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Chapter I 

Introduction 

 Identifying the nuclear proteins essential to cell cycle control has far reaching 

effects in both health and disease, especially cancer.  Due to the ability of ZBP-89 to 

form direct protein complexes with known tumor suppressor factors, eg. p53, p300, 

ataxia-telangiectasia mutated, the goal of this project has been to understand the 

role of this protein in vivo.  A specific focus is on the function of ZBP-89 in the 

gastrointestinal tract given the known role for this factor and its interactors in cancers 

of this system.   

The Krüppel-type transcription factor ZBP-89 was originally identified by 

screening a cDNA library prepared from a rat pituitary adenoma cell line (GH4) for 

proteins that bound to the epidermal growth factor (EGF) response element of the 

gastrin gene (61).  ZBP-89 (also known as ZNF148, BERF-1, or BFCOL1) was 

originally named Zinc-finger Binding Protein-89 for its characteristic amino-terminal 

zinc finger region and predicted size of 89 kDa.  This name stresses the size of the 

protein as opposed to its function since this ubiquitously expressed factor appears to 

play roles in cell growth arrest, gene regulation, and apoptosis (8, 72).  Furthermore 

its bifunctional regulatory domains suggest it might function as both an activator and 
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repressor of transcription depending on the situation (34, 68).  Overall this factor 

plays critical roles that remain relatively uncharted.               

 The focus of this dissertation is to study the effective targeting of the ZBP-89 

gene and the resulting phenotype of mice that are conditionally null for ZBP-89 in the 

gastrointestinal tract.   In Chapter 1 of this thesis I provide an overview of the current 

knowledge of ZBP-89 including its genomic localization, protein structure, interacting 

protein, roles in growth arrest and disease, and other in vivo models examining its 

function.  In Chapter 2, I discuss the targeting strategy and generation of mice 

harboring a gene targeted ZBP-89 allele.  Chapter 3 focuses on the deletion of ZBP-

89 in the mouse intestine after breeding the targeted mice to a line which expresses 

Cre recombinase in the intestine.  Finally, in Chapter 4, I summarize the contribution 

the conditionally null ZBP-89 mouse provides to furthering our understanding of 

gastrointestinal growth and transformation.              

 

Locus and Species Characteristics of ZBP-89 

ZBP-89 is located on human chromosome 3q21, which is also the site of 

breakpoints and translocations in some cases of acute myeloid leukemia (1, 69, 89).  

Specifically ZBP-89 is located between STS markers D3S1551 and D3S1765 (51).  

In humans the gene spans 130 kilobases (kb) of genomic DNA encompassing the 

5’-untranslated region, 9 exons, 8 introns, and the 3’-untranslated region.  The 5’ 

untranslated region (UTR), including the promoter, is contained in the first three 

exons.   The promoter contains high GC content, multiple transcription initiation 
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sites, and lacks canonical CAAT and TATA boxes (27).  The start site of translation 

is in exon 4 and the stop codons reside in exon 9 (27).  The exon sizes range from 

82 base pairs (bp) to 5275 bp.  Exon 9 is the largest exon; however, a vast majority 

of the sequence belongs to the 3’- UTR.  Furthermore exon-intron boundaries follow 

the typical GT-AG rule for donor and acceptor splice sites.  The smallest intron is 

between exons 8 and 9 and is 280 bp in length, while the largest is roughly 24 kb 

and is intron 7.  This exon/intron organization correlates with unique domains within 

the protein whereby each exon encodes a distinct functional domain (Figure 1.1).  

These domains will be described in more detail in the following section.  There are 

many forms of mRNA for this gene (major forms are 8.6, 7.6, and 4.2 kb) which vary 

by tissue with up to seven polyadenylation signals located in the 3’- UTR.  ZBP-89 is 

ubiquitously expressed at low levels, although some tissues have an elevated level 

of expression.  Observation of human expressed sequence tags (EST’s) and 

genomic clones suggest that alternatively spliced transcripts of ZBP-89 exist and 

these lead to functionally diverse protein isoforms of various sizes (49). 

Multiple promoter usage and alternative splicing are common occurrences at 

the pre-mRNA level which lead to increased genetic complexity (92).  A splice 

isoform of ZBP-89 was identified that is normally expressed humans.  This amino-

terminally truncated isoform is generated by use of an alternate promoter and 

alternate exon 4 which are located in intron 4 of the gene.  As a result, the truncated 

protein is missing the amino-terminal 127 amino acids and lacks the p300 interaction 

domain (49).  This isoform is expressed at low levels in many normal and 

transformed human tissues (49).  Comparative genomic analysis shows that this 
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isoform is also found in chimpanzees but not in mice, suggesting that this 

mechanism is restricted to hominids.  While to date this is the only isoform that has 

been characterized, given what is known from EST’s as well the presence of multiple 

ZBP-89 species observed on immunoblots it is highly likely that at least several 

isoforms exist in both humans and mice.                                  

As expected there are many similarities between the human and mouse ZBP-

89 genes.  The chromosomal location is not conserved and therefore in mice ZBP-

89 is found on chromosome 16.  Here the entire gene covers a region of 110 kb, 

slightly smaller than the human counterpart.  Overall there is 92.8% nucleotide and 

97.2% amino acid similarity between the two species.  Its genomic organization is 

similar to the homologous human gene including that it contains 9 exons, the first 3 

of which are untranslated.  Sequences of analogous exons range between 93 and 

100% similar, with the sizes of each exon being conserved.  The coding region starts 

at base 17 of exon 4 and terminates at base 1599 of exon 9.  As in humans, this 

gene is ubiquitously expressed in mouse tissues with major mRNA transcripts of 7.6, 

4.1, and 3.4 kb (68).   While alternate splice forms are highly likely in the mouse, it 

was determined that this gene is present in a single copy in the genome and there 

are no other closely related genes in the mouse (27).     

While the human and mouse ZBP-89 genes have been studied extensively 

there is little known about this gene in other species.  However this gene is known to 

be phylogenetically conserved in mammals.  In Zebrafish ZBP-89 shares a 61.8% 

amino acid identity and 74.1% DNA sequence similarity with human ZBP-89 (55).  

Perhaps the closest match to the human gene can be found in the chimpanzee (Pan 
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troglodytes) where there is 99.5% nucleotide identity and 99.6% amino acid 

similarity.  Other species having 90% similarity or better when compared to humans 

include the dog and rat (Table 1.1).  As the genomic sequences for more species 

are completed the genomic organization of ZBP-89 in those species can be 

examined.   

 

Protein Structure of ZBP-89 

 ZBP-89 translates into 794 amino acid residues and the resulting protein has 

a predicted molecular mass of 89 kDa.  Interestingly the first 454 amino acids are 

identical to the 49 kDa human DNA-binding protein ht-β, which binds T-cell receptor 

genes (61, 83).  ht-β is generated by an in-frame stop codon at nucleotide 1753 as a 

result of two single base pair deletions compared to ZBP-89.  Furthermore not a 

single immunochemical study of ZBP-89 has detected a band corresponding to ht-β.  

Therefore ht-β is possibly a truncated form of ZBP-89 found in T cells or perhaps the 

frameshifts resulted from somatic mutations of ZBP-89 in the Jurkat (acute T-cell 

leukemia) cell line used to isolate ht-β.  However despite similarities with ht-β, ZBP-

89 corresponds to the full-length protein and has distinct functions.  ZBP-89 has a 

very distinctive domain structure setting it apart from other zinc-finger containing 

transcription factors.  Proceeding from the amino terminus to the carboxy terminus of 

the protein the following domains are found:  acidic, synergy control (SC), basic, zinc 

finger, two more basic surrounding a SC, serine-rich, and PEST domains.     
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 The acidic domain is a region 46 amino acids long that is rich in glutamic acid 

and found in the amino terminus of the protein.  This domain is encoded by exon 4 

and is the site of an interaction with the co-activator p300 (6).   Each SC motif is four 

amino acids in length and serves to limit synergistic transcription from multiple 

response elements (39).  In particular these serve as sites for translational 

modification by members of the Small Ubiquitin-like Modifier (SUMO) family (19).  A 

highly basic domain, rich in lysine, is encoded by exon 5.  This domain is 25 amino 

acids in length and represents most of the sequence responsible for transcriptional 

repression (68).  Inside this basic domain is a nuclear localization signal (NLS).  The 

zinc finger domain consists of the four Cys2-His2-type (Krüppel-like) zinc fingers 

found near the center of the protein.  This zinc finger region functions as a DNA 

binding domain and serves as a site for binding to many factors.  These zinc fingers 

are encoded by exons 6-9 with roughly one zinc finger encoded per exon.  In 

addition exon 9 encodes the carboxy terminus of the protein which includes two 

additional basic domains, a Synergy Control (SC) motif, as well as a Serine-

rich/PEST domain.  Similar to the upstream basic domain, the basic domain 

immediately downstream of the zinc fingers consists of 16 amino acids and also 

contains a NLS.  Amino acids 522 to 639 of the protein contain not only a region rich 

in serine residues but a PEST domain (amino acids 569-596) as well.  The serine-

rich region is similar to that found in other factors that have been shown to form 

protein-protein interactions with Krüppel family members (75).  The PEST domain is 

rich in the amino acids proline (P), glutamic acid (E), serine (S), and threonine (T) as 

its definition states.  It is hypothesized that this PEST sequence acts as a signal 
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peptide for protein degradation as it is associated with proteins that have a short 

half-life, however there is currently no experimental data to confirm this hypothesis 

(73).  The carboxy terminus of the protein also contains a transcriptional activation 

domain whose strength of activation depends upon the context in which it is bound 

(presence of other bound transcription factors) (34).          

