.1 equiv) 

and DMAP (1.8 mg, 0.015 mmol, 0.05 equiv), stirred at 0˚C for 15 min, and warmed to 

RT. The reaction mixture was stirred at room temperature for an additional 45 min and 

poured into a separatory funnel containing 1 M HCl (2 mL) and ether (2 mL). The 

organic layer was washed with water (1 x 2 mL) and brine (1 x 2 mL), dried (Na2SO4), 
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concentrated and purified by chromatography on SiO2 to afford the desired butylamide 

derivative 18 (35 mg, 62%) as a pale yellow oil: IR (neat) 3296, 1633, 1548, 1266, 1182 

cm-1; 1H NMR (300 MHz, CDCl3) δ 5.88-5.86 (m, 1 H), 5.73 (br s, 1 H), 4.00 (s, 2 H), 

3.29 (q, 2 H, J = 8.0 Hz), 2.21 (bs, 3 H), 1.50 (app p, 2 H, J = 7.5 Hz), 1.35 (app s, 2 H, J 

= 7.4 Hz), 0.92 (t, 3 H, J = 8.0 Hz); 13C NMR (75 MHz, CDCl3) δ 165.9, 146.6, 121.4, 

50.2, 39.1, 31.6, 20.1, 16.3, 13.7; MS (ESI) calculated for [M+H]+ 189.09, found 189.10. 

(Performed by Amol Kulkarni) 

Spectroscopic data and chemical synthesis of 

(Z)-N-butyl-4-chloro-3-methylbut-2-enamide (21).  

(Z)-4-Chloro-3methylbut-2-enoic acid (20): A solution of an (E,Z)-mixture of allylic 

bromides 19 (0.67 g, 3.74 mmol) in CH2Cl2 was treated at 0˚C with tetrabutyl ammonium 

chloride (2.08 g, 7.49 mmol), stirred at 0˚C for 24 h, and concentrated to afford a pale 

yellow viscous oil. Purification by chromatography on SiO2 (1:99, MeOH/CH2Cl2 

containing 0.5% AcOH) provided the chloroacid (0.402 mg, 79%) as a 1.2:1 mixture of 

(E,Z)- isomers. Further purification by SFC (SiO2 column, 7% MeOH/CO2) led to pure 

(Z)-isomer 20 (retention time = 3.12-3.17 min) (77 mg) as a colorless oil.  

(Z)-N-Butyl-4-chloro-3-methylbut-2-enamide (21): To a solution of the (Z)-acid 20 (40.0 

mg, 0.297 mmol) in CH2Cl2 (0.5 mL) was added oxalyl chloride (0.377 g, 2.97 mmol, 

10.0 equiv). The reaction mixture was heated at reflux for 2 h, cooled to room 

temperature, and concentrated in vacuo. A solution of the viscous pale yellow oily 

residue in THF (0.5 mL) was cooled to 0˚C, treated with a mixture of triethylamine (45 

mg, 0.45 mmol, 1.5 equiv), butylamine (24 mg, 0.33 mmol, 1.1 equiv) and DMAP (1.8 

mg, 0.015 mmol, 0.05 equiv), stirred at 0˚C for 15 min and then allowed to warm to RT. 

The solution was stirred at room temperature for 45 min, and poured into a separatory 

funnel containing 1 M HCl (2 mL) and ether (2 mL). The organic layer was washed with 

water (1 x 2 mL) and brine (1 x 2 mL), dried (Na2SO4) and concentrated. The residue was 

purified by chromatography on SiO2 (1% MeOH/CH2Cl2) to afford butylamide 21 (33 mg, 

59%) as a pale yellow oil: IR (neat) 3424, 1691, 1631 cm-1; 1H NMR (300 MHz, CDCl3) 

δ 5.69 (br s, 2 H) 4.69 (br s, 2 H), 3.29 (br t, 2 H, J = 6.6 Hz), 1.97 (d, 3 H, J = 1.2 Hz), 

1.56-1.46 (m, 2 H), 1.42-1.29 (m, 2 H), 0.93 (t, 3 H, J = 7.2 Hz); 13C NMR (75 MHz, 
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CDCl3) δ 165.4, 146.8, 122.7, 42.8, 39.1, 31.6, 22.4, 20.1, 13.7; MS (ESI) calculated for 

[M+H]+ 189.09, found 189.10. (Performed by Amol Kulkarni) 

Spectroscopic data and chemical synthesis of 

(E)-N-butyl-4-chloro-3-methylbut-3-enamide (25).  

(E)-4-Chloro-3-methylbut-3-enoic acid (24): A solution of Cp2ZrCl2 (1.46 g, 5.0 mmol, 

1.0 equiv) in CH2Cl2 (5 mL) in a 50 mL 3-necked flask was stirred at 0˚C for 15 min and 

then treated with a solution of AlMe3 (1.08 g, 15.0 mmol, 3.0 equiv) in CH2Cl2 (5 mL). 

The resultant pale yellow reaction mixture was stirred at 0˚C for 15 min, treated over 15 

min with a solution of 3-butyn-1-ol (350 mg, 5 mmol) in CH2Cl2 (2 mL), slowly warmed 

to room temperature, stirred for 14 h, and cooled to -23˚C for 15 min before addition of 

NCS (800 mg, 6.0 mmol, 1.2 equiv). The mixture was stirred at -23˚C for 30 min, slowly 

warmed to room temperature and stirred for 15 min before the reaction was quenched by 

the slow, dropwise addition of 1 M HCl (20 mL). The solution was extracted with 

CH2Cl2 (2 x 20 mL). The organic layer was washed with water (1 x 20 mL) and brine (1 

x 20 mL), dried (Na2SO4) and concentrated in vacuo to afford the alcohol 23 as a pale 

yellow oil. Purification by chromatography on SiO2 (10% EtOAc/hexanes, followed by 

20% EtOAc/hexanes) gave 23 (362 mg, 60%) as a colorless oil. A solution of alcohol 23 

(30.1 mg, 0.25 mmol, 1.0 equiv) in acetone (1 mL) was cooled to 0˚C in an ice-bath for 

15 min, treated with Jones reagent (0.25 mL, 0.63 mmol) and stirred at 0˚C for 20 min. 

After the addition of 2-propanol (400 μL), the reaction mixture was poured into a 

separatory funnel containing ether (5 mL) and water (5 mL). The aqueous layer was 

re-extracted with ether (2 x 5 mL). The combined organic layers were washed with brine 

(1 x 20 mL), dried (Na2SO4), and concentrated in vacuo. The resulting brown oil was 

purified by chromatography on SiO2 (1% MeOH/CH2Cl2 containing 0.5% AcOH) to give 

the desired acid 24 (22.8 mg, 68%) as a pale yellow oil. 

(E)-N-Butyl-4-chloro-3-methylbut-3-enamide (25): To a solution of the chloro acid 24 

(34 mg, 0.25 mmol) in CH2Cl2 (0.5 mL) was added EDC•HCl (58 mg, 0.30 mmol, 1.2 

equiv), triethylamine (38.4 mg, 0.379 mmol, 1.5 equiv) and butylamine (22.2 mg, 0.303 

mmol, 1.2 equiv). The reaction mixture was stirred at room temperature for 14 h, poured 

into a separatory funnel containing 1 M HCl (1 mL) and ether (2 mL), and the organic 
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layer was washed with water (1 x 2 mL) and brine (1 x 2 mL) dried (Na2SO4) and 

concentrated in vacuo. The yellow oily residue was purified by chromatography on SiO2 

(10% EtOAc/hexanes, followed by 20% EtOAc/hexanes) to afford the desired amide 25 

(20 mg, 41%) as a colorless oil: IR (neat) 3429, 1636, 1556 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 6.03-6.00 (m, 1 H), 5.61 (br s, 1 H), 3.30-3.19 (m, 2 H), 2.98 (s, 2 H), 1.85 (br 

d, 3 H, J = 1.2 Hz), 1.54-1.43 (m, 2 H), 1.39-1.29 (m, 2 H), 0.92 (t, 3 H, J = 7.2 Hz); 13C 

NMR (75 MHz, CDCl3) δ 169.1, 133.5, 116.6, 44.8, 39.4, 31.6, 20.0, 16.7, 13.7; MS (ESI) 

calculated for [M+H]+ 189.09, found 189.10. (Performed by Amol Kulkarni) 

Spectroscopic data and chemical synthesis of 

(Z)-N-butyl-4-chloro-3-methylbut-3-enamide (28).  

