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ABSTRACT 

 

 The risk of whole bone fracture in osteoporosis may be substantially increased as a 

result of microdamage accumulation in bone in conjunction with the associated remodeling 

that attempts to repair the damage.  The risk may be increased as a result of age and disuse, 

which are hypothesized to alter remodeling in response to microdamage. Elucidating the 

effects of age and disuse on bone repair may provide clinically important insight into the 

relationship between microdamage accumulation and increased fracture risk in the elderly.  

The goals of this study were to experimentally determine the influence of age and 

mechanical usage on microdamage accumulation and repair. 

  A unique animal model was developed that enabled loading of distal femoral 

trabecular bone of rats in-vivo. Utilizing this model, older rats (compared with adults) 

demonstrated a reduced ability of bone to recover after damage and a reduction in the 

removal of microdamage. 

For the second series of studies a hindlimb suspension system and four-point 

bending apparatus were developed to simulate disuse and induce tibial cortical 

microdamage.  Utilizing these models, it was shown that disuse alters the bone’s response 

to microdamage through a reduction in woven bone production and cessation of 

microdamage resorption. These results resemble the pattern of a stress fracture response. 

Finally, it was shown that daily short-term weight-bearing during disuse rescued the 

targeted bone remodeling response following microdamage induction. 

These findings suggest that individuals with severe activity reductions may further 

accumulate microdamage. Most importantly, while many studies have proposed that 

microdamage repair is triggered by cell apoptosis, our present results suggest this 



 xvi

mechanism may be insufficient without the stimulus associated with mechanical usage. In 

addition, the ability to rescue the remodeling response through intermittent physiologic 

loading provides support to early clinical evidence that moderate loading can reduce 

recovery time from stress fractures. 

 In aggregate, advanced age and disuse were shown to lead to a reduction in targeted 

remodeling associated with microdamage. This could potentially increase fracture risk due 

to potential microdamage accumulation. In addition, the importance of physiological 

loading to the process of microdamage repair suggests that the current clinical practice of 

limiting weight-bearing for the treatment of stress fractures should be reconsidered. 
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CHAPTER 1 

 

INTRODUCTION 

 

Osteoporotic fracture is a common and expensive healthcare problem, with 1.5 

million fractures in the United States per year, at a cost of $60 billion annually in the U.S. 

by 2025 (Riggs and Melton 1995). Yet the factors responsible for susceptibility to 

fracture remain incompletely understood. 

In order to identify and examine these factors, a thorough understanding of bone 

as a tissue is required. While bone is a marvelous tissue that serves many purposes within 

the human body, such as transmission of load and protection of organs, it is also an 

adaptive tissue. Through the processes of modeling and remodeling bone can change 

shape and adapt to new prolonged external loading scenarios (Wolff’s Law), while also 

being capable of self renewal through replacement of old or damaged bone tissue. 

In order for bone to adapt to external forces and to renew itself, choreography of 

many cells must take place. The major bone cells taking center stage in this performance 

are the osteoblast, the osteocyte, and the osteoclast. Osteoblasts are derived from 

mesenchymal stem cells and lay down new bone in the form of osteoid, which is later 

mineralized. As osteoid is laid down on existing bone tissue, some osteoblasts get 

engulfed and proceed to become osteocytes. These cells are embedded throughout 
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compact bone in small crevasses called lacunae and are connected to each other through 

canaliculi (Figure 1.1). Osteoclasts are derived from hematopoietic stem cells and digest 

bone by acidifying and dissolving underlying mineralized bone. 

When bone adapts to external forces, osteoblasts and osteoclasts act 

independently (modeling) by adding and removing bone at independent sites to change 

the current shape of the loaded bone. When self renewal is necessary, osteoblasts and 

osteoclasts act together (remodeling) in what is termed a basic multicellular unit (BMU), 

where initial resorption of bone is followed locally by the generation of new bone by the 

osteoblasts (Figure 1.2) (Matsuo and Irie 2008).        

When the symphony of the major bone cells is out of tune, skeletal pathologic 

conditions arise. During osteoporosis, for example, increased osteoclast activity in 

conjunction with decreased bone formation leads to reduced bone density and disruption 

of bone micro-architecture (Eriksen, Mosekilde et al. 1985; Arlot, Delmas et al. 1990). 

Osteopetrosis, on the other hand, causes an increase in bone density due to a lack of bone 

resorption by the osteoclasts (Marks 1984; Marks 1989). Sclerosteosis also causes an 

increase in bone density, but is caused by a deficiency of sclerostin, a protein secreted by 

the osteocytes that inhibits bone formation (Gardner, van Bezooijen et al. 2005). These 

three conditions lead to secondary effects such as increased fracture risk and hearing loss. 

Hence it is clear that understanding how the major bone cells behave, interact, live and 

die during modeling and remodeling can potentially improve the quality of life for future 

generations. 
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Background and significance 

It has been proposed that whole-bone failure in osteoporosis may be a result of 

positive feedback between microdamage and the resulting remodeling that attempts to 

repair the damage (Burr, Forwood et al. 1997). Microdamage results in a loss of 

mechanical integrity of the bone tissue, followed by a potentially greater loss in 

continuum-level bone strength and/or stiffness due to resorption at the beginning of the 

remodeling cycle. The reduced stiffness and strength may result in further damage or 

overt failure at lower loads than those required in the original intact bone, resulting in a 

positive feedback process. 

Hence whole bone fracture risk in osteoporosis may be substantially increased if 

normal remodeling in response to microdamage is altered. Common for most 

osteoporotic patients are geriatric related factors, such as age and disuse due to severe 

activity reductions. The effects of these factors on bone remodeling have yet to be 

discovered, but previous studies in the literature have shown possible clues. 

The existence of microdamage has been shown to induce localized osteocyte 

apoptosis surrounding the individual microcracks (Verborgt, Gibson et al. 2000; 

Verborgt, Tatton et al. 2002). The localized apoptotic response has been suggested to be 

caused by hyperemia and the associated decrease in lacunocanalicular interstitial fluid 

flow (Muir, Sample et al. 2007). 

Targeted remodeling in association with microdamage and subsequent osteocyte 

apoptosis has been observed in vivo (Burr, Martin et al. 1985; Burr and Martin 1993; 

Mori and Burr 1993; Bentolila, Boyce et al. 1998; Verborgt, Gibson et al. 2000; Lee, 
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Staines et al. 2002). However, the effect of age on targeted remodeling has not been 

previously observed in vivo. 

Pilot studies have shown that fatigue damage impedes transport from the blood 

supply, depleting the areas downstream of the microdamage of molecular entities. These 

results suggest a link between interstitial fluid flow, mass transport, maintenance of 

osteocyte viability, and regulation of remodeling activity (Tami, Nasser et al. 2002). 

Disuse hindlimb suspension models have been shown to decrease interstitial fluid 

flow due to decreased pressure gradients (Stevens, Meays et al. 2006), with several 

studies suggesting that convective transport by means of load-induced fluid flow may be 

necessary to provide sufficient transport of larger molecules such as proteins to and from 

osteocytes (Knothe Tate, Knothe et al. 1998; Knothe Tate, Niederer et al. 1998). 

Based on what has been shown in the literature it is therefore evident that age and 

disuse could potentially have an effect on remodeling. Elucidating the effects of age and 

disuse on bone repair may therefore provide clinically important insight into the 

relationship between microdamage accumulation and increased fracture risk in the 

elderly. 

 

Study aims and hypotheses 

 The purpose of this thesis is to investigate the effects of age and disuse on bone 

remodeling in response to induced microdamage. Following the introduction and 

verification of several animal models developed specifically for simulating disuse and 

inducing damage in trabecular and cortical bone, a combination of these models with 
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young and old animal cohorts will be used to answer the global hypotheses. The global 

hypotheses of this thesis are three fold: 

  

1) Microdamage removal is significantly different between mature and old animals. 

2) Disuse reduces targeted bone remodeling following microdamage. 

3) Intermittent daily physiological loading can reverse the lack of target remodeling 

during disuse. 

  

Chapter overview 

To address these hypotheses, several animal models were developed and verified. 

Chapter 2 describes the development of a novel animal model utilizing a hydraulically 

loaded bone chamber to load existing distal femoral trabecular bone of rats. 

Reproducibility of microdamage induction is demonstrated and the model is subsequently 

implemented in an adult and old cohort to examine the effect of age on remodeling. 

Chapter 3 describes the development and verification of animal models for 

inducing microdamage in cortical bone and simulating disuse. Specifically, two non-

invasive tibia loading models are described, verified, and tested, and based on a set 

criteria, a final microdamage model is presented. The development and verification of a 

hindlimb suspension system capable of inducing similar disuse effects as seen in the 

literature is also presented. 

The animal models developed in chapter 3 are utilized in chapter 4 to examine the 

effects of disuse on bone remodeling in response to microdamage in an adult cohort of 
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animals. Using the same setup as in chapter 4, chapter 5 examines the effects of daily 

short-term weight bearing during disuse on targeted remodeling. 

Taken together the results presented in chapter 2, 4 and 5 indicate the effects of 

age and disuse on bone remodeling in response to induced microdamage. 

As of the submission of this dissertation, chapter 2 has been published (Waldorff, 

Goldstein et al. 2007), while chapters 4 and 5 are in preparation. 
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Figure 1.1. Bone structure 
 
Illustration taken from http://media.wiley.com/Lux/84/21784.nfg001.jpg 
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Figure 1.2. Basic multicellular unit (BMU) 
 
Image taken from http://www.siumed.edu/~dking2/ssb/images/remodel.jpg 
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CHAPTER 2 

 

AGE-DEPENDENT MICRODAMAGE REMOVAL FOLLOWING 
MECHANICALLY INDUCED MICRODAMAGE IN TRABECULAR BONE IN 

VIVO 
 

Summary 

In order to examine the potential age-related response of trabecular bone to 

microdamage, a novel animal model utilizing a bone chamber to load existing distal 

femoral trabecular bone of rats was developed. Fifteen 8-month-old (mature) and fifteen 

24-month-old (old) Fischer Brown Norway rats underwent bilateral insertion of the bone 

chamber. After a 3-week recovery period, one leg per animal underwent damage-

inducing loading. Double fluorochrome labeling was used to identify microcracks 

induced by loading. A greater crack density was found in loaded trabecular bone than in 

corresponding unloaded control bone at day 0 in both age groups (mature n=5, old n=4). 

At day 35 post loading, older rats (n=3) had greater crack density (suggesting little 

removal of microcracks), whereas younger rats (n=5) had no difference between loaded 

and unloaded limbs, suggesting induced microcracks were removed. The difference in 

bone volume fraction between the loaded and unloaded limb were significantly different 

at 21 and 35 days post loading when comparing the old with the mature rats. The data 

suggest a reduced ability of bone to recover after damage in the older rats. The damage-

inducing capabilities of the animal model were demonstrated using double fluorochrome 
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labeling in vivo for detection of microcracks. The results indicate that removal of 

microdamage is altered with age. 

 

Introduction 

Although osteoporotic fracture is a common (1.5 million fractures in the United 

States per year) and expensive ($60 billion annually in the U.S. by 2025) healthcare 

problem (Riggs and Melton 1995), the factors responsible for susceptibility to fracture 

remain incompletely understood. Bone mineral density is strongly associated with bone 

strength, but its use to assess fracture risk in all patients has been limited (Recker 1989; 

Kanis 2002). Although the potential addition of geometric and material properties (at 

multiple hierarchical levels) may improve fracture risk predictions significantly, 

unexplained factors remain (McCreadie and Goldstein 2000). 

For example, it has been proposed that whole-bone failure in osteoporosis may be 

a result of positive feedback between microdamage and the resulting remodeling that 

attempts to repair the damage (Burr, Forwood et al. 1997). Microdamage results in a loss 

of mechanical integrity of the trabecular bone tissue, followed by a potentially greater 

loss in continuum-level trabecular bone strength and/or stiffness due to resorption at the 

beginning of the remodeling cycle. The reduced stiffness and strength may result in 

further damage or overt failure at lower loads than those required in the original intact 

bone, resulting in a positive feedback process. 

Microdamage has been observed in cortical bone as a natural occurrence (Frank, 

Ryan et al. 2002; Lee, Mohsin et al. 2003), and due to damage inducing loads ex vivo 

(Burr, Forwood et al. 1997; Lee, Arthur et al. 2000; Lee, O'Brien et al. 2000; O'Brien, 
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Taylor et al. 2002; Danova, Colopy et al. 2003; O'Brien, Taylor et al. 2003) and in vivo 

(Burr, Martin et al. 1985; Stover, Martin et al. 1993). Similarly, microdamage has been 

observed in trabecular bone both naturally (Norrdin, Robinson et al. 1993; Wenzel, 

Schaffler et al. 1996) and due to loading ex vivo (Fyhrie and Schaffler 1994; Arthur 

Moore and Gibson 2002; Moore and Gibson 2003). Prior studies have reported the results 

of in vivo loading of trabecular bone using non-damaging loads to evaluate the effects of 

mechanical stimulation and to study mechanical signal transduction in cancellous bone 

(Guldberg, Caldwell et al. 1997; Moalli, Caldwell et al. 2000; Morgan, Yang et al. 2004). 

Microdamage has previously been induced in trabecular bone in vivo in studies 

examining the effect of impact loading of rabbit knee joints on cartilage degeneration 

(Radin, Parker et al. 1973). To our knowledge, microdamage due to direct loading of 

trabecular bone has not previously been induced experimentally in vivo. 

Although targeted remodeling in association with microdamage has been 

observed in vivo (Burr, Martin et al. 1985; Burr and Martin 1993; Mori and Burr 1993; 

Bentolila, Boyce et al. 1998; Verborgt, Gibson et al. 2000), the effect of age on targeted 

remodeling has not been observed in vivo previously. One study (Martin, Stover et al. 

1996) has shown a decrease in density of active basic multicellular units with age; 

however, the effect on targeted remodeling due to damage could not be determined. 

As part of a program designed to examine the response of trabecular bone under a 

variety of conditions such as age and microgravity, we developed a novel animal model 

in which the distal femoral trabecular bone of rats is loaded in vivo under controlled 

parameters. The aim of this study was to demonstrate reproducibility in microdamage 

 13



induction and to test the hypothesis that microdamage removal is not significantly 

different over time between mature and old animals. 

 

Materials and Methods 

The study involved two phases. First, microcomputed tomography and 

mechanical testing were conducted to characterize the properties of the trabecular bone of 

the distal femur and to assist in determining the loading parameters needed to induce 

damage in trabecular bone in the rat distal femoral metaphysis. Second, the novel rat 

bone chamber was implanted bilaterally on the distal femora of experimental animals. 

After three weeks, the trabecular bone of one femur per animal underwent cyclic damage-

inducing loading (designated as day 0). Morphological features of the trabecular bone 

were quantified at days 0, 21 and 35, whereas microcracks were quantified at days 0 and 

35. Each step is described in greater detail below. This work was approved by the 

University Committee on Use and Care of Animals at the University of Michigan. 

 

Microcomputed tomography characterization of rat trabecular bone 

In order to assist in estimating the loading parameters needed to induce damage, 

the bone volume fraction of Fischer Brown Norway rats was obtained at 8 and 23 months 

of age. The femora from six rats in each age group were dissected of soft tissue and 

scanned using a cone-beam microcomputed tomography system (GE Healthcare 

BioSciences). Trabecular bone volume fraction was obtained from the distal femoral 

trabecular bone region of each bone using routine protocols and MicroView software (GE 

Healthcare BioSciences). 
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In situ mechanical characterization of rat trabecular bone 

In order to assist in estimating the loading parameters needed to induce damage in 

the trabecular bone of the distal femur, six femurs from 8-month-old male Fischer Brown 

Norway rats were dissected free of soft tissue. The distal third of each bone was removed 

and embedded in methacrylate with the lateral surface of the bone exposed. To simulate 

the surgical procedures described below, a 3.2-mm diameter circular window of cortical 

bone was removed near the distal end of the femur (just proximal to the growth plate) 

using an end mill. The exposed trabecular bone was loaded in compression to failure at a 

constant displacement rate of 1 mm/s utilizing a cylindrical loading head (simulating the 

bone chamber piston geometry) attached to a servohydraulic testing machine (858 Mini 

Bionix II, MTS System, Eden Prairie, MN). The displacement of the loading head was 

monitored using an external LVDT (100 MHR, Lucas Schavitts, Hampton, VA, USA), 

while load was recorded using a 5-lb load cell (Sensotec, Columbus, OH, USA) in series 

with the actuator. Using the Test Star IIs system (version 2.4, MTS, Eden Prairie, MN), 

load and displacement were recorded at a sampling rate of 2000 Hz. The following 

parameters were calculated from the load-displacement curves (Figure 2.1) using custom 

functions in MATLAB (The Mathworks Inc. Natick, MA): stiffness, yield load, 

displacement at yield load, ultimate load, displacement at ultimate load and displacement 

ratio (displacement at ultimate load/displacement at yield load). Stiffness was defined as 

the slope of the force–displacement curve in the linear region that contained the 

maximum slope. Yield load was determined using a secant modulus method. The 

intersection of the best-fit line in the linear portion of the force–displacement curve (used 

for the stiffness calculation) with the x axis was determined. The secant modulus for each 
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point on the load-deflection curve was defined as the slope of the line joining the point 

with the intersection of the bestfit line and the x axis. The load at the first point beyond 

the linear region for which the secant modulus was reduced by at least 10% from the 

stiffness of the linear region was considered the yield load. 

 

In vivo loading of rat trabecular bone 

Fifteen mature (8 months) and fifteen old (24 months) male Fischer Brown 

Norway rats underwent bilateral insertion of the rat bone chamber (Figure 2.2) on the 

lateral surface of each distal femur. The rat bone chamber measures 10.3 mm in length, 

3.8 mm in width and 8.1 mm in height. It consists of 3 parts: the chamber, a piston with 

an ethylene-propylene o-ring (Apple Rubber Products Inc., Lancaster, NY) and a set 

screw with matching ethylene-propylene o-ring (Figure 2.2). The chamber itself is 

manufactured as a one-piece assembly using a CNC machine. The bottom portion of the 

piston casing ensures that the chamber is properly located and that the piston will directly 

load trabecular bone. The chamber and piston (diameter 2.1 mm) are made from 

commercially pure titanium. 

A custom hydraulic loading device used to activate the piston within the chamber 

consists of a Macintosh IIci computer, running a custom program in LabView 2.2.1, 

connected to a microprocessor-based servopump equipped with a pressure transducer 

feedback circuit (Goldstein, Matthews et al. 1991; Guldberg, Caldwell et al. 1997; 

Moalli, Caldwell et al. 2000). The input parameters of the hydraulic loading system 

include shape of waveform, number of loading cycles, load amplitude (in volts) and wave 

frequency. 
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Due to manufacturing tolerances in the diameters of the o-rings and o-ring 

grooves in the piston, each chamber/piston pair has a unique relationship between the 

controller input setting (which determines the hydraulic pressure in the line leading to the 

chamber) and the resulting piston force. Therefore, each chamber/piston pair was 

calibrated in a small testing rig prior to surgery to obtain a calibration curve between the 

controller input and the piston force measured by a small load transducer in the rig. 

Thereby, the required load (6 N for the 8-month-old rats, and 3 N for the 24-month-old 

rats) can be translated into a specific input parameter value for each chamber/piston pair, 

ensuring that the correct load on the trabecular bone was obtained. In addition, each pair 

was re-calibrated following retrieval to validate correct loading amplitudes. Resulting 

loads within 10% of the desired load (i.e., 3±0.3 N and 6±0.6 N) were considered 

acceptable. 

During surgery, chambers were inserted bilaterally in each animal. A 1.5-cm 

lateral parapatellar incision was made extending from the distal femur to just distal of the 

insertion of the patellar tendon on the tibia. The patella was gently dislocated to expose 

the distal femur. The lateral aspect of the distal femur was then further exposed using 

periosteal elevation. A custom mill bit was used to remove a 3.2-mm diameter cortical 

bone window, thus exposing the trabecular bone proximal to the growth plate. The base 

of the bone chamber hardware was then fixed to the bone using two small stainless steel 

bolts passed through predrilled 1.2 mm holes, co-locating the piston with the area of 

removed cortical bone (Figure 2.3). A specialized drill guide and template were used to 

ensure precise and repeatable positioning of the implant. The patella was repositioned, 

and soft tissue was closed in layers around the implant using resorbable sutures and skin 
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staples. Postoperative radiographs verified placement of the device in regions of 

sufficient trabecular bone density. Immediately following surgery, animals were injected 

intraperitoneally with the fluorochrome calcein (10 mg/kg) to label any existing or 

surgically produced microcracks. The animals were allowed full weight-bearing and 

normal cage activity immediately following surgery and appeared fully weight bearing 

within 2 h. 

After a recovery period of 3 weeks, each animal was anesthetized and a small 

incision was made in the skin immediately on top of each chamber. The set-screw was 

carefully removed, and a CNC-machined fitting attached to a hydraulic hose was 

carefully screwed into place at the top of each chamber. The hydraulic line from one of 

the two chambers was randomly chosen and connected to the computer-controlled 

hydraulic loading system (Goldstein, Matthews et al. 1991; Guldberg, Caldwell et al. 

1997; Moalli, Caldwell et al. 2000). The chosen leg then underwent a trapezoidal loading 

regime of 1000 cycles at 0.5 Hz (rise time: 0.4 s; upper plateau: 0.6 s; return time: 0.4 s; 

lower plateau: 0.6 s). The chambers in 8-month animals were activated to develop a load 

of 6 N on the trabecular bone, while 24-month animals were loaded at 3 N. The 

amplitude and ratio of these loads were chosen to impart equivalent continuum strain, 

described below. Equivalent continuum strain was selected with the assumption that 

equal strain would result in equal damage. This assumption is not critical because the true 

test of the selected load magnitudes is whether the amount of damage (which was later 

measured) is equal in the two groups. From the in situ mechanical characterization of rat 

trabecular bone (described above), we chose a load of 6 N for the mature animals to 

target a load of approximately 10% of the ultimate load. The load for the old animals was 
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then estimated using the bone volume fraction data described above and two methods: 

scaling the load directly to the bone volume fraction and using Goulet's relationship 

(Goulet, Goldstein et al. 1994) between trabecular bone volume fraction and modulus, 

solving the following equation for Fmax, 24 months

monthTVBV
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monthTVBV

month

MOD
A

F
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A

F

E 8,/,22

8max,

24,/,22

24max,

!!!
"#  

where ! is strain; "=F/A is stress; A is the area of the piston (equal for both age groups), 

Fmax is the maximum load applied and MOD22,BV/TV is the modulus of the bone 

calculated from Goulet et al. (Goulet, Goldstein et al. 1994) based on the bone volume 

fraction of the trabecular bone. Scaling the load directly to the bone volume fraction 

suggested a load of approximately 3 N for the old animals, whereas that using Goulet's 

equation (Goulet, Goldstein et al. 1994) resulted in a load of approximately 1 N for the 

old animals. A preliminary study (Waldorff, Goldstein et al. 2005) and the results of this 

study support the choice of 3 N and 6 N loads to provide equivalent damage in both ages. 

During loading, the animals were injected intraperitoneally with the fluorochrome 

Xylenol orange (90 mg/kg) to label induced microcracks. 

During and following surgery, five animals from the old group were lost due to 

insufficient trabecular bone beneath the piston as a result of milling the holes too deep, or 

a poor match in piston location between contralateral legs. From the 8-month group, five 

animals each were euthanized at days 0, 21 and 35 following loading. Four, three and 

three animals from the 24-month group were euthanized at days 0, 21 and 35, 

respectively. Femora were carefully dissected free of soft tissue and scanned on a 

microcomputed tomography (microCT) system (GE Healthcare Systems) at 18 #m/voxel 
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(Figure 2.4). The reconstructed three-dimensional images were thresholded into bone and 

non-bone voxels. On each of the images, a cylindrical volume, with a diameter equal to 

that of the piston and 1 mm in length, was identified just beneath the piston and in line 

with the direction of loading. Trabecular bone architectural parameters for this region of 

interest were determined using a custom analysis program and a commercially available 

voxel analysis software package (MicroView v.1.18). The following parameters were 

measured: bone mineral density (BMD, mg/cm3), bone volume fraction (BV_TV, 

mm3/mm3), bone surface-to-volume ratio (BS_BV, mm$1), trabecular plate number 

(TB_N, mm$1), trabecular plate thickness (TB_TH, mm), trabecular plate separation 

(TB_SP, mm), mean intercept length (MIL, mm), degree of anisotropy (DA, mm/mm) 

and connectivity (EulN_Vol, mm$3). 

After microCT scanning, the specimens were dehydrated and embedded 

undecalcified in poly methyl methacrylate to quantify microcracks (for days 0 and 35). 

Specimens were sectioned at 500 #m transverse to the longitudinal axis of the femur 

using a Buehler Isomet low speed diamond blade saw. Sections that intersected the 

location of the piston were individually mounted to slides and polished. The specimens 

were then examined using appropriate fluorescence filters. Microcracks labeled with 

calcein or both calcein and xylenol orange were determined to be unrelated to loading 

because they were labeled at surgery. Distinct microcracks labeled with just xylenol 

orange were considered microdamage induced by loading and were measured and 

counted. The following parameters were measured throughout the entire trabecular bone 

region of each section: number of microcracks (#), bone trabecular area (B.Ar., mm2), 

microcrack density (Cr.Dn., #/mm2), microcrack mean length (Cr.Le., #m) and 
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microcrack surface density (Cr.S.Dn., #m/mm2). All of these parameters represent the 

total values from the entire loaded or unloaded region, i.e., the data from all sections that 

intersected the location of the piston were grouped together. Approximately 36 mm2 

were quantified for each bone, using 3 or 4 consecutive sections. 

To compare loaded to contralateral unloaded sides, paired t-tests were used. 

Unpaired t-tests were used for comparisons between age groups and between groups at 

different time points. Significance was defined as p%0.05. The analysis was performed 

using SPSS statistical software (SPSS, Chicago, IL). 

 

Results 

Mechanical properties were successfully obtained from all femurs loaded to 

failure (Table 2.1), resulting in an average yield load of 50.7 N. 

Bone volume fraction for 8-month animals was 0.213±0.022 mm3, whereas that 

for 23-month animals was 0.110±0.013 mm3. 

The output force for each chamber/piston pair was found to vary little between 

pre-surgery calibration and post-retrieval tests (within ±10% of desired load). 

Chamber/piston pairs subjected to extended calibration times maintained loads within 

±2.5% of the desired load for up to 1000 cycles at 0.5 Hz. All animals gained or 

maintained weight within 10 days of surgery. 

The microCT results showed that the difference in bone volume fraction between 

the loaded and unloaded leg becomes significantly different between the two age groups 

by day 21 (Figure 2.5, Table 2.2). The old group has a lower bone volume fraction in the 

loaded side than the unloaded (control) side. The eight-month animals, in contrast, have a 
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higher (non-significant) bone volume fraction on the loaded side. At day 35 this 

significant pattern is sustained. A similar pattern is seen for bone mineral density and 

trabecular plate number. The inverse pattern is seen for trabecular spacing, as expected 

based on the bone volume fraction. None of the other morphological parameters 

demonstrated statistically significant differences between the two age groups. 

Several differences were noted in microcracks between the loaded and unloaded 

sides (Figure 2.6, Table 2.3). Loaded trabecular bone had greater crack density than 

corresponding unloaded controls at day 0 (the day of loading) in both age groups. The 

difference in crack density between loaded and unloaded sides was similar in both age 

groups at day 0, indicating that similar crack densities were induced by loading in both 

age groups. This demonstrates that the loads used to induce microdamage in the two 

groups generated essentially equivalent microdamage in their respective age groups. In 

mature animals, there was no significant difference in crack density between loaded and 

unloaded sides at day 35, suggesting resorption of induced microcracks. The old rats had 

significantly more damage in the loaded limbs than control limbs at day 35. The 

magnitude of the difference in crack density between loaded and unloaded limbs is not 

significantly different between days 0 and 35, indicating that little resorption or repair of 

induced microdamage took place over the course of 35 days in old animals. 

 

Discussion 

Bone chambers have been developed for various species to evaluate mechanical 

stimulation and signal transduction in trabecular bone (Guldberg, Caldwell et al. 1997; 

Moalli, Caldwell et al. 2000; Morgan, Yang et al. 2004; Tägil, Åstrand et al. 2004; Tägil, 
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Åstrand et al. 2004). This study presents a newly developed rat bone chamber designed to 

load existing trabecular bone in vivo. The model distinguishes itself from others 

(Goldstein, Matthews et al. 1991; Guldberg, Caldwell et al. 1997; Moalli, Caldwell et al. 

2000) in that existing trabecular bone, not newly formed bone, is loaded. To the best of 

our knowledge, this is also the first time microdamage due to direct loading of trabecular 

bone has been induced experimentally in vivo. 

Because this model is invasive, regional acceleratory phenomenon (RAP) (Frost 

1983) might have an effect on the turnover of the trabecular bone underneath the piston. 

