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ABSTRACT

The dynamic problem of the growth or collapse of a single
stationary spherical bubble suddenly exposed to a quiescent liquid is
anglyzed for a binary system by means of intra-phase mass and heat
transport subject to thermodynamic phase-equilibrium at the bubble
interface. Two cases are studied. For the nonsoluble gas case, in
which the liquid constitutes a single component, approximate solutions
to bubble growth are obtained by means of the integral technique for
the initial and intermediate stages and the theory of sources for the
asymptotic stage of the transient. For the soluble gas case, the
initial bubble behavior is predicted and a solution is given to bubble
collapse in a nonvolatile liquid, in which case the gas phase consti-
tutes a single component. Dimensionless bubble growth is governed by
the Jakob number, Ja = p-(dT/dp)* . (p'c'/p"hfg), which characterizes
the rate of heat transport when phase change occurs, and the ILukomskiy
number, ILu = l)/a', which gives the ratio of mass to heat diffusivity.
The significant ratio, JaE/Lu, is shown to represent a measure for the
relative significance of mass to heat transport for the rate of the pro-
cess,

The growth and collapse of single bubbles is studied experi-
mentally from high-speed film recordings. For the nonsoluble gas case
nitrogen and helium bubbles were injected into water, and for the solu-

ble gas case ammonia was used. For stationary nitrogen and helium

xix



bubbles in water the anglysis is shown to describe the average bubble
growth well over a parameter range corresponding to the temperature
range 150-206°F and initial bubble radii of 0.7 - 3.0 mm. The effect
on the transient heat and mass transport of the observed bubble oscil-
lations is concluded to be negligible. Translatory bubble moticn is
shown to cause a significant increase in the growth rate when the
rising bubble has been accelerated and a flow transition has occurred.
The rate of collapse of ammonia bubbles is shown to become greater when
the governing rate-parameters and solubility of the gas increases and

the liquid volatility decreases.



CHAPTER I

INTRODUCTION AND LITERATURE SURVEY

A. Introduction

The purpose of the present study is to analyse a particular
case of the comprehensive subject of the dynamics of binary gas-liquid
systems, namely the dynamics of a single gas bubble suddenly brought
into contact with a volatile liquid, where either one or both of the
phases may comprise two components.

The process of injecting a soluble or nonsoluble gas into a
liquid has several applications. These can be associated eilther with
the resulting mass and/or heat transfer and/or with the resulting mechan-
ical agitation of the liquid. In gas injection-cooling the primary effect
is that of heat removal from the liquid facilitated by its evaporation
into inJjected gas bubbles until these become saturated in this component.
In principle, this process is similar to stream distillation from the
aspect of forced transfer of a more volatile component from the liquid
phase to the gas phase, and it has found application in the cooling of
cryogenic systems, especially when local and short duration sub-cooling
is desired. A lumped analysis of the injection cooling process<55>,
based on the instantaneous attainment of the equilibrium composition in
the gas phase, predicts satisfactorily the transient cooling for the
average system. For certain system geometries, however, - and in partic-

ular when the gas is soluble in the liquid - this approach is inadequate

and analysis of the distributed system becomes necessary. Accordingly



attention need be given the discrete processes, namely the dynamics of
the bubbles, when appearing individually or in clusters in the liquid.
In the present work the dynamics of the single bubble has been inves-
tigated, excluding interference from neighboring bubbles. Although trans-
latory bubble motion will always persist whenever the gas-liquid system
is subject to a gravitational field, most attention has been given the
case of the stationary bubble in the later Justified anticipation that the
dynamic process is rapid encugh to come practically to an end before appre-
ciable motion has occurred. The effect of translatory motion invariably
results in an increase in the rate of the process thus rendering the find-
ings for the stationary bubble conservative.

To identify the present problem among the many types of binary
gas-liquid dynamic problems, it is pertinent to examine the physics of

the process in light of the following characterizing aspects,

dispersed liquid phase (drops, fog)
. separated phases (plane, nonplane
(i) system geometry interface)

dispersed gas phase (bubbles)

thermodynamic non-equilibrium
pressure gradient

temperature gradient
concentration gradient
non-equilibrium shape

imposed body force field

(ii) disturbance

mass transport
momentum transport
heat transport
viscous dissipation
capillary effects
gravity effects

(111) significant process
(inter/intra-phase)
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Although the inJjection cooling process in fact represents the case of a
dispersed gas phase, the study of the single bubble implies separated

phases. When a stream of gas is introduced into the liquid, it breaks

into individual bubbles representing a more stable configuration. Related

to the hydrodynamics of this process the formed bubbles may osciliate,
interfere with neighboring bubbles, coalesce or further break up into smaller
bubbles. The present study considers the single bubble having a spherical
interface of separation, representing the thermodynamic equilibrium shape

in the absence of a gravity field.

The nature of the disturbance initiating the dynamic process is
primarily the thermodynamic state of non-equilibrium at the interface pre-
vailing at the moment the bubble is introducedo This disturbance causes
non-equilibrium temperature and composition distributions to be established
by means of which the process is analyzed. The presence of a gravity field
represents a secondary disturbance to the shape of the stationary bubble,
while being a primary initial disturbance for acceleration of translatory
bubble motion.

Among the listed significant processes, inter-phase and intra-
phase heat and mass transport become important for the bubble size and for
the types of gases and liquids under study. The inertia effects become
important only in the very initial stage when the dynamic process is accel-
erated, covering a negligible part of the transient for the stationary
bubble. For the case of the moving bubble, however, inertia, viscous,
gravity, and surface effects determine the motion.

Next, the present case of bubble dynamics is identified among the

many particular cases previously studied as they relate to diverse applica-



b
tions. The summary given in Table I has been prepared for the frequently
encountered process labels and listed are the effects governing the par-
ticular bubble dynamic transient. TFor completeness the effects being
important only in the initial stage have been included and marked with I,

while the otherwise controlling effects are denoted by X.

TABLE I

SIGNIFICANT EFFECTS FOR VARIOUS BUBBLE DYNAMIC PROCESSES

Significant effects Liquid Gas
phase phase
NE]
&
)
oy 0] 0
Pl aje| £l | L P
g | @ls8 | slag] oo
o| 8|lo| olo!l o | O
Bubble dynamic Sl B S 28| E
process label = 5 =S = I~ N
£ S al8| o w
pPlelep| PP o] 3
a|l Gle| ale| &3
AR IR
§ = = § 0| wn | >
vaporous X X | X
g | Cavitation
q gaseous I X X X
I
o g
& 2 one-component liquid I1X I
g two-component liquid X| IX I
‘é & | Boiling
R
4 8 presence of permanent < | x r
e, gas nucleil
o~ N 3
SIS
H 0~
.a Gas-vapor bubbles (injection cooling) X X X
o)
39 Gas absorption X X
B 2o
= é_ﬂ Gas desorption X
H n
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The caviﬁation and boiling processes are characterized by an
initial microscopic bubble size, while gas injection cooling, gas adsorp-
tion and desorption are characterized by initial visible (macroscopic)
bubble sizes. In cavitation. and boiling the dynamic growth starts from
nuclei, small bubbles of the thermodynamic equilibrium size corresponding
to liquid superheat and the state of the interface. The transient is
triggered by a sudden disturbance in pressure (cavitation), gaseous diffu-
sion into the nuclei (gaseous cavitation) or a temperature disturbance
(boiling). While in all cases the inertia and surface effects play a sig-
nificant role in the very first stage of the growth, the heat transport in
the liquid phase to the bubble interface required for the evaporation
associated with the growth may be omitted in the study of "cold" cavita-
tion. For "hot" cavitation, however, which, aside from the externally
imposcd pressure variations, physically is identical to boiling, heat trans-
port controls growth subsequent to its initiation. The reason for this 7
difference in behavior, alone determined by the temperature level, is found
in the difference in slope of the vapor pressure curve (dT/dp)*. Consider
a nucleus of a certain size in thermodynamic equilibrium at the uniform
‘bulk liquid temperature, such that the excess vapor pressure is balanced
by the surface tension forces. When, started by some disturbance, the
bubble has grown a small amount, the change in interface saturation tem-
perature, AT ,.is related to the pressure change by AT = Ap(dT/dp)*°
For identical nucleation size and subsequent growth, the pressure change
is the same but the temperature difference which governs the rate of heat

transfer depends on the vapor pressure curve. Low temperature implies



large values of the Ja-numberl

Ja: ATﬁ

which, as shown later is the governing parameter for nondimensional
bubble growth controlled by heat transport in the liquid alone. Large
Ja-number implies very rapid growth if heat transport were the only
effect, This in turn implies that growth is governed and limited by
inertia effects in such cases, and heat transport becomes insignificant.
For moderate or small values of the Ja-number heat transport dictates
the growth rate to be slow enough that inertia effects are of no impor-
tance.

The presence of dissolved gases in a cavitating or boiling
fluid and the case of boiling of binary mixtures may necessitate the
consideration of the intra-phase mass transport. As shown later in the

analytical treatment, the Lu—number2

3PS

Luw =

is convenient for measuring the relative significance of mass diffusion

to heat diffusion. Mass diffusion is significant in bubble dynamics of

Jakob number, after the late Max Jakob, referred to by Savic(55)a A
dimensionless group appearing when phase change occurs in connection
with the molecular diffusion of heat, change in density and release
or absorption of heat.

n

Lukomskiy number, a dimensionless group appearing when mass and heat
transfer by molecular diffusion occur simultaneously gntroduced in
the Russian literature (see e.g. Lykov and Mikhaylov(38 ). With the
same notation the group is called the Luikov-number by Mikhaylov 59),
and is the inverse of the so called Lewis number, criticized by

J. H. Arnold in the paper by Klinkenberg(52) as an inappropriate
notation, although used later in the American literature.
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of bolling mixtures, important for the greater part of the dynamics of
gas-vapor bubbles, controls gas absorption and desorption, but is rela-
tively unimportant for the cases of gaseous cavitation and boiling liquids

containing permsnent gas nuclei.

B. Literature Survey

The dynamic phase-growth in gas-liquid systems has primarily
been studied for the application to the processes of underwater detona-
tions, cavitation, boiling, and chemical engineering unit operations
involving mass transfer to or from a dispersed gas phase. As might be
expected, the growth or collapse of a gas cavity in a liquid has been
chronologically explored in steps of increasing complexity. The present
survey of the literature is therefore conveniently divided into sections
accordingly. Firstly, in isothermal bubble dynamics the sole effect of
an initial pressure disturbance is considered. Next, in one-component
boiling the effect of heat transport in the liquid is added, and in two-
component boiling the effect of mass transport iﬁ the liquid is included,
while this effect alone controls gas absorption. In the dynamics of gas-
vapor bubbles heat transport in the liquid is coupled to mass transport
in the gas phase at the moving boundary. Finally, attention is given the
problem of interface equilibrium when mass transfer occurs.

1. Isothermal Bubble Dynamics

Bubble dynamic studies were initiated by Besant<u) who formulated
the problem of bubble collapse. The solution to this problem was not given
until much later by Raleigh<52), after whom the governing equation is named.

