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Chapter 1 

 
Introduction  

 
 
The baker’s yeast Saccharomyces cerevisiae has a long history of commercial 

utility and an equally important tradition as a workhorse for modern science.  At present, 

Saccharomyces cerevisiae is the most thoroughly studied model organism in modern 

biological research due to its ease of manipulation and genetic tractability.  

Several features of Saccharomyces cerevisiae make it an ideal model organism 

(Botstein, and Fink, 1988). It is non-pathogenic and has a rapid growth rate, with a 

doubling time of approximately 90 minutes. It is inexpensive to grow and maintain. It is 

stable in both the haploid and diploid state, thereby facilitating genetic analysis. Its 

haploid genome size is relatively small (1.2 x 107 bp) and is packaged into 16 well-

characterized chromosomes (ranging in size from 230k bp to 2,352k bp)(Suter, Auerbach, 

and Stagljar, 2006). The yeast genome sequencing project, finished in 1996, estimated 

6400 genes in the genome (Goffeau, Barrell, et al, 1996). The organization of the yeast 

genome is compact, with genes representing 70% of the total sequence. Only ~4% of 

yeast genes contain introns, which are usually close to the start of each coding sequence. 

Yeast genes and corresponding protein products are well annotated. Information 

regarding these genes is readily available through the Saccharomyces Genome Database 

(SGD) at www.yeastgenome.org. Compared against other eukaryotic model organisms, S. 
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cerevisiae has very active machinery for homologous recombination, allowing for the 

precise insertion of DNA sequence at specific genomic locations.  

The budding yeast, as a unicellular organism, is obviously much less complex 

than a human being, whose genome has 25,000 coding genes classified into hundreds of 

cell types and arranged into multiple tissues and organs. Nonetheless, yeast has provided 

us with valuable information essential for the understanding of fundamental cellular 

processes, such as DNA repair mechanisms, protein metabolism, the cell cycle and even 

cancer signaling pathways.  Since 40% of yeast proteins share amino acid sequence 

similarity with as least one human protein, the study of human disease related genes can 

also benefit from studies of orthologs in yeast (Bharucha, and Kumar, 2007). Although 

Saccharomyces cerevisiae normally doesn’t cause infection, it can still be used as a 

model to learn more about pathogenic fungi; in particular, the study of yeast biology has 

informed our understanding of regulatory pathways and drug treatment, because S. 

cerevisiae, as a fungal species, shares many similar characteristics with its pathogenic 

relatives (Rappleye, and Goldman, 2006).   

 

Yeast as a model for genomics  

Upon completion of the yeast genome sequencing project, researchers could 

comprehensively study one organism at a number of levels for the first time in history. In 

addition to the basic genome itself, there are the transcriptome (the complete set of 

mRNA molecules), the kinome (the complete set of kinases), the proteome (the complete 

set of proteins) and the metabolome (the complete set of metabolites)(Oliver, 2002). The 

combination of information from all these levels will give us a whole picture of the 
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organism.  Among these “omes”, the genome is largely context independent and 

relatively stable, which makes it easier to be studied. A number of yeast genomic 

resources and technologies have been developed and have proven to be useful in 

discovering novel genes, revealing cellular mechanisms, and in identifying gene function 

and drug targets.  

 

Yeast genome annotation and transposon mutagenesis 

The first task to be done after completion of the yeast genome sequencing project 

was to accurately and completely annotate the genome. A number of computational and 

experimental approaches have been utilized to identify genes within genome sequence. 

Traditional computational methods for gene annotation include the comparison of 

sequence, motif, and structure with known proteins and translated expressed sequence 

tags (Wilson, Kreychman, and Gerstein, 2000). However, not every gene exhibits a clear 

ortholog or obvious motif. Experimental methods, such as gene cloning or microarray-

based technologies to characterize expressed sequences from representative cDNA 

libraries were also used; however, weakly expressed genes or genes expressed only under 

certain conditions might be underrepresented in cDNA libraries. Since each method has 

its own shortcoming, none of them could provide comprehensive information for gene 

identification and annotation. To address this issue, an international consortium had set 

up standards for genome annotation (Mewes, Albermann, et al, 1997). The algorithm and 

criteria employed in this identification process tends to overlook open reading frames 

(ORFs) with a length less than 100 codons. Only small ORFs that correspond to known 

genes or have strong sequence similarity to known genes were annotated. ORFs nested 
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within longer ORFs on either the same or complementary strand were excluded. By this 

approach, some true genes may be overlooked, and other methods may be required to 

identify these genes. 

Transposons are mobile genetic elements that can integrate themselves in the 

genome in a targeted or non-targeted manner. Because transposons can be used as 

effective lab tools for gene disruption and gene trapping, they can serve as part of a 

useful method for gene identification.  In particular, transposon-based gene traps that 

insert without strong sequence bias into genomic DNA can be used to uncover genes, 

independent of previous conceptions regarding gene placement and organization. In 

yeast, transposons for genomic studies have been derived from either the endogenous 

yeast transposon Ty1 or from bacterial transposons. Since bacterial transposons exhibit 

less insertion site bias, they are particularly useful for large-scale genomic studies. The 

bacterial transposons used most extensively for genomic studies in yeast were derived 

from the transposon Tn3 or Tn7, containing a 5’-truncated lacZ reporter gene, a 3XHA 

epitope tag and selectable markers for yeast and bacteria (Vidan, and Snyder, 2001). 

Using these transposons, a yeast genomic library was mutagenized in E. coli first, 

followed by the excision of genomic DNA with the transposon insertion and 

transformation into yeast.  The yeast transposon insertion mutants were then assayed for 

β-galactosidase activity to identify expressed sequences; by virtue of the promoter-less 

and 5’-truncated lacZ reporter, only insertions in frame with protein-coding sequence 

should yield β-galactosidase activity. By this approach, a collection of 28,428 yeast 

mutants with defined transposon insertion sites were generated, encompassing insertions 

affecting 3750 genes. (Craig, 1997) In addition to its utility as a simple gene trap, this 
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transposon-mutagenesis system can be used for various purposes, such as for detection of 

protein localization (Kumar, Agarwal, et al, 2002), and for the identification of 

phenotypes caused by the mutation. The transposon insertion point can be identified by 

sequencing outward from the insertion region. This transposon insertion mutant 

collection is uniquely useful as a tool for the discovery of novel genes. In Kumar et al. 

(Kumar, Harrison, et al, 2002), 137 novel genes were discovered using a similar method 

in combination with microarray analysis, such that coding sequence can be identified in a 

strand-specific manner. Among these genes, 107 of them were short, with a length of less 

than 100 codons. A previously overlooked class of genes nested antisense to other genes 

also emerged in this study.  Similar kinds of antisense genes have been identified in other 

eukaryotes as protein-coding sequences or as naturally occurring RNA involved in 

regulatory processes. This novel group of genes could play some important roles in yeast 

as well. The principal shortcoming in these transposon-based approaches lies in the fact 

that transposon insertion is not completely random, and, thus, some regions of the 

genome may not be accessible to transposon mutagenesis. 

  

Application of the yeast deletion strain collection  

Through homologous recombination, a selected ORF in S.cerevisiae can be 

replaced by the precise and efficient integration of a cassette bearing a selectable marker 

(the kanMX cassette). The kanMX cassette itself has no phenotypic effect on yeast; it 

encodes resistance to the antifungal drug G418. In the 1990’s, an international 

consortium of laboratories undertook a project to construct a collection of yeast deletion 

mutants, wherein each mutant would contain a precise start codon-stop codon 
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replacement of a gene with the kanMX cassette. In the final version of this collection, 

5916 out of the approximately 6200 originally annotated yeast ORFs, including 1105 

essential genes, were successfully deleted for the construction of a heterozygous diploid 

collection (Giaever, Chu, et al, 2002). Each deletion mutant is marked by a pair of 

molecular “barcodes” that identify the mutant uniquely. Because yeast cells are robust 

and fast growing, they are easy to be manipulated robotically in high-throughput format. 

Initially, this deletion collection was used to screen for drug sensitivity; the null strains 

that show growth defects in drug-containing medium are sensitive toward the cytotoxic or 

growth inhibitory effects of the specific compound. Since this deletion collection was 

first constructed; it has been tested under numerous drug treatments (Giaever, Flaherty, et 

al, 2004). The main advantage of the screens is to give us a comprehensive map of the 

chemical-genetic interactions between pathways targeted by the drug. The growth 

phenotype changes of deletion strains under different growth conditions including pH, 

high salt, sorbitol, minimal media, galactose, were also assayed. Several novel genes 

involved under specific growth conditions were identified. Functional groups of genes 

involved in the response to certain conditions were revealed as well.  

In addition to haploid and homozygous deletion collections, the heterozygous 

gene deletion collection has proven to be a useful resource in identifying 

haploinsufficient genes under drug treatments or different conditions. The 

haploinsufficient profiling takes advantage of the fact that reducing gene dosage from 

two copies to one copy often increases sensitivity to the drug. In this way, researchers can 

identify previously missed targets of known inhibitors. Since viability is maintained even 

if an essential gene is deleted in heterozygous diploids, these haploinfufficiency screens 
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are also useful in studying the effects of compounds on essential genes (Giaever, 

Shoemaker, et al, 1999).  

Another important application of the yeast deletion collection is in the synthetic 

genetic array (SGA) methodology, an approach involving the systematic construction of 

double mutants using the yeast deletion collection (Tong, and Boone, 2006). Synthetic 

lethality occurs when the deletion of non-essential genes combined within the same strain 

causes lethality. In this approach, a query strain with a specific mutation is mated with 

the entire haploid deletion collection of the opposite mating type. Through a tight 

sporulation condition and selection procedure, only haploid double mutants containing 

selection markers from the query and the deletion collection will be viable. The 

efficiency and reproducibility of the screen is enhanced by robotic high-density format 

pinning and replica printing. This method can reveal functionally redundant genes and 

pathways, subsequently linking them into networks (Davierwala, Haynes, et al, 2005; Ho, 

Gruhler, et al, 2002).  

Furthermore, assuming that the toxicity of a drug mimics the loss-of –function 

mutation of the drug target, comparison of drug treatment profiles with a database of 

genetic interaction profiles may allow identification of the target pathway (Lum, Armour, 

et al, 2004) . The principle of SGA analysis can also be extended to look at the effect of 

gene overexpression in certain mutant backgrounds (Luesch, Wu, et al, 2005). As an 

alternative approach to investigate the functions of essential genes, a collection of 

tetracycline-regulated promoter replacement alleles was constructed for over two-thirds 

of all essential yeast genes, allowing for the analysis of cell cycle phenotypes upon 
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knockdown of essential gene expression (Sopko, Huang, et al, 2006; Zhu, Bilgin, et al, 

2001).   

 

Application of microarray technology 

Perhaps not surprisingly, the budding yeast was an early test subject for DNA 

microarray technology.  Presently, microarray technologies have become routine 

applications in molecular biology laboratories. Oligonucleotide and cDNA microarrays 

can simultaneously measure the expression of thousands of mRNAs, which has 

transformed the field of molecular biology from studying a few genes or pathways to 

more global investigations of cellular activity. This high throughput technique can be 

used to predict the function of unknown genes, to infer signaling networks, and to 

investigate the mechanisms by which a drug, disease mutation or environmental 

condition affects gene expression and cell function (Gasch, Spellman, et al, 2000; 

Hoheisel, 2006). For example, microarray technology has been used to measure gene 

expression in yeast under a variety of cell stress conditions. By comparing the expression 

pattern resulting from a given drug treatment with the expression patterns from 

treatments of drugs acting through known cellular mechanisms, one may infer 

mechanisms of drug action. Large databases have been produced to hold substantial 

quantities of gene expression information. Although transcription profiling only measures 

the quantity of mRNA, which is very volatile and prone to producing artifacts, this 

method still builds the foundation of systems biology. Designing adequately controlled 

experiments to draw biologically valid conclusions is crucial for the successful 

application of microarray technology (Curtis, Oresic, and Vidal-Puig, 2005). Since 
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different statistical data analysis methods may yield distinct results, a universal standard 

for data explanation is also needed to generate more reproducible and reliable data.  

 

Applications of proteomics technology  

Proteins are obviously an important class of functional entities in the cell. 

Therefore, among all levels of functional genomics analysis, proteomics stands as one of 

the most informative. Distinct from analysis of genome structure, which is quite stable, 

the proteome is context dependent and much harder to study.  

One aspect that is critical for the understanding of protein function is protein 

localization within distinct subcellular compartments. Initial efforts for large-scale 

protein localization in yeast relied on transposon-mediated random epitope tagging and 

immunolocalization of overexpressed tagged proteins (Kumar, Agarwal, et al, 2002). To 

overcome potential errors caused by the random insertion strategy and fixation procedure, 

Erin O’Shea and colleagues constructed a collection of 6029 yeast strains, with each 

strain containing chromosomally integrated green fluorescent protein (GFP)-coding 

sequence at the 3’ end of a target gene (Huh, Falvo, et al, 2003).  This collection of 

carboxy-terminal GFP fusions allows for the visualization of protein localization in live 

yeast cells by expression from native promoters.  Using this collection, the localization of 

75% of the proteome was assigned to 23 localization categories based on subcellular 

compartments and organelles(Huh, Falvo, et al, 2003).  

In complement to the chromosomally integrated GFP fusions collection, plasmid-

based fluorescent protein fusion collections can be introduced into various genetic 

backgrounds easily for the analysis of protein localization (Bharucha, Ma, et al, 
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2008a)(Ma, Bharucha, et al, 2008). In combination with other existing collections, such 

protein localization studies can be used to identify examples of regulated protein 

localization in mutant alleles or in cells under conditions of stress. The GFP localization 

information can be combined with data from other functional genomics studies to 

confirm and extend predictions about protein functions. These predictions are especially 

useful in the case of proteins for which little or no functional data exist.  

Another major focus of proteomics is the analysis of protein-protein interactions 

and the analysis of interactions leading to multi-protein complexes. Originally, the yeast 

two-hybrid system was developed to discover novel protein interactions among several 

proteins (Fields, and Song, 1989). The yeast two-hybrid system is very amenable to 

robotic platforms, and, despite the high rate of nonspecific interaction associated with this 

approach, high-throughput platforms have been develop to implement the yeast two-

hybrid assay on a large scale (Krogan, Cagney, et al, 2006). The so-called “interactome” 

data suggests that there could be at least 12,000-18,000 possible protein interactions in 

yeast. Protein interactions and protein complex formation have also been assessed 

through approaches in which protein complexes are systematically isolated prior to the 

analysis of their components by mass spectrometry (Gavin, Aloy, et al, 2006) . By this 

approach, protein complexes are isolated by affinity purification of a tandem affinity 

(TAP)-tagged protein within the complex (Puig, Caspary, et al, 2001). The TAP-tagging 

method uses two tags instead of one to decrease the likelihood of nonspecific protein 

interaction. The TAP-tagged protein is expressed from its normal chromosomal locus to 

avoid the artifacts caused by protein overexpresion. After sequential purification over two 

high-affinity columns, the purified protein complex is eluted and separated by gel 
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electrophoresis, then identified by matrix assisted laser desorption/ionization time-of-

flight MS (MALDI-TOF MS)(Wigge, Jensen, et al, 1998). A collection of carboxy-

terminal TAP-tagged yeast strains has been constructed, and the level of expression of 

each protein was determined by sensitive Western-blotting that could detect low amounts 

of protein (Ghaemmaghami, Huh, et al, 2003). The purification of all yeast proteins and 

the identification of complex components by MALDI-TOF or LC-MS/MS are underway. 

  Although the development of commercially available proteome arrays is still in its 

infancy, protein microarray technology should be very beneficial for biochemical 

analysis and drug discovery procedures in the near future (Michaud, Salcius, et al, 2003).  

 

As a summary for this section, functional genomics and proteomics have started a 

new era of biological research, with the promise of deep impact on the future of medical 

research. None of the methods presented above are without disadvantages, and, 

obviously, none of the technology is sufficient to explain the complexity of life in even a 

single-celled organism. The integration of information from all levels to create a 

“vertical” view is the prerequisite for the elucidation of the complex and interrelated 

processes that occur in biological systems. To make the most of current data, with the 

help of information technology, existing databases need to be refined and combined.  

Throughout these processes, the budding yeast will very likely continue to serve as an 

important testing ground for new technologies.  
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Nutrient sensing in yeast 

Just like any living organism, S.cerevisiae cells possess the ability to sense the 

availability of nutrients in their surroundings and to make corresponding adjustments to 

transcriptional, metabolic, and developmental programs. Under conditions of nutrient 

limitation, these adjustments will minimize the energy spent in the cell, thereby 

maximizing the possibilities for survival (Bahn, Xue, et al, 2007).  

 

Carbon source signaling  

S.cerevisiae can grow on a variety of fermentable carbon sources (glucose, 

fructose, sucrose, galactose, etc) and non-fermentable carbon sources (glycerol, ethanol 

and lactate). Yeast cells prefer to use glucose and fructose rather than other sugars that 

need to be converted into glucose or fructose; yeast cells prefer any fermentable carbon 

source to any non-fermentable carbon source as well.  The addition of glucose to cells 

growing in a non-fermentable carbon source initiates massive metabolic and 

transcriptional reprogramming. More than 40% of genes in yeast alter their expression 

level upon the addition of glucose. These changes increase the expression of genes 

functioning in ribosome biogenesis, allowing cells to use glucose as the sole carbon 

source (Schneper, Duvel, and Broach, 2004). Three signaling pathways function 

redundantly in the sensing process, protein kinase A (PKA), the Snf1p protein kinase, and 

Rgt2p, Snf3p glucose sensors.  

The PKA pathway plays critical roles in growth, in cellular response to glucose 

and in cell cycle progression to mass accumulation (Kraakman, Lemaire, et al, 1999a). 
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Three genes, Tpk1p, Tpk2p and Tpk3p encode the catalytic subunits of PKA, with each 

gene product capable of monitoring somewhat overlapping sets of target proteins. Bcy1p 

is the regulatory subunit in PKA. The binding of Cyclic AMP (cAMP) to Bcy1p releases 

the catalytic subunits to perform their functions. The synthesis of cAMP is catalyzed by 

adenylate cyclase Cyr1p, and its degradation is catalyzed by phophodiesterases encoded 

by Pde1p and Pde2p. These genes function coordinately to control the balance of cAMP 

concentration. Two signaling pathway activate PKA, one mediated by Ras GTPase and 

the other through the G-protein coupled receptor Gpr1p and Gα homolog Gpa2p. (Jiang, 

Davis, and Broach, 1998)Only the GTP-bound Ras2p can bind to and stimulate adenylate 

cyclase Cyr1p(Colombo, Ma, et al, 1998; Colombo, Ronchetti, et al, 2004). The balance 

of GTP loading and GTP hydrolysis is controlled by guanine nucleotide exchange factor 

Cdc25p and GTPase activating proteins (GAPs), Ira1p and Ira2p. The addition of glucose 

results in a rapid increase in cAMP production, but the mechanism by which glucose 

increases Ras-GTP is still elusive. Just like other GPCR systems, Gpa2p functions as the 

Gα subunit, coupled with Gpr1p to activate cellular responses (Xue, Batlle, and Hirsch, 

1998b). Since the defect in the gpr1 and gpa2 deletion strains can be suppressed by 

exogenous cAMP, this phenotype might indicate that Gpr1p and Gpa2p activate PKA 

through the activation of adenylate cyclase. (Kraakman, Lemaire, et al, 1999b)The β 

subunits might be Gpb1p/Krh1p and Gpb2p/Krh1p, with Gpg1p serving as the γ subunit. 

Although both pathways are associated with the modulation of PKA, some evidence 

shows that Ras2p play a more important role in mediating glucose-induced gene 

expression changes than Gpr1p-Gpa2p.  
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The Snf1p network is essential for growth on less preferred fermentable carbon 

sources and non-fermentable carbon sources. Snf1p is a member of the AMP-activated 

protein kinase family. The complete activation of Snf1p requires the phosphorylation of 

conserved residues and the association with β and γ regulatory subunits. The β subunit 

regulates substrate specificity. The binding with γ subunit causes a conformational 

change relieving Snf1p from autoinhibition. Once activated, the Snf1p complex 

phosphorylates numerous substrates, such as the transcriptional repressor Mig1p, the 

transcription factor Adr1p, Cat8p and Sip4p to regulates the expression of genes involved 

in use of alternate carbon sources. (Honigberg, and Lee, 1998) 

Rgt2p and Snf3p encode transmembrane proteins that act as low and high affinity 

glucose sensors. Theses sensors bind to Mth1p and Std1p in conjunction with the 

transcription factor Rgt1p to repress transcription of hexose transporter genes, which 

import glucose or fructose into cells by diffusion along a gradient (Polish, Kim, and 

Johnston, 2005).  

 

Nitrogen source signaling 

As with carbon sources, S.cerevisiae doesn’t use all nitrogen sources with equal 

efficiency. In order to use any nitrogen-containing compound, the yeast cell has to 

convert the compound into either glutamine or glutamate. Ammonia acts as a nitrogen 

donor for the synthesis of glutamate and glutamine. Ammonia can be converted into 

glutamate by glutamate dehydrogenase, or converted into glutamine by glutamine 

synthetase(Bahn, Xue, et al, 2007). Most amino acids can be catabolised and 

subsequently used as sources of nitrogen. While the favorable nitrogen source is used 
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rapidly and optimally, the utilization of less favorable nitrogen sources is repressed.  This 

phenomenon is termed nitrogen catabolite repression. Good nitrogen sources, such as 

glutamine, glutamate or ammonium, support much higher growth rates.  

The Gpr1p-Gpa2p GPCR system and the cAMP cascade were shown to form an 

important regulatory mechanism in response to the availability to ammonium. The Ssy1p-

Prt3p-Ssy5p signaling system acts as a sensor for external amino acid concentrations 

(Andreasson, and Ljungdahl, 2004; Klasson, Fink, and Ljungdahl, 1999). Ssy1p is an 

amino acid sensor resembling an amino acid permease with the ability to activate 

downstream transcription factors. There are also three ammonium transporters, Mep1p, 

Mep2p and Mep3p, with Mep1p and Mep2p encoding high-affinity ammonium 

transporters and Mep3 encoding a lower affinity ammonium transporter. Deletion of all 

three ammonium transporters renders the yeast non-viable when grown on medium 

containing ammonium as the sole nitrogen source.  