 To date one other member of the ZBP-89 family of transcription factors has 

been identified.  ZBP-99 was identified in a yeast one hybrid screen whereby a 

Jurkat human leukemia cDNA library was screened with a GC-rich ornithine 

decarboxylase (ODC) promoter element (48).  This ubiquitously expressed 99 kDa 

protein also binds to a GC-rich region of the gastrin promoter.  ZBP-99 also has a 

unique domain structure consisting of a glycine-rich, proline-rich, and histidine 

repeat regions, basic domains, and four closely spaced zinc fingers.  Common 

features between the two family members include 91% sequence similarity within 

the zinc finger domains, and similarly located basic domains flanking the zinc finger 

domain.  Recent attempts to identify other proteins that interact with ZBP-99 have 

not proven fruitful given the ability of this protein to function as an activator of all 

reporters used in a yeast two-hybrid screen (Adams-Romain and Merchant 

unpublished observations).      

            

ZBP-89 Interacting Proteins       

 After ZBP-89 was identified, additional labs identified ZBP-89 as a factor 

binding to GC-rich elements used to screen expression libraries.  The consensus 
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binding site for ZBP-89 is gccCCtxCxCC, where the lowercase letters are residues 

involved in but not essential for binding, the x’s represent residues that have not 

been mutated, and uppercase C’s represent cytidines essential for binding (52).  

Interestingly ZBP-89 competitively binds to the same GC-rich DNA element as the 

zinc-finger transcription factor Sp1.  A dichotomy exists whereby in some instances 

ZBP-89 opposes the effect of Sp1 by repressing promoter activity and in other cases 

these factors synergize to regulate transcription (Figure 1.2).  For example, ZBP-89 

negatively regulates the gastrin promoter; however Sp1 has been shown to activate 

this promoter (61, 62).  On the other hand, ZBP-89 binds directly to Sp1; forming a 

complex that then represses the intermediate filament vimentin promoter (84, 93).  

Aside from cooperating or competing with Sp1, ZBP-89 alone has the ability to either 

stimulate or repress transcriptional activity reliant on the promoter it binds to.  In 

addition to those listed above ZBP-89 has been shown to bind to the promoters of 

the following genes:  pro-α1/2 (I) collagen, cytochrome c oxidase (COX) Vb, 

epithelial neutrophil-Activating peptide-78 (ENA-78), L2 promoter of the growth 

hormone receptor, intestinal alkaline phosphatase, ornithine decarboxylase (ODC), 

lck, pre-TCR-α, β-enolase, p21waf1, STAT1, and stromelysin (Table 1.2) (6, 7, 14, 15, 

34, 42, 52, 59, 68, 71, 81, 88, 90).  The transcriptional regulation of these promoters 

by ZBP-89 as well as Sp1 has been examined in vitro and depends greatly on the 

cell type, post-translational modification status, and cell state.  In addition the ability 

to repress or stimulate can be due to positional effects of binding sites, alternative 

splicing, alternative transitional initiation, or competition/interference with other 

factors.  Furthermore, ZBP-89 is known to possess these abilities.         
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 Utilizing its unique domain structure, ZBP-89 is also capable of exerting 

effects through direct protein-protein interactions.  While the zinc finger region 

typically serves as its DNA binding domain, proteins are also capable of binding to 

the zinc fingers or other portions of this factor.  As an example, the zinc finger 

domain is capable of binding to the DNA binding and C-terminal domains of the 

transcription factor p53 (8).  Pulse-chase analysis using adenovirus-infected cells 

demonstrated that as a result of this direct interaction p53 was stabilized by ZBP-89.  

In another example both the amino-terminus and the zinc finger domain are capable 

of interacting with ataxia-telangiectasia mutated (ATM); this complex then recruits 

the co-activator p300, which also binds to the amino-terminus of ZBP-89 during 

activation of the p21waf1 promoter in response to sodium butyrate (4, 6).  In addition 

to p300 and ATM, ZBP-89 is capable of binding to BMRF1 of the Epstein Barr Virus, 

Friend of Gata-1 (FOG-1), Gata-1, HDAC1, p53, Sp1, Stat3, Ubc9, and YY1 (6, 14, 

36, 84-86).  Given its ubiquitous expression the current list of ZBP-89 interacting 

proteins and promoters is likely to expand.  Overall the interactions of ZBP-89 

described above suggest roles for this factor in many pathways, however, its role in 

both p53 dependent and independent growth arrest pathways is perhaps the most 

studied.      

        

Regulation of Growth Arrest by ZBP-89 

Early analysis of ZBP-89 function in cells showed that it arrested growth 

through its interactions with both p53 and p21waf1 suggesting key roles for ZBP-89 in 

cell cycle regulation.  In eukaryotic cells, the cell cycle refers to the series of events 
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that lead to the replication of a given cell.  The cell cycle consists of four distinct 

phases:  G1 phase, S phase, G2 phase, and M phase.  Activation of each phase is 

dependent on the proper progression and completion of the previous one and no 

phase is reversible.  Regulation of the cell cycle involves detecting and repairing any 

acquired genetic damage so that after cell division the resulting cells do not 

malfunction.  There are checkpoints used by the cell to monitor and regulate 

progression through the cycle.  The checkpoint functions to verify completion of 

processes from the previous cycle phase and repair any DNA damage before 

allowing the next phase to begin (26).  There are two main checkpoints:  the G1/S 

checkpoint and the G2/M checkpoint.  The G1/S checkpoint is a rate-limiting step in 

the cell cycle at the end of G1 phase and is known as a restriction point after which 

the cell is committed to entering S phase.  Likewise after passing through the G2/M 

checkpoint the cell is committed to M phase where mitosis occurs(57).  The tumor 

suppressor p53 plays an important role in triggering the control mechanisms at both 

checkpoints (56).  Furthermore progression through the cell cycle phases and 

checkpoints is determined by two key classes of regulatory molecules known as the 

cyclins and cyclin-dependent kinases (CDKs).  This network of tumor suppressors, 

cyclins, and CDKs control whether a cell is fit for progression through the cycle or 

whether the cell is unhealthy and needs repair or should proceed through an 

alternate pathway leading to cell growth arrest and cell death (57).   

The tumor suppressor p53 mainly functions as a transcription factor by 

binding to specific DNA sequences and then transactivating or repressing its target 

genes (82).  In response to cellular genotoxic stress the targets of p53 regulate the 
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DNA repair, cell-cycle arrest, and apoptosis pathways (29).  Given its critical function 

the expression of p53 protein under normal physiological conditions must be tightly 

regulated due to the extreme outcomes in activating its target genes.  Normally this 

constitutively expressed protein is found at low levels in most tissues (54).  When 

p53 is upregulated it arrests the cell at both the G1/S and G2/M checkpoints (21, 

25).  Alterations in p53 can lead to extended proliferation in cells that would have 

otherwise undergone cell cycle arrest and apoptosis.  Therefore, it is unsurprising 

that p53 mutations are found in over half of all human tumors (37, 54).  However 

wild-type p53 has also been shown to be elevated in cancers (58).  The exact 

mechanism for this has not been proven but likely results from the binding of other 

transcription factors followed by stabilization of the p53 protein.  Understanding the 

levels of p53 as well as its mutants are important in the fight against cancer, as 

cancers with wild-type p53 appear more susceptible to chemotherapy (76).    

 When ZBP-89 is overexpressed, p53 protein expression is also increased (8).  

This overexpression of ZBP-89 leading to increased p53 occurs both when cells are 

forced to express exogenous ZBP-89 through an adenoviral vector as well as when 

the cells are serum starved leading to increased endogenous ZBP-89.  Co-

immunoprecipitation studies revealed a direct interaction between ZBP-89 and p53.  