A summary of the formulation and the solution to the problem of bubble
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collapse neglecting the internal pressure and to isentropic bubble expan-
sion neglecting the external pressure is given by Lamb(BB), Later,
Plesset(uu) modified the Rayleigh equation to account for surface tension

effects and Barlow and Lza.nglois(2>

included and made specific use of the
viscous dissipation in the liquid in the study of the early stage of growth

of gas bubbles in a viscous plastic.

2., One-component Boiling

Because bubble growth in boiling is related to the rate of vapor
formation at the bubble interface facilitated by heat transfer from the
surrounding liquid, the initial phase of growth is a coupled thermal and
dynamic problem. Considering surface tension and relating the excess
pressure in the bubble to the temperature difference between the interface
and the bulk of the liquid by Clapeyron's equation, Plesset and Zwick(h6>
formulated the coupled problem for a uniformly superheated liquid. It was
shown that the evaporation rate did not violate the assumption of interface__
equilibrium, and an approximate solution was obtained. The intermediate
stage of growth in which the inertia terms become less important is diffi-
cult to treat. It is, however, like the initial stage of growth of very
short duration compared to the asymptotic stage of growth, and is thus
generally omitted from consideration., In the asymptotic stage of growth
the inertia effects are negligible and bubble growth is governed alone by

(19)

heat transfer in the liquid as shown by Forster and Zuber who also

evaluated the magnitude of the inertia terms. For the asymptotic stage,
solutions to bubble growth in a superheated liquid were obtained by Plesset

(45,46,47)

and Zwick assuming the temperature drop in the liquid is localized
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to a thin film next to the interface. Forster and Zuber<l7’18’19) obtained
nearly identical solutions by the use of source theory and by approximating
the fluid and boundary motion by successive differential processes of con-
vection and conduction.

Chambré(8) analyzed, by means of similarity variable, the coupled
dynamic problem of fluid flow and heat transfer in a viscous liquid sur-
rounding a growing solid of plane, cylindrical and spherical geometry.

(22)

Griffith analyzed the growth of hemi-spherical bubbles on a heated

surface into a liquid with a linearly decreasing superheat. Bankoff and

S
(l) extended the Plesset and Zwick( ) solution to the growth of

Mikesell
spherical bubbles in a liquid initially having a linear or exponential
temperature distribution. Clark, et al., 2 formulated a simple quasi-
steady model for the collapse of vapor bubbles in a boiling liquid subse-
quent to sudden pressurization. Collapse by condensation was controlled
by heat transfer from the bubble interface into the liquid by conduction.
The bubble size was assumed constant and hence convective contribution to
the heat transport was ignored.

Bubble growth rates in various superheated liquids have been

(13)

studied experimentally by Dergarabedian who found consistency with
-the predictions by Plesset and Zwick(46) for the asymptotic stage of growth
and small superheats. Ellion(lS) measured radii and radial velocities of

bubbles growing on a heated surface.

5. Two-component Boiling

(55)

Scriven formulated the asymptotic stage of growth for a
single spherical vapor bubble in a superheated binary mixture. Growth

was controlled by heat and mass transfer in the 1liquid phase. By means
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of the technique of similarity variables an exact solution to the postu-
lated model was obtained analogous to the solution presented earlier by
Birkhoff, et ala(6> and again used by Barlow and Langolis(e) for the simi-
lar problem of the diffusion of a gas into an expanding bubble. A signi-
ficant result of the analysis was that interface temperature and composi-
tion remained constant throughout growth. The effect of finite mass dif-
fusivity in reducing the growth rate was shown. For the special case of
a one-component boiling liquid the exact similarity solution also apply,
and permit comparison with the approximate solutions.

Bubble growth rates in binary mixtures of water and ethylene
glycol were experimentally studied by BenJjamin and Westwater(5> who found
gualitative agreement with the predictions of Scriven(55)o The smaller
bubbles due to slower bubble growth in boiling binary mixtures as compared
to those in any of the pure components copstituting the mixture, have
been observed in the study of boiling and burn-out in binary mixtures by

(62,61,57) (23)

van Wijk, Vos, and van Stralen and by Grigor'ev and Usmanov

L. Gas Absorption

Gas absorption from a bubble rising through a non-volatile

(26)

liquid was treated by Higbie based on the "penetration theory" assum-
ing that the dissolved component penetrates only a short distance from

the interface into the liquid. As the bubble rises, the gas in the bubble
undergoes a toroidal motion such that there is essentially no slip between
the gas flow and the liquid at the interface, and fresh liquid is encoun-

tered at the top of the bubble at all times. Under these assumptions the

transfer of gas to the liquid is treated as the transient diffusion into a
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falling film, the exposure time taken to be the bubble diameter divided
by the bubble rise velocity. Average absorption rates from rising gas
bubbles (0.3-0.5 cm diameter) based on this;theory has been verified by
Hammerton and Garner(25> while Groothuis and Kramers(gh) successfully
predicted mass transfer rates during drop formation on a capillary tip.
The presence of surface active agents caused a considerable decrease in

(25) )

transfer rates . Coppock and Meiklejohn(lo studied bubble formation
from horizontal circular orifices and measured mass transfer coefficients
for the absorption of oxygen in water fom 0.15-0.3 cm diameter rising
bubbles. Datta, Napier and Néwitt(12> reported on carbon dioxide absorp-
tion in air-saturated water from rising bubbles formed from circular
capillary orifices submerged under mercury to minimize absorption during
bubble formation. Pattle(ul’hg) studied experimentally aeration of water
by measuring the absorption of oxygen from air inJjected in various bubble
sizes, and formulated the theoretical problem of gas diffusion into the
liquid in terms of a coefficient of per cent uptake per unit length
travelled by the bubble. The height through which small bubbles will rise
through air free water before being fully absorped was measured and the
average adsorption coefficient was determined. The efficiency was shown
to depend strongly of liquid height over injection location, initial
bubble size, and agitation.

Danckwerts(ll)

made a more general formulation of gas absorp-
tion in agitated liquids treating the phenomenon of surface renewal

statistically by defining a fractional surface age distribution function.

Lightfoot(57> employed the '"stagnant liquid film" theory to predict the
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effect of the chemical reaction between solvent and solute on the absorp-
tion rate. Each gas bubble is assumed surrounded by a thin stagnant liquid
film through which the gas diffuses in steady state to the assumed constant
bulk concentration outside the film. It is shown that only high reaction
rates can change the absorption rate significantly.

5. Gas-vapor Bubbles

Lienhard(56) in a theoretical study of inception of cavitation
and flashing of liquids in hydraulic equipment treats the thermodynamic
stability in a superheated liquid of vapor bubbles with and without the
presence of a permanent gas. He proceeds to give first a comprehensive
formulation of the dynamic growth of a gas-vapor bubble containing a con-
stant mass of gas and growing entirely owing to evaporation. Inertia, sur-
face effects, heat transfer and liquid viscous dissipation are included
in this formulation. With the attention focused on incipient cavitation
the heat transfer is neglected and representative numerical approximate
solutions based on the direction field method are presented. The second
case treats isothermal growth resulting entirely from mass diffusion of
dissolved gas in the liquid into the bubble. Neglecting liquid motion a
simplified quasistatic model analogous to that of Reference 9 is postulated
and the solution given.

In another recent fundamental study of the cavitation process

Plesset(MB)

compares boiling and cavitation bubbles and gives an account
of the thermodynamics of oscillating gas bubbles, including the first

order damping effect of heat diffusion in the liquid. Criteria in terms

of diffusion lengths, thermal properties and frequency of oscillation are
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given for the thermodynamic behavior of an oscillating gas bubble in a
liquid. As expected, isothermal behavior describes the bubble well for
low frequencies while for higher frequencies the behavior is adiabatic.

For very high frequencies, however, the behavior again becomes isothermal.
Mention is made of the second order ;ectified diffusion phenomenon, and

the stability of a growing or collapsing spherical gas bubble is analyzed.
Bubble growth is stable while bubble collapse is unstable. The instability
is unaffected by surface tension and becomes evident when the bubble radius
has been reduced by a factor of ten from its initial value. This agrees
with experimental observations of the fragmentation of collapsing bubbles.
For bubbles with an appreciable amount of permanent gas the decrease in
size may be insufficient to cause instability.

The problem of rectified diffusion of mass into a spherical gas
bubble in an oscillating pressure field was studied in detail by Hsieh
and Plesset(27)a This problem is identical to that of a spherical gas
bubble carrying out an undamped harmonic oscillation. The second order
effect of a net flow of mass to the gas phase by diffusion from the ligquid
phase is named rectified diffusion, and it arises from the greater average

'transfer area available during the expansion half-cycle, when the mass
flow is inward, than during the compression cycle, when the mass flow is
outward. The Mathieu equation of stability was furthermore investigated,
indicating that the second mode of harmonic oscillation is most probable.
The analytical expression for the rate of mass transfer was given and
sample calculations confirmed the effect to be secondary. Strasberg<58)

studied experimentally the pulsation frequency of gas bubbles formed on a
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capillary tip and rising through a liquid. The zero-th order pulsation
frequency was found in accord with the standard frequency of an oscillat-
ing gas bubble as calculated using the acoustic approximation, and this
frequency was not significantly affected by the lower frequency oscillations
(second and higher order) carried out by the bubble while departing and
rising.,

Approximate solutions for stationary gas bubble growth or collapse
owing to mass diffusion in a nonvolatile liquid respectively oversaturated
and undersaturated with the soluble gas were obtained by Epstein and
Plesset 1) using a quasistatic model neglecting liquid motion, similarly
to the model used by Clark, et al,(9)o The same isothermsl problem of

(2)

bubble growth was solved by Barlow and Langlois® ‘for the considerably more
general case 1lncluding the inertia of the viscous liquid, surface tension,
and the changing gas concentration. A numerical computer solution was
carried out for the complete formulation, while approximate analytical
solutions for the initial and asymptotic stages were obtained in closed

form.

6. Interface Equilibrium

In the analysis of bubble dynamics in one and two component
boiling systems, in the analysis of gas absorption, and in general in mass
and heat transfer processes across phase boundaries, it is tacitly assumed
that thermodynamic phase equilibrium exists at the interface. Strictly
speaking this is incompatible with the observation that a process takes
place, since the driving potential in the first approximation is pro-
portional to the departure from equilibrium. However, if the "reaction

rate" is small, the departure will be small. This will, in general, be
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the case 1f the rate of the controlling processes - in the above cases
heat and mass diffusion - are slow compared to the rate at which thermo-
dynamic equilibirum locally can be restored. The assumption of interface

thermodynamic equilibrium has been studied experimentally by Tung and

(60) (16) (56)

Drickamer s

and Emmert and Pigford and by Scriven and Pigford
who measured the rate of absorption of carbon dioxide into a liquid laminar
Jet of water flowing at high velocity. Comparison with analytical predic-

tions based on the assumption of interface equilibrium justified the latter.
A theoretical study by Schrage(5h) based on the kinetic theory seems to sup-

port the experimentsal studies.