The internal amino acid concentration is sensed by the general control of amino 

acid biosynthesis (GCN) pathway. The signal for activation of the GCN pathway is 

uncharged tRNAs, which are bound by the kinase Gcn2p (Dong, Qiu, et al, 2000).  The 

transcription factor Gcn4p is induced upon limitation of any amino acid and activates the 

expression of approximately 500 genes functioning in amino acid biosynthesis 

(Hinnebusch, 2005).  

The Nitrogen Discrimination Pathway (NDP) is activated when there is no 

favorable nitrogen source available. The associated transcriptional network is complex 

and involves GATA family zinc-finger transcriptional activators and repressors, with the 

transcriptional activator Gln3p acting as the master regulator. When cells grow on poor 
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nitrogen sources, Gln3p localizes to the nucleus where it can bind to the promoters of 

NDP genes (Carvalho, Bertram, et al, 2001). When ammonium is available, Gln3p is in 

the cytoplasm. It is unclear, however, by which means the cytoplasmic glutamate and 

glutamine levels influence Gln3p localization and subsequent NDP gene activation.  

Yeast cells assimilate nitrogen from sources other than glutamate and glutamine by 

conversion to ammonium and the condensation with α-ketoglurarate to form glutamate. 

Therefore nitrogen regulation is tightly linked to the retrograde (RTG) response, 

regulating target genes that encode key enzymes of the TCA cycle necessary for the 

production of α-ketoglurarate (Magasanik, 2003). 

 

The TOR signaling pathway 

The S.cerevisiae targets of rapamycin, Tor1p and Tor2p, are functionally 

conserved PI3-like protein kinases that control growth related genes in response to 

nutrient condition. Tor2p and five other proteins comprise TORC2, which functions in 

regulating organization of the actin cytoskeleton and cell polarity. Tor1p or Tor2p, along 

with four other proteins, comprise TORC1, which regulates cell proliferation and the 

transition between growth and quiescence. Rapamycin treatment or lack of TOR shows a 

similar phenotype as cells starved for a carbon or nitrogen source. This phenotype 

includes inhibition of translation initiation, inhibition of ribosome biogenesis, sorting and 

turnover of nutrient permease, accumulation of glycogen, and induction of autophagy. 

The yeast TORs regulates downstream targets through a phosphatase switch composed of 

the type 2A-related phosphatase Sit4p, the PP2A/Sit4p-associated protein Tap42p, and 

the Tap42p-interacting protein Tip41p. Upon inactivation of the TOR complex, Sit4p 
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dissociates from its inhibitor Tap42p and gets activated (Yan, Shen, and Jiang, 2006). 

Activated Sit4p dephophorylates and activates several transcription factors, including 

Gln3p and Tip41p (Beck, and Hall, 1999; Bertram, Choi, et al, 2000). Under normal 

conditions, TOR represses starvation-specific transcription by keeping nutrient-

responsive transcription factors, such as Gln3p, and stress-responsive transcription 

factors, Msn2p and Msn4p, in the cytoplasm.  

 

The mechanism of filamentous growth  

S.cerevisiae typically grows as single budding cells. In response to certain 

conditions of nutrient limitation, however, yeast cells, particularly those derived from 

Σ1278b, undergo a dimorphic transition from yeast-form growth to invasive-form growth 

(in a haploid strain), or pseudohyphal growth (in a diploid strain). This adaptation allows 

yeast cells to search for nutrient-rich substrates optimal for growth. Both haploid and 

diploid yeast strains can undergo filamentous growth as mentioned above, although there 

are some differences in the resulting phenotypes. Haploid filaments don’t extend as 

significantly as do filaments in a diploid. In addition, diploids invade agar more strongly 

than haploids (Palecek, Parikh, and Kron, 2002). The signaling pathways for the two 

programs overlap significantly. In the rest of this section, pseudohyphal growth will be 

used to describe both programs.  

In S.cerevisiae, nitrogen limitation induces pseudohyphal growth. Low 

concentrations of mating pheromone and short-chain alcohols such as butanol can also 

induce haploid pseudohyphal growth. Since this dimorphic transition is directly related 

with the virulence of human pathogens such as Candida albicans and Cryptococcus 
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neoformans, insight into virulence mechanisms can be gained from research on 

S.cerevisiae. Furthermore, the reorientation and polarization of the actin cytoskeleton in 

response to environmental signals during pseudohyphal growth are similar to 

rearrangements observed during the transition of cancer cells to a metastatic state. During 

pseudohyphal growth, the cells are elongated, budding occurs synchronously in a 

unipolar fashion, and the mother and daughter cells remain physically attached, 

producing chains of cells (Pan, Harashima, and Heitman, 2000). As a consequence, 

smaller cells spend more time in the G1 phase before reaching critical size for entry into 

S phase. An extended G2/M phase is also needed for the separation of mother and 

daughter cells. Branching filaments permit wider exploration of surroundings with lower 

energy cost. Highly polarized growth promotes invasion into the substrate. The high-

surface-to-volume ratio of filaments also facilitates nutrient transport.  

There are at least two major signaling pathways involved in yeast pseudohyphal 

growth. The first pathway is a MAP kinase pathway; this pseudohyphal growth MAPK 

pathway shares many components with the pheromone-induced MAPK mating pathway 

in haploid cells. The second pathway is a cAMP-dependent pathway, which has been 

mentioned previously. Initial studies suggested that Ras2p might be the central switch for 

both pathways; however, there is still no information on the mechanism by which Ras2p 

is activated in conditions leading to pseudohyphal growth (Pan, Harashima, and Heitman, 

2000).  
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MAP kinase pathway 

Upon receiving appropriate environmental cues, Ras2p is activated; this activates 

the guanine nucleotide exchange factor Cdc42p, which, in turn, activates GTP-Cdc24p. 

Activated Cdc24p interacts with the protein kinase Ste20p, targeting it towards the site of 

growth. Ste20p subsequently activates the MAP kinase cascade formed by the MAPKKK 

Ste11p, the MAPKK Ste7p and the MAPK Kss1p.  The unphosphorylated form of Kss1p 

binds to the transcription factor Ste12p and the negative regulators Dig1p and Dig2p 

(Madhani, and Fink, 1997). After Kss1p is phosphorylated, Ste12p is phosphorylated by 

Kss1p, causing the dissociation of the Dig proteins. The target genes of Ste12p are then 

released from repression. One common feature of these genes is an element called FRE 

(for Filamentous and invasive Response Element) present in their promoter regions. 

These are composite elements with two adjacent binding sites for the binding of 

transcription factors Ste12p and Tec1p. Since the MAP kinase pathway shares elements 

with other regulatory pathways, such as the mating pathway and high osmolarity 

response pathway, yeast has developed mechanisms to prevent inappropriate cross talk 

between the pathways. Each pathway utilizes a specific MAPK: Kss1p is involved in 

pseudohyphal growth, Hog1p in osmotic stress, and Fus3p in mating. The scaffolding 

proteins and interacting transcription factors for each response are also different 

(Flatauer, Zadeh, and Bardwell, 2005).  
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cAMP-PKA pathway 

Since pseudohyphal growth is the cellular response to nutrient deprivation, it is 

not surprising that the nutrient-sensing cAMP pathway regulates pseudohyphal growth. 

As mentioned before, this pathway involves the G-protein-coupled receptor Gpr1p, the α 

subunit Gpa2p, the cAMP-depended protein kinases, and the downstream transcription 

factors Flo8p and Sfl1p. The Gpr1p-Gpa2p system which regulates cAMP production in 

response to glucose is required for pseudohyphal growth (Xue, Batlle, and Hirsch, 

1998a). Exogenous cAMP enhances pseudohyphal growth; mutation of the negative 

regulatory subunit Bcy1p dramatically increases filamentation (Pan, and Heitman, 1999).  

The three catalytic subunit of PKA also play important roles in pseudohyphal 

growth, with Tpk2p activating pseudohyphal growth, and Tpk1p and Tpk3p repressing 

filamentation. The target of Tpk2p is the transcription factor Flo8p, which is mutated in 

the common lab strain S288C; accordingly, S288C and its derivatives do not undergo 

pseudohyphal growth (Liu, Styles, and Fink, 1996). It has also been reported that the 

Ras2p/cAMP pathway is overactive in the Σ1278b strain. Flo8p regulates the expression 

of the surface floculin Flo11p (also called Muc1p), which contributes to agar invasion. 

Flo11p is a common target for both the cAMP pathway and MAP kinase pathway. Tpk2p 

relieves the inhibitory effect of transcription factor Sfl1p on the expression of Flo11p. 

The FLO11 promoter is much larger than most yeast promoters, and the expression level 

of FLO11 has a direct link with the pseudohyphal growth phenotype  (Halme, 

Bumgarner, et al, 2004).  
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Other genes involved in the regulation of filamentous growth 

Distinct from the two pathways described above, there are a number of additional 

genes involved in the regulation of pseudohyphal growth, such as the transcription factors 

Phd1p, Sok2p and Ash1p (Gagiano, Bauer, and Pretorius, 2002; Pan, Harashima, and 

Heitman, 2000). Since the absence of the transcriptional activator Msn1p and Mss11p 

could be partially compensated by the expression of Flo11p, these two genes may bind to 

the promoter of FLO11. Ammonium permease Mep2p is also needed for pseudohyphal 

growth (Lorenz, and Heitman, 1998). A mutation in the glutamine tRNACUG  allows 

pseudohyphal growth in a nitrogen-rich medium where cells grow exclusively in the 

yeast form (Murray, Rowley, et al, 1998).  

Since the regulation of cell shape is coupled to the cell cycle, recent studies 

indicate that both the G1 cyclins Cln1p, Cln2p, and Cln3p and the Clb2p mitotic cyclin 

may play roles in pseudohyphal growth.  In particular, cln1 and cln2 mutations inhibit 

filament formation, whereas cln3 mutations enhance filamentation. The ure2 and gln3 

mutants, functioning in the nitrogen discrimination pathway, fail to exhibit pseudohyphal 

growth in response to nitrogen starvation. Mutations in genes required for bipolar 

budding in diploids such as Bud1p, Bud5p or Bud8p prevent pseudohyphal growth 

(Cullen, and Sprague, 2002). Pseudohyphal growth could be inhibited by sublethal 

concentration of rapamycin, which indicate a role for the TOR pathway in the regulation 

of pseudohyphal growth (Schmelzle, Beck, et al, 2004).    
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The mechanism of autophagy 

           Another mechanism for yeast cells to survive under conditions of nutrient 

deprivation is autophagy. Autophagy is a vacuolar degradation pathway for bulk proteins 

and organelles, in contrast to the ubiquitin-proteasome system which degrades specific 

short-lived proteins (Nair, and Klionsky, 2005). Upon nutrient starvation, a double-

membrane vesicle, termed the autophagosome, is generated to sequester cytoplasmic 

material. The formation of the autophagosome takes place at the perivacular, pre-

autophagosomal structure (PAS). The autophagosome then fuses with the vacuole, 

delivering the inner single-membrane vesicle into the vacuolar lumen. The resulting 

autophagic body is lysed; small molecules are released back into the cytosol and reused 

for the synthesis of new proteins required for cell survival. Autophagy also occurs in 

other eukaryotes such as in mammals, insects and worms. In higher eukaryotes, 

autophagy is induced in response to conditions of nutrient depletion as well. Autophagy 

is also involved in other cellular processes such as cellular development and 

differentiation. Autophagy has been related to the protective mechanism of several 

diseases, such as cancer, muscular disorders and neurodegenerative diseases (Yorimitsu, 

and Klionsky, 2005).  

 To date, approximately 30 autophagy related genes (ATG) have been shown to 

function in the process of autophagy. The biosynthetic cytoplasm-to-vacuole targeting 

(Cvt) and pexophagy pathways are very similar to the autophagy pathway. Some ATG 

genes are shared among these pathways (Harding, Hefner-Gravink, et al, 1996; Scott, 

Hefner-Gravink, et al, 1996). The difference is that the Cvt and pexophagy pathway are 



 23

selective processes. Two vacuolar hydrolases, Ape1p and Ams1p, are transported within 

Cvt vesicle into the vacuole through the Cvt pathway. Compared with the 

autophagosome, the Cvt vesicle is much smaller in size.  

 In addition to nitrogen, carbon and auxotrophic depletion, autophagy can be 

induced by the antibiotic rapamycin whose effects mimic starvation. TOR1C and PKA 

have been shown to participate in the induction of autophagy (Noda, and Ohsumi, 1998). 

Under nutrient deprivation conditions or upon addition of rapamycin, the Tor kinase is 

inactivated, and autophagy is enhanced. Constitutive activation of PKA could prevent the 

induction of autophagy. Rapamycin treatment or nitrogen starvation leads to a rapid 

dephosphorylation of Atg13p that facilitates the interaction of Atg13p with Atg1p and 

Atg17p (Kabeya, Kamada, et al, 2005). Atg1p is a kinase. Its kinase activity is stimulated 

by the formation of the complex, but the role of Atg1p kinase activity and its relationship 

with the PKA pathway is still not clear(Kamada, Funakoshi, et al, 2000). The formation 

of the Atg1p-Atg13p-Atg17p complex may regulate autophagosome formation. As for 

the Cvt pathway, Atg11p and Atg19p play an important role in the formation of Cvt 

vesicles. Neither Atg11p nor Atg19p is required for bulk nonselective autophagy. The 

Atg19p-Atg8p-phosphatidylethanolamine (Atg8-PE) interaction might function to 

exclude the entry of nonspecific cytosolic components into Cvt vesicles.  

 The building material for the autophagosome is not from pre-existing organelles. 

The site for vesicle formation is the PAS. Most ATG genes are involved in this process, 

more or less. The PtdIns 3-kinase complex I might generate phosphatidylinositol 3-

phosphate (PtdIns(3)P), which recruits several ATG genes to the PAS, including Atg18p, 

Atg20p, Atg21p, Atg24p and Atg27p. Two ubiquitin-like conjugation systems, Atg8p-PE 
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and Atg12p-Atg5p are involved in the generation of autophagic vesicles as well (Ohsumi, 

2001). The formation of the Atg12p-Atg5p conjugation system is helped by the E1 

ubiquitin-activating enzyme homolog Atg7p and the homolog of the E2 ubiquitin-

activating enzyme Atg10p. The conjugation of Atg8p to PE also occurs by a ubiqutin-like 

procedure with the help of the E1-like Atg7p and E2-like enzyme Atg3p. Atg9p is 

required for their localization to the PAS. These two complexes function in the expansion 

and curvature formation of the membrane. The Atg12p-Atg5p-Atg16p complex seems to 

dissociate from vesicles before or immediately after completion of the autophagosome; 

Atg8p-PE remains associated with the autophagosome and is finally degraded in the 

vacuole. Actually, most of the core machinery ATG genes are excluded from the 

completed vesicle.  

 Since the localization of Atg9p is distributed among several punctate structures 

across the cell, including the PAS, it has been proposed to play some roles in the delivery 

of lipid membrane to vesicles; this process is essential for vesicle expansion (He, Song, et 

al, 2006).  The source of the membrane might be the mitochondria. The retrieval of 

Atg9p from the PAS depends on the Atg1p-Atg13p complex, Atg2p and Atg18p. The 

absence of any of these proteins causes the accumulation of Atg9p at the PAS. 

 After completion of the vesicle, the autophagosome fuses with the vacuole. The 

inner membrane of the autophagosome is delivered into the vacuole, and the content 

material is degraded by the vacuolar hydrolases. Atg15p is involved in the intravascular 

lysis process. After degradation, monomeric units are exported to the cytosol for reuse. 

Atg22p has been identified as an amino acid effluxer that functions together with other 

vacuolar permeases to export amino acids (Yang, Huang, et al, 2006).  
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Thesis Summary 

 As described in this chapter, a substantial amount of knowledge has been acquired 

about the networks mediating yeast cell responses to various quantities and qualities of 

nutrients. Although the intracellular signaling pathway of each of these cellular processes 

has been characterized to some degree, a major task still remains to connect these 

pathways into one system.  Some of the overlapping components among different 

pathways have been mentioned above; for example, the PKA, MAPK and TOR signaling 

pathways activated by various extracellular stimuli elicit the activation of completely 

different group of genes, yet the survival of yeast cells depends on all of them. 

Obviously, other inter-connections exist between pathways to provide responses to 

different levels of nutrient combinations. However, focused studies in each pathway may 

not help us view the response network as a whole. More global and large-scale methods 

may need to be applied to gain this information.  Meanwhile, the nutrient response 

network also provides a good model system to test the usability of novel genomic 

collections and approaches.  

 Although autophagy and pseudohyphal growth are both responsive to nitrogen 

stress, a link between these processes has not been investigated. So in the first part of my 

thesis, I consider a possible link between these processes, detecting extensive 

upregulation of the pathway governing autophagy during early pseudohyphal growth by 

microarray-based expression profiling(Ma, Jin, et al, 2007b). Both processes are active 

under conditions of nitrogen stress. The inhibition of autophagy results in increased 

pseudohyphal growth. This result suggests a model in which autophagy mitigates nutrient 
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stress, delaying the onset of pseudohyphal growth. On the other hand, inhibition of 

autophagy exacerbates nitrogen stress, resulting in precocious and overactive 

pseudohyphal growth.  

 Next, we extended our studies to encompass a phenotypic analysis of 

pseudohyphal growth upon overexpression of ATG genes(Ma, Jin, et al, 2007a). Several 

ATG genes were shown to inhibit pseudohyphal growth upon overexpression. This result 

indicates that there might be additional undefined regulatory mechanisms linking 

autophagy and pseudohyphal growth, possibly independent of the upstream nitrogen-

sensing machinery. 

 We have constructed a plasmid-based collection of yeast gene fusions with 

fluorescent proteins to facilitate systematic studies of protein localization under different 

genetic background and under varying conditions of nutrient availability. A suite of low-

copy destination vectors containing different fluorescent proteins have been generated as 

part of this work. A sub-collection of 276 genes encoding caboxy-terminal fusions to 

yellow fluorescent protein (vYFP) has been constructed; this collection includes genes 

functioning as kinases, transcription factors and signaling proteins. In particular, the 

kinase collection has been used to observe protein localization shifts under pseudohyphal 

growth-inducing condition (Bharucha, Ma, et al, 2008b). The localization of 14 

autophagy-related genes in wild type and atg11 deletion strain have also been 

investigated(Ma, Bharucha, et al, 2008). This plasmid-based resource of yeast gene-vYFP 

fusions provides an initial toolkit for a variety of systematic and large-scale localization 

studies exploring pathway biology in the budding yeast.  
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In the last part of this thesis, I describe the identification and analysis of a novel 

yeast gene, NAG1. Previous genome-wide transposon-tagging studies putatively 

identified a 19-kDa protein nested entirely within the coding sequence of YGR031W in 

an antisense orientation on the opposite strand.  We have characterized this gene, NAG1, 

further through a variety of studies.  Phenotypic analysis of a site-directed mutant (nag1-

1) disruptive of Nag1 but silent with respect to YGR031W, defines a role for Nag1 in 

yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression 

of genes contributing to cell wall organization, and the nag 1-1 mutant is hypersensitive 

to the cell wall perturbing agent Calcofluor white. Furthermore, production of Nag1p is 

dependent upon the presence of the cell wall integrity pathway MAPK Slt2p and its 

downstream transcription factor Rlm1p (Ma, Bharucha, et al, 2008).  Thus, NAG1 

represents the first identified nested antisense protein-coding gene in yeast, with an 

interesting function in yeast cell wall biogenesis.  Furthermore, the identification of this 

gene raises the possibility that additional nested genes may reside in the yeast genome.  
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Chapter 2  
 

 An Interrelationship Between Autophagy and Filamentous Growth in Budding 
Yeast 

 
 

Introduction 

 

From the human pathogen Candida albicans to the corn smut fungus Ustilago 

maydis, many diverse fungal species possess the ability to switch between a cellular yeast 

form and a filamentous invasive form in response to appropriate environmental cues 

(Gimeno et al. 1992; Madhani and Fink 1998). Constituting an essential determinant of 

fungal pathogenicity in both plants and humans (Lo et al. 1997), this morphogenetic 

switch has garnered increased attention over the last fifteen years, particularly in the 

budding yeast Saccharomyces cerevisiae (Gimeo et al. 1992).  Like its pathogenic 

counterparts, certain strains of S.cerevisiae also undergo a shift to a filamentous growth 

form (Gancedo 2001; Kron 1997; Madhani and Fink 1998).  Presumably as a means of 

foraging for nutrients, diploid yeast cells grown under conditions of nitrogen starvation 

differentiate into branching chains of elongated cells (Gimeno et al. 1992; Liu et al. 

1993).  The morphogenetic changes associated with filamentous differentiation are 

extensive; during filamentous growth, yeast cells delay in G2/M, exhibit an elongated 

morphology, bud in a unipolar fashion, remain physically attached, and invade their 

growth substrate (Gimeno et al. 1992; Kron et al. 1994).  The resulting filaments are 

called pseudohyphae, and hence this form of growth is referred to as pseudohyphal 
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growth (PHG).  

In S. cerevisiae, PHG is regulated by at least two signaling pathways: 1) the 

nutrient-sensing cyclic AMP-protein kinase A (PKA) pathway, and 2) a mitogen-

activated protein kinase (MAPK) pathway.  During filamentous growth, the GTP-binding 

protein Ras2p is activated through a sensor system that is not well characterized at 

present.  Activated Ras2p, in turn, stimulates the synthesis of cAMP, which activates 

protein kinase A (Robertson and Fink 1998).  The yeast PHG MAPK cascade also 

functions downstream of Ras2p (Mosch et al. 1996).  Activated Ras2p acts through the 

G-protein Cdc42p to stimulate the p21-activated kinase Ste20p (Peter et al. 1996).   

Ste20p, in turn, initiates a MAPK signaling cascade consisting of Ste11p, Ste7p, and the 

MAPK itself Kss1p (Cooket al. 1997).  