The animals in this study were given 3 weeks to recover from surgery, allowing time for 

the RAP to decrease. In addition, all animals underwent bilateral insertion of the 

chamber, adhering to Frost's advice (Frost 1983) describing the need for a bilateral 

surgical control to separate RAP effects from experimental effects. Despite these 

precautions, RAP may change the remodeling response to microdamage compared to 

what would be seen in a non-surgical model. In addition, age may alter the timing or 

characteristics of the RAP response. The individual data (Table 2.2) show that the bone 

volume fraction in the unloaded side increases slightly (but not significantly) from day 0 

to day 35 for both age groups, which may indicate that RAP is still somewhat present. 

Previous studies have shown that microdamage in bone can be detected using a wide 

array of fluorochromes (Lee, Arthur et al. 2000; Lee, O'Brien et al. 2000; Arthur Moore 

and Gibson 2002; O'Brien, Taylor et al. 2002; Lee, Mohsin et al. 2003; Moore and 

Gibson 2003; O'Brien, Taylor et al. 2003). With the exception of one study (Stover, 

Martin et al. 1993), they have been performed ex vivo (Lee, Mohsin et al. 2003). 

Fluorescent double labeling in vivo for detection of microcracks was utilized in this 
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study. This method allowed a clear distinction between pre-existing microdamage and 

that due to the surgical procedures and subsequent induced microdamage. Previous 

studies have shown that microdamage accumulates with age (Schaffler, Choi et al. 1995; 

Wenzel, Schaffler et al. 1996; Burr, Forwood et al. 1997). Damage accumulation has 

been hypothesized to be a factor that increases bone fragility with age (Burr, Forwood et 

al. 1997). Studies have suggested that as an individual ages, there may be a point when 

bone microdamage accumulates faster than it can be repaired through remodeling 

(Schaffler, Choi et al. 1995). This idea is supported by investigators that have shown that 

a decline in lacunae density is associated with an increase in microcrack density 

(Vashishth, Verborgt et al. 2000). However, these studies were unable to determine if 

bone tissue alterations or changes in repair processes occur first. 

The trabecular bone architecture results indicate a pattern of significant and 

sustained higher bone volume fraction in unloaded limbs than loaded limbs in the old rats 

compared to the mature rats, which may support the hypothesis of positive feedback 

between microdamage and resulting targeted remodeling (Burr, Forwood et al. 1997). 

The hypothesis has its origin in microdamage that results in a loss of mechanical integrity 

of the trabecular bone tissue, followed by a potentially greater loss in continuum-level 

trabecular bone strength and/or stiffness due to resorption at the beginning of the 

remodeling cycle. The reduced stiffness and strength will result in further damage or 

overt failure at lower loads than those required in the original intact bone, resulting in a 

positive feedback process. 

The bone volume fraction may be directly influenced by the loading protocol. 

Continuous cyclic loading could cause a slight compression of the bone tissue due to 
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damage accumulation. Thus, the difference in bone volume fraction between the loaded 

and unloaded leg could be artificially increased. Because both age groups are loaded at a 

similar tissue strain level, this phenomenon is likely present in both age groups. This is 

the reason this study compares age groups to each other, as opposed to simply comparing 

the difference in bone volume fraction between the loaded and unloaded side to zero. 

The microcrack results appear to indicate that removal of mechanically induced 

microdamage has decreased or been lost with age. This is supported by the significant 

difference in microcrack density between the loaded and unloaded side at day 35 in old 

rats, with no difference in mature rats. Although the difference in crack density between 

limbs has not significantly changed from day 0 to day 35 for the old rats, removal of 

microdamage might take a considerably longer time in this age group. Whether the ability 

to remove induced microdamage has completely ceased, has been substantially decreased 

or has been substantially delayed with age cannot be determined in this study. It can be 

concluded, however, that the removal of microcracks is altered with age. Future studies 

will investigate if this is due to a change in targeted remodeling or to stochastic 

remodeling in general. 

The significant difference in bone volume fraction (between loaded and unloaded 

sides) between age groups at days 21 and 35 could cause one to suspect that the change in 

difference in crack density between the loaded and unloaded leg could have been 

artificially induced due to a change in trabecular area in the sections examined. However, 

two arguments speak against this suggestion. First, because the analysis is based on 

density (number of cracks per area) this measure is not affected if bone is removed in an 

unbiased manner. In fact, the number of absolute cracks decreases significantly in the 
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loaded limbs between days 0 and 35 for both mature and old rats, indicating that removal 

of cracks occurs in both age groups. Second, should the decreased bone volume fraction 

have led to increased bone fragility and thus cause more microcracks to develop in 

agreement with the positive feedback hypothesis (Burr, Forwood et al. 1997), then the 

additional microcracks would not have been marked with the secondary fluorochrome 

label, and thus not counted. Therefore, the conclusion that an alteration of the repair 

response (i.e., removal of microcracks, perhaps by targeted remodeling) occurs with age 

appears to be supported. 

In conclusion, this paper has demonstrated the successful implementation of the 

rat bone chamber, which has proven capable of inducing trabecular microdamage in vivo. 

Morphological and histological results suggest that removal of mechanically induced 

microdamage is altered with age. In addition, fluorescent double labeling in vivo for 

detection of microcracks has been successfully implemented. 
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Figure 2.1. Representative force-displacement curve for in situ mechanical test 
simulating bone chamber function 
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Figure 2.2. Rat bone chamber hardware 
 
A: Rat bone chamber 
B: Set screw 
C: Piston 
D: Set screw o-ring 
E: Assembled rat bone chamber on top of a penny 
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Figure 2.3. Surgical technique 
 
A: Distal femur with cortical window removed for piston 
B: Distal femur with implant attached prior to surgical closure 
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Figure 2.4. MicroCT images of femur after removal of bone chamber 
 
Left: Distal part of femur showing removal of cortex where piston contacts trabecular 
bone, and two holes where bolts attach chamber to femur. 
Right: Longitudinal view of femur at plane shown in left image showing location of the 
rat bone chamber. The region of interest used for morphological measurements is 
indicated by the shaded region. 
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Figure 2.5. Bone volume fraction 
 
Significance (p%0.05) of unpaired t-test comparing the bone volume fraction (difference 
between the loaded and unloaded leg) between age groups at the same time point is 
indicated by either a single or double asterisk. Error bars indicate standard deviation. 
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Figure 2.6. Crack density 
 
Significance of paired t-test comparing loaded to unloaded side is indicated by the 
following symbols: **p%0.05, ##p%0.01. Significance of unpaired t-test comparing crack 
density (difference between the loaded and unloaded leg) between age groups at the same 
time point is indicated by the following symbols: #p%0.01. Error bars indicate standard 
deviation. 
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Properties Mean S.D. 
Stiffness, Pa 548.52 120.83
Yield load, N 50.73 23.27
Yield displacement, mm 0.925 0.151
Ultimate load, N 67.71 16.23
Ultimate displacement, mm 1.08 0.08
Yield ratio, mm/mm 1.18 0.11

 
Table 2.1. Mechanical test results for in situ mechanical testing of trabecular bone 
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      Property BMD BV_TV BS_BV TB_N TB_TH TB_SP EulN_Vol 

Mean 460.72 0.44 22.74 4.77 0.09 0.12 55.79 Loaded side 
S.D. 56.37 0.10 4.92 0.36 0.02 0.03 48.51 

Mean 413.96 0.39 23.23 4.46 0.09 0.14 76.28 Unloaded side 
S.D. 48.08 0.06 1.40 0.48 0.01 0.03 12.38 

Mean 46.76 0.05 -0.49 0.31 0.00 -0.02 -20.49 

Day 0 

Delta (loaded - 
unloaded) S.D. 90.28 0.14 5.88 0.68 0.02 0.05 55.52 

Mean 483.23 0.47 18.12 4.13 0.11 0.13 59.82 Loaded side 
S.D. 62.70 0.08 3.11 0.41 0.02 0.03 14.90 

Mean 459.01 0.44 19.43 4.07 0.11 0.14 53.50 Unloaded side 
S.D. 67.92 0.09 4.32 0.38 0.02 0.03 21.54 

Mean 24.22 0.03 -1.31 0.06 0.01 -0.01 6.32 

Day 21 

Delta (loaded - 
unloaded) S.D. 49.76 0.07 3.31 0.30 0.02 0.02 14.04 

Mean 538.23 0.52 15.14 3.94 0.13 0.12 43.19 Loaded side 
S.D. 42.81 0.05 1.56 0.32 0.01 0.02 14.83 

Mean 489.43 0.47 18.23 4.22 0.11 0.13 51.41 Unloaded side 
S.D. 69.49 0.08 2.24 0.40 0.02 0.03 5.43 

Mean 48.80 0.05 -3.09 -0.28 0.02 -0.01 -8.21 

   
   

   
   

   
   

8 
m

on
th

 g
ro

up
 

 

Day 35 

Delta (loaded - 
unloaded) 

S.D. 68.49 0.06 2.96 0.43 0.02 0.02 18.02 

Mean 395.31 0.39 21.68 4.10 0.09 0.15 78.98 Loaded side 
S.D. 63.46 0.08 3.70 0.42 0.01 0.03 24.36 

Mean 401.20 0.39 21.33 4.06 0.10 0.15 69.88 Unloaded side 
S.D. 53.14 0.08 3.52 0.26 0.02 0.03 14.37 

Mean -5.89 0.00 0.35 0.04 0.00 0.00 9.10 

Day 0 

Delta (loaded - 
unloaded) S.D. 40.23 0.07 3.96 0.17 0.02 0.02 21.50 

Mean 374.31 0.33 17.20 2.90 0.12 0.24 30.72 Loaded side 
S.D. 48.68 0.04 2.33 0.68 0.02 0.07 13.47 

Mean 449.98 0.44 16.00 3.43 0.13 0.17 41.00 Unloaded side 
S.D. 87.79 0.09 2.04 0.30 0.02 0.04 16.00 

Mean -75.67 -0.10 1.20 -0.53 -0.01 0.07 -10.28 

Day 21 

Delta (loaded - 
unloaded) S.D. 46.29 0.07 3.37 0.48 0.03 0.05 29.26 

Mean 453.95 0.43 14.86 3.16 0.14 0.18 10.91 Loaded side 
S.D. 20.34 0.02 1.49 0.39 0.01 0.03 9.40 

Mean 511.80 0.50 14.34 3.60 0.14 0.14 25.25 Unloaded side 
S.D. 41.26 0.06 1.32 0.57 0.01 0.04 5.71 

Mean -57.85 -0.08 0.52 -0.44 0.00 0.04 -14.34 
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Day 35 

Delta (loaded - 
unloaded) 

S.D. 60.19 0.09 0.88 0.80 0.01 0.07 12.99 

 
Table 2.2. Specific microCT results for loaded and unloaded side of each age group 
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      Property Cr.Dn. Cr.Le. Cr.S.Dn. 

Mean 2.76 23.55 65.48 Loaded side 
S.D. 0.53 2.73 17.61 

Mean 1.41 20.14 28.73 Unloaded side 
S.D. 0.31 6.27 11.46 

Mean 1.35 3.41 36.74 

Day 0 

Delta (loaded - 
unloaded) S.D. 0.40 6.30 9.42 

Mean 0.67 20.43 13.53 Loaded side 
S.D. 0.14 4.05 3.70 

Mean 0.64 18.10 11.88 Unloaded side 
S.D. 0.21 4.37 5.09 

Mean 0.02 2.32 1.65 
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Day 35 

Delta (loaded - 
unloaded) 

S.D. 0.19 5.99 4.43 

Mean 2.14 35.12 72.01 Loaded side 
S.D. 0.77 6.03 16.59 

Mean 0.98 33.29 33.35 Unloaded side 
S.D. 0.26 5.60 13.91 

Mean 1.16 1.84 38.66 

Day 0 

Delta (loaded - 
unloaded) S.D. 0.75 7.42 13.75 

Mean 1.19 31.26 37.26 Loaded side 
S.D. 0.09 1.54 1.44 

Mean 0.48 40.29 19.21 Unloaded side 
S.D. 0.04 15.69 6.86 

Mean 0.71 -9.03 18.06 

24
 m
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th

 g
ro

up
 

 

Day 35 

Delta (loaded - 
unloaded) 

S.D. 0.07 14.22 7.90 

 
Table 2.3. Specific histology results for loaded and unloaded side of each age group 
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CHAPTER 3 

 

DEVELOPMENT AND VERIFICATION OF ANIMAL MODELS USED FOR 
MICRODAMAGE INDUCTION IN BONE AND SIMULATION OF DISUSE 

 

Summary 

In order to examine the effect of disuse on the remodeling in response to 

microdamage, several animal models had to be developed to meet specific criteria. 

The four-point bending setup fulfilled the criteria for a successful animal model 

for inducing microdamage in vivo and was chosen for the subsequent experiments. It 

proved capable of inducing significant amounts of fatigue microdamage for hindlimb 

suspended and weight bearing animals without causing any damage to the joints of the 

tibia. 

The developed hindlimb suspension model also fulfilled its set criteria for a 

successful disuse animal model. It proved capable of inducing similar effects as seen in 

the literature, where the disuse condition of the hindlimbs resulted in a decrease in bone 

formation and an increase in bone resorption. 

Common for both chosen animal models was the maintenance of animal health 

indicated by maintenance of body weight and normal cage activity. 
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Introduction 

As it was shown in chapter 2, older rats have a reduced ability to recover 

trabecular bone mass after damage and that removal of microdamage is altered with 

advancing age. This could potentially increase the risk of whole bone fracture associated 

with alterations in microdamage-related remodeling. The positive feedback loop between 

increases in microdamage and subsequent remodeling could be enhanced by secondary 

effects associated with aging such as disuse, caused by a decrease in physical activity 

and/or infirmity. Hence not only is microdamage repair in general reduced in elderly 

individuals, but the cessation of activity with increased age could possibly aid in this 

reduction. Considering this, sporadic periods of activity intermixed with times of disuse 

might make individuals prone to microdamage accumulation, and therefore increase 

fracture risk. The influence of disuse on bone remodeling could therefore potentially 

provide clinically important insight into the relationship between microdamage 

accumulation and increased fracture risk in the elderly. 

In order to study the effects of disuse on bone remodeling it was necessary to 

develop and verify animal models capable of simulating disuse and inducing 

microdamage in-vivo. This chapter presents the development and verification of animal 

models capable of fulfilling these criteria. The work presented for all the developed 

animal models was approved by the University Committee on Use and Care of Animals 

at the University of Michigan. 
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Criteria for Microdamage Animal Model 

The criteria for loading animal models for microdamage induction were as 

follows: 

1. Must be applicable with hindlimbs (tibia/femur) since the animal models 

available for inducing disuse conditions (without casting) are intended for 

hindlimb disuse only. 

2. Must be able to induce repeatable amounts of microdamage non-invasively 

within a moderate amount of time (1-2 hours). 

3. Cannot cause any alterations in animal behavior post loading, while animal 

must regain full usage of the hindlimbs shortly after loading. 

 

While the animal model presented in chapter 2 proved capable of inducing 

trabecular microdamage in-vivo, a non-invasive loading model was sought for a higher 

throughput of experimental animals. The majority of studies in the field of bone 

microdamage have used the ulna fatigue model developed by Bentolila et. al. (Bentolila, 

Boyce et al. 1998) in order to examine the effects of microdamage in the cortical bone of 

the ulnae in vivo (Verborgt, Gibson et al. 2000; Verborgt, Tatton et al. 2002; Danova, 

Colopy et al. 2003; Follet, Li et al. 2007). However, because the animal models available 

for inducing disuse conditions without casting are intended for hindlimb disuse only, the 

ulna fatigue model was inappropriate for the intended studies.  

Two models intended for non-damaging loading of the tibiae were found in the 

literature. The first model was developed for axial loading of the murine tibiae (Fritton, 

Myers et al. 2001; De Souza, Matsuura et al. 2005; Fritton, Myers et al. 2005; Fritton, 
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Myers et al. 2005). The second animal model employed four-point bending of the murine 

tibiae in order to examine the effects of non-damaging loading on skeletal adaptation 

(Turner, Akhter et al. 1991; Akhter, Raab et al. 1992; Forwood and Turner 1995; 

Forwood, Bennett et al. 1998; Inman, Warren et al. 1999; Robling, Burr et al. 2001). 

Neither animal models had been utilized for microdamage induction before but were both 

deemed appropriate for further development and verification. 

 

Materials and Methods for Microdamage Animal Models 

Axial Tibia Loader 

Following an adaptation of the Fritton model (Fritton, Myers et al. 2001), which 

loads the tibia while it is horizontal, tibia ankle and knee holders were manufactured to 

allow for loading of the tibia vertically (Figure 3.1). This created a loading setup where 

the load-controlled vertical translation of a loading beam (Figure 3.1A) could be recorded 

using a standard PC with instrumentation software (LabView 6.1, National Instruments). 

Prior to any testing, the loading beam was calibrated with known weights in order to 

obtain the required force/input voltage relationship for the load control parameters 

(Figure 3.2). 

In order to determine the medial microstrain vs. applied force relationship, five 

tibiae from 8-month old Fisher Brown Norway rats from the Rat Bone Chamber study 

(Chapter 2) were thawed and soft tissue removed. Strain gauges (EA-XX-015DJ-120/LE, 

Vishay Micro-Measurements) were attached at the mid-diaphysis of the medial and 

lateral side of the tibiae with cyanoacrylate. After calibrating the strain gauges and 

placing the tibiae in the tibia loader, a load/unload pattern was applied by manually 
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moving the stage to which the load beam was attached. Once 120N was reached, the load 

was reduced to zero. The resulting output was recorded by the LabView software. 

Subsequently two 8-month old Fisher Brown Norway were obtained in order to 

carry out the identical experiment in-vivo. Once anesthetized with an isoflurane 

(2%):oxygen balance, strain gauges were attached to the medial side bilaterally, and 

tibiae were loaded similarly to the ex-vivo experiment. 

To determine if microdamage could be induced three tibiae from 8-month old 

Fisher Brown Norway rats were loaded ex-vivo with a load of -50.5N (-2000 microstrain 

medially) for 1000 cycles at 1Hz. Two additional tibiae served as unloaded controls. 

Following loading, soft tissue was carefully removed from the tibiae, which were 

dehydrated, stained with basic fuchsin, and embedded undecalcified in 

polymethylmethacrylate (PMMA) to quantify microcracks. Specimens were sectioned at 

500 !m transverse to the longitudinal axis of the tibia using a Buehler Isomet low speed 

diamond blade saw. Sections from the mid-diaphysis were individually mounted to slides 

and polished. The specimens were then examined using light microscopy. 

The experiment was repeated with four tibiae (three loaded, one unloaded), with a 

loading magnitude of -101.0N (-4000 microstrain medially) for 1000 cycles at 1Hz. 

 Finally to test the damage capabilities in vivo, three 8-month old Fisher Brown 

Norway rats were anesthetized and loaded in vivo with a load of -101.0N (-4000 

microstrain medially) for 1000 cycles at 1Hz. 
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Four-Point Bending 

 The four-point bending model developed by Turner et. al. (Turner, Akhter et al. 

1991) fulfilled the requirements of non-invasive loading of the cortical bone of the tibia, 

while not applying loads to the knee or ankle joints. Using the same basic setup as the 

axial tibia loader (load beam, computer, and software), 4-point bending pads were 

manufactured with the same dimensions as the Turner et. al. model (Turner, Akhter et al. 

1991). In addition, they were made to fit the load beam and corresponding opposing base 

slot used for the axial tibia loader (Figure 3.4). The four-point bender has two 

configurations: 1) Bending configuration (Figure 3.4(2)) where the tibia will undergo 

bending when loaded, and 2) Non-bending configuration (Figure 3.4(3)) where the tibia 

will not undergo bending when loaded (used for control legs). 

 Before commencing, the load beam was calibrated again using the new setup.  

Strain gauges were applied ex-vivo to the medial and lateral side of the mid-

diaphysis of three tibiae from 8-month old Sprague-Dawley rats. The tibiae were loaded 

in two ways in the bending configuration: first with the upper loading pads (Figure 3.4B) 

at the medial side of the tibia, and second with the upper loading pads at the lateral side 

of the tibia. These initial tests were designed to determine which arrangement provided 

the maximum strain at the mid-diaphysis while minimizing any muscle indentations from 

the loading pads. The tibiae were also loaded in a similar fashion in the non-bending 

(control) configuration. 

One 8-month old Sprague Dawley rat was anesthetized and loaded in vivo with a 

load of -75.6N (-4000 microstrain laterally) for 1000 cycles at 1Hz (bending for left leg, 

non-bending for right leg) in order to determine if loading would adversely affect the 
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muscle tissue or animal mobility post loading. Once loaded the rat was observed for 24 

hours. At sacrifice the muscle tissue was grossly examined and the tibiae were 

dehydrated, stained with basic fuchsin, embedded in PMMA, and sectioned along the 

entire length of the tibia. The sections were examined using light microscopy. 

In order to determine if hindlimb suspension (discussed later in this chapter) 

would affect the strain-applied force relationship, six 8-month old Sprague Dawley rats 

were split into two groups: 1) Hindlimb suspension (HS) for 14 days (n=3), and 2) 

Normal weight bearing (WB) for 14 days (n=3). At day 14, all rats were anesthetized and 

bi-lateral strain gauges were placed in-vivo on the lateral side of the tibiae, 8mm 

proximal to the tibia-fibula junction. The slope of the lateral strain vs. applied force 

relationship using the bending configuration was determined for each leg. 

In order to determine the initial effects of hindlimb suspension in combination 

with loading, two 8-month old Sprague Dawley rats were hindlimb suspended for 14 

days. At day 14 the rats were anesthetized and the left tibiae were loaded for 7200 cycles 

at 2Hz using a sinusoidal waveform, with a peak load of 107.8N ("Load = 50.2N), 

resulting in a maximum lateral strain of -7,000!# (Figure 3.8). Post loading, the animals 

were hindlimb suspended for an additional 3 days to observe any behavioral changes due 

to the loading, and subsequently euthanized. At sacrifice the legs were dehydrated, 

stained with basic fuchsin, embedded in PMMA, and sectioned at the region of interest 

(center at 8 mm proximal to tibia/fibula junction, with a total length of 5 mm). The 

sections were examined using confocal microscopy, 
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Results for Microdamage Animal Models 

Axial Tibia Loader 

The average of the five loading ex-vivo tests to determine the medial microstrain 

vs. applied force relationship revealed the following average relationship: 

)(25.20 NLoadAppliedmedial F!"#$  

The resulting average medial microstrain vs. applied force relationship for the in-

vivo test was determined to be (Figure 3.3): 

)(585.39 NLoadAppliedmedial F!"#$  

 Microdamage examinations from the second ex-vivo loading revealed that no 

microdamage had been induced due to loading. However the third ex-vivo loading 

revealed qualitatively significant damage accumulation at the mid-diaphysis due to the 

loading (Figure 3.5). 

In all three animals from the second in-vivo loading the patella tendon and knee 

ligaments were obliterated within the first 100 cycles of loading. Once patella dislocation 

was observed the animals were euthanized. 

 

Four-Point Bending 

The initial load beam calibration using the new setup, resulted in an applied force 

to input voltage relationship of: 

)()( 296.37 loadNLoadApplied VF !%"  

From the average strain-force results from the first ex-vivo loading (Figure 3.6) it 

was determined that the lateral side had the highest !#/N slope. Loading from the lateral 

side resulted in the least amount of muscle indentations at both the lateral and medial side 
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of the tibia, making it the most desirable way to load the tibiae. Finally, the work of Diab 

et. al. (Diab and Vashishth 2005) have shown that linear microcracks occur 

predominantly at locations with compressive stress (tensile stress leads to more diffuse 

damage). Hence, loading the tibia with the upper loading pads at the lateral side in order 

to generate the highest amount of linear microdamage is the optimal loading 

configuration. 

The average strain-force results from the first ex-vivo loading using the non-

bending (control) configuration (Figure 3.7), revealed that a load of 75.6N, which would 

result in -4000 microstrain laterally in the bending configuration, would give a medial 

and lateral strain level of 734.6 and -402.4 microstrain, respectively. The strain level was 

deemed sufficiently low (below maximum normal physiological levels of loading) that no 

damage could occur at the region of interest, and the loading configurations were 

approved to be tested in-vivo. 

Normal cage activity was observed following the second in-vivo loading, 

indicating that using the four-point bender in-vivo would not significantly alter mobility. 

In addition no muscle indentations due to the loading pads were identified during 

dissection. It was also found that despite no damage initiation within the region of 

interest (center of the upper loading pads) while using the non-bending configuration, 

microdamage was found at the contact points of the upper loading pads.  

The third in-vivo loading (Table 3.1) revealed that no significant difference was 

found between the hindlimb suspended (HS) and weight bearing (WB) groups in the 

lateral strain vs. applied force relationship. Hence a slope of -65.15!#/N was chosen, 

resulting in a lateral strain vs. applied force relationship of: 
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)(93.64 NLoadAppliedlateral F!%"#$  

From strain-gauge results from the third in-vivo loading, it was also determined 

that the tibia would reach ultimate failure at approximately -10,000!# (Table 3.2). 

The fourth in-vivo loading revealed that significant damage could be induced at 

the region of interest compared to the non-loaded control tibia (Figure 3.9) for hindlimb 

suspended animals (determined qualitatively). In addition no abnormal behavior was 

observed post loading. 

 

Discussion for Microdamage Animal Models 

The tibia loader experiments showed that axial loading at -2000 microstrain in-

vivo is not harmful to the knee, but no damage can be induced at the mid-diaphysis with 

this load. Loading at   -4000 microstrain ex-vivo results in significant microdamage at the 

mid-diaphysis; when applying similar loads in vivo, however, the patella is dislocated 

and the knee ligaments were destroyed. There is no evidence in the literature for murine 

in-vivo loading of more than 2000 microstrain medially at the mid-diaphysis using the 

tibia loader. Microdamage could possibly be induced at -2000 microstrain medially if the 

number of cycles was higher (>25,000). However this contradicts the set criteria (would 

take >3.5 hours) and the use of the tibia loader was abandoned. 

The four-point bending animal model, however, proved capable of inducing 

significant amounts of fatigue microdamage for hindlimb suspended and weight bearing 

animals without causing any damage to the joints of the tibia. It was shown that hindlimb 

suspended and weight bearing animals did not display any adverse behavioral changes 

post loading and regained full usage of the hindlimbs within hours of loading.  
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Due to the fulfillment of all the set criteria for a successful microdamage animal 

model, the four-point bending setup was chosen to be utilized for the subsequent 

experiment presented in chapter 4 and 5.  

 

Loading parameters for subsequent experiments 

The four-point bending setup showed that 14 days of hindlimb suspension did not 

change the lateral strain vs. applied force relationship compared to animals having 

undergone 14 days of weight bearing. This resulted in a lateral strain vs. applied force 

relationship of: 

)(93.64 NLoadAppliedlateral F!%"#$  

This relationship was used for all the loading parameters in the subsequent experiments. 

Due to the evidence of microdamage induction (and the possible effects) at the 

loading pad locations for the non-bending (control) loading setup, it was determined that 

the non-bending (control) loading setup would be abandoned. The control legs for the 

subsequent experiments would henceforth not be loaded.  

Finally based on the in-vivo strain-gauge results for the four-point bending setup, 

it was determined that the tibia would reach ultimate failure at approximately -10,000!#. 

Based on this information a strain level of -7,000!# at the lateral side (107.8N applied 

force) was chosen as the parameter for subsequent loading.  

  

Criteria for Disuse Animal Model 

The criteria for a successful disuse animal model were as follows: 
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1. Must be able to induce a state of disuse of the hindlimbs of a rat for a period 

of up to 5 weeks. 

2. Hindlimb suspended animals may not lose more than 20% of their starting 

weight (i.e. weight at the beginning of hindlimb suspension) at any point 

during hindlimb suspension. 

3. After assimilation weight must be maintained for up to 5 weeks. General 

animal health must be maintained throughout this period. 

4. Hindlimb suspension must be able to induce similar physiological changes as 

shown in the literature for previous hindlimb suspension models (i.e. 

increased resorption and decreased formation). 

 

Hindlimb suspension models were developed (Wronski and Morey-Holton 1987; 

Morey-Holton and Globus 2002) in order to induce a disuse condition with effects on 

bone similar to what had been observed in a microgravity environment in space where 

bone formation decreased and bone resorption increased (Caillot-Augusseau, Vico et al. 

2000; Vico, Collet et al. 2000; Bikle, Sakata et al. 2003; Sakata, Halloran et al. 2003). 

For the purpose of developing a model that would work within our laboratory setting the 

specific details for our hindlimb suspension system mirrored the rat hindlimb suspension 

system used by Midura et. al. (Midura, Su et al. 2006). After developing the animal 

model, subsequent verification would ensure that our model fulfilled the set criteria for a 

successful disuse animal model.  
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Materials and Methods for Disuse Animal Model 

In order to simulate a murine disuse setting in which physiological loading of the 

hindlimbs would be removed, the hindlimb suspension model by Morey-Holton et al. was 

adapted (Wronski and Morey-Holton 1987; Morey-Holton and Globus 2002). 