(Z)-4-Chloro-3-methylbut-3-enoic acid (27). A solution of Cp2ZrCl2 (0.292 g, 1.0 mmol, 

1.0 equiv) in 1,2-DCE (1 mL) in a 50 mL 3-necked flask was stirred at 0˚C for 15 min, 

treated with a solution of AlMe3 (0.216 g, 3.0 mmol, 3.0 equiv) in 1,2-DCE (2 mL) and 

stirred at 0˚C for 15 min. To the reaction mixture was added a solution of 3-butyn-1-ol 

(70 mg, 1.0 mmol,1 equiv) in 1,2-DCE (1 mL) over 15 min. The mixture was slowly 

warmed to room temperature, stirred for 14 h, slowly heated to reflux and maintained at a 

reflux temperature for 3 d. The solution was cooled to 0˚C and subsequently to -23˚C for 

15 min before addition of NCS (127 mg, 1.20 mmol, 1.2 equiv). The reaction mixture 

was stirred at -23˚C for an additional 30 min, slowly warmed to room temperature, stirred 

for 15 min, and quenched by a slow, dropwise addition of 1 M HCl (10 mL). The solution 

was extracted with ether (5 x 20 mL), and the combined organic layers were washed with 

brine (1 x 50 mL), dried (Na2SO4) and concentrated in vacuo to afford the desired alcohol 

26 as a pale yellow oil. Purification of the crude compound by chromatography on SiO2 

(10% EtOAc/hexanes, followed by 20% EtOAc/hexanes) provided alcohol 26 (61 mg, 

51%) as a pale yellow oil. A solution 26 (61 mg, 0.51 mmol, 1.0 equiv) in acetone (2 mL) 

was cooled to 0˚C for 15 min, treated with Jones reagent (0.51 mL, 1.28 mmol) and 

stirred for 20 min at 0˚C. The mixture was diluted with 2-propanol (400 μL), poured into 

a separatory funnel containing ether (5 mL) and water (5 mL), and the aqueous layer was 

washed with ether (2 x 5 mL). The combined organic layers were washed with brine (1 x 

20 mL), dried (Na2SO4) and concentrated in vacuo. The brown oily residue was purified 
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by chromatography on SiO2 (1% MeOH/CH2Cl2 containing 0.5% AcOH) to give the 

desired acid 27 (44.3 mg, 65%) as a pale yellow oil. 

(Z)-N-Butyl-4-chloro-3-methylbut-3-enamide (28). To a solution of acid 27 (11.0 mg, 

0.08 mmol, 1.0 equiv) in THF (1 mL) were added sequentially at 0˚C diphenylphosphinic 

chloride (19.3 mg, 0.082 mmol, 1.0 equiv), N-methylmorpholine (34.7 mg, 0.343 mmol, 

4.2 equiv) and butylamine (5.9 mg, 0.08 mmol, 1.0 equiv). The reaction mixture was 

stirred at 0˚C for 1 h, concentrated and purified by chromatography on SiO2 (20% 

EtOAc/hexanes) to give amide 28 (5.0 mg 32%) as a colorless oil: IR (neat) 3428, 1649, 

1555, 1440 cm-1; 1H NMR (300 MHz, CDCl3) δ 6.00 (app d, 1 H, J = 1.5 Hz), 5.61 (br s, 

1 H), 3.28-3.21 (m, 2 H), 3.16 (s, 2 H), 1.86 (d, 3 H, J = 1.2 Hz), 1.53-1.43 (m, 2 H), 

1.40-1.25 (m, 2 H), 0.92 (t, 3 H, J = 7.2 Hz); 13C NMR (75 MHz, CDCl3) δ 168.6, 134.0, 

114.9, 40.4, 39.4, 31.6, 21.4, 20.0, 13.7; MS (ESI) calculated for [M+H]+ 189.09, found 

189.10. (Performed by Amol Kulkarni) 

Spectroscopic data and chemical synthesis of N-butyl-4-chloro-3-methylbutanamide 

(31). 

N-Butyl-4-chloro-3-methylbutanamide (31). To a solution of lactone 29 (100 mg, 1.0 

mmol, 1.0 equiv) in thionyl chloride (0.13 g, 1.0 equiv) was added freshly fused ZnCl2 

(6.8 mg, 0.05 mmol, 0.05 equiv). The reaction mixture was slowly heated to reflux, 

maintained at reflux for 8 h, and then slowly cooled to room temperature. The mixture 

was concentrated in vacuo and a solution of the brown oily residue in THF (0.5 mL) was 

cooled to 0˚C, treated with a mixture of triethylamine (0.15 g, 0.15 mmol, 1.5 equiv) and 

butylamine (80 mg, 1.1 mmol, 1.1 equiv), stirred at 0˚C for 30 min, warmed to room 

temperature, stirred for 30 min, and poured into a separatory funnel containing 1 M HCl 

(2 mL) and CH2Cl2 (2 mL). The organic layer was washed with brine (1 x 2 mL), dried 

(Na2SO4) and concentrated in vacuo to afford a pale brown oil that was purified by 

chromatography on SiO2 (20% EtOAc/hexanes followed by 50% EtOAc/hexanes) to give 

amide 31 (70.7 mg, 37%) as a yellow oil: IR (neat) 3422, 1644, 1559, 1459, 1379 cm-1; 
1H NMR (300 MHz, CDCl3) δ 5.92 (br s, 1 H), 3.59-3.48 (m, 2 H), 3.24 (app q, 2 H, J = 

6.6 Hz), 2.50-2.30 (m, 2 H), 2.10 (dd, 1 H, J = 14.1, 7.2 Hz), 1.52-1.43 (m, 2 H), 

1.37-1.27 (m, 2 H), 1.04 (d, 3 H, J = 6.6 Hz), 0.91 (t, 3 H, J = 7.2 Hz); 13C NMR (75 
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MHz, CDCl3) δ 171.3, 50.6, 40.6, 39.3, 32.6, 31.6, 20.0, 17.6, 13.7; MS (ESI) calculated 

for [M+H]+ 191.11, found 191.10. (Performed by Amol Kulkarni) 

Chemical synthesis of 6-CoA. The chemical synthesis of 6-CoA was described in our 

previous work (12). 

Enzymatic synthesis of 1-CoA. 1-CoA was enzymatically generated by HMG-CoA 

reductase as previously described (12, 45). The reaction mixture was separated by a 

self-packed DEAE Sepharose column (1 cm x 30 cm, GE Healthcare)) equilibrated with 

0.1 M HCO2NH4, pH 4.4. 1-CoA was eluted with 0.4 M HCO2NH4, pH 4.4 (45). 1-CoA 

was further purified using XBridge Preparative C18 column (10 x 250 mm, 5 μm) and an 

elution gradient of 3-60% CH3OH/H2O (10 mM NH4OAc). The fractions were pooled 

and lyophilized, and 1-CoA purity was measured by HPLC to be >98%. 

Enzymatic synthesis of 2-CoA. 2-CoA was enzymatically generated from 1-CoA by Cur 

ECH1 as previously described (34). 

Bacterial strains, media and culture conditions. Escherichia coli DH5α MCR 

(Invitrogen) was used for DNA propagation. Escherichia coli BL21 (DE3) transformed 

with the derivatives of pET20b, pET24b, pET28b, and pET41a (Novagen) were used for 

protein overexpression in Luria-Bertani (LB) medium. Ampicillin (100 μg/mL), 

carbenecillin (100 μg/mL), kanamycin (50 μg/mL), chloramphenicol (25 μg/mL), and 

apramycin (50 μg/mL) were used for the corresponding plasmid construct resistance 

marker selection in E. coli cultures. 

Plasmid construction and site mutagenesis. The primers for the plasmid construction 

were listed in Table S1. The expression plasmids for CurB ACPIV, CurE ECH1 and CurF 

ECH2 were constructed in our previous work (12). CurA Hal, Hal-ACP3 and CurF ER 

genes were amplified from the cosmid pLM54 (16). JamI ECH1, JamJ ECH2 and JamJ ER 

genes were amplified from cosmid pJam3 (14). CurA Hal and Hal-ACP3 genes were 

inserted into pET28b plasmid using NdeI/XhoI restriction sites. JamI ECH1 gene was 

inserted into pET24b plasmid using NdeI/XhoI restriction sites. JamJ ECH2 gene was 

inserted into pET20b plasmid using NdeI/XhoI restriction sites. CurF ER and JamJ ER 
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genes were inserted into pET41a plasmid using SacII/XhoI restriction sites. The CurA 

ACP3, ACPI, ACPII and ACPIII expression plasmids derived from a synthetic ACP3 gene 

were provided by Professor Christopher Walsh and Dr. Christopher Calderone at Harvard 

Medical School. CurA ACP3 (1946-2248) gene was inserted into pET28a plasmid using 

NdeI/XhoI restriction sites. CurA ACPI (1946-2031), ACPII (2057-2146) and ACPIII 

(2161-2248) genes were inserted into pET29a plasmid using NdeI/XhoI restriction sites. 

CurF ECH2 mutants, H240A, H240Q, K86A, K86Q and Y82F, were made in our previous 

work (34). All the constructs and mutations were verified by DNA sequencing. 