These well characterized signaling modules act upstream of a diverse and 

incompletely defined set of genes, including many transcription factors such as Ste12p, 

Tec1p, Phd1p, Flo8p, and Mss11p (Baredwell et al. 1998; Borneman et al. 2006; Gagiano 

et al. 2003; Kobayashi et al. 1996; Liu et al. 1996; Madhani and Finkand 1997; Prinz et 

al. 2004; Vandyk et al. 2005; Webber et al. 1997).   The PHG PKA and MAPK pathways 

have been linked with pathways governing cell polarity, bud site selection, and cell cycle 

progression (Rua et al. 2001), but the extensive changes associated with PHG likely 

encompass additional pathways as well.  

Like PHG in yeast, autophagy is also a stress response initiated under conditions 

of nutrient deprivation.  Autophagy is an intracellular catabolic pathway conserved 

among all eukaryotes in which cytosol, organelles, and other structures are sequestered 

within double membrane vesicles (autophagosomes) for delivery to the 
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vacuole/lysosome, where they are consumed by resident hydrolases (Levine and Klionsky 

2004; Reggiori and Klionsky 2002; Reggiori and Klionsky 2005).  Autophagy plays a 

principal role in the degradation and recycling of long-lived proteins and organelles; as 

such, it is an important cellular stress response, enabling eukaryotic cells to survive 

starvation conditions by generating an internal pool of nutrients (Reggiori and Klionsky 

2002).  In addition, autophagy plays an important role in various developmental 

pathways, in tumor suppression, in innate immunity, and in lifespan extension (Levine 

and Klionsky 2004; Reggiori and Klionsky 2005; Shintani and Klionsky 2004a).  

Autophagy has also been associated with several myopathies and neurodegenerative 

diseases (Shintani and Klionsky 2004a).  

As mentioned above, autophagy is a cellular response to conditions of nutrient 

stress.  Although nitrogen deprivation is the most common stimulus for autophagy in 

laboratory studies, carbon stress (Takeshiget et al. 1992), amino acid stress (Yang et al. 

2006) and organelle stress, in the form of endoplasmic reticulum stress and mitochondrial 

dysfunction (Yorimitsu et al. 2006; Abeliovich 2007), also result in activation of the 

autophagy pathway.  Through extensive studies, this pathway is known to encompass 

more than 20 autophagy-related (ATG) genes in the budding yeast (Levine and Klionsky 

2004).  In particular, Atg1p is a serine/threonine kinase essential for autophagy (Matsuura 

et al. 1997; Stephan and Herman 2006).  Atg1p is required for the induction of autophagy 

and is thought to function as part of a protein complex with several other components of 

the autophagy pathway (Klionsky 2005; Reggiori et al. 2004).  ATG7 encodes an 

activating enzyme (E1) that is part of two ubiquitin-like systems essential for vesicle 

expansion and completion (Ichimura  et al. 2000; Mizushima et al. 1998).  While the 
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majority of these autophagy-related genes have been studied explicitly, functional 

relationships between autophagy and other cell signaling pathways remain to be 

determined.  

To date, autophagy has not been investigated in a filamentous strain of S. 

cerevisiae, and thus, no connection between autophagy and PHG has been considered.  

Here, we present several studies indicating a physiological interrelationship between 

these processes.  Through microarray-based expression profiling, assays for autophagic 

induction, filamentous growth analyses, and cell survival assays, we derive a model of 

yeast PHG and autophagy in which PHG is responsive to the degree of nitrogen stress, 

and autophagy plays a critical role in determining the degree of this stress.  

 

Materials and Methods 

 

Strains:  All non-filamentous lab strains are of the S288c genetic background and are 

derived from those used by the Yeast Deletion Consortium (e.g., BY4743 described in 

Winzeler et al. (Winzeler et al. 1999)).  All filamentous lab strains are derived from 

the Σ1278b genetic background (Gimeno et al. 1992).  The filamentous strains Y825 and 

Y826 were used to generate homozygous diploid deletion strains.  The genotype of Y825 

is as follows: MATa ura3-52 leu2Δ0.  Y826 is a haploid strain of opposite mating type 

otherwise isogenic to Y825.  Modified forms of Y825 and Y826 were constructed 

containing URA3 (Y825 Ura+) and LEU2 (Y826 Leu+) for the subsequent generation of 

Y825/6 diploid mutants.  
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Media and growth conditions:  PHG was induced according to standard protocols using 

low-nitrogen growth media (Gimeno et al. 1992), except as noted.  Briefly, a 50 ml yeast 

culture was grown at 30°C to an OD 600 of 0.6 (cell density of approximately 4.3 x 106 ) 

in YPD medium (1% yeast extract, 2% peptone, 2% glucose).  Cells were harvested by 

centrifugation and washed twice before being transferred to SLAD medium (2% glucose, 

50 μm ammonium sulfate, 0.17% yeast nitrogen base without amino acid and ammonium 

sulfate, supplemented with essential amino acids for nutritional auxotrophies) for varying 

times as indicated (Gimeno et al. 1992).  

PHG was assessed in autophagy mutants by growth in SLAD medium and by 

growth in SLAD medium supplemented with 1% ethanol.  Strains were incubated on 

plates at 30°C for approximately 5-6 days, followed by continued growth at room 

temperature for an additional 3-4 days as needed.  

 

Gene deletions and ATG1 overexpression:  Gene deletions were performed using the 

one-step gene replacement strategy of Baudin et al. (Baudin et al. 1993) with the 

KanMX6 disruption cassette from plasmid pFA6a-KanMX6 (Longtine et al. 1998).  To 

generate homozygous diploid deletion mutants, gene replacement was performed 

individually in Y825 Ura+  (MATa) and in Y826 Leu+  (MATα); transformants were 

selected on YPD plates containing 200 μg/ml G418.  These strains were subsequently 

mated and selected on SC -Ura -Leu medium to generate homozygous diploid deletion 

mutants.  In all cases, correct integration was verified by PCR.  

ATG1 overexpression was achieved using the pRS416-derived plasmid pCUP1-

ATG1 carrying a gene fusion between the copper-inducible CUP1 promoter and ATG1 
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(Sikorski and Hieter 1989). Expression was induced using media supplemented with 10, 

50, or 100 μM copper sulfate.  To achieve gentler overexpression of ATG1, we have also 

used this plasmid in the absence of copper sulfate; by Western blot analysis, expression 

from Pcup1 in pRS416 without copper sulfate results in 2-3-fold overexpression of 

ATG1.  

 

Microarray experiments and data analysis:  Yeast strains were cultured as described 

above. RNA was prepared according to standard protocols using the Poly(A) Purist kit 

(Ambion, Austin, TX). RNA concentration and purity were determined 

spectrophotometrically and by gel electrophoresis. Microarray hybridization was 

performed with the Yeast Genome S98 Array using standard protocols  

(Affymetrix, Inc, Santa Clara, CA).  All microarray experiments were performed in 

quadruplicate (four biological replicates) for each strain and indicated time point.  

Differentially expressed genes were identified by significance analysis of microarrays 

(SAM) (Rieger and Chu2004; Tusher et al. 2001).  Briefly, SAM computes a 

nonparametric score for each gene by dividing the between-group difference of 

(normalized log) gene expression levels and the within-group difference of gene 

expression levels.  The score is then compared with random permutation scores.  The 

random permutation scores for a gene are computed in the same manner as the original 

score, but based on randomly sampled gene expressions.  If the difference between the 

original score and the random permutation score is larger than a chosen threshold value, 

the corresponding change in gene expression is claimed to be significant.  Each threshold 

value corresponds to a false discovery rate (FDR), indicating the percentage of genes 
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identified as being significant by chance alone.  Thus, increasing the threshold value 

decreases the number of claimed significant genes, but also decreases the FDR, yielding a 

greater degree of confidence.  Here, we have used SAM's multi-class analysis function, 

with the threshold value chosen so that the corresponding FDR was 0.  

 

Western blotting and GFP-Atg8p processing assay:  GFP-Atg8p transport and 

processing was monitored by microscopy and biochemical means as previously described 

(Kim et al. 2001; Shintani and Klionsky 2004b).  The plasmid expressing the GFP-Atg8p 

fluorescent chimera (pCU-GFP-ATG8) (Kim et al. 2001) was introduced by standard 

DNA transformation into the non-filamentous yeast strain BY4743 (WIinzeler et al. 

1999) and into the filamentous Y825/6 strain.  Fluorescent images of GFP- Atg8p were 

acquired using the DeltaVision Spectris inverted epifluorescence microscope (Applied 

Precision, Issaquah, WA).  

For Western blot analysis, strains carrying pCU-GFP-ATG8 were grown in SC-

Ura medium with 50 μM of CuSO4 to an OD 600 of 0.8.  Two OD 600 equivalents of 

cells were transferred into SLAD medium with 0, 50, or 100 μM ammonium sulfate and 

were incubated at the same temperature for an additional three hours.  Cells were 

successively collected by centrifugation before precipitating proteins with 10%  

trichloroacetic acid (TCA) followed by two washings with 100% acetone.  Finally, 

proteins were resuspended in 80 μl of SDS-PAGE sample buffer [72 μl of Laemmli 

sample buffer and 8 μl of 1M dithiothreitol (DTT)] by sonication and vortexing in the 

presence of glass beads.  Samples were incubated at 75 oC for 10 minutes and 0.5 OD 600 

equivalents of cells were resolved by SDS-PAGE.  After Western blotting, membranes 
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were probed with both anti-GFP (Covance Research Products, Berkeley, CA) and anti-

Pgk1p (Invitrogen, Carlsbad, CA).  

 

Cell survival assays:  Nitrogen starvation experiments were performed essentially as 

described previously (Scott et al. 1996).  Briefly, wild-type and deletion strains were 

grown in 5 ml YPD to 0.6 OD 600.  Cells were collected and washed twice, before being 

transferred to SLAD medium.  After growth for the indicated periods of time, samples 

were collected and diluted 10,000-fold.  100 μl of each diluted culture was spread on a 

YPD plate.  Viable colonies were counted after two days growth at 30°C.  All platings 

were performed in triplicate.  

 

Results 

 

Increased transcription of the autophagy pathway during early pseudohyphal 

growth:  In S. cerevisiae, the transition to filamentous growth is striking, encompassing 

morphological and cellular changes driven, in part, by an extensive transcriptional 

regulatory network.  By microarray-based expression profiling of the yeast genome, we 

investigated the scope of genes and cell processes transcriptionally regulated during PHG.  

As previous studies suggest that the transcriptional program of PHG is initiated quickly 

within the first few hours upon nitrogen limitation (Prinz et al. 2004), we specifically 

chose to profile the early onset of pseudohyphal growth, identifying genes differentially 

expressed after 20 minutes, one hour, and two hours (approximately one generation) of 

nitrogen deprivation in a filamentous strain of budding yeast.  Note that the Σ1278b strain 
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serves as the genetic background for our studies; unlike most laboratory strains of S. 

cerevisiae, Σ1278b undergoes an extensive and easily controlled transition to PHG and, 

as a result, is the preferred background for studies of yeast filamentous growth.  

In total, this microarray analysis reveals an extensive transcriptional program 

encompassing a wide variety of genes and cell pathways. In particular, this transcriptional 

profile reveals an interesting and previously undocumented point: The pathway mediating 

autophagy is extensively upregulated during early PHG (Figure 2.1 A and B).  In yeast, 

the process of nonselective bulk autophagy requires 19 genes (Nair and Klionsky 2005); 

11 of these genes were transcriptionally induced during PHG (ATG1, ATG3, ATG4, 

ATG5, ATG6, ATG7, ATG8, ATG9, ATG14, ATG17, and ATG22).  

Specifically, mRNAs for these genes were identified as being differentially 

abundant in at least one of the time points examined, with increased abundance evident 

upon 1-2 hours nitrogen stress in filamentous yeast.  Microarray results were confirmed 

by real-time PCR (Table 2.1).  Formally, this reflects either increased transcription of a 

given gene and/or decreased RNA turnover, and we use the general terms "induction" or 

"upregulation" to indicate this point.  

In addition to the genes responsible for bulk autophagy, we also find three 

autophagy-related genes specific for the cytoplasm to vacuole targeting (Cvt) pathway 

(ATG19, ATG20, and ATG21) upregulated during our microarray time course analysis of 

early PHG (Figure 1A and B).  The Cvt pathway is a type of selective autophagy, in 

which oligomers formed by the resident vacuolar protease Lap4p/Ape1p are transported 

directly from the cytoplasm into the vacuole lumen (Reggiori and Klionsky 2002).  Thus, 

we identify transcriptional upregulation of genes encoding components of both yeast 
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trafficking pathways mediating protein delivery directly from the cytoplasm to the 

vacuole.  In total, 29 autophagy-related genes have been identified in yeast (He and 

Klionsky 2006; Klionsky and Kumar 2006), and we find 14 of these genes 

transcriptionally induced during early filamentous growth in S. cerevisiae. 

 

Induction of autophagic activity during filamentous growth:  Although approximately 

half of all known autophagy-related genes are transcriptionally upregulated during PHG, 

it is possible that autophagy itself may not be active during filamentous growth due to 

post-transcriptional regulatory mechanisms.  To consider this possibility more explicitly, 

we used the GFP-Atg8p processing assay developed by Shintani and Klionsky (Shintani 

and Klionsky 2004b) as an indication of autophagic induction.  Atg8p is a ubiquitin-like 

protein essential for autophagy that is unconventionally linked to the lipid 

phosphatidylethanolamine (Ichimura et al. 2000).  Part of Atg8p remains associated with 

autophagosomal structures from the stage of initial formation to complete breakdown in 

the vacuole; therefore, GFP-Atg8p is an optimal marker to follow the itinerary of double 

membrane vesicles (Kirisako et al. 1999).  As a result, the delivery of Atg8p to the 

vacuole serves as a useful measure of autophagosome formation and autophagic 

induction.  To visualize this process, we use a GFP-Atg8p chimera.  Upon delivery to the 

vacuole, Atg8p is degraded, while GFP, which is relatively stable in the presence of 

vacuolar hydrolases, accumulates in the vacuolar lumen.  Therefore, the presence of the 

free GFP moiety in the vacuole indicates Atg8p delivery and autophagic induction 

(Shintani and Klionsky 2004b).  
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As indicated in Figure 2.2 A, using the GFP-Atg8p processing assay, we detect 

induction of autophagy during filamentous growth in S. cerevisiae.  By Western blot 

analysis, we detect free GFP resulting from cleavage of GFP-Atg8p in the vacuole during 

nitrogen stress (concentrations of 0, 50, and 100 μM ammonium sulfate) in the 

filamentous yeast strain Σ1278b.  For comparison, we repeated this analysis in the 

standard non-filamentous S288c-derived genetic background BY4743; autophagy is 

known to occur in non-filamentous yeast during nitrogen stress, and we observe 

comparable levels of autophagic induction in filamentous yeast as compared to non-

filamentous yeast.  These results are confirmed by fluorescence microscopy of yeast cells 

carrying GFP-Atg8p under conditions of nitrogen stress and sufficiency (Figure 2.2 B).  

Under normal growth conditions, GFP-Atg8p is localized to a perivacuolar punctate spot, 

indicating the pre-autophagosomal structure (the PAS).  The PAS is believed to be the 

site where double-membrane vesicles are formed (Kim et al. 2002; Suzuki et al. 2001).  

Under conditions of nitrogen deprivation, however, GFP staining is evident in the vacuole 

in filamentous and non-filamentous strains of yeast, indicative of Atg8p transport to the 

vacuole and autophagic activity. Thus, we conclude that autophagy is induced during 

nitrogen stress in filamentous yeast.  

 

Phenotypic analysis of PHG in autophagy-impaired mutants:  Since pseudohyphal 

growth and autophagy are active stress responses in a filamentous strain of yeast, with 

nitrogen deprivation acting as a common stimulus, we sought to further investigate a 

relationship between these processes.  For this purpose, we generated a homozygous 

diploid strain of the Σ1278b genetic background deleted for ATG1.  
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Atg1p is a serine/threonine kinase essential for autophagy (Matsuura et al. 1997; 

Stephan and Herman 2006).  Atg1p is required for the induction of autophagy, and it is 

thought to function as part of a protein complex with several other components of the 

autophagy pathway (Klionsky 2005; Reggiori et al. 2004). Using the standard assay of 

Gimeno et al. (Gimeno et al. 1992), we examined homozygous diploid atg1Δ mutants for 

filamentous growth under conditions inducing PHG.  Interestingly, we found increased 

PHG in atg1Δ relative to the filamentous wild-type strain (Figure 2.3).  Conversely, 

inhibition of filamentous growth does not affect autophagy appreciably (data not shown); 

this is consistent with the volume of studies characterizing active autophagy in strains of 

budding yeast deficient in filamentous growth.  

The increased growth of the homozygous diploid atg1Δ strain is evident in its 

colony morphology (Figure 2.3A) and at the cellular level as well (Figure 2.3B).  Yeast 

cells undergoing PHG are characteristically elongated and can be distinguished from cells 

undergoing normal vegetative growth by this fact; however, a colony is a heterogeneous 

cell population, and even during PHG, not all cells within a colony will be elongated.  

The relative fraction of elongated cells, though, does provide a confirming measure of the 

extent of PHG in a given strain under given growth conditions.  To assess this more 

quantitatively, we measured the length and width of cells from atg1Δ and wild-type 

colonies under PHG-inducing growth conditions; this analysis is indicated in Figure 2.3B 

and C. PHG cells exhibit a length:width ratio of approximately 1.5-2.0 or greater, and we 

find a larger fraction of these elongated cells in atg1Δ relative to wild-type.  Specifically, 

four times as many atg1Δ cells as compared to wild- type cells exhibit a length:width 

ratio of 2.0 or greater under identical PHG-inducing conditions.  Other than the increased 
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fraction of elongated cells, we do not detect significant differences in cell morphology 

between the atg1Δ mutants and wild-type Σ1278b strains; both strains exhibit large 

vacuoles indicative of growth under conditions of nutrient stress (Figure 2.3 B).  

The phenotype observed upon deletion of ATG1 may be specific to this gene or 

may result from general inhibition of the autophagy pathway.  To distinguish between 

these possibilities, we generated a homozygous diploid strain of the Σ1278b background 

deleted for ATG7.  ATG7 encodes an activating enzyme (E1) that is part of two 

ubiquitin-like systems essential for autophagy (Ichimura et al. 2000; Mizushima et al. 

1998).  Atg7p is required for vesicle expansion and completion; it is not thought to  

function in complex with Atg1p.  As indicated in Figure 2.3, homozygous diploid atg7Δ 

mutants also exhibited increased filamentous growth under PHG-inducing conditions.  

Colonies of atg7Δ mutant display increased surface-spread filamentation, and 

approximately five times as many cells from atg7Δ colonies are elongated (length:width 

ratio of greater than 2.0) relative to wild-type Σ1278b cells.  Thus, we observed 

exaggerated PHG in both atg1Δ and atg7Δ mutants.  

 

Phenotypic analysis of PHG upon ATG1 overexpression:  In complement to 

phenotypic studies of atg deletion mutants, we also overexpressed ATG1 and assessed 

pseudohyphal growth.  For this study, we expressed ATG1 from the copper-inducible 

CUP1 promoter carried on a low-copy yeast shuttle vector derived from pRS416 (Scott et 

al. 2007).  Even in the absence of copper sulfate, expression of Pcup1-ATG1 yields 2-3-

fold overexpression of ATG1 (as confirmed by Western blot analysis).  It is important to 

note that overexpression of ATG1 is insufficient to activate autophagy under non-
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inducing conditions in yeast; however, it is difficult to quantify autophagic activity, and, 

thus, it is difficult to assess whether the process occurs more aggressively upon 

overexpression of ATG1 under conditions of nitrogen stress.  Qualitatively, by the GFP-

Atg8p assay described previously, autophagy is strongly activated by ATG1 

overexpression under conditions of nitrogen stress.  Also consistent with increased 

autophagic induction, a yeast strain of the Σ1278b background overexpressing ATG1 

exhibits smaller colony size on low-nitrogen medium than a corresponding wild-type 

strain.  

To assess pseudohyphal growth upon ATG1 overexpression, we assayed the strain 

described above for surface-spread filamentation at the colony level and for cell 

elongation/clustering at the single- cell level.  As indicated in Figure 2.3, ATG1 

overexpression is sufficient to markedly decrease pseudohyphal growth relative to a wild-

type strain grown under identical conditions of nitrogen stress. This phenotype is 

consistent with results from the converse experiment in which hyperactive filamentous 

growth was observed upon deletion of ATG1.  

 

Graded PHG during nitrogen stress in filamentous yeast:  Considering the findings 

presented above, exaggerated filamentous growth during nitrogen deprivation in 

autophagy-impaired mutants may reflect the worsened state of nitrogen stress in these 

strains.  Autophagy is a recycling process, acting, in part, to mitigate the effects of 

nitrogen starvation.  In the absence of autophagy, nitrogen stress may be significantly 

increased relative to a wild-type strain grown under identical conditions of nitrogen 

deprivation; the exaggerated PHG in autophagy-deficient mutants may reflect this 
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condition.  If so, PHG must be a graded response, with increased filamentous growth 

correlated with decreasing available nitrogen.  As shown in the lower panel of Figure 2.4, 

we find that wild-type Σ1278b exhibits a graded increase in PHG in response to 

decreasing levels of exogenously supplied ammonium sulfate.  Note that the growth 

medium for this analysis contains some amino acids to complement nutritional 

auxotrophies in the strain; thus, even the absence of ammonium sulfate generates a state 

of nitrogen stress rather than nitrogen starvation.  We observe a similar graded response 

in atg7Δ mutants; however, PHG is induced at a higher concentration of exogenously 

supplied ammonium sulfate (top panel of Figure 2.4).  In the presence of low-nitrogen 

growth medium supplemented with 100 μM ammonium sulfate, atg7Δ undergoes PHG, 

whereas a wild-type strain of the same genetic background does not.  We observe 

identical results in mutants deleted for ATG1 (data not shown).  We, therefore, suggest 

that exaggerated PHG in autophagy-deficient mutants may be a cellular response to an 

exacerbated condition of nitrogen stress in these strains.  