Specifically the DNA-binding and carboxy-terminal domains of p53 were shown to 

bind the zinc-finger containing DNA binding domain of ZBP-89.  ZBP-89 blocks the 

shuttling of p53 out of the nucleus and into the cytoplasm, where it is normally 

degraded by the proteosome (8).  Thus the binding of ZBP-89 effectively prolongs 

the half-life of p53 thereby enhancing its transcriptional activity as well as stabilizing 
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the p53 protein and retarding its rapid degradation.  Interestingly increased 

susceptibility to chemotherapy-induced cell death has been shown in both p53-null 

cells with elevated ZBP-89 levels and cells with an accumulation of p53 (wild-type) 

enhanced by ZBP-89 (64).     

 Given the connection between p53 mutation and cell cycle aberrations, the 

connection between ZBP-89 and these mutations has also been explored.  

Adenoviral overexpression of ZBP-89 in HT-29 cells did not show stabilization of the 

p53R273H mutant that is present in this cell line (8).  However, GST pull-down 

assays showed ZBP-89 was still able to bind this mutant (8).  Of the six additional 

p53 mutants examined none were stabilized by ZBP-89 except for the p53A161T 

mutation, which exhibited constitutive transcriptional activity (64).  Therefore despite 

protein-protein interactions between the p53 mutants and ZBP-89, ZBP-89 is 

prevented from potentiating p53-dependent transcriptional activation.  Furthermore 

mutations in the DNA binding domain of p53 have a dominant negative effect on 

ZBP-89, preventing ZBP-89 mediated p53-independent apoptosis.  Together these 

findings further stress the importance of determining the expression levels of ZBP-89 

as well as p53 wild-type and mutants in cancers.   

 The CDK inhibitor p21waf1 controls progression through the cell cycle by 

binding to G1 cyclin/CDK complexes (32, 33, 87).  This control functions through 

both p53 dependent and independent mechanisms (94).  In the situation where there 

is DNA damage in the cell this damage stimulates the transcription of p21waf1 to 

trigger cell growth arrest in a manner that is dependent on p53 involvement (24).  On 

the other hand transcription factor binding to the p21waf1 promoter as well as 
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involvement of chemical agents can direct the cell cycle towards differentiation 

pathways in a manner that is p53 independent (28, 66, 70).  Specifically GC rich 

sites in the p21waf1 promoter bind members of the Sp family of transcription factors 

as well as ZBP-89 (6, 13, 45, 77).   

 The amino-terminal domain of ZBP-89 binds to the region of the p21waf1 

promoter from -245 to -215 in a manner that is dependent on the short chain fatty 

acid butyrate (6).  When HT-29 cells are treated with sodium butyrate, ZBP-89 is 

recruited on to the p21waf1 promoter within 30 minutes (46).  Sodium butyrate 

provides an elevated level of histone acetyltransferase activity that is required for 

ZBP-89 to potentiate the transcription of p21waf1.  The transcriptional co-activator 

p300, known to mediate growth arrest, binds to ZBP-89 and further enhances the 

activation of the p21waf1 promoter (6, 30).  Thus increased histone acetyltransferase 

activity allows a complex of ZBP-89 and p300 to bind to the p21waf1 promoter.  Sp1 is 

then recruited to this complex and binds to both ZBP-89 and the p21waf1 promoter.  

This mechanism functions to regulate p21waf1 transcription promoting growth arrest 

and cellular differentiation.   

 ZBP-89 also binds other GC rich promoter elements to mediate programmed 

cell death in manners that are independent of p53.  Extracellular signals utilize 

molecular mechanisms that are not clearly understood to trigger apoptotic pathways 

that do not require p53.  These generally include pro-inflammatory cytokines and the 

withdrawal of growth factors leading to suppression of survival signals followed by 

destabilization of mitochondrial membranes and ultimately cell death.  For example 

interferon-gamma (IFNγ) is a pro-inflammatory cytokine known to induce apoptosis 
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and sensitize cancer cells to death signals (3, 65, 74).  IFNγ-induced 

phosphorylation of STAT1 triggers apoptosis.  A reduction in ZBP-89 levels lead to 

decreased STAT1 promoter activity thus attenuating IFNγ-induced apoptosis (7).  

ZBP-89 binds to a G-rich element from +171 to +179 of STAT1 and is required for 

the constitutive expression of STAT1 (7).    

Other pathways leading to apoptosis involve the Mitogen-Activated Protein 

(MAP) family of kinases which can work in both p53 dependent and independent 

manners.  There are three MAP kinase subfamilies:  Extracellular signal-Related 

Kinase (ERK) 1/2, c-Jun N-terminal Kinase (JNK) 1/2, and p38 MAP kinase.  A time 

course of MAP kinase activation by ZBP-89 showed that while overall protein levels 

of all three MAP kinases remained unchanged the phosphorylation of these kinases 

increased.  In vitro kinase assays were used to show the increases in this 

phosphorylation corresponded to an increase in kinase phosphorylation of specific 

substrates (9).  Therefore ectopic ZBP-89 expression has been shown to induce 

activation of all three MAP kinase subfamilies.  Blocking kinase activation through 

the use to specific inhibitors and dominant negative constructs showed ERK1/2 and 

p38 are dispensable for ZBP-89 induced apoptosis (9).  However blockade of JNK 

using an inhibitor lead to a significant decrease in ZBP-89 induced apoptosis (9).  

p53 null cells infected with adenoviral ZBP-89 show activation of JNK (9). Therefore 

JNK is required for ZBP-89 induced apoptosis and this pathway is independent of 

p53.       
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ZBP-89 in Disease and Cancer 

 Perhaps the most fundamental characteristic of cells is their ability to 

proliferate.  In healthy cells this proliferation is very tightly regulated and occurs in a 

systematic fashion as cells proceed through the cell cycle.  When cells become 

damaged beyond repair they normally proceed down a pathway that ultimately leads 

to their death.  However in some situations these cells are able to evade the body’s 

programmed death response and the abnormal cells grow uncontrollably.  The result 

is usually the development of a non-structured tumor.  This uncontrolled growth of 

abnormal cells is no longer useful to the body and is often referred to as a cancer 

(38).  Cancer can arise in almost every site in the body and its characteristics often 

differ from cancers originating in different organs.  In order to generate better 

treatments to stop the spread of and/or eliminate cancers, we must first understand 

the environmental factors and genetic mutations that help the cancer develop.  Due 

to our understanding of ZBP-89 function in growth arrest and apoptosis it should 

come as no surprise that it plays a role in the development of cancers in the 

gastrointestinal tract and other parts of the body.          

Colorectal Cancer 

 Despite a decrease in incidence colorectal cancer is the third most common 

cancer in both men and women worldwide (40).  Many risk factors associated with 

colorectal cancer are modifiable factors such as smoking, extreme alcohol 

consumption, obesity, and a diet short on fruits and vegetables. In addition inherited 

genetic mutations such as hereditary non-polyposis colorectal cancer (HNPCC) and 

familial adenomatous polyposis (FAP) have been shown to increase risk.  
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Chemotherapy in combination with surgery is the most common treatment and 

varies depending on the level of invasiveness of the cancer.  It is estimated that 

49,960 deaths will occur in 2008 due to colon and rectum cancer (40).  These 

deaths are also on the decline in recent decades as word spreads on the importance 

of early detection and development of better treatments.  It is expected that as 

scientists have an increased understanding of the roles genetic mutations and 

modifiable behaviors play the incidence and thus death rates for colorectal cancer 

will continue to decline.     

 In vitro studies using the colorectal cancer cell lines MKN-45, KatoIII, Hct 116, 

and Colo DM have shown an increase in the expression of ZBP-89 mRNA (80).  In a 

study analyzing gene expression in 16 patients with Dukes’ B colon cancer, ZBP-89 

was shown to be down-regulated by both microarray analysis and real-time 

polymerase chain reaction (PCR) (11).  The greatest amounts of downregulation 

were associated with relapse in these patients (11).  This suggests that the lower the 

expression of ZBP-89 the more likely a patient diagnosed with and treated for 

colorectal cancer will need follow-up treatment for the disease and should be 

monitored closely for such relapse.  In a separate study examining stromelysin-1 

promoter mutations in patients with high microsatellite instability (MSI) colorectal 

tumors all of the mutations detected in this promoter were restricted to the region 

containing the ZBP-89 binding site (63).  This suggests in high MSI colorectal tumors 

ZBP-89 promoter binding might be altered.  However, this was not examined in any 

capacity in the study.  It is important to keep in mind that both of the human studies 

described above had a very small sample size which could inaccurately reflect the 
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true role ZBP-89 plays in colorectal cancer.  These contradictory findings between in 

vitro and patient data suggest a fine line exists whereby normal levels of ZBP-89 

expression support homeostasis but altered expression levels, either an increase or 

a decrease, can lead to neoplastic changes.   