Protein overexpression. The protein expression conditions for CurB ACPIV, CurE ECH1, 

CurF ECH2 and the corresponding mutants were described in our previous work (12, 34). A) 

CurA (apo) ACP3, (apo) ACPI, (apo) ACPII, (apo) ACPIII, JamI ECH1, and JamJ 

ECH2: E. coli BL21 (DE3) was transformed by the pET28a::ACP3 (pCC111) plasmid to 

overexpress the N-terminal His-tagged protein, and by pET29a::ACPI (pCC112), 

pET29a::ACPII (pCC113), pET29a::ACPIII (pCC114), pET24b::Jam ECH1 and 

pET20b::Jam ECH2 to overexpress the C-terminal His-tagged proteins. Cells were grown at 

35˚C to an OD (590 nm) = 0.5-0.6, and then cooled to 18˚C prior to addition of 1 mM 

isopropyl-β-D-galactopyranoside (IPTG). The cultures were grown at 18˚C for another 

12-15 h before harvesting. B) CurA Hal and (apo) Hal-ACP3: E. coli BL21 (DE3) was 

transformed by pET28b::Cur Hal and pET28b::Cur Hal-ACP3 plasmids to overexpress the 

N-terminal His-tagged proteins. Cells were grown at 30˚C to an OD (590 nm) = 0.5-0.6, 

and then cooled to 15˚C prior to the addition of 1 mM IPTG. The cultures were grown at 

15˚C for another 18-20 h before harvesting. C) CurF ER and JamJ ER: E. coli BL21 

(DE3) was transformed by pET41b::Cur ER and pET41b::Jam ER to overexpress the 

N-terminal GST-tagged and C-terminal His-tagged proteins. Cells were grown at 30˚C to 

an OD (590 nm) = 0.5-0.6, and then cooled to 18˚C prior to the addition of 1 mM IPTG. 

The cultures were grown at 18˚C for another 12-15 h before harvesting. 

Protein purification. Protein purifications were performed at 4˚C. In general, the first 

step Ni-affinity purifications for all His-tagged proteins were performed under the same 

conditions. E. coli cells were harvested by centrifugation (5,000 g, 20 min, 4˚C), 

resuspended in ice cold lysis buffer A (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 10 
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mM imidazole, 20% glycerol) and disrupted by sonication on ice. The cell debris was 

removed by centrifugation at 15,000 g for 50 min. The supernatant was gently removed 

and loaded onto the 5 mL HisTrap column (GE Healthcare) preequilibrated with lysis 

buffer A. The resin was washed successively with ~10 column volumes of washing 

buffer B (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 20 mM imidazole, 10% glycerol) to 

remove nonspecifically bound contaminants. Bound proteins were eluted with imidazole 

by a linear gradient of the elution buffer C (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 

250 mM imidazole, 20% glycerol). The fractions of the eluate were checked for purity by 

SDS-PAGE, pooled and concentrated using Amicon Ultra-15 (30 kDa, 10 kDa or 5 kDa) 

centrifugal devices (Millipore). The follow-up purification and buffer exchange for 

different proteins are described below:  

A) CurA (apo) ACP3, (apo) ACPI, (apo) ACPII, (apo) ACPIII, CurB (apo) ACPIV, 

CurF ECH2 WT and the mutants, CurF ER, JamI ECH1, JamJ ECH2 and JamJ ER: 

the concentrated eluate was loaded onto HiPrep 26/10 Desalting column (GE Healthcare) 

equilibrated with the storage buffer D (50 mM PBS buffer, pH 7.5, 200 mM NaCl, 20% 

glycerol), The fractions were pooled, concentrated, flash-frozen in 50-200 μL aliquots by 

liquid N2, and stored at -80˚C. B) CurE ECH1: CurE ECH1 is prone to precipitate after its 

elution from HisTrap column. So the eluted protein was immediately desalted by PD10 

column (GE Healthcare) equilibrated with the storage buffer D. The protein was 

flash-frozen in 100 μL aliquots by liquid N2 and stored at -80˚C. 

Anaerobic purification of Cur Hal and (apo) Hal-ACP3. The FeII-, α-KG- and 

O2-dependent halogenases were reported to be sensitive to O2, and anaerobic purification 

was performed to remain their activities (19, 20). The purification was performed under 

inert atmosphere by using ÄKTA FPLC (GE Healthcare) companied with a glove box 

(Coy Laboratory Products), which is similar to the system previously described (46). All 

the buffers were sparged with argon and equilibrated in glove box for two days. E. coli 

cells were resuspended in buffer A and disrupted by sonication on ice. Then the cell 

lysate was equilibrated with argon for ~1 hour, transferred to gas-tight tubes in glove box, 

and centrifuged at 15,000 g for 50 min. The Ni-affinity purification for Hal and 

Hal-ACP3 was performed as described above. After elution from HisTrap column, the 
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proteins were exchanged into buffer D using HiPrep 26/10 Desalting column. The 

N-terminal His-tag of Hal was removed by thrombin for metal analysis (19, 20). The 

biotinylated thrombin (Novagen) was added into Hal in buffer D, and the reaction was 

incubated at room temperature for overnight to achieve a complete His-tag cleavage. The 

biotinylated thrombin was removed from the reaction mixture by using 1 mL HiTrap 

Streptavidin HP column (GE Healthcare). The flow-through was loaded onto HiLoad 

26/60 Superdex 200 column (GE Healthcare) equilibrated with the storage buffer D. Cur 

Hal was eluted as a dimer from size-exclusion columns. The fractions were pooled, 

concentrated, flash-frozen in 50 μL aliquots by liquid N2, and stored at -80˚C. 

Metal analysis of Cur Hal. To determine which metal bound to Hal, His-tag cleaved Cur 

Hal was anaerobically reconstituted with 1 mM α-KG and a metal mixture containing 25 

μM Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ for 10 min before desalted by PD10 column 

equilibrated with buffer E (50 mM Tris-HCl buffer, pH 7.5, 150 mM NaCl, 10% 

glycerol). The metal content of Cur Hal was measured by ICP-MS (Finnigan). The buffer 

E was applied as blank for analysis. For ~2.0 μM Cur Hal, the metal concentrations were 

measured to be 1.81 ± 0.09 μM Fe (blank 0.09 ± 0.02), < 0.0031 μM Co (blank < 0.0027), 

< 0.0017 μM Ni (blank < 0.0015), < 0.0019 μM Cu (blank < 0.0017), and 0.067 ± 0.003 

μM Zn (blank 0.039 ± 0.003). Based on this result, the reconstitution of with α-KG and 

Fe(NH4)2(SO4)2 were performed for its activity assay described below. 

Substrate loading onto (apo) ACPs. The ACP-linked substrates were generated by 

loading the corresponding CoA substrates onto (apo) ACPs by using recombinant 

Bacillus subtilis Sfp (12, 47). Typically, 500 μM acyl-CoA and 50 μM (apo) ACP were 

incubated with 2 μM Sfp, and 10 μM MgCl2 in 50 mM Tris-HCl buffer, pH 8.1, at room 

temperature for ~2 h. Reaction mixtures were desalted by PD10 column equilibrated with 

the buffer E. The desalted (holo) ACPs were concentrated by using Amicon Ultra-4 (5 

kDa, Millipore), flash-frozen in 10-50 μL aliquots in liquid N2, and stored at -80˚C. For 

substrate loading onto (apo) Hal-ACP3, the reagents were equilibrated with argon prior to 

use. The substrate loading onto (apo) Hal-ACP3 was manipulated in glove box. The 

substrate-loaded ACP samples were analyzed by reverse-phase HPLC using a Jupiter C4 

column (250 x 2.0 mm, 5 μm, 300 Å, Phenomenex), and a linear elution gradient from 5% 
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to 90% of CH3CN (0.1% CF3CO2H)/H2O (0.1% CF3CO2H). 

Cur Hal activity assays & enzymatic generation of γ-Cl-1-ACPII. Cur Hal acitivity 

was tested by using ACPIV or ACPII-linked substrates including malonyl-ACPIV, 

acetyl-ACPIV, 1-ACPII, 2-ACPII, 3-ACPII, 4-ACPII and 6-ACPII. The chlorination product 

was only detected for 1-ACPII. As such, the follow-up chlorination assays were 

performed by incubating the enzyme with 1-ACPII or 1-ACP3. Typically, 200 μl reaction 

mixture containing 50 μM 1-ACPII or 1-ACP3, 5 μM Cur Hal, 50 μM fresh 

Fe(NH4)2(SO4)2, and 0.5 mM α-KG in 50 mM Tris-HCl buffer (pH 7.5) was prepared in 

glove box. The reaction was initiated by exposing the reaction mixture to air, and 

incubated at 30˚C for 2 h to achieve a full conversion to γ-Cl-1-ACPII. The γ-Cl-1-ACPII 

was served as substrate for ECH1/ECH2/ER reactions. FTICR-MS and IRMPD were 

employed to detect the products. 

α-KG and O2 dependence of Hal chlorination. The α-KG and O2 dependence of Cur 

Hal chlorination was investigated by incubating the enzyme with 1-ACPII in the absence 

of α-KG or O2 under the uniform reaction condition described above. For Hal 

chlorination without O2, the reaction mixture was prepared in glove box, and capped 

during its incubation.  

ECH1 and ECH2 acitivity assays. ECH1 and ECH2 assays were performed as previously 

described (34). Briefly, ~50 μM 1-ACPII or γ-Cl-1-ACPII was added with 1 μM ECH1 or 

ECH1/ECH2 in 50 mM Tris-HCl buffer (pH 7.5), and incubated at 30˚C. After quenched 

by addition of 10% formic acid, the reactions were analyzed by reverse-phase HPLC 

using Jupiter C4 column. FTICR-MS and IRMPD were applied to detect the products. 