 

Filamentous growth and autophagy facilitate cell survival during nitrogen stress:  

The findings above suggest that both filamentous growth and autophagy act to relieve 

nitrogen stress, presumably contributing to yeast cell survival.  To consider this further, 

we have assessed the ability of wild type filamentous (Σ1278b) and non-filamentous yeast 

to survive during nitrogen starvation (Figure 2.5).  In contrast to the non-filamentous 

yeast strain BY4743, wild type  Σ1278b cells survive nitrogen deprivation fairly well for 

greater than 9 days, exhibiting only a 25% reduction in colony number.  To assess the 

contributions of PHG and autophagy in a filamentous strain of S. cerevisiae, we generated 
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and assayed a homozygous diploid mutant impaired in autophagy (atg1Δ) and a 

homozygous mutant impaired in filamentous growth (muc1Δ) for cell viability under 

conditions of nitrogen starvation in the Σ1278b background.  Muc1p is a GPI-anchored 

cell surface glycoprotein required for diploid pseudohyphal growth under conditions of 

nitrogen stress (Guo et al. 2000; Lambrechts et al. 1996; Rupp et al. 1999).  

As shown in Figure 2.5, the autophagy-defective atg1Δ strain dies rapidly upon nitrogen 

removal, becoming inviable after 4-5 days.  The homozygous diploid muc1Δ mutant 

survives the course of the assay, exhibiting an efficiency of survival comparable to that of 

a wild-type non-filamentous strain, although, after 5 days of starvation, the muc1Δ mutant 

cells begin to die more rapidly.  Thus, both filamentous growth and autophagy contribute 

to cell survival during nitrogen starvation, but autophagy plays a more critical role. 

 

Discussion 

 

By microarray analysis of genes differentially expressed during early 

pseudohyphal growth in the filamentous Σ1278b strain of S. cerevisiae, we detect 

extensive upregulation of the autophagy pathway. Although both pseudohyphal growth 

and autophagy are active under conditions of nitrogen deprivation in filamentous strains 

of yeast, we find that inhibition of autophagy results in precocious and exaggerated  

filamentous growth.  This phenotypic effect is not specific to a single autophagy-related 

gene; instead, it seems to reflect a requirement for wild-type function of the autophagy 

pathway as a whole.  Collectively, these results suggest a model (Figure 2.6) in which 

both autophagy and filamentous growth mutually mitigate the effects of nutrient stress, 
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contributing positively to the available pool of nitrogen in the cell. In particular, the 

autophagy pathway strongly impacts the degree of nitrogen stress in the yeast cell, and 

the extent of filamentous growth is responsive to the severity of this nitrogen stress.  This 

model explains the exaggerated degree of PHG evident in autophagy-impaired mutants: 

interruption of autophagy results in a heightened state of nitrogen stress, manifesting 

itself in the premature initiation of PHG and, thus, hyperactive filamentation.  

 

Pseudohyphal growth and autophagy are interconnected stress responses:  

Autophagy is involved in many important physiological processes, but has been studied 

most intensely as a cellular adaptation to starvation conditions (Reggiori and Klionsky 

2005).  As a stress response, therefore, its link with PHG is not surprising: nitrogen 

deprivation is a common stimulus inducing PHG and autophagy.  Our results indicating 

transcriptional induction of the autophagy pathway are consistent with specific expression 

studies of the autophagy genes ATG8 and ATG14 (Chan et al. 2001; Kirisako et al. 

1999), reported to be upregulated in non-filamentous yeast under conditions of nitrogen 

stress.  It is unclear as to why transcriptional induction of autophagy is widespread over 

the pathway, encompassing the majority of autophagy genes.  Possibly, autophagy 

proteins are required to sustain an intense autophagic activity.  In agreement with this 

hypothesis, it has been shown that the induced expression of ATG8 and its subsequent 

translation are essential to generate normal-sized autophagosomes (Abeliovich et al. 

2000).  This extensive, but not comprehensive, complement of PHG-regulated autophagy 

genes may suggest the presence of many regulatory control points, rather than a single 

focus point.  Computational analysis of the ATG promoter sequences does not reveal any 
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enrichment for known transcription factor binding sites, and, in particular, chromatin-

immunoprecipitation/microarray studies of pseudohyphal growth transcription factors do 

not identify autophagy-related genes (Borneman et al. 2006).  It is noteworthy that the 14 

autophagy-related genes identified as being differentially regulated in this study were not 

identified as such in previous microarray-based studies of filamentous growth (Prinz et al. 

2004), possibly due to the different time frames, growth conditions, and statistical 

measures employed in the respective analyses.  

Transcriptional induction of both autophagy and pseudohyphal growth correlates 

with the activity of each process; both processes are active under conditions of nitrogen 

stress in a strain of yeast capable of filamentous growth, and autophagy is active in non-

filamentous yeast under similar conditions. Therefore, we do not find that autophagy and 

PHG act as mutually exclusive pathways, but rather that both pathways contribute to the 

cellular response to nutrient stress.  The role of autophagy in relieving nutrient stress is 

well documented (Klionsky and Kumar 2006; Wang and Klionsky 2003; Yang et al. 

2006).  Pseudohyphal growth plays a less substantial, but nonetheless tangible, role in this 

process as well: A cohort of genes mediating nitrogen utilization is upregulated during 

PHG (Prinz et al. 2004), and a strain of budding yeast capable of undergoing filamentous 

growth survives nitrogen stress better than a non-filamentous wild-type strain (Figure 

2.5).  Of course, as the filamentous and non-filamentous strains are non-isogenic, this 

observation must be interpreted cautiously. 

  

The timing and onset of filamentous growth and autophagy:  The activity of both 

autophagy and pseudohyphal growth during nitrogen stress raises an interesting question 
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as to the timing and onset of each process.  This question is difficult to address directly, 

since we lack a well-defined indicator for the onset of pseudohyphal growth, other than 

cell morphological changes that require a period of two hours (one cell cycle) in order to 

become evident.  With that qualification in mind, we speculate that autophagy might be 

initiated before pseudohyphal growth.  The transition to filamentous growth is an 

extensive morphogenetic process that may be initiated when nutrient stress is sensed as 

being severe.  In essence, autophagy may act to delay the onset of PHG by relieving 

initial nitrogen stress; note again that PHG occurs at higher concentrations of available 

nitrogen source in autophagy-deficient yeast (Figure 2.4). Our ATG1 overexpression 

results (Figure 2.3) suggest that the autophagy pathway represses filamentous growth.  

Again, during nitrogen stress, both autophagy and filamentous growth are active; 

however, the autophagy pathway may limit filamentous growth, preventing it from being 

maximally active and thereby contributing to the fine balance between these cellular 

processes.  The fact that 2-3-fold overexpression of ATG1 is sufficient to repress 

filamentous growth suggests that the balance between autophagy and filamentous growth 

is indeed fine.  

 

A possible direct connection between autophagy and pseudohyphal growth: 

Although our model does not necessitate a direct link between autophagy and filamentous 

growth, it is likely that such a connection exists.  Since the autophagy pathway is active 

under conditions of nitrogen stress irrespective of filamentous growth (Figure 2.2), but 

filamentous growth is affected by autophagy (Figure 2.3), it seems most likely that a 

component of the autophagy pathway might regulate PHG (this is indicated in Figure 2.6  



 

 54

by the horizontal arrow from autophagy to PHG).  Several PHG or autophagy-related 

transcription factors and/or kinases may mediate cross talk between the processes; 

however, at present, chromatin immunoprecipitation/microarray studies of known PHG 

transcription factors do not indicate extensive regulation of autophagy-related genes 

(Borneman et al. 2006), and by the same token, we have yet to uncover an autophagy 

protein directly regulating a known component of the PHG pathways.  In this  

regard, it is interesting to consider the decreased level of PHG evident upon 

overexpression of ATG1.  By our current understanding of the pathway in yeast, and in 

contrast to the orthologous pathway in D. melanogaster (Scott et al. 2007), 

overexpression of ATG1 is not sufficient to induce autophagy under repressive growth 

conditions.  While the colony morphology of ATG1 overexpression mutants and results  

from the GFP-Atg8p processing assay suggest that the rate of autophagy may be slightly 

increased upon overexpression of ATG1 under conditions of nitrogen stress, the effect is 

fairly marginal and is unlikely to affect the cellular nitrogen pool sufficiently to account 

for the marked filamentous growth phenotype. The results presented here indicate that 

Atg1p nevertheless plays a repressive role in limiting filamentous growth and that Atg1p 

may directly or indirectly affect activity of the filamentous growth pathways distinct from 

signals put forth by nitrogen-sensing transducers.  Considering this possibility further, 

however, will be challenging, as many potential Atg1p targets exist in known PHG 

pathways (Stephan ad Herman 2006). 

 

In total, this study describes an interrelationship between autophagy and 

pseudohyphal growth and therein raises two important points regarding these processes.  
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First, autophagy is a critical mechanism by which the cell can regulate or buffer its 

nutritional state from environmental stresses of nutrient deprivation.  Second, PHG is 

finely tuned to the nutritional state of the cell, with the extent of  PHG reflective of the 

degree of nitrogen stress to which the cell is subjected.  

 

 

Acknowledgments 

 

 We thank Daniel Klionsky for providing plasmids pCU-GFP-ATG8 and pCUP1-

ATG1; we also thank Damian Krysan, Robert Fuller, Anthony Borneman, and Michael 

Snyder for providing filamentous yeast strains.  This work was supported by grant RSG-

06-179-01-MBC from the American Cancer Society, grant DBI 0543017 from the 

National Science Foundation, and Basil O'Connor Award 5-FY05- 1224 from the March 

of Dimes.  F.R. was supported by NIH grant GM53396.  

 

 

 

 

 

 

 

 

 
 



 

 56

 
 
Figure 2.1  Differential expression of autophagy-related genes during early pseudohyphal 
growth.  (A) Red-green color scale indicating the mean change in expression (log scale) 
for a given gene relative to the standard deviation of repeated measurements for that 
gene; all experiments were performed with four biological replicates at each time point.   
In this heat map, the red coloring indicates increased mRNA abundance at the given time 
point.  Statistical significance was determined by SAM (as described in Materials and 
Methods).  The score provided alongside each gene is a statistical measure describing the 
degree of the observed change in gene expression; the higher the score, the greater the 
change in mRNA abundance for a given gene in the time course studied.  Note that all 
autophagy-related genes shown here exhibit statistically significant changes in gene 
expression, as determined using a threshold cut-off score such that the false discovery 
rate is 0.  (B) Listing of the autophagy-related process and specific function for each 
protein encoded by the ATG genes identified in this microarray study.  
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Figure 2. 2  GFP-Atg8p processing assay of autophagic induction during nitrogen stress 
in filamentous and non-filamentous yeast strains.  (A) Western blot of GFP-Atg8p 
processing; full-length GFP-Atg8p fusion and cleaved GFP are indicated.  Pgk1p serves 
as a loading control.  From these blots, autophagic induction is detected in both 
filamentous (Σ1278b) and non-filamentous (BY4743) yeast strains.  (B) Analysis of GFP-
Atg8p processing by fluorescence microscopy.  In both filamentous and non- filamentous 
strains, staining of the perivacuolar pre-autophagosomal structure is evident under 
conditions of nitrogen sufficiency, and vacuolar staining is evident under conditions of 
nitrogen deprivation.  By this assay, vacuolar GFP staining is not observed under 
conditions of nitrogen stress in yeast cells deficient in autophagy (data not shown).  The 
scale bar represents 5 μm.  
 

 

 

 

 

 

 

 

 

 

 



 

 59

 

 

 

 

 

 

 

 



 

 60

Figure 2.3   Colony and cell morphology of autophagy mutants in a filamentous strain of 
budding yeast.  (A) Low-magnification images of yeast colonies from wild-type, 
autophagy-deficient, and ATG1 overexpression strains in the filamentous Σ1278b genetic 
background.  All strains were grown for 6 days at 30°C in SLAD medium (Materials and 
Methods) supplemented with 1% ethanol; this analysis was repeated using nitrogen 
deprivation (SLAD medium) alone to induce PHG, and observed results were identical.  
The scale bar represents 1 mm.  (B) Cell morphology of wild-type, autophagy-deficient, 
and ATG1 overexpression strains of the filamentous Σ1278b genetic background as 
imaged by differential interference contrast (DIC) microsocopy.  Strains were cultured as 
above; colonies were scraped into a solution for DIC microscopy.  The scale bar 
represents 5 ∝m.  (C) Pie charts indicating the observed cell length:width ratios of each 
strain.  The cell sample number is indicated in the center of each chart.  
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Figure 2.4  Graded PHG response during nitrogen stress in wild-type and autophagy-
deficient filamentous yeast.  Low-magnification images of diploid wild-type and 
homozygous diploid atg7Δ colonies of the Σ1278b genetic background under varying 
conditions of nitrogen stress.  Strains were cultured 6 days at 30°C in SLAD medium 
prepared with the indicated concentrations of ammonium sulfate.  Both strains were 
grown in medium supplemented with uracil and leucine to complement nutritional 
auxotrophies; thus, the absence of ammonium sulfate does not constitute complete 
nitrogen starvation.  As indicated in the top and bottom panels, atg7Δ initiates PHG at a 
higher concentration of ammonium sulfate than does the wild-type strain.  The scale bar 
represents 1 mm.  
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Figure 2.5  Cell survival of Σ1278b mutants impaired in autophagy and pseudohyphal 
growth.  The diploid wild type Σ1278b strain and diploid non-filamentous S288c-
derivative BY4743 were assayed for cell viability under conditions of nitrogen stress.  
Briefly, cultures were grown to log-phase in YPD before being transferred to low-
nitrogen growth medium.  At the indicated days, aliquots of cells were diluted and plated 
on YPD.  Percent survival was determined by counting the number of surviving  
colonies from triplicate platings and by dividing the number of colonies at each time 
point by the average number of colonies obtained at day 0.  Homozygous diploid atg1Δ 
and muc1Δ mutants in the filamentous Σ1278b background were also assayed for cell 
viability as described above.  
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Figure 2.6   Model of the interrelationship between pseudohyphal growth and autophagy 
in yeast.  In the filamentous strain Σ1278b, nitrogen stress induces both filamentous 
growth and autophagy, with both process contributing to cell survival and presumably to 
the relief of nitrogen stress, although autophagy plays a bigger role (indicated by the 
larger arrow).  In the absence of autophagy, nitrogen stress is exacerbated, and the 
pseudophyphal growth response is increased.  From our studies, autophagy regulates 
PHG as indicated; however, the molecular mechanism of this regulation remains to be 
determined.  
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Table 2.1 Real-time RT-PCR analysis of autophagy gene induction during nitrogen stress. 
Systematic and standard gene names, and fold change measured by real time RT-PCR are 
listed.  
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Chapter 3 
 

Overexpression of Autophagy-Related Genes Inhibits Yeast Filamentous Growth 
 

 
Introduction 

 
 

 Eukaryotic cells respond to environmental stresses through an intricate interplay 

of signaling pathways mediating a broad array of biological processes.  The scope of 

these processes is typically extensive, and the corresponding pathways engage in 

significant crosstalk to generate a concerted cellular response (Madhani et al. 1997; 

Kolch et al. 2005). This interconnection of pathways and stress responses is very evident 

in the budding yeast S. cerevisiae (Pan et al. 2000; Lengeler et al. 2000; Robers et al. 

1994). In particular, here, we consider two potentially interrelated stress responses in 

yeast: autophagy and filamentous growth. 

Autophagy is a ubiquitous process in eukaryotic cells, in which portions of the 

cytoplasm are sequestered in double-membrane vesicles for delivery to a degradative 

organelle (the vacuole or lysosome)(Levine et al. 2004; Reggiori et al. 2002; Klionsky et 

al. 2005).  In yeast, autophagy is induced by a variety of stresses, including nitrogen 

deprivation.  Under conditions of nitrogen stress, autophagy principally serves as a 

survival mechanism, replenishing internal nutrient pools by degrading cytoplasmic 

proteins and organelles, the constituent components of which are subsequently recycled 

to the cytosol (Shintani et al. 2004; He et al. 2007). In yeast, 30 autophagy-related genes 

have been identified (Levine et al. 2004; Nair et al. 2005), and functions within the 
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autophagy pathway have been ascribed to most of these genes (Klionsky et al. 2005); 

however, the mechanisms regulating this pathway and its crosstalk with other signaling 

networks remain to be defined. 

In addition to autophagy, other cell processes are also induced by nitrogen stress 

in the budding yeast.  Specifically, certain strains of S. cerevisiae undergo a dramatic 

change in growth form under conditions of nitrogen deprivation, transitioning from a 

typical “yeast-like” form to a filamentous form of growth (Gimeno et al. 1992; Madhani 

et al. 1998).  During filamentous growth, yeast cells delay in G2/M, exhibit an elongated 

morphology, invade their growth substrate, and remain physically connected after 

cytokinesis, collectively resulting in the formation of multicellular filaments, or 

pseudohyphae (Gimeno et al. 1992; Kron et al. 1994; Lo et al. 1997). This pseudohyphal 

growth is thought to be a type of foraging mechanism, allowing non-motile yeast to 

scavenge a wider area for nutrients (Gancedo et al. 2001). Yeast filamentous growth is 

now appreciated as a strong model of fungal pathogenicity, since similar growth 

transitions are required for virulence in C. albicans and in related pathogenic fungi (Lo et 

al. 1997). 

The morphological and genetic changes underlying yeast filamentous growth are 

extensive, and the regulatory mechanisms controlling this process seem to be equally 

complex (Madhani et al. 1998; Kron et al. 1997).  Presently, at least two signaling 

pathways are known to regulate yeast filamentous growth: 1) the nutrient-sensing cyclic 

AMP-protein kinase A (PKA) pathway (Mosch et al. 1996; Robertson et al. 1998), and 2) 

a mitogen-activated protein kinase (MAPK) pathway consisting of Ste11, Ste7, and the 

MAPK Kss1 (Liu et al. 1993).  A large set of genes act downstream of these pathways, 
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encompassing components of pathways regulating polarized growth, cell cycle 

progression, and bud site selection in yeast (Kron et al. 1994; Madhani et al. 1999; Lo et 

al. 1998).  This downstream gene set, however, is incomplete; many additional genes and 

pathways likely contribute to filamentous growth, and the identification of these genes 

will be a necessary step in clarifying our understanding of this cellular stress response. 

 

Results 

 

Autophagy and filamentous growth: interrelated stress responses: To consider the 

scope of genes and pathways contributing to filamentous growth, we profiled gene 

expression patterns in a filamentous strain of budding yeast under conditions of nitrogen 

stress in Chapter 2.  From this analysis, we identified extensive upregulation of the 

autophagy pathway; 14 of 29 autophagy-related genes in yeast were transcriptionally 

induced during the first two hours of nitrogen stress.  Through further analysis, we 

confirmed that the autophagy pathway is active in a filamentous strain of yeast during 

nitrogen starvation.  In this same study, we constructed several yeast strains deleted for 

key autophagy-related genes and assayed these mutants for filamentous growth 

phenotypes.  Surprisingly, these autophagy-impaired mutants were hyperfilamentous, 

exhibiting exaggerated filamentous growth both during nitrogen stress and in the 

presence of short-chain alcohols (known conditions for the induction of filamentous 

growth) (Gimeno et al. 1992; Lorenz et al. 2000).  Filamentous growth is a graded 

response, and autophagy-deficient mutants initiated filamentous growth at higher 

concentrations of available nitrogen.  Thus, from these studies, we developed a model 
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describing the interrelationship of autophagy and filamentous growth, wherein the level 

of autophagy contributes significantly to the degree of nitrogen stress in yeast, and 

filamentous growth is responsive to the state of this stress. 

 

Inhibited  filamentous growth upon overexpression of autophagy-related genes: 

To further investigate this apparent link between autophagy and filamentous growth, we 

undertook the converse phenotypic analysis from that described above, assaying 

filamentous growth upon overexpression of ATG genes.  Specifically, we previously 

performed an overexpression analysis of the autophagy gene ATG1.  ATG1 encodes a 

serine/threonine kinase required for the induction of autophagy (Matsuura et al. 1997; 

Stephan et al. 2006). Interestingly, overexpression of ATG1 results in severely decreased 

filamentous growth.  This finding raises several pertinent questions.  Is the filamentous 

growth phenotype specific to the overexpression of ATG1, or does it represent a more 

general effect resulting from perturbation of the autophagy pathway?  Furthermore, is 

autophagy significantly affected by overexpression of ATG1, and does this result affect 

our model of the interrelationship between autophagy and filamentous growth?     

To address these questions, we present here an expanded phenotypic study of 

filamentous growth upon overexpression of autophagy-related genes.  For this study, we 

used a collection of nine additional ATG genes (ATG3, ATG4, ATG6, ATG7, ATG17, 

ATG19, ATG23, ATG24, ATG29) cloned into a high-copy expression vector, such that 

each gene is under transcriptional control of a galactose-inducible promoter (Kumar et al. 

2002).  These overexpression constructs were generated as part of a larger cloning 

project, and the ATG gene collection reported here represents the full set of autophagy-
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related genes successfully cloned during the initial stages of the project (Kumar et al. 

2002; Kumar et al. 2003).  Plasmids carrying the cloned ATG genes were introduced 

individually into a filamentous strain of yeast (derived from Σ1278b) by standard 

methods of DNA transformation (Ito et al. 1983).  Gene overexpression was driven by 

galactose induction, and filamentous growth was assayed at the colony and cellular levels 

in low-nitrogen medium supplemented with 1% butanol (Figure 3.1). 

Consistent with the phenotype observed upon overexpression of ATG1, 

overexpression of ATG3, ATG7, ATG17, ATG19, ATG23, ATG24, and ATG29 also 

resulted in decreased filamentous growth (Table 3.1).  Specifically, in these mutants, 

surface-spread filamentation was diminished, and a greater percentage of cells were 

round (Figure 3.1); yeast cells undergoing filamentous growth are characteristically 

elongated and can be distinguished from cells undergoing normal vegetative growth by 

this distinctive cell morphology (Gimeno et al. 1992). This phenotypic effect was not 

uniform over all mutants tested, however, as overexpression of ATG4 and ATG6 yielded 

no observable filamentous growth defects. 