CHAPTER IT

THECRETICAL ANALYSIS

In this chapter the general problem is stated of the dynamics
of a single bubble having no translatory motion. Based on an account of
the detailed physics of the problem the corresponding general mathematical
formulation is given. Re-evaluating the physics of the process a simpli-
fied - mathematically tractable - formulation is deduced. Solutions to
this formulation are investigated for two cases. For the nonsoluble gas
case, in which the liquid constitutes a single component, approximate
solutions to bubble growth are obtained by integral technique for the
initial stages and the theory of sources for the asymptotic stage of the
transient, and the analytical results are presented in dimensionless form
in a parametric study. For the soluble gas case the initial bubble behav-
ior is predicted and a solution is derived for bubble collapse in a non-

volatile liquid.

A, Statement of the Problem

A spherical bubble of radius R, containing a binary mixture of
gas components A and B of uniform composition x; (molefraction of the
more volatile component A) and temperature Tg is suddenly introduced
into a quiescent binary liquid mixture of components A and B of uniform
composition x; and temperature T, . The initial pressure distribution
is assumed uniform throughout each phase. Figure 1(a) shows schematically

this initial condition for the system.

~16-
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Owing to the initial thermodynamic non-equilibrium gas-liquid
compositions and temperatures at the bubble interface, transfer of com-
ponents A and/or B from one to the other phase will begin. The neces-
sary heat liberated or absorped in this phase change i1s transferred to or
taken from the liquid and gas, thereby changing the interface temperatures.
This process procedes rapidly at the beginning of the transient until at
the interface a state of thermodynamic phase-equilibrium is established,l
whereby local values of pressure, temperature and compositions become
functionally related. This initial state is considered attained instantan-
eously since it affects only a few molecular layers in each phase. The
intra-phase non-equilibrium distributions in composition and temperature
in conjunction with the pressure distribution govern the subsequent bubble
growth and/or collapse. The net flow of heat to the interface satisfies
at all times the requirements for the instantaneous net phase change of
components A and B .

Insight into the asymptotic bubble behavior is gained by con-
sidering avtypical non-azeotropic, binary phase-equilibrium diagram shown
in Figure 2. DNoting that the liquid phase is considered unbounded in
extent, the approach to thermal equilibrium in the asymptotic stage implies
a uniform system temperature identical to the initial liquid temperature,
Te - The persistance of two phase therefore requires the liquid to be at

the saturation state, x¥* . TFor the general case of complete miscibility

The departure from phase equilibrium owing to interface mass and heat
transfer is small as discussed in Appedix I, and omitted from the
analysis.
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of the two components in each phase, a non-zero asymptotic bubble size

can only exist when the liquid is initially at the saturation composi-
tion x¥ . The resulting gas composition is correspondingly x, as

shown in Figure 2. For the case of an initially super-saturated liquid,
no finite equilibrium size exists. From the physics of the problem it may
furthermore be seen that for the case of a soluble gas, the bubble may
grow initially or collapse, depending on the initial conditions and the
governing parameters for mass and heat transport. Thus, if the liquid
component A 1is very volatile the tendency for this to evaporate may
exceed the tendency for the nonvolatile gas component B to go into liquid
solution, and a net growth may occur initially.

For the case of a nonsoluble gas the boiling curve of Figure 2
coincides with the line x =1 . The liquid may be interpreted to be
saturated with respect to the nonsoluble gas component B irrespective
of its temperature. Hence, a finite asymptotic bubble size of composition
x  is approached in all cases of a subcooled liquid, T, < T%¥ . In the

o0

limiting case, the liquid is also saturated with respect to component A,

=]
]

T¥# , and the corresponding equilibrium composition in the gas phase,

Lol
1

=1 , is approached only by unlimited growth of the bubble.,

B, General Formulation

The following general mathematical formulation takes into account
the simultaneous processes of mass, energy and momentum transport in both
phases, all coupled at the moving bubble interface to satisfy here mass,
energy and momentum balances as well as thermodynamic phase-equilibrium.

Cross coupling is neglected in intra-phase transport between the transport
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of one of these quantities and the driving potential for the others (Dufour
and Soret effects and pressure forced mass diffusion), as predicted by the

(5)

Onsager linear relations of the theory of the thermodynamics of irre-

versible processes. The liquid 1s considered inviscid and incompressible
and the system geometry 1s spherically symmetrical. In the notation used,
extensive properties are on a partial molal basis. Thermal and transport

properties are assumed constant.

1. Gas Phase (0 < r < R)

Intra-phase mass transport by diffusion and convection is governed
by

a (P”X //) e 7 — .
T 2" V. (p" T x*) (1)

!
Qs
i

|

+
=
—
!
&
X
=
x
N
i

subject to the initial and boundary conditions

X”(r, 0) - Xo”
ax"(02) _ 0
or

x"(Rt) = x{

where subscript s refers to the interface condition. Combining Equation
(l) with the corresponding equation for component B , noting that
X = Xxp = 1-xg , the equation of continuity in terms of the molal density

of the gas mixture, p" , becomes

3(’” — ni
et V') =0 (2)
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With the assumption of constant average thermal properties the energy

transport is given by

.3_7_—” vVI'gT! 0 2t 1 D'p”
ot T V,VT = VT -+ {%’/ 5‘; (5)
subject to
T//(r)O) - Toll
aT"(0,4)
> = 0
T"(Rt) = Ts

Momentum transport is given by

o5 + (1P V] = -y Q

subJject to the initial conditions

i

pU (D) = By

0

V' (ro)

In addition, an equation of state relates the density of the mixture to

pressure and temperature locally

Pt = FehT) o

2. Liquid Phase (R <r< o)

The corresponding formulation for the liquid phase, noting its

incompressibility, becomes, for mass transport
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2 VX = 3V (6)
X'(h0) = X
X’(w)t) Xlw
X' (Rt) = x;
continuity
Vv =0 (7)

I ®)
T(ro) = T,
T'(oo,f):: Tao
T'(Rt) = T,

In light of the incompressible, irrotational flow, the momentum transport
may be written

oV

—— 4 V
EE*V'('+’2'=0 (9)

ol

subject to the initial conditions

{ p'(nl)= £,
Vi(ro) = 0
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The formulation is completed with the statement of the conditions at the

moving bubble interface, separating the two domains and initially subject
to

(10)
R(0) = 0

where R denotes the interface velocity.

3, Interface Conditions (r = R)

In terms of mole fluxes N, and Np of respectively component

A and B transferred from the gas phase to the liquid phase the inter-

face mass balances, considering each phase separately, become

" > "y u_y ox’
Ny, = (V' -R)e'x — 3¢/ 57

ar s (11)
/ : i/ ) ox!
Ny = (Vi ~R)gxs — D g5 Y . (12)

Combining Equation (11) with the similar form for component B , the net

mole flux results

NtNg = (W -R)g = (Ve-R)ps (1)

With the contributions from enthalpy flux and molecular diffusion the inter-

face heat balance becomes

P aT” / ' ;T
Ny i’A + NBH; -k o5l F NAhA”rNB "'B -k 37 g (1)
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Including the momentum flux assoclated with the interface mass transfer
and accounting for the surface curvature by considering surface tension,

the momentum balance becomes

JFS'/ - ,Ps' = (VS/" Vsn) (NA* NB> + %9' (15)

Finally, thermodynamic phase-equilibrium provides two relations (dew curve

and boiling curve) for temperature and compositions

x¢ = (T, !) (16)

o= (T8 (17)

C. Simplifications of the General Formulation

The following additional assumptions, discussed in detail below,
are made to bring the general formulation into a mathematically tractable,
yet physically meaningful, form.

(1) Inertia effects in both phases are neglected

(ii) Surface tension effects are negligible

(1ii) The gas phase is adiabatic

(iv) The binary mixtures in both phases are ideal

(v) The assumed constant thermal and transport properties

are evaluated at the state of the bulk liquid, Py, and T

(vi) The thermodynamic phase-equilibrium relationship pre-

vailing at the interface can adequately be approximated

linearly.
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Figure 3. The Influence of Inertia Effects on Bubble Growth

(Schematic).
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(i) Inertia effects, primarily in the liquid phase, become important in
two aspects of the bubble dynamic process as shown in schematic in Figure 3.
Firstly, the initial rate of volumetric expansion of the bubble owing to
mass transfer becomes finite insteady of infinite as predicted by models
based on mass and heat transport alone, following the initial step-change
in potential distributions. The initial acceleration of the fluids, however,
takes place in a very short time (fractions of milliseconds) and may right-
fully be omitted in the present case where the controlling factors for
bubble growth are mass and heat diffusion.

Secondly, inertia effects become important when comparing the
idealized analytical model of an initially static spherical bubble shape
to the actual case of the sudden introduction of the gas phase into the
liquid. Owing to the initial non-equilibrium shape in the latter case,
bubble oscillations invariably will occur. The sudden introduction of the
gas phase from a circular capillary may thus be visualized to give rise to
a predominant mode of oblate-oblong oscillation, persisting until damped
out by viscous dissipation and thermal effects. Because bubble oscillation;
are experimentally observable, yet neglected in the analysis, an account of
" this behavior is given in the following for the case of undamped oscilla-
tions governed by inertia and surface effects.

Assuming axis-symmetry the shape of the bubble surface may be

expressed as a sum of spherical zonal harmonics, Y, , superimposed the

n
equilibrium shape which in the absence of gravity effects is a sphere of
radius R

Flyt) = R+ ) a0 Yy e" (18)

nzo
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where Y 1is the polar angle and w, the cyclic frequency of the n-th
harmonic., Based on a stability analysis Hsieh and Plesset(27) showed that
the second zonal harmonic is the most unstable mode of oscillation, hence,
the dominating. Because the second zonal harmonic is identical to the
Legendre polynomial of first kind and second order, the first approxima-
tion for the bubble shape for the case of an undamped harmonic oscillation
with cyclic frequency o and polar amplitude a may be written

. (g) 3 cos’y - |

Flyt) = R [4 F 3 Sinwt] (19)

The frequency, f = u/2n, of this mode of oscillation may be obtained from

hydrodynamic considerations, showed by Lamb<55), as
1 3 o

and the polar amplitude, a ,1s given from the initial conditions particular
to the injection process.

A dominating mode of oblate-oblong oscillation having a frequency
consistent with Equation (20) has been experimentally evidenced. The
similarity of this mode to that given by Equation (19) has furthermore been
substantiated by comparing from experiment the magnitude of the relative
polar amplitude a/R to the magnitude of the amplitude of the relative

equivalent radius Req/R , where R is the radius of the sphere having

eq

the same volume as the deformed bubble. The analytical relationship,

obtained from Equation (19) as shown in Appendix IT, is
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Vi
(&) sinat + 2 (& st - 3 (& ot @)

Uifoo

As discussed in Chapter III under the evaluation of the experi-
mental results the magnitude of the relative polar amplitude a/R varies
between experiments in a random manner since it is determined by the
initial displacement during formation. Typical values range from 0.01-0.10
in the first part of the transient damped out to 0.001-0.05 in the later
and asymptotic stage.