Specifically, the hindlimb suspension model was technically made to be similar to the 

variation of the Morey-Holton model used by Midura et. al. (Midura, Su et al. 2006). The 

hindlimb suspension model (Figure 3.10) developed at the Orthopaedic Research 

Laboratories utilizes a 4 inch tall steel frame (Figure 3.10A), which is compatible with a 

Specific Pathogen-Free (SPF) rated standard ventilated #3 rat box. This allows for easy 

stacking on a standard non-ventilated rack. The size of the steel frame allows it to be 

fitted between the base and the top of the rat box, while maintaining SPF protocol 

guidelines. The steel frame has a center beam (Figure 3.10B) through which a swivel 

(Figure 3.10D) with an attached plastic tail holder (Figure 3.10E) can be held in place 

with a cotter pin (Figure 3.10C). This allows for easy mounting and dismounting of the 

hindlimb suspended rat within the cage. The plastic tail holder was manufactured in 

PVC-material on a semi-automatic CNC-machine, with dimensions taken from the 

Midura model.  

The following protocol was developed for long term hindlimb suspension of the 

rats 3-4 inches from the base of the tail without causing injury: anesthetize rat; swipe tail 

with alcohol wipes; apply compound benzoin tincture; apply two strips of heavy 

Moleskin (Seneca Medical) with double sided tape on top to the anterior and posterior 

part of the tail; wrap with standard gauze, followed by VetWrap (Kendall); insert 

wrapped tail into plastic tail holder and secure it with VetWrap; hindlimb suspend rat 
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(Figure 3.11). Once hindlimb suspended, the rats were fed ad libitum using in-cage water 

bottle and standard rat chow dispersed on the cage floor (Figure 3.11B). 

In order to determine if the developed hindlimb suspension model would fulfill 

the set criteria based on previous hindlimb suspension models (Wronski and Morey-

Holton 1987; Morey-Holton and Globus 2002), male 6-month old adult Sprague Dawley 

rats (500-700g) were obtained from Harlan. Animals were allowed to acclimate to our 

animal facility for at least 3 days before being included in the experiment. The 

procedures used in this study were approved by the University Committee on Use and 

Care of Animals at the University of Michigan. 

Animals were housed in individual non-ventilated cages in a temperature-

controlled room (68-72F) with a 12:12-hour light-dark cycle. Water and rat chow were 

provided ad libitum. 

At day 0, forty-one (41) animals were anesthetized, had blood samples taken from 

the jugular vein, and were either hindlimb suspended (n=31) or left weight bearing 

(n=10). Animals were inspected twice daily until sacrifice. Any animal showing 

symptoms of acclimation difficulties indicated by severe weight loss (loss of more than 

20% of weight at day 0) were removed from the study. Animals were weighed at day 0, 

14, 21, 28 and 35. Animals were euthanized at day 0 (Control, n=5), day 14 (n=4), day 21 

(n=6), day 28 (n=7), and day 35 (n=14). Five animals were kept weight bearing for 35 

days (Control day 35, n=5). 

In addition to the base line blood draw at day 0, blood draws were done for all 

available animals at days 21, 28, and 35. Subsequent to all blood draws, samples were 

spun down and serum was collected and stored at -80C for future analysis. 
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For the day 35 and Control day 35 groups, animals were also injected 

intraperitoneally with the fluorochrome calcein (10 mg/kg) nine and two days before 

sacrifice to label the growing periosteal surface. 

At sacrifice, tibiae and femora were carefully dissected free of soft tissue. Tibiae 

were scanned on a microcomputed tomography (microCT) system (GE Healthcare 

Systems) and the resulting data was reconstructed with a voxel size of 25 !m. 

Morphological parameters were calculated for two regions of interest (ROI) for the tibiae: 

1) Cortical region with a length of 4mm with its center located 8mm proximal to the 

tibia-fibula junction; 2) Trabecular region starting at the proximal growth plate, with a 

length of 10% of the distance between the proximal growth plate and the tibia-fibula 

junction. Bone architectural parameters for these ROIs were determined using a custom 

analysis program and a commercially available voxel analysis software package 

(MicroView v.2.2). The following parameters were calculated: cortical and marrow area 

for the cortical region, bone mineral density (BMD), tissue mineral density (TMD) and 

bone volume fraction (BVF) for trabecular region.  

After microCT scanning, the left tibiae and left femora from day 35 and Control 

day 35 groups were dehydrated and embedded undecalcified in polymethylmethacrylate 

to quantify cortical bone formation rate (BFR). Specimens were sectioned at 500 !m 

transverse to the longitudinal axis of the bone using a Buehler Isomet low speed diamond 

blade saw. Four sections were taken from the cortical ROI for the tibiae and the mid-

diaphysis for the femur (half-way between the distal growth plate and the greater 

trochanter). The sections were individually mounted to slides and polished. One section 

per bone was randomly selected and examined using appropriate fluorescence filters at a 
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magnification of 100x, determining the average distance between the double fluorescent 

labels at the periosteal surface (based on 20 randomly chosen location at the lateral, 

medial, anterior and posterior side (5 locations each)). The average BFR was determined 

based on the time between intraperitoneally fluorochrome injections and the measured 

average distance between the double fluorescent labels at the periosteal surface for the 

selected sections of the control day 35 and HS day 35 groups.   

Upon complete collection of all serum samples, samples were thawed and serum 

TRACP5b (RatTRAP, SBA Sciences) and OCN (Rat Osteocalcin, #BT-490, Biomedical 

Technologies Inc.) were measured by ELISA (Absorbance measured at 450nm (OCN) 

and 405nm (TRACP5b)), in order to determine relative systemic expression of markers 

of bone resorption and formation, respectively.              

 

Results for Disuse Animal Model 

Due to severe animal weight loss and/or acclimation problems (such as continued 

tail biting), 4 animals had to be removed from the study, resulting in final groups of: day 

0 Control (n=10), day 14 (n=2), day 21 (n=5), day 28 (n=6), day 35 (n=14), and Control 

day 35 (n=5).  

MicroCT results (Figure 3.12A,B) indicated that the cortical and marrow area for 

the cortical ROI did not change significantly over the course of 35 days of hindlimb 

suspension. However a trend of a decrease for the cortical area, and an increase for the 

marrow area were found. No trends were found for any groups at day 14, 21, and 28 for 

any other bone parameters. The trabecular ROI showed no significant differences of the 

tissue mineral density for any of the groups, while the bone mineral density decreased 
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significantly for HS day 35 vs. Control day 35 (Figure 3.13A). This result corresponded 

to the bone volume fraction of the trabecular ROI, which also showed a significant 

decrease for HS day 35 vs. Control day 35 (Figure 3.13B). 

Serum levels of osteocalcin decreased significantly at day 35 for hindlimb 

suspended animals compared to control (Figure 3.14A). In addition a corresponding 

decreasing trend within the HS group itself was observed when compared to HS day 0 

(HS day 21 (p=0.18), HS day 35 (p=0.07)). Rat TRACP5b serum levels increased 

significantly for HS day 21 and 35 when compared to HS day 0 (Figure 3.14B), while an 

increasing trend was found in HS vs. control at day 35 (p=0.08). No significant changes 

were found within the control group when comparing day 0, 21, and 35. 

 The results indicated that the BFR decreased significantly between the two groups 

for the femur, whereas only a trend was observed for the tibia (Figure 3.15). 

 The relative weight difference compared to day 0 was found to be significant 

between control and HS animals at day 14 (Figure 3.16). After 14 days, no additional 

weight loss was detected for the HS animals. Aside from the four animals removed from 

the study, the remaining animals had weight loss well within the approved limit of loss of 

20% of weight at day 0 (Figure 3.16). 

 

Discussion for Disuse Animal Model 

 Based on the hindlimb suspension models of Morey-Holton and Midura (Wronski 

and Morey-Holton 1987; Midura, Su et al. 2006) a custom made hindlimb suspension 

system was developed. Previous rodent hindlimb suspension models in the literature have 

shown physiologic changes such as a decrease in bone formation and an increase in bone 
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resorption (Wronski and Morey-Holton 1987; Morey-Holton and Globus 2002; Midura, 

Su et al. 2006). The custom made hindlimb suspension system was found to induce 

similar physiological effects. MicroCT results showed that bone resorption occurred in 

the trabecular region of the tibia indicated by the reduction in bone volume fraction, 

while maintaining tissue mineral density. Although mid-diaphyseal cortical bone was not 

lost significantly, a trend was still present, which was supported by the trend towards 

increasing marrow area, indicating that resorption may have increased at the endosteal 

surface. These observations were supported by serum markers for formation and 

resorption, which decreased and increased, respectively, after 21 days of hindlimb 

suspension, as well as the decrease in bone formation rate based on dual injected 

fluorescent labels. Finally the general wellbeing of the hindlimb suspended animals was 

not adversely affected, as evidenced by the maintenance of weight following a small 

weight loss during the initial assimilation period of 14 days of hindlimb suspension. 

Hence the developed hindlimb suspension model fulfilled all the set criteria for a 

successful disuse animal model, and was deemed ready for implementation for the 

subsequent experiments presented in chapter 4 and 5.  

 

Conclusion 

Due to the inadequacy of the tibia loader, and the fulfillment of the criteria for a 

successful in vivo loading animal model, the four-point bending setup was chosen for 

subsequent experiments. The developed hindlimb suspension model also fulfilled its set 

criteria for a successful disuse animal model. For the subsequent experiments the two 

animal models are combined in order to examine the effect of disuse on microdamage 
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remodeling. The last in-vivo loading experiment for the four-point bending setup made 

an initial successful combination of the two models. This was the final verification for the 

combined animal models, which would set up the next experiments presented in chapters 

4 and 5. 
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Figure 3.1. Tibia loader with rat tibia with attached foot inserted 
 
A: Loading beam 
B: Knee holder 
C: Fibula exposed from lower limb of rat with foot attached 
D: Tibia exposed from lower limb of rat with foot attached 
E: Strain gauge with wires emerging from the middiaphysis of the tibia 
F: Ankle holder 
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Load Calibration
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Figure 3.2. Load beam calibration 
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In vivo strain vs. force (n=3)
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Figure 3.3. In vivo medial microstrain vs. applied force with tibia loader 
 

Error bars indicate standard deviations. 
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Figure 3.4. Four-point bending pads with tibia 
 
(1): Isometric view of four-point bender 
(2): Side view of four-point bender in bending configuration (use of C) 
(3): Side view of four-point bender in non-bending configuration (use of D) 
A: Loading beam 
B: Upper (lateral) loading pad 
C: Lower (medial) loading pad for bending configuration 
D: Lower (medial) loading pad for non-bending (control) configuration 
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Figure 3.5. Representative light microscopy images of basic fuchsin stained tibiae 
sections 
 
A: Control 
B: Loaded (micro damaged) 
 
Microdamage is indicated with white arrows. Top of images represent the periosteal 
surface, while the bottom of the images represent the endosteal surface. 
 
 
 
 
 
 

A B 
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Figure 3.6. Mid-diaphysis microstrain vs. applied force for bending configuration 
ex-vivo 
 
A: Medial strain for loading with upper loading pads from either medial or lateral side 
B: Lateral strain for loading with upper loading pads from either medial or lateral side 
 
Error bars indicate standard deviations. 
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Figure 3.7. Mid-diaphysis microstrain vs. applied force for non-bending (control) 
configuration ex-vivo 
 
A: Medial strain for loading with upper loading pads from either medial or lateral side 
B: Lateral strain for loading with upper loading pads from either medial or lateral side 
 
Error bars indicate standard deviations. 
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Figure 3.8. In-vivo loading of Sprague-Dawley rat 
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Figure 3.9. Microdamaged vs. undamaged cortical bone from in-vivo loading 
 
A: Microdamaged loaded bone, with basic fuchsin labeled microdamage (white arrows)  
B: Undamaged non-loaded bone, with non labeled microdamage caused by processing 
(white arrow) 
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Figure 3.10. Hindlimb suspension system 
 
Left: Steel frame on top of SPF rated standard ventilated #3 rat box 
Right: Close-up of center beam 
A: Steel frame 
B: Center beam 
C: Cotter pin 
D: Swivel 
E: Plastic tail holder 
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Figure 3.11. Hindlimb suspension tail preparation 
 
A: Fully wrapped tail of anesthetized rat 
B: Hindlimb suspended rat with water bottle visible within cage 
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Figure 3.12. MicroCT parameters for tibia cortical ROI 
 
A: Cortical area of tibia cortical ROI 
B: Marrow area of tibia cortical ROI 
 
Error bars indicate standard deviations. 
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Bone and Tissue Mineral Density of Tibia trabecular ROI
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Figure 3.13. MicroCT parameters for tibia trabecular ROI 
 
A: Bone and tissue mineral density of tibia trabecular ROI 
B: Bone volume fraction of tibia trabecular ROI 
 
Asterisk (*) indicate significant difference between group and control day 35. Error bars 
indicate standard deviations. 
 
 
 
 
 

A 

* 

B 

* 



 71

Osteocalcin serum concentration
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Figure 3.14. Osteocalcin and TRACP5b serum concentrations 
 
A: Osteocalcin (OCN) serum concentration 
B: RatTRAP (TRACP5b) serum concentration 
 
Single asterisk (*) indicate significant difference within group between day 0 and 
indicated day. Double asterisk (**) indicate significant difference between group and 
control day 35. Error bars indicate standard deviations. 
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Bone Formation Rate
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Figure 3.15. Bone formation rate 
 
Bone formation rate for left tibiae and femora for control and hindlimb suspended 
animals at day 35. Single asterisk (*) indicate significant difference between group and 
control day 35. Error bars indicate standard deviations. 
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% body mass lost during hindlimb suspension
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Figure 3.16. Percent body mass compared to day 0 
 
Single asterisk (*) indicate significant difference between group and control at that day. 
Error bars indicate standard deviations. 
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 WB HS 
Avg. (!#/N) -65.15 -56.55 
St.Dev. 6.31 18.87 

 
Table 3.1. Slope of lateral strain vs. applied force relationship 
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 WB/HS 
Avg. (!#) -10064.9 
St.Dev. 1544.4 

 
Table 3.2. Lateral strain at failure 
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CHAPTER 4 

 

EFFECTS OF DISUSE ON BONE REMODELING IN REPONSE TO 
MICRODAMAGE 
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,&*34'* ('/2,( )28 <' ,&.311,4,'&0 5,06%30 2**,0,%&2+ .0,)3+, ('.3+0,&- 1(%) )'462&,42+ 

3.2-': 

 

Introduction 

Y,4(%*2)2-' ,. 2 &203(2+ %443(('&4' ,& 4%(0,42+ <%&' I;(2&97 U82& '0 2+: CAAC^ 

W''7 Y%6.,& '0 2+: CAAPK7 2&* 42& <' 423.'* <8 *2)2-' ,&*34,&- +%2*. '? =,=% I$3((7 

;%(5%%* '0 2+: BXX"^ W''7 @(063( '0 2+: CAAA^ W''7 _`$(,'& '0 2+: CAAA^ _`$(,'&7 >28+%( '0 

2+: CAAC^ G2&%=27 S%+%/8 '0 2+: CAAP^ _`$(,'&7 >28+%( '0 2+: CAAPK 2&* ,& =,=% I$3((7 

Y2(0,& '0 2+: BX#Q^ F0%='(7 Y2(0,& '0 2+: BXXPK: Y%('%='(7 ),4(%*2)2-' 62. <''& .6%5& 

0% ,&*34' +%42+,N'* %.0'%480' 2/%/0%.,. .3((%3&*,&- ,&*,=,*32+ ),4(%4(249. Ia'(<%(-07 

b,<.%& '0 2+: CAAA^ a'(<%(-07 >200%& '0 2+: CAACK7 /%..,<+8 2. 2 ('.3+0 %1 68/'('),2 2&* 2& 

2..%4,20'* *'4('2.' ,& +243&%42&2+,43+2( ,&0'(.0,0,2+ 1+3,* 1+%5 IY3,(7 F2)/+' '0 2+: CAA"K: 

S%)/3020,%&2+ )%*'+. 4%((%<%(20' 06'.' 1,&*,&-. 2&* ,&*,420' 0620 120,-3' *2)2-' 

,)/'*'. 0(2&./%(0 1(%) 06' <+%%* .3//+87 *'/+'0,&- 06' 2('2. *%5&.0('2) %1 06' 

),4(%*2)2-' %1 )%+'43+2( '&0,0,'. I>2),7 c2..'( '0 2+: CAACK: >6'.' '11'40. 5'(' 

4%&1,()'* ,& 2 /,+%0 .03*87 .3--'.0,&- 2 +,&9 <'05''& ,&0'(.0,0,2+ 1+3,* 1+%57 )2.. 

0(2&./%(07 )2,&0'&2&4' %1 %.0'%480' =,2<,+,087 2&* ('-3+20,%& %1 (')%*'+,&- 240,=,08 

I>2),7 c2..'( '0 2+: CAACK: d& 2**,0,%&7 120,-3' *2)2-' 62. <''& .6%5& 0% ,&4('2.' 

'?/('..,%& %1 *Ld;EB!7 .3--'.0,&- 0620 ),4(%*2)2-' ('.3+0. ,& ,)/2,('* _C *'+,='(8 *3' 

0% *,.(3/0,%& ,& 1+3,* 1+%5 IL'()2&7 W23*,'( '0 2+: CAA"K: >6' .2)' .03*8 .6%5'* 2& 

'?/%&'&0,2+ *'4+,&' ,& aVb;E@ '?/('..,%& 2(%3&* 4(249. ,& 2 /200'(& .,),+2( 0% 06' 



 #B

2/%/0%0,4 %.0'%480'. .''& <8 a'(<%(-0 '0: 2+: IL'()2&7 W23*,'( '0 2+: CAA"K7 06'('<8 

.3//%(0,&- 06' 4%&4'/0 0620 ),4(%4(249. 2(' 2..%4,20'* 5,06 +%42+,N'* *'4('2.'. ,& 1+3,* 

1+%5: 

Y,4(%*2)2-' 2&* .3<.'e3'&0 %.0'%480' 2/%/0%.,. 4%(('./%&* ./20,2++8 5,06 

02(-'0'* (')%*'+,&- ,& =,=% I$3((7 Y2(0,& '0 2+: BX#Q^ $3(( 2&* Y2(0,& BXXP^ Y%(, 2&* 

$3(( BXXP^ $'&0%+,+27 $%84' '0 2+: BXX#^ a'(<%(-07 b,<.%& '0 2+: CAAA^ W''7 F02,&'. '0 2+: 

CAACK7 56,46 52. /(%='& 0% <' 423.2+ 56'& 06' ,&6,<,0,%& %1 %.0'%480' 2/%/0%.,. 

/('='&0'* (')%*'+,&- 1%++%5,&- 120,-3' *2)2-' IS2(*%.%7 W23*,'( '0 2+: CAADK: d& 

2**,0,%&7 9'8 .,-&2+,&- '='&0. ,&=%+='* ,& %.0'%480' 2/%/0%.,. %443( '2(+8 210'( 120,-3' 

+%2*,&- 2&* 2(' &'4'..2(8 1%( ('.%(/0,%& IL'()2&7 S2(*%.% '0 2+: CAA"K: 

d0 62. <''& .3--'.0'* 0620 56%+'E<%&' 12,+3(' ,& %.0'%/%(%.,. 4%3+* ('.3+0 1(%) 

462&-'. ,& ),4(%*2)2-' ('+20'* (')%*'+,&- *3' 0% 2 /%.,0,=' 1''*<249 <'05''& 

),4(%*2)2-' 2&* 06' ('.3+0,&- (')%*'+,&- 0620 200')/0. 0% ('/2,( 06' *2)2-' I$3((7 

;%(5%%* '0 2+: BXX"K: Y,4(%*2)2-' ('.3+0. ,& 2 +%.. %1 )'462&,42+ ,&0'-(,08 %1 06' <%&' 

0,..3'7 1%++%5'* <8 2 /%0'&0,2++8 -('20'( +%.. ,& 4%&0,&33)E+'='+ <%&' .0('&-06 2&*R%( 

.0,11&'.. *3' 0% ('.%(/0,%& 20 06' <'-,&&,&- %1 06' (')%*'+,&- 484+': >6' ('*34'* .0,11&'.. 

2&* .0('&-06 )28 ('.3+0 ,& 13(06'( *2)2-' %( %='(0 12,+3(' 20 +%5'( +%2*. 062& 06%.' 

('e3,('* ,& 06' %(,-,&2+ ,&0240 <%&'7 063. 4('20,&- 2 /%.,0,=' 1''*<249 +%%/: 

d& 06' '+*'(+8 /%/3+20,%& 56'(' %.0'%/%(%.,. ,. 2 1('e3'&0 %443(('&4'7 .346 

462&-'. ,& 06' (')%*'+,&- ('./%&.' 4%3+* %443( 2. 2 ('.3+0 %1 06' ('*34'* .9'+'02+ <+%%* 

1+%5 2&* '&*%06'+,3)E*'/'&*'&0 =2.%*,+20,%& 2..%4,20'* 5,06 2-,&- IT(,.<87 U2).'8 '0 

2+: CAA"K: T(,%( 5%(9 62. ,&*''* *')%&.0(20'* 0620 <%&' (')%*'+,&- ,& ('./%&.' 0% 

120,-3' ),4(%*2)2-' ,. 2+0'('* 5,06 2-'7 '=,*'&4'* <8 2 ('*340,%& ,& (')%*'+,&- 



 #C

('./%&.' ,& 0(2<'43+2( <%&' IJ2+*%(117 b%+*.0',& '0 2+: CAA"K 2&*R%( 2 *'+28 ,& 

(')%*'+,&- ('./%&.' ,& 4%(0,42+ <%&' IL'()2&7 ;2(,2 '0 2+: CAADK7 <%06 %1 56,46 )28 +'2* 

0% 2& ,&4('2.' ,& 1(2403(' (,.9: 

@.,*' 1(%) 06' 2+0'(20,%&. ,& (')%*'+,&- 240,=,08 *3' 0% 2-'7 <%&' +%.. 2..%4,20'* 

5,06 2-,&- )28 2+.% ('.3+0 1(%) *,.3.' *3' 0% ('*340,%&. ,& /68.,42+ 240,=,08 %( ,&1,(),08: 

G,.3.' )%*'+. .346 2. /(%+%&-'* <'* ('.0 62=' .6%5& 0620 3(,&2(8 +'='+. %1 1%()20,%& 

)2(9'(. *'4('2.'*7 56,+' ('.%(/0,%& )2(9'(. 2&* ('.,.02&4' 0% db;EB ,&4('2.'* +'2*,&- 0% 

4%(0,42+ 2&* 42&4'++%3. <%&' +%.. Id&%3'7 >2&292 '0 2+: CAAA^ [,)7 d52.29, '0 2+: CAAPK: 

F,),+2( '11'40. 62=' <''& 1%3&* ,& 4%.)%&230. *3(,&- +%&- 0'() '?/%.3(' 0% 

),4(%-(2=,087 *3(,&- 56,46 *,.3.' %1 06' 5',-60 <'2(,&- +,)<. ,. /('=2+'&0 IS2,++%0E

@3-3..'237 a,4% '0 2+: CAAA^ a,4%7 S%++'0 '0 2+: CAAAK: 

>% .,)3+20' 06' *,.3.' 4%&*,0,%& %1 <'* ('.0 2&* 5',-60+'..&'..7 .'='(2+ -(%3/. 

62=' *'='+%/'* (%*'&0 6,&*+,)< .3./'&.,%& )%*'+. IJ(%&.9, 2&* Y%('8EL%+0%& BX#"^ 

Y%('8EL%+0%& 2&* b+%<3. BXX#^ Y%('8EL%+0%& 2&* b+%<3. CAACK 0620 ,&*34' .,),+2( 

'11'40.7 .346 2. ,&4('2.'* ('.%(/0,%& 2&* *'4('2.'* 1%()20,%& I$+%%)1,'+*7 @++'& '0 2+: 

CAACK7 ,&4('2.'* ('.,.02&4' 0% db;Ed IF292027 L2++%(2& '0 2+: CAAP^ F292027 J2&- '0 2+: 

CAAMK7 2&* .,-&,1,42&0 ('*340,%& %1 <+%%* 1+%5 I$+%%)1,'+* CAADK: G,.3.' 6,&*+,)< 

.3./'&.,%& )%*'+. 62=' 2+.% <''& .6%5& 0% *'4('2.' ,&0'(.0,0,2+ 1+3,* 1+%5 *3' 0% 

*'4('2.'* /('..3(' -(2*,'&0. IF0'='&.7 Y'28. '0 2+: CAADK7 5,06 .'='(2+ .03*,'. .3--'.0,&- 

0620 4%&='40,=' 0(2&./%(0 <8 )'2&. %1 +%2*E,&*34'* 1+3,* 1+%5 )28 <' &'4'..2(8 0% 

/(%=,*' .311,4,'&0 0(2&./%(0 %1 +2(-'( )%+'43+'. .346 2. /(%0',&. 0% 2&* 1(%) %.0'%480'. 

I[&%06' >20'7 [&%06' '0 2+: BXX#^ [&%06' >20'7 c,'*'('( '0 2+: BXX#K: d& 2**,0,%& ,0 62. 

<''& .6%5& 0620 %.0'%480'. )'462&,42++8 .0,)3+20'* ,& =,0(% ('+'2.' .%+3<+' 1240%(. 0620 



 #P

,&6,<,0 %.0'%4+2.0%-'&'.,. I>2&7 *' a(,'. '0 2+: CAA"^ f%37 >'),82.206,0 '0 2+: CAA#K7 

56,+' %.0'%480' 2/%/0%0,4 <%*,'. ,&,0,20' %.0'%4+2.0%-'&'.,. +'2*,&- 0% +%42+,N'* <%&' 

('.%(/0,%& ,& 2 U@c[WE,&*'/'&*'&0 )2&&'( I[%-,2&&,7 Y2&& '0 2+: CAA#K: 

d0 ,. 06'('1%(' 68/%06'.,N'* 0620 06' ('*34'* 1+3,* 1+%5 5,06,& 06' 42&2+,43+2( 

.8.0') ,& 2 *,.3.' .'00,&- 4%3+* /('='&0 06' 2/%/0%0,4 *,.0('.. .,-&2+. ('+'2.'* <8 

%.0'%480'. .3((%3&*,&- ),4(%4(249. 1(%) ('246,&- 06',( 480%9,&' ('4'/0%(.7 06'('<8 

('*34,&- %( ,&6,<,0,&- 02(-'0'* (')%*'+,&-: L'&4' 06' '11'40. 1(%) *,.3.'7 ,& 4%)<,&20,%& 

5,06 06' 2+0'(20,%& %1 (')%*'+,&- ('./%&.' 2..%4,20'* 5,06 2-'7 )28 +'2* 0% -'&'(2+,N'* 

.9'+'02+ 5'29'&,&- 2&* 2+0'(20,%&. ,& -'&'(2+ .9'+'02+ ('/2,( )'462&,.).: d& /2(0,43+2(7 

,&0'(),?,&- /(%+%&-'* 0,)'. %1 *,.3.' 5,06 ./%(2*,4 /'(,%*. %1 240,=,08 4%3+* /%0'&0,2++8 

,&4('2.' 2& ,&*,=,*32+.g (,.9 1%( ),4(%*2)2-' 2443)3+20,%&: 

>6' /3(/%.' %1 06,. .03*8 52. 06'('1%(' 0% '?2),&' 06' '11'40. %1 *,.3.' %& <%&' 

(')%*'+,&- ,& ('./%&.' 0% ),4(%*2)2-'7 /%0'&0,2++8 /(%=,*,&- 4+,&,42++8 ,)/%(02&0 

,&.,-60 ,&0% 06' ('+20,%&.6,/ <'05''& ),4(%*2)2-' 2443)3+20,%& 2&* ,&4('2.'* 1(2403(' 

(,.9 ,& 06' '+*'(+8:  

 

Materials and Methods 

Animals 

Y2+' DE)%&06 %+* 2*3+0 F/(2-3' G25+'8 (20. IPQAEMQA-K 5'(' %<02,&'* 1(%) 

L2(+2&: @&,)2+. 5'(' 2++%5'* 0% 244+,)20' 0% %3( 2&,)2+ 124,+,08 1%( 20 +'2.0 06('' *28. 