From these results, we conclude that the filamentous growth defect observed upon 

overexpression of ATG1 is not specific to this gene; instead, overexpression mutants of at 

least eight additional autophagy-related genes each exhibit similar filamentous growth 

phenotypes.  The outlying results from overexpression of ATG4 and ATG6 are 

interesting.  ATG4 encodes a cysteine protease that cleaves Atg8 to a form required for 

autophagosome and Cvt vesicle generation (Lang et al. 1998); thus, it does not function 

exclusively in the autophagy pathway.  ATG6/VPS30 encodes a protein involved in 

vacuolar protein sorting and, specifically, in the retrieval of the carboxypeptidase Y 
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receptor, Vps10, to the late Golgi body from the endosome (Seaman et al. 1997; 

Kametaka et al. 1998). It is, therefore, unclear whether overexpression of either gene 

would significantly impact upon autophagic activity, although a similar statement could 

be made regarding the autophagy-related genes yielding filamentous growth phenotypes 

as well. 

To consider whether autophagic activity is indeed affected by overexpression of 

ATG genes, we assessed activity of the pathway upon overexpression of ATG1.  In D. 

melanogaster, overexpression of ATG1 is sufficient to induce high levels of autophagy 

under repressive conditions (Scott et al. 2007); thus, ATG1 is the strongest candidate gene 

to affect autophagic activity in S. cerevisiae.  To assess activity of the autophagy 

pathway, we used a chimera consisting of GFP fused to the amino terminus of Atg8, 

similar to the method developed by Shintani and Klionsky (Shintani et al. 2004).Briefly,  

Atg8 is a ubiquitin-like protein essential for autophagy (Ichimura et al. 2000).  It is one of 

two proteins that remain associated with the completed autophagosome, allowing it to 

serve as an effective marker for this structure (Kirisako et al. 1999). In this assay, we use 

GFP-Atg8 to track delivery of Atg8 to the vacuole (Klionsky et al. 2006); upon 

trafficking to the vacuole, Atg8 is degraded, while GFP accumulates in the vacuolar 

lumen, due to its relative stability in the presence of vacuolar hydrolases.  Thus, GFP 

fluorescence in the vacuole indicates autophagic activity, reflecting the net flux of GFP 

into/out of the vacuole (Shintani et al. 2004; Kim et al. 2001). 

By this approach, we detect comparable levels of vacuolar GFP fluorescence 

during nitrogen stress in both wild type and ATG1 overexpression mutants (Figure 3.2); 

for purposes of comparison, we also included the same background yeast strain deleted 
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for ATG1, as autophagy is inhibited in this mutant.  Under normal growth conditions, 

GFP-Atg8 is localized to a perivacuolar spot representing the phagophore assembly site 

(PAS), and overexpression of ATG1 in yeast is insufficient to induce autophagy under 

repressive conditions (DJ Klionsky, personal communication).  As shown in Figure 3.2, 

after 10 minutes of nitrogen stress, GFP-Atg8 is localized largely to the PAS, although 

faint vacuolar fluorescence is visible in the wild type and ATG1 overexpression strains.  

Autophagy is strongly active in all but the atg1Δ strain after 30 minutes of nitrogen 

stress.  Thus, the autophagy pathway is clearly active upon overexpression of ATG1 

under conditions of nitrogen stress; however, by tracking GFP-Atg8, we do not detect 

noticeable differences in the kinetics of autophagic activation following ATG1 

overexpression as compared to wild type.  Also, overexpression of any one ATG gene 

does not affect transcription of the remaining pathway (Nair et al. 2005). Possibly, ATG 

gene overexpression may subtly impact upon autophagic activity in a manner that is not 

apparent by the methods employed here; electron microscopy may be necessary to 

investigate autophagosome number and generation in ATG gene overexpression mutants 

as a more sensitive measure of pathway activity. 

It is interesting to note that ATG1 overexpression mutants do exhibit distinct 

colony morphologies, forming smaller colonies than corresponding wild type strains 

under conditions of nitrogen deprivation.   ATG1 overexpression mutants, however, are 

not petite; they grow normally on yeast growth medium with glycerol substituted for 

glucose, and, hence, are not obviously impaired in mitochondrial function.  Similarly, we 

also do not observe morphological differences in colonies from other ATG 

overexpression strains. 
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Discussion  

 

From the studies presented here, we find that the overexpression of autophagy-

related genes can inhibit yeast filamentous growth, and we specifically report that this 

inhibition is not unique to a single ATG gene, but is instead widespread throughout much 

of the pathway.  We, furthermore, find that ATG gene overexpression does not manifest 

itself in markedly altered autophagic activity.   

These results hold significant implications regarding our understanding of the 

interrelationship between autophagy and yeast filamentous growth.  In Chapter 2, we 

have developed a model linking these processes largely through their respective impact 

on, and response to, the available nitrogen pool in the yeast cell.  The basic principles of 

this model are presented in Figure 3.3.  Nitrogen stress activates autophagy, which 

mitigates the effects of nitrogen deprivation, contributing to internal pools of nitrogen 

through the breakdown and recycling of proteins and organelles.  Filamentous growth is 

responsive to the state of this nitrogen pool, with increased filamentation correlated with 

decreased available nitrogen.  Inhibition of autophagy exacerbates nitrogen stress, 

reducing the nitrogen pool and driving exaggerated filamentous growth.  Accordingly, 

yeast mutants impaired in autophagy initiate filamentous growth at higher concentrations 

of externally supplied nitrogen.  In developing this model, we also raised the possibility 

of a regulatory connection between autophagy and filamentous growth independent of the 

nitrogen pool and the mechanism discussed above. 
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Since the overexpression of autophagy-related genes inhibits filamentous growth 

with relatively little impact on the overall activity of the pathway, we expect that this 

regulatory effect is not dependent upon any autophagy-driven relief of nitrogen stress.  In 

particular, this result supports a model highlighting crosstalk between the pathways 

(Figure 3.3).  According to this hypothesis, components of the autophagy pathway drive 

events regulating filamentous growth.  The converse does not appear to be true, as 

inhibition of filamentous growth does not affect autophagic activity.  It is important to 

note that this mechanism of inter-pathway crosstalk is not at odds with the presence of 

regulatory effects mediated through the nitrogen pool; neither event is mutually exclusive 

of the other.  Based on our findings, autophagy and filamentous growth are interrelated 

both as mutual responses to nitrogen stress and by regulatory crosstalk from the 

autophagy pathway. 

At present, the mechanism of crosstalk between autophagy and filamentous 

growth remains unclear, and several possible regulatory connections could link the 

pathways.  Most simply, a component of the autophagy pathway may directly regulate a 

gene controlling or contributing to filamentous growth.  The kinase Atg1 is a candidate to 

fill such a role (Stephan et al. 2006), particularly since it is required for the induction of 

autophagy and is known to function as part of a larger protein complex (Matsuura et al. 

1997). Atg1, however, is not known to target filamentous growth genes.  Moreover, 

diminished filamentous growth is observed upon overexpresion of most autophagy-

related genes; the effect is not specific to ATG1, as might be expected if Atg1 directly 

regulated filamentous growth.  Autophagy-related genes downstream of ATG1 may feed 

back to modulate Atg1 activity upon overexpression, but such a regulatory mechanism 
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has not been identified to date and seems unlikely based upon existing knowledge of the 

pathway.          

Alternatively, overexpression of autophagy-related genes may result in a signal 

that feeds back to regulate filamentous growth through an upstream control point, such as 

the Tor protein kinases.  The Tor kinases, Tor1 and Tor2, regulate cell growth in response 

to nutrient availability and function upstream of both autophagy and filamentous growth 

pathways in yeast (Zheng et al., 1997; Kamada et al., 2000).  Specifically, the Tor kinases 

function in one of two distinct complexes; Tor complex 1 (TORC1) is sensitive to the 

natural product rapamycin and is thought to regulate autophagy and filamentous growth 

(Kamada et al. 2000; Loewith et al. 2002).  It is unclear, however, as to how TORC1 

contributes to the interrelationship of these processes; the inhibition of TORC1 activates 

autophagy and inhibits filamentous growth (Cutler et al. 2001), yet both autophagy and 

filamentous growth are active under conditions of nitrogen stress in filamentation-

competent yeast.  While TORC1 represents a potentially interesting shared control point 

upstream of both pathways, additional studies will be necessary to resolve its 

contributions to the activities of both autophagy and filamentous growth. 

In total, this study adds to our knowledge concerning the interconnection between 

autophagy and filamentous growth.  These two cellular processes both relieve nitrogen 

stress in yeast; autophagy contributes more significantly to the cell response under 

conditions of nitrogen deprivation, and filamentous growth is responsive to the degree of 

this stress.  In addition, autophagy regulates the filamentous growth response independent 

of its general effect on the cellular nitrogen pool, but the specific genes mediating this 

regulatory control are unknown.  The regulatory linkage between autophagy and 
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filamentous growth is likely unrelated to one particular ATG gene and may encompass 

components of the general cell machinery responsive to nutritional stress.  In the near 

future, additional studies of the yeast ATG gene complement should reveal the molecular 

mechanism underlying the coordinated regulation of these processes.       
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Figure 3.1.  Filamentous growth phenotypes of ATG overexpression mutants.  (A) Low 
magnification images of yeast colonies upon overexpression of the indicated ATG gene 
under conditions inducing filamentous growth.  All mutants were derived from the 
filamentous yeast strain Σ1278b. High-copy plasmids (with the URA3 marker) carrying 
ATG genes cloned under transcriptional control of a galactose-inducible promoter were 
introduced into a haploid strain of Σ1278b; an empty vector was introduced into this 
strain as well to serve as the wild-type control.  Gene overexpression was achieved by 
galactose induction according to standard methods (Kumar et al., 2002).  Filamentous 
growth was observed on SC –Ura low-nitrogen medium (50 μM ammonium sulfate) with 
galactose as the carbon source and 1% (v/v) butanol (Lorenz et al., 2000).  Mutants were 
grown for 3-5 days at 30ºC before examination by standard microscopy.  The scale bar 
represents 1 mm.  (B) Cell morphology of ATG overexpression strains imaged by 
differential interference contrast microscopy.  Cells undergoing filamentous growth 
appear elongated relative to cells undergoing normal vegetative growth.  Some mutants 
exhibit a greater degree of flocculence, or cell-cell adhesion, as well.  The scale bar 
indicates 5 μm.  (C) Pie charts indicating the observed cell length:width ratio of each 
strain.  The cell sample number is indicated in the center of each chart. 
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Figure 3.2.  Activity of the autophagy pathway upon overexpression of ATG1.  (A) For 
this study, we expressed ATG1 from the copper-inducible CUP1 promoter carried on a 
low-copy yeast shuttle vector, resulting in 2-3 fold gene overexpression in medium 
lacking exogenously supplied copper sulfate.  This construct was introduced into the 
Σ1278b strain of yeast, carrying a plasmid-borne GFP-ATG8 allele, for analysis of 
autophagic activity after 10, 20, and 30 minutes of nitrogen stress.  Cell images obtained 
by differential interference contrast microscopy are included below each fluorescence 
micrograph.  Vacuolar fluorescence indicates autophagic activity.  The corresponding 
wild-type (B) and atg1Δ (C) strains are included for comparison.  The kinetics and 
overall levels of autophagic activity in the ATG1 overexpression and wild-type strains are 
comparable, with pathway activity clearly evident upon 20 and 30 minutes nitrogen stress 
in both strains.  Activity of the autophagy pathway is inhibited in the atg1Δ strain.  The 
scale bar indicates 5 μm.      
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Figure 3.3.  Model describing the interrelationship between autophagy and filamentous 
growth in the budding yeast.  Autophagy and filamentous growth are both induced in 
response to nitrogen stress.  Autophagy contributes more to the available cellular nitrogen 
pool, as indicated by the larger arrow.  The nitrogen pool is sensed by cell machinery that 
feeds back to inhibit the processes of autophagy and filamentous growth through as of yet 
undefined mechanisms.  The overexpression studies presented here highlight an 
additional level of negative regulatory control of filamentous growth by autophagy. 
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Table 3.1 Spreadsheet of filamentous growth phenotypes of overexpressed autophagy-
related genes.  Gene name, the function of this gene, the autophagy process this gene 
involved in and the overexprrsion phenotype of this gene are listed.   
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Chapter 4  

Localization of Autophagy-Related Proteins in Yeast Using a Versatile Plasmid-
Based Resource of Fluorescent Protein Fusions 

 
 

 Introduction 
 

 
In characterizing a given protein, an understanding of its subcellular localization 

can be very informative.  Protein localization is a good indicator of function, and 

controlled protein localization often serves as a regulatory mechanism ensuring 

specificity and timing of activity (Kumar et al. 2002; O’Neill et al. 1996; Edgington et al. 

2001). Furthermore, the loss of regulated protein localization in a mutant background 

(i.e., gene deletion mutant) may suggest regulatory interactions between proteins (He et 

al. 2006; Bharucha et al. 2008). Gene products within a pathway often co-localize, and 

localization data provide a means to identify putative pathway components, particularly 

through systematic analyses of protein sets.  As evidenced by these latter two examples, 

the utility of protein localization data can be enhanced by systematically localizing sets of 

proteins in a variety of genetic backgrounds. 

Despite this utility, localization data sets are incomplete at best for most 

organisms, having been generated piecemeal from independent studies of single proteins.  

In the budding yeast Saccharomyces cerevisiae, several groups have constructed reagent 

collections for large-scale studies of protein localization, resulting in a more extensive 
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catalog of localization data(Kumar et al. 2002; Ross-Macdonald et al. 1999; Huh et al. 

2003).These reagents, however, have been generated largely as integrated alleles and are  

not readily amenable to analysis in multiple genetic backgrounds.  Accordingly, a  

plasmid-based resource of fluorescent protein-fusions would be a strong complement to 

existing reagents for protein localization.  

As suggested above, the functions of proteins within a pathway can often be 

clarified by analysis of their subcellular localization; the autophagy pathway in yeast 

provides a strong example.  Autophagy is a catabolic process observed in all eukaryotes 

wherein long-lived proteins, organelles, and other components of the cytoplasm are non-

selectively sequestered within a double-membrane bound vesicle, the autophagosome, for 

trafficking to the vacuole or lysosome (Klionsky et al. 2005).  The contents of the 

autophagosome are degraded in the vacuole to re-supply the cell with nutrients for 

essential metabolic processes during starvation (Klionsky et al. 1999; Levine et al. 2004). 

Thus, autophagy is induced under conditions of nutrient deprivation, contributing to cell 

survival (Reggiori et al. 2002; Klionsky et al. 2000). In addition to its role as a cellular 

stress response, autophagy has been implicated in many developmental processes and 

diseases, including aging, programmed cell death, cellular remodeling, cell growth, 

cancer, neurodegenerative disorders, and pathogenic infection (reviewed in Cuervo 

(Cuervo et al. 2004)).  Autophagy has been studied extensively in the budding yeast, 

resulting in the identification of approximately 30 autophagy-related (ATG) genes 

(Reggiori et al. 2005). Under conditions of nutrient starvation in yeast, many ATG gene 

products accumulate at a perivacuolar site, termed the pre-autophagosomal structure 

(PAS) (Kim et al. 2002; Suzuki et al. 2001). The autophagosome originates from the 
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PAS, a distinct physical structure that can be visualized by fluorescence microscopy of 

PAS-targeted fluorescent protein fusions (Suzuki et al. 2007).  

To facilitate a broader variety of systematic protein localization studies, we 

present here a plasmid-based resource of fluorescent protein fusions for analysis in yeast.  

Specifically, we generated a collection of 384 plasmids, each with a yeast gene and its 

native promoter cloned as a cassette suitable for transfer by recombination into any of  

seven custom-designed fluorescent protein-containing vectors.  Using these vectors, we 

constructed a sub-collection of 276 kinases, transcription factors, and signaling proteins 

as carboxy-terminal YFP fusions. These constructs can be used to systematically analyze 

protein localization in multiple genetic backgrounds, providing a means to examine 

protein functions and relationships between components in a pathway.  As proof-of-

principle, we utilized this collection to identify ATG gene products at the PAS in yeast, 

and to identify localization patterns in the absence of an ATG gene (ATG11).  We further 

illustrated the utility of this approach in identifying regulatory interactions between 

proteins by localizing the integral membrane protein Atg9p in relevant mutant 

backgrounds. Collectively, this study presents a template for the application of these 

constructs towards a diversity of regulatory and pathway-based analyses in the budding 

yeast. 
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Materials and Methods 

 

Yeast strains and growth conditions.  In this study, ATG gene products were 

localizedin strain BY4742, a derivative of S288c with the genotype MATa ura3∆ 

leu2∆his3∆lys2∆ (Winzeler et al. 1999). The atg1∆ strain was also constructed in 

BY4742 using a one-step PCR gene disruption strategy with the G418 resistance cassette 

from plasmid pFA6a-KanMX6 (Baudin et al. 1993; Longtine et al. 1998). Atg11 

overexpression was achieved using the pRS416-derived plasmid pCUP1-ATG11; this 

vector, containing ATG11 under transcriptional control of the copper-inducible CUP1 

promoter, was introduced into S288c strain SEY6210 (MAT∆ ura3-52 leu2-3,112 his3-

∆200 trp1-∆901 lys2-801 suc2-∆9 mel GAL) (He et al. 2006).  

Unless otherwise indicated, yeast cells were grown in SMD medium (0.67% yeast 

nitrogen base, 2% glucose, with appropriate amino acids and vitamins).  Starvation 

conditions were induced by growth in SD-N medium (0.17% yeast nitrogen base without 

amino acids and 2% glucose). Yeast transformations were carried out by the standard 

lithium acetate-mediated protocol described in Ito et al. (Ito et al. 1983)                         

 

Recombination-based cloning.  Fluorescent protein fusions were generated by 

recombination-based cloning using the Gateway system (Invitrogen Corporation, CA).  

For this purpose, we constructed a series of fluorescent protein-containing Gateway-

compatible vectors derived from the centromeric yeast shuttle vector YCp50 (Rose et al. 

1987).  Briefly, the coding sequence of each fluorescent protein indicated in Figure 4.1C 

was amplified by PCR with forward and reverse primers containing SphI and SalI sites,  
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respectively.  The amplified fluorescent proteins were introduced into corresponding sites 

in YCp50.  The Ycp50 vector was subsequently digested with SphI and was made blunt 

with T4 DNA polymerase (New England Biolabs, MA).  Gateway cassette A, consisting 

of terminal attR sites, the counter-selectable ccdB gene, and a chloramphenicol resistance 

marker, was ligated into the blunt-ended vector.  EcoRI digestion was used to confirm 

proper orientation of the cassette. Target genes encoding kinases, transcription factors, 

and signaling proteins were identified from annotated genes in the Saccharomyces 

Genome Database (www.yeastgenome.org).  Associated Gene Ontology terms were 

screened to identify these genes, and custom primers were designed for the amplification 

of each gene with its native promoter.  Primers for this project have been designed so as 

to incorporate modified attB sites into the termini of each resulting PCR product.  

Specifically, each PCR primer consists of a 4-nt GGGG tail followed by the 25-nt attB 

sequence and approximately 26-30 nt of gene-specific sequence.  Gene-specific sequence  

within each reverse primer is fixed by the 3’ sequence of each gene.  The gene-specific 

sequence within each forward primer consists of promoter sequence roughly 1 kb 

upstream of the translational start codon for each gene; using custom primer design 

scripts, we scan each promoter for suitable primer sequence within a region 800 bp to 1.4 

kb 5’ of the initiator methionine.  Following PCR amplification of yeast genomic DNA, 

subsequent cloning steps were performed according to protocols described previously 

(Walhout et al. 2000; Alberti et al. 2007). The donor vector pDONR221 is commercially 

available (Invitrogen, CA).  
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Live cell microscopy and induction of autophagy.  Yeast cells with plasmid-based 

fluorescent protein fusions were grown in SMD medium until early log phase.  To label 

the vacuolar membrane, cells were washed and resuspended in fresh medium at OD 600 

of 1.0, and the vital stain FM4-64 was added to a final concentration of 8 µM.  The 

culture was incubated for an additional 30 minutes; cells were subsequently pelleted and 

resuspended in fresh medium.  To induce autophagy, cells were cultured in SMD medium 

supplemented with 0.2 µg/ml rapamycin at 30°C for 2 hours.  Alternatively, SD-N 

medium was added to induce starvation conditions. After incubation for 2 hours in SMD, 

SMD with rapamycin, or SD-N, samples were examined using a DeltaVision Spectris 

microscope (Applied Precision, Issaquah, WA) fitted with differential interference 

contrast optics and Olympus camera IX-HLSH100 with softWoRx software (Applied 

Precision).  

 

Results 

 

A set of vectors for the generation of fluorescent protein fusions by recombination 

based cloning:  To construct a plasmid collection of fluorescent protein fusions, we 

implemented a recombination-based cloning strategy using the Gateway system. As 

illustrated in Figure 4.1A, Gateway cloning exploits the bacteriophage lambda 

recombination system, which shuttles sequence site-specifically between plasmids 

bearing compatible recombination sites.  Each target yeast open reading frame (yORF) 

along with 1 kb of upstream promoter sequence was amplified by PCR with primers  
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containing appropriately modified lambda attB sites (sequences presented in Materials 

and Methods).  This PCR product was recombined with a "donor" vector containing the 

counterselectable ccdB gene flanked by attP sites, resulting in an "entry clone" containing 

the target promoter-yORF flanked by attL sites.  This attL-flanked sequence can 

recombine with a "destination" vector containing the ccdB gene bounded by attR sites.  

The final "expression clone" contains the target promoter-yORF flanked by attB sites in 

the destination vector backbone.                                                                                                                  

For this study, we generated yeast destination vectors carrying fluorescent proteins such 

that attL-attR recombination results in an in-frame fusion between the 3´-end of the 

targeted yORF and the 5´-end of the fluorescent protein-encoding sequence.  A map of 

the principal destination vector used in this study, pDEST-vYFP, is presented in Figure 

4.1B.  The pDEST- vYFP construct is derived from the yeast centromeric plasmid 

YCp50; it contains an attR-flanked cassette consisting of a gene encoding 

chloramphenicol resistance and the ccdB gene. The ccdB gene acts as a counterselectable 

marker, since the encoded ccdB gene product interferes with E. coli DNA gyrase, thereby 

inhibiting growth of most E. coli strains.  Recombination between the attL-flanked 

promoter-yORF in an entry clone and pDEST-vYFP results in loss of the 

counterselectable ccdB marker.  Upon expression and translation, the promoter-yORF 

expression clone generates a chimeric protein fused at its carboxy terminus to vYFP.  