ER activity assays. The chlorinated substrate, γ-Cl-3-ACPII, was generated from 

γ-Cl-1-ACPII by Cur ECH1/ECH2, and the non-chlorinated substrate, 3-ACPII was 

generated by loading (apo) ACPII with 3-CoA. Typically, ER reactions were performed 

by incubating ~50 μM γ-Cl-3-ACPII or 3-ACPII with 1 μM ER and 0.5 mM NADPH in 

50 mM Tris-HCl buffer (pH 7.5) at 30˚C. Alternatively, ER reaction was coupled with 

ECH1/ECH2 dehydration and decarboxylation by serving γ-Cl-1-ACPII or 1-ACPII as the 
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substrate. FTICR-MS and IRMPD were applied to detect the products. 

One-pot reactions with Cur Hal-ACP3 or ACP3-linked substrate. The one-pot 

reactions were conducted tο confirm the products of ECH1/ECH2, Hal/ECH1/ECH2, 

ECH1/ECH2/ER, and Hal/ECH1/ECH2/ER coupled reactions. The ACP3-linked HMG 

substrates were generated by loading Cur (apo) Hal-ACP3 and ACP3 with 1-CoA as 

described above. The substrate loading of (apo) Hal-ACP3 was manipulated in glove box. 

Typically, the one-pot reactions were performed by incubating ~50 μM ACP3 or 

Hal-ACP3-linked HMG substrate with ~10 μM enzymes and their corresponding 

cofactors at 30˚C for 5 min. The reactions were initiated by exposing the reaction mixture 

to O2, and quenched by addition of 10% formic acid. Hal-ACP3 and ACP3 were purified 

from their reaction mixtures by reverse-phase HPLC before subjected to butylamine 

aminolysis as described below. 

Butylamine aminolysis. To determine the structures of products linked to the ACP3 and 

Hal-ACP3 PPant arms, the acyl groups were cleaved by butylamine aminolysis to 

generate the butylamide derivatives, which were analyzed by GC/MS (39) and compared 

with the authentic standards. To remove contaminants, the ACP3 and Hal-ACP3 were 

purified from their reaction mixtures by reverse-phase HPLC using the Source 15PRC 

column. The proteins were eluted using a linear gradient from 30% to 70% of CH3CN 

(0.1% CF3COOH)/H2O (0.1% CF3COOH), and pooled in glass vials before 

lyophilization. The aminolysis reaction was performed by adding 160 μl H2O, 100 μl 

hexane and 40 μl butylamine into ~5 nmol lyophilized ACP3 or Hal-ACP3 samples. The 

reaction mixture was incubated at 30˚C for 30 min, quenched by 66 μl 12 M HCl, and 

extracted with 2 x 2 mL ethyl acetate. The extracts were dried under nitrogen, and the 

butylamides were redissolved in 100 μl hexane before GC/MS analysis. 

GC/EI-MS analysis. The samples and authentic standards were analyzed by a Hewlett 

Packard 6890 gas chromatograph equipped with a 5973 mass selective quadrupole 

detector. The butylamides were separated on a DB-VRX (Agilent J&W) capillary column 

(60 m x 253 μm x 1.40 μm), which was operated with helium-carrier gas and splitless 

injection. Both the injector and detector temperatures were set as 250˚C. After initial 6 
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min at 45˚C, the oven temperature was raised to 140˚C at 8˚C/min and held for 10 

minutes, and then to 225˚C at 30˚C/min and held for 25 minutes. Total ion 

chromatograms were recorded using a mass range of 35-270 amu, and the selective ion 

chromatograms were recoded by monitoring 2-3 most abundant masses plus the parent 

masses of target compounds. 

Analysis of ACP samples by electrospray ionization (ESI)-FTICR-MS. The observed 

and calculated masses for all ACPII samples are listed in Table S2. The ESI-FTICR-MS 

samples were prepared by separating ACPII from the reaction mixtures using the Source 

15PRC reverse phase column as previously described (47). All samples were freshly 

prepared and analyzed with an actively shielded 7 Tesla quadrupole- FTICR mass 

spectrometer (APEX-Q, Bruker Daltonics, Billerica, MA). Target analytes in electrospray 

solution (1:1 CH3CN:H2O with 0.1% HCOOH) were directly infused into an electrospray 

ionization (ESI) source (Apollo II, Bruker Daltonics) operating in positive ion mode at a 

flow rate of 70 µL/h and a voltage of - 3.8 kV. A counterflow of hot (240°C) nitrogen gas 

was applied to assist desolvation of ESI droplets. Multiply protonated ions generated by 

ESI were externally accumulated in a hexapole and transferred via high voltage ion optics 

to the ICR cell for analysis. For IRMPD, precursor ions were mass-selectively 

accumulated in the hexapole with a 5-10 m/z quadrupole isolation window, transferred to 

the ICR cell, and irradiated for 100-300 ms by 10.6 μm photons at 10 W laser power (25 

W CO2 laser, Synrad, Mukilteo, WA). All data were acquired with XMASS software 

(version 6.1, Bruker Daltonics) in broadband mode from m/z = 200 to 2000 with 512k 

data points and summed over 10-30 scans. Mass spectra were analyzed with the MIDAS 

analysis software (48). For accurate mass determination, apomyoglobin (Sigma, St. Louis, 

MO) peaks on charge state of 19-20 (apomyoglobin was spiked into the ESI solution 

prior to analysis), or known y-type product ions (y22) generated from IRMPD of the same 

protein were used as internal calibrants. Once the exact mass of a protein had been 

determined, its two most abundant charge states were selected as internal standards for 

further calibration (apomyoglobin was not spiked into all reactions). All 

frequency-to-m/z calibrations were performed with a two-term calibration equation (49). 

(Performed by Bo Wang and Liangcai Gu) 
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IRMPD-based quantification. Peak abundances of PPant ejection products (PEPs) 

generated by IRMPD (38) were measured to quantify the yields of the ER catalyzed α,β 

C=C saturation and cyclopropanation reactions for time-course studies, or site 

mutagenesis assays. In ER α,β C=C saturation reaction, an addition of two hydrogens to 

the substrate is unlikely to affect ESI efficiency. Furthermore, products and substrates 

were observed with the same charge state distribution patterns, allowing a single charge 

state to be used for analysis (50). For Cur ER cyclopropanation, quantification of 5-ACPII 

was achieved by using 4-ACPII as an internal standard. No desaturation product of 

4-ACPII, which would interfere with 5-ACPII measurement, was detected. The ratio of 

these acyl-ACPII species with 2 Dalton mass difference can be straightforwardly 

measured by analyzing their PEPs. With IRMPD, quantification results from a single 

charge state (+12) were identical to those based on an average of the entire charge state 

distribution. Thus, we chose to utilize the +12 charge state for IRMPD quantification 

analysis. The ratio of PEPs with 2 Dalton mass difference was calculated by measuring 

the abundance of the n and n+2 product ion peaks (the n+2 peak abundance was adjusted 

by subtracting the natural n+2 isotopic abundance for peak n). For saturation reactions, 

yields were calculated by measuring the ratios of substrates with respect to products 

whereas, for cyclopropanation reactions, yields were calculated by measuring the ratios 

of products with respect to the internal standard. (Performed by Bo Wang and Liangcai 

Gu) 

Time-course studies of ER saturation and cyclopropanation. The time-course studies 

were performed to compare the catalytic efficiencies of Cur ER cyclopropanation and 

saturation, and Jam ER saturation. γ-Cl-3-ACPII was applied as the substrate for Cur ER 

cyclopropanation and Jam ER saturation, and 3-ACPII as the substrate for Cur and Jam 

ER saturation. All the reactions were performed in triplicate under the uniform reaction 

condition. ~200 μM γ-Cl-3-ACPII or 3-ACPII was incubated with 2 μM Jam or Cur ER, 

and 1 mM NADPH in 50 mM Tris-HCl buffer (pH 7.5) at 30˚C. For Cur ER 

cyclopropanation, ~100 μM 4-ACPII, which was generated from (apo) ACPII and 4-CoA, 

was added as the internal standard for 5-ACPII. No desaturation product of 4-CoA was 

observed under the tested conditions. After certain amounts of reaction time, ~20 μl 
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aliquots were removed from the reaction mixture, added with 50 μl 10% formic acid to 

quench the reaction, and flash-frozen by liquid N2. The ACPII samples were purified by 

reverse-phase HPLC, and immediately subjected to the IRMPD-based quantification 

analysis.  