<'1%(' <',&- ,&4+3*'* ,& 06' '?/'(,)'&0: >6' /(%4'*3('. 3.'* ,& 06,. .03*8 5'(' 

2//(%='* <8 06' Z&,='(.,08 S%)),00'' %& Z.' 2&* S2(' %1 @&,)2+. 20 06' Z&,='(.,08 %1 

Y,46,-2&: @&,)2+. 5'(' 6%3.'* ,& ,&*,=,*32+ &%&E='&0,+20'* 42-'. ,& 2 0')/'(203('E



 #M

4%&0(%++'* (%%) ID#E"C!;K 5,06 2 BCHBCE6%3( +,-60E*2(9 484+': J20'( 2&* (20 46%5 5'(' 

/(%=,*'* 2* +,<,03): 

 

In vivo strain gauge calibration for load parameters 

d& %(*'( 0% *'0'(),&' 06' +%2* /2(2)'0'(. ('e3,('* 0% ,&*34' 2 .0(2,& +'='+ %1          

E"AAA ),4(%.0(2,& 20 06' +20'(2+ .,*' %1 06' ),*E*,2/68.,. %1 06' 0,<,2 3&*'(-%,&- 1%3(E

/%,&0 <'&*,&-7 06' .0(2,&E2//+,'* 1%(4' ('+20,%&.6,/ 52. *'0'(),&'* 1%( .,? #E)%&06 %+* 

F/(2-3' G25+'8 (20. 0620 5'(' ./+,0 ,&0% 05% -(%3/.H BK L,&*+,)< .3./'&.,%& ILFK 1%( BM 

*28. I&OPK7 2&* CK c%()2+ 5',-60 <'2(,&- IJ$K 1%( BM *28. I&OPK: @0 *28 BM7 2++ (20. 

5'(' 2&'.06'0,N'* 2&* 2 .)2++ ,&4,.,%& 52. )2*' 20 06' +20'(2+ .,*' 20 06' ),*E*,2/68.,. 

%1 06' 0,<,2': >6,. 2++%5'* .0(2,& -23-'. 0% <' /+24'* <,E+20'(2++8 %& 06' +20'(2+ .,*' %1 06' 

0,<,2'7 #)) /(%?,)2+ 0% 06' 0,<,2E1,<3+2 h3&40,%&: >6' 2='(2-' .+%/' %1 06' +20'(2+ .0(2,& 

=.: 2//+,'* 1%(4' ('+20,%&.6,/ 52. *'0'(),&'* 1%( '246 -(%3/ I>2<+' M:BK: c% .,-&,1,42&0 

*,11'('&4' 52. 1%3&* <'05''& 06' LF 2&* J$ -(%3/7 ,&*,420,&- 0620 06' +%2*,&- ('-,)' 

,&*34'. .,),+2( .0(2,& )2-&,03*'. 1%( 5',-60 <'2(,&- 2&* 6,&*+,)< .3./'&*'* 2&,)2+. 20 

*28 BM: $2.'* %& 06' 1,&*,&-. 2 .+%/' %1 EDQ:BQ"#Rc 52. 46%.'&7 ('.3+0,&- ,& 2 +20'(2+ 

.0(2,& =.: 2//+,'* 1%(4' ('+20,%&.6,/ %1H 

KIXP:DM NLoadAppliedlateral F!"#$%  

>6,. ('+20,%&.6,/ 5%3+* <' 3.'* 1%( 2++ 06' +%2*,&- /2(2)'0'(. ,& 06' .3<.'e3'&0 

'?/'(,)'&0: 

 

 

 



 #Q

Experimental protocol 

@10'( 244+,)20,%& I*28 AK7 BCA (20. 5'(' 2..,-&'* 0% %&' %1 05% -(%3/.H J',-60E

<'2(,&- IJ$K %( 6,&*+,)< .3./'&.,%& ILFK: J,06,& '246 -(%3/7 06' (20. 5'(' 13(06'( 

*,=,*'* ,&0% 06('' .3<-(%3/. I&OCAK7 4%(('./%&*,&- 0% 06('' .24(,1,4' 0,)' /%,&0. I*28 BM7 

B# %( PQK:  @&,)2+. 2..,-&'* 0% 06' LF -(%3/ 5'(' <(,'1+8 2&'.06'0,N'* 5,06 2& ,.%1+3(2&' 

ICiKH%?8-'& <2+2&4'7 2&* 6,&*+,)< .3./'&*'* 3.,&- 2 43.0%) )2*' 6,&*+,)< .3./'&.,%& 

.8.0') 56,46 ,. 2*2/02<+' 5,06 .02&*2(* FT; (20'* ='&0,+20'* jP (20 <%?'.: Z&/3<+,.6'* 

5%(9 62. .344'..13++8 .6%5& 0620 06' 43.0%) )2*' )%*'+ IS62/0'( PK ,&*34'. .,),+2( 

/68.,%+%-,42+ 462&-'. 2. /('=,%3. )%*'+. IJ(%&.9, 2&* Y%('8EL%+0%& BX#"^ Y%('8E

L%+0%& 2&* b+%<3. CAAC^ Y,*3(27 F3 '0 2+: CAADK7 56'(' 06' *,.3.' 4%&*,0,%& %1 06' 

6,&*+,)<. ('.3+0'* ,& 2 *'4('2.' ,& <%&' 1%()20,%& 2&* ,&4('2.' ,& <%&' ('.%(/0,%&7 56,+' 

06' -'&'(2+ 5'++<',&- %1 06' 6,&*+,)< .3./'&*'* 2&,)2+. 52. )2,&02,&'*: 

@0 *28 BM7 2++ 2&,)2+. 5'(' 2&'.06'0,N'* 2&* 06',( +'10 0,<,2 3&*'(5'&0 1%3(E/%,&0 

<'&*,&- 3.,&- 2 )%*'+ <2.'* %& >3(&'( '0: 2+: I>3(&'(7 @960'( '0 2+: BXXBK ,& %(*'( 0% 

/(%*34' 120,-3'E,&*34'* ),4(%*2)2-': F/'4,1,42++87 06' +'10 0,<,2 3&*'(5'&0 2 .,&3.%,*2+ 

+%2*,&- ('-,)' I"CAA 484+'. 20 C LNK 5,06 2 )2?,)3) 2&* ),&,)3) +%2* %1 BA":# c 2&* 

Q":Dc7 ('./'40,='+8: >6,. ,&*34'* 2 )2?,)3) +20'(2+ .0(2,& %1 E"AAA ),4(%.0(2,& 20 06' 

),*E*,2/68.,. 1%( <%06 06' LF 2&* J$ -(%3/ IS62/0'( PK: T('=,%3. 5%(9 62* .6%5& 0620 

+%2*,&- 06' (,-60 0,<,2 ,& 2 k&%&E<'&*,&-g 4%&1,-3(20,%& %1 06' 1%3(E/%,&0 <'&*,&- .'03/ 2. 

*%&' <8 >3(&'( '0: 2+: I>3(&'(7 @960'( '0 2+: BXXBK ,&*34'* .0(2,& +'='+. <'05''& EBAAA 0% 

EMAA ),4(%.0(2,& 20 06' +20'(2+ .,*' 1%( 06' /('.4(,<'* .,&3.%,*2+ +%2*,&- ('-,)': >3(&'( 

'0: 2+: 30,+,N'* 06,. 4%&1,-3(20,%& %1 06',( 1%3(E/%,&0 <'&*'( 0% '=2+320' 06' '11'40. %1 h3.0 

/,&E/%,&0 +%2*,&- 0% 06' <%&' 2&* )3.4+' 0,..3'7 <8 +%2*,&- 06' 4%&0(%+ +'- ,& 2 &%&E



 #D

<'&*,&- 12.6,%&: ;%( %3( .'03/7 06' /('.4(,<'* k&%&E<'&*,&-] +%2*,&- ('-,)' 52. &%0 

.311,4,'&0 0% ,&*34' ),4(%*2)2-' 5,06,& 06' ('-,%& %1 ,&0'('.0 IU_dK # )) /(%?,)2+ 0% 

06' 0,<,2E1,<3+2 h3&40,%&7 20 06' /%,&0 %1 )2?,)3) <'&*,&-: L%5'='(7 ,0 52. 1%3&* 0620 20 

06' /%,&0. %1 4%&0240 <'05''& 06' +%2*,&- /2*. %1 06' 1%3(E/%,&0 <'&*,&- .'03/7 .,-&,1,42&0 

2)%3&0. %1 ),4(%*2)2-' 5'(' ,&*34'*: >% 2*'e320'+8 0'.0 06' 68/%06'.,.7 ,0 52. 6'&4' 

*'0'(),&'* 0620 2&8 ),4(%*2)2-' ,&*34'* 20 06' 2//+,420,%& %1 +%2* 1%( 06' 4%&0(%+ +%2* 

5%3+* ('.3+0 ,& (')%*'+,&-7 56,46 5%3+* .9'5 06' 1,&*,&-. *3' 0% 06' (')%*'+,&- %1 06' 

U_d %1 06' +'10 0,<,2 3&*'(-%,&- /3(' <'&*,&-: >6'('1%('7 06' (,-60 0,<,2 5%3+* .'(=' 2. 2 

&%&E+%2*'*7 4%)/+'0'+8 3&*2)2-'* 4%&0(%+: 

 _&4' 06' +%2*,&- ('-,)' 52. 4%)/+'0'7 2&,)2+. 5'(' 2++%5'* 13++ ('4%='(8 1(%) 

2&'.06'.,27 2&* .3<.'e3'&0+8 6,&*+,)< .3./'&*'* %( 2++%5'* 13++ 5',-60 <'2(,&- 2-2,&7 ,& 

4%(('./%&*'&4' 5,06 06',( -(%3/ 2..,-&)'&0:    

@0 .24(,1,4'7 (,-60R+'10 /2,(. %1 0,<,2' 5'(' 42('13++8 *,..'40'* 1('' %1 .%10 0,..3' 

2&* 2..,-&'* 0% %&' %1 06('' 0('20)'&0. 5,06,& '246 .3<-(%3/H 1+%5 480%)'0(8 1%( LFS 

2&* )%&%480' )2(9'(. I&ODK7 <2.,4 1346.,& .02,&,&- 1%( ),4(%*2)2-' 2..'..)'&0 I&O"K7 

%( 6,.0%+%-,42+ 2&* ,))3&%6,.0%46'),42+ .02,&,&- I&O"K: T(,%( 0% .02,&,&-7 )%(/6%+%-,4 

2&2+8.,. 52. 4%&*340'* %& 06' +2.0 05% -(%3/. 3.,&- PG ),4(%S>: 

 

Microcomputed tomography (microCT) 

_&4' 42('13++8 *,..'40'* 1('' %1 .%10 0,..3'7 06' 0,<,2' &%0 3.'* 1%( 1+%5 480%)'0(8 

5'(' .42&&'* %& 2 ),4(%4%)/30'* 0%)%-(2/68 I),4(%S>K .8.0') IbV L'2+0642(' 

F8.0').K 2&* ('4%&.0(340'* 5,06 2 =%?'+ .,N' %1 CQ "): Y%(/6%+%-,42+ /2(2)'0'(. 5'(' 

*'0'(),&'* 1%( 06' 0,<,2' 20 06' 4%(0,42+ ('-,%& %1 ,&0'('.0 IU_dK 0620 '?/'(,'&4'* 06' 



 #"

)2?,)3) <'&*,&- *3(,&- 1%3(E/%,&0 <'&*,&- I,:': 20 06' ),*E*,2/68.,.K: F/'4,1,42++8 06' 

U_d 62* 2 +'&-06 %1 M )) 5,06 ,0. 4'&0'( +%420'* #)) /(%?,)2+ 0% 06' 0,<,2R1,<3+2 

h3&40,%& I;,-3(' M:BK: $%&' 2(46,0'403(2+ /2(2)'0'(. 1%( 06,. U_d 5'(' *'0'(),&'* 3.,&- 2 

43.0%) 2&2+8.,. /(%-(2) 2&* 2 4%))'(4,2++8 2=2,+2<+' =%?'+ 2&2+8.,. .%1052(' /2492-' 

IY,4(%a,'5 =:C:CK: >6' 1%++%5,&- /2(2)'0'(. 5'(' 42+43+20'*H 0,..3' ),&'(2+ 4%&0'&0 

I>YSK7 0,..3' ),&'(2+ *'&.,08 I>YGK7 4(%.. .'40,%&2+ )%)'&0. %1 ,&'(0,2 Id??7 d887 dNNK7 

4%(0,42+ 2&* )2((%5 2('2: 

 

Flow cytometry (FACS) 

F/'4,)'&. 2..,-&'* 1%( 1+%5 480%)'0(8 5'(' /+24'* ,& T$F l Ci cSF %& ,4' 

,))'*,20'+8 210'( *,..'40,%&: Y2((%5 52. 1+3.6'* 1(%) 06' 0,<,2'7 52.6'* ,& T$F l Ci 

cSF7 2&* BAD 4'++. 5'(' (')%='* 2&* /30 %& ,4' 1%( .3<.'e3'&0 .02,&,&-: >% ('*34' 

<249-(%3&* &%,.' 1(%) ('* <+%%* 4'++. ,& 06' 1+3.6'* )2((%57 06' 4%++'40'* 4'++. 5'(' 

<(,'1+8 ('.3./'&*'* ,& @49 +8.,. <311'( 2&* .3<.'e3'&0+8 52.6'* ,& T$F l Ci cSF: >% 

/('='&0 &%&E./'4,1,4 <,&*,&- %1 .'+'40'* 2&0,<%*,'.7 4'++. 5'(' ,&43<20'* 5,06 (d-b7 

)d-b7 2&* (d-@$ I$G $,%.4,'&4'. T62(),&-'&K 1%( BQ ),& 20 M!S /(,%( 0% .02,&,&-: d& 

%(*'( 0% *'0'(),&' 06' '11'40 %1 06' '?/'(,)'&02+ 4%&*,0,%&. %& 06' %.0'%4+2.0 +,&'2-' 06' 

4'++. 5'(' ,&43<20'* 1%( CQ ),& 20 M!S 5,06 06' 1%++%5,&- 2&0,<%*,'.H  

 

@&0,E)%3.' SG BB" I4E9,0K7 L')20%/%,'0,4 F0') S'++ ILFSK )2(9'(7 TVE

4%&h3-20'*7 ,.%08/'H U20 d-bC<$7 S+%&'H C$# I$'49)2& S%3+0'( d&4:7 S@K: 

@&0,E(20 SG BB< IY24EB ! 462,&K7 Y%&%480'R)24(%/62-' )2(9'(7 ;d>SE

4%&h3-20'*7 ,.%08/'H Y%3.' d-@7$7 S+%&'H J>:Q I$G $,%.4,'&4'. T62(),&-'&K: 



 ##

T('=,%3. 5%(9 I@,46'(7 U'&0.46 '0 2+: CAA"K 62. .6%5& 0620 06' C$# 4+%&' 1%( 

)%3.' SGBB" 4(%..E('240'* 5,06 (20 SGBB" <8 ;@SF IF2&02 S(3N $,%0'46:7 S@K: d& 

2**,0,%& /%.,0,=' .02,&,&- 52. *'0'(),&'* 5,06 06' .'+'40'* SGBB" 2&0,<%*8 <8 246,'=,&- 

.,),+2( .02,&,&- 1%( 4%&0(%+ (20 0,<,2' )2((%5 4'++. 2&* SQ" )%3.' 0,<,2' )2((%5 4'++. 

I*202 &%0 .6%5&K: 

_&4' .02,&'*7 4'++. 5'(' 2&2+8N'* 3.,&- 2 ;@SF S2+,<3( I$G $,%.4,'&4'.7 S@K: 

;%( '246 .2)/+' PA7AAA '='&0. 5'(' 4%++'40'*: ;%( 06' 2&2+8.,. %1 06' 1+%5 480%)'0(8 

*2027 06' 1%(52(* .4200'( 2&* .,*' .4200'( -20' IUBK I;,-3(' M:CK 52. .'0 0% 2 ('-,%& 0620 

62. /('=,%3.+8 <''& .6%5& 0% ,&4+3*' .0') 4'++. 2&* )%&%480'. IV-6<2+,E;20%3('46,7 

[6%.+2 '0 2+: CAAPK: >6' SGBB" 2&* SGBB< /%.,0,=' /%/3+20,%&. 5,06,& 06' -20' 5'(' 

,*'&0,1,'* 2. 4'++. '?/('..,&- ./'4,1,4 +'='+. %1 1+3%('.4'&0 240,=,08 2<%=' 06' &%&./'4,1,4 

.02,&,&- 2&* 230%1+3%('.4'&4' %1 06' ,.%08/' 4%&0(%+7 ,&*,420'* <8 06' YB 2&* YC ('-,%& 

,& 06' 1+3%('.4'&4' ,&0'&.,08 6,.0%-(2). I;,-3(' M:PK: F/'4,1,42++8 06' YC ('-,%& 52. 3.'* 

1%( SGBB< 2&2+8.,.7 56,+' 06' YB ('-,%& 52. 3.'* 1%( SGBB" 2&2+8.,.: 

G3' 0% ,&.311,4,'&0 4'++ 4%3&0. *3(,&- ;@SF7 " 2&,)2+. 62* 0% <' '+,),&20'* 1(%) 

06' 1+%5 480%)'0(8 *202 ('.3+0,&- ,& 1,&2+ -(%3/. %1H G28 BM7 J$ I&ODKRLF I&OQK^ G28 

B#7 J$ I&OPKRLF I&OMK^ G28 PQ7 J$ I&OMKRLF I&ODK: 

 

Basic fuchsin staining 

Z/%& *,..'40,%& 2&* /(,%( 0% ),4(%S> .42&&,&-7 ./'4,)'&. 2..,-&'* 1%( <2.,4 

1346.,& .02,&,&- 5'(' 9'/0 ,& "Ai '062&%+: @10'( ),4(%S> .42&&,&-7 06' 0,<,2' 5'(' 

4%)/+'0'+8 *'68*(20'* 2&* .02,&'* 5,06 <2.,4 1346.,& 244%(*,&- 0% $3(( '0: 2+:g. /(%0%4%+ 

I$3(( 2&* L%%.'( BXXQK: F3<.'e3'&0+8 06'8 5'(' ')<'**'* ,& [%+*)%3&0 12.0 43(,&- 



 #X

4%+* )%&%)'( IdGTRa'(&%&E$'&.6%11 S%)/2&87 @+<2&87 cfK7 2&* .'40,%&'* MAA ") 

0(2&.='(.' 0% 06' +%&-,03*,&2+ 2?,. %1 06' 0,<,2 20 06' ),4(%S> U_d 3.,&- 2 $3'6+'( d.%)'0 

+%5 ./''* *,2)%&* <+2*' .25: >6' .'40,%& 4+%.'.0 0% 06' 4'&0'( %1 06' U_d 1%( '246 0,<,2' 

52. )%3&0'* %& 2 /+2.0,4 ),4(%.4%/' .+,*' 3.,&- 482&%24(8+20' 2&* /%+,.6'* 0% 2 1,&2+ 

06,49&'.. %1 BQAECAA "): >6' .'40,%&. 5'(' '?2),&'* 5,06 2 .02&*2(* 4%&1%42+ 

),4(%.4%/' Im',.. WFY QBAEYV>@ W2.'( F42&&,&- S%&1%42+ Y,4(%.4%/'K 20 MA? 

)2-&,1,420,%& 3.,&- 2 L'c'B +2.'( IQMP &)K 5,06 2 >'?2. U'*RU6%*2),&' 1,+0'(: d)2-'. 

5'(' 029'& 1%( 06' '&0,(' 4%(0,42+ ('-,%& 2&* .3<.'e3'&0+8 2&2+8N'* 3.,&- 06' m',.. WFY 

d)2-' $(%5.'( I='(: M:C:A:BCBK ,& %(*'( 0% e32&0,18 +,&'2( ),4(%*2)2-' 5,06,& 06' 

4%(0,42+ ('-,%&  I;,-3(' M:MK:  

_&+8 +,&'2( ),4(%*2)2-' 52. e32&0,1,'*7 .,&4' ,0 62. <''& .6%5& 0620 (')%*'+,&- 

%&+8 %443(. ,& <%&' 5,06 +,&'2( ),4(%4(249.7 56,+' <%&' 4%&02,&,&- %&+8 *,113.' *2)2-' 

12,+. 0% ,&,0,20' 2 (')%*'+,&- ('./%&.' IL'()2&7 $'()2& '0 2+: CAA#K: 

Z.,&- +,-60 ),4(%.4%/87 06' 4%(0,42+ 4(%.. .'40,%&2+ 2('2. 5'(' 42+43+20'* 5,06 

$,%e32&0 ,)2-' .%1052(' I$n _F>V_ =:":CA:BAK 56,+' %),00,&- 5%='& <%&' 2('2.: 

 

Histology and immunohistochemistry 

Z/%& *,..'40,%& 2&* /(,%( 0% ),4(%S> .42&&,&-7 ./'4,)'&. 2..,-&'* 1%( 6,.0%+%-8 

2&* ,))3&%6,.0%46'),.0(8 5'(' ,))'*,20'+8 /+24'* ,& BAi c$; 1%( 05% *28.7 1%++%5'* 

<8 "Ai '062&%+: F3<.'e3'&0 0% ),4(%S> .42&&,&-7 ./'4,)'&. 5'(' *'42+4,1,'* %='( 1,=' 

5''9. 3.,&- BAi VG>@ 20 M!S7 210'( 56,46 ./'4,)'&. 5'(' /2(211,& ')<'**'*: >6' 

<%&' 5,06,& 06' ),4(%S> U_d 52. .'40,%&'* " ") 0(2&.='(.' 0% 06' +%&-,03*,&2+ 2?,. %1 

06' 0,<,2:   



 XA

- ELF97 (TRAP) 

>5% /2(211,&E')<'**'* .'40,%&. /'( 0,<,2 I%&' ),++,)'0'( 2/2(0 5,06,& 06' 

),4(%S> U_d7 5,06 06' 1,(.0 .'40,%& " )) /(%?,)2+ 0% 06' 0,<,2R1,<3+2 h3&40,%&K 5'(' 

.02,&'* 5,06 VW;X" /6%./620' IY%+'43+2( T(%<'.7 _UK ,& %(*'( 0% =,.32+,N' >U@T 

/%.,0,=' ('.%(/0,%& /,0. 5,06,& 06' 4%(0,42+ 2&* 5%='& <%&': >6' /(%0%4%+ 3.'* 1%( 06' 

1+3%('.4'&4'E<2.'* VW;X" >U@T .02,& 52. 2*2/0'* 1(%) 06' ,& =,0(% VW;X" .02,& 

/(%0%4%+ *'='+%/'* <8 ;,+-3',(2 I;,+-3',(2 CAAMK: F/'4,1,42++87 QA"W %1 VW;X" ('240,%& 

),? IMB:BQ"W *LC_7 A:QQ"W F%*,3) &,0(,0'7 Q:AA"W C)Y VW;X"7 C:CA"W @4'020'7 B:B"W 

>2(0(20'K 52. 2//+,'* 0% '246 .'+'40'* .'40,%&7 56,46 52. ,&43<20'* 20 (%%) 0')/'(203(' 

,& 06' *2(9 1%( 1,=' ),&30'.: F'40,%&. 5'(' .3<.'e3'&0+8 (,&.'* ,& *LC_ 2&* 4%='( .+,/. 

5'(' 2//+,'* 3.,&- T(%+%&- b%+* 2&0,12*' ('2-'&0 Id&=,0(%-'&RY%+'43+2( T(%<'.7 _UK: 

F'40,%&. 5'(' ,)2-'* ,))'*,20'+8 3.,&- 2//(%/(,20' 1+3%('.4'&0 1,+0'(. I;,-3(' M:QK: 

L,.0%+%-,42+ )'2.3(')'&0. ,&4+3*'* >U@T /%.,0,=' ,&0(2 4%(0,42+ ('.%(/0,%& /,0. /'( 

4%(0,42+ 2('27 /'(4'&0 >U@T /%.,0,=' /'(,%.0'2+ /'(,)'0'(7 2&* /'(4'&0 >U@T /%.,0,=' 

'&*%.0'2+ /'(,)'0'(: >6'.' )'2.3(')'&0. 5'(' *'0'(),&'* 56,+' %),00,&- 5%='& <%&' 

2('2.: >6' 2='(2-' )'2.3(')'&0. 1%( 06' 05% .'40,%&. 5'(' 3.'* 1%( 06' .3<.'e3'&0 

2&2+8.,.: 

 

- Picro-Sirius Red 

>5% .'40,%&. /'( 0,<,2 I%&' ),++,)'0'( 2/2(0 5,06,& 06' ),4(%S> U_d7 5,06 06' 

1,(.0 .'40,%& " )) /(%?,)2+ 0% 06' 0,<,2R1,<3+2 h3&40,%&K 5'(' .02,&'* 5,06 T,4(%EF,(,3. 

U'* ;P$@ ,& %(*'( 0% e32&0,18 5%='& <%&' 2//%.,0,%& IF5'207 T3460+'( '0 2+: BXDM^ 

T3460+'(7 Y'+%2& '0 2+: BX##K: Z.,&- /%+2(,N'* +,-60 ),4(%.4%/87 4%++2-'& 1,<'(. 5'(' 



 XB

6,-6+,-60'* 0% *,.0,&-3,.6 06' +2)'++2( 2&* 5%='& <%&' 2&* '&2<+' e32&0,1,420,%& %1 

5%='& <%&' 2//%.,0,%& 20 06' /'(,%.0'2+ .3(124'. I;,-3(' M:DK 3.,&- $,%e32&0 ,)2-' 

.%1052(' I$n _F>V_ =:":CA:BAK: L,.0%+%-,42+ )'2.3(')'&0. ,&4+3*'* 5%='& <%&' 2('2 

2&* ('.%(/0,%& /,0. /'( 2('2 5,06,& 5%='& <%&': >6' 2='(2-' )'2.3(')'&0. 1%( 06' 05% 

.'40,%&. 5'(' 3.'* 1%( 06' .3<.'e3'&0 2&2+8.,.: 

 

- Immunohistochemical apoptosis detection (Apoptag) 

_&' .'40,%& /'( 0,<,2 I029'& 20 4'&0'( %1 06' ),4(%S> U_dK 52. 3.'* 1%( 

,))3&%6,.0%46'),42+ %.0'%480' 2/%/0%.,. *'0'40,%& 3.,&- 06' @/%/>2- T+3. ;+3%('.4',& 

In Situ @/%/0%.,. G'0'40,%& [,0 IS6'),4%&RY,++,/%('7 S@K: F/'4,1,42++87 06' 2..28 

*'0'40. 2/%/0%.,. =,2 1+3%('.4'&0 Gc@ 1(2-)'&020,%& +2<'+,&-7 .,),+2( 0% 2 .02&*2(* 

>ZcVW 2..28 Ib2=(,'+,7 F6'()2& '0 2+: BXXCK:  _&4' .02,&'*7 .'40,%&. 5'(' 4%='( .+,//'* 

3.,&- T(%/,*,3) d%*,*'R@&0,12*' F%+30,%& IY,++,/%('7 S@K: F'40,%&. %1 1')2+' (%*'&0 

)2))2(8 -+2&*. 5'(' 3.'* 2. /%.,0,=' 4%&0(%+.7 *3' 0% '?0'&.,=' 2/%/0%.,. %443((,&- ,& 

06' 0,..3' 06('' 0% 1,=' *28. 210'( 5'2&,&- %1 (20 /3/. IF0(2&-'7 ;(,,. '0 2+: BXXQK: @++ 

.'40,%&. 5'(' ,)2-'* ,))'*,20'+8 3.,&- 2//(%/(,20' 1+3%('.4'&0 1,+0'(. I;,-3(' M:"K: 

L,.0%+%-,42+ )'2.3(')'&0. ,&4+3*'* &3)<'( %1 2/%/0%.,. /%.,0,=' %.0'%480'. /'( 4%(0,42+ 

2('2: >6'.' )'2.3(')'&0. 5'(' *'0'(),&'* 56,+' %),00,&- 5%='& <%&' 2('2.: 

 

Statistics and graph nomenclature 

;%( '2.' %1 4%)/2(,.%& <'05''& *,11'('&0 0,)' /%,&0.7 06' 0'() G'+02 ,. 3.'* 0% 

,&*,420' *,11'('&4'. <'05''& 4%&0(2E+20'(2+ +,)<.H 

Delta O W'10 0,<,2 o U,-60 0,<,2 O G2)2-'* 0,<,2 o Z&*2)2-'* 0,<,2 



 XC

>6,. 0'() 5,++ <' 3.'* 06(%3-6%30 06' /('.'&020,%& %1 06' ('.3+0.: 

>% 4%)/2(' *2)2-'* 0% 3&*2)2-'* 4%&0(2E+20'(2+ .,*'.7 /2,('* 0E0'.0. 5'(' 3.'*: 

@ 05%E528 @c_a@ 5,06 2 /%.0 6%4 4%(('40,%& 52. 3.'* 1%( 4%)/2(,.%&. %1 *'+02. 