Thus, the entry clone represents a recombination-ready template for reaction with any 

appropriate destination vector, while the pDEST-vYFP expression clone encodes a 

fluorescent protein fusion for localization analysis. To maximize flexibility for 

localization studies, we constructed a series of destination vectors following the design 
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indicated in pDEST-vYFP with the fluorescent protein/selectable marker combinations 

listed in Figure 4.1C.  We present these vectors as a community resource; they are freely 

available upon request from the authors.  

 

Constructing the yORF-vYFP plasmid collection: Using the Gateway compatible 

vectors described above, we constructed a plasmid-based collection of promoter-yORF- 

fluorescent protein fusions for a large set of yeast genes encoding kinases, transcription-

related proteins, and signaling proteins.  We selected these gene classes because their 

encoded protein products likely exhibit regulated localization and, accordingly, are 

particularly interesting for localization studies in mutant genetic backgrounds.  From 

information in the Saccharomyces Genome Database (www.yeastgenome.org) as of 

August 2006, we identified 125 kinase genes, 307 genes with transcription-related 

functions, and 80 genes encoding signaling proteins.  Target genes with native promoters 

were cloned by recombination-based approaches into the donor vector pDONR221 and 

subsequently into the destination vector pDEST-vYFP, carrying the Venus variant of 

yellow fluorescent protein (Nagai et al. 2002). We selected Venus YFP for use as our 

principal fluorescent reporter because it matures rapidly, fluoresces brightly, and works 

well in yeast (Muller et al. 2005).  

As indicated in Figure 4.2, we cloned 384 promoter-yORFs into the donor vector 

pDONR221, representing a success rate of approximately 75% from two passes through 

the target set.  This collection encompasses 119 kinase genes, 203 genes with 

transcription-related functions, and 62 genes encoding signaling proteins or components 

of cell pathways.  This donor plasmid collection is a useful source of promoter-yORF 
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cassettes for easy recombination into any appropriate Gateway- compatible destination 

vector.  This recombination-based transfer is technically less demanding than the initial 

cloning step; so, the entry clone collection can be introduced into any desired destination 

vector even without extensive technical expertise in Gateway cloning.  In this study, we 

transferred 276 promoter-yORFs into pDEST-vYFP, generating a sub-collection of low-

copy plasmids with promoter-yORF-vYFP fusions for localization analysis.    

 

Analysis of Atg protein localization: Localization studies can be effective in identifying 

pathway components and in identifying relationships between these components; the 

autophagy pathway in yeast provides a good test subject to illustrate this point.  During 

autophagy, the PAS acts as the organizing center for autophagosome formation, and 

many Atg proteins localize at the PAS.  Specifically, Suzuki et al. (Suzuki et al., 2007) 

localized 11 Atg-GFP chimeras to the PAS during autophagy.  To validate and build 

upon these results, we generated carboxy-terminal vYFP fusions of 14 ATG gene 

products (Figure 4.2), six of which overlap with those studied in Suzuki et al., and 

analyzed these products for localization to the PAS.  In particular, these genes were 

selected for study because their encoded products are expected to function/localize 

properly upon carboxy-terminal modification.  The functions of these genes and their 

roles in autophagy are summarized in Table 4.1.  

For analysis of protein localization, each plasmid bearing an ATG gene-vYFP 

fusion was introduced into a haploid strain of yeast, and vYFP fluorescence was 

monitored under conditions of normal vegetative growth and during rapamycin-induced  
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autophagy.  Rapamycin is an established inducer of autophagy, acting through inhibition 

of the Tor protein kinases (Cutler et al. 2001). The localization of each protein upon 

rapamycin treatment is presented in Figure 4.3.  Each Atgp-vYFP chimera was expressed 

from a low-copy plasmid under control of its native promoter, and Atg16p-vYFP was not 

evident above background under conditions of nutrient sufficiency or in response to 

rapamycin treatment.  The remaining proteins localized to the PAS upon rapamycin 

treatment, with the exception of Atg4p-vYFP and Atg22p-vYFP.  Atg4p is a cysteine 

protease contributing to vesicle expansion and completion; it cleaves Atg8p to a form 

required for the generation of autophagosomes and also mediates attachment of 

autophagosomes to microtubules (Kirisako et al. 2000). Atg22p is a vacuolar permease, 

(Yang et al. 2006) and, as such, is localized to the vacuolar rim.  Our results are in 

agreement with those of Suzuki et al. for Atg1p, Atg2p, Atg5p, Atg9p, Atg16p, and 

Atg18p — the only proteins common to both studies.  Analysis of Atg9p is presented 

later in this text.  

Genetic perturbations can often affect protein localization, thereby suggesting 

regulatory and/or functional relationships between proteins.  To illustrate this point in 

regards to the autophagy pathway, we reexamined the localization of Atg18p and Atg20p 

in the absence of ATG11 (Figure 4.4).  Atg11p is a peripheral membrane protein that 

interacts with numerous Atg proteins, connecting cargo molecules with components of 

the vesicle-forming machinery during selective autophagy of precursor Ape1p (prApe1p) 

and Ams1p (the cytoplasm-to-vacuole targeting, or Cvt, pathway) (Klionsky et al. 1992; 

Hutchins et al. 2001). Accordingly, the localization of many Atg proteins is perturbed in  
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an atg11∆ mutant background.  Atg18p is a WD-40 repeat-containing protein that binds 

phosphatidylinositol (3,5)-bisphosphate and phosphatidylinositol 3-phosphate; it is 

required for both the autophagy and Cvt pathways (Reggiori et al. 2004). Atg18p 

localizes at the PAS in a wild-type strain of yeast under conditions of rapamycin 

treatment; however, this localization is lost in the atg11Δ background.  Atg20p is a 

sorting nexin family member that binds phoshatidylinositol 3-phosphate and interacts 

with Atg24p.  Atg20p is required for both the autophagy and Cvt pathways.  As indicated 

in Figure 4.4, Atg20p remains at the PAS in the atg11Δ background in response to 

rapamycin treatment.  These results are consistent with our understanding of Atg11p-

mediated interactions and specifically illustrate the advantages in examining protein 

function by defining localization patterns in relevant mutant backgrounds.  

 

Localization of Atg9p in ATG1 and ATG11 mutants:  Atg9p is an integral membrane  

protein that may function as a membrane carrier for vesicle formation during bulk and 

selective autophagy The subcellular distribution of Atg9p is not restricted to the PAS; 

instead, Atg9p localizes to the mitochondria, PAS, and additional unidentified structures   

(Reggiori et al. 2004), making it an interesting target for localization analysis.  As 

indicated in Table 1 and Figure 4.2, we cloned ATG9 along with its native promoter into 

pDEST-vYFP and subsequently introduced this construct into a standard lab strain of 

yeast for analysis of Atg9p localization.  The Atg9p-vYFP chimera exhibits wild-type 

localization under conditions of nutrient sufficiency as well as under conditions of 

nitrogen deprivation (Figure 4.5A); thus, the chimera does not display any localization 

artifacts when expressed from its native promoter on a low-copy plasmid.  
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Furthermore, construction of this ATG9-vYFP expression clone provides a means 

to corroborate previously identified Atg9p regulatory interactions.  He et al. (He et al. 

2006) have reported that overexpression of ATG11 localizes Atg9p to the PAS.  With our 

plasmid-based ATG9-vYFP fusion, we also observe localization of Atg9p at the PAS 

upon copper-induced overexpression of ATG11 (Figure 4.5C).  Similarly, Atg1p plays a 

role in retrograde transport of Atg9p from the PAS to the mitochondria, (He et al., 2006; 

Reggiori et al. 2005) and, accordingly, deletion of ATG1 restricts Atg9p-vYFP to the PAS 

under conditions of normal nitrogen (Figure 4.5C).  

 

Discussion 

 

In this chapter, we present a plasmid-base resource of promoter-yORF-fluorescent 

protein fusions for the systematic analysis of protein localization in the budding yeast.   

These reagents complement existing collections of integrated GFP-fusions, providing a 

convenient means to generate fusions of a given protein to multiple fluorescent reporters 

and a labor saving toolkit for the analysis of protein localization in multiple genetic 

backgrounds.  In total, we report a collection of 384 genes with native promoters cloned 

as entry clones and/or expression clones (fluorescent protein fusions).  To illustrate the 

utility of this collection, we analyzed a large subset of autophagy-related gene products as 

vYFP chimeras, localizing these proteins under normal vegetative growth conditions and 

during autophagy in wild-type and mutant backgrounds.  

Collectively, the results from our studies indicate that plasmid-based fluorescent 

protein fusions can be used to effectively localize proteins, identify pathway components,  
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and investigate intra-pathway protein relationships with comparable accuracy to data 

generated from integrated alleles.  The plasmids constructed here are derived from a low-

copy centromeric yeast shuttle vector, typically present at 1-2 copies per cell (Rose et al. 

1987), and yeast genes were cloned along with 1 kb upstream sequence, sufficient to 

encompass most yeast promoters.  As a result, target genes were expressed at near 

endogenous levels, minimizing overexpression-based artifacts.  Vectors in this study were 

designed to yield chimeras of a fluorescent protein to the carboxy terminus of the target 

protein, and while this approach is likely to generate fewer localization artifacts than 

amino-terminal tags, carboxy terminal modification will affect the localization of some 

gene products.  In particular, carboxy-terminal tagging is problematic in analyzing 

isoprenylated gene products and geranylgeranylated proteins (Bhattacharya et al. 1995), 

as well as proteins with palmitoyl and farnesyl groups (Roth et al., 2006; Sun et al., 

2004). To accommodate such proteins, we are currently designing a complementary set of 

recombination-compatible destination vectors for amino-terminal fluorescent protein 

tagging.  

As presented here, recombination-based cloning by the Gateway system offers 

many advantages over traditional restriction enzyme/ligase cloning methods, particularly 

for large-scale applications.  By recombination-based cloning, a single uniform strategy 

may be employed to clone thousands of genes, rather than rational cloning strategies 

being developed individually for each desired gene and vector.  Furthermore, cloned 

genes may be quickly transferred to a variety of vectors without laborious "cut-and-paste" 

techniques.  With the suite of fluorescent protein destination vectors presented here,  
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individual yeast proteins can be easily analyzed as fusions to multiple fluorescent 

proteins, facilitating co-localization studies of protein pairs.  Accordingly, we constructed 

the pDEST-cCFP and pDEST-mCherry vectors with the LEU2 selectable marker, for ease 

of use with yeast cells already containing a pDEST-FP vector with URA3.  The principal 

limitation of the Gateway technology lies in the fact that PCR products greater than 5 kb 

in length can be difficult to clone.  In this study, we achieved a success rate of 75%, with 

large genes constituting the majority of targets refractory to Gateway cloning.  In 

addition, Gateway reagents are expensive, particularly over the course of a large project. 

Large-scale protein localization studies have been implemented successfully in the 

budding yeast; however, these studies only represent an initial level of analysis.  Protein 

localization is dynamic, and many proteins shuttle between cellular compartments in 

response to environmental or cellular signals.  To identify such differentially localized 

proteins, it is often necessary to analyze non-standard genetic backgrounds, since S288c-

derived strains are inappropriate for the analysis of some cellular responses (e.g., 

pseudohyphal growth).  Plasmid-based reagents are easy to introduce into a variety of  

strains, facilitating those studies.  

           Furthermore, as evidenced here, the analysis of protein localization in mutant 

backgrounds is useful in identifying regulatory mechanisms and relationships between 

proteins.  The suite of destination vectors presented here can be used to construct gene 

fusions to a variety of fluorescent reporters, potentially suitable for large-scale co-

localization studies or assays of fluorescence resonance energy transfer (FRET).  Thus, 

our plasmid collections of fluorescent protein fusions constitute singular resources for the  
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implementation of numerous large-scale localization studies -experimental designs that 

will likely take hold for the study of proteins in other tractable model organisms as well.  
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Figure 4.1.  A suite of destination vectors for recombination-based cloning of yeast genes 
as fluorescent protein fusions.  (A) Overview of Gateway cloning.  By the approach 
employed here, each amplified PCR product was cloned into the donor vector 
pDONR221, generating an "entry" clone.  A subset of the promoter-gene cassettes were 
subsequently introduced into a destination vector, generating an "expression" clone by the 
LR reaction indicated.  The LR reaction is technically simpler than the initial cloning 
process; accordingly, the entry clone collection represents a useful resource for 
recombination-based subcloning, even without extensive experience in Gateway-based 
techniques.  (B) Plasmid map of the destination vector pDEST-vYFP, derived from the 
centromeric yeast shuttle vector YCp50.  Arrows indicate gene-coding sequences.  (C) 
Listing of destination vectors constructed in this study.  Each destination vector varies in 
its fluorescent reporter and selectable marker as indicated. 
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Figure 4.2.  A plasmid-based collection of cloned promoter-gene cassettes.  In total, 384 
yeast genes with native promoters were cloned into the donor vector pDONR221; the 
cloned genes encompassed 119 kinase genes, 203 genes with transcription-related 
functions, and 62 genes encoding signaling proteins and/or components of cell pathways.  
A partial listing of these genes is presented here; genes listed in red have been subcloned 
into pDEST-vYFP.  A full listing of genes is presented in Supplementary Table ST1 
(with genes cloned as vYFP-fusions indicated in red).  
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Figure 4.3.  Subcellular localization of Atg-vYFP chimeras in response to rapamycin 
treatment. Yeast cells were treated with rapamycin two hours prior to microscopy.  The 
vital dye FM 4-64 was used as an indicator of the vacuolar membrane.  Yeast cell 
morphology was visualized by differential interference contrast microscopy (DIC).  
Localization at the pre-autophagosomal structure (PAS +) and absence of this localization 
(PAS -) is indicated accordingly.  Scale bar, 3 μm.  
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Figure 4.4.  Subcellular localization of Atg18p- and Atg20p-vYFP chimeras in a strain 
deleted for ATG11.  The atg11_ strain contains the kanMX6 cassette integrated at the 
ATG11 locus. Autophagy was induced by rapamycin treatment for two hours.  The 
vacuole was visualized by staining with FM 4-64; cell morphology was visualized by 
differential interference contrast microscopy (DIC).  Localization at the pre-
autophagosomal structure (PAS +) and absence of this localization (PAS -) is indicated.  
Scale bar, 3 μm.  
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Figure 4.5.  Overexpression of ATG11 and deletion of ATG1 drives Atg9p-vYFP to the 
PAS.  (A) Subcellular localization of Atg9p-vYFP under conditions of normal vegetative 
growth and under conditions of nitrogen deprivation.  The vacuole was visualized by 
staining with FM 4-64; cell morphology was visualized by differential interference 
contrast microscopy (DIC).  The PAS is indicated in the cartoon at the right.  (B) 
Localization of Atg9p-vYFP at the PAS in a strain overexpressing ATG11 under normal 
growth conditions.  (C) Localization of Atg9p-vYFP at the PAS in a strain deleted for 
ATG1 under normal growth conditions.  Scale bar, 3 μm.  
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Table 4.1 Spreadsheet of Autophagy-related gene products analyzed as vYFP chimeras.  
The name of the gene, the autophagy process this gene involved in and the function of 
this gene are listed.  
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Chapter 5  
 

An Unconventional Genomic Architecture in the Budding Yeast Masks the Nested 
Antisense Gene NAG1 

 
  
                                                              Introduction  
 
 

Eukaryotic gene organization is routinely presumed to follow a collinear design, 

wherein protein-coding genes are ordered at discrete, non-overlapping points along a 

given chromosome (Kapranov et al. 2007). This organizational model is manifestly 

evident in the genome of the budding yeast Saccharomyces cerevisiae.  The S. cerevisiae 

genome was sequenced in 1996, and its 13-Mb sequence was subsequently annotated for 

genes using a combination of existing genetic information and straightforward 

computational approaches (Mewes et al. 1997).  As part of this process, putative protein-

coding open reading frames (ORFs) were predicted by gene-finding algorithms, 

employing a set of criteria based upon ORF size and spatial organization.  Specifically, 

any ORF greater than 100 codons in length was annotated as a gene, provided it did not 

significantly overlap a longer ORF.  If two ORFs overlapped, the longer of the two 

sequences was annotated as a gene, and the other was discarded (Mewes et al. 1997; 

Philippsen et al. 1997).  Perhaps in part because of this gene prediction strategy, to date, 

no verified, completely overlapping protein-coding genes have been identified in the 

yeast genome.  

Recently, several lines of evidence have raised doubts concerning the presumed 
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collinear organization of protein-coding genes in eukaryotic genomes.  In the budding 

yeast, David et al. (David et al. 2006) have employed a high-density oligonucleotide 

tiling array to profile RNA expression on both DNA strands over the entire genome; this 

study highlights a considerable degree of antisense transcription in the yeast genome - 

that is, transcripts overlapping known genes in an antisense orientation.  In addition, 

Havilio et al. (Havilio et al.  2005) mined microarray expression data in yeast to identify 

a significant body of transcripts oriented antisense to known genes.  This level of 

antisense transcription, however, may reflect some degree of "leaky" transcription or a 

potential regulatory mechanism in S. cerevisiae (Hongay et al. 2006), and does not 

conclusively indicate that protein-coding sequences can exist antisense to other protein-

coding genes.  In fact, the only confirmed report of entirely overlapping genes in yeast 

was presented by Coelho et al. (Coelho et al. 2002), describing the mitochondrial protein 

Tar1p, which is encoded antisense to the 25S rRNA gene in the nuclear rDNA repeat 

region of chromosome XII.  Tar1p, however, is not oriented opposite a protein-coding 

gene, but rather a structural RNA.  

In this chapter, we present the first report of a yeast protein-coding gene nested 

opposite another protein-coding gene.  The yeast open reading frame YGR031C-A is 

nested antisense and opposite the known gene YGR031W, the latter encoding a 

mitochondrial protein of unknown function. Genome-wide transposon-tagging studies 

had previously suggested that the YGR031C-A ORF may encode a protein, and, in this 

study, we established that this ORF (herein renamed NAG1) does encode a 19-kDa 

protein that localizes to the yeast cell periphery, contains putative transmembrane 

domains, and co-fractionates with known plasma membrane proteins.  Sequence analysis 
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revealed that NAG1 is conserved among fungi as a unit oriented opposite an ortholog of 

YGR031W.  Consistent with its conservation in fungi, NAG1 contributes to cell wall 

synthesis and maintenance in S. cerevisiae.  Disruption of NAG1 results in cell sensitivity 

to Calcofluor white and altered transcriptional levels for many cell wall biosynthesis / 

maintenance genes.  

Furthermore, Nag1p levels increase upon Calcofluor white treatment, and NAG1 

expression is dependent upon the Slt2p mitogen-activated protein kinase (MAPK) 

pathway and its key downstream transcription factor Rlm1p.  In total, these results 

identify a new protein contributing to cell wall function in yeast, while highlighting both 

the existence of nested protein-coding genes and the likelihood that other such genes exist 

in the eukaryotic kingdom.  

 

Materials And Methods 

 

Yeast strains and growth conditions.  Yeast strains containing the nag1::mTn allele 

were generated in the genetic background BY4742 (Winzeler et al. 1999).  The W303 

genetic background was obtained from the Yeast Genetics Stock Center (Berkeley, CA).  

The slt2Δ and rlm1Δ mutants were from the yeast deletion collection (Winzeler et al. 

1999) generated in the BY4742 background referenced above.  Growth media and basic 

genetic manipulation were as described previously (Guthrie et al. 1991).  The slt2Δ 

mutant was grown at 25°C to accommodate its cell wall defect.  The nag1::mTn allele 

was carried on plasmid pHSS6 (Seifert et al. 1986); this plasmid was digested with NotI, 

and the transposon-mutagenized genomic DNA fragment was introduced into BY4742 by 
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standard methods of DNA transformation (Ito et al. 1983).  The BY4742 strain containing 

NAG1-3xHA was constructed using the PCR-based epitope-tagging method of Longtine 

et al. (Longtine et al. 1998) using an integration cassette amplified from pFA6a-3HA-

kanMX6 with PCR primers containing 40 bp flanking sequence homology.  

 

Sequence alignments.  Sequence similarity searches were performed using tBLASTn 

with Nag1p amino acid sequence against a six-frame translation of the NCBI non-

redundant nucleotide database (Ye et al. 2006).  All searches were repeated with the 

BLOSUM62 and BLOSUM45 scoring matrices, coupled with default parameters, and 

optimal sequence alignments were generated using CLUSTALW (Thompson et al., 

1994).  

 

Western blotting.  The hemagglutinin (HA) tag was integrated at the 3´-end of NAG1 

using the KanMX6 selection cassette from plasmid pFA6a-3HA-KanMX6 (Longtime et 

al. 1998).  Transformants were selected on YPD plates containing 200 μg/ml G418.  

Correct integration was verified by PCR.  

           For Western blotting, yeast strains were grown at 30°C to mid-log phase in YPD 

medium unless otherwise noted.  The cells were then converted into spheroplasts and 

subjected to subcellular fractionation based on previously described protocols (Kim et al. 

1999).  Unlysed spheroplasts were removed by centrifugation at 1500 g for 5 min at 4°C.  

The total lysate was centrifuged at 13,000 g for 5 min at 4°C to separate supernatant and 

pellet factions (S13 and P13, respectively).  Aliquots of each fraction were precipitated 

with 10% trichloroacetic acid on ice for 30 minutes, washed with 100% acetone, and air-
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dried.  The dried pellets were resuspended in SDS sample buffer.  Aliquots were resolved 

by SDS-PAGE and probed with anti-3xHA antibody (Santa Cruz Biotechnology).  

 

Fluorescence microscopy.  The NAG1 and YGR031W coding sequences along with 1-kb 

upstream sequence were cloned into a derivative of the centromeric plasmid YCp50 such 

that each formed an in-frame 3´-fusion to sequence encoding the Venus variant of yellow 

fluorescent protein (vYFP) (Nagai et al. 2002).  Plasmids carrying NAG1-vYFP and 

YGR031W-vYFP, respectively, were transformed into BY4742.  Yeast cultures were 

grown in SD-Ura medium until mid-log phase before examination.  To label 

mitochondria, Mito Fluor Red 594 (Molecular Probes) was added to a final concentration 

of 5 μM, and the culture was incubated for an additional 30 minutes prior to microscopy.  