Quantification of regiochemical products of the ECH2 WT and mutants. The ratios 

of α,β and β,γ C=C products of the ECH2 decarboxylation were measured for Cur ECH2 

WT and mutants, and Jam ECH2 WT. The products were generated from γ-Cl-1-ACPII by 

ECH1/ECH2 coupled dehydration and decarboxylation. 50 μM γ-Cl-1-ACPII was 

incubated with 2 μM Cur ECH1 and 2 μM Cur or Jam ECH2 in 50 mM Tris-HCl buffer 

(pH 7.5) at 30˚C for 45 min. Next, the reaction mixtures were treated with 2 μM Jam ER 

with 0.5 mM NADPH for 45 min before an addition of 10% formic acid to quench the 

reactions. The ratio of γ-Cl-4-ACPII and γ-Cl-6-ACPII were measured by IRMPD-based 

quantification as described above. (Performed by Bo Wang and Liangcai Gu) 

Modeling the PPant arm of (4S)-γ-Cl-2-ACPII into Cur ECH2 structure. Initial 

atomic coordinates and topology files for the PPant arm of (4S)-γ-Cl-2-ACPII were 

generated using the PRODRG2 server (51). The PPant arm was initially positioned into 

Cur ECH2 (PDB code 2Q34) as previously described (34). Any overlapping waters were 

removed before energy minimization after the addition of hydrogens using the program 

CNS 1.2 (52) in 1080 steps of conjugate gradient minimization using no experimental 

energy terms and full harmonic restraints. (Performed by Todd Geders) 
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4.6  SUPPLEMENTAR FIGURES AND TABLES 
 

 
Figure 4-S1. Alignment of AT domains of the sequenced pathways from L. majuscula, 
including curacin, jamaicamide, barbamide and putative carmabin pathways. 
 

AT terminus 

Post-AT 
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Figure 4-S2. Phylogenetic trees for a, AT, b, KS and c, DH domain sequences of curacin, 
jamaicamide, barbamide and putative carmabin pathways from L. majuscula. The 
phylogram trees with distances were constructed by ClustalW2. 
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Figure 4-S3. Coomassie blue-stained SDS-PAGE of purified Cur and Jam enzymes. JamJ 
ER and CurF ER were expressed as N-terminal GST-tagged proteins to increase their solubility. 
CurE ECH1 was coexpressed with chaperones to increase its solubility and coeluted with them 
from the Ni-affinity column. His-tag cleaved CurA Hal was prepared for metal content analysis. 
The target enzymes are indicated by red arrows. 
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Figure 4-S4. HPLC analysis of HMG substrate loading onto a, (apo) ACP3, b, (apo) ACPII. 
Multiple peaks were observed for (apo) ACP3 substrate loading due to mono-, di- and tri-loading 
with (S)-HMG-CoA. 
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Figure 4-S5. a, b, HMG substrate chirality preference of Cur Hal and ECH1; c, O2 and 
α-KG dependence of Cur Hal. Partial FTICR mass spectra for ECH1 and Hal reactions with a, 
(S)-HMG-ACPII substrate, and b, (R,S)-HMG-ACPII substrate. c, Partial FTICR mass spectra for 
Hal reactions without O2 or α-KG. For Hal reaction without O2, the reaction mixture was 
prepared in glove box and capped during its incubation. 
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Figure 4-S6. Feeding experiment to demonstrate that Hal chlorination precedes ECH2 
decarboxylation. The β-branching carbon forming the cyclopropane was labeled with only one 
deuterium atom by [2H3,2-13C]acetate supplied in the growth media of L. majuscula. If Hal 
chlorination happens after ECH2 decarboxylation, the β-branching carbon would be labeled 
randomly with one or two deuterium atoms. 
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Figure 4-S7. HPLC analysis of ECH1/ECH2 coupled dehydration and decarboxylation to 
compare the rates for the chlorinated and non-chlorinated substrate. The reactions were 
performed under a uniform reaction condition, and quenched after the indicated periods of time. 
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Figure 4-S8. FTICR mass spectra and IRMPD spectra for Jam enzyme reactions. a, Partial 
FTICR mass spectra for Jam ECH1, ECH2 and ER reactions. 1-ACPII was chlorinated by Cur Hal 
for 1 h to generate γ-Cl-1-ACPII substrate. The reactions were incubated at 30oC for 2 h for the 
1-ACPII substrate and 30 min for the γ-Cl-1-ACPII substrate. b, IRMPD spectra for the PEPs of 
6-ACPII and γ-Cl-6-ACPII before Jam ER saturation (above) and after Jam ER saturation (below). 
A small amount of saturated product with its PEP indicated by red arrow was observed to be 
mixed with the 6-ACPII. Based on the butylamine cleavage analysis, 3-ACPII was inferred to be 
the minor product of Jam ECH2 when using the non-chlorinated substrate. 
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Figure 4-S9. The UV absorption difference for Cur and Jam ECH2 decarboxylation 
products. a, HPLC traces showing the separation of γ-Cl-1-ACPII and its decarboxylation 
products catalyzed by Cur and Jam ECH1/ECH2. b, UV spectra (220-310 nm) of Cur (red) and 
Jam (blue) ECH2 decarboxylation products. 
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Figure 4-S10. Natural products with different β-branching-associated C=C positions via 
ECH2 regiochemical control. a, Two groups of natural products with the α,β and β,γ C=Cs 
adjacent to their β-branching carbons. The C=Cs of curacin A and myxovirescin A have been 
modified by ERs. b, The mechanism for the formation of α,β and β,γ C=C products. 
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Figure 4-S11. IRMPD-based quantification to measure the yields of a, Cur ER 
cyclopropanation, b, Jam ER saturation, and c, the ratio of α,β and β,γ C=C products of 
ECH2s. Because the ACPII species with two Dalton mass difference are equally distributed over 
different charge states, we focused on the +12 change state to record IRMPD spectra. a, To 
measure the yield of Cur ER cyclopropanation, 4-ACPII was added as internal standard for 
5-ACPII. b, The yield of Jam ER saturation was measured by the ratio of γ-Cl-3-ACPII substrate 
and γ-Cl-4-ACPII product. c, To measure the ratio of α,β and β,γ C=C products, the α,β C=C 
product was reduced by Jam ER by treating the mixtures of α,β and β,γ C=C products with Jam 
ER for 30 min before IRMPD analysis. 



 124

 

 
Figure 4-S12. Comparison of Cur and Jam ER saturation by using 3-ACPII substrate. 
IRMPD-based quantification was applied to measure the yields of ER saturation. 
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Figure 4-S13. Synthesis of butylamide derivatives as GC-MS authentic standards.
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Table 4-S1. Primers for expression constructs. 

The restriction sites are underlined. 

Primer name Sequences (5’ to 3’)  
CurA-Hal-for CATATGAACCGGGAACAAGTTGAACAA (NdeI) 
CurA-Hal-rev CTCGAGTTACGAAGAGATGCTTGGTGTTTC (XhoI) 
CurA-ACP3-rev CTCGAGCTCCTAAACTGTAACCTGTTT (XhoI ) 
CurF-ER-for CCGCGGGTATACACCAGGTAACCTTTAAC (SacII) 
CurF-ER-rev CTCGAGATTTTTCTTTGTTGGGGA (XhoI) 
JamI-ECH1-for CATATGTATTACCAAACCCTAAAA (NdeI) 
JamI-ECH1-rev CTCGAGGCTTTGCCATGGATATAAC (XhoI) 
JamJ-ECH2-for CATATGGCAAAGCTGAACTTGAATC (NdeI) 
JamJ-ECH2-rev CTCGAGCTGCTGGAAGGTTTTTTC (XhoI) 
JamJ-ER-for CCGCGGGTATACATCAAACCACTAGTCAA (SacII) 
JamJ-ER-rev CTCGAGTTCTTTTGTCGATTCTGGTTC (XhoI) 
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Table 4-S2.  ESI-FTICR-MS analysis. 
 

Masses are in Daltons. Calc., calculated; Obs., observed. 
PEP, PPant ejection product. 

ESI-FTICR-MS IRMPD (PEP) 
ACPII samples Obs. avg mass Calc. avg mass Obs. [M + H]+ Calc. [M + H]+ 

apo-ACPII 11300.7 11300.8   
1-ACPII 11785.9 11785.9 387.164 387.159 
2-ACPII 11767.9 11767.9 405.174 405.170 
3-ACPII 11723.9 11723.9 343.174 343.169 
6-ACPII 11723.9 11723.9 343.163 343.169 
4-ACPII 11725.9 11725.9 345.190 345.185 

γ-Cl-1-ACPII 11819.8 11819.9 439.128 439.131 
γ-Cl-2-ACPII 11802.0 11801.9 421.110 421.120 
γ-Cl-3-ACPII 11757.8 11757.9 377.140 377.130 
γ-Cl-6-ACPII 11757.8 11757.9 377.141 377.130 
γ-Cl-4-ACPII 11759.8 11759.9 379.156 379.146 

5-ACPII 11723.9 11723.9 343.169 343.169 
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CHAPTER 5 
DECARBOXYLATIVE CHAIN TERMINATION 

5.1  SUMMARY 

In this chapter, a novel chain termination module that mediates a decarboxylative 

chain termination leading to the formation of terminal olefin in the curacin A pathway is 

biochemically assessed. First, we identified the correct curM sequence by sequencing the 

thioesterase (TE) region in the selected cosmids from the genomic library of Lyngbya 

majuscula. Next, the acyl carrier protein (ACP), sulfotransferase (ST) and thioesterase 

domains from CurM chain extension and termination modules were overexpressed, 

purified and biochemically assessed. The ST domain was demonstrated to transfer a 

sulfuryl group from adenosine 3′-phosphate 5′-phosphosulfate (PAPS) to the β-hydroxyl 

group of the model substrates. The TE domain was proved to release the acyl chain by 

cleaving the thioester bond. New model substrates were designed to facilitate the 

detection of the terminal olefin products in ST/TE coupled assays. This ST-TE chain 

termination model can serve as an important engineering tool to generate a hydrophobic 

end in polyketide products to improve their physicochemical properties. 