For the mode of oscillations of zero-th order (spherical
oscillater) the analytical study by Hsieh and Plesset(EY) of rectified
mass diffusion indicates that amplitudes comparable to those in the present
study have a negligible perturbing effect on the mean bubble size over
short periods of time. Thus, even for an initial bubble size of 1 mm and
a relative pressure amplitude of 0.25 the time for doubling of the bubble
radius exceeds lO6 sec. In light of these results and owing the experimen-
tally observed small amplitudes of oscillations in most cases, only the
zero-th approximation, r =R , to the bubble shape will be considered in
the present study. Whenever the oscillations in shape play a small role
for the heat and mass transfer processes the solutions thus produced re-
present the time history of the equivalent mean bubble radius.

(ii) Surface tension effects are disregarded in the present study because
only visible (macrosoopic) bubble sizes are considered.

(iii) For relatively slow transients as well as for low frequency oscilla-
tions, as pointed out by Plesset(h8), the thermodynamic behavior of the

bubble is isothermal. In view of the comparatively small change in inter-
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face temperature experienced during the transient and because of the low
heat capacity of the gas phase, it is appropriate to neglect heat trans-

fer to or from the gas hence to consiaer it adiabatic. This assumption
implies that only cases for which the initial gas temperature is near the
liquid bulk temperature are considered.

(iv) TIdeality of the binary system implies that the heat and volume change
of mixing are zero and that properties for the mixture can be obtained from
those of the pure substances. When experimental phase-equilibrium relations
are not available, these can thus be expressed analytically in terms of sys-
tem pressure, p, , and respective vapor pressures, p¥* , for the pure com-

ponents A and B (see e.g. Dodge<lu) Egs. (XII.3) and (XII.4)).

/b = A/F5m)
Yim - g

fo — #(T)
gE(r) = () (23)

£ (T, ) =

Tdeality in the liquid phase is_generally expected when the components have
similar chemical structure and in particulér for dilute solutions. A require-
ment for considering the gas phase ideal is low pressure and high temperature
of the system, and particularly that its state is far removed from the
critical state of either component.

(v) The evaluation of thermal properties at the bulk liquid temperature
primarily introduces an error in the heat of phase transition. This error

is small, however, during most of the transient because of the small temper-

ature difference between the bubble interface and the bulk liquid.
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(vi) Linear approximations to the dew curve and boiling curve of the
phase-equilibrium relations are adequate for interface temperatures in
the neighborhood of the liquid bulk temperature.

With the above assumption the bubble dynamics is considered
governed by mass diffusion in the gas phase and mass and heat diffusion
and radial convection in the liquid phase. The general formulation is
accordingly simplified as foliowso

la Gas Phase (O <r< R)

With a constant molal density p" of the gas mixture, the
equation of continuity, Equation (2), infers that the gas phase is
stagnant and assumptions (i) and (ii) then implies that the pressure is
uniformly p, throughout the two phases. In terms of the potential dif-

1" 1"

ference, x -Xy s intra-phase mass transport from Equation (1) becomes

o(x"“ x5 “ Cxl
e = 2 2 ar[ re X)J &)

subJject to

xX"(r0)- x] =0

X! m/ t)
or

x"(Rt) -

"
Xs"Xf

2, Liquid Phase (R <r< w)

In terms of the composition difference, x,-x' , Equation (6) for

spherical symmetry becomes
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(x5 X) R Jdbtx) g 4 a 2d(xw—x’)J
or

ot r ar - (25)

subject to

i
<

Xpp =X'(r0)

{
S

Xy = X(w,t) =

Xy = X(RE) = Xgp- X!

where vf(r,t) is the radial liquid velocity, satisfying the continuity

equation, Equation (7), now written

L 2(ry) = (26)

1

Omitting the notation ('), the heat transport from Equation (8) may be

written
NTp-T) o T T) L 3 [23(7— r)J
ot T or =% Ry or (27)
subject to
To- T(r0) =0
7;D— T((D,f) = 0

T(R;'t) = 7:23_7:5
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3, Interface Conditions (r=R)

Noting that the gas phase is stagnant, Equations (11), (12), and

(13) for the interface mass balance simplify to

. ' "(Rt) ’

Ny = —Re'x{ — D¢’ é—%;—— (28)
, S, L ox'(RY)

Ny = [7(Re)-R] % - 2 é“xa‘f““ (29)

Ny+Ng = - ép’/ = [%(Rt)-R] e’ (30)

The energy balance of Equation (14) with assumptions (iii) and (iv) may now

be written

‘ . TR
Mahiga © Nghg = =K Jar- )' (31)

where hfg indicates the heat of evaporation of the pure component, iden-
-tical to the change in partial molal enthalphy when going from liquid to
gas solution because the heat of mixing is zero. The phase-equilibrium

relations of Equations (16) and (17) simplify to

X' = (s, 1, ) (%2)

xs = F(Tp,) (33)

where the functional relationship is linear and p_ 1is constant.
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D. The Case of a Nonsoluble Gas

The case in which the gas component B 1s nonsoluble or has a
negligible solubility in the volatile liquid component A , represents the
particular case of most interest for the application to injection cooling.
The bubble dynamics is then governed by mass diffusion in the gas phase and
heat transport in the liquid phase. For simplicity the notation (') and (")
for respectively the gas and liquid phases is left out where not needed for
clarity.

1. Solutions

Aithough the physics of the problem has been simplified consider-
ably in the formulation given above, an exact solution to this is not readily
obtained. The mathematical difficulties may be seen to arise from the follow-
ing characteristics of the problem. The transient is sought for the two
spherical domains, O < r <R and r >R of which one is semi-infinite, the
other finite. The two domains are coupled at the moving interface, r=R(t) ,
where the time-wise change of the potentials for transfer is in turn coupled
to the interface motion.

It is worth noting that similarity solutions exist for the chosen
model either for the case of one dimensional plane geometry(Bu) (i.e., two
semi-infinite domains as shown in part E. 1. of thié chapter), or for
spherical geometry for the case of initial zero bubble size(55)° In the
present case, however, similarity solutions can be shown not to exist, pri-
marily because of the finite, ihitially non-zero, domain of the bubble
interior, but also because of the arbitrary phase-equilibrium relations
imposed at the bubble interface, even when these relations are assumed to

be linear.



_55_

For large values of time an asymptotic solution is obtained using
source theory under the quasisteady approximation of uniform gas composition.
The solutions for small and intermediate values of time, however, are ob-
tained by the use of the mass and energy integrals of the governing differ-
ential equations employing one-parameter parabolic distributions of mass
concentration and temperature in respectively the gas and ligquid phases.

In applying the integral technique to a problem, sultable profiles
for the dependent variables are assumed, satisfying the initial and boundary
conditions, while the governing differential equations subsequently are
satisfied only in their integrated forms, that is on an average over the
interval in question. First introduced by Pohlhausen(h9) this method has
found extensive use in the solution of boundary layer problems of the vis-
cous fluid flow. The similarity between the boundary layer concept of these
problems and the concept of thermal boundary layer growth in transient heat
conduction problems have lead to an increasing use of the Pohlhausen tech-

(

nique. Thus, Yang 63) employed the integral technique to a heat conduction

problem taking into account the effect of variable thermal properties, and

(21) (50,51)

Goodman and Poots applied it to problems of solidification. It
should be mentioned that one of the main advantages of the approximate inte-
gral technique lies in its ability to handle analytically difficult geom-
etries. Inherent nonlinearities of a problem, however, are not eliviated
by the method. The usefulness of applying the integral technigue to a prob-
lem of spherical phase-growth is illustrated in Appendix III for the case>
of bubble growth in one-component boiling having an exact solution.

The profile for mass concentration and temperature distributions

are chosen in accordance with the physics of the problem. Referring to
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Figure 4(a), the shown initial conditions suggest the transient growth of

a concentration and thermal boundary layer from the interface into respec-
tively the gas and liquid phases during the first part of the transient.
For the first time domain, 0<t<t; , terminated when the composition
boundary layer has penetrated to the bubble center, the profiles are there-
fore suitably expressed in terms of the time dependent penetration depths,

fp(t) and f,(t), as shown in Figure 4(b). The parabolic one-parameter

forms are

To=T 2
© = -y (3
= = U] )
X L+ V) (352)
Xg - Xo

satisfying the following set of boundary conditions

" T(0) = T~ Ts X(04) =Xy = Xg=Xo
T - T({M) = X(-fxt) % = 0
XT(f,t) ) o X(-fxot)
. n dy

where y=r-R 1is the independent space variable with respect to the inter-
face. In the second time domain, t > tl s the gas composition at the
bubble center, x, , becomes affected by the mass diffusion process as the
transient proceeds and the uniform equilibrium composition, X, » 1s asymp-

totically approached throughout the gas phase. With xc(t) as a sultable
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Figure 4. Composition and Temperature Profiles. Nonsoluble Gas Case,
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parameter function for this time domain, the parabolic profile for compo-

sition is written
. 2
x = X¢ t (xg=xc) (1 + Y/R) (350)

satisfying the following set of boundary conditions

x(0t) = x¢
x(FRit) = *Xc
H-R,t) )
oy =0
and coinciding with Equation (35a) for t = t; , when x, =., and f, =R.

Noting that the need for two different profiles for the composition in the
gas phase was prompted by the finiteness of this domain, it follows that
the temperature profile of Equation (34) may be continued unaltered in the
second time domaln.

Before proceeding to obtaln solutions for small and intermediate
values of time, the differential formulation is further reduced. Thus,
integration of Equation (26).using'the liquid velocity at the bubble inter-

face, vﬁ » as reference gives

/ ¢ R 2 ( 6
v (?) 36)
Combining Equations (%6) and (30) a relation is obtained between the liquid

velocity at R and the interface velocity

o= (1-5)R = €k (37)
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where € 1s referred to as the density deficiency. The liquid velocity

distribution then becomes
. 2
R
/ -
v = ¢ R ( r) (38)

With the use of Equations (50) and (58) the interface mass balance for the

gas phase, Equation (28), may be reduced to

2" ax(Rt)
1= xg dr

and the interface heat balance, Equation (31) becomes

p'c’ OT(R,t) (40)

R = :
e h@ or

where now hyg represents the heat of evaporation for component A .
Because component B 1s nonsoluble in the liquid phase, the interface

equilibrium relation, Equation (22) reduces to

X
R 1
to

(h1)

In summary the differential formulation is now given by Equations

(2, (27), (38), (39), (40), and (41) subject to the initial condition

Referring to the discussion of the asymptotic bubble behavior
under the statement of the problem (Section ITA) the finite asymptotic
bubble size, Roo , may be related quantitatively to the initial bubble size,
Ro , the initial gas composition, x, , and the final equilibrium composition,

X (Ty), by continuity consideration. The result is
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a. Solution for Small Valuesof Time

Substituting the radial liquid velocity from Equation (38) into
the energy equation, Equation (27), subsequent integration over the thermal
boundary layer, R<r S.R+fT , and using Leibnitz' rule(29> for the differen-

tiation of integrals with variable limits, gives

R+ R+ R+f, R+t
d d . ;s AT T)
dt {JR(TQ;T) rzdr} - (TgT) rzg;lk + eRR(157) ‘

- o r = 0
A or R (43)

Similarly the integral over the mass concentration boundary layer,

R-f, < r <R , applied to Equation (2k4) yields

v 2 a(K'Xv)R —

R R
d { (x x)rzdr} -—(x—x)rz-d— -Jdr = 0
- =% 0 2 Ll
dt ‘g?'\‘x dt R, r R~ ( )