Cells were washed once before examination using the DeltaVision Spectris inverted 

microscope (Applied Precision, Issaquah, WA).  

 

Generation of the nag1-1 site-directed mutant.  The nag1-1 mutant contains a 

nonsense mutation at codon 41 of NAG1 (TAT to TAA) that is silent with respect to 

YGR031W, constructed by site-directed mutagenesis of a low-copy plasmid carrying the 

YGR031W locus. Specifically, we first constructed a Gateway-compatible yeast vector for 

recombination-based cloning of yeast genomic DNA.  This gateway vector was 

constructed from the centromeric yeast shuttle vector YCp50.  YCp50 was digested with 

SphI and made blunt with T 4 DNA Polymerase (New England Biolabs, MA).  Gateway 

cassette A (Invitrogen Corporation, CA) was ligated with the blunt-ended vector, and 

EcoRI was used to identify the orientation of the cassette.  To maintain an intact promoter 
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region for both YGR031W and NAG1, we amplified the YGR031W open reading frame 

along with 1 kb of sequence upstream of its start codon and 1 kb downstream of its stop 

codon; this genomic DNA was introduced into YCp50 by recombination-based cloning  

(Walhout et al. 2000).  The nag1-1 mutant was generated using the QuikChange Site-

DirectedMutagenesis Kit (Stratagene, La Jolla, CA) and the following primers: forward 

primer, 5´- CGTTCTTCGAATGTATAAGACGACACAGACG-3´; reverse primer, 5´-  

CGTCTGTGTCGTCTTATACATTCGAAGAACG-3´.  This construct was subsequently 

introduced into the yeast deletion strain ygr031wΔ by standard methods of yeast 

transformation (Ito et al. 1983).  

 

DNA microarray analysis.  To reduce background variances in gene expression, 

transcriptional profiles were generated from ygr031wΔ bearing either wild-type NAG1 (in 

the YCp50 derivative described above) or nag1-1 (the identical plasmid after site-directed 

mutagenesis).  Thus, the single difference between the strains lies in the point mutation 

described above.  Yeast strains were cultured to mid-log phase in SD-Ura medium prior 

to RNA extraction.  RNA was prepared according to standard protocols using the Poly(A) 

Purist kit (Ambion, Austin, TX).  RNA concentration and purity were determined 

spectrophotometrically and by gel electrophoresis. Microarray hybridization was 

performed with the Yeast Genome S98 Array using standard protocols (Affymetrix, Inc, 

Santa Clara, CA).  All microarray experiments were performed in quadruplicate (four 

biological replicates) for each strain.  Differentially expressed genes were identified by 

significance analysis of microarrays (SAM) (Rieger et al. 2004; Tusher et al. 2001) 

according to protocols described in Ma et al. (Ma et al. 2007).  
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Calcofluor white sensitivity.  Cell wall-related mutant phenotypes were scored on solid 

medium as described below.  A freshly prepared stock solution of 1% (w/v) Calcofluor 

white was added to sterile selection medium at a final concentration of 10 μg/ml.  This 

medium was adjusted to pH 6.0 with NaOH prior to pouring plates.  Wild type and nag1-

1 mutant strains were grown at 30°C in selection medium to log phase.  A five-fold 

dilution series of each cell suspension was made, and 3 μl of each dilution was spotted 

onto Calcofluor white-containing plates.  Growth was monitored after two days 

incubation at 30°C.  This phenotypic assay was repeated for the nag1-1 mutant in both 

S288c- and W303-derived strains.  

 

β-galactosidase assays.  β-galactosidase assays were performed using the Yeast ß-

Galactosidase Assay Kit (Pierce, Rockford, IL) according to standard methods.  Mean 

activities were averaged from three parallel assays.  Strains treated with Calcofluor white 

were grown in liquid medium to mid-log phase; cell cultures were incubated for an 

additional five hours before β-galactosidase activity was measured.  

 

Results 

 

Identification of the NAG1 gene nested antisense and opposite YGR031W:  In a 

previous study, we utilized a transposon-based gene trap to identify putative protein-

coding sequences in the yeast genome (Kumar et al. 2002).  This gene trap is diagrammed 

in Figure 5.1A; it contains a 5´-truncated lacZ reporter lacking its promoter and start 
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codon, such that transposon insertion only results in β- galactosidase activity if the 

transposon lands in-frame with yeast protein-coding sequence (Ross-Macdonald et al. 

1999; Ross-Macdonald et al. 1997).  By random transposon mutagenesis with this gene 

trap, we identified a set of previously non-annotated ORFs that putatively encode 

proteins, including a set of 54 ORFs positioned opposite and antisense of annotated yeast 

genes (Kumar et al. 2002).  Within this gene set, we were particularly interested in the 

ORF designated YGR031C-A since it is greater than 100 codons in length, is oriented 

opposite an ORF that putatively encodes a protein, and exhibited easily detected levels of 

expression during vegetative growth.  

The YGR031C-A ORF is positioned antisense and opposite the gene YGR031W on 

yeast chromosome VII as indicated in Figure 5.1B.  The YGR031W gene is functionally 

uncharacterized but known to encode a mitochondrial protein (Huh et al. 2003; Reinders 

et al. 2006).  YGR031C-A consists of a single exon 163 codons in length nested on the 

opposite strand, but completely within, the YGR031W genomic locus.  The YGR031W 

gene is more than twice the size of YGR031C-A, and both ORFs are relatively well 

separated from other upstream and downstream genes.  Because of this unusual genetic 

organization, we hereafter refer to YGR031C-A as NAG1 (for Nested Antisense Gene).  

To establish that NAG1 encodes a protein, we first sought to confirm expression 

of NAG1::mTn as a β-galactosidase chimera.  By PCR amplification of the transposon 

insertion junction and DNA sequencing of this PCR product, we verified integration of 

our mini- transposon gene trap at codon 52 of NAG1 (Figure 5.1B and C).  Using 

quantitative liquid assays, we detected an approximately 9-fold increase in β-

galactosidase activity under conditions of vegetative growth in a diploid yeast strain 
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harboring one transposon-mutagenized copy of NAG1 relative to the same strain 

containing an integrated transposon insertion in an intergenic region of noncoding DNA 

(Figure 5.1C).  To validate further the protein-coding potential of NAG1, we generated a 

HA-tagged allele of this gene by integration of a 3xHA-G418 drug-resistance cassette at 

the NAG1 3´-terminus.  Cell lysates were extracted from this strain under normal growth 

conditions for Western blotting with anti-HA antibodies, and this analysis revealed a 

protein product of approximately 19 kDa, corresponding to the predicted molecular mass 

of Nag1p-3HA. Thus, the NAG1 gene does encode protein, and the size of this protein is 

consistent with its predicted mass as derived from the NAG1 coding sequence.  

 

NAG1 is part of an evolutionarily conserved unit in fungi:  The predicted Nag1p 

sequence (Figure 5.2A) is 163 amino acids in length and exhibits no obvious functional 

motifs.  Similarity searches with this sequence indicated putative NAG1 orthologs in 

several bacterial species and numerous fungi (Figure 5.2B).  In particular, Nag1p 

sequence conservation is strongest over a region of 35 residues extending from amino 

acid 108 to 142.  An optimized alignment of this region highlights a strongly conserved 

Pro-Ile-Glu-Cys-Pro sequence in Nag1p (residues 134 to 138) as well as invariant Gly, 

Ala, Ser, and Gly residues at positions 109, 110, 112, and 122, respectively.  

Interestingly, the NAG1 gene is conserved as a unit with YGR031W: in each 

organism carrying a putative ortholog of NAG1, the NAG1 sequence is nested antisense 

an obvious ortholog of YGR031W (Figure 5.2C).  The YGR031W gene itself is highly 

conserved in organisms ranging from prokaryotes to humans; however, NAG1 is not 

present opposite orthologs of YGR031W in higher eukaryotes, but instead is specific for 
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prokaryotes and fungi.  While these alignments indicate sequence similarity, we cannot 

conclusively assign functions to any putative NAG1 orthologs without experimental 

analysis of each sequence in each organism.  

 

Subcellular localization of Nag1p:  As a means of assessing the subcellular distribution 

of Nag1p, we cloned the NAG1 gene along with 1 kb of upstream promoter sequence into 

a low- copy yeast shuttle vector such that the 3´-end of NAG1 forms an in-frame fusion 

with sequence encoding the Venus variant of yellow fluorescent protein (vYFP).  As 

shown in Figure 5.3A, this carboxy-terminal Nag1p-vYFP chimera localized to the yeast 

cell periphery under conditions of vegetative growth.  Nag1p did not localize to the 

endoplasmic reticulum; the integral membrane protein Spo7p serves as a marker for the 

nuclear envelope-endoplasmic reticulum network (Siniossoglou et al. 1998), and the 

carboxy-terminal Spo7p-RFP chimera (Figure 5.3A) did not co-localize with Nag1p-

vYFP. The localization of Nag1p was also distinct from that of Ygr031wp.  As mentioned 

above, YGR031W encodes a mitochondrial protein, as determined in a large-scale study 

of yeast protein localization (Huh et al. 2003) and in a separate mass spectrometry-based 

study of yeast mitochondrial proteins (Reinders et al. 2006).  To confirm these results, we 

generated a carboxy-terminal Ygr031wp-vYFP chimera and found this protein localized 

to the mitochondria under conditions of vegetative growth (Figure 5.3B).  

  Computational analysis of the Nag1p amino acid sequence revealed two putative  

transmembrane domains of roughly 20 residues positioned towards the center and 

carboxy terminus of the protein (Figure 5.3C).  Predictions of transmembrane segments 

were obtained from the programs HMMTOP (Tusnady et al. 2001), PHDhtm (Rost et al. 
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1996), TopPred (Charos et al. 1994), TMpred (Ikeda et al. 2992), and TMHMM (Krogh 

et al. 2001). Each program highlighted transmembrane segments of slightly different 

lengths, but residues 77- 94 and 135-152 were identified unanimously (Figure 5.3C).  

These putative transmembrane domains flank the region of strong sequence conservation 

presented in Figure 5.2B, although the carboxy-terminal putative transmembrane segment 

does overlap this conserved region by 8 bp. In corollary to the studies above, we also 

examined the possible membrane association of Nag1p by subcellular fractionation.  

Lysed sheroplasts were prepared from yeast cells carrying HA-tagged Nag1p expressed 

from its native promoter under conditions of vegetative growth; cell lysates were 

subjected to centrifugation at 16,000 g (13,000 rpm).  As visualized by Western blotting, 

HA-tagged Nag1p was present in the pellet fraction following low-speed centrifugation, 

co-fractionating with other known membrane proteins (Figure 5.3D).   

Thus, Nag1p localizes to the cell periphery, is predicted to contain two 

transmembrane domains, fractionates with membrane proteins, and does not co-localize 

with ER markers — properties consistent with those of a plasma membrane protein.  

 

Phenotypic characterization of NAG1:  To investigate NAG1 function, we generated a 

point mutation (nag1-1) disrupting NAG1, but silent with respect to the opposite gene 

YGR031W (Figure 5.4A).  Specifically, we mutated NAG1 codon 41 (TAT encoding 

tyrosine) to a stop codon (TAA); this single base change does not affect the amino acid 

composition of the YGR031W protein, since the complementary TCA to TCT 

substitution at codon 247 still encodes serine.  The nag1-1 mutation truncates NAG1 

coding sequence at approximately 25% its full length.  Deletion of the entire NAG1 
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coding sequence in ygr031wΔ generates a comparable phenotype to nag1-1 in the assays 

applied here; thus, nag1-1 mimics a null allele in our studies.  

With no a priori indication of a process to which NAG1 contributes, we decided 

to implement a global strategy, profiling gene expression in nag1-1 by microarray 

analysis (Figure 5.4B). By this approach, biological processes impaired in nag1-1 should 

be evident from altered gene expression profiles.  Transcriptional profiling of nag1-1 

against a wild-type strain under conditions of vegetative growth revealed differential 

expression of 262 genes.  In particular, 149 genes exhibited decreased transcript levels in 

nag1-1; this gene set was statistically enriched (p-value of 4.85 x 10-5) for genes 

contributing to cell wall organization and biogenesis (GO Cellular Process ID 7047).  

Furthermore, the set of 262 genes as a whole was enriched (p-value of 1.19 x 10-5) for 

genes encoding proteins associated with the plasma membrane (GO Cell Component ID 

5886).  No other gene subsets were statistically overrepresented in this microarray data 

set.  

The decrease in cell wall-related gene transcription evident in the nag1-1 mutant 

is unusual for a gene contributing to cell wall biogenesis.  More typically, the deletion of 

a cell wall-related gene leads to an increase in cell wall gene transcription as a 

compensatory response (Jung et al. 1999).  Of course, most cell wall associated genes are 

involved in the biosynthesis or structural organization of the cell wall, and loss of 

function leads directly to a structural defect that requires a compensatory response to 

maintain integrity.  Since nag1-1 exhibited the opposite effect on cell wall gene 

transcription, we next asked if nag1-1 displayed phenotypes consistent with an altered 

cell wall structure.  Towards this end, we compared the growth of nag1-1 with a wild 
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type strain in the presence of a set of cell wall perturbants including Calcofluor white, 

Congo red, caffeine, and caspofungin.  As indicated in Figure 5.4C, nag1-1 is sensitive to 

Calcofluor white but showed no apparent growth defects with any of the other drugs.  

Calcofluor white is a negatively charged fluorescent dye that binds nascent chains of 

chitin and, to a lesser degree, glucan; as a result, Calcofluor white prevents microfibril 

assembly, thereby interfering with cell wall organization (Elorza et al. 1983; Lussier et al. 

1997).  Calcofluor white hypersensitivity has been observed as a pleiotropic phenotype 

associated with many yeast cell wall mutants (Hampsey et al. 1997; Lussier et al., 1997), 

and the nag1-1 mutant exhibits sensitivity to Calcofluor white at 37ºC.  A similar 

phenotype is observed for nag1-1 at 30ºC, although the severity is decreased.  These 

phenotypes are consistent across multiple independent transformants in the BY4742 

genetic background.  To consider further the function of Nag1p in cell wall biogenesis, 

we introduced the nag1-1 allele into the yeast strain W303.  The wild-type W303 strain is 

defective for the gene SSD1, encoding a protein involved in the maintenance of cellular 

integrity (Kaeberlein et al. 2002); therefore, cell wall-related phenotypes are often 

exacerbated in the W303 genetic background.  Accordingly, the nag1-1 mutant yields a 

more pronounced Calcofluor white phenotype at both 30ºC and 37ºC in the W303 

background, as assayed in multiple independent tranformants.  In some Calcofluor white 

hypersensitive mutants, cell wall chitin is increased, resulting in increased Calcofluor 

white staining.  The nag1-1 mutant, however, did not display either an increased amount 

or abnormal distribution of Calcofluor white staining at 25°C or 37°C (data not shown).  

Observed nag1-1 phenotypes are specific to cell wall function.  The nag1-1 

mutant is viable at both 30ºC and 37ºC, without obvious fitness defects under conditions 
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of vegetative growth at either temperature.  In addition, analysis of nag1-1 for growth 

sensitivity under conditions of nutritional stress, alternative carbon source, nitrogen 

stress, and high osmolarity did not reveal mutant phenotypes (data not shown).  

 

Nag1p production is regulated by the Slt2p cell wall integrity pathway:  Since many 

proteins contributing to cell wall function are induced upon treatment with cell wall 

perturbing agents, we examined the response of Nag1p upon treatment with Calcofluor 

white in the W303 genetic background (Figure. 5.4D).  Using a Nag1p-β-galactosidase 

chimera, we investigated Nag1p protein levels under conditions of vegetative growth and 

in identical growth medium supplemented with Calcofluor white.  Calcofluor white 

treatment resulted in a 1.4-fold increase in Nag1p levels relative to those observed during 

vegetative growth, further supporting its role in cell wall-related processes.  

 In yeast, cell wall integrity is maintained, in part, through a signaling pathway  

encompassing the Slt2p/Mpk1p mitogen-activated protein kinase (MAPK) cascade 

(Figure. 5.5A). The Slt2p pathway is activated in response to numerous environmental 

stimuli, including conditions of hypoosmotic stress, exposure to mating pheromone, and 

treatment with agents causing cell wall stress (de Nobel et al. 2000; Ketela et al. 1999; 

Lee et al. 1993; Zarzov et al. 1996).  These stimuli are transduced into signals activating 

the GDP/GTP exchange factor Rom2p and the small GTP-binding protein Rho1p (Philip 

et al. 2001).  Rho1p binds and activates Pkc1p, which in turn elicits serial activation of a 

MAPK cascade consisting of the MAPKKK Bck1p, the MAPKKs Mkk1p and Mkk2p, 

and the MAPK Slt2p/Mpk1p (Heinisch et al. 1999).  The transcription factor Rlm1p acts 

downstream of Slt2p (Dodou et al. 1997), and Rlm1p activates expression of at least 20 
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genes, the majority of which contribute to yeast cell wall biogenesis (Jung et al. 1999) 

(Figure. 5.5A).  

          Interestingly, transcription of both SLT2 and RLM1 was downregulated in the 

nag1-1 site-directed mutant (Figure. 5.4B).  To investigate a possible role for Nag1p 

acting downstream of the Slt2p pathway, we assayed protein levels of a Nag1p-β-

galactosidase chimera in slt2Δ and rlm1Δ deletion strains under conditions of vegetative 

growth and Calcofluor white treatment (Figure 5.5B).  

Nag1p levels were diminished during vegetative growth in both deletion strains, 

but with a more pronounced decrease evident in the rlm1Δ mutant.  Consistent with a role 

for Rlm1p in the transcriptional activation of Nag1p, a Rlm1p binding site consensus 

sequence (CTA(T/A) 4 TA (Dodou et al. 1997; Jung et al. 2002)); is present 430 nt 

upstream of the presumed NAG1 start codon.  Interestingly, this putative, palindromic 

Rlm1p binding site is shared with the promoter of GSC2, the inducible subunit of 1,3-β-

glucan synthase and a gene that is upregulated by cell wall stress.  Upon exposure to 

Calcofluor white, the overall levels of NAG1 expression were decreased in both slt2Δ and 

rlm1Δ mutants relative to wild type.  However, exposure to Calcofluor white increased 

NAG1 expression in both mutants relative to the untreated cells, suggesting that Slt2p-

independent cell wall response pathways may also contribute to Nag1p expression (Levin 

et al., 2005).  Based on this analysis, we conclude that the cell wall stress-induced 

production of Nag1p is partially dependent upon Slt2p and Rlm1p.  
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Discussion  

 

          In this chapter, we present an unusual orientation of protein-coding genes in the 

yeast genome, identifying a previously overlooked gene, NAG1, nested antisense and 

opposite another protein-coding gene YGR031W.  This gene superstructure represents an 

evolutionary unit conserved among many fungal species.  The strongly conserved 

YGR031W gene encodes a mitochondrial protein, while NAG1 encodes a 19-kDa 

membrane protein localized to the yeast cell periphery.  

          To study NAG1 function, we constructed a point mutation disrupting NAG1 but 

silent with respect to YGR031W; this mutant exhibited hypersensitivity to Calcofluor 

white and altered transcript levels for a significant subset of genes mediating cell wall 

biogenesis.  Furthermore, Nag1p levels were increased upon Calcofluor white treatment 

and reduced in strains deleted for SLT2 and RLM1, key components of the yeast MAPK 

cell wall integrity pathway.  Collectively, this study highlights a role for Nag1p in 

maintaining yeast cell wall integrity and function, while validating the protein-coding 

potential of this nested gene.  

In particular, the nested organization of genes at the NAG1 locus holds interesting 

evolutionary implications.  Overlapping genes have been found commonly in viruses and 

microorganisms, where this type of interleaved and nested gene organization presumably 

contributes to the maintenance of a compact genome — a beneficial characteristic, since 

genome size in these organisms is limited by the size of the viral particle or cell 

(Krakauer et al., 2000).  Eukaryotic genomes, of course, do not face this constraint, and, 

in this light, two points regarding NAG1 are noteworthy.  First, putative NAG1 orthologs 
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are exclusively found opposite an ortholog of YGR031W.  Second, YGR031W encodes a 

mitochondrial protein.  Mitochondria are thought to have evolved from purple non-sulfur 

bacteria (Cavalier-Smith et al., 2006), wherein this type of nested gene organization 

might not be uncommon.  Extrapolating from this, we can speculate that the NAG1 locus 

may represent the remnants of an ancient genetic unit, possibly even tracing back to 

symbiont gene transfer during mitochondrial evolution.  YGR031W is strongly conserved 

in prokaryotes and eukaryotes alike, but, over evolutionary time, NAG1 function may 

have been lost in organisms lacking a cell wall.  Consistent with this possibility, putative 

NAG1 orthologs are present only in prokaryotes and fungi (Figure 5.2), although further 

studies would be necessary to determine if these orthologs are functional.  

The cell wall-related function of Nag1p is supported by three lines of evidence.  

First, and most striking, is the fact that the nag1-1 mutation leads to a significant decrease 

in the expression of a large set of cell wall genes during vegetative growth.  This is 

opposite to the more common phenomenon whereby deletion of a cell wall gene causes 

an up-regulation of cell wall gene transcription to compensate for the resulting cell wall 

defects.  The negative effect of nag1-1 on cell wall gene expression is more consistent 

with Nag1p functioning as a type of regulatory protein as opposed to having a direct role 

in cell wall structure or biosynthesis.  This analysis is further supported by the relatively 

mild cell wall phenotype displayed by nag1-1.  However, it is important to note that 

mutation of a number of cell wall-related genes causes Calcofluor white hypersensitivity 

as their only discernible cell wall phenotype; therefore, this second set of observations 

supporting a cell wall role for Nag1p is consistent with other bona fide cell wall proteins.  