Diet and Absorption in the Colon 

 In the colon, butyrate, a fiber derived fermentation product, is capable of 

maintaining epithelial cell differentiation (44).  These effects are thought to be due to 

the suppression of histone deactylases (HDAC)s, since histone hyperacetylation is 

associated with butyrate induction of differentiation (60).  While little is known 

concerning the gene specific effects of butyrate, the cyclin-dependent kinase 

inhibitor p21Waf1 is a transcriptional target of butyrate (2).  It is known that p21Waf1 is 

regulated through binding of Sp1 and ZBP-89 to GC-rich elements in its promoter (6, 

28, 35).  In HT-29 (human colon adenocarcinoma) cells treated with butyrate the 

expression of p21Waf1 was potentiated due to the recruitment of the coactivator p300 

to the promoter by ZBP-89.  This potentiation leads to growth arrest in a relatively 

short time period whereby expression of ZBP-89 is not affected.  Furthermore 

elevated levels of ZBP-89 expression were seen when cells were exposed to 

butyrate for periods greater than 48 hours suggesting that factors other than p21waf1 

are involved the continued effects of butyrate (6).  These studies suggest interplay 

between ZBP-89 and a high fiber diet in the regulation of differentiation and growth 

arrest in the colon leading to a protective effect in the fight to prevent cancer.  Taken 

together is it possible ZBP-89 works through both genetic and modifiable factors to 

have an effect on cancer in the colon.                         



 18

Gastric Cancer 

 Results suggest elevated levels of ZBP-89 in the stomach may be used as a 

marker of transformation.  This is due in part to the human DNA Epstein-Barr Virus 

(EBV) which is present in 10% of gastric cancers.  The EBV gene BMRF1 has been 

shown to activate the gastrin promoter and this is mediated through ZBP-89 binding, 

though the exact mechanism is unknown (36).    While incidence is relatively low in 

the United States gastric cancer is the second most common cause of cancer death 

in the world (20).  It is especially prevalent in Japan where gastric cancer is the most 

common cancer, and in Korea and China where this form ranks second most 

popular (53).  Risk factors for this form of cancer include smoking, a diet short on 

fruits and vegetables, high consumption of smoked food, and infection with 

Helicobacter pylori (43, 47, 53, 91).  Risk is also increased in those with a family 

history of gastric cancer, especially in those with a sibling or parent with the disease.  

When discovered at an early stage the disease is relatively treatable which accounts 

for a reduced mortality rate in the United States.  However, given that many patients 

are asymptomatic until the disease has progressed to an advanced stage and 

screening availability is low in developing countries this attributes to the high 

mortality rate in Asia.  While the exact treatment varies depending on the stage of 

the cancer, surgical techniques such as endoscopic mucosal resection and 

endoscopic submucosal dissection are often used in combination with chemotherapy 

(79).  There is hope that in developing countries as screening availability increases, 

the sanitation practices improve, there is less reliance on smoking as a food 

preservation technique, and farming of fruits and vegetables becomes more popular 
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the rate of gastric cancer will decrease (41).  Regardless of the exact rate due to 

modifiable factors there is still the need for a better understanding of how genetic 

factors influence this cancer.               

The main physiological role of gastrin, a circulating peptide hormone 

expressed by G cells in the antrum of the stomach, is to regulate acid secretion by 

parietal cells as well as epithelial cell growth (23).  Gastrin expression varies with 

changes in stomach environment such as pH and mucosal inflammation.  However 

the expression is not confined to the stomach as it is known to be upregulated in a 

variety of pre-malignant conditions and established cancers.  This tissue specific 

gastrin production could be the result of constitutive expression followed by 

secretion and ultimately leading to autocrine or paracrine activity.  Conversely 

upregulated expression as a result of H. pylori infection or proton pump inhibitors 

can lead to systemic hypergastrinemia (31).  Interestingly cases of both gastric and 

colorectal adenocarcinoma have been linked with systemic gastrin expression, with 

some of those attributed to H. pylori infection (10, 31).  There is a GC-rich element in 

the human gastrin promoter that confers epidermal growth factor (EGF) 

responsiveness.  This element may be involved in the upregulation of gastrin as a 

result of H. pylori infection, since colonization provokes inflammation leading to 

upregulation of heparin binding EGF-like growth factor (HB-EGF)  (12).  

Furthermore, this element has been shown to be a site for binding of the 

transcription factor Sp1, whereby Sp1 stimulates gastrin expression (62).  ZBP-89 

also binds to this site and functions to negatively regulate Sp1 binding (61).          
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 ZBP-89 binds specifically to the 5’ half-site of this 16 base-pair region of the 

human gastrin promoter designated gastrin EGF response element (gERE).  Co-

expression studies show that when bound, ZBP-89 specifically inhibits EGF 

induction of the gastrin promoter.  In order to address any role ZBP-89 might play in 

gastric cancer; in vitro studies examining ZBP-89 protein expression levels in gastric 

cell lines were performed.  In three human gastric adenocarcinoma cell lines (AGS, 

MKN-45, and KatoIII) ZBP-89 protein was elevated (80).  Additionally, freshly 

isolated gastric tumor tissue also showed elevated protein levels compared to 

normal tissues isolated from the same patient (80).  This suggests the elevated 

expression levels are real and not merely an artifact of the extended life in culture of 

the cell lines.  RT-PCR confirmed the additional protein was the result of an increase 

in gene expression (80).  Collectively these results suggest that ZBP-89 is elevated 

in pre-malignant states and some gastric cancers and thus ZBP-89 may be used as 

a marker for transformation.     

Other Cancers 

While a role for ZBP-89 expression in cancers of the gastrointestinal tract has 

been examined this paradigm also exists in tumors found elsewhere in the body.  

For example, patients with primitive neuroectodermal tumors or ependymomas, both 

forms of brain tumors, typically display large amounts of a particular haplotype of 

platelet derived growth factor (PDGF).  This haplotype, H2δ, contains a mutation that 

specifically disrupts the binding of ZBP-89 (22).  In this case loss of ZBP-89 

promotes tumor growth, speculating that in certain tissues ZBP-89 may function as a 

tumor suppressor.  Similar to gastric tissues ZBP-89 protein was elevated in human 
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breast cancer cell lines (SKBR3, Hs578t) and a human melanoma cell line G361.  

However it is important to note that ZBP-89 levels were unchanged when primary 

carcinoma and epithelial cell lines from these tissues were examined.   

 In the case of recurrent human hepatocellular carcinoma (HCC) there is a 

longer interval between surgical resection and recurrence in patients with wild-type 

p53.  Comparison of cancerous tissues and non-cancerous tissues in patients 

revealed that ZBP-89 protein was significantly higher in cancerous tissues 

regardless of p53 status (18).  However, ZBP-89 expression in recurrent HCC was 

more likely to be higher in the nucleus when wild-type p53 was present and higher in 

the cytoplasm when p53 mutations were present (18).  In patients with wild-type p53, 

67% of these cases showed co-localization between ZBP-89 and p53 in the nucleus 

(18).  These data suggest a role for ZBP-89 in the nuclear retention of p53 in a 

subset of recurrent HCC.  As is true for other cancers, nuclear accumulation of p53 

is associated with increased susceptibility to radiotherapy and chemotherapy 

induced apoptosis.  Therefore, identifying recurrent HCC patients with nuclear co-

localization of ZBP-89 and p53 may also identify patients better suited for 

chemotherapy treatment.   

 The role ZBP-89 plays in the progression towards cancer appears to vary 

depending on the tissue examined.  Furthermore the exact mechanisms by which 

this occurs are likely to be quite complex and vary by tissue.  Though a role for ZBP-

89 in cancer is highly speculative, a consensus appears that in most tissues low 

levels of ZBP-89 gene expression correlate with homeostasis.  Many of the studies 

described above were performed using cultured cell lines.  It is highly possible that 
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gene signatures might be different in tumors growing in an animal.  Thus a key in 

examining ZBP-89’s role in specific disease states might be better characterized in 

an in vivo system modulating its expression.   

 

ZBP-89 Function in Development 

 While in vitro systems have been useful in deducing possible functions for 

many factors, these systems are a far cry from what the actual functions may be in a 

living animal.  Most cell culture assays utilize cells that have been transformed so 

they can be continually propagated in culture.  As a consequence, the results are not 

always necessarily representative of the processes that occur in normal cells.  