Introducing the profiles of Equations (34) and (35a) into Equations (43)
and (44), noting that r = R+y , and performing the spatial integration,

gives with the use of Equations (39) and (40)

d | " )
s Pl E4)-4] } - (52 h-omem)] 4 (15)
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Introducing the profiles Equations (34) and (3%5a) into the interface heat

and mass balance, Equations (40) and (39), these reduce to

RR

, plcl 3
2 ng (Tw Ts)(

SJhin

) (47)

RR = 2% j—sxis (%)

(48)

Dimensionless quantities may now be introduced to facilitate a clear evalua-

tion of the governing parameters. The use of a linear approximation to the

equilibrium relation, Equation (41), suggests that the expression

(97/3%)

o be applied as a convenient and meaningful reference tempera-
00 ) Moo

ture. Introducing Equation (41) into this expression, it becomes

(5, = (&) o

The initial bubble radius, RO , being a natural reference length, the

dimensionless quantities may then be summarized as

"t \
T = ‘—"R—OZ
P
Teo =T
6 = - * (50)
2 ( dT/d’P)T,,o

Ju = dry* e«

a /Pm (d P)Tw P” h{g

luw = 2




~Lhoo

where Ja is the Jakob number and Lu the Lukomskiy number.l The linear

form of Equation (41) then becomes
Xe = 95 - (’(“‘ Xm) (51)

representing the closest approximation to the dew curve in the neighbor-

hood of T°° (i.e., 6=1), the value approached by Ty as t —o .
Introducing the dimensional quantities of Equation (50) the

fomulation for this time domain of dimehsionless bubble growth, P = P(1) ,

in terms of four governing parameters, Ja, Lu, x_. and x_. , may be sum-

-] o
marized to

3,0 - G

4 {Ja (4-8,) 5(}{) {(E)Z*;%@*%J% L= (+e)dali-8] (P?) (522)
( C R LR), L] '

“{ (xs1e) P (7) [(%)‘2(?;)‘* %J} 5 Uexg) P (520)
PE = 20 (16) () (52¢)
e 2k 1T (F) (528)
%= 0= (1-Xw) (52¢)

See footnote on page 6.
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subject to P(0) = 1, fT(O) and £ (0) = 0,
A solution to this nonlinear formulation may be obtained for

small values of time when
R { Rigy 4
(;T) » 3 and (%) 2 (53)

that is, when the terms 1/2(R/f) and 1/10 in Equations (52a) and (52b)
can be neglected compared to the term (R/f)ga Physically this corresponds
to omitting only the curvature effect in the terms for the time-rate of
change in mass and energy over the respective boundary layers, hence the
conditions of Equation (53) may be undue stringent. It may be added that
in most cases the transport properties for respectively mass and heat diffu-
sion are such that fy; > fp . Hence, in view of the definition of the time
domain under consideration the criterion for validity of the subsequent

solution may be simplified to

(%) > (54)

With this limitation the solution leaas to constant interiace potentials,

D S and @so ; and integration is readily carried out leading to a cubic
equation in bubble size P . The explicit solution of this, satisfying the
conditions fX >0 for t >0, may be written

-3
P) = 2 [1+$AT ~cos {T - 4 Arcos (1+ $h2)°

J (55)

where the constant Ay 1s given by
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2 _ 2 . 2
T (56)
1 = (-8) Ja (1-8s,) (1-x,) (4= %)

Equation (56) is also the implicit equation for determing the initial
interface condition (xg,, 84,) subject to Equation (52e¢). The criterion
for validity, Equation (54), may now be written explicitely in terms of

this solution as

(57)

b. Join Point (7 = 77)

To continue the solution from the first time domain, 0< T < Ty s
into the second domain, T > T, , the join point B = P()) must be
established. When at T = 7y the concentration distribution has penetrated
to the bubble center, R/fX = 1 and the state of the transient is evaluated
by simultaneous solution of the five equations of Equation (52). Because

in most cases not close to the critical state

(I-¢) Ja (1-85) <« 1 (58)

particularly owing to the smallness of the density ration, 1 - € , this
term is omitted, and Equations (52a) and (52b) can be integrated. Re-

arranging the result, the five governing equations can be summarized to



..3 | D . )
s (s B (8 (B35 4] = me- (590)

X5~ Xo

o= (1= 37 (59)

RE = Zla (1-8) (f,l (59¢)

RE = 2l BT (594)
1= Xs,

Xsy = 93( (4‘ Xw) (596)

While Equations (59) readily give Py, P1, (R/fy) , 651 and x_, the
exact value of time Ty can only be obtained from exact integration of
Equations (52)° An approximate value may, however, be obtained from the
solution for small values of time, Equation (55), by extrapolating its

validity range to fg = R. The result is

n

3
~ A4 [(RtZ _ )
4 4A, ( P ’ (60)

c. Solution for Intermediate Values of Time (T > T1)

In this time domain the temperature profile of Equation (34) is
unchanged implying that the form of the energy integral remains that given
by Equation (52a). Introducing, however, Equation (35b) for the concentra-
tion profile, the integral of Equation (4k4) over all of the gas phase in

dimensionless form gives
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pp = :’3 Lu ,1,_x5 (62)

The nonlinearities of this formulation, Equations (52a), (61),
(52¢), (62) and (52e), again restrict the solutions that may readily be

obtained. With the limitations
4
(?) » 3 and (1-8) Ja (1-8) & 1 (63)
T

however, Equation (52a) can be integrated despite the time varying GS .
Integrating also Equation (61) and rearrranging, the five governing

equations may be summarized to

3K
Ja (4'95)P(%T) = P (64a)
PB (4_, _;_XC - g’XS) = 4'Xo (614-13)
Ph = 2 da (6,) (§) (Bke)
. Xs =X
ST (64a)

Xy = 93 - (’1”xco) (6)4-6)
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Eliminating the four variables, (R/fT), 6,, x, and x_, , Equations (64)

are reduced to a cubic equation in the variable U = Pﬁ/Lu

3 KA 2 - KLMy ) - KM?
u + (40 2N>u + (25*20 T)u 50 N = 0 (65)
where
2
K= Ja/lu
M = (Xao"xo) - ('1" Xu> (/1 - 4/P3) (66)
N= = /P
A numerical evaluation indicates that over a wide range of
values of the four parameter, Ja, Lu, X, and X, , and variable bubble
size P , Equation (65) may be linearized by retaining only its two
last terms. As shown in Appendix IV, the criterion for the validity of
this approximation may be written
2 KM? kL2 KLM
50 K [50 K2+ (10-2 57 ) (25420 )
P < (67)
(25 + 20 —N—)

Because of the complexity of Equation (67) the limination on

the variable bubble size P in terms of the governing parameters is not

readily obtained explicitely. Instead, the inequality Equation (67) need

be checked as the calculations proceed.

Retaining the last two terms of Equation (65) the following dif-

ferential equation results
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PP = 4 : (68)

2 1 /4 {
- - A L
230 (1-x,)? (1 ,33) T 5L p (P‘ e,,)

w

where for simplicity Pz = (1-x,)/(1-x,) according to Equation (42) has
been substituted. Separating variables and integrating from the join point
T =T to 7> Ty gives explicitely time as function of the more conven-
iently chosen bubble size w = P/P_ (i.e. wo = 1/P ). Separating the
distinct contributions to elapsed time for a given bubble growth from

respectively the process of mass and heat transport, the result may be

written
T= T o+ Gl + 1y (69)
where
{
CH = 2 7) 8
ZJQ« (‘”Xo)h Wo
2
CM N
and
T, = S0iw) + dg-wd) (2 -
H 2 1 3 ~Wo —w? 1-—W13

o ,{+W+W2 1-wy ( 4 2wl _ 4 2Wﬁ+4j
75 (5‘2“\/03) [{n( 4+vv41-W,12' 1—w) - ﬁArcg kR Arcg {3— )
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(a5 ) - w1 - 2]

Noting that the rate of heat transport depends on Ja and the
rate of mass transport depends on Lu , the terms CHIH and CMIM are
recognized to represent the contributions to elapsed time beyond the Join
point T = T from respectively the heat and mass transport mechanisms.

A measure for the relative significance of heat transport to mass transport

for retarding bubble growth is therefore obtained in the ratio

i

Culn Eiz - f (way iy, W) (70)

Co I Ja
The function f(wo,wl,w) in Equation (70) is monotonous and increasing as
w 1increases. Hence, the significance of mass transport for the transient
decreases and heat transport becomes the controlling factor as the asymp-
totic stage is approached. The latter observation supports the choice of
"a quasi-steady model for the asymptotic stage of growth, based on the
assumption of uniform composition distribution in the gas phase.

d. Asymptotic Solution

For large values of time the composition distribution in the gas
phase approaches uniformity and growth of the bubble is primarily controlled

by heat transport in the liquid phase.



-50~

The quasisteady model postulated for this time domain assumes
a thermally insulated spherical gas phase having uniform composition x ,
growing at the rate at which the heat of evaporation can be supplied to
the bubble interface by heat transport in the liquid phase. The gas phase
is ideal as previously assumed, and thermodynamic equilibrium at the bubble
interface provides a unique relation between temperature TS and gas compo-
sition x . The average composition, x , is directly related to bubble

size, P , and initial composition, x, ,

as seen from continuity considerations or from Equation (6Mb) for
Xg = X, = X . Hence, a unique relationship exists between interface temper-
ature and instantaneous bubble size. From Equations (42), (51), and (71)

this relation becomes

<0 = (1= %o) (fé ) (72)

An approximate solution to the model outlined above is obtained
by first formulating the heat transport problem with the aid of the theory
of heat sources, and at the bubble interface imposing the condition of
Equation (72). Next, this formulation is linearized to facillitate integra-
tion.,

The formulation of the heat transport problem follows an approach

similar to that introduced by Lightfoot (reviewed vage 293 of Reference 7)
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(18)

and used by Forster for the related problem of spherical phase growth
in one-component boiling. The approach takes its start in identifying the
heat liberated or absorped at the bubble interface, associated with the
interface mass transfer, as a uniformly distributed surface source or sink.