5.2  INTRODUCTION 

Modular polyketide synthases (PKSs) are giant biosynthetic machines that catalyze 

programmed metabolic pathways to assemble short-chain acyl-CoA building blocks into 

complex polyketide products by one step of chain initiation followed by multiple steps of 

chain elongation and one step of chain releasing. So far, three major strategies have been 

reported for cleavage of the thioester bond between the thiol group of ACP/peptidyl 

carrier protein (PCP) PPant arm and PKS/non-ribosomal peptide synthase (NRPS) 

acyl/peptidyl chain after the final step of chain extension completes (1). The first strategy 
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is to hydrolyze the full-length acyl, peptidyl, or hybrid chain from carrier protein PPant 

thiol to release the free acid via formation of an acyl-O-TE intermediate and releasing the 

acyl group by nucleophilic attack with H2O (1). The second strategy and the one of most 

medicinal interest is to use an intramolecular nucleophile within the acyl chain to release 

the acyl group from the acyl-O-TE intermediate (1). This intramolecular nucleophile can 

be N-terminal or side chain -NH2s that give cyclic lactams, or side chain -OHs that result 

in macrolactones. The last strategy of chain release is to employ a reductase (Red) 

domain rather than the TE domain that utilizes NAD(P)H as a hydride-transfer 

cosubstrate (1). Usually, the most downstream catalytic domain in such assembly lines is 

a reductase domain instead of a TE domain. The two-electron reduction of an acyl 

thioester generates the thioacetal, which spotaneously decomposes to release an aldehyde 

product. In some cases, the aldehyde can undergo a second round of reduction to give an 

alcohol. 

Curacin A is a potent antimitotic agent isolated from L. majuscula (2, 3). As a mixed 

polyketide/non-ribosomal peptide, it has unusually high hydrophobicity. All the keto 

groups from the chain extension steps are reduced to hydroxyl groups, which are 

removed by the dehydratase (DH)-catalyzed dehydration or modified by 

O-methyltransferase (OM)-catalyzed methylation. More interestingly, the curacin A has 

an unusual terminal olefin instead of a carboxyl, aldehyde or alcohol group. The 

identification of curacin A biosynthetic gene cluster (3) revealed that the terminal olefin 

group is most likely generated from the decarboxylation/dehydration catalyzed by an 

unprecedented ST-TE chain termination module. Based on the feeding study and the 

pathway annotation (3), a TE and ST-mediated decarboxylative chain termination 

mechanism was proposed (Figure 5-1). 

Sulfotransferases are enzymes that catalyze the transfer of a sulfuryl group from the 

donor, PAPS, to the receptors ranging from proteins to compounds (4). Two classes of 

STs have been identified and characterized: cytosolic STs and membrane-associated STs. 

Cytosolic STs sulfonate small endogenous and exogenous compounds, such as hormones, 

bioamines, drugs, and various xenobiotic compounds, which are involved in 

detoxification, hormone regulation, and drug metabolism (4). Membrane-associated STs, 
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many of which have been implicated recently in crucial biological processes, sulfonate 

larger biomolecules, such as carbohydrates and proteins, and play key roles in a number 

of molecular-recognition events and biochemical signaling pathways (4). Here, CurM ST 

is unprecedented in that it is embedded in PKS modules and recruited for polyketide 

chain termination process. 

The sulfotransferase superfamily members have a conserved structural fold, a core 

of four to five parallel beta-strands flanked by alpha helices. The PAPS binding region is 

highly conserved both in primary and tertiary structures (4). Given the diverse nature of 

sulfuryl group receptor, it is expected that the substrate-binding region has the most 

variation (4). Mechanistic insights have been derived from the solved X-ray structures of 

some STs and their biochemical studies. It was demonstrated that the sulfonation 

reactions proceed by an in-line attack of the nucleophile at the sulfate group of PAPS. 

However, it is yet to be confirmed that whether the conserved active-site histidine residue 

assists in the reaction by deprotonating the substrate hydroxyl group, or acts as a 

nucleophile to form an unstable protein-sulfate complex (5). 

 
Figure 5-1. The terminal olefin formation via decarboxylative elimination mechanisms. A. 
MDD-catalyzed decarboxylative elimination. B. Proposed chain termination mechanism in 
curacin A pathway. 
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This unusual decarboxylative chain termination chemistry provides us an useful tool 

to generate a terminal olefin into polyketide-related compounds. Presumably, the 

ST-catalyzed sulfonation of β-hydroxyl group can promote the decarboxylative 

elimination by recruiting the sulfate as an excellent leaving group. However, the timing 

of sulfonation and TE cleavage, as well as the enzyme that mediates the decarboxylative 

elimination is not evident. Notably, similar strategy to generate the terminal olefin was 

observed in the mevalonate pathway in isoprenoid biosynthesis. A kinase, 

mevalonate-5-diphosphate decarboxylase (MDD), was proved to convert β-hydroxyl 

group in mevalonate-5-diphosphate to phosphate group, which also serves as a leaving 

group, and catalyze successive decarboxylative elimination leading to a isopentenyl 

diphosphate product (Figure 5-1) (6). However, a similar terminal olefin in tautomycetin 

(TMC), a polyketide metabolite isolated from Streptomyces sp. CK4412 and identified as 

an immunosuppressor of activated T cells, is likely generated by a distinct unknown 

mechanism (7). In tautomycetin biosynthetic pathway, only TE was observed in the chain 

termination module, and some tailoring enzymes, such as a P450 and decarboxylase, 

were suggested to mediate the terminal olefin formation (7). 

The ST-TE chain termination module provides us a useful bioengineering tool to 

generate a highly hydrophobic functional group in the polyketide-related compounds, 

which might optimize the physicochemical properties of some natural products. 

5.3  RESULTS 

5.3.1  Resequencing of CurM TE Domain 

Based on the bioinformatic analysis and protein expression results, the previously 

published sequence of the end of curacin A pathway that starts from the middle of CurM 

TE region (3) was predicted to be incorrect. Only a part of thioesterase domain was found 

in this TE region based on the Conserved Domain (CD) searching and sequence 

alignment. No soluble protein expression was achieved for any CurM TE-containing 

constructs, such as ACP-ST-TE, ST-TE and TE. 
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We sought to identify the cosmids that contain the correct curacin A downstream 

pathway. Thus, the selected cosmids from the genomic library (8) that contain PKS or 

NRPS modules were screened by PCR using a primer pair that amplifies curM ST gene. 

The pLM19 and pLM14 cosmids (3) were detected to contain curM ST gene. These two 

cosmids were further sequenced by the primer walking from CurM TE to ~300 base pair 

downstream. Our results confirmed that the published sequence (3) of CurM TE and its 

downstream regions in pLM17 does not belong to the curacin A pathway. This finding is 

supported by the result from the L. majuscula single cell genome sequencing project 

provided by William Gerwick lab at UCSD (Figure 5-2). 

Based on the corrected sequence of curacin A downstream pathway, this pathway 

ends at curM, and no curN (3) was found in the downstream region. The new CurM TE 

sequence was predicted to contain a full conserved region for thioesterases. 

5.3.2  CurM ST Assays 

CurM ST was biochemically assessed to identify and characterize its activities. The 

ST was produced as an N-terminal His-tagged protein (Figure 5-3). Two long chain (C14) 

model substrates with (R) or (S) β-hydroxyl and δ-methoxyl groups were synthesized as the 

CoA and SNAC thioesters. The CoA substrates were also loaded onto (apo) CurM ACP to 

generated ACP-linked substrates. All CoA, SNAC and ACP-linked substrates were proved 

to be sulfonated by CurM ST. Thus, we focused on the substrates in CoA thioester form to 

examine the stereoselectivity for the β-hydroxyl group. The CurM ST transfers sulfuryl 

group from PAPS to both substrates with (R) and (S) β-hydroxyl groups (Figure 5-4). 

Figure 5-2. The updated curacin A downstream pathway from L. majuscular genome 
sequencing project. (Gerwick lab) 
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However, more 

sulfonation product 

of the (R) 

β-hydroxyl group 

substrate 

accumulated than 

the (S) β-hydroxyl 

group substrate. 

Interestingly, a 

considerable 

amount of α, β 

dehydration product was observed for the (S) β-hydroxyl group substrate, which suggests 

that (S) β-sulfate group might serve as a leaving group for ST-catalyzed dehydration. 