Knock-down studies to deplete a given gene often use these same transformed cells 

and require the generation of stable transformants which have been selected for 

several generations in culture.  It is easy to understand that in this situation as well 

the results may reflect more on the manipulations of the system rather than on the 

loss of the gene.  For these reasons the “gold standard” on determining a gene’s 

function has become observing it in a living organism.  In this situation, all of the 

normal machinery is maintained not only at the cellular level but in the tissue, organ 

system, and whole animal.  Mice in particular are a popular vehicle for such 

observations due to their easily manipulated genome, quick reproductive cycle, and 

genomic similarity to humans.          

Deducing the function of ZBP-89 using in vitro methods has proven quite 

fruitful.  However, correlating this to the role ZBP-89 plays in vivo has been 
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complicated.   Recent studies have shown that despite the demonstration of DNA 

binding in vitro only a small percentage of these binding sites are occupied by their 

given transcription factor in vivo  (16, 17).  Therefore, it is necessary to generate an 

in vivo system to study the many roles ZBP-89 is likely to play in the body.  To date 

several groups have generated both mouse and zebrafish models aimed at 

deducing these roles.  While a true knock-out of ZBP-89 has not been 

accomplished, these models underscore the importance of ZBP-89 function in vivo. 

ZBP-89 Knockdown 

Takeuchi and colleagues generated embryonic stem (ES) cells heterozygous 

for an allele where exon 9 of mouse zfp148 was interrupted by a neomycin 

resistance gene with a phosphoglycerokinase promoter (PGK neo) cassette in the 

reverse orientation.  The heterozygous ES cells showed a 50% reduction in ZBP-89 

mRNA and the full-length protein was still expressed in these cells.  The authors 

found no evidence of truncated forms of the protein as a result of the mutant allele.  

Haploinsufficiency for ZBP-89 in the ES cells led to impaired p53-dependent cell-

cycle arrest and thus continued proliferation of the ES cells in culture.  Chimeras 

were generated by injection of the ES cells into blastocysts; however the animals 

failed to transmit the targeted allele in their germ-line.  Furthermore five of the nine 

chimeras were infertile due to apoptotic cell death of pro-spermatogonia during 

embryonic development.  Despite problems with cell-cycle arrest, the heterozygous 

germ cells failed to proliferate in the gonads of the in vivo model.  Thus it is likely 

that heterozygosity for ZBP-89 causes altered p53 function which led to abnormal 

growth of the fetal germ cells and triggered their apoptosis during embryonic 
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development.  The authors conclude that two fully functional alleles of ZBP-89 are 

required for the survival of fetal germ cells in mice (78).   

ZBP-89 Overexpression 

In an effort to understand a role for ZBP-89 in suppressing cancer 

progression, David Law in the Merchant lab overexpressed ZBP-89 in the 

gastrointestinal tract of mice and examined the phenotype.  A 13 kb fragment of the 

villin promoter was cloned upstream of ZBP-89 and thus drove its expression 

throughout the epithelium of the small intestine.  The overexpression resulted in 

elevation of the apoptotic marker retinoblastoma as well as increased levels of 

apoptosis as measured by TUNEL assay(50).  The mice showed no gross 

abnormalities for more than one year suggesting the overexpression and 

subsequent increased apoptosis do not negatively affect gastrointestinal 

homeostasis in vivo.  The animals were bred to ApcMin/+ mice, a line prone to tumors 

in the small intestine.  In ApcMin/+ animals the normal ZBP-89 expression pattern 

shows lower expression in the intestinal crypts but higher expression in the villus tip, 

where the rate of apoptosis is thought to be highest (5).  On this background the 

overexpression of ZBP-89 caused a delay in the gastrointestinal bleeding that is 

normally observed with the APCMin line.  Furthermore there was a fifty percent 

reduction in the number of adenomas and a trend towards reduced size of the 

adenomas present.  Unsurprisingly, in ZBP-89 overexpressing animals this lead to 

prolonged survival by more than fifty percent.  Endogenous levels of ZBP-89 in the 

gastrointestinal tract are normally low and the authors suggest that inducible 
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upregulation, as demonstrated this paper, might increase the tumor suppressing 

ability of this gene.               

ZBP-89 Function in Hematopoiesis  

The role of ZBP-89 in hematopoietic cells was examined in zebrafish and 

mouse ES cells by Li and colleagues.  Consensus binding sires for ZBP-89 found in 

the promoters of the genes encoding PU.1, CEBP-α, and CD11b, all of which play 

important roles in myeloid differentiation, first suggested a role for ZBP-89 may exist 

in hematopoiesis (67).  Knockdown expression in developing zebrafish embryos was 

achieved using antisense morpholinos (MOs) to target the translation start site or the 

splice donor site in exon 8 of zbp-89.  Data showed despite a beating heart and 

complete vasculature no blood cells were present 48 hours postfertilization (hpf) in 

the targeted embryos(55).  Rescue of the phenotype was possible when the 

embryos were injected with wild-type human ZBP-89 mRNA in addition to the MO.  

This suggests the phenotype was specifically due to the loss of zbp-89 and not an 

aberrant result of the injection.  Examination of gene expression in the depleted 

embryos showed reduced expression in primitive erythropoietic genes (gata1 and 

tif1g), primitive myeloid genes (l-plastin, mpo, pu.1), early hematopoietic genes 

(gata2, lmo2, scl), and definitive hematopoietic genes (c-myb, runx1).  Furthermore 

this study localized ZBP-89 downstream of cloche, a gene essential for generation of 

vascular and hematopoietic progenitors, and upstream of SCL, a gene essential for 

direction of hematopoietic fate commitment from hemangioblasts.  Staining for 

apoptotic cells failed to show significant changes between the knock-down and wild-

type embryos, pointing to a role for ZBP-89 in fate specification of early 
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hematopoietic precursors as opposed to a role in their survival.  Their results 

suggest a role for ZBP-89 in activation of genetic programs specific for the 

hematopoietic lineage.          

In the final publication to date examining the in vivo function of ZBP-89, Woo 

and colleagues continue to explore the role of ZBP-89 in erythroid maturation.  Using 

a tandem affinity purification technique the authors demonstrated that ZBP-89 is part 

of a complex containing GATA-1, a gene required for erythroid development, and 

FOG-1, a zinc finger transcriptional cofactor expressed in the hematopoietic 

system(85).  Together this complex plays a functional role in both early 

megakaryocyte and erythroid development.  ZBP-89 was shown to bind directly to 

the GATA-1 promoter and suggests that it may play a role in regulating the 

expression of GATA-1.  Morpholino-mediated gene knock-down as well as in vitro 

co-immunoprecipitation experiments demonstrated a functional interaction between 

ZBP-89 and FOG that is not dependent on GATA-1.  Mouse ES cells containing a 

genetrap clone that encodes a fusion protein of the first 111amino acids of ZBP-89 

fused to β-galactosidase were generated.  Cells heterozygous for the genetrap 

showed reduction of ZBP-89 mRNA levels near 50% compared to wild-type ES cells 

whereas homozygosity for the genetrap yielded scarcely detectable levels of ZBP-

89.  The genetrap containing ES cells were injected into mouse blastocysts 

generating mice heterozygous for ZBP-89.  While homozygous genetrap animals 

were recovered at embryonic day 8.5 (E8.5), by E10.5 all animals were dead 

suggesting an embryonic lethal phenotype.  At this stage the phenotype was defined 

by lack of a heartbeat, growth delay, open neural tube, and occasionally a lack of 
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red blood cells.  Further studies demonstrated inadequacy in placental function led 

to the abnormalities seen in the embryos.  This is not surprising given that ZBP-89 

expression has been shown to be upregulated in the placenta.  Examination of fetal 

liver cells from mouse chimeras showed impaired erythroid development and 

megakaryocyte colony formation.  The authors concluded that despite a lack of 

viable homozygous genetrap animals there is an unmistakable function of ZBP-89 in 

definitive erythroid and megakaryocytic development.           

 
 

  Summary 

 ZBP-89 is a member of a novel unit of transcription factors that contain a 

characteristic region of four zinc fingers and are phylogenetically conserved in 

mammals.  Its structural complexity includes a unique set of domains which 

contribute to its many functional roles.  This factor has been shown to regulate 

diverse biological functions through direct DNA promoter binding as well as protein-

protein interactions.  This includes its regulation of cell growth and apoptosis through 

mechanisms that are both dependent and independent on the tumor suppressor 

p53.  There also appears to be a role for ZBP-89 in the development of cancer in 

various tissues of the body, though these exact mechanisms have yet to be 

identified.          

Therefore this relatively novel transcriptional regulator is involved in a vast 

number of complex pathways as determined by in vitro methods.  These functions 

may be confirmed or expanded upon when this factor is deleted in vivo.  