In the present case, for a bubble of size R growing at a rate R , the

instantaneous spherical source, ¢ , on its surface has the strength
. K / 2 23 Y
g = ~(h-h) N, 47R" = ~ 4T RRp"hg, (73)

Next, the solution to the equation of linear flow of heat in the domain
bounded internally by and insulated at the sphere r =R 1is written for
the case that the domain is at zero temperature prior to the release at

t

]

0O of a unit instantaneous spherical surface source on the sphere

r R . The result (Equation XIV-16 of Reference 7) is the Green's func-
tion for the problem in question. Evaluating this at r = R the tempera-

ture, TS ;5 of the bubble interface can be written

T e - e () ek () (1

The solution for a time varying heat source of strength é(t) is obtained

by convolution in the time domain,

t

T q(t) St Y areg) -t &) L

T; = gq A (- BTED g [] ent (M
47 R T 61 R

0o

(75)
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Forster(l9> demonstrated how this result could be extended to account
approximately for the interface motion by considering successive differen-
tial processes of linear flow of heat (conduction) and radial convection.
Thus, resulting from the instantaneous differential heat release, dg(t') B
at time t' , the bubble grows in size from R(t') +to R(t) during the
time interval t' to t . This sequence of events is then repeated. The
corresponding differential change in interface temperature, dTg , is ob-
tained again from the Green's function for the linear flow of heat, but now
accounting for the change in bubble size by selecting an intermediate value
of radius, R(¢) where t' <t <t . Forster (19) evaluated R(t) approx-

imately as

R(E) = \/R(t') “R(t) (76)

Summing up the differential contributions over the time interval (0,t) ,
Equation (75) with R = R(¢) results. As discussed by Forster (19) the
second term in the integral of Equation (75) is small when the contribution
to the differential change in surface temperature is large. By the time

the second term becomes important the contribution to the surface temperature
change is small owing to the first factor in the integral. Retaining thus
only the first term of Equation (75) and substituting the source term from

Equation (73) the result may be written

t I/ / 2 1 /

T o1 - g oMy R&)R()  dt
S 1t e ‘ /

® A P T R(t) vt“f
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when the inital uniform temperature is T, . Nondimensionalizing accord-

ing to Equations (50) and using for convenience the notation * for the

convolution, Equation (77) becomes

2 1 P(l-6) = (F)% =

(78)

Equation (78) is linearized by approximating the left hand side by the

form

2 Ja P(1-6) = b(a-P?

(79)

where the constants a and b are chosen to satisfy Equation (72) for

P=1 and P =P . Hence

o0

Xm" Xo

P2

b= 2Z2Ja

The approximation Equation (79), now written

-8 ~ 4 R-F
oo = %o P P:"/l

is compared to the similar form of Equation (72)

1"95 4 Ré—PB

Xeo-Xo P? P-4

in Figure 5 for different values of the parameter Poo o

Representing



(l—Hs)/(x(D—xo)

EQ. (83)

\ \ ——-EQ (82)

DIMENSIONLESS BUBBLE SIZE P

Approximation to Interface Potential for
Asymptotic Bubble Growth.

Figure 5.
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the normalized thermal potential for bubble growth the quantity
(1-65)/(x,-x,) 1is seen to approach zero as the bubble size approaches
its asymptotic value, P, . The approximation is good in the asymptotic
stage, particularly for small values of Po . The linearized form of
Equation (78) is operated on by lLaplace transformation giving the closed

form solution

Py =[R2 - (B0 explBle] erke(bT) (a1)

o]

where the hypothetical inital condition, P(To) =1 , 1is chosen such that
Equation (84) satisfies P(15) = P, at the join point T, , beyond which
this asymptotic solution is valid.

Analogous to the continuation of the solution valid for small
values of time at the Jjoin point T = T the Jjoin point T=To is
approximately obtained by extending the intermediate solution to the wvalue
P, which justifies the use of the quasisteady solution, Equation (84).

The criterion for determining Py is obtalned by comparing the interface
composition, x5 , assuming a distributed gas phase, to the average com-
position, x , given by Equation (71). Although in principle arbitrary,
a maximum deviation of 0.5% has been chosen suitable for the criterion,

which then gives

f - < 0.005 (85)

The interface composition x for the case of a distributed gas phase is

S

calculated from the intermediate solution, Equations (64a), (6hc), and (68),
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to
-
B {=-x
X. = X — , o (86
5 ) ‘/1 + + Ja* 1 pe ~ /RS P )
Sl B { ~ 4/p3

which is seen to reduce to Equation (71) for ILu — e . Having established
P2 from Equation (85) the corresponding approximate time To 1s calculated
from Equation (69).

2. Discussion of Analytical Results - Parameter Study

The form of the analytical solution is shown in Figure 6, where
the results of Equations (55), (69), and (84) are plotted in terms of

(P-1)/P,-1) vs T for the case

relative dimensionless bubble size Q

Ja = 100, Lu = 100, x, = 0.9 and x5 = O. The graph shows the joining
of the solution for small values of time, the intermediate solution and
the asymptotic solution at respectively join points T and Ty e The
solution valid for small times, being less important, is omitted in the
subsequent four plots. Figures 7, 8, 9, and 10, respectively show the
influence of the parameter Ja, Lu, %, and Xo while the remining three
parameters are kept constant. It 1s particularly worth noting that for
the representation chosen, X, is a parameter of very weak importance.
This observation justifies the omission of X, from consideration in deter-
mining the growth rate. However, decisive in conjuction with x, for the
asymptotic bubble size (cf. Equation (42)) x, remains an important over-
all parameter.

The effect of initial bubble size, R, » on the rate of bubble

growth is reflected in the dimensionless time parameter T . As expected
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the growth rate increases as Ry becomes smaller.

As seen from Figures 7 and 8, the effect of increasing the Ja-
and Lu-numbers lead to increased growth rates. The case ILu - e is
represented by the asymptotic solution throughout. Over the range of
parameter values of practical interest the influence of increasing Ja-
number is more significant than that of increasing Lu-number, in accord-
ance with the relative significance of these two parameters as expressed
by the characteristic group JaE/Lu o

For fixed initial gas composition, Xy s 88 the ligquid approaches
the saturation state (i.e. x approaches unity), the rate of relative
bubble growth decreases, as shown in Figure 9. The growth rate for the
actual bubble radius for constant initial bubble size, however, increases
as X becomes greater, because the normalizing asymptotic bubble size,
P, s also becomes greater. The net heat transfer rate from the liquid
consequently also increases.

Another useful representation of the transient bubble growth
process in terms of a pseudo time constant is shown in Figures 11 and 12.
The time for 63.2% (= 1 - 1/e) completion of the relative growth is plotted
versus equilibrium composition X for particular values of the set of
significant parameters Ja and Lu, and x5 = O.

In the dimensionless representation of bubble growth derived in
this section, the combined property group, Jag/Lu, appears whenever the
simultaneous processes of heat and mass transport are considered. In the
solution for small values of time and for € =1 , as assumed in the sub-

sequent solutions, the initial state at the interface is determined by

2
Ja /Lu as seen from Equation (56). As this property group increases, the
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Figure 11. Time Constant for Relative Dimensionless Bubble
Growth vs x, and Ja . Nonsoluble Gas Case.
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driving potential, 1-8 for heat transport decreases, while the one

so ’
for mass transport, x 4 -%, , increases. The relative significance of

the two mechanisms in determining the rate of growth is therefore shifted
in favor of the mass diffusion process, although the growth rate increases
when either the Ja-number or the Lu-number becomes greater. The same
result, now in addition a function of bubble size, was found in the solu-
tion for intermediate values of time, as expressed by Equation (70). In

the limit as Jag/Lu becomes either very large or very small, the growth

rate is controlled respectively by mass transport or by heat transport.

E. The Case of a Soluble Gas

The injection of a soluble gas into a volatile liquid -having
little application for the injection cooling process- is treated in less
detail in the present study. First, the initial behavior of the bubble
is predicted by neglecting the curvature and considering the gas and liquid

phases as semi-infinite domains. The results predict whether the bubble

tends to grow or collapse in the very fist part of the transient. Secondly,
by the use of source theory, the approximate solution is derived to the
‘bubble collapse governed alone by heat and mass transport in the liquid
phase. This represents the limiting case of a soluble gas bubble in a
nonvolatile liguid.

Compared to the case of a nonsoluble gas, the present general
case is increased in complexity. Two additional parameters enter the
problem, namely the initial liquid composition, X; , and the property

for mass diffusion in the liquid through the dimensionless group, Lu'= l‘/a%
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Furthermore, the density deficiency, € = 1-p"/p' , cannot be taken to unity
as for the case of a nonsoluble gas, because this would violate the inter-
face mass balance. The added degrees of freedom are reflected in the possi-

bility for initial growth or collapse, eventually followed by collapse in

all cases of a nonsaturated liquid.

1. Solution for Small Values of Time

Neglecting the curvature effect and considering the gas and liquid
domains semi-infinite the formulation given by Equation (24), (25), and (26),
in terms of the independent space variable, y , measured from the interface
in the direction of the liquid phase, becomes

(a) Gas phase:

d(x"-xs) b dX'=x5) L d%(xxd)

e Y Ty =Y T (87)
(x%ww—xj==0
X(-ot) - x4 =0
Z )(”(O)t) _on/ - Xs//'xa

(b) Liquid phase:
d (X =x') ;X)L kX))
ot tv ay - ayz (88}

r)(ét""xl(\/‘()) = 0
) Xg X' (@,t) =

Zx@—xﬁaﬂ

{1
<

fl

Ko™ K¢
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2T T) p e s D)
at o 7 dy?

To-T(y,0) = ¢
T - T(opt) = 0

Tw -T(O,f) = Tm”Ts

where the assumption of plane geometry and incompressible fluids imply

thet the gas and liquid velocities, v" and v' , are spatially inde-

pendent.
(¢) Interface conditions:

The mass balance given by Equations (28), (29), and (30) becomes

] c)X” /gb" ()X',
o0 /0 F 23 - p ——l
Nyt Ng = 7" = ' = alvg = X; . (90)

where the moleflux to the liquid phase of component A and B expressed

in terms of the composition distribution in the gas phase 1s respectively

/ H._n " X" '-a—X”
Ny= @'v % = ¢ 2 oy g (91)
‘and
w, 4 nn -(M,
Np = g (1) + 0 5, (s2)

The heat balance, Equation (51), simplifies to

;T
Nahpgs ™ Nohpgy = = K 4| (93)
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Interface equilibrium is given by Equations (22) and (23). Introducing
the Henry law constant, Kg = (L-x')/(1-x") , which for dilute solutions
of component B may be calculated directly from Equations (22) and (23)

to

K5 = lj; (gh)
B8

the linear phase equilibirum relations become

x = e = (I-xg) (95)

kg = A= Ky (1-x) (96)

where dimensionless temperature, © , is defined by Equation (50).

The formulation given by Equations (87), (88), and (89) of one-
dimensional mass and heat transfer with convection is satisfled by a set
of similarity solutions (see Bird, Steward and Lightfoot(s), Example 19.1-1)
in such a way that the interface potentlals, xg , x{ and Ty , remain
constant during the transient. Each of the partial differential equations
is reduced to an integrable ordinary differential equation of second order

by introducing the independent simllarity variable, Y = yfda“t and by

expressing the gas velocity by

hence by continuity, the liquid velocity by the corresponding form

v'o= (16 A g (98)
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In Equations (97) and (98) A 1is the phase-growth constant, to be deter-
mined from the interface conditions.