5.3.3  CurM TE Assays 

The CurM TE was produced as a partially soluble C-terminal His-tagged protein 

(Figure 5-3). The model 

substrates in the CoA 

thioester form were 

examined for the TE 

stereoselectivity of the 

β-hydroxyl group. The 

CurM TE was proved to 

cleave the thioester bond 

of both model substrates 

with the (R) and (S) 

β-hydroxyl groups 

(Figure 5-4). However, 

according to our 

preliminary HPLC 

 
Figure 5-3. Ni-NTA purifications of CurM ACP, TE and ST. 

Figure 5-4. HPLC analysis for the ST and TE assays. 
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analysis, the CurM TE shows a higher catalytic acitivity for the (R) β-hydroxyl group 

substrate than (S) β-hydroxyl group substrate, suggesting that the native substrate of CurM 

ST should contain a (R) β-hydroxyl group. 

5.4  FUTURE DIRECTIONS 

The terminal olefin products of the chain model substrates can only be detected by 

GC-MS, which is not facile method for the follow-up kinetic assays. Thus, we decided to 

introduce a hydrophilic imidazole 

group as a chromophore into the 

model substrates (Figure 5-5) to 

facilitate the HPLC analysis. These 

substrates will be synthesized by Peter 

Wipf group at University of 

Pittsburgh. 

Given our results from the CurM 

ST and TE assays, some questions are 

yet to be answered: (1) the timing of 

ST-catalyzed sulfonation. Does it 

happen before or after the TE 

cleavage? We need to test whether 

CurM ST can catalyze the sulfonation 

of the carboxylic acids after the TE 

cleavage. (2) Which enzyme catalyzes 

the decarboxylative elimination, ST or 

TE? The ST-catalyzed dehydration of the CoA thioesters implies that the activity of ST 

might not be limited to the β-hydroxyl sulfonation. The new designed 

imidazole-containing model substrates will enable us to trace their intermediates and 

products in ST/TE-coupled assays. 

5.5  MATERIAL AND METHODS 

The imidazole substrate 1

OMe
NH

N

HO2C
OH

The imidazole substrate 2

OMe
NH

N

HO2C
OH

Authentic stardard for the product

OMe
NH

N

 
Figure 5-5. Imidazole-containing model 
substrates and the authentic standard for the 
HPLC analysis of terminal olefin products. 
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Chemicals. PAPS was from Sigma-Aldrich (>60% purity). The model substrates in 

carboxyl acid forms were synthesized by Peter Wipf group at University of Pittsburgh. 

The CoA or SNAC thioesters of the model substrates were synthesized as described in 

chapter 4. All other chemicals were from Sigma-Aldrich. 

Bacterial strains, media and culture conditions. Escherichia coli DH5α MCR 

(Invitrogen) was used for DNA propagation. Escherichia coli BL21 (DE3) transformed 

with the derivatives of pET24b and pET28b were used for protein overexpression in 

Luria-Bertani (LB) medium. Ampicillin (100 μg/mL), carbenecillin (100 μg/mL), 

kanamycin (50 μg/mL), and apramycin (50 μg/mL) were used for the corresponding 

plasmid construct resistance marker selection in E. coli cultures. 

Resequencing of curM. The selected cosmids from the cosmid library (8) of L. majuscula 

were screened by PCR using a pair of primers to amplify CurM ST gene: (F) GGA TGC 

GGA TGC AAA AAC TTG, and (R) CGG ATG CAA AAA CTT GTC GGG. According 

to the PCR results, pLM19 and pLM14, as well as pLM17 (8) were detected to contain 

curM ST gene. The restriction enzyme digestion patterns of these cosmids were found to 

be similar, suggesting that they share the DNA fragments from the digested genomic 

DNA of L. majuscula. The two cosmids, pLM19 and pLM14, were further sequenced by 

primer walking in the CurM TE and the downstream regions. Our sequencing results 

confirmed that the previously published sequences (3) of CurM TE and also its 

downstream regions in pLM17 are not from the curacin A pathway, possibly due to a DNA 

rearrangement. 
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Plasmid construction and site mutagenesis. The primers used for the plasmid 

construction and site-directed mutagenesis were listed in table 5-1. CurM ACP, ST and TE 

genes were amplified from cosmid pLM14 or pLM19. The CurM ACP, ST-TE and 

ACP-ST-TE genes were inserted into pET24b plasmid with NdeI and NotI restriction sites. 

The CurM ST gene was inserted into pET28b plasmid with NdeI and BamHI restriction 

sites. All the constructs were verified by DNA sequencing. 

Protein overexpression. E. coli BL21 (DE3) was transformed by the pET24b::CurM ACP, 

and pET24b::CurM TE plasmids to overexpress C-terminal His-tagged proteins, and by 

pET28b::CurM ST plasmid to overexpress N-terminal His-tagged protein. CurM ACP was 

overexpressed in the apo form. Cells were grown at 30oC to an OD (590 nm) = 0.5-0.6, and 

then cooled to 15oC prior to the addition of 1 mM isopropyl-β-D-galactopyranoside (IPTG). 

The cultures were grown at 15oC for another 18-20 h before harvesting. 

Protein purification. Protein purifications were performed at 4oC. Generally, the first 

step Ni-affinity purifications for all His-tagged proteins were performed under the same 

conditions. E. coli cells were harvested by centrifugation (4,000 g, 15 min, 4oC), 

resuspended in the ice cold lysis buffer A (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 10 

mM imidazole, 20% glycerol) and disrupted by sonication on ice. The cell debris was 

removed by centrifugation at 15,000 g for 50 min. The supernatant was gently removed 

and loaded onto the 5 ml HisTrap column (GE Healthcare) preequilibrated with lysis 

buffer A. The resin was washed successively with ~ 10 column volumes of the washing 

buffer B (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 20 mM imidazole, 10% glycerol) to 

remove nonspecifically bound contaminants. Bound proteins were eluted with imidazole 

by a linear gradient of the elution buffer C (50 mM PBS buffer, pH 8.0, 300 mM NaCl, 

250 mM imidazole, 20% glycerol). The eluate was checked by SDS-PAGE for purity, 

pooled and concentrated using Amicon Ultra-15 (10 kDa or 5 kDa) centrifugal devices 

(Millipore). The concentrated eluate was loaded onto HiPrep 26/10 Desalting column 

equilibrated with the storage buffer D (50 mM PBS buffer, pH 7.5, 200 mM NaCl, 20% 

glycerol). The fractions were pooled, concentrated, flash-frozen in 50-200 μl aliquots in 

liquid N2, and stored at -80oC for further use. The purity of the proteins was analyzed by 

SDS-PAGE and the protein concentrations were determined using the Bradford assay 
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(Bio-Rad). 

The preparation of CurM ACP-linked model substrates. The model substrates were 

firstly coupled to CoASH to generate CoA thioesters, which were loaded onto (apo) 

CurM ACP using sfp or svp protocol described previously (9). 

HPLC analysis of the ST-catalyzed sulfonation on the model substrates. HPLC 

analysis of the ST-catalyzed sulfonation was performed using XBridge C18 column (4.6 

x 250 mm, 5 μm, Waters) on the Gold HPLC system equipped with an autosampler and 

controlled by 32 Karat software (Beckman Coulter). The CoA samples were eluted with a 

linear gradient from 3% to 100% of MeOH/H2O (10 mM CH3CO2NH4). The SNAC 

samples were eluted with linear gradient from 5% to 100% of CH3CN/H2O (0.1% 

CF3COOH). For the sulfonation assays, 200 μM CoA or SNAC model substrates were 

incubated with 20 μM CurM ST, and 1 mM PAPS in 50 mM Tris-HCl, pH 7.5, for 2 

hours at room temperature. DMSO (1%) was added to increase solubility of SNAC 

substrates. The reaction mixtures were filtrated by Microcon YM-10 (Millipore), and 

analyzed by HPLC. 

HPLC analysis of the TE-catalyzed sulfonation on the model substrates. The HPLC 

analysis conditions for the TE assays were similar to those of the ST assays described 

above. The CoA samples were eluted with a linear gradient from 3% to 100% of 

MeOH/H2O (10 mM CH3CO2NH4). The SNAC samples were eluted with linear gradient 

from 5% to 100% of CH3CN/H2O (0.1% CF3COOH). For the TE assays, 200 μM CoA or 

SNAC model substrates were incubated with 10 μM CurM TE in 50 mM Tris-HCl, pH 

7.5, for 1 hours at room temperature. DMSO (1%) was added to increase solubility of 

SNAC substrates. The reaction mixtures were filtrated by Microcon YM-10 (Millipore), 

and analyzed by HPLC. 