<'05''& '?/'(,)'&02+ -(%3/. IJ$RLFK 2&* <'05''& *'+02. 20 *,11'('&0 0,)' /%,&0.: 

F,-&,1,42&4' 52. *'1,&'* 2. /%A:AQ: >6' 2&2+8.,. 52. /'(1%()'* 3.,&- FTFF .020,.0,42+ 

.%1052(' IFTFF7 S6,42-%7 dWK: 

 

Results 

Animal health 

>6' .02(0,&- <%*8 )2.. 20 *28 A 52. &%0 .,-&,1,42&0+8 *,11'('&0 <'05''& 06' 

5',-60 <'2(,&- 2&* 6,&*+,)< .3./'&*'* -(%3/ I>2<+' M:CK: $8 *28 BM7 2&,)2+. ,& 06' J$ 

-(%3/ 62* .,-&,1,42&0+8 ,&4('2.'* 06',( 5',-60 <8 C:"i7 56,+' 06' LF -(%3/ 62* 

.,-&,1,42&0+8 +%.0 M:Ci 5',-60 I;,-3(' M:#K: S%))%& 1%( <%06 -(%3/. 52. 2 .+,-60 *'4+,&' 

,& 5',-60 I*28 B#K 210'( +%2*,&- 20 *28 BM7 56,+' 06,. 52. 1%++%5'* <8 2 .+,-60 ,&4+,&' ,& 

<%*8 5',-60 20 *28 PQ: $%06 ,&4+,&' 2&* *'4+,&' 1%( 2++ -(%3/. 5'(' &%&E.,-&,1,42&0 

I;,-3(' M:#K:     

 

Microcomputed tomography (microCT) 

 S(%.. .'40,%&2+ ),4(%S> 1(%) 06' 4'&0'( %1 06' U_d ,&*,420'* 0620 +'.. 

),&'(2+,N'* <%&' 62* <''& *'/%.,0'* 20 06' /'(,%.0'2+ .3(124' %1 <%06 06' J$ 2&* LF 

-(%3/. I;,-3(' M:XK: d& 244%(*2&4' 5,06 06,. %<.'(=20,%&7 ),4(%S> 2&2+8.,. .6%5'* 2 

.,-&,1,42&0 ,&4('2.' ,& *'+02 0,..3' ),&'(2+ 4%&0'&0 I>YSK 20 *28 PQ 1%( 06' J$ -(%3/ 

4%)/2('* 0% J$ 20 *28 A7 56,46 52. 2+.% .,-&,1,42&0+8 -('20'( 062& 1%( 06' LF -(%3/ 20 



 XP

*28 PQ I;,-3(' M:BAK: F,),+2(+87 06' *'+02 4%(0,42+ 2('2 52. .,-&,1,42&0+8 ,&4('2.'* 20 *28 

PQ 1%( <%06 -(%3/.7 5,06 06' J$ -(%3/ <',&- .,-&,1,42&0+8 -('20'( 062& 06' LF -(%3/ 20 

0620 *28 I;,-3(' M:BBK: ;,&2++8 06' *'+02 )2((%5 2('2 52. .,-&,1,42&0+8 *'4('2.'* 20 *28 

PQ 1%( 06' J$ -(%3/7 56,+' 06' LF -(%3/ 62* 2 .,-&,1,42&0 ,&4('2.' 20 *28 PQ I;,-3(' 

M:BCK: ;%( 2 4%)/+'0' +,.0,&- %1 06' ./'4,1,4 ),4(%S> *2027 /+'2.' ('1'( 0% >2<+' M:P: 

 

Picro-Sirius Red stain (woven bone formation) 

F'40,%&. .02,&'* 5,06 T,4(%EF,(,3. U'* ,&*,420'* 0620 .,-&,1,42&0 ,&,0,2+ 5%='& 

<%&' 1%()20,%& 62* %443(('* 20 *28 B# 1%( <%06 06' J$ 2&* LF -(%3/: @0 *28 PQ 06,. 62* 

,&4('2.'* .,-&,1,42&0+8 1%( <%06 -(%3/. 2. 06' 5%='& <%&' <'42)' )%(' ),&'(2+,N'*7 5,06 

06' J$ -(%3/ 62=,&- .,-&,1,42&0+8 )%(' 5%='& <%&' *'/%.,0'* 062& 06' LF -(%3/ 

I;,-3(' M:BPK:    

 

Basic fuchsin stain (microdamage quantification) 

 ;%( ),4(%*2)2-' e32&0,1,420,%& 3&*'( 4%&1%42+ ),4(%.4%/87 .'40,%&. .02,&'* 5,06 

<2.,4 1346.,& .6%5'* 0620 .,-&,1,42&0 2)%3&0. %1 ),4(%*2)2-' 5'(' .,),+2(+8 ,&*34'* 20 

*28 BM 1%( <%06 06' J$ 2&* LF -(%3/ *3' 0% 06' +%2*,&- ('-,)' I;,-3(' M:BMK: >6' 4(249 

.3(124' *'&.,08 52. .)2++'( 1%( 06' LF -(%3/ 4%)/2('* 0% J$ 20 *28 BM7 ,&*,420,&- 0620 

06' /(%*34'* 4(249. ),-60 62=' <''& .)2++'( ,& +'&-06 %='(2++ I;,-3(' M:BQK: >6' J$ 

-(%3/ .6%5'* 2 .,-&,1,42&0 *'4('2.' ,& ),4(%*2)2-' 1(%) *28 BM 0% *28 PQ7 56,+' 06' 

.,-&,1,42&0 *2)2-' (')2,&'* 06' .2)' 1%( 06' LF -(%3/ %='( 06' 06('' 0,)' /%,&0. I;,-3(' 

M:BMK: @ .,),+2( .,-&,1,42&0 0('&* 52. %<.'(='* 1%( 06' J$ -(%3/ 1%( 06' 4(249 .3(124' 



 XM

*'&.,08 I;,-3(' M:BQK: ;%( 2 4%)/+'0' +,.0,&- %1 06' ./'4,1,4 <2.,4 1346.,& *2027 /+'2.' 

('1'( 0% >2<+' M:M: 

 

Osteocyte apoptosis 

 G'0'40,%& %1 %.0'%480' 2/%/0%.,. 5,06 @/%/02- ('='2+'* 0620 06' *2)2-' ,&*34'* 

<8 120,-3' +%2*,&- 20 *28 BM ('.3+0'* ,& .,),+2( 2&* .,-&,1,42&0 ,&4('2.'. ,& 2/%/0%0,4 

%.0'%480'. ,& 06' 4%(0,42+ <%&' 1%( 06' J$ 2&* LF -(%3/ I;,-3(' M:BDK: >6' &3)<'( %1 

2/%/0%0,4 %.0'%480'. *'4('2.'* .,-&,1,42&0+8 1%( <%06 -(%3/. 1(%) *28 BM 0% *28 B#7 2&* 

1(%) *28 B# 0% *28 PQ7 <30 (')2,&'* .,),+2( <'05''& J$ 2&* LF 20 2++ *28. I;,-3(' 

M:BDK: ;%( 2 4%)/+'0' +,.0,&- %1 06' ./'4,1,4 %.0'%480' 2/%/0%.,. *'0'40,%& *2027 /+'2.' 

('1'( 0% >2<+' M:Q: 

 

Flow cytometry 

 ;@SF .6%5'* 0620 56,+' *'+02 SGBB< 52. .,-&,1,42&0+8 *,11'('&0 062& N'(% 

,))'*,20'+8 1%++%5,&- +%2*,&- 20 *28 BM 1%( 06' LF -(%3/7 06,. <'4%)'. &%&E.,-&,1,42&0 

1%( *28 B# 2&* *28 PQ I;,-3(' M:B"K: >6' J$ -(%3/7 6%5'='(7 .6%5'* 2 *'4+,&' ,& *'+02 

SGBB< 1(%) *28 BM7 06(%3-6 *28 B# 2&* *28 PQ7 56'(' ,0 52. .,-&,1,42&0+8 +%5'( 062& 

N'(% 2&* .,-&,1,42&0+8 *,11'('&0 1(%) 06' LF -(%3/ 20 *28 PQ I;,-3(' M:B"K: >6' ('.3+0. 1%( 

*'+02 SGBB" .6%5'* &% .,-&,1,42&0 *,11'('&4' 1(%) N'(% 1%( ',06'( -(%3/ 3&0,+ *28 PQ7 

56'& 06' 05% -(%3/. <'42)' .,-&,1,42&0+8 *,11'('&0: >6' LF -(%3/ 52. .,-&,1,42&0+8 

+%5'( 062& N'(%7 56,+' 06' J$ -(%3/ .6%5'* 2& ,&4('2.,&- 0('&* 20 *28 PQ I;,-3(' M:B#K: 

;%( 2 4%)/+'0' +,.0,&- %1 06' ./'4,1,4 1+%5 480%)'0(8 *2027 /+'2.' ('1'( 0% >2<+' M:D: 

 



 XQ

ELF97 (TRAP) 

 >U@T .02,&,&- 3.,&- VW;X" /6%./620' .6%5'* 2 .,-&,1,42&0 ,&4('2.' ,& *'+02 

>U@T /%.,0,=' ,&0(2 4%(0,42+ ('.%(/0,%& /,0. 1%( *28 B# 2&* *28 PQ 1%( 06' J$ -(%3/7 

56,+' 06' .2)' 6'+* 0(3' 1%( *28 B# 1%( 06' LF -(%3/ I;,-3(' M:BXK: d& 2**,0,%&7 *202 

.6%5'* 2 .0(%&- ,&4('2.,&- 0('&* %='( 0,)' 1%( 06' J$ -(%3/7 <30 &%0 06' LF -(%3/7 

56,46 .6%5'* &% *,11'('&4' 20 *28 PQ I;,-3(' M:BXK: >6' *'+02 /'(4'&0 >U@T /%.,0,=' 

/'(,%.0'2+ /'(,)'0'( .6%5'* 2 .,-&,1,42&0 ,&4('2.' 1(%) *28 BM 2&* B# 0% *28 PQ 1%( 06' 

J$ -(%3/7 56'('2. %&+8 2 0('&* 52. 1%3&* 1%( 06' LF -(%3/ 1%( .,),+2( *28. I;,-3(' 

M:CAK: >6' *'+02 /'(4'&0 >U@T /%.,0,=' '&*%.0'2+ /'(,)'0'( .6%5'* &% *,11'('&4' 24(%.. 

06' 06('' 0,)' /%,&0. 5,06,& '246 -(%3/^ 6%5'='( 2 .,-&,1,42&0 *,11'('&4' 52. 1%3&* 

<'05''& J$ 2&* LF 20 *28 C#7 56,46 4'2.'* 20 *28 PQ I;,-3(' M:CBK: ;%( 2 4%)/+'0' 

+,.0,&- %1 06' VW; X" >U@T 2&* T,4(%EF,(,3. U'* *2027 /+'2.' ('1'( 0% >2<+' M:": 

 

Discussion 

Y%(/6%+%-,4 2&* 6,.0%+%-,42+ '?2),&20,%&. 1(%) ),4(%S> 2&* T,4(%EF,(,3. U'* 

.02,&,&- ('='2+'* 0620 06' *2)2-' ,&*34'* 2 .0('.. 1(2403(' ('./%&.'7 56,46 20 *28 B# 2&* 

PQ ('.3+0'* ,& 2 .,-&,1,42&0 ,&4('2.' ,& 5%='& <%&' 2//%.,0,%& 1%( <%06 J$ 2&* LF7 5,06 

06' J$ -(%3/ <',&- .,-&,1,42&0+8 -('20'( 062& 06' LF -(%3/: >6,. 4%(('./%&*. 0% 5620 

62. <''& .6%5& ,& /('=,%3. 2&,)2+ )%*'+.7 56'(' 120,-3' +%2*,&- ,&*34'* 5%='& <%&' 

1%()20,%&7 56,46 52. <%06 *'/'&*'&0 %& 2&* /(%/%(0,%&2+ 0% 06' 2)%3&0 %1 ,&*34'* 

),4(%*2)2-' I>2),7 c2..'( '0 2+: CAAP^ Y20.3N29,7 J%6+ '0 2+: CAA"^ Z06-'&2&&07 

[(2)'( '0 2+: CAA"K: T'(,%.0'2+ 5%='& <%&' 1%()20,%& 210'( 120,-3' *2)2-' 62. 2+.% <''& 

.6%5& 0% 2,* ,& 06' (2/,* ('4%='(8 %1 56%+' <%&' .0('&-06 56,+' ,&4('2.,&- 120,-3' +,1' 



 XD

IF,+=2 2&* >%36'8 CAA"^ Z06-'&2&&07 [(2)'( '0 2+: CAA"K: L'&4'7 &%0 %&+8 *%'. 2 

.,-&,1,42&0 2)%3&0 %1 *2)2-' (')2,& ,& 2&,)2+. 0620 5'(' 6,&*+,)< .3./'&*'*7 <30 06' 

/(%0'40,=' )'462&,.) 0620 06' 1%()20,%& %1 5%='& <%&' /(%=,*'. 52. &%0 /('.'&07 

.3--'.0,&- 0620 56%+' <%&' .0('&-06 (')2,&. +%5 ,& 2 *,.3.' .'00,&- 1%++%5,&- 120,-3' 

*2)2-': _&' ('2.%& 1%( 06,. 4%3+* <' 06' .,-&,1,42&0 ('*340,%& %1 <+%%* 1+%5 ,& LF 

)%*'+. I$+%%)1,'+* CAADK7 .,&4' ,0 62. <''& .6%5& 0620 06'(' ,. 2 4%(('+20,%& <'05''& 

,&4('2.'* 120,-3' +%2*,&-7 ,&4('2.'* =2.43+2(,08 2&* ,&4('2.'* 5%='& <%&' 1%()20,%& 

IF,+=27 Z06-'&2&&0 '0 2+: CAADK: d& 2**,0,%&7 06' .,-&,1,42&0+8 ('*34'* 5%='& <%&' 

('./%&.' 1%( 06' LF -(%3/ 4%3+* <' *3' 0% 06' ('*340,%& ,& %.0'%<+2.0 ('./%&.,='&'.. 2&* 

<%&' 1%()20,%& (20' 2..%4,20'* 5,06 6,&*+,)< .3./'&.,%& I$+%%)1,'+*7 @++'& '0 2+: CAAC^ 

S2%7 [3(,)%0% '0 2+: CAA"K: 

d0 62. <''& .6%5& 0620 '?4'..,=' 120,-3' +%2*,&- ('.3+0. ,& 5%='& <%&' 1%()20,%& 

,& 2**,0,%& 0% ,&4('2.'* ,&0(2E4%(0,42+ ('.%(/0,%& IL.,'6 2&* F,+=2 CAACK: 

>6' ,&0(2E4%(0,42+ ('.%(/0,%& ('./%&.'7 56,46 62. <''& %<.'(='* ,& .'='(2+ .03*,'. 

I$3((7 Y2(0,& '0 2+: BX#Q^ $3(( 2&* Y2(0,& BXXP^ Y%(, 2&* $3(( BXXP^ $'&0%+,+27 $%84' '0 

2+: BXX#^ a'(<%(-07 b,<.%& '0 2+: CAAA^ W''7 F02,&'. '0 2+: CAACK7 ,. ,&4('2.'* ,& 06' J$ 

-(%3/ 1%++%5,&- 120,-3' *2)2-' <30 &%0 ,& 06' LF -(%3/: >6' '=,*'&4' 1(%) 

,))3&%6,.0%46'),.0(8 ,&*,420'. 0620 06' ,&*34'* ),4(%*2)2-' ('.3+0'* ,& .,),+2( 

2)%3&0. %1 %.0'%480' 2/%/0%.,. 5,06,& 06' 4%(0,42+ <%&' %1 J$ 2&* LF 2&,)2+.: d& 

2**,0,%& 2 .,),+2( *'428 %1 2/%/0%0,4 %.0'%480'. 1(%) *28 BM 0% *28 B# 2&* PQ 52. 

%<.'(='*7 56,46 52. '?/'40'*7 -,='& 0620 06' /(%4'.. %1 2/%/0%.,. 1(%) %&.'0 0% 

/62-%480%.,. %1 06' 2/%/0%0,4 %.0'%480' 42& 029' 2&856'(' 1(%) 05% 0% 06('' 6%3(. 0% %&' 

0% 05% *28. Ip,+927 J',&.0',& '0 2+: CAA"K: 



 X"

F,&4' 5' 62=' ,&*34'* .,),+2( 2)%3&0. %1 ),4(%*2)2-'7 ('.3+0,&- ,& .,),+2( 

2)%3&0. %1 %.0'%480' 2/%/0%.,. ,& 06' J$ 2&* LF 2&,)2+.7 06' +249 %1 ),4(%*2)2-' 

(')%=2+ 2&* 2<.'&4' %1 ,&0(2E4%(0,42+ ('.%(/0,%& /,0. 1%( 06' LF -(%3/ 4%3+* <' *3' 0% 

',06'( 2 *,='(-'&4' %1 06' \02(-'0,&-] )'462&,.) %1 &%()2+ 02(-'0'* (')%*'+,&- %( 2 +249 

%1 %.0'%4+2.0 ('4(3,0)'&0 1%++%5,&- ),4(%*2)2-': V?2),&,&- 06' LFS 2&* )%&%480' 

/%/3+20,%& %1 06' %.0'%4+2.0 +,&'2-' 5,06 1+%5 480%)'0(8 ('='2+'* 0620 2 .,-&,1,42&0 

*'4('2.' ,& )%&%480'. 2&* ,&4('2.' ,& LFS. 62* %443(('* 20 *28 PQ ,& 06' J$ 2&,)2+.7 

5,06 &% 462&-'. 1%( 06' LF 2&,)2+.: >6,. .3--'.0. 0620 2 .6,10 ,& 06' %.0'%4+2.0 +,&'2-' 

%443(('* 1%++%5,&- ,&*340,%& %1 ),4(%*2)2-': >6' '=,*'&4' 1(%) 1+%5 480%)'0(8 

.3--'.0. 2 .,-&,1,42&0 ('4(3,0)'&0 %1 /('E%.0'%4+2.0 4'++. 0% 06' *2)2-'* ('-,%&.7 ('.3+0,&- 

,& 2 &''* 1%( *,11'('&0,20,%& %1 )%&%480'. ,&0% /('E%.0'%4+2.0.: >6,. \*'/+'0,%&] %1 

)%&%480'. 5%3+* 423.' 2 *')2&* 1%( )%('7 ('.3+0,&- ,& 2& ,&4('2.' ,& 06' LFS 

/%/3+20,%& 1%( 06' J$ -(%3/: L'&4'7 06' 1+%5 480%)'0(8 ('.3+0. ,&*,420' 0620 06' 

6,.0%+%-,42+ '=,*'&4' %1 \&% *2)2-' (')%=2+] 20 *28 PQ 1%( LF 52. *3' 0% 2 +249 %1 

%.0'%4+2.0 240,=20,%& 2&* &%0 2 462&-' ,& 06' 02(-'0,&- )'462&,.). %1 (')%*'+,&-: 

>6' +249 %1 %.0'%4+2.0 240,=20,%& 4%3+* <' *3' 0% 2 *'4('2.' ,& ,&0'(.0,0,2+ 1+3,* 

1+%5 56,46 ('.3+0. 1(%) *,.3.' IF0'='&.7 Y'28. '0 2+: CAADK7 /2(0,43+2(+8 -,='& 0620 

.'='(2+ .03*,'. .3--'.0 0620 +%2*E,&*34'* 1+3,* 1+%5 )28 <' &'4'..2(8 0% /(%=,*' 

.311,4,'&0 0(2&./%(0 %1 +2(-'( )%+'43+'. .346 2. /(%0',&. 0% 2&* 1(%) %.0'%480'. I[&%06' 

>20'7 [&%06' '0 2+: BXX#^ [&%06' >20'7 c,'*'('( '0 2+: BXX#K: d& 2**,0,%&7 06' '=,*'&4' 

0620 %.0'%480' 2/%/0%0,4 <%*,'. ,&*34' %.0'%4+2.0%-'&'.,. +'2*,&- 0% +%42+,N'* <%&' 

('.%(/0,%& I[%-,2&&,7 Y2&& '0 2+: CAA#K .3--'.0 0620 *3(,&- 6,&*+,)< .3./'&.,%& %( 

*,.3.'7 06' k240,=20,&-g .,-&2+ 1%( ('.%(/0,%& %1 ),4(%*2)2-' ,. 5,066'+* <8 06' +249 %1 



 X#

1+3,* 1+%5 06(%3-6 06' 42&2+,43+2( .8.0')7 ('.3+0,&- ,& 2 130,+' *'+,='(8 %1 ('.%(/0,%& 

,&,0,20,&- .,-&2+. 1(%) 06' 2/%/0%0,4 %.0'%480'.: 

F,&4' <%&' *%'. &%0 2//'2( 0% ('4%-&,N' ),4(%*2)2-' ,& <%&' &%0 )'462&,42++8 

+%2*'*7 06' 5%='& <%&' ('./%&.' ,& 06' LF -(%3/ 4%3+* <' *3' 0% 06' '+'=20'* .0(2,& 

+'='+. '?/'(,'&4'* *3(,&- 06' 240 %1 +%2*,&-: d0 62. <''& .6%5& 0620 06' /(,)2(8 ,&4'&0,=' 

1%( 5%='& <%&' 1%()20,%& 1%++%5,&- ),4(%*2)2-' ,&*340,%& ,. ('4%='(8 %1 56%+' <%&' 

.0('&-06 IF,+=2 2&* >%36'8 CAA"^ Z06-'&2&&07 [(2)'( '0 2+: CAA"K7 2&* 0620 06' 5%='& 

<%&' ('./%&.' ,. /(%/%(0,%&2+ 0% 06' 2)%3&0 %1 ,&*34'* ),4(%*2)2-' I>2),7 c2..'( '0 2+: 

CAAP^ Y20.3N29,7 J%6+ '0 2+: CAA"^ Z06-'&2&&07 [(2)'( '0 2+: CAA"K: W%2*,&- 423.'. 

'+'=20'* .0(2,& +'='+. ,& 06' <%&'7 56,46 ,&4('2.'. 5,06 *2)2-' 2443)3+20,%& *3' 0% 2 

13(06'( +%.. %1 .0,11&'..: >63. 06' ,&4('2.' ,& 5%='& <%&' ('./%&.' 5,06 )%(' *2)2-' 

4%3+* <' *3' 0% 2& '+'=20,%& ,& 2//+,'* .0(2,&7 2. 2 ('.3+0 %1 06' ,&4('2.' ,& *2)2-' (206'( 

062& 06' *,('40 /('.'&4' %1 06' *2)2-': L'&4'7 2+06%3-6 06' <%&' 42&&%0 \.'&.'] 06' 

*2)2-' ,& 2 *,.3.' .'00,&-7 06' 240 %1 ,&*34,&- 06' *2)2-' 42& /(%=,*' 06' .,-&2+ 0% 

,&*34' 5%='& <%&' 06(%3-6 '+'=20'* .0(2,& +'='+.: 

>6,. .03*8 *')%&.0(20'. 0620 /68.,%+%-,42+ +%2*,&- ,. &'4'..2(8 1%( 06' 

(')%*'+,&- ('/2,( ('./%&.' 0% %443( 1%++%5,&- .,-&,1,42&0 2443)3+20,%& %1 ),4(%*2)2-'7 

.,&4' *,.3.' 2+0'(. 06' ('./%&.' 0% ),4(%*2)2-' 06(%3-6 2 ('*340,%& ,& 5%='& <%&' 

/(%*340,%& 2&* 06' +249 %1 ('.%(/0,%& %1 ),4(%*2)2-': 

>6' *202 .3--'.0. 0620 '+*'(+8 ,&*,=,*32+. 5,06 .'='('+8 +,),0'* 240,=,08 )28 

2443)3+20' 13(06'( ),4(%*2)2-'7 06'('1%(' ,&4('2.,&- 1(2403(' (,.9: >6' 462&-' ,& 

(')%*'+,&- *3' 0% *,.3.' 4%3+* 62=' 4%&.'e3'&4'. 1%( 6%5 .0('.. 1(2403('. 2(' 0('20'*7 

&%0 %&+8 ,& 06' '+*'(+87 <30 2+.% ,& 06' -'&'(2+ /%/3+20,%&: >6' 43(('&0 0('20)'&0 %1 .0('.. 



 XX

1(2403('. <8 42.0,&- 2&*R%( /('='&0,%& %1 +%2*E<'2(,&- )28 06'('1%(' &''* 0% <' 

('4%&.,*'('*7 2. 06' ('/2,( %1 ),4(%*2)2-' )28 /(%4''* )%(' '11'40,='+8 ,& 4%)<,&20,%& 

5,06 )'462&,42+ 3.2-':  

V2(+8 '=,*'&4' 1%( 06,. 62. <''& 1%3&* ,& 0('20)'&0 %1 (3&&,&- ,&h3(,'.7 56'(' 

/('=,%3. 0('20)'&0 )'06%*. 1%( .0('.. 1(2403('. 2..%4,20'* 5,06 +%&- *,.02&4' (3&&,&- 

/('.4(,<' 3/ 0% BC 5''9. %1 06'(2/8 I*%),&2&0+8 &%&E5',-60E<'2(,&-K <'1%(' ('03(&,&- 0% 

2 &%()2+ (3&&,&- .46'*3+' I$2++2.7 >809% '0 2+: BXX"K: U'4'&0 .03*,'. I5,06%30 2& 

'?/'(,)'&02+ <2.,.K 62=' *'4('2.'* 06' ('4%='(8 /'(,%* <8 ,)/+')'&0,&- '2(+,'( 4(%..E

0(2,&,&-7 '&2<+,&- 06' 206+'0' 0% ('03(& 0% 13&40,%& ,& %&+8 .'='& 5''9. I[&%<+%467 

F46(',<)3'++'( '0 2+: CAA"K: >6' ('.3+0. 1(%) 06'.' '2(+8 4+,&,42+ .03*,'. /2(2++'+ 06' 

('.3+0. ,& 06,. .03*8 <8 ,&*,420,&- 0620 06' (')%=2+ %1 +%2* I,:': <8 42.0,&-R*,.3.'K ,&*''* 

423.'. 2& ,)/2,('* ('/2,( /(%4'..: 

W2.0+8 2&* )%.0 ,)/%(02&0+87 56,+' 2 =2(,'08 %1 .03*,'. 62=' /(%/%.'* 0620 06' 

('/2,( %1 ),4(%*2)2-' ,. 0(,--'('* <8 4'++ 2/%/0%.,.7 06'.' ('.3+0. .3--'.0 0620 06,. 

)'462&,.) )28 <' ,&.311,4,'&0 5,06%30 06' .0,)3+3. 2..%4,20'* 5,06 )'462&,42+ 3.2-': 
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Figure 4.1. MicroCT image of tibia with ROI indicated 
 
U'-,%& %1 ,&0'('.0 IU_dK ,&*,420'* 5,06 8'++%57 62. 2 +'&-06 %1 M )) 5,06 ,0. 4'&0'( 
+%420'* #)) /(%?,)2+ 0% 06' 0,<,2R1,<3+2 h3&40,%&: 
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Figure 4.2. Side/forward (SSC/FSC) light scatter profile of cells for flow cytometry 
 
R1: d&4+3.,%& ('-,%&7 4%&02,&,&- YFSg. 2&* )%&%480'. 
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Figure 4.3. Fluorescence intensity histograms 
 
A: SGBB< 1+3%('.4'&4' ,&0'&.,08 6,.0%-(2) IYC ('-,%&H W%420,%& %1 /%.,0,=' 4'++.K 
B: SGBB" 1+3%('.4'&4' ,&0'&.,08 6,.0%-(2) IYB ('-,%&H W%420,%& %1 /%.,0,=' 4'++.K 
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Figure 4.4. Representative microscope image of Basic Fuchsin stained section 
 
J6,0' 2((%5. ,&*,420' *2)2-' 5,06,& 4%(0,42+ .'40,%& 20 06' /'(,%.0'2+ .3(124': 
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Figure 4.5. Representative microscope image of ELF97 (TRAP) stained section 
 
A: >U@T /%.,0,=' %.0'%4+2.0 5,06,& ('.%(/0,%& /,0 
B: >U@T /%.,0,=' ('.%(/0,%& /,0 5,06,& 4%(0'? 
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Figure 4.6. Representative microscope image of Picro-Sirius Red stained section 
 
A: W2)'++2( <%&' 
B: J%='& <%&' 
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Figure 4.7. Representative microscope image of immunohistochemical stained 
section for apoptosis 
 
A: @/%/0%0,4 %.0'%480'. I-(''&K 20 06' /'(,%.0'2+ .3(124' %1 *2)2-'* 4%(0,42+ <%&' 
B: T'(,%.0'2+ .3(124' %1 4%&0(2 +20'(2+ .'40,%& I&%&E*2)2-'* 4%(0,42+ <%&'K 
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Figure 4.8. Percent body mass compared to day 0 
 
V((%( <2(. ,&*,420' .02&*2(* *'=,20,%&.: 
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Figure 4.9. MicroCT cross-sectional mid-ROI images from specimens on day 35 
 
F42+' %& 06' (,-60 ,&*,420'. =%?'+ LZ7 5,06 6,-6'( LZ ,&*,420,&- )%(' ),&'(2+,N'* 
0,..3': 
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Figure 4.10. Delta tissue mineral content 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: V((%( <2(. ,&*,420' .02&*2(* 
*'=,20,%&.: 
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Figure 4.11. Delta cortical area 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: V((%( <2(. ,&*,420' .02&*2(* 
*'=,20,%&.: 
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Figure 4.12. Delta marrow area 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: V((%( <2(. ,&*,420' .02&*2(* 
*'=,20,%&.: 
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Figure 4.13. Delta woven bone area 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: F,&-+' /%3&* IjK7 ,&*,420' 
.,-&,1,42&0 *,11'('&4' <'05''& *28 B# 2&* PQ 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: V((%( 
<2(. ,&*,420' .02&*2(* *'=,20,%&.: 
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Figure 4.14. Delta crack density 
 
G'+02 4(249 *'&.,08 52. *'0'(),&'* 56,+' %),00,&- 5%='& <%&' 2('2.: 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: F,&-+' /%3&* IjK7 ,&*,420' 
.,-&,1,42&0 *,11'('&4' <'05''& *28 B# 2&* PQ 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: 
G%3<+' /%3&* IjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& *28 BM 2&* PQ 5,06,& 06' 
./'4,1,4 -(%3/ IJ$ %( LFK: V((%( <2(. ,&*,420' .02&*2(* *'=,20,%&.: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*/##

*/** 

**/## 
** 

****



 BBM

Delta cracA s6rface *ensity

0

100

200

300

400

500

600

700

WB HS

!
8

r.
S.