Thus Equation (89), for example,
reduces to the form

dt (18 Y d_[1-8) _
dY2<—Q) +'[ z U-al} dy({-%) 0 (99)
subject to
/!——.—9—- -
-6, 1 for Y=10
iﬁ%s=0 for Y= o

where dimensionless temperature has been introduced according to Equa-

tion (50). Twice integration of Equation (99) gives the solution to the

transient temperature distribution in the liquid

- - Yy~ (1-€) 7%
10 A= erf[Y2-(-91] (100)
1-05 1+ erf [(1-£)A]

Introducing the remaining dimensionless quantities from Equation (50)

with the addition of the Lu-number for mass diffusion in the liguid phase,

/ Q'
lu = % (101)
Equations (87) and (88) integrate to
Y/2 - (1-€)A
o-x' A - et i (102)
Kl = Xs I+ ert [ufzﬁ]



. and
YVo-2
x"—x! _ |+ erf[ i J (203)
Xg = Xo '1+erf(—ﬁ—)
Vi

Substituting from Equation (100), (102), and (103) into the equations for

mass and heat balance, Equations (90) and (93), these become

i’
“_ ;/ ﬂ_ ;’_ / ~
nro= :S:/ ' A ; A - :"-:f ‘ (4-9)2-128 Y (10k)
S 7S EXP (E) erfc (ﬁi) SRS eXP[-h—T/—J {{+ er{[ vm ]}
and
1-0
N R U = Ja (105)
o F ,
o exp (%)Zerfc ('%) X'+ 1—':—F— exp [(1-6)2]2 {4 +erf [(4-6)2]}

where the ratio of heats of phase transition is given by F = hng/hng .
Equations (104) and (105) in conjunction with the condition of phase-
equilibrium at the interface determines the growth constant A and the

state at the interface. Introducing the linear approximations to phase-

equilibrium, Equations (95) and (96), and eliminating x! , xy and 6
a single implicite equation in A results,
1 K (1-F) Xo Xeo
7 (1-Kg) — 3 A, T —t }[\WF o T3
4 A (4-9A L (1-9A A A A
[ flu E{WA} Vo E VLT('} mtim} Ja E{-(H)A} (106)
ey - dexwks ][ . AF 1 _
+ (Rl - 7 2 T ol D - T ~eteany| °
oo EUT = [ ﬁ?}j ﬂlebﬁ} Jat J

where for simplicity the functional notation, E() = exp()2°erfc() , is

.used. The interface temperature is accordingly given by



-71-

= v F '1“)“;:;'*‘)(: 1-F
A T TET
0s = R (107)
T - R
A ciA Aol
i ) fo £ 0]

and the corresponding interface compositions are subsequently obtained
from Equations (95) and (96).

As seen from the definition of the phase-growth constant A Dby
Equation (97), A > 0 implies initial bubble collapse, while X < O con~
versely indicates a net flow of gas away from the interface, hence growth
of the gas phase. Applying the equation of continuity to the incompres-~
sible gas phase of a bubble, its dynamic behavior for small values of time

may be approximated by

P(t) = 1- 2MT (108)

That A may take either positive or negative values is seen from Equa-
tions (104) and (105). Thus for large values of Jag/Lu and I%Z «JLu7/Lﬁ R
initial growth may be anticipated.

Setting the growth parameter in relation to the Ja-number by
vintroducing the ratio k/Ja into Equations (106) and (107), the Lu-numbers
always appear in the significant groups, Jag/Lu and JaE/Lu’ . As found

for the case of a nonsoluble gas, the simultaneous processes of mass and
heat transport are governed by these characteristic property groups, giving
the relative significance of the two mechanisms in determining the rate of
phase change. Figure 13 shows a plot of A/Ja vs Ja/fii for

JaﬁJEEF = 1000 and Ja/JEEF = 100 with x; as parameter, obtained from

Equation (106) for a representative set of values of the remaining para-
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meters as follows

X0 = 0 1-¢ = 0,0003
x, = 1 Kg = 0.01
Ja = 100 F = 0.8

Because the Ja-number only appears in Equation (106) with the small fac-
tor (lme)x/Ja in the argument of the exponential and error functions

the representation of Figure 13 is practically independent of the Ja-number
when this is less than about 200. As x; increases, the liquid component
A becomes more volatile and initial growth, rather than c;ilapse, is
obtained at lower values of the parameter JaNTu . A one hundred fold
increase of the mass diffusivity in the liquid phase, appearing as a ten
fold decrease of the parameter JaﬁJEE? s results, as shown in Figure 13,
in a shift of A/Ja towards greater values, implying a higher tendency

to collapse of the gas phase, other parameters being unchanged.

2, Solution to Bubble Collapse in a Nonvolatile Liquid

For the special case of a nonvolatile liquid, the collapse of
a bubble containing only component B 1is governed by heat and mass trans-
port in the liguid phase.

The method of source theory, as discussed in detail in Section D,
part l.d., is now applied to the spherical domain, r >R , for the simul-
taneous processes of mass and heat diffusion. This approach has been used
by‘Yang(6h> in predicting approximate bubble growth rates in boiling binary
mixtures. Analogous to identifying the liberation of heat of phase transi-

tion as a spherical heat source, Equation (75), the instantaneous mass flux,
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Ny , entering into liquid solution at the bubble interface is identified as

a spherical mass source of strength
Gu = ATR™Ng = -¢* 4TRR (109)

Introducing Equation (109) into the analogous form of Equation (T4) for

mass diffusion and integrating, there results

u t >
R(t') R
4 41) g RY g (110)

R(t) Vt-t

Dimensionless quantities are next introduced from Equations (50) and (lOl),
now, however, basing the Ja-number and the reference temperature used in

nondimensionalizing T on the properties of component B , such that

X *
/ o ¢ . %W (g7 o'’
Ja = | — = = VT 111
and

! Tco"T
B = 1 - - 112
5 (Te) (g_l)* (1)

Ks dP Bloo

where Kp 1s given by Equation (94) for pg >> pX . Using the notation *
for the convolution, Equations (llO) and (77) for mass and heat transport

become

-7 Et- (xo-xi) P = (PZ)* L (113)

1
o Ja (1-8) P = (P)x7E (114)
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The similarity of the two processes, as evidenced by the anal-
ogous form of Equations (113) and (114), implies that during the collapse,

interface temperature and composition remain constant, as given by

Xo — X Ja
{- 9; ( 2 dLu.'

subject to the phase equilibrium relation, which from Equations (22) and

(23) for the case component A 1is nonvolatile becomes
= 9 = (1-x¥) (116)

where x¥* 1s the liquid equilibrium composition at T, (see Figure 2).
The nonlinear integral equation, Equation (113), is linearized

by the approximation

iy

’ / — .2 __i_
2 T2 (e o(P = (P)*m_ (117)
where the function ¢(P) has the form
@) = a=+ (1-a)P* (118)

and a 1s a constant. Operating by Laplace transformation on Equation
(117), subject to the initial condition P(0) = 1, the solution for bubble

collapse becomes

P@) = \/1_'1—“ exp [P(1-a)t] erfc [CU-a)y7] - ﬁ (119)

where

C= 2y
3 @
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For a % O the collapse time, T, , 1s given by the implicite equation

€Xp [CH(t-ar T, ] cerfe [CU-aVT ] = @ (120)

while the case a = 0 implies asymptotic collapse.

With reference to the plot of ¢(P) vs P in Figure 14 the choice
of a = 0.4 indicates that the function ¢(P) of Equation (118) closely
represents the relation ¢(P) = P , which it approximates, over the first

half of the bubble collapse. The resulting solution

shown in Figure 15, thus closely approximates the actual bubble collapse
over the interval 1> P> 0.5 while for P < 0.5 1t indicates too rapid
a collapse because ¢(P) exceeds P 1in this region. This solution
represents a lower limit for the transient. For comparison the case a=0
for which O(P) satisfies both initial and terminal conditions of o(p)=pP ,
is also included in Figures 14 and 15. Because of the inadequate approxima-
tion obtained in this case over most of the interval 1> P > 0 , as seen
from Figure lh, the resulting asymptotic bubble collapse represents a very
conservative upper limit.

As for the previous solutions, the characteristic group,
Ja‘g/Lu’ , determines the state at the interface through Equation (115)
and thus the relative significance of mass to heat transport for the

rate of the process.
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For very large values of (l-efJa'g/Lu' bubble collapse becomes
mass diffusion controlled and the processes can be considered isothermal.
In this case @! = 1 , and Equations (115) and (116) reduce to xl = x¥
For this case the collapse time, 7, , which according to Figure 15 is
given approximately by J:; = 2/C , may be compared to the quasisteady
solution obtained by Clark et alo(9), Considering mass diffusion rather
than heat diffusion in their model, which neglects radial convection and
assumes the initlal interface area, hng ; to be available for mass trans-
fer throughout the process, the collapse time is given by
Jr, + Watut/2)7, =Vx/3C . For small values of NIu' and T, ‘this

result is approximately written'VTc =~J;/5C s indicating collapse times

a factor 56/n smaller than those predicted by the present study.



CHAPTER III

EXPERIMENT

A, Introduction

This chapter describes the experimental study of gas-vapor bubble
dynamics for stationary bubbles initially containing both a nonsoluble gas
and a gas of high solubility. In addition, results for the case in which
the bubble 1s permitted to detach and rise through the liquid are included
to show the effect of translatory bubble motion on the dynamic bubble
growth,

Water was used as the volatile liguid component in all cases,

The gas to be injected was respectively nitrogen, helium and ammonisa,

While the actual process of gas injection into a liquid is simple
to repeat experimentally, the analytical idealization of the stationary
bubble with its initial non-equilibrium conditions cannot be duplicated
exactly by experiment. The analytical model may, however, be approached
closely, a main obJective in the design of the experiment. The key features
of the experiment are, firstly, to introduce the gas phase into the liquid
in a time very short compared to the time for appreciable bubble growth,
secondly, to maintain the bubble stationary in the liquid. This has been
accomplished by a specially designed bubble injector. The bubble is formed
and maintained attached to the 1.5 mm I.,D, tip of the inJjector during its
transient growth. The injector tip may face downward and upward in the
liquid during the experiment. In the downward position the static equili-

brium shape of the formed bubble deviates from the sphere in being slightly

-80=-
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oblate. When the injector tip faces upward the static shape is oblong.
The latter configuration being less stable was almost exclusively used
for the study of the bubble having translsatory motion, by injecting a

sufficient amount of gas to facilitate departure from the tip.

B, Apparatus

The general view of the experimental apparatus in Figure 16
shows from left to right, gas cylinder, instrument panel, cameras,
insulated view tank (test section proper) and instrument table. The
close-up of the view tank in Figure 17 shows its 3 inch styrofoam insula-
tion, the 1 kw immersion heater, bubble injector, gas preheater coil,
thermocouples, and connections for gas flow and pressure regulation.

The diagram for gas flow, pressure control and instrumentation
is shown schematically in Figure 18. The gas used in the experiment is
first passed from the cylinder equipped with pressure regulator through
two silica gel absorbers in series to remove possible traces of water
vapor., Before entering the bubble injector the gas is preheated essen-
tially to the liquid temperature in a 1/8 inch stainless steel tube coil
submerged in the liquid. The gas pressure in the bubble injector is
measured with a standard 30 inch mercury manometer connected to the return
line from the injector. To ensure purity and constant pressure of the gas,
a small steady flow of about 0.2 - 0.5 liters/min is permitted to pass
through the injector by bleeding the manometer line to the atmosphere
through the sample valve, a flowmeter and a needle valve, The three-way
sample valve also permits the gas flow upstream of the injector to be

vented through the flowmeter, which can be connected to a sampling tube
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Figure 16. Experimental Apparatus. General View.
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Figure 17. View Tank with Bubble Injector.
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containing activated alumina. In this way the content of water vapor of
the gas respectively upstream and downstream of the injector may be
obtained by accurate weighings of the sample tube, hereby checking for
possible leaks around the injector valve causing diffusion of water
vapor into the gas.