Analysis of CurM ACP samples by ESI-FTICR-MS. CurM ACP samples were 

prepared by loading the reaction mixtures on Source 15PRC reverse phase column. The 

proteins were eluted with a linear gradient from 30% to 70% CH3CN (0.05% HCOOH 

and 0.05% CF3COOH)/H2O (0.05% HCOOH and 0.05% CF3COOH). Mass 

spectrometric analysis was performed with an actively shielded 7 Tesla 
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quadrupole-Fourier transform ion cyclotron resonance mass spectrometer (APEX-Q, 

Bruker Daltonics, Billerica, MA). Target analytes were diluted in an electrospray solution 

(1:1 CH3CN:H2O with 0.1% HCOOH) and directly infused into an electrospray 

ionization (ESI) source (Apollo II, Bruker Daltonics) at a flow rate of 70 µL/h and a 

voltage of - 3.8 kV. A counterflow of hot (240°C) nitrogen gas was applied to assist 

desolvation of ESI droplets. For accurate mass determination, up to 10 picomoles of 

apomyoglobin (Sigma, St. Louis, MO) was spiked into the ESI solution as internal 

calibrant.  Multiply protonated ions generated from ESI were externally accumulated in 

a hexapole for 1 s and transferred via high voltage ion optics to the ICR cell for analysis. 

All data were acquired with XMASS software (version 6.1, Bruker Daltonics) in 

broadband mode from m/z = 200 to 2000 with 512k data points and summed over 20-30 

scans. Mass spectra were analyzed with the MIDAS analysis software (10). When needed, 

external frequency-to-m/z calibration was performed with a two-term calibration 

equation (11) using two calibration standards (m/z = 622.02895 and 922.00979, from the 

calibration mix G2421A, Agilent Technologies, Palo Alto, CA). For infrared multiphoton 

dissociation (IRMPD), precursor ions were mass-selectively accumulated in a hexapole 

with a 3-5 m/z quadrupole isolation window, transferred to the ICR cell, and irradiated 

for 100-300 ms by 10.6 μm photons at 10 W laser power (25 W CO2 laser, Synrad, 

Mukilteo, WA) for 30-50 scans. 
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CHAPTER 6 
SUMMARY 

6.1  NATURAL PRODUCT ASSEMBLY LINES IN EVOLUTION 

Natural product biosynthetic pathways are comprised of gene sets whose architecture 

reflects an ongoing evolutionary process. In bacterial type I PKS and NRPS systems, the 

metabolic pathway includes a series of modules that specify the nature of the starter unit, 

extender unit and termination processes to generate a core molecule. Within this 

biosynthetic framework numerous genetic determinants ultimately translate into the order, 

nature and number of catalytic domains within the PKS or NRPS multifunctional proteins. 

In turn, this determines the chemical outcome relating to each step during polyketide or 

non-ribosomal peptide assembly. As chain elongation progresses, keto group processing 

reactions determine the fate of the β-carbonyl group, stereochemistry of the resulting 

hydroxyl, or configuration of the double bond. In essence, each reaction operates 

independently, yet the catalytic event driving it has evolved within the scope of an 

extremely complex biosynthetic machine whose parts operate together efficiently. 

The driving forces that determine co-evolution of multiple catalytic domains or 

enzymes within a secondary metabolic pathway remain largely unknown. Thus, although 

the biological role of many chemically diverse natural products is understood with 

respect to human cell targets, their natural or indigenous targets may never be definitively 

revealed. On the other hand, we assume that pathways of secondary metabolism evolve 

and expand by mechanisms similar to those recognized for primary metabolic pathways. 

However, tracing the ancestral forms of multiple genes as a functional collective is 

elusive, especially when they are dispersed in the genome. Biosynthetic genes from 

microbial hosts are usually clustered in their genomes, and as such are ideal for 
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evolutionary studies (1). 

6.2  DIFFERENT TYPES OF MEATABOLIC PATHWAY 

EVOLUTION 

The curacin A pathway enabled us to witness the innovation on a polyketide 

assembly line by different types of metabolic pathway evolution. This pathway is largely 

constructed by the canonical PKS and NRPS modules. However, in its chain initiation, 

extension and termination modules, some unusual catalytic elements were incorporated 

and catalyze the unprecedented reactions on the polyketide assembly line. These 

interesting catalytic enzymes and domains in canonical PKS module offer us a precious 

chance to reveal the evolution events that enabled the formation of curacin A pathway. 

The biochemical, bioinformatic and structural studies described in this dissertation 

demonstrated that these different types of pathway evolution are widely employed and 

significantly promote the chemical diversity of natural products. 

6.2.1  Insertion of Gene Assembly by Homologous Recombination 

The type I PKS and NRPS are highly modularized biosynthetic machinery. They 

serve as a paradigm for secondary metabolic systems that are successful in natural 

selection to expand chemical diversity. It is well know that the evolution of metabolic 

pathways proceeds by patterns of gene duplication, insertion and mutation. Recent 

bioinformatic studies suggest that some highly conserved sequences in PKS modules can 

facilitate domain replacement by homologous recombination (2, 3). As such, the 

conserved regions in these highly modularized systems give us a good reason to explain 

why these complex biosynthetic machines are chosen by nature to expand chemical 

diversity in secondary metabolism. In chapter 4, our comparative studies of the Cur and 

Jam pathways indicate that a whole gene assembly is inserted into polyketide pathway by 

the “di-AT” replacement. This type of the replacement might frequently happen in PKS 

pathway to achieve pathway expansion and contraction via an economic way. As more 

and more genome sequencing data become available, we will have enough samples to 

study the roles of homologous recombination in construction of new biosynthetic 

pathways. We also expect that this genetic strategy can be employed to the pathway 
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engineering in laboratory.  

6.2.2  Recruitment of New Enzymes to Change Biochemical Schemes 

In this dissertation, there are two perfect examples to show how new enzymes are 

recruited into the biosynthetic pathway and then significantly revise the biochemical 

schemes. In chapter 4, the Cur and Jam Hal domain are revealed to be introduced into the 

HMG enzyme assembly to catalyze the chlorination of (S)-HMG-ACP3. This chlorination 

step revised the scheme of HMG β-branching modification. Without the chlorination step, 

an isovaleryl-ACP3 is generated, but after the chlorination, the Cur ER catalyzes a 

cyclopropanation step instead of α,β saturation to form 

2-methylcyclopropane-1-carboxyl-ACP3. In chapter 5, another example is the terminal 

olefin formation in the chain termination of curacin A pathway. A sulfotransferase is 

incorporated into the chain termination module, and catalyzes the β-hydroxyl sulfonation 

to generate a good leaving group. Without the sulfotransferase, the thioesterase just 

cleaves the acyl chain from ACP to yield the product with a carboxylic end. Instead, the 

sulfonated product undergoes a decarboxylative chain termination to produce the terminal 

olefin. These two elegant biochemistries show us the tremendous capability of nature to 

innovate biosynthetic mechanisms from the existing ones. 

6.2.3  Development of New Functions from Old Enzyme Scaffolds 

The biosynthetic enzymes in secondary metabolism show significant substrate 

tolerance and catalytic promiscuity (4, 5), which can facilitate the generation of new 

functions from the same protein scaffold. In chapter 2, the GNATL domain in the chain 

initiation module of curacin A pathway was proved to be a member of GNAT 

superfamily. GNATs normally catalyze the N-acetyltransfer from acetyl-CoA to the 

primary amine groups on small molecules or proteins. However, the GNATL domain was 

demonstrated to catalyze the unprecedented S-acetyltransfer and decarboxylation 

reactions. Similarly, in chapter 4, the Cur ER domain shows the highest sequence identity 

to the Jam ER domain. Unexpectedly, the Cur ER catalyzes a cyclopropanation step of 

the chlorinated substrate, but the Jam ER domain only catalyzes the canonical saturation 

reaction. It is proposed that some mutations happen in the active site of Cur ER to 
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remove proton source from the α-carbanion in favor of the cyclopropanation via an 

intramolecular nucleophilic substitution. The GNATL and ER domains well exemplify 

the intriguing protein evolution events that develop new functions from the same enzyme 

scaffolds. Our undergoing structural studies will let us know more details about the 

sequence variation that can yield these new activities. 

6.2.4  Diversification of Regiochemical Control for Pathway Ramification 

In chapter 4, we show that the change of the decarboxylation regiochemical control 

can diversify pathway to produce the distinct functional groups in the final products. In 

HMG enzyme cassette, the ECH2 domain normally generates decarboxylation products 

with a α,β C=C. However, the regiochemical control of Jam ECH2 domain is 

differentiated to form the β,γ C=C product which can not be reduced by Jam ER. Some 

residues in a hypervariable region are suggested to contribute to the ECH2 

regioselectivity. Thus, our results suggest that the ECH2 regiochemical control might be 

easily effected by the mutations happen in this hypervariable region, which might be a 

facile way to diversify biosynthetic pathways to form distinct functional groups.  

6.2.5  Synergized Co-Evolution in Multienzyme System 

In natural product assembly lines, the changes on upstream enzymes will evidently 

effect downstream enzymes. If the downstream enzymes cannot effectively respond to 

upstream biochemical variations, the whole pathway will be nullified. In chapter 4, the 

introduction of a chlorination step renders the functional diversification of the Cur ER 

domain. The chlorination step can increase hydrophobicity of the final product. Given the 

unusually high hydrophobicity of curacin structure, which is successfully constructed to 

serve its host, the increase of the hydrophobicity might not be beneficial for the 

biological activity of final product. The Cur ER domain seems to respond to this change 

by eliminating the chlorine group to increase the hydrophobicity. Thus, this could be nice 

example for synergized co-evolution in multi-enzyme system. 
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