Third, the effect of cell wall stress and the cell wall integrity MAPK signaling pathway 
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on NAG1 expression provides compelling support for the cell wall-related function of 

Nag1p.  As is the case for many cell wall-related genes, cell wall stress such as 

Calcofluor white treatment induces a modest increase in Nag1p levels.  NAG1 may share 

its promoter region with GSC2 (Figure 5.1B), the stress-inducible subunit of 1,3-β-glucan 

synthase, and, therefore, NAG1 expression could be regulated by processes that also 

regulate GSC2.  Indeed, this region contains a consensus binding site for Rlm1p, a 

transcription factor regulated by the cell wall integrity MAPK signaling pathway.  Since 

the Rlm1p binding site is palindromic, it should control transcription of appropriately 

oriented open reading frames on either the Watson or Crick strands. Consistent with this 

analysis, NAG1 expression is dependent on both Slt2p and Rlm1p in a significant but not 

exclusive fashion.  Intriguingly, the effect of Slt2p and Rlm1p on NAG1 expression is 

quite apparent during vegetative growth.  Although the cell wall integrity pathway  

is more commonly thought of as a stress-response cascade, it is activated during specific 

periods of the cell cycle (Levin et al. 2005).  Therefore, NAG1 expression may be 

controlled through basal signaling of the cell wall integrity pathway.  We speculate that 

this pattern of expression may relate to the positive effect of Nag1p on the transcription 

of other cell wall genes during vegetative growth. Obviously, a more extensive 

characterization of Nag1p will be required to confirm this assertion. However, it is clear 

from our data that Nag1p is a functional protein involved in yeast cell wall integrity.  

         Here, we have referred to NAG1 as being unique, but, in fact, NAG1 may actually 

represent the first identified gene of a larger class: the potential certainly exists for other 

nested antisense genes in yeast.  By transposon mutagenesis using a simple gene trap 

reporter, we previously identified a set of at least 54 putative nested genes in yeast 
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(Kumar et al. 2002).  While we expect that some, and perhaps the majority, of these 

nested ORFs do not encode protein, additional studies may uncover other nested protein-

coding genes previously overlooked in the yeast genome. These overlooked genes 

potentially represent a wealth of unexplored yeast biology, with implications impacting 

gene predictions and gene-finding studies in other eukaryotes as well.  As a result, the 

example set by NAG1 may prove useful in refining annotation efforts applied to other 

genomes, separate from the relevance of this gene as an interesting component of the 

signaling pathways and networks contributing to yeast cell surface biology. 
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Figure 5.1 The NAG1 gene is nested opposite YGR031W and encodes a protein product.  
(A) Schematic of the transposon-based gene trap used to identify YGR031C-A/NAG1.  
The lacZ reporter lacks its start codon and promoter, so β-galactosidase (β-gal) is only 
produced if the transposon inserts in genomic DNA such that the lacZ coding sequence is 
in frame with a host gene.  The transposon-encoded lacZ fusion will be separated from 
host gene coding sequence by the Tn3L terminal sequence and loxR site.  (B) 
Diagrammatic representation of the YGR031W locus, indicating YGR031C-A/NAG1 
nested antisense to YGR031W on the opposite strand.  The circle inset indicates the exact 
transposon insertion identifying NAG1.  (C) β-gal assay of the Nag1p-β-gal protein 
product; the Nag1p chimera consists of the N-terminal 52 amino acids of Nag1p, the 
Tn3L and loxR sequences, and β-galactosidase from the second amino acid onwards.  
For comparison, the β-gal level from a transposon insertion in non-coding DNA 
(chromosome XV, coordinate 216,878) is indicated.  (D) Western blot identifying Nag1p 
tagged at its carboxy- terminus with three copies of the HA epitope.  Protein extract from 
an untagged strain is also included as a control; both extracts were prepared from cells 
undergoing vegetative growth. Levels of Pgk1p, 3-phosphoglycerate kinase, were 
analyzed to ensure comparability between protein samples.  
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Figure 5.2 NAG1 is conserved as a unit with YGR031W in bacteria and fungi.  (A) Amino 
acid sequence of Nag1p as predicted by conceptual translation.  (B) Putative NAG1 
orthologs from prokaryotic and fungal species.  Schematic diagram illustrating conserved 
regions within the identified set of putative NAG1 orthologs.  Each line represents the full 
length of the orthologous sequence; gaps in the multiple sequence alignment are indicated 
as such in the figure.  The inset rectangle highlights the most strongly conserved region of 
the alignment.  Identical residues are indicated as white on black, and similar residues are 
shown as black on gray.  (C) Since Nag1p has not been recognized previously as a 
protein, neither its sequence nor the sequence of any ortholog is present in a protein 
database; thus, the Nag1p amino acid sequence was searched against a six-frame 
translation of genomic DNA sequence.  The coordinates of each putative orthologous 
gene are indicated here, relative to each indicated database accession ID.  In each 
instance, putative orthologs of NAG1 are found opposite orthologs of YGR031W; thus, the 
nested organization of NAG1 relative to YGR031W is conserved as an evolutionary unit.  
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Figure 5.3 Nag1p localizes to the yeast cell periphery, distinct from Ygr031wp, and 
exhibits properties consistent with a plasma membrane protein.  (A) Fluorescence 
microscopy of a Nag1p- vYFP chimera expressed from its native promoter under 
conditions of vegetative growth.  The Spo7p-RFP chimera serves as a marker for the 
nuclear envelope and endoplasmic reticulum (middle image), and yeast cell morphology 
was visualized by differential interference contrast (DIC) microscopy (right image).  (B) 
Fluorescence microscopy of Ygr031wp-vYFP indicates its localization to the 
mitochondria.  The MitoFluor stain was used to confirm co-localization with 
mitochondria (middle image), and a DIC image is provided (right).  (C) Diagram 
illustrating predicted Nag1p transmembrane domains.  Each putative transmembrane 
segment is shaded gray in the Nag1p schematic, and the primary sequence of each 
segment along with its amino acid coordinates are indicated.  (D) Western blots 
indicating the presence of Nag1p-3xHA in the pellet fraction (P13) after centrifugation of 
total cell lysates (T) at 13,000 rpm (16,000 g).  The known plasma membrane protein 
Pma1p was also found in the P13 fraction, as indicated by Western blotting with antibody 
directed against native Pma1p.  As a further control, we used antibody directed against 3-
phopshoglycerate kinase, Pgk1p, to confirm the presence of this protein in the supernatent 
fraction (S13) following centrifugation.  
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Figure 5.4 NAG1 contributes to yeast cell wall biogenesis.  (A) The nag1-1 point 
mutation introduces a nonsense mutation at codon 41, without altering the predicted 
amino acid sequence of the Ygr031wp protein product.  (B) DNA microarray analysis of 
the nag1-1 mutant under conditions of vegetative growth.  Details of this experimental 
design are presented in Materials and Methods.  The total number of differentially 
expressed genes in nag1-1 relative to the wild- type strain is indicated.  Genes associated 
with the GO Cellular Process term 7047 (Cell Wall Organization / Biogenesis) were 
statistically enriched in the set of genes with decreased transcript levels in nag1-1; these 
genes are shown under this GO term in the middle box.  Genes associated with the GO 
Cell Component term 5886 (Plasma membrane) were statistically enriched in the total set 
of genes identified by microarray analysis (both with increased and decreased transcript  
levels); these genes are also shown below the GO term.  The majority of these cell 
surface-related genes are indicated in the heat map to the left with corresponding t-
statistics and p-values.    (C) The nag1-1 mutant is sensitive to Calcofluor white.  For the 
assay shown here, we introduced a plasmid carrying the nag1-1 allele in the YGR031W 
genomic DNA locus into a strain of the W303 genetic background deleted for YGR031W.  
The resulting nag1-1 mutant was hypersensitive to Calcofluor white, with increased 
severity at elevated temperature (37°C).  (D) Nag1p protein levels are increased upon 
Calcofluor white treatment, as evidenced by increased β-gal activity from a Nag1p-β-gal 
chimera.  
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Figure 5.5 Nag1p production is dependent upon the MAPK Slt2p and the transcription 
factor Rlm1p.  (A) Simplified overview of the yeast Slt2p MAPK cell wall integrity 
pathway.  Rlm1p acts as a key transcriptional regulator downstream of Slt2p.  (B) β-gal 
assays of the Nag1p-β-gal chimera during vegetative growth and in response to 
Calcofluor white treatment in strains deleted for SLT2 and RLM1, respectively.  Fold-
change from wild type β-gal levels are presented for each mutant under the indicated 
growth conditions.  All β-gal assay results were normalized per yeast cell optical density 
unit. 
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Chapter 6  
 

Conclusions and future directions 
  

 
How does a cell react to changes in its extracellular environment? This seemingly 

simple question can lead to some very complicated answers, far beyond the scope of a 

single thesis. As described in Chapter 1, nutritional controls of yeast metabolism involve 

overlapping inputs through a sensor system, modification of cell morphology to adapt to 

the new environment, and a reprogramming of cellular pathways. Although specific 

components of each pathway have been heavily investigated, previous studies partly 

disregarded the connections among the pieces of this puzzle. In fact, all pathways 

simultaneously receive nutrient signals that are integrated into the control of an 

overlapping set of cellular processes. Elucidating this integration and crosstalk between 

pathways is very important for the correct understanding of cellular processes.  

 Upon the transition from nutrient-rich to nutrient-limited medium, yeast cells 

initiate a morphological change, forming filaments as a means of foraging for a better 

nutrient supply. Autophagy serves as another mechanism by which cells can survive 

nutrient stress. The relationship of these two pathways has not been investigated 

previously, in part because normal lab strains do not undergo filamentous growth. In 

Chapter 2, our studies show that both pathways are active under conditions of nitrogen 

deprivation. The inhibition of autophagy results in exaggerated filamentous growth. Our 

model suggests that both autophagy and filamentous growth mutually mitigate the effects 
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of nutrient stress, contributing positively to the available pool of nitrogen in the cell. 

Furthermore, the overexpression of autophagy-related genes can inhibit filamentous 

growth as shown in Chapter 3, which indicates that, in addition to its role in regulating 

the nitrogen pool, autophagy might also impact the regulation of filamentous growth. 

However, the molecular mechanisms underlying this phenomenon are not as clear as the 

phenotype itself. Our results indicate certain components within the autophagy pathway 

or other proteins involved in nutrient sensing and signaling might function as links 

between filamentous growth and autophagy. The direct link is still waiting to be 

identified, and, given the complexity of the processes, this task will not be easy.  

Several lines of evidence from previous research by other groups may guide us in 

investigating the connection between autophagy and filamentous growth. In Cutler et al. 

(Cutler, Pan, et al, 2001), a novel role for Tor signaling in regulating the transition to 

filamentous growth was revealed.  The Tor protein kinases, Tor1p and Tor2p, play an 

essential role in nutrient response. The functions of the Tor kinases are inhibited by 

rapamycin, which will induce the expression of genes required for the utilization of poor 

nitrogen sources and autophagy. Sublethal concentrations of rapamycin inhibit 

pseudohyphal differentiation of yeast cells in response to nitrogen limitation. 

Components of the Tor kinase pathway, Tor1p,Tor2p,Tap42p and Sit4p, are involved in 

regulating this process. Pseudohyphaal growth can be restored by activation of the MAP 

kinase and cAMP signaling cascades. Since rapamycin causes the induction of 

autophagy, these results are consistent with our model (Figure 2.6). Our survival analysis 

indicates that autophagy plays the major role in facilitating cell survival under conditions 

of nitrogen deprivation (Figure 2.5). Therefore, slight increases in autophagic activity (or 
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slight decreases in Tor activity) by sublethal concentrations of rapamycin could relieve 

cells from the threshold levels needed to activate filamentous growth. Instead, cells can 

use alternative methods to adapt to the environment, such as expression of the nitrogen 

catabolite repression (NCR) transcriptional response.  The constitutive activation of 

NCR-regulated genes can block pseudohyphal growth (Lorenz, and Heitman, 1998). 

Based on a study from Budovskaya and colleagues (Budovskaya, Stephan, et al, 

2004), Ras/PKA signaling, which is one of the major pathways functioning in 

filamentous growth, has a negative role on the control of autophagy. Elevated levels of 

Ras/PKA activity were found to result in a complete block of autophagy. Interestingly, 

the mutational inactivation of the Ras/PKA pathway led to an induction of autophagy 

activity even in rich growth media that normally inhibit autophagy. This result indicates 

there might be a threshold for the induction of autophagy as well, and this threshold 

control might be related to the level of Ras/PKA pathway activity. Ras/PKA has been 

suggested to function as a key component of a growth checkpoint mechanism in 

S.cerevisiae to ensure that the overall metabolic rate is balanced with the available 

nutrient supply (Herman, 2002). 

 Again, the methods appropriate for the study of an individual pathway may not be 

effective in analyzing a phenotype resulting from the coordination of several pathways, 

involving fine tuned networks of kinases, transcription factors and downstream targets. 

Traditional approaches in molecular biology are limited as methods for the study of 

cellular processes as a whole system. Therefore, the parallel progress of fundamental 

experimental research and state-of-the-art systems biology is essential for addressing 

quantitative descriptions of how the different pathways interact with one another. This 
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level of research requires an integrated resource of quantitative information on a much 

larger scale, such as expression levels of mRNA and protein, rate constants and 

stoichiometry of biochemical reactions. The integration of these information sets and the 

subsequent generation of a pathway network require rigorous mathematical modeling and 

computational simulation.  

 A recent paper by Vinod et al. (Vinod, Sengupta, et al, 2008) serves as a good 

example of the approaches through which the yeast nutrient response network can be 

analyzed on a systematic level. Our study has shown that pseudohyphal growth is a 

graded response, with increased filamentous growth correlated with decreasing available 

nitrogen (Figure 2.4). It is reasonable to speculate that yeast cells initiate dynamic 

changes in response to varying concentrations of available nitrogen source. In the study 

by Vinod et al., the authors investigated how variations in the availability of ammonium 

sulfate are sensed and transduced by an integrative network comprising cAMP-PKA, 

MAPK and TOR pathways using experimental and steady-state modeling approach.  The 

expression of FLO11( also called MUC1) was quantified as an indicator of filamentous 

growth. Their findings show that yeast switched from increasing expression of FLO11 to 

the accumulation of storage carbohydrate trehalose, with decreased concentrations of 

ammonium sulfate from limiting conditions (25μM to 300μM) to conditions of complete 

starvation (below 25μM). Cells prefer initiating filamentous growth under conditions of 

nitrogen limitation, while preferring the accumulation of trehalose under conditions of 

nitrogen starvation. A strong double-negative feedback loop in the TOR pathway might 

be responsible for the FLO11 bistable response in respect to the concentration of 

ammonium sulfate. Their model indicates that the cAMP-PKA, MAPK and TOR 
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pathways function in parallel to integrate signals on the FLO11 promoter, thereby 

affecting filamentous growth.  

 Another layer of complexity comes from the ability of yeast cells to sense the 

concentration of nutrients, both inside and outside of cells.  Obviously, appropriate 

cellular adjustments can only be made in cells that precisely sense the nutrient status 

surrounding them.  While under conditions of moderate nutrient limitation, cells may 

initiate autophagy and filamentous growth to get more nutrients. Under conditions of 

severe nutrient depletion, cells may just enter into stationary phase, thereby lowering 

metabolic activity for purposes of survival. Yeast cells possess both intracellular sensors 

and plasma membrane-localized sensors to obtain information regarding the 

concentrations of amino acids, ammonium and glucose. The Tor kinase acts as part of a 

signal transduction pathway that senses intracellular nutrients. Intracellular glutamine 

activates the TOR pathway to promote growth, whereas glutamine depletion inhibits 

TOR to arrest growth. In addition to its role in ammonium uptake, Ammonium permease 

Mep2 has been suggested as an ammonium sensor that generates signal required for the 

induction of filamentous growth.  The study by Vinod and colleagues (Vinod, Sengupta, 

et al, 2008) indicates that the sensitivity of these sensors may be different, with Mep2p 

exhibiting higher sensitivity towards concentrations of ammonium sulfate than Tor. It 

remains unclear how the sensors coordinate their activities to set the respective thresholds 

for initiation of diverse actions.  

 

A protein’s localization is typically related to its function, and an understanding 

of the localization of a protein is regarded as an important step towards the full 
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understanding of its physiological role. In addition to where a protein is found, the timing 

and dynamics of its subcellular distribution can be very informative.  As I discussed 

above, the dynamic movements of proteins can help us understand cellular networks 

more completely. With sequencing of the yeast genome, protein localization can now be 

pursued on a large-scale.  

Compared with transposon-mediated random epitope-tagging followed by 

immunofluorescence and homologous recombination-based insertion of GFP into 

genomic loci, our plasmid-based promoter-yORF-fluorescent protein fusion collection 

has its own advantage. The Gateway system is very useful for high-throughput cloning, 

since it allows for the automation of otherwise time-consuming cloning processes. After 

optimization of the protocol, the efficiency of this cloning is high. More than 90% of 

ORFs with a size less than 4Kb can be cloned into a donor vector on the first try. More 

efforts are needed to clone larger ORFs. Reagents for the Gateway system are not cheap,; 

however, the total cost of this process can be lowered by using smaller quantities of  

reagents without affecting the efficiency of the system. Upon insertion of the promoter-

yORF into a donor vector, the resulting entry plasmid can be inserted into any destination 

vector. In our study described in Chapter 4, a set of destination vectors containing 

fluorescent proteins was generated.  Destination vectors with other epitopes have been 

generated as well. So it is conveniently possible to generate a plasmid collection with the 

desired modification(s). The biggest advantage of such a plasmid-based collection lies in 

its ability to be transformed into diverse genetic backgrounds. Since it can be preferable 

to study a broad set of genes functioning in the same pathway or within similar functional 

categories instead of just focusing on several proteins, our collection can serve as a 
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toolbox to facilitate the study of dynamic protein localization in any number of mutant 

backgrounds.  

 In Chapter 4, the localization of ATG genes in a wild type strain and atg11 mutant 

strain has been checked to show the utility of our collection in identifying regulatory 

interactions among proteins. Another study conducted in our lab using a kinase-vYFP 

collection also reveals interesting relationship between these proteins. Bharucha et al. 

(Bharucha, Ma, et al, 2008)have screened all protein kinases in the budding yeast for 

differential localization during filamentous growth. Our analysis showed six kinases 

localized evenly across the cell during vegetative growth but localized predominantly in 

the nucleus under conditions of filamentous growth (Bharucha, Ma, et al, 2008).Further 

localization-based epistasis studies indicate the existence of an interdependent network 

formed by these kinases. Using deletion mutants and kinase-dead alleles, we showed that 

kinase translocation normally requires the presence/activity of another kinase. Several 

novel filamentous growth-related genes were also discovered in this study. Our current 

collection contains kinases, transcription factors and selected signaling proteins. One 

reason to choose these categories for initial study is that the translocalization from 

cytosol to nucleus or to plasma membrane is relative easy to observe.  More sophisticated 

processes, such as protein trafficking, need more sophisticated approaches, like FRET, 

which can be used to suggest protein-protein interactions in living cells. Although our 

collection is definitely applicable to this kind of study, the intensity of fluorescence needs 

to be enhanced and stabilized to achieve reliable results. By comparing and combining 

protein localization data with other large datasets on protein function, the knowledge 

gained from individual studies can be enhanced greatly.  
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 New experimental strategies combined with complete genomic information and 

automated technologies are moving biological research to a higher systematic level. As 

more efficient high throughput functional genomic and proteomic technologies are 

invented, new bioinformatic and statistical approaches will be needed to analyze these 

data as well.  

  

 With improved understanding of the yeast genome, some previously overlooked 

groups of functionally important DNA sequences are starting to emerge, such as small 

ORFs, overlapping ORFs, and noncoding RNAs. The discovery of these genome features 

depends mainly on homology searches across several species and high throughput, high-

resolution array-based experiments, including SAGE, DNA microarray analysis, 

transposon-based gene-trapping studies, mass-spectrometry, etc… In a study by 

Kastenmayer and colleagues (Kastenmayer, Ni, et al, 2006), the properties of sORFs 

(small open reading frames, <100 amino acids) were investigated. They discovered that a 

similar percentage of sORFs are annotated in multiple eukaryotes and that many of the 

S.cerevisiae sORFs have potential orthologs in other eukaryotes (Kastenmayer, Ni, et al, 

2006).The idea of overlapping genes or nested genes is not new. These genes were 

originally discovered in viruses, mitochondria, and other extrachromosomal nuclear 

elements, which are evolutionarily stable and thought to be involved in genome size 

minimization. Recently, overlapping genes have been found in the chromosomal DNA of 

microbes and higher organisms. This genomic structure has been demonstrated to be 

potentially important for the transcriptional and translational regulation of gene 

expression and to influence the evolution of genes.  
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In the human genome, nested genes are frequently found completed within the 

boundaries of an intron of the host gene, and often in opposite orientation (Yu et al, 

2005). More specifically, the majority of the antiparallel overlap occurred between the 

UTR region of one coding gene and a noncoding RNA on the opposite strand. Although 

no overrepresented functional classes were detected, some studies suggested that the 

majority of antisense genes participate in translational regulation instead of functioning 

as signal transducers. In a high-resolution tiling array study of the yeast transcriptome by 

David et al. (David, Huber, et al, 2006),a group of nonannotated antisense transcripts 

were highlighted. The authors identified many genes with antisense transcripts 

functioning in the meiotic cell cycle and in transcriptional regulation. More antisense 

transcripts overlapped 3’ untranslated regions (UTRs) than 5’ UTRs, UTRs that had 

overlapping antisense transcripts were longer than UTRs that did not. However, the 

function of the majority of these antisense genes is still not clear. In contrast to gene 

organization observed in the human genome, only 4% of yeast ORFs have introns. 

Instead of residing opposite to introns, protein-coding sequences have been identified 

overlapping sequences encoding ribosomal RNA (rRNA).  TAR1 has been shown nested 

opposite the 25S rRNA gene in the rDNA repeat region of Chromosome XII (Coelho, 

Bryan, et al, 2002). Tar1p localizes to the mitochondria and has a putative role as a 

mitochondrial protein. Furthermore, the TAR1 ORF is highly conserved among very 

diverse yeast species.  In Chapter 5, I described the identification and characterization of 

another nested gene NAG1, which is located antisense to a protein-coding gene. NAG1 

encodes a protein that localizes to the plasma membrane, and Nag1p is involved in cell 

wall biogenesis.  NAG1 is conserved among fungi as a unit oriented opposite an ortholog 
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of the mitochondrial protein YGR031W. It will be interesting to check the potential 

interactions of the nested and the host gene. Topics such as whether there is correlation of 

transcription, and what is the real-time transcriptional timing and regulation for a pair of 

genes, will give us more insightful information on this unusual type of gene organization.  
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