D
n.

 (m
ic

ro
m

et
er

Dm
m

=>
)

Day 14
Day 18
Day 35

 
 
Figure 4.15. Delta crack surface density 
 
G'+02 4(249 .3(124' *'&.,08 52. *'0'(),&'* 56,+' %),00,&- 5%='& <%&' 2('2.: 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: F,&-+' /%3&* IjK7 ,&*,420' 
.,-&,1,42&0 *,11'('&4' <'05''& *28 B# 2&* PQ 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: 
G%3<+' /%3&* IjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& *28 BM 2&* PQ 5,06,& 06' 
./'4,1,4 -(%3/ IJ$ %( LFK: V((%( <2(. ,&*,420' .02&*2(* *'=,20,%&.: 
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Figure 4.16. Delta apoptotic osteocytes per cortical area 
 
c3)<'( %1 2/%/0%0,4 %.0'%480'. I/'( 4%(0,42+ 2('2K 52. *'0'(),&'* 56,+' %),00,&- 5%='& 
<%&' 2('2.: 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: F,&-+' /%3&* IjK7 ,&*,420' 
.,-&,1,42&0 *,11'('&4' <'05''& *28 B# 2&* PQ 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: 
G%3<+' /%3&* IjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& *28 BM 2&* PQ 5,06,& 06' 
./'4,1,4 -(%3/ IJ$ %( LFK: >(,/+' /%3&* IjjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& 
*28 BM 2&* B# 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: V((%( <2(. ,&*,420' .02&*2(* 
*'=,20,%&.: 
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Figure 4.17. Delta CD11b 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: -(%3/ 20 0620 *28: 
G%3<+' 2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ 
%& 06' /2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: V((%( <2(. ,&*,420' 
.02&*2(* *'=,20,%&.: 
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Figure 4.18. Delta CD117 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: -(%3/ 20 0620 *28: 
G%3<+' 2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ 
%& 06' /2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: V((%( <2(. ,&*,420' 
.02&*2(* *'=,20,%&.: 
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Figure 4.19. Delta TRAP positive resorption pits 
 
c3)<'( %1 >U@T /%.,0,=' ,&0(2 4%(0,42+ ('.%(/0,%& /,0. I/'( 4%(0,42+ 2('2K 52. *'0'(),&'* 
56,+' %),00,&- 5%='& <%&' 2('2.: 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: -(%3/ 20 0620 *28: 
G%3<+' 2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ 
%& 06' /2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: F,&-+' /%3&* IjK7 
,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& *28 B# 2&* PQ 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( 
LFK: G%3<+' /%3&* IjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& *28 BM 2&* PQ 5,06,& 06' 
./'4,1,4 -(%3/ IJ$ %( LFK: V((%( <2(. ,&*,420' .02&*2(* *'=,20,%&.: 
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Figure 4.20. Delta percent TRAP positive periosteal perimeter 
 
T'(4'&0 >U@T /%.,0,=' /'(,%.0'2+ /'(,)'0'( 52. *%&' 3.,&- 06' %30'( )%.0 .3(124' 
2=2,+2<+' I,:': ,&4+3*,&- 2&8 5%='& <%&' 2//%.,0,%&K: 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: F,&-+' /%3&* IjK7 ,&*,420' 
.,-&,1,42&0 *,11'('&4' <'05''& *28 B# 2&* PQ 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: 
G%3<+' /%3&* IjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& *28 BM 2&* PQ 5,06,& 06' 
./'4,1,4 -(%3/ IJ$ %( LFK: >(,/+' /%3&* IjjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& 
*28 BM 2&* B# 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: V((%( <2(. ,&*,420' .02&*2(* 
*'=,20,%&.: 
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Figure 4.21. Delta percent TRAP positive endosteal perimeter 
 
T'(4'&0 >U@T /%.,0,=' '&*%.0'2+ /'(,)'0'( 52. *%&' 3.,&- 06' ,&&'( )%.0 .3(124' 
2=2,+2<+' I,:': ,&4+3*,&- 2&8 5%='& <%&' 2//%.,0,%&K: 
 
F,&-+' 2.0'(,.9 IqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& J$ =.: LF 20 0620 *28: G%3<+' 
2.0'(,.9. IqqK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& U =.: W +'- 1%( 0620 -(%3/ %& 06' 
/2(0,43+2( *28 I,:': *'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: F,&-+' /%3&* IjK7 ,&*,420' 
.,-&,1,42&0 *,11'('&4' <'05''& *28 B# 2&* PQ 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: 
G%3<+' /%3&* IjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& *28 BM 2&* PQ 5,06,& 06' 
./'4,1,4 -(%3/ IJ$ %( LFK: >(,/+' /%3&* IjjjK7 ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& 
*28 BM 2&* B# 5,06,& 06' ./'4,1,4 -(%3/ IJ$ %( LFK: V((%( <2(. ,&*,420' .02&*2(* 
*'=,20,%&.: 
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Table 4.1. Slope of lateral strain vs. applied force relationship 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 BCC

 J$ LF 
@=-: I-K MPQ:D MCD:M 
F0:G'=: PP:Q PB:Q 

 
Table 4.2. Starting body mass at day 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 BCP

 
Table 4.3. Specific microCT data for ROI 
 
a2+3'. ,& <%+* ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& +'10 2&* (,-60 0,<,2' I,:': =2+3' 1%( 
*'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: 
 
 

        
478 
(mg) 

47D 
(mgDcc) 

RSS 
(mm=T) 

Ryy 
(mm=T) 

RUU 
(mm=T) 

7arro? 
Area 

(mm=>) 

8ortical 
Area 

(mm=>) 
Left Avg 19.12 879.82 5.96 4.05 10.01 2.66 5.15 
  St.Dev. 1.47 8.74 0.90 0.60 1.44 0.25 0.41 
Right Avg 19.17 879.43 6.01 4.06 10.07 2.72 5.12 
  St.Dev. 1.37 17.72 0.77 0.52 1.26 0.31 0.33 
Delta (L - R) Avg -0.05 0.39 -0.05 -0.01 -0.06 -0.05 0.03 

W
B

 

  St.Dev. 0.92 14.16 0.67 0.32 0.92 0.19 0.25 
Left Avg 18.72 872.39 5.93 3.95 9.87 2.70 4.91 
  St.Dev. 1.48 16.77 0.64 0.37 0.93 0.23 0.39 
Right Avg 18.71 874.29 5.83 3.94 9.77 2.64 4.88 
  St.Dev. 1.56 18.80 0.59 0.49 1.01 0.26 0.41 
Delta (L - R) Avg 0.01 -1.89 0.10 0.01 0.10 0.06 0.03 

D
ay

 F
T 

H
S

 

  St.Dev. 0.65 18.12 0.32 0.27 0.43 0.16 0.26 
Left Avg 18.93 889.10 5.65 3.77 9.42 2.49 4.88 
  St.Dev. 0.86 18.24 0.65 0.38 0.96 0.31 0.38 
Right Avg 18.82 881.64 5.77 3.74 9.52 2.46 4.79 
  St.Dev. 1.12 18.50 0.65 0.34 0.89 0.24 0.36 
Delta (L - R) Avg 0.11 7.46 -0.12 0.03 -0.10 0.03 0.08 

W
B

 

  St.Dev. 0.77 18.84 0.31 0.20 0.40 0.22 0.26 
Left Avg 18.45 878.89 5.73 3.73 9.46 2.63 4.95 
  St.Dev. 1.09 13.40 0.67 0.51 1.12 0.26 0.36 
Right Avg 18.82 874.71 5.65 3.75 9.41 2.56 4.92 
  St.Dev. 1.70 15.51 0.81 0.52 1.30 0.33 0.36 
Delta (L - R) Avg -0.37 4.19 0.08 -0.02 0.05 0.07 0.02 

D
ay

 F
V 

H
S

 

  St.Dev. 1.28 14.71 0.59 0.25 0.81 0.17 0.16 
Left Avg 21.57 869.57 6.93 5.12 12.04 2.63 5.68 
  St.Dev. 1.23 16.62 0.64 0.50 1.06 0.23 0.40 
Right Avg 19.34 866.43 6.31 4.42 10.73 2.80 5.04 
  St.Dev. 1.31 16.78 0.55 0.92 1.39 0.28 0.33 
Delta (L - R) Avg >.>W 3.14 1.X> 1.XQ F.WF G1.FV 1.XT 

W
B

 

  St.Dev. 0.99 15.87 0.45 1.00 1.33 0.21 0.34 
Left Avg 19.60 874.63 6.28 4.43 10.71 2.85 5.15 
  St.Dev. 1.25 19.82 0.56 0.55 1.06 0.34 0.35 
Right Avg 19.58 876.74 6.02 4.10 10.12 2.71 4.90 
  St.Dev. 2.65 23.13 0.67 0.48 1.07 0.32 0.35 
Delta (L - R) Avg 0.02 -2.11 0.26 1.WW 1.YQ 1.FT 1.>Y 

D
ay

 W
Y 

H
S

 

  St.Dev. 1.94 14.30 0.54 0.33 0.81 0.18 0.21 



 BCM

        
8ortical area 

(mm=>) 
8r.Dn. 

(cracAsDmm=>) 
8r.S.Dn. 

("mDmm=>) 
Left Avg 5.43 4.28 453.83 
  St.Dev. 0.22 2.07 146.44 
Right Avg 5.48 0.63 69.38 
  St.Dev. 0.27 0.43 71.55 
Delta (L - R) Avg -0.05 W.XX WVT.TY 

W
B

 

  St.Dev. 0.12 2.16 163.33 
Left Avg 5.52 3.54 286.92 
  St.Dev. 0.28 1.39 94.76 
Right Avg 5.51 0.92 112.74 
  St.Dev. 0.21 0.55 67.13 
Delta (L - R) Avg 0.01 >.X> FMT.FV 

D
ay

 F
T 

H
S

 

  St.Dev. 0.25 1.16 81.60 
Left Avg 5.39 2.88 408.92 
  St.Dev. 0.40 2.29 279.27 
Right Avg 5.30 0.74 142.02 
  St.Dev. 0.40 0.30 69.65 
Delta (L - R) Avg 0.09 >.FT >XX.Q1 

W
B

 

  St.Dev. 0.31 2.24 271.57 
Left Avg 5.29 2.59 370.07 
  St.Dev. 0.34 1.70 292.34 
Right Avg 5.17 0.35 62.99 
  St.Dev. 0.28 0.33 72.75 
Delta (L - R) Avg 0.12 >.>Y W1M.1V 

D
ay

 F
V 

H
S

 

  St.Dev. 0.20 1.65 286.14 
Left Avg 5.69 1.40 162.59 
  St.Dev. 0.36 0.56 87.23 
Right Avg 5.72 0.83 94.36 
  St.Dev. 0.31 0.32 36.26 
Delta (L - R) Avg -0.04 0.57 68.23 

W
B

 

  St.Dev. 0.28 0.63 105.63 
Left Avg 5.41 2.95 321.97 
  St.Dev. 0.39 1.37 165.98 
Right Avg 5.45 0.47 40.99 
  St.Dev. 0.50 0.33 29.36 
Delta (L - R) Avg -0.04 >.TV >V1.QV 

D
ay

 W
Y 

H
S

 

  St.Dev. 0.26 1.13 144.57 
 
Table 4.4. Specific basic fuchsin data 
 
a2+3'. ,& <%+* ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& +'10 2&* (,-60 0,<,2' I,:': =2+3' 1%( 
*'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: 
 
 
 



 BCQ

    C of a/o/totic cortical osteocytes A/o/.osteo./er area 
        Lateral Medial Posterior 4otal CD(mm=>) 

Left Avg 52.7 48.0 6.2 106.8 21.0 
  St.Dev. 18.0 14.2 6.6 29.3 6.9 
Right Avg 4.5 5.3 2.8 12.7 2.7 
  St.Dev. 2.9 3.9 2.6 8.6 1.9 
Delta (L - R) Avg 48.2 42.7 3.3 94.2 FV.W 

W
B

 

  St.Dev. 16.4 11.6 6.8 22.8 5.3 
Left Avg 48.0 70.0 6.6 124.6 26.4 
  St.Dev. 16.4 20.9 4.1 24.2 5.3 
Right Avg 6.4 4.0 2.6 13.0 2.7 
  St.Dev. 5.0 2.3 2.1 6.5 1.3 
Delta (L - R) Avg 41.6 66.0 4.0 111.6 >W.M 

D
ay

 F
T 

H
S

 

  St.Dev. 19.7 22.0 4.0 29.6 6.2 
Left Avg 24.1 18.0 7.1 49.3 10.1 
  St.Dev. 14.9 5.6 3.8 15.1 3.2 
Right Avg 5.0 3.4 2.4 10.9 2.2 
  St.Dev. 2.2 1.8 4.7 5.6 1.2 
Delta (L - R) Avg 19.1 14.6 4.7 38.4 M.Q 

W
B

 

  St.Dev. 15.4 5.3 5.9 11.4 2.3 
Left Avg 12.9 20.1 4.7 37.7 7.7 
  St.Dev. 5.2 10.1 3.1 14.4 3.3 
Right Avg 2.7 2.7 2.9 8.3 1.7 
  St.Dev. 1.4 2.9 2.3 2.6 0.5 
Delta (L - R) Avg 10.1 17.4 1.9 29.4 X.F 

D
ay

 F
V 

H
S

 

  St.Dev. 5.1 10.0 3.3 13.7 3.1 
Left Avg 11.0 16.7 5.3 33.0 6.3 
  St.Dev. 4.5 6.5 2.9 10.2 2.0 
Right Avg 3.0 4.0 2.4 9.4 1.8 
  St.Dev. 2.9 3.3 1.5 3.0 0.7 
Delta (L - R) Avg 8.0 12.7 2.9 23.6 T.T 

W
B

 

  St.Dev. 4.5 8.4 2.5 12.9 2.5 
Left Avg 9.1 13.1 4.1 26.4 5.2 
  St.Dev. 4.9 6.8 4.5 8.7 2.0 
Right Avg 3.8 5.1 2.4 11.3 2.4 
  St.Dev. 2.0 2.6 2.3 5.9 1.4 
Delta (L - R) Avg 5.4 8.0 1.8 15.1 >.V 

D
ay

 W
Y 

H
S

 

  St.Dev. 6.3 7.2 3.7 11.0 2.5 
 

Table 4.5. Specific osteocyte apoptosis detection data 
 
a2+3'. ,& <%+* ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& +'10 2&* (,-60 0,<,2' I,:': =2+3' 1%( 
*'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: 
 
 
 
 



 BCD

    8DFF( L gate* 8DFFM L gate* 
        7> gate 7F gate 

Left Avg 26.31 1.11 
  St.Dev. 3.89 1.69 
Right Avg 22.54 1.72 
  St.Dev. 5.40 0.65 
Delta (L - R) Avg 3.77 -0.61 

W
B

 
  St.Dev. 4.29 1.15 
Left Avg 35.82 1.24 
  St.Dev. 5.77 0.77 
Right Avg 28.06 2.26 
  St.Dev. 8.45 1.52 
Delta (L - R) Avg M.MX -1.01 

D
ay

 F
T 

H
S

 

  St.Dev. 4.98 0.85 
Left Avg 16.22 1.00 
  St.Dev. 8.06 1.41 
Right Avg 17.81 1.28 
  St.Dev. 7.40 1.18 
Delta (L - R) Avg -1.58 -0.28 

W
B

 

  St.Dev. 0.68 0.33 
Left Avg 22.27 -0.45 
  St.Dev. 11.71 1.13 
Right Avg 23.56 -0.33 
  St.Dev. 17.72 1.55 
Delta (L - R) Avg -1.29 -0.12 

D
ay

 F
V 

H
S

 

  St.Dev. 6.32 1.33 
Left Avg 26.66 4.52 
  St.Dev. 9.14 4.06 
Right Avg 33.67 3.34 
  St.Dev. 8.56 3.58 
Delta (L - R) Avg GM.1> 1.19 

W
B

 

  St.Dev. 3.47 1.21 
Left Avg 48.53 1.83 
  St.Dev. 4.61 0.73 
Right Avg 47.27 2.25 
  St.Dev. 4.34 0.88 
Delta (L - R) Avg 1.26 G1.T> 

D
ay

 W
Y 

H
S

 

  St.Dev. 3.99 0.35 
 
Table 4.6. Specific flow cytometry data 
 
a2+3'. ,& <%+* ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& +'10 2&* (,-60 0,<,2' I,:': =2+3' 1%( 
*'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: 
 
 
 
 



 BC"

    Zoven (one area 4IA! /os./itsD8orA !ercent /erimeter covere* (L) 
        (mm=>) CDmm=> Periosteal Endosteal 

Left Avg 0.00 0.65 1.06 0.73 
  St.Dev. 0.00 0.51 2.61 0.96 
Right Avg 0.00 0.52 0.74 1.72 
  St.Dev. 0.00 0.23 1.24 1.92 
Delta (L - R) Avg 0.00 0.12 0.32 -0.99 

W
B

 

  St.Dev. 0.00 0.39 2.52 1.83 
Left Avg 0.00 0.66 0.10 0.26 
  St.Dev. 0.00 0.56 0.17 0.68 
Right Avg 0.00 0.62 0.22 0.10 
  St.Dev. 0.00 0.56 0.53 0.26 
Delta (L - R) Avg 0.00 0.03 -0.12 0.16 

D
ay

 F
T 

H
S

 

  St.Dev. 0.00 0.40 0.60 0.76 
Left Avg 0.26 0.68 0.35 0.55 
  St.Dev. 0.08 0.42 0.58 0.73 
Right Avg 0.00 0.38 0.00 6.70 
  St.Dev. 0.00 0.16 0.00 7.76 
Delta (L - R) Avg 1.>X 1.W1 0.35 -6.15 

W
B

 

  St.Dev. 0.08 0.32 0.58 7.04 
Left Avg 0.04 0.26 0.11 0.15 
  St.Dev. 0.03 0.10 0.29 0.41 
Right Avg 0.00 0.06 0.00 0.00 
  St.Dev. 0.00 0.10 0.00 0.00 
Delta (L - R) Avg 1.1T 1.>1 0.11 0.15 

D
ay

 F
V 

H
S

 

  St.Dev. 0.03 0.16 0.29 0.41 
Left Avg 0.63 1.47 15.25 8.38 
  St.Dev. 0.19 1.01 6.47 8.85 
Right Avg 0.00 0.59 0.91 8.26 
  St.Dev. 0.00 0.49 1.39 9.34 
Delta (L - R) Avg 1.XW 1.VV FT.WT 0.12 

W
B

 

  St.Dev. 0.19 0.95 6.82 10.78 
Left Avg 0.16 0.32 7.84 0.75 
  St.Dev. 0.15 0.15 11.56 1.33 
Right Avg 0.00 0.37 0.46 1.11 
  St.Dev. 0.00 0.30 1.00 1.53 
Delta (L - R) Avg 1.FX -0.05 7.38 -0.36 

D
ay

 W
Y 

H
S

 

  St.Dev. 0.15 0.25 11.45 2.17 
 
Table 4.7. Specific TRAP and PSR data 
 
a2+3'. ,& <%+* ,&*,420' .,-&,1,42&0 *,11'('&4' <'05''& +'10 2&* (,-60 0,<,2' I,:': =2+3' 1%( 
*'+02 ,. .,-&,1,42&0+8 *,11'('&0 1(%) N'(%K: 
 

 

 



 BC#

References 

@,46'(7 @:7 Y: U'&0.467 '0 2+: ICAA"K: rc%&<%&' )2((%5E*'(,='* 4,(43+20,&- /(%-'&,0%( 
4'++. 4%&0(,<30' 0% /%.0&202+ &'%=2.43+2(,N20,%& 1%++%5,&- 0,..3' ,.46'),2:r S,(4 
U'. 100IMKH Q#BEX: 

 
$2++2.7 Y: >:7 p: >809%7 '0 2+: IBXX"K: rS%))%& %='(3.' (3&&,&- ,&h3(,'.H *,2-&%.,. 2&* 

)2&2-')'&0:r @) ;2) T68.,4,2& 55I"KH CM"PE#M: 
 
$'&0%+,+27 a:7 >: Y: $%84'7 '0 2+: IBXX#K: rd&0(24%(0,42+ (')%*'+,&- ,& 2*3+0 (20 +%&- <%&'. 

210'( 120,-3' +%2*,&-:r $%&' 23IPKH C"QE#B: 
 
$+%%)1,'+*7 F: @: ICAADK: rG%'. 2+0'('* <+%%* 1+%5 0% <%&' ,& ),4(%-(2=,08 ,)/240 %& 

)'462&%0(2&.*340,%&sr p Y3.43+%.9'+'0 c'3(%&2+ d&0'(240 6IMKH PCMED: 
 
$+%%)1,'+*7 F: @:7 Y: U: @++'&7 '0 2+: ICAACK: rF,0'E 2&* 4%)/2(0)'&0E./'4,1,4 462&-'. ,& 

<%&' 5,06 6,&*+,)< 3&+%2*,&- ,& )203(' 2*3+0 (20.:r $%&' 31IBKH BMXEQ": 
 
$3((7 G: $:7 Y: U: ;%(5%%*7 '0 2+: IBXX"K: r$%&' ),4(%*2)2-' 2&* .9'+'02+ 1(2-,+,08 ,& 

%.0'%/%(%0,4 2&* .0('.. 1(2403('.:r p $%&' Y,&'( U'. 12IBKH DEBQ: 
 
$3((7 G: $: 2&* Y: L%%.'( IBXXQK: r@+0'(20,%&. 0% 06' '& <+%4 <2.,4 1346.,& .02,&,&- 

/(%0%4%+ 1%( 06' *')%&.0(20,%& %1 ),4(%*2)2-' /(%*34'* ,& =,=%:r $%&' 17IMKH 
MPBEP: 

 
$3((7 G: $: 2&* U: $: Y2(0,& IBXXPK: rS2+43+20,&- 06' /(%<2<,+,08 0620 ),4(%4(249. ,&,0,20' 

('.%(/0,%& ./24'.:r p $,%)'46 26IMEQKH DBPED: 
 
$3((7 G: $:7 U: $: Y2(0,&7 '0 2+: IBX#QK: r$%&' (')%*'+,&- ,& ('./%&.' 0% ,& =,=% 120,-3' 

),4(%*2)2-':r p $,%)'46 18IPKH B#XECAA: 
 
S2,++%0E@3-3..'237 @:7 W: a,4%7 '0 2+: ICAAAK: rF/24' 1+,-60 ,. 2..%4,20'* 5,06 (2/,* 

*'4('2.'. %1 3&*'(42(<%?8+20'* %.0'%42+4,& 2&* ,&4('2.'. %1 )2(9'(. %1 <%&' 
('.%(/0,%& 5,06%30 462&-'. ,& 06',( 4,(42*,2& =2(,20,%&H %<.'(=20,%&. ,& 05% 
4%.)%&230.:r S+,& S6') 46I# T0 BKH BBPDEMP: 

 
S2%7 p: p:7 T: [3(,)%0%7 '0 2+: ICAA"K: r@-,&- ,)/2,(. db;Ed ('4'/0%( 240,=20,%& 2&* 

,&*34'. .9'+'02+ ('.,.02&4' 0% db;Ed:r p $%&' Y,&'( U'. 22I#KH BC"BEX: 
 
S2(*%.%7 W:7 G: Y: W23*,'(7 '0 2+: ICAADK: d&6,<,0,%& %1 %.0'%480' 2/%/0%.,. /('='&0. 

240,=20,%& %1 <%&' (')%*'+,&- 210'( 120,-3' ,& =,=%: _(06%/2'*,4 U'.'2(46 
F%4,'087 S6,42-%7 dW: 

 
G2&%=27 c: @:7 F: @: S%+%/87 '0 2+: ICAAPK: rG'-(2*20,%& %1 <%&' .0(3403(2+ /(%/'(0,'. <8 

2443)3+20,%& 2&* 4%2+'.4'&4' %1 ),4(%4(249.:r $%&' 33ICKH BX"ECAQ: 
 



 BCX

V-6<2+,E;20%3('46,7 b:7 F: [6%.+27 '0 2+: ICAAPK: rU%+' %1 U@c[ +,-2&* ,& )'*,20,&- 
,&4('2.'* <%&' ('.%(/0,%& ,& '2(+8 /%.0)'&%/23.2+ 5%)'&:r p S+,& d&='.0 111I#KH 
BCCBEPA: 

 
;,+-3',(27 W: ICAAMK: r;+3%('.4'&4'E<2.'* .02,&,&- 1%( 02(0(20'E('.,.02&0 24,*,4 

/6%./6202.' I>U@TK ,& %.0'%4+2.0. 4%)<,&'* 5,06 %06'( 1+3%('.4'&0 *8'. 2&* 
/(%0%4%+.:r p L,.0%46') S80%46') 52IPKH MBBEM: 

 
;(2&97 p: G:7 Y: U82&7 '0 2+: ICAACK: r@-,&- 2&* 2443)3+20,%& %1 ),4(%*2)2-' ,& 42&,&' 

<%&':r $%&' 30IBKH CABED: 
 
b2=(,'+,7 f:7 f: F6'()2&7 '0 2+: IBXXCK: rd*'&0,1,420,%& %1 /(%-(2))'* 4'++ *'206 ,& .,03 

=,2 ./'4,1,4 +2<'+,&- %1 &34+'2( Gc@ 1(2-)'&020,%&:r p S'++ $,%+ 119IPKH MXPEQAB: 
 
L'()2&7 $: S:7 G: $'()2&7 '0 2+: ICAA#K: @40,=20,%& %1 <%&' (')%*'+,&- 210'( 120,-3'H 

G,11'('&0,2+ ('./%&.' 0% +,&'2( ),4(%4(249. 2&* *,113.' *2)2-': _(06%/2'*,4 
U'.'2(46 F%4,'087 F2& ;(2&4,.4%7 S@: 

 
L'()2&7 $: S:7 W: S2(*%.%7 '0 2+: ICAA"K: >6' ,)/%(02&4' %1 '2(+8 2/%/0%0%4 '='&0. 