Achievement of this deletion has previously failed though a number of investigators 
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have attempted this arduous feat.  The importance of studying genes in vivo cannot 

be stressed enough during this time when cancer prevalence and death rates are so 

high.  The body of work depicted herein attempted to further advance the knowledge 

of the field regarding the function of ZBP-89 not only in the body of the animal but in 

the gastrointestinal tract specifically.  
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Figure 1-1.  Chromosomal localization, genomic organization, and protein domain 
structure of human ZBP-89.  A.  Site q21 of chromosome 3 contains ZBP-89.  B.  
The entire gene covers a region 130 kb in length. The untranslated exons are the 
filled rectangles where as translated exons are open rectangles.  C.  The domain 
structure is depicted.  A = Acidic Domain, S = SC Motif, B = Basic Domain, Zn = Zinc 
finger region, P = PEST/Ser-rich Domain.   D.  The amino acid sequence of the full- 
length protein is listed.   
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Table 1-1.  ZBP-89 similarity across species 
 
Species   Gene    Human Similarity 
 
H. Sapiens   ZBP-89   100% 
P. Troglydytes  ZNF148   99.5 (n) 99.6 (a) 
C. Familiaris   LOC488017   94.5 (n) 98.6 (a) 
M. Musculus   Zfp148   92.8 (n) 97.2 (a) 
R. Norvegicus  Zfp148   91.8 (n) 96.8 (a) 
G. Domesticus  ZNF148   84.6 (n) 87.7 (a) 
D. Rerio   wufb06h05   74.1 (n)  61.8 (a) 
D. Melanogaster  CG8474     33.3 (a) 
C. Elegans   Blimp1     31.3 (a) 
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Table 1-2.  ZBP-89 promoter binding sites 
 
Promoter     Binding Site 
 
βEnolase                          AGTGGGGGAGGGGGCTGCG 
CD11b       GAAGGGTGGGCAGGC 
COX VB     GTGGGGGGGGGGTG 
ENA-78              CCCCTCCCCC 
gastrin            GGGGCGGGGTGGGGGGA 
Growth Hormone      CACCCCGCCCCCTTCCT 
HSV oriLyt                          TCCCTCCCCCCCCTACCCCC 
IAP     CCCATTGCCTCCTCCCTCA 
ODC                            GCCCCTCCCCCG  
p21Waf1/CIP                    CGGGTCCCGCCTCCTTG 
P21Waf1/CIP              TGGGGGAGGAGGGAAGTGCCCTCCT  
Procollagen Iα2           TCCTCCCCCCTCGGC 
Procollagen Iα1          TCCTCCCCCCTCTT 
STAT1    GGGGGTGGG 
Stromelysin              GGTTTTTTCCCCCCATCA 
TCRα sil                     GGGGTGGGGTGGGGGG 
TCRβ              GAAGTGGGGTGGT 
Vimentin                             GGACCCCCCCC             
 
CONSENSUS                  gccCCT/AxCxCCC   
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Figure 1-2.  Model of ZBP-89 regulation of cell growth.  Depending on the promoter 
context the bifunctional transcription factor ZBP-89 represses or activates genes.    
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Chapter II

Generation of gene targeted ZBP-89 mice through insertion of loxP sites

Summary

ZBP-89 (ZNF148, Zfp148) is a transcription factor ubiquitously expressed in

mice and humans.  Expression levels of this factor are low in most tissues.  Previous

attempts to knock-out ZBP-89 in mice have failed to generate viable mice deficient in

this factor.  We sought to generate gene targeted animals capable of tissue-specific

ZBP-89 deletion.  LoxP sites were inserted flanking exons 8 and 9 of the locus.  In

addition, a neomycin resistance cassette flanked by FRT sites was inserted

upstream of exon 8 for selection of ES cell clones.  Chimeras generated from the

targeting vector reproduced without complication and transmitted the targeted locus

in their germline.  However, the targeted allele exhibited reduced ZBP-89 expression

levels.  Furthermore homozygosity for this allele results in perinatal lethality

presumably due to the extreme reduction in ZBP-89.  Removal of the neomycin

resistance cassette restores ZBP-89 expression levels and resulting homozygous

ZBP-89 FLP mice are viable.  These data suggest complete null ZBP-89 knockout

mice will exhibit an embryonic lethal phenotype and that tissue-specific deletion is

the most logical option for studying ZBP-89 function in vivo.
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Introduction

ZBP-89 (ZNF148, Zfp148) is a ubiquitously expressed Krüppel-type

transcription factor.  This functionally complex protein is associated with signaling

pathways involved in embryogenesis, cellular proliferation, differentiation, growth

arrest, and apoptosis (1, 2, 8, 10, 16).  ZBP-89 regulates these diverse biological

functions through both protein-protein interactions and direct binding to GC-rich

promoter elements (3, 8, 10, 18).  Furthermore while ZBP-89 is known to induce cell

growth arrest through direct binding to the tumor suppressor p53, it is also capable

of inducing apoptosis through a mechanism that is independent of p53 (2, 3, 8, 10).

Though mouse models to study ZBP-89 function have been generated, none

has been sufficient to analyze the ZBP-89 null phenotype.  Heterozygosity for a null

ZBP-89 allele in embryonic stem (ES) cells resulted in 50% lower transcription of this

factor though translation of the full-length protein remained (16).  Male chimeras

produced from these ES cells were infertile due to the haploinsufficiency of ZBP-89

and subsequent failure of p53 phosphorylation in male germ cells (16).  This

dramatic phenotype suggests two functional alleles of ZBP-89 are necessary for

germ cell development and thus fertility.  Alternatively, knock-in mice lacking amino

terminal residues 1-127 of the full-length protein are fertile (7).  However, animals

homozygous for this truncated protein experience growth delay, reduced viability,

and increased susceptibility to dextran sodium sulfate (DSS) induced colitis (7).  A

ZBP-89 knock-down using morpholinos has been successfully generated in

zebrafish, where it disrupts both primitive and definitive hematopoiesis resulting in a
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bloodless phenotype (9).  Taken together these findings suggest a high improbability

of generating a viable whole-body knock-out of ZBP-89 in the mouse.  To explore

the many roles of this diverse factor, we generated a tissue specific knock-out of

ZBP-89 in mice.

Materials and Methods

Targeting Vector

We constructed vector pLM10-iKO-FinalTV to replace ZBP-89 exons 8 and 9

with a loxP site by homologous recombination.  High fidelity long range PCR was

used to amplify the targeting arms from mouse BAC clone pBmZBP-89.  The left

targeting arm consisted of the distal 3.1 kb of intron 7.  The right targeting arm

encompassed 5.6 kb of the 3’ untranslated region.  A neomycin resistance cassette

driven by the phosphotransferase gene (PGK) promoter is in the reverse orientation

and flanked by FRT sites.  This cassette allows selection of ES cells that have

successfully integrated the targeting vector.  A single loxP site was placed in intron 7

upstream of the neo cassette while a second loxP site was placed downstream of

the termination signal in exon 9.

Generation of ZBP-89Neo/+ ES cells and chimeric mice

The targeting vector was linearized and electroporated into Bruce4 (C57BL/6

derived) ES cells.  After electroporation, the cells were plated onto MEF feeder cells

at a concentration of 1.0 x 106 cells/plate in culture media supplemented with G418.

Media was changed every 24 hours until drug resistant colonies were apparent one

week after electroporation.  ES cell clones were screened by PCR for the presence

of the targeting vector.  Five clones were expanded in culture and underwent



44

analysis for cell morphology, karyotyping, and a mycoplasma screen.  Four of the

expanded clones were deemed suitable for injection.  Chimeras were produced by

microinjecting ES cells into blastocysts obtained from mating C57BL/6c2J females

with C57BL/6c2J males. Male chimeras were then crossed to C57BL/6c2J females to

generate mice with germline transmission of the targeted allele.  Throughout the

study animals were maintained on a C57BL/6 background.  All animals were housed

in microisolater polycarbonate cages in non-barrier mouse rooms (conventional

housing).  The procedures used in this study were approved by the University of

Michigan Animal Care and Use Committee, which maintains an American

Association of Assessment and Accreditation of Laboratory Animal Care (AAALAC)

facility.

Genotyping

Genomic PCR was utilized to genotype targeted ES cell clones, chimeric

founders, and progeny resulting after germline transmission.  The Expand Long

Template PCR System (Roche Indianapolis, IN) was used according to the

manufacturer’s instructions.  Primer sequences (5’ to 3’) were ZBP89-5124F:  AGA

CCT ACG ACC CAC AGG GTG G; ZBP89-7050R:  GGC TTC TCT CCA CTG TGA

GTT.  The wild-type allele generates a 596 bp fragment whereas the targeted allele

corresponds to a 1926 bp fragment. Upon removal of the neo cassette the targeted

allele corresponds to a 674 bp fragment using the same primers.

Flpe Mice

Flpe deleter strain mice use human beta actin (ACTB) to drive Flpe

recombinase expression (12).  Expression of this recombinase results in complete
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germline excision of DNA located between FRT sites.  Flpe mice were a gift from the

University of Michigan Transgenic Animal Model Core who originally obtained them

from The Jackson Laboratory (Bar Harbor, ME) and back-crossed them for 10

generations to C57BL/6.

Histological analysis

Adult mouse kidney and intestine were fixed in 4% formaldehyde, dehydrated

and embedded in paraffin.  Sections (4 µM) were stained with hematoxylin and eosin

(H&E).  Sections were also immunostained with polyclonal ZBP-89 antibody (17).

Antigen-antibody complexes were detected using the ABC Vectastain Kit and

diaminobenzidine substrate according to the manufacturer’s suggestions (Vector

Labs, Burlingame, CA).

Quantitative RT-PCR

Total cellular RNA was isolated from mouse intestine, kidney, liver, lung,

spleen, and stomach using TRIzol Reagent (Invitrogen, Carlsbad, CA).  The

samples were treated with DNase1 (Invitrogen) before cDNA synthesis using iScript

cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA).  RT-PCR was performed

using Platinum Taq DNA Polymerase (Invitrogen).  Mouse ZBP-89 primer

sequences (5’ to 3’) included Ex6-F:  GGC ATG TCT TCA TTC ATA GAG G; Ex8-R:

CTC ATA CCA CAT TCA TCA CAG C.  HPRT primer sequences were as follows (5’

to 3’) HPRT forward: AGT CCC AGC GTC GTG ATT AGC; HPRT reverse:  ATA

GCC CCC CTT GAG CAC ACA G.  Five samples from each genotype were

analyzed in triplicate.  RT-PCR products were purified and submitted for DNA

sequence analysis (University of Michigan DNA Sequencing Core).
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Western Blot Analysis

Whole cell protein extracts were prepared from mouse intestine, kidney, liver,

spleen, and stomach using T-PER Tissue Protein Extraction Reagent (Pierce,

Rockford, IL), supplemented with Complete Mini Protease Inhibitors (Roche,

Indianapolis, IN) according to the manufacturer’s recommendations.  Lysates were

solubilized in Laemmli sample buffer (Bio-Rad Laboratories) at 95 C for 5 minutes,

resolved by SDS-PAGE, and transferred to polyvinylidene diflouride (PVDF)

membrane (Bio-Rad Laboratories).  Blot was then blocked using Detector Block

(Kirkegaard & Perry Laboratories, Gaithersburg, MD) and probed using rabbit ZBP-

89 antibody as previously described or mouse GAPDH antibody (Chemicon,

Temecula, CA)(2, 10).

Results

Generation of mice

Since the ZBP-89 locus spans greater than 110 kb in the mouse, deleting the

entire locus is not feasible.  However, since exons 8 and 9 encode greater than 60%

of the coding sequence, this region was targeted for conditional deletion.   The left

targeting arm contained 3.1 kb of intron 7 whereas the right targeting arm contained

5.6 kb of the 3’ UTR.  A PGK-neo cassette flanked by FRT sites was placed in intron

7 for selection of the ES cells.  A loxP site was placed upstream of the neo cassette

and a second site was added downstream of exon 9 to allow for conditional deletion

(Figure 2-1A).  The targeting vector was electroporated into Bruce4 ES cells
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followed by G418 treatment to select for cells heterozygous for the targeting vector.

Homologous recombination occurred in 18 of 480 ES clones yielding a success rate

of 3.75%.  After karyotyping analysis of the ES cells, 4 clones were deemed suitable

for injection into blastocysts.  Twenty-four chimeras were generated (16 males and 8

females) from a total of 431 injected blastocysts. Only the chimeras from ES cell

clone 6073 showed germline transmission.  Chimeras from the remaining 3 clones

failed to transmit the targeted allele after 10 rounds of harem (one male chimera per

2 females) matings (Figure 2-1B).  Germline transmission was obtained in the first

lineage in 3 of 8 chimeras from clone 6073.  Genotyping using PCR confirmed

heterozygosity for the targeted allele, designated ZBP-89 Neo/+ (Figure 2-1C).

Identification of animals homozygous for the targeted allele

Heterozygous animals were bred in harem matings to generate homozygous

animals.  A total of ten breeding cages were set up initially, however only 3 litters

resulted during a 2-month period.  Breeding success was achieved by switching the

animals to a high fat diet, providing nestlets in the cage at all times, commencing

breeding when animals were between 6 and 8 weeks of age and allowing the male

to be alone in the cage for 2 days prior to the addition of females.  These techniques

greatly increased the success rate of mating as measured by the presence of a

female vaginal plug.  In addition any new litters remained undisturbed in every way

for the first 4 days after birth.  This helped to ensure new mothers would care for

their pups and increased our numbers of weanlings.  Out of 52 pups 17 wild-type

and 35 heterozygous animals were obtained (Figure 2-2A).  Not a single

homozygous ZBP-89Neo/Neo animal was born in 9 litters.  Timed pregnancies showed
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viable mice up to embryonic day E17.5 suggesting that lethality occurred at the end

stages of pregnancy.

ZBP-89Neo/+ mice show no significant differences in growth or survival

The lack of ZBP-89Neo/Neo animals suggested that the targeted allele was

unstable. Therefore analysis of the targeted locus was limited to wild-type and ZBP-

89Neo/+ mice.  Analysis of ZBP-89Neo/+ animals showed no significant differences in

survival compared to wild-type littermates at one year of age (Figure2-2C).  Also at

one year of age, mice heterozygous for the targeted allele showed a trend towards a

higher body weight compared to wild-type littermates (Figure 2-2B).

Reduced levels of ZBP-89 mRNA and Protein

Quantitative real-time PCR (QRT-PCR) analysis was performed to determine

if ZBP-89 mRNA levels were altered in ZBP-89Neo/+ mice.  Total RNA was isolated

from mouse intestine and kidney of both ZBP-89Neo/+ and wild-type littermate

controls. QRT-PCR using a forward primer located in exon 6 and reverse primer in

Exon 8 showed that ZBP-89 message levels were reduced in mice heterozygous for

the targeted allele (Figure 2-3A).  Likewise ZBP-89 protein levels were reduced in

the intestine and kidney (Figure 2-3B).  Reduced protein expression was also seen

in liver, lung, and stomach tissues (data not shown).  Staining of the mouse tissues

for ZBP-89 further demonstrated reduced levels of ZBP-89 (data not shown).

Despite the fact that no part of the ZBP-89 gene has been deleted in these animals,

the targeted locus was hypomorphic.
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Neomycin cassette removal generates viable targeted mice

The neomycin resistance cassette was the most likely reason for the

hypomorphic ZBP-89 locus.  Fortunately, the targeting vector was designed to allow

removal of this cassette in the event normal gene function was disturbed in the

animals.  The FRT sites flanking the neomycin cassette recombine in the presence

of FLP recombinase, effectively removing the now superfluous neomycin cassette

(Figure 2-4A).  Flpe mice ubiquitously express FLP recombinase under control of the

beta-actin promoter; therefore every tissue is capable of FLP mediated

recombination.  These animals were bred to ZBP-89Neo/+ mice and the resulting pups

were screened by PCR for the presence of the recombined allele (Figure 2-4B).

This new locus was referred to as ZBP-89 FLP to distinguish from the ZBP-89 locus

with the neo cassette intact.  As expected, removal of the neomycin cassette

allowed for generation of viable ZBP-89FLP/FLP mice at near Mendelian ratios.

Growth analysis of ZBP-89 FLP mice revealed no significant differences when

compared to wild-type littermates between weaning and 12 weeks-of-age (Figure 2-

4C).

No evidence of hypomorphic allele in ZBP-89 FLP mice

Viable ZBP-89FLP/FLP mice were a strong indication that ZBP-89 expression

levels were at least partially restored compared to the ZBP-89 Neo mice.  To test

this hypothesis, RT-PCR was performed on tissue samples from both ZBP-89FLP/+

and ZBP-89FLP/FLP mice.  mRNA levels proved unchanged compared to wild-type

mice in both the intestine and kidney (Figure 2-5A).  In addition levels in other

organs (stomach, liver, and lung) were the same in all three genotypes (data not
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shown).  These results correlated with similar levels of protein expression in these

organs as demonstrated by immunoblot (Figure 2-5B).  This suggested that the

targeted locus is no longer significantly disrupted despite the presence of loxP and

FRT sites in intron 7.