1%++%5,&- ),4(%*2)2-' ,& 0(,--'(,&- 120,-3' ,&*34'* <%&' (')%*'+,&-: 
_(06%/2'*,4 U'.'2(46 F%4,'087 F2& G,'-%7 S@: 

 
L'()2&7 $: S:7 $: ;2(,27 '0 2+: ICAADK: F,-&,1,42&0 *,11'('&4'. ,& 120,-3' <'62=,%( 2&* 

(')%*'+,&- ('./%&.' '?,.0 <'05''& 8%3&- 2*3+0 2&* %+*'( 2*3+0 (20 <%&'.: 
_(06%/2'*,4 U'.'2(46 F%4,'087 S6,42-%7 dW: 

 
L'()2&7 $: S:7 G: Y: W23*,'(7 '0 2+: ICAA"K: @430' %.0'%480' ('./%&.' 0% 120,-3' 

),4(%*2)2-'H T(%*340,%& %1 Ld;EB! 2&* aVb;E@: _(06%/2'*,4 U'.'2(46 
F%4,'087 F2& G,'-%7 S@: 

 
L.,'67 f: ;: 2&* Y: p: F,+=2 ICAACK: rd& =,=% 120,-3' +%2*,&- %1 06' (20 3+&2 ,&*34'. <%06 

<%&' 1%()20,%& 2&* ('.%(/0,%& 2&* +'2*. 0% 0,)'E('+20'* 462&-'. ,& <%&' 
)'462&,42+ /(%/'(0,'. 2&* *'&.,08:r p _(06%/ U'. 20IMKH "DME"B: 

 
d&%3'7 Y:7 L: >2&2927 '0 2+: ICAAAK: r@+0'('* <,%46'),42+ )2(9'(. %1 <%&' 03(&%='( ,& 

63)2&. *3(,&- BCA *28. %1 <'* ('.0:r $%&' 26IPKH C#BED: 
 
p,+927 U: W:7 U: F: J',&.0',&7 '0 2+: ICAA"K: rn32&0,18,&- %.0'%<+2.0 2&* %.0'%480' 

2/%/0%.,.H 462++'&-'. 2&* ('52(*.:r p $%&' Y,&'( U'. 22IBAKH BMXCEQAB: 
 
[,)7 L:7 [: d52.29,7 '0 2+: ICAAPK: rS62&-'. ,& <%&' 03(&%='( )2(9'(. *3(,&- BME*28 D 

*'-(''. 6'2*E*%5& <'* ('.0:r p $%&' Y,&'( Y'02< 21IQKH PBBEQ: 
 
[&%<+%467 [:7 W: F46(',<)3'++'(7 '0 2+: ICAA"K: rU2/,* ('62<,+,020,%& /(%-(2))' 

1%++%5,&- .24(2+ .0('.. 1(2403(' ,& 2 +%&-E*,.02&4' (3&&,&- 1')2+' 206+'0':r @(46 
_(06%/ >(23)2 F3(- 127IXKH #AXEBP: 



 BPA

[&%06' >20'7 Y: W:7 Z: [&%06'7 '0 2+: IBXX#K: rV?/'(,)'&02+ '+34,*20,%& %1 )'462&,42+ 
+%2*E,&*34'* 1+3,* 1+%5 2&* ,0. /%0'&0,2+ (%+' ,& <%&' )'02<%+,.) 2&* 13&40,%&2+ 
2*2/020,%&:r @) p Y'* F4, 316IPKH B#XEXQ: 

 
[&%06' >20'7 Y: W:7 T: c,'*'('(7 '0 2+: IBXX#K: rd& =,=% 0(24'( 0(2&./%(0 06(%3-6 06' 

+243&%42&2+,43+2( .8.0') %1 (20 <%&' ,& 2& '&=,(%&)'&0 *'=%,* %1 )'462&,42+ 
+%2*,&-:r $%&' 22ICKH BA"EB": 

 
[%-,2&&,7 b:7 a: Y2&&7 '0 2+: ICAA#K: r@/%/0%0,4 <%*,'. 4%&='8 240,=,08 42/2<+' %1 

,&,0,20,&- %.0'%4+2.0%-'&'.,. 2&* +%42+,N'* <%&' *'.0(340,%&:r p $%&' Y,&'( U'. 
23IDKH XBQEC": 

 
W''7 >: S:7 >: W: @(063(7 '0 2+: ICAAAK: rF'e3'&0,2+ +2<'++,&- %1 ),4(%*2)2-' ,& <%&' 

3.,&- 46'+20,&- 2-'&0.:r p _(06%/ U'. 18ICKH PCCEQ: 
 
W''7 >: S:7 F: Y%6.,&7 '0 2+: ICAAPK: rG'0'40,&- ),4(%*2)2-' ,& <%&':r p @&20 203ICKH 

BDBE"C: 
 
W''7 >: S:7 ;: p: _`$(,'&7 '0 2+: ICAAAK: r>6' &203(' %1 120,-3' *2)2-' ,& <%&':r d&0 p 

;20,-3' 22H #M"EQP: 
 
W''7 >: S:7 @: F02,&'.7 '0 2+: ICAACK: r$%&' 2*2/020,%& 0% +%2*H ),4(%*2)2-' 2. 2 .0,)3+3. 

1%( <%&' (')%*'++,&-:r p @&20 201IDKH MP"EMD: 
 
Y20.3N29,7 L:7 b: U: J%6+7 '0 2+: ICAA"K: rG2)2-,&- 120,-3' +%2*,&- .0,)3+20'. ,&4('2.'. 

,& /'(,%.0'2+ =2.43+2(,08 20 .,0'. %1 <%&' 1%()20,%& ,& 06' (20 3+&2:r S2+4,1 >,..3' 
d&0 80IDKH PXBEX: 

 
Y,*3(27 U: p:7 t: F37 '0 2+: ICAADK: r@ .,)3+20'* 5',-60+'..&'.. .020' *,),&,.6'. 4%(0,42+ 

<%&' 6'2+,&- ('./%&.'.:r p Y3.43+%.9'+'0 c'3(%&2+ d&0'(240 6IMKH PC"E#: 
 
Y%('8EL%+0%&7 V: U: 2&* U: [: b+%<3. IBXX#K: rL,&*+,)< 3&+%2*,&- %1 -(%5,&- (20.H 2 

)%*'+ 1%( /('*,40,&- .9'+'02+ 462&-'. *3(,&- ./24' 1+,-60:r $%&' 22IQ F3//+KH 
#PFE##F: 

 
Y%('8EL%+0%&7 V: U: 2&* U: [: b+%<3. ICAACK: rL,&*+,)< 3&+%2*,&- (%*'&0 )%*'+H 

0'46&,42+ 2./'40.:r p @//+ T68.,%+ 92IMKH BPD"E"": 
 
Y%(,7 F: 2&* G: $: $3(( IBXXPK: rd&4('2.'* ,&0(24%(0,42+ (')%*'+,&- 1%++%5,&- 120,-3' 

*2)2-':r $%&' 14ICKH BAPEX: 
 
Y3,(7 T:7 F: p: F2)/+'7 '0 2+: ICAA"K: rV11'40 %1 120,-3' +%2*,&- 2&* 2..%4,20'* )20(,? 

),4(%*2)2-' %& <%&' <+%%* 1+%5 2&* ,&0'(.0,0,2+ 1+3,* 1+%5:r $%&' 40IMKH XM#EQD: 
 
_`$(,'&7 ;: p:7 G: >28+%(7 '0 2+: ICAACK: r@& ,)/(%='* +2<'++,&- 0'46&,e3' 1%( )%&,0%(,&- 

),4(%4(249 -(%506 ,& 4%)/240 <%&':r p $,%)'46 35IMKH QCPED: 



 BPB

_`$(,'&7 ;: p:7 G: >28+%(7 '0 2+: ICAAPK: rY,4(%4(249 2443)3+20,%& 20 *,11'('&0 ,&0'(=2+. 
*3(,&- 120,-3' 0'.0,&- %1 4%)/240 <%&':r p $,%)'46 36I"KH X"PE#A: 

 
T(,.<87 U: G:7 Y: J: U2).'87 '0 2+: ICAA"K: r@-,&- ('*34'. .9'+'02+ <+%%* 1+%57 

'&*%06'+,3)E*'/'&*'&0 =2.%*,+20,%&7 2&* c_ <,%2=2,+2<,+,08 ,& (20.:r p $%&' 
Y,&'( U'. 22I#KH BC#AE#: 

 
T3460+'(7 L:7 F: c: Y'+%2&7 '0 2+: IBX##K: r@(' /,4(%E*8' ('240,%&. 1%( 4%++2-'&. 

e32&0,020,='s S6'),42+ 2&* 6,.0%46'),42+ 4%&.,*'(20,%&.:r L,.0%46'),.0(8 88IPE
DKH CMPEQD: 

 
F292027 >:7 $: T: L2++%(2&7 '0 2+: ICAAPK: rF9'+'02+ 3&+%2*,&- ,&*34'. ('.,.02&4' 0% ,&.3+,&E

+,9' -(%506 1240%( d %& <%&' 1%()20,%&:r $%&' 32IDKH DDXE#A: 
 
F292027 >:7 f: J2&-7 '0 2+: ICAAMK: rF9'+'02+ 3&+%2*,&- ,&*34'. ('.,.02&4' 0% ,&.3+,&E+,9' 

-(%506 1240%(Ed Idb;EdK <8 ,&6,<,0,&- 240,=20,%& %1 06' db;Ed .,-&2+,&- /206528.:r 
p $%&' Y,&'( U'. 19IPKH MPDEMD: 

 
F,+=27 Y: p: 2&* G: S: >%36'8 ICAA"K: r$%&' 1%()20,%& 210'( *2)2-,&- ,& =,=% 120,-3' 

+%2*,&- ('.3+0. ,& ('4%='(8 %1 56%+'E<%&' )%&%0%&,4 .0('&-06 2&* ,&4('2.'* 
120,-3' +,1':r p _(06%/ U'. 25ICKH CQCEDB: 

 
F,+=27 Y: p:7 $: @: Z06-'&2&&07 '0 2+: ICAADK: rd& =,=% .9'+'02+ ,)2-,&- %1 B#;E1+3%(,*' 

5,06 /%.,0(%& '),..,%& 0%)%-(2/68 ('='2+. *2)2-'E 2&* 0,)'E*'/'&*'&0 
('./%&.'. 0% 120,-3' +%2*,&- ,& 06' (20 3+&2:r $%&' 39ICKH CCXEPD: 

 
F0'='&.7 L: f:7 G: U: Y'28.7 '0 2+: ICAADK: rT('..3(' -(2*,'&0. 2&* 0(2&./%(0 ,& 06' 

)3(,&' 1')3( 3/%& 6,&*+,)< .3./'&.,%&:r $%&' 39IPKH QDQE"C: 
 
F0%='(7 F: Y:7 U: $: Y2(0,&7 '0 2+: IBXXPK: d& =,=% +2<'+,&- %1 ),4(%*2)2-' ,& 4%(0,42+ 

<%&' 0,..3': _(06%/2'*,4 U'.'2(46 F%4,'087 F2& ;(2&4,.4%7 S@: 
 
F0(2&-'7 U:7 U: U: ;(,,.7 '0 2+: IBXXQK: rT(%-(2))'* 4'++ *'206 *3(,&- )2))2(8 -+2&* 

,&=%+30,%&:r Y'06%*. S'++ $,%+ 46H PQQED#: 
 
F5'207 ;:7 L: T3460+'(7 '0 2+: IBXDMK: rF,(,3. U'* ;P<2 @. @ F02,& ;%( S%&&'40,=' 

>,..3':r @(46 T206%+ 78H DXE"C: 
 
>2),7 @: V:7 T: c2..'(7 '0 2+: ICAAPK: rc%&,&=2.,=' 120,-3' 1(2403(' )%*'+ %1 06' (20 3+&2:r 

p _(06%/ U'. 21IDKH BAB#ECM: 
 
>2),7 @: V:7 T: c2..'(7 '0 2+: ICAACK: r>6' (%+' %1 ,&0'(.0,0,2+ 1+3,* 1+%5 ,& 06' (')%*'+,&- 

('./%&.' 0% 120,-3' +%2*,&-:r p $%&' Y,&'( U'. 17IBBKH CAPAE": 
 
>2&7 F: G:7 >: p: *' a(,'.7 '0 2+: ICAA"K: r_.0'%480'. .3<h'40'* 0% 1+3,* 1+%5 ,&6,<,0 

%.0'%4+2.0 1%()20,%& 2&* <%&' ('.%(/0,%&:r $%&' 41IQKH "MQEQB: 



 BPC

>3(&'(7 S: L:7 Y: T: @960'(7 '0 2+: IBXXBK: r@ &%&,&=2.,='7 ,& =,=% )%*'+ 1%( .03*8,&- 
.0(2,& 2*2/0,=' <%&' )%*'+,&-:r $%&' 12ICKH "PEX: 

 
Z06-'&2&&07 $: @:7 Y: L: [(2)'(7 '0 2+: ICAA"K: rF9'+'02+ .'+1E('/2,(H .0('.. 1(2403(' 

6'2+,&- <8 (2/,* 1%()20,%& 2&* *'&.,1,420,%& %1 5%='& <%&':r p $%&' Y,&'( U'. 
22IBAKH BQM#EQD: 

 
a'(<%(-07 _:7 b: p: b,<.%&7 '0 2+: ICAAAK: rW%.. %1 %.0'%480' ,&0'-(,08 ,& 2..%4,20,%& 5,06 

),4(%*2)2-' 2&* <%&' (')%*'+,&- 210'( 120,-3' ,& =,=%:r p $%&' Y,&'( U'. 
15IBKH DAE": 

 
a'(<%(-07 _:7 c: @: >200%&7 '0 2+: ICAACK: rF/20,2+ *,.0(,<30,%& %1 $2? 2&* $4+EC ,& 
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CHAPTER 5 

 

DAILY SHORT-TERM WEIGHTBEARING DURING DISUSE RESCUES THE 
MICRODAMAGE REPAIR AND REMODELING RESPONSE 

 

Summary 

$rior (or) (c,a.ter 1) 3emonstrates t,at 7one remo3eling in res.onse to fatig;e 

micro3amage is a7sent 3;ring 3is;se< =,e .;r.ose of t,is st;3y (as to e?amine t,e 

effects of 3aily s,ort@term (eig,t 7earing 3;ring 3is;se on targete3 remo3eling< 

At 3ay BC 1B male D@mont, ol3 S.rag;e Da(ley rats (ere assigne3 to ,in3lim7 

s;s.ension (it, 3aily (eig,t 7earing follo(ing 3amage in3;cing loa3ing (GH)< =,e rats 

(ere 3ivi3e3 into t(o s;7gro;.s (nJKB)C corres.on3ing to t(o sacrifice time .oints (3ay 

"L or #M)< At 3ay "1C animals (ere anest,etiNe3 an3 t,eir left ti7ia ;n3er(ent cyclic fo;r@

.oint 7en3ing in or3er to .ro3;ce fatig;e@in3;ce3 micro3amage< At sacrificeC rig,tOleft 

.airs of ti7iae (ere assigne3 to one of t,ree treatments (it,in eac, s;7gro;.P flo( 

cytometry for GSQ an3 monocyte mar)ers (nJD)C 7asic f;c,sin staining for micro3amage 

assessment (nJR)C or ,istologicalOimm;no,istoc,emical staining ($icr@Siri;s Se3C TUVWR 

(=SA$)C A.o.tag) (nJR)< $rior to stainingC mor.,ologic analysis (as con3;cte3 on t,e 

last t(o gro;.s ;sing #D microQ=< 

Xor.,ologic e?aminations reveale3 t,at t,e 3amage in3;ce3 a stress fract;re 

res.onse res;lting in a significant increase in (oven 7one a..osition< At 3ay #MC t,e GH 

gro;. ,a3 a significant 3ecrease in micro3amageC corres.on3ing to t,at seen (it, normal 
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(eig,t 7earing (HY) animals (c,a.ter 1)< =,e GH gro;. ,a3 similar amo;nts of 

a.o.totic osteocytes as HY or .;rely ,in3lim7 s;s.en3e3 (GS) animals< Vlo( cytometry 

in3icate3 t,at a s,ift in t,e osteoclast lineage ,a3 occ;rre3 3;e to a 3ecrease of 

monocytes in t,e 3amage3 leg for t,e GH gro;.C (,ic, (as similar to t,e HY gro;. 

(c,a.ter 1)< TUVWR staining s;..orte3 t,is evi3enceC s,o(ing a significant increase in 

=SA$ .ositive resor.tion .its for 3ay "L an3 #M for t,e GH gro;.< 

=,is st;3y 3emonstrates t,at intermittent 3aily .,ysiological loa3ing can reverse 

t,e lac) of remo3eling in res.onse to micro3amage .resent 3;ring 3is;se< Alt,o;g, 

intermittent loa3ing cannot resc;e t,e re3;ction in (oven 7one .ro3;ction follo(ing 

micro3amageC t,e targete3 resor.tion of micro3amage is restore3< V;rt,ermoreC t,is st;3y 

cements t,e res;lts .resente3 in c,a.ter 1C t,at t,e mec,anisms 7y (,ic, targete3 

remo3eling is Zsense3[ are in3ee3 very 3e.en3ent on t,e stim;l;s associate3 (it, 

mec,anical ;sage< 

 

Introduction 

\n c,a.ter 1C (e 3emonstrate3 t,at .,ysiological loa3ing is necessary for t,e 

remo3eling re.air res.onse to occ;r follo(ing significant acc;m;lation of micro3amageC 

since 3is;se alters t,e micro3amage res.onse t,ro;g, a re3;ction in (oven 7one 

.ro3;ction an3 t,e lac) of resor.tion of micro3amage< =,e lac) of osteoclast activation 

(as ,y.ot,esiNe3 to 7e 3;e a 3ecrease in interstitial fl;i3 flo(C (,ic, ,as 7een o7serve3 

3;ring 3is;se (StevensC Xeays et al< KBBD)< \n a33itionC several st;3ies s;ggest t,at loa3@

in3;ce3 fl;i3 flo( may 7e necessary to .rovi3e s;fficient trans.ort of larger molec;les 

s;c, as .roteins to an3 from osteocytes (]not,e =ateC ]not,e et al< "WWL^ ]not,e =ateC 
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_ie3erer et al< "WWL)< As mentione3 in c,a.ter #C t,ere is evi3ence t,at osteocyte 

a.o.totic 7o3ies initiate osteoclastogenesis lea3ing to localiNe3 7one resor.tion 

(]ogianniC Xann et al< KBBL) s;ggesting t,at 3;ring ,in3lim7 s;s.ension or 3is;se t,e 

Zactive[ signal for resor.tion of micro3amage is in,i7ite3 3;e to t,e lac) of fl;i3 flo( 

t,ro;g, t,e canalic;lar systemC t,;s .reventing 3elivery of resor.tion initiating signals 

from t,e a.o.totic osteocytes< 

 $revio;s st;3ies ,ave s,o(n t,at s;.ine (eig,t@7earing e?ercise (it,in a lo(er 

7o3y negative c,am7er (UY_$) co;nteracts 7one loss associate3 (it, long@term 7e3 rest 

(Smit,C Davis@Street et al< KBB#^ `(artC Gargens et al< KBBR)< Go(ever 3aily stan3ing for 

one or t(o ,o;rs .er 3ay 3;ring KL 3ays of ,in3lim7 s;s.ension 3oes not alter t,e 

3eterioration of cortical 7one 3;e to ,in3lim7 s;s.ension (`,angC S;n et al< KBB#)< Tarly 

clinical evi3ence for recovery of 7one re.air in a 3is;se setting (it, mo3erate 

.,ysiologic loa3ing comes from t,e treatment of r;nning relate3 stress fract;res< 

$revio;s treatment met,o3s for stress fract;res associate3 (it, long 3istance r;nning 

.rescri7e3 ;. to "K (ee)s of t,era.y (3ominantly non@(eig,t@7earing) 7efore ret;rning 

to a normal r;nning sc,e3;le (YallasC =yt)o et al< "WWR)< Go(ever a recent st;3y 

((it,o;t an e?.erimental 7asis) 3ecrease3 t,e recovery .erio3 7y im.lementing earlier 

cross@training an3 ena7le3 t,e at,lete to ret;rn to f;nction in only seven (ee)s 

(]no7loc,C Sc,rei7m;eller et al< KBBR)< =,is early clinical st;3y .arallels t,e res;lts 

.resente3 in c,a.ter 1 in3icating t,at t,e removal of loa3 (i<e< t,e castingO3is;se) in3ee3 

ca;ses an im.aire3 re.air .rocess< 

\t (as t,erefore ,y.ot,esiNe3 t,at mo3erate .,ysiological loa3ing co;l3 

.otentially resc;e t,e im.aire3 micro3amage re.air t,at (as .resente3 in c,a.ter 1< Yy 
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allo(ing intermittent .erf;sion of t,e alrea3y re3;ce3 fl;i3 flo( (it,in t,e canalic;lar 

system in a 3is;se settingC t,e a.o.totic 3istress signal from osteocytes s;rro;n3ing 

microcrac)s co;l3 .otentially reac, t,eir cyto)ine rece.tors an3 t,ere7y in3;ce targete3 

remo3eling< Gence mo3erate e?ercise co;l3 .otentially .rove a3ea;ate for in3;cing t,e 

necessary re.air .rocess<   

=,e .;r.ose of t,is st;3y (as t,erefore to e?amine t,e effects of 3aily one ,o;r 

(eig,t 7earing 3;ring 3is;se on 7one remo3eling in res.onse to micro3amageC 

.otentially .rovi3ing s;..ort to early clinical evi3ence t,at mo3erate loa3ing can re3;ce 

recovery time from stress fract;res< 

 

Materials and Methods 

Animals 

Xale D@mont, ol3 a3;lt S.rag;e Da(ley rats (#MB@1MBg) (ere o7taine3 from 

Garlan< Animals (ere allo(e3 to acclimate to o;r animal facility for at least t,ree 3ays 

7efore 7eing incl;3e3 in t,e e?.eriment< =,e .roce3;res ;se3 in t,is st;3y (ere 

a..rove3 7y t,e bniversity Qommittee on bse an3 Qare of Animals at t,e bniversity of 

Xic,igan< Animals (ere ,o;se3 in in3ivi3;al non@ventilate3 cages in a tem.erat;re@

controlle3 room (DL@RKV) (it, a "KP"K@,o;r lig,t@3ar) cycle< Hater an3 rat c,o( (ere 

.rovi3e3 a3 li7it;m< 

 

Experimental protocol 

After acclimation (3ay B)C 1B rats (ere assigne3 to ,in3lim7 s;s.ension (it, 

3aily (eig,t 7earing follo(ing 3amage in3;cing loa3ing (GH)< =,e rats (ere 3ivi3e3 
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into t(o s;7gro;.s (nJKB)C corres.on3ing to t(o sacrifice time .oints (3ay "L or #M)<  At 

3ay B all animals (ere 7riefly anest,etiNe3 (it, an isofl;rane (Kc)Po?ygen 7alanceC an3 

,in3lim7 s;s.en3e3 ;sing a c;stom ma3e ,in3lim7 s;s.ension system (see c,a.ters # 

an3 1) for "1 3ays< _ormal (eig,t 7earing (HY) an3 ,in3lim7 s;s.en3e3 (Oo 3aily 

(eig,t 7earing (GS) animals from a .revio;s e?.eriment (see c,a.ter 1) serve3 as 

.ositive an3 negative controlsC res.ectively< At 3ay "1C all animals (ere anest,etiNe3 an3 

t,eir left ti7ia ;n3er(ent fo;r@.oint 7en3ing in or3er to .ro3;ce fatig;e@in3;ce3 

micro3amage ;sing t,e same loa3 .rotocol .resente3 in c,a.ter 1< =,e rig,t ti7ia serve3 

as a non@loa3e3C com.letely ;n3amage3 control< dnce t,e loa3ing regime (as com.leteC 

animals (ere allo(e3 f;ll recovery from anest,esiaC an3 s;7sea;ently ,in3lim7 

s;s.en3e3 again< Starting at 3ay "MC animals (ere ;n,oo)e3 from t,e tail s;s.ension 

mec,anism in t,eir cages an3 allo(e3 one ,o;r of f;ll (eig,t 7earing (it,in t,eir 

res.ective cages eac, 3ayC after (,ic, t,ey (ere ret;rne3 to ,in3lim7 s;s.ension<   

At sacrificeC rig,tOleft .airs of ti7iae (ere caref;lly 3issecte3 free of soft tiss;e 

an3 assigne3 to one of t,ree treatments (it,in eac, s;7gro;.P Vlo( cytometry for GSQ 

an3 monocyte mar)ers (nJD)C 7asic f;c,sin staining for micro3amage assessment (nJR)C 

or reg;lar ,istological an3 imm;no,istoc,emical staining (nJR)< $rior to stainingC 

mor.,ologic analysis (as con3;cte3 on t,e last t(o gro;.s ;sing #D microQ=< 

=,e .rotocols for microcom.;te3 tomogra.,y (microQ=)C flo( cytometry 

(VAQS)C 7asic f;c,sin stainingC ,istology (TUVWR (=SA$)C $icro@Siri;s Se3) an3 

imm;no,istoc,emistry (A.o.tag a.o.tosis 3etection) (ere .erforme3 similarly as 

e?.laine3 in c,a.ter 1< =,e region of interest (Sd\) (as i3entical to t,e Sd\ .resente3 in 
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c,a.ter 1C (it, a lengt, of 1 mm (it, its center locate3 L mm .ro?imal to t,e ti7iaOfi7;la 

e;nction<  

 

Statistics and graph nomenclature 

=o com.are 3amage3 to ;n3amage3 contralateral si3esC .aire3 t@tests (ere ;se3< 

A t(o@(ay A_dfA (it, a .ost ,oc correction (as ;se3 for com.arisons 7et(een 

e?.erimental gro;.s (GHOHYOGS) an3 7et(een gro;.s at 3ifferent time .oints< 

Significance (as 3efine3 as .!B<BM< =,e analysis (as .erforme3 ;sing S$SS statistical 

soft(are (S$SSC Q,icagoC \U)< 

Vor ease of com.arison 7et(een 3ifferent time .ointsC t,e term Delta is ;se3 to 

in3icate 3ifferences 7et(een contra@lateral lim7sP 

Delta J Ueft ti7ia g Sig,t ti7ia J Damage3 ti7ia g bn3amage3 ti7ia 

=,is term (ill 7e ;se3 t,ro;g,o;t t,e .resentation of t,e res;lts< 

   

Results 

Animal health 

=,e starting 7o3y mass at 3ay B (as not significantly 3ifferent 7et(een t,e GHC 

HY an3 GS gro;.s (=a7le M<")< Yy 3ay "1C animals in t,e GH gro;. ,a3 lost K<Wc 

(eig,t (Vig;re M<")C (,ic, (as not significantly 3ifferent t,an t,e 1<Kc (eig,t loss for 

t,e GS gro;.< Qommon for all t,ree gro;.s (as a slig,t 3ecline in (eig,t (3ay "L) after 

loa3ing at 3ay "1C follo(e3 7y a slig,t incline in 7o3y (eig,t at 3ay #M< Yot, incline an3 

3ecline for all gro;.s (ere non@significantC an3 not significantly 3ifferent 7et(een t,e 

GH an3 GS gro;.s (Vig;re M<")<     
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Microcomputed tomography (microCT) 

 XicroQ= analysis s,o(e3 a tren3 of an increase in 3elta tiss;e mineral content 

(=XQ) at 3ay #M for t,e GH gro;.C (,ic, (as similar to t,e GS gro;.C 7;t significantly 

smaller t,an for t,e HY gro;. (Vig;re M<K)< =,e 3elta cortical area (as significantly 

increase3 at 3ay #M for t,e GH gro;.C (,ic, (as similar to t,e HY an3 GS gro;.sC 7;t 

(it, a slig,t increase com.are3 to t,e GS gro;. (Vig;re M<#)< VinallyC t,e 3elta marro( 

area (as significantly increase3 at 3ay #M for t,e GH gro;.C (,ic, (as similar to t,e GS 

gro;.< =,is c,ange at 3ay #M (as significantly 3ifferent t,an t,e HY gro;. (Vig;re M<1)< 

Vor a com.lete listing of t,e s.ecific microQ= 3ata for t,e GH gro;.C .lease refer to 

=a7le M<K< See c,a.ter 1 for s.ecific 3ata on t,e HY an3 GS gro;.s< 

 

Picro-Sirius Red stain (woven bone formation) 

 Sections staine3 (it, $icro@Siri;s Se3 in3icate3 t,at significant initial (oven 

7one formation ,a3 occ;rre3 at 3ay "L for t,e GH gro;.< =,is (as significantly less t,an 

t,e HY gro;.C 7;t more t,an t,e GS gro;.< At 3ay #M t,is ,a3 increase3 slig,tly for t,e 

GH gro;.C (,ic, (as similar to t,e GS gro;.C 7;t (it, t,e HY gro;. ,aving 

significantly more (oven 7one 3e.osite3 t,an 7ot, t,e GS an3 GH gro;. (Vig;re M<M)<    

 

Basic fuchsin stain (microdamage quantification) 

 Sections staine3 (it, 7asic f;c,sin for micro3amage a;antification s,o(e3 t,at 

similar significant amo;nts of micro3amage remaine3 at 3ay "L for t,e HYC GS an3 GH 

gro;.s (Vig;re M<D)< =,e crac) s;rface 3ensity (as also similar 7et(een t,e t,ree gro;.s 

at 3ay "L (Vig;re M<R)< =,e GH gro;. s,o(e3 a significant 3ecrease in micro3amage 
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from 3ay "L to 3ay #MC (,ic, (as similar to (,at (as o7serve3 for t,e HY gro;.C (,ile 

3amage remaine3 t,e same for t,e GS gro;. over t,e t,ree time .oints (Vig;re M<D)< A 

similar significant tren3 (as o7serve3 for t,e GH gro;. for t,e crac) s;rface 3ensity 

from 3ay "L to 3ay #M (Vig;re M<R)< Vor a com.lete listing of t,e s.ecific 7asic f;c,sin 

3ata for t,e GH gro;.C .lease refer to =a7le M<#< See c,a.ter 1 for s.ecific 3ata on t,e 

HY an3 GS gro;.s< 

 

Osteocyte apoptosis 

 A.o.tag osteocyte a.o.tosis 3etection reveale3 t,at t,e 3amage in3;ce3 7y 

fatig;e loa3ing at 3ay "1 res;lte3 in significant amo;nts of cortical a.o.totic osteocytes 

at 3ay "L an3 #M for t,e GH gro;. (Vig;re M<L)< =,e n;m7er of a.o.totic osteocytes 

3ecrease3 significantly from 3ay "L to 3ay #M for t,e GH gro;.< =,e res;lts (ere similar 

to t,e 3ata for t,e HY an3 GS gro;.s at 3ay "L an3 #M (Vig;re M<L)< Vor a com.lete 

listing of t,e s.ecific osteocyte a.o.tosis 3etection 3ata for t,e GH gro;.C .lease refer to 

=a7le M<1< See c,a.ter 1 for s.ecific 3ata on t,e HY an3 GS gro;.s< 

 

Flow cytometry 

 VAQS s,o(e3 t,at 3elta QD""7 (as significantly 3ecrease3 at 3ay "L for t,e GH 

gro;. (Vig;re M<W)< At 3ay #M t,e 3ecrease only follo(s a strong tren3 (.JB<BR)C 7;t is 

significantly lo(er t,an t,e GS gro;.< =,is is similar to t,e 3ifference 7et(een t,e HY 

an3 GS gro;. at 3ay #M (Vig;re M<W)< =,e res;lts for 3elta QD""R s,o(e3 no significant 

3ifference from Nero for t,e GH gro;. at any time .ointsC in a33ition to not 7eing 

significantly 3ifferent t,an t,e HY or GS gro;. at eit,er 3ay "L or 3ay #M (Vig;re M<"B)< 
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Vor a com.lete listing of t,e s.ecific flo( cytometry 3ata for t,e GH gro;.C .lease refer 

to =a7le M<M< See c,a.ter 1 for s.ecific 3ata on t,e HY an3 GS gro;.s< 

 

ELF97 (TRAP staining) 

 =SA$ staining ;sing TUVWR .,os.,ate s,o(e3 a significant increase in 3elta 

=SA$ .ositive intra cortical resor.tion .its for 3ay "L an3 3ay #M for t,e GH gro;. 

(Vig;re M<"")< =,e GH gro;. increase3 significantly from 3ay "L to 3ay #MC s,o(ing a 

similar tren3 as t,e HY gro;.< \n a33itionC t,e GH an3 GS gro;.s (ere significantly 

3ifferent at 3ay #M (Vig;re M<"")< Delta .ercent =SA$ .ositive .eriosteal .erimeter 

s,o(e3 a significant increase from 3ay "L to 3ay #M (Vig;re M<"K)C (,ile 3elta .ercent 

=SA$ .ositive en3osteal .erimeter s,o(e3 no 3ifference 7et(een 3ay "L an3 #M for t,e 

GH gro;. (Vig;re M<"#)< Vor a com.lete listing of t,e TUV WR =SA$ an3 $icro@Siri;s 

Se3 3ata for t,e GH gro;.C .lease refer to =a7le M<D< See c,a.ter 1 for s.ecific 3ata on 

t,e HY an3 GS gro;.s< 

 

Discussion 

Alt,o;g, t,e GH gro;. lost a significant amo;nt of 7o3y (eig,t over t,e first "1 

3ays 3;ring assimilationC t,is (as similar to t,e GS gro;.< \n a33itionC t,e maintenance 

of 7o3y (eig,t from 3ay "1C t,ro;g, 3ay "L an3 3ay #M for all t,ree gro;.s in3icate3 t,at 

general animal ,ealt, (as maintaine3 over t,e co;rse of t,e e?.eriment<   

Similar to HY an3 GS gro;.s mor.,ologic an3 ,istological e?aminations from 

microQ= an3 $icro@Siri;s Se3 staining reveale3 t,at t,e 3amage in3;ce3 a stress fract;re 

res.onseC (,ic, at 3ay "L an3 #M res;lte3 in a significant increase in (oven 7one 
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a..osition for t,e GH gro;.< =,is res.onse (as similar in magnit;3e to t,e GS gro;. at 

7ot, 3ay "L an3 #M (it, res.ect to (oven 7one a..ositionC alt,o;g, t,e microQ= res;lts 

in3icate3 t,at GH ,a3 a slig,tly larger 3elta cortical area t,an GS at 3ay #M< =,e marro( 

area (as similar 7et(een GH an3 GSC 7;t still significantly larger t,an for t,e HY 

gro;.< =,is (o;l3 in3icate t,at general resor.tion contin;es at t,e en3osteal .erimeter 

for t,e GH an3 GS gro;.sC or t,at significant (oven 7one a..osition occ;rs at t,e 

en3osteal s;rface for t,e HY gro;.< Go(ever since t,e $icro@Siri;s Se3 e?aminations 

3i3 not reveal significant (oven 7one 3e.osition at t,e en3osteal s;rfaceC t,e former 

e?.lanation seems to 7e more .la;si7le< 

bnli)e t,e ,in3lim7 s;s.en3e3 animalsC t,e GH gro;. ,a3 a significant re3;ction 

in remaining 3amage from 3ay "1 an3 "L< =,is (o;l3 in3icate t,at ;nli)e t,e GS gro;.C 

osteoclasts m;st ,ave 7een activate3 to remove t,e remaining 3amage< Since t,e (oven 

7one 3e.osition (as still less t,an t,e HY gro;. at 3ay #MC t,is (o;l3 s;ggest t,at 

alt,o;g, t,e mec,anism targeting t,e local resor.tion of microcrac)s seems to ,ave 7een 

activate3 for t,e GH gro;.C t,e .rotective mec,anism t,at t,e formation of (oven 7one 

.rovi3es is no longer .resent< =,is im.lies t,at (,ole 7one strengt, remains lo( in a 

3is;se setting follo(ing fatig;e 3amage 3es.ite t,e 3aily .,ysiological loa3ing< dne 

reason for t,is co;l3 7e t,e significant re3;ction of 7loo3 flo( in GS mo3els (Yloomfiel3 

KBBD)C since t,ere is a correlation 7et(een increase3 fatig;e loa3ingC increase3 

vasc;larity an3 increase3 (oven 7one formation (SilvaC bt,genannt et al< KBBD)< 

Go(ever it ,as also 7een s,o(n t,at one ,o;r of 3aily loa3ing for ,in3lim7 s;s.en3e3 

animals seems to .revent a3verse c,anges in myocar3ial contractility an3 t,erefore 7loo3 

flo( (`,angC S;n et al< KBB#)< Gence t,e significantly smaller (oven 7one res.onse for 
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t,e GH an3 GS gro;. seem most li)ely to 7e stemming from t,e re3;ction in osteo7last 

res.onsiveness an3 7one formation rate associate3 (it, ,in3lim7 s;s.ension 

(Yloomfiel3C Allen et al< KBBK^ QaoC ];rimoto et al< KBBR)< 

=,e intra@cortical resor.tion res.onseC (,ic, ,as 7een seen in several st;3ies 

(Y;rrC Xartin et al< "WLM^ Y;rr an3 Xartin "WW#^ Xori an3 Y;rr "WW#^ YentolilaC Yoyce et 

al< "WWL^ fer7orgtC hi7son et al< KBBB^ UeeC Staines et al< KBBK)C is evi3ent for 7ot, t,e 

HY an3 GH gro;. follo(ing fatig;e 3amage< =,e imm;no,istoc,emical res;lts in3icate 

t,at t,ere is a similar 3ecay of a.o.totic osteocytes from 3ay "1 to 3ay "L an3 #MC 

ass;ming t,at t,e initial a.o.tosis is similar at 3ay "1 for t,e GS an3 GH gro;.< \t ,as 

7een s,o(n t,at similar amo;nts of micro3amage ,ave 7een in3;ce3 for all t,ree gro;.sC 

res;lting in similar amo;nts of osteocyte a.o.tosis< Gence t,e increase in intra@cortical 

resor.tion .its an3 significant micro3amage removal for t,e GH gro;. s;ggest t,at t,e 

lac) of osteoclast recr;itment for t,e GS gro;. (as recovere3 (it, 3aily mo3erate 

loa3ing< 

=,e e?amination of t,e GSQ an3 monocyte .o.;lation of t,e osteoclast lineage 

(it, flo( cytometry for t,e GH gro;. reveale3 a significant 3ecrease in monocytes at 

3ay "LC (it, a contin;e3 strong 3ecreasing tren3 at 3ay #MC (,ere t,e GH gro;. (as 

significantly lo(er t,an t,e GS gro;.C 7;t similar to t,e HY gro;.< =,e increase in GSQ 

.o.;lation at 3ay #M for t,e HY gro;. (as not mirrore3 for t,e GH gro;.C (,ic, (as 

not significantly 3ifferent t,an t,e HY an3 GS gro;.s at any time .oint< Alt,o;g, t,e 

GSQ res;lts (ere inconcl;siveC t,e monocyte res;lts in3icate t,atC as (it, t,e HY gro;.C 

a s,ift in t,e osteoclast lineage ,as occ;rre3 follo(ing in3;ction of micro3amage< Gence 
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t,e flo( cytometry res;lts in cone;nction (it, t,e =SA$ staining s;ggest t,at targete3 

osteoclast activation an3 recr;itment ,as in3ee3 7een recovere3 (it, 3aily loa3ing< 

As 3isc;sse3 in c,a.ter 1C t,ere is evi3ence t,at interstitial fl;i3 flo( 3ecreases 

3;ring 3is;se (StevensC Xeays et al< KBBD)C an3 t,at cell@to@cell comm;nications via ga. 

e;nctions 7et(een osteocyte@li)e XUd@i1 cells 3ecrease significantly in m;lti@

3imensional gravity (Xats;3aC ];rata et al< KBBD)< Go(everC in .arallel (it, t,e i3ea t,at 

loa3@in3;ce3 fl;i3 flo( may 7e necessary to .rovi3e s;fficient trans.ort of larger 

molec;les s;c, as .roteins to an3 from osteocytes (]not,e =ateC ]not,e et al< "WWL^ 

]not,e =ateC _ie3erer et al< "WWL)C t,e res;lts for t,e GH gro;. seem to in3icate t,at 

intermittent loa3ing 3;ring 3is;se can .rovi3e eno;g, interstitial fl;i3 flo( to 3istri7;te 

any Zactive[ signal of resor.tion< 

=,is st;3y 3emonstrates t,at intermittent 3aily .,ysiological loa3ing can reverse 

t,e lac) of remo3eling in res.onse to micro3amage .resent 3;ring 3is;se< Alt,o;g, 

intermittent loa3ing cannot resc;e t,e re3;ction in (oven 7one .ro3;ction follo(ing 

micro3amageC t,e targete3 resor.tion of micro3amage is revive3< =,e 3ata s;ggest t,at 

t,e early clinical evi3ence ((it,o;t an e?.erimental 7asis) of a 3ecrease3 recovery time 

from a r;nning@relate3 stress fract;re (it, early mo3erate e?ercise (]no7loc,C 

Sc,rei7m;eller et al< KBBR) is 3;e to t,e increase in targete3 remo3eling< V;t;re larger 

scale clinical st;3ies s,o;l3 t,erefore 7e 3one to test t,e effect of c,anging t,e c;rrent 

treatment of stress fract;res from .revention of loa3@7earing to a mo3erate e?ercise 

treatment< 
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VinallyC t,is st;3y cements t,e res;lts .resente3 in c,a.ter 1C t,at t,e mec,anism 

7y (,ic, targete3 remo3eling is Zsense3[ is in3ee3 3e.en3ent on t,e stim;l;s associate3 

(it, mec,anical ;sage< 
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Figure 5.1. Percent body mass compared to day 0 
 
Trror 7ars in3icate stan3ar3 3eviations< 
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Figure 5.2. Delta tissue mineral content 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Trror 7ars in3icate 
stan3ar3 3eviations< 
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Figure 5.3. Delta cortical area 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Trror 7ars in3icate 
stan3ar3 3eviations< 
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Figure 5.4. Delta marrow area 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Trror 7ars in3icate 
stan3ar3 3eviations< 
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Figure 5.5. Delta woven bone area 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Single .o;n3 (k)C 
in3icate significant 3ifference 7et(een 3ay "L an3 #M (it,in t,e s.ecific gro;. (HYC GS 
or GH)< Trror 7ars in3icate stan3ar3 3eviations< 
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Figure 5.6. Delta crack density 
 
Delta crac) 3ensity (as 3etermine3 (,ile omitting (oven 7one areas< 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Single .o;n3 (k)C 
in3icate significant 3ifference 7et(een 3ay "L an3 #M (it,in t,e s.ecific gro;. (HYC GS 
or GH)< Do;7le .o;n3 (kk)C in3icate significant 3ifference 7et(een 3ay "1 an3 #M (it,in 
t,e s.ecific gro;. (HYC GS or GH)< Trror 7ars in3icate stan3ar3 3eviations< 
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Figure 5.7. Delta crack surface density 
 
Delta crac) s;rface 3ensity (as 3etermine3 (,ile omitting (oven 7one areas< 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Single .o;n3 (k)C 
in3icate significant 3ifference 7et(een 3ay "L an3 #M (it,in t,e s.ecific gro;. (HYC GS 
or GH)< Do;7le .o;n3 (kk)C in3icate significant 3ifference 7et(een 3ay "1 an3 #M (it,in 
t,e s.ecific gro;. (HYC GS or GH)< Trror 7ars in3icate stan3ar3 3eviations< 
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Figure 5.8. Delta apoptotic osteocytes per cortical area 
 
_;m7er of a.o.totic osteocytes (.er cortical area) (as 3etermine3 (,ile omitting (oven 
7one areas< 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Single .o;n3 (k)C 
in3icate significant 3ifference 7et(een 3ay "L an3 #M (it,in t,e s.ecific gro;. (HYC GS 
or GH)< Do;7le .o;n3 (kk)C in3icate significant 3ifference 7et(een 3ay "1 an3 #M (it,in 
t,e s.ecific gro;. (HYC GS or GH)< =ri.le .o;n3 (kkk)C in3icate significant 3ifference 
7et(een 3ay "1 an3 "L (it,in t,e s.ecific gro;. (HYC GS or GH)< Trror 7ars in3icate 
stan3ar3 3eviations< 
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Figure 5.9. Delta CD11b 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< =ri.le asteris) (jjj)C 
in3icate significant 3ifference 7et(een GH vs< gro;. at t,at 3ay< Trror 7ars in3icate 
stan3ar3 3eviations< 
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Figure 5.10. Delta CD117 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< =ri.le asteris) (jjj)C 
in3icate significant 3ifference 7et(een GH vs< gro;. at t,at 3ay< Trror 7ars in3icate 
stan3ar3 3eviations< 
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Figure 5.11. Delta TRAP positive resorption pits 
 
_;m7er of =SA$ .ositive intra cortical resor.tion .its (.er cortical area) (as 3etermine3 
(,ile omitting (oven 7one areas< 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Single .o;n3 (k)C 
in3icate significant 3ifference 7et(een 3ay "L an3 #M (it,in t,e s.ecific gro;. (HYC GS 
or GH)< Do;7le .o;n3 (kk)C in3icate significant 3ifference 7et(een 3ay "1 an3 #M (it,in 
t,e s.ecific gro;. (HYC GS or GH)< Single 3ollar sign (l)C in3icate significant 3ifference 
7et(een GS vs< GH at t,at 3ay< Trror 7ars in3icate stan3ar3 3eviations< 
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Figure 5.12. Delta percent TRAP positive periosteal perimeter 
 
$ercent =SA$ .ositive .eriosteal .erimeter (as 3one ;sing t,e o;ter most s;rface 
availa7le (i<e< incl;3ing any (oven 7one a..osition)< 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Single .o;n3 (k)C 
in3icate significant 3ifference 7et(een 3ay "L an3 #M (it,in t,e s.ecific gro;. (HY or 
GS)< Do;7le .o;n3 (kk)C in3icate significant 3ifference 7et(een 3ay "1 an3 #M (it,in t,e 
s.ecific gro;. (HY or GS)< =ri.le .o;n3 (kkk)C in3icate significant 3ifference 7et(een 
3ay "1 an3 "L (it,in t,e s.ecific gro;. (HY or GS)< Trror 7ars in3icate stan3ar3 
3eviations< 
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Figure 5.13. Delta percent TRAP positive endosteal perimeter 
 
$ercent =SA$ .ositive en3osteal .erimeter (as 3one ;sing t,e o;ter most s;rface 
availa7le (i<e< incl;3ing any (oven 7one a..osition)< 
 
Single asteris) (j)C in3icate significant 3ifference 7et(een HY vs< gro;. at t,at 3ay< 
Do;7le asteris)s (jj)C in3icate significant 3ifference 7et(een S vs< U leg for t,at gro;. 
on t,e .artic;lar 3ay (i<e< 3elta is significantly 3ifferent from Nero)< Single .o;n3 (k)C 
in3icate significant 3ifference 7et(een 3ay "L an3 #M (it,in t,e s.ecific gro;. (HY or 
GS)< Do;7le .o;n3 (kk)C in3icate significant 3ifference 7et(een 3ay "1 an3 #M (it,in t,e 
s.ecific gro;. (HY or GS)< =ri.le .o;n3 (kkk)C in3icate significant 3ifference 7et(een 
3ay "1 an3 "L (it,in t,e s.ecific gro;. (HY or GS)< Trror 7ars in3icate stan3ar3 
3eviations< 
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 HY GS GH 
Avg< (g) 1#M<D 1KD<1 1#B<M 
St<Dev< ##<M #"<M "L<R 

 
Table 5.1. Starting body mass at day 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 "DB

        
TMC 
(mg) 

TMD 
(mg/cc) 

Ixx 
(mm^4) 

Iyy 
(mm^4) 

Izz 
(mm^4) 

Marrow 
Area 

(mm^2) 

Cortical 
Area 

(mm^2) 
Left Avg 18.35 879.94 5.68 3.67 9.35 2.63 4.88 
  St.Dev. 0.58 15.22 0.51 0.30 0.76 0.35 0.28 
Right Avg 18.35 872.86 5.75 3.75 9.50 2.63 4.93 
  St.Dev. 0.83 9.54 0.62 0.42 0.99 0.37 0.35 
Delta (L - R) Avg 0.00 7.07 -0.07 -0.08 -0.15 0.00 -0.06 

D
ay

 1
8 

H
W

 

  St.Dev. 0.72 15.40 0.47 0.28 0.62 0.17 0.15 
Left Avg 18.94 862.95 5.85 4.08 9.93 2.54 5.00 
  St.Dev. 1.03 11.09 0.84 0.44 1.23 0.34 0.41 
Right Avg 18.36 865.89 5.52 3.76 9.28 2.42 4.62 
  St.Dev. 1.22 8.51 0.73 0.38 1.05 0.30 0.31 
Delta (L - R) Avg 0.58 -2.94 0.33 0.31 0.64 0.12 0.38 

D
ay

 3
5 

H
W

 

  St.Dev. 1.00 12.83 0.68 0.33 0.92 0.16 0.36 
 
Table 5.2. Specific microCT data for ROI 
 
fal;es in 7ol3 in3icate significant 3ifference 7et(een left an3 rig,t ti7iae (i<e< val;e for 
3elta is significantly 3ifferent from Nero)< 
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Cortical area 

(mm^2) 
Cr.Dn. 

(cracks/mm^2) 
Cr.S.Dn. 

("m/mm^2)
Left Avg 5.43 4.03 551.32
  St.Dev. 0.25 3.10 455.62
Right Avg 5.28 0.65 102.29
  St.Dev. 0.32 0.74 116.06
Delta (L - R) Avg 0.14 3.38 449.03D

ay
 1

8 

H
W

 

  St.Dev. 0.26 2.86 401.34
Left Avg 5.53 0.78 104.04
  St.Dev. 0.33 0.14 43.42
Right Avg 5.25 0.42 60.84
  St.Dev. 0.32 0.37 66.74
Delta (L - R) Avg 0.27 0.36 43.21D

ay
 3

5 

H
W

 

  St.Dev. 0.41 0.36 76.29
 
Table 5.3. Specific basic fuchsin data 
 
fal;es in 7ol3 in3icate significant 3ifference 7et(een left an3 rig,t ti7iae (i<e< val;e for 
3elta is significantly 3ifferent from Nero)< 
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    # of apoptotic cortical osteocytes Apop.osteo.per area 
        Lateral Medial Posterior Total #/(mm^2) 

Left Avg 28.8 19.2 7.8 55.8 11.4 
  St.Dev. 22.0 5.3 2.8 20.7 4.1 
Right Avg 3.3 6.3 3.0 12.7 2.4 
  St.Dev. 1.4 2.0 2.1 3.7 0.7 
Delta (L - R) Avg 25.5 12.8 4.8 43.2 8.9 D

ay
 1

8 

H
W

 

  St.Dev. 22.8 5.9 3.9 20.1 4.0 
Left Avg 10.8 12.0 5.5 28.3 5.5 
  St.Dev. 7.4 7.9 3.0 5.3 0.9 
Right Avg 5.2 6.2 2.2 13.5 2.6 
  St.Dev. 1.7 2.6 1.7 3.6 0.6 
Delta (L - R) Avg 5.7 5.8 3.3 14.8 2.9 D

ay
 3

5 

H
W

 

  St.Dev. 7.8 7.1 3.3 4.7 0.8 
 
Table 5.4. Specific osteocyte apoptosis detection data 
 
fal;es in 7ol3 in3icate significant 3ifference 7et(een left an3 rig,t ti7iae (i<e< val;e for 
3elta is significantly 3ifferent from Nero)< 
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    CD11b % gated CD117 % gated 
        M2 gate M1 gate 

Left Avg 24.92 4.95 
  St.Dev. 14.73 10.44 
Right Avg 31.05 3.06 
  St.Dev. 13.45 8.15 
Delta (L - R) Avg -6.13 1.89 D

ay
 1

8 

H
W

 
  St.Dev. 3.83 5.84 
Left Avg -2.21 3.66 
  St.Dev. 11.30 2.56 
Right Avg 4.00 4.66 
  St.Dev. 10.21 4.43 
Delta (L - R) Avg -6.21 -1.01 D

ay
 3

5 

H
W

 

  St.Dev. 7.53 2.26 
 
Table 5.5. Specific flow cytometry data 
 
fal;es in 7ol3 in3icate significant 3ifference 7et(een left an3 rig,t ti7iae (i<e< val;e for 
3elta is significantly 3ifferent from Nero)< 
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    Woven bone area TRAP pos.pits/CorA Percent perimeter covered (%) 
        (mm^2) #/mm^2 Periosteal Endosteal 

Left Avg 0.13 0.30 0.00 0.00 
  St.Dev. 0.08 0.10 0.00 0.00 
Right Avg 0.00 0.13 0.00 0.09 
  St.Dev. 0.00 0.10 0.00 0.21 
Delta (L - R) Avg 0.13 0.17 0.00 -0.09 

D
ay

 1
8 

H
W

 

  St.Dev. 0.08 0.15 0.00 0.21 
Left Avg 0.18 0.55 5.60 1.17 
  St.Dev. 0.10 0.27 4.53 1.85 
Right Avg 0.00 0.03 0.00 0.60 
  St.Dev. 0.00 0.08 0.00 0.93 
Delta (L - R) Avg 0.18 0.51 5.60 0.57 

D
ay

 3
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  St.Dev. 0.10 0.30 4.53 2.06 
 
Table 5.6. Specific TRAP and PSR data 
 
fal;es in 7ol3 in3icate significant 3ifference 7et(een left an3 rig,t ti7iae (i<e< val;e for 
3elta is significantly 3ifferent from Nero)< 
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CHAPTER 6 

 

CONCLUSION 

 The potential effects of geriatrics related factors such as age and disuse on the 

potential increase in the risk of whole bone fracture was not well understood. This thesis set 

out to examine the effect of these factors on microdamage-related remodeling, which has 

been associated with whole bone fracture risk when dramatically altered. 

In chapter 2 the effects of age on bone remodeling in response to microdamage 

were explored in addition to introducing a unique experimental animal model. The model 

which consists of a novel hydraulic chamber was developed for the specific need to apply 

controlled cyclic loads to intact distal femoral trabecular bone in rats. The 

implementation showed that the model was capable of delivering effective 

characterization of damage accumulation and subsequent response in trabecular bone in 

vivo. Using the model in a cohort of mature and old rats, older rats showed a reduced 

ability of bone to recover after damage and removal of microdamage was altered with 

advancing age. The absent or delayed remodeling response has later been shown to be 

present in cortical bone, too (Herman, Faria et al. 2006). The reason behind the alteration 

with age could be due to an increase in mineralization with aging (Nagaraja, Lin et al. 

2007). Increased mineralization has been shown to cause a reduction in toughness in bone 

with age (Zioupos 2001). Because of this, bone loses its ability to generate diffuse 
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damage, creating more linear microcracks, that have a unique ability to activate targeted 

remodeling (Herman, Berman et al. 2008). In addition, aging causes a decrease in lacunae 

density that correlates with an increase in crack density (Vashishth, Verborgt et al. 2000; 

Frank, Ryan et al. 2002). Hence, considering ceteris paribus, aging bone will accumulate 

more microdamage if remodeling rates are not increased. Substantial increases in the rate 

of remodeling may not be possible in old animals due to a reduction of skeletal blood 

flow (Prisby, Ramsey et al. 2007) and impairment of IGF-I receptor activation with age 

(Cao, Kurimoto et al. 2007). As a result, even if aging bone is capable of detecting 

microdamage, the localized delivery of cells necessary for remodeling is reduced, and the 

subsequent bone formation is blunted, allowing more microdamage to accumulate due to 

a reduced remodeling response. 

The positive feedback loop between increases in microdamage and subsequent 

remodeling could be enhanced by secondary effects associated with aging such as disuse, 

caused by a decrease in physical activity and/or infirmity. Hence, not only is 

microdamage repair in general reduced in elderly individuals, but the cessation of activity 

with increased age could possibly exacerbate this reduction. Considering this, sporadic 

periods of activity intermixed with times of disuse, might make individuals prone to 

microdamage accumulation, and therefore at increased risk of fracture. The influence of 

disuse on bone remodeling could therefore potentially provide clinically important insight 

into the relationship between microdamage accumulation and increased fracture risk in 

the elderly. The experiments addressing this question are described in chapter 4 and 5, 

while the necessary animal models associated with these experiments were presented in 

chapter 3. 
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In chapter 3, two animal models capable of inducing cortical microdamage in the 

tibia were presented. The development, the subsequent testing to fulfill experimental 

criteria, and subsequent selection for future experiments were shown. Finally the 

development and verification of a third animal model capable of simulating disuse, was 

presented. The hindlimb suspension model was shown to be capable of inducing 

physiologic changes similar to other disuse models in the literature. 

With the successful verification and selection of two animal models capable of 

inducing microdamage and simulating disuse, chapter 4 utilized them to examine the 

effect of disuse on remodeling associated with microdamage. The experiment in chapter 

4 demonstrated that disuse altered the microdamage response through a reduction in 

woven bone production and the lack of resorption of microdamage. Most importantly, 

while many studies have proposed that the repair of microdamage is triggered by cell 

apoptosis (Burr, Martin et al. 1985; Burr and Martin 1993; Mori and Burr 1993; 

Bentolila, Boyce et al. 1998; Verborgt, Gibson et al. 2000; Lee, Staines et al. 2002; 

Cardoso, Laudier et al. 2006), the present results suggest that this mechanism may be 

insufficient without the stimulus associated with mechanical usage. Specifically, we 

showed that although disuse did not alter the amount of apoptotic osteocytes caused by 

induced microdamage, the ‘active’ signal for resorption of microdamage was not present, 

which could be due to a the lack of fluid flow through the canalicular system, resulting in 

a futile delivery of resorption initiating signals from the apoptotic osteocytes. 

Chapter 5 examined the concept that daily short-term loading of damage induced 

bones could rescue this ‘active’ signal for resorption of microdamage by providing a 

short stimulus of loading hypothesized to induce fluid flow through the cortex. The 
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results showed that intermittent loading did not increase woven bone production above 

that observed in hindlimb suspended animals following microdamage, but the targeted 

resorption of microdamage was rescued. This underscored the results found in chapter 4, 

effectively showing that the mechanism by which targeted remodeling is ‘sensed’ is 

indeed dependent on the stimulus associated with mechanical usage. 

In aggregate the data presented in this thesis suggest that elderly individuals with 

severe activity reductions may further accumulate microdamage and therefore have an 

increased fracture risk, due to a dual reduction in targeted remodeling by both age and 

disuse. In addition, the data suggest that elderly individuals could prevent microdamage 

accumulation through moderate exercise. This knowledge also supports the potential for 

altering the current clinical therapeutic paradigm for treating stress fractures. Rather than 

implementing a regimen of extended non-weight bearing (current treatment method), 

future clinical studies should evaluate the potential of controlled therapeutic loading on 

the rate and extent of recovery from stress fractures.   
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