Discussion

Previous studies have failed to knock-out ZBP-89 despite rational targeting

strategies.  Merchant and coworkers attempted targeted deletion of the ZBP-89

locus before by targeting the translational start site in exon 4, theorizing that this

would block translation of ZBP-89 mRNA (7).  Instead, however,  alternative splicing

and usage of an alternate translational start site resulted in a protein lacking the

amino-terminal 127 amino acids (refer to appendix)(7).  The lack of a lethal

phenotype suggested that amino-terminal deletion is compatible with survival.  Work

by Takeuchi et al. targeted exon 9 for deletion (16).  However, chimeras mosaic for a

heterozygous deletion were infertile.  This is a logical targeting site given this exon

encodes roughly 60% of the overall protein, and therefore their removal was at best

likely to encode a truncated protein with limited capabilities.  Indeed given the

extreme phenotype exhibited by the chimeras, targeting this portion of the locus is

effective.  However, it is important to note in these chimeras that the deletion was

accomplished through insertion of a PGK neo cassette into exon 9.  It is plausible

that their knock-out would have a different phenotype if the deletion was

accomplished without using this cassette.

Anticipating from these studies that a complete null of ZBP-89 would likely be

an embryonic lethal, I generated a targeted ZBP-89 locus so as to perform tissue
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specific deletion of the locus in order to spawn viable mice.  Conditional gene

inactivation can be achieved through the use of site specific recombinases, such as

the yeast FLP recombinase or the bacteriophage P1 Cre recombinase (11, 13).

Addition of a neomycin resistance cassette was chosen to select ES cells that

successfully integrated the targeting vector.  This selection cassette was flanked by

FRT sites allowing for excision of the neomycin cassette either in the ES cells or in

the chimeras in the presence of FLP recombinase.  LoxP sites were added to allow

for excision of both exons 8 and 9 as well as the neomycin cassette in the presence

of the CRE recombinase.  The neomycin cassette and upstream loxP site were

placed in intron 7, as this intronic location would conserve the structure and function

of the normal protein.  Unfortunately this placement proved problematic and the PGK

promoter of the neo cassette interfered with normal gene transcription resulting in a

hypomorphic phenotype.  To this end ZBP-89neo/neo mice were most likely embryonic

lethal due to insufficient gene expression.  This phenomenon has been shown in

other studies where a PGK-neo cassette in the opposite orientation relative to the

modified gene has been placed in an intron (4-6, 15).  Unlike ZBP-89neo/neo mice who

die near the end of gestation, mice containing a targeted β-globin LCR experience

lethality during the yolk sac stage (4).  These results emphasize that when

homologous recombinase is utilized to target a gene locus, the inserted selectable

marker should be removed to avoid influencing the resulting phenotype.

While mice heterozygous for the targeted allele also exhibited a hypomorphic

phenotype, the remaining wild-type allele compensated for the reduction in gene

transcription and expression thereby preventing a lethal phenotype.  Furthermore
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there was no alteration in growth or survival of the heterozygous mice.  It can be

concluded that a slight reduction in ZBP-89 gene expression in multiple organs does

not have serious consequences.  However, a severe reduction results in perinatal

lethality.  These results coincide with those shown by Takeuchi and colleagues as

well as the theory that a whole body knock-out would be embryonic lethal.

Generation of a hypomorph presents a serious problem in generating true

ZBP-89 knock-out animals that are both viable and whose phenotype reflects

deletion of the gene not attributable to insertion of the neomycin cassette.

Furthermore the lethality of animals homozygous for the neomycin cassette

containing allele prevents generation of viable animals homozygous for a CRE

recombinase mediated deletion of ZBP-89.  Therefore it was necessary to cross

targeted mice to FLPe mice, since the expression of FLP recombinase will initiate

recombination between the FRT sites consequently eradicating the neomycin

cassette from the targeted locus.  While this step could have been performed at the

ES cell stage by treating the cells with FLP recombinase in the culture media, this is

not an efficient process and the prolonged culture time reduces the ES cell

pluripotency (T. Saunders, personal communication)(14).

After two consecutive rounds of breeding animals homozygous for the

targeted locus with the neomycin cassette removed (89FLP/FLP) were successfully

obtained.  Moreover animals of the three possible genotypes (wild-type, 89FLP/+,

89FLP/FLP) were obtained at near Mendelian ratios.  Analysis of both mRNA and

protein levels demonstrated no evidence of a hypomorphic ZBP-89 allele.  There

was also no alteration in the growth rate or survival of these animals compared to
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wild-type littermates.  This evidence confirms the reduced ZBP-89 expression in

89neo/+ mice was the result of the PGK-neomycin cassette insertion in intron 7.  The

mice now contain a fully functional ZBP-89 locus ready for tissue specific deletion in

the next phase.



54

Acknowledgements

The authors thank Lisa Travnikar for technical assistance.  The authors

gratefully acknowledge the expertise of the University of Michigan Transgenic

Animal Model Core, especially Thom Saunders, Linda Samuelson and Elizabeth

Hughes.  The authors would also like to thank Intrexon Corporation (Roanoke, VA)

for assembly of the pLM10-iKO-FinalTV construct and the Unit for Laboratory Animal

Medicine at the University of Michigan.



55

A.

B.

Clone
Number

%
Euploid
ES Cells

Blastocysts
Injected

Chimeras
Produced

Germline
Transmission

6071 87 108
3 Males

3 Females No
6072 85 93 4 Males No

6073 70 117
8 Males

4 Females Yes

6075 80 113
1 Male

1 Female No

C.

   1     2     3

Figure 2-1.  Targeting the ZBP-89 locus for conditional deletion.  A.  A loxP site (L)
along with a neomycin resistance cassette (NEO) flanked by FRT sites (F) was
inserted into intron 7 along with a second loxP site downstream of exon 9 of the
ZBP-89 gene.  B.  Four separate ES cell clones were injected into blastocysts to
produce chimeras.  C.  Genotyping demonstrated the presence of the targeted
allele, wild- type allele is 596 bp where as the targeted allele is 1926 bp.  Lane 1 =
wild-type, 2 = Chimera, 3 = F1 progeny demonstrating germline transmission.

98  L NEO F L  F

1 2 4 5 6 97 8
Wild-type Locus

ZBP-89 Neo Targeted Locus

7
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A.

Genotype
Estimated

%
#

Obtained
Actual

%
WT 25 17 33

ZBP-89 Neo/+ 50 35 67

ZBP-89 Neo/Neo 25 0 0

B.

C.

Figure 2-2.  ZBP-89Neo/Neo mice are not viable, ZBP-89Neo/+ mice show normal
growth and survival.  A.  Three possible genotypes from ZBP-89Neo/+ matings.  Only
two expected genotypes present after 9 litters.  B.  At one year of age ZBP-89Neo/+

animals demonstrate higher body mass than their wild-type littermates.  C.  ZBP-
89Neo/+ animals exhibit no significant differences in survival compared to their wild-
type littermates.
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A.

B.

        Intestine                   Kidney

     WT         Neo/+         WT         Neo/+

ZBP-89

GAPDH

Figure 2-3.  ZBP-89Neo/+ mice show reduced mRNA and protein expression.  A.
QRT-PCR analysis of wild-type (WT) and ZBP-89Neo/+ (Neo/+) mouse kidney and
intestine tissue.  Five mice per genotype were performed in triplicate for each tissue.
B.  ZBP-89 protein expression in mouse tissue.
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A.

B.

     WT         FLP/+   FLP/FLP

C.

Figure 2-4.  FLP recombinase mediated removal of neomycin cassette results in
viable homozygous targeted mice.  A.  FRT sites (F) flank the neomycin resistance
cassette (NEO), recombination occurs between the sites in the presence of FLP
recombinase resulting in removal of the cassette.  B.  Genotyping demonstrating
presence of FLP allele, wild-type (WT) allele is 596 bp, FLP allele is 674 bp.  C.
Growth chart displaying weight (g) of mice from weaning through 12 weeks of age.
Each data point represents average weight from 12 mice.

98  L NEO F L  F
ZBP-89 Neo Locus

ZBP-89 FLP Locus

7

98  L F L7

FLP Recombinase
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A.

B.

                     Intestine         Kidney
       WT          FLP/+     FLP/FLP       WT         FLP/+      FLP/FLP

ZBP-89

GAPDH

Figure 2-5.  FLP recombinase restores ZBP-89 mRNA and protein expression
levels.  A.  QRTPCR analysis of wild-type (WT), ZBP-89 FLP/+ and FLP/FLP mouse
intestine and kidney tissue.  B.  Immunoblots for ZBP-89 and GAPDH of protein
isolated from the intestines and kidneys of wild-type (WT), ZBP-89 FLP/+ and
FLP/FLP mice.

N=5
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