The tank pressure is adjustable between atmosphere pressure and
about 20-25 inch mercury of vacuum by means of an ejector pump driven by
tap water. The pump suction line is connected to the vapor space of the
closed view tank through a shut-off valve and can be vented either direct-
ly from the atmosphere through another shut-off valve or through a
conventional inverted pressure regulator. The tank pressure is measured
with a standard 30 inch mercury manometer connected to the vapor space.

The view tank and bubble injector, being components designed
specifically for the experiment, will be described in detail. The
l7xllx2—l/8 inch view tank, holding the experimental liquid, is constructed
from 2-1/8 inch stainless steel channels welded into a frame, sandwiched
between the 1/2 inch Pyrex glass sides by two 1-1/2 inch welded angle frames
bolted together. The tank 1id, which closes a 6x1-3/4 inch opening in the
tank top, serves as mounting plate for the bubble injector, gas preheater
coil and thermocouple support. The bubble injector is shown disassembled
in Figure 19 and in section in Figure 20. A 6 volt, D.C., 2k-oz. solenoid
L with adjustable core stop K for the plunger M , 1s mounted on the
top plug E in the cylindrical 1-5/4 inch 0.D. casing H . The solenoid
plunger M is connected to the valve, P , which forms a 60° conical seat

near the tip of the 1.5 mm I.D. nozzle R by means of the Spring, S .,



Figure 19, Bubble Injector (Assembled and Disassembled).
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Gas from the preheater coll is supplied at the fitting, T, to the inside
of the casing, which is sealed at all joints with O-rings. The l/h inch
bleed-off line is soldered to the top plug E through which leads for
thermocouples and solenoid power enters by means of insulated glass seals.,
The valve stroke is adjustable from outside the injector by the screw A
sealed in the center hole of the top plug by an O-ring. The moving parts,
N and P, are machined from aluminum to reduce the mechanical time
constant of the spring-valve system, A teflon valve tip, attached to the
valve stem with a press fit, is used to prevent damage to the valve seat
and to ensure a perfect seal. The remaining parts are machined from
brass and finished with a chrome plating. The nozzle is designed to
minimize the residual gas volume exposed to the liquid prior to bubble
formation by placing the valve seat as close as structurally possible

to the end of the nozzle tip. In addition, it was desirable to keep the
bubble far removed from the main body of the injector. Bubble formation
is accomplished by energizing for a short period of time the solenocid,
giving a valve 1ift sufficient for a flow of gas needed to form a single
bubble. Adjustment of valve stroke, energizing time and voltage of the
solenoid, spring tension, and gas pressure permitsthe desired initial
bubble size to be attained.

All temperature measurements were carried out using 22 gauge
copper-constantan thermocouples each having separate cold Jjunction at the
ice-point, The EMF is measured with a ILeeds & Northrup Model 8662 portable
precision potentiometer. The liquid temperature and its distribution is

measured with six thermocouples (TC-1 ... TC-6), positioned as shown in
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Figure 18. The thermocouples are suspended from a 3/16 inch stainless
steel tube entering the tank 1id through a conax fitting with teflon
seal, and are embedded in epoxy which also serves as seal, To prevent
direct contact of the Jjunction with the water, the thermocouple ends
were coated with thermal hardened heat resistant paint. The temperature
of the gas to be injected is recorded with thermocouple TC-7 which is
installed in the gas space Jjust above the valve seat inside the bubble
injector. Thermocouple TC-9 is installed in the bleed line at the flow-
meter inlet to allow for temperature corrections on the flowmeter readings.

For heating and temperature control of the liquid, the view
tank is fitted with a 1 kw immersion heater with stainless steel blades
and thermostat. The heater power is adjusted with a variac,

The transient bubble size was recorded as shown in close-up in
Figure 21 with a Beckman and Whitley DYNAFAX Model 326 high-speed camera
timed with the bubble injection moment to give the beginning and major
part of the event., The film length in the camera being limited to 36
inches of 35 mm film, equivalent to a total of 224 successive frames,
limits either the resolution (time interval between frames) or the total
writing time., The film speed is adjustable between 200 and 26,000 fps
(frames per second), and remains constant during a recording at a value
which can be read accurately on an electronic counter connected to the
magnetic camera pick-up. Depending on the particular conditions for the
experiment the main part of the bubble growth event lasts 50 - 200 ms
(milliseconds) and the film speed is accordingly chosen to 4,000 - 1,000

fps., This record of the transient was supplemented for greater values of



Figure 21, Close-up of Dynafax Camera in Position
for High Speed Film Recording.

Figure 22. Close-up of 35-mm Camers in Position for
Recording of Single Frames,
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time by taking one or several still pictures with a single frame 35 mm
camera, shown in position in Figure 22. A representative photographic
record for a single experiment (Run 523) is reproduced in Figure 23,
showing the negatives every second frame of the high speed film and a
singlé exposure from the 35 mm camera., FEach frame shows the downward
facing tip of the bubble injector on which the bubble is formed, and the
hot junction of two of the upward pointing thermocouples positioned in

a plane behind the axis of the injector. Frame number O of the high speed
film shows the injector tip prior to gas injection which is completed
between frame numbers 3 and 4,

The wiring for the high speed camera and the optical charac:
teristics of the system is shown in the schematic Figure 24. As evidenced
from Figure 17, the view tank was completely surrounded with pieces of
expanded polyethylene plate and open to the ambient only through two
circular holes, one in each side, serving respectively as observation and
light port. The latter was covered with a ground glass plate which made
the back lighting from the 150 watt flood light uniformly diffuse. The
closed tank in conjunction with the diffuse backlighting gives ideal
conditions for a clear and contrasty picture of the bubble, The center
portion of the bubble wiil transmit light while more and more is reflected
as the perifery is approached, Total reflection occurs when the angle

between bubble interface and line of sight exceeds Arcsin (n'/n"), where

)
n' and n" are the indices of refraction for respectively the liquid

and the gas phase., Because side light is excluded a perfectly sharp black
edge of the bubble perifery is obtained. In addition these optical charac-

teristics aid in visualizing the approximate bubble shape when this departs

from that of a sphere.



. e
E U
t= 48sec.

L

RUN 523

Figure 25. High Speed Film Record and Single Frame from Run 523.
One Half of the High Speed Film is Reproduced, Show-
ing Bvery Second Frame. Film Speed: 1008 fps.
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The electrical circuits for bubble formation and camera shutter control
are shown in the schematic in Figure 24, Because the built-in timer in
the high-speed camera shutter had an upper exposure time limit of 60 ms

it was necessary to use an external timer for film speeds below 4000 fps.
The circuit for the timer, built for this purpose, is shown in Figure 2L,
where LU is the solenoid of a double pole, double throw type NE-22 Agastat
ad justable time delay relay. When the manual switch S5 is closed momen-
tarily the solenoid I4 throws S6 and S7 to the opposite positionsof those
shown, which are held for the adjusted time delay before again released.
Switch S6 connects the shutter solenoid to 115 VAC while S7 puts the 12

V battery voltage on the injector switching circuit where S3 is in closed
position. The subsequent sequence of events with approximate delay times
relative to the moment of initiation are as follows. The shutter is
released by the solenoid after 3 - 6 ms and reaches fully open position
after 24 - 27 ms. Switch S2, normally open, closes after 15 - 25 ms
starting the current through relay coil L2 and inJjector solenoid L1, which
starts the opening of the valve at 30 - 35 ms. At 3% - 38 ms solenoid I2
opens the normally closed switch S1 whereby L1 is de-energized and the
valve is again in closed position at 34 - 39 ms, With the shutter timer
of the camera in position B, the film is exposed till the shutter solenoid
is de-energized at the end of the time delay set by the external timer,
namely when S6 and S7 return to their normal positions. It should be

recalled that S5 was only closed momentarily to initiate the sequence of

events and is thus open when S6 closes, preventing a repetition of the

cycle, The sequence of events is shown schematically in Figure 25. When
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the built-in timer in the camera shutter is used, its setting determines
the exposure time, and the same circuitry is used.

The desired syncronization of the events is achieved by proper
adjustment of timer delay and resistors R1, R2, R3 and R4, determining
the respective time constants for the R-L circuits. The effective time
for the flow of gas through the valve, from its motion starts till again
fully closed, may be obtained from an oscilloscope record of the voltage
drop over resistor Rl, representing the solenoid current. Actual record-
ings of this voltage as taken of the oscilloscope with a Polaroid camersa
are shown in Figure 26, Referring to the schematic Figure 25 the begin-

ning of the valve motion is identified by a minimum current, Lins
measured once for all for a given spring tension as the current necessary
for starting valve motion, The mechanical impact at the closing of the
valve manifests itself in a small blip of induced current super-imposed
the exponential decay., The bubble formation time obtained this way is

3 - 4 ms which is in agreement with film recordings of bubble formation

in case of no growth, as discussed below,

C. Experimental Procedure

In preparation for a series of experiments for the case of a
non-soluble gas the electrical resistivity of the liquid (single distilled
water in all cases) was checked to exceed 200,000 chm-cm, For the case of
a soluble gas the resistivity was read subsequent to each experimental run;

Careful degassing was carried out at atmospheric pressure or below, depend-
ing on the conditions desired later. Before and after a series of experi-

ments sampling for water vapor in the gas stream vented before and after
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Figure 26, Oscilloscope Record of Solenoid Current During Bubble Formation,
o, Fnergizing time adjusted for bubble formation without
departure, Impact, when valve scats, visible as small
blip as current decays.
b, Fnergizing time increased for the formation of a large
departing bubble, Impact when valve reaches fully open
and fully closed position visible as blip on respectively
curve for current rise and decay.
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the bubble injector was done by means of the activated alumina sampling
tube, The mass of gas sampled was determined from the time of sampling
and from gas flow meter readings? corrected for type of gas, pressure
and temperature. The mass of absorbed water vapor was obtained from
successive weighings of the sampling tube on a micro-balance to 0.5 mg
accuracy. In all cases of a nonscluble gas the content of water vapor
was found less than 100 pm, or in terms of molefraction, less than lO‘h,
This is less than the uncertainty in determination of the initial com-
position in the bubble and in the order of magnitude of the maximum gas
impurity, which according to the manufacture's catalog was respectively
0.3% and 0,01% for the nitrogen and helium used., For the present purpose
the gases were therefore assumed to be pure. Comparing samples before
and after the injector, no increase in water vapor content could be
detected and it was concluded that the injector valve seat was leak proof
for diffusion of water vapor into the gas. Ieaks in the opposite direc-
tion, readily detectable visually, were not encountered,

Prior to a specific run the temperature and pressure were
adjusted to and kept at their desired values for a sufficient periocd of
time to insure uniform temperature of liquid, tank and bubble injector.
After the heater was shut off the system was left for several minutes to
permit convective currents to decay. The drift in temperature owing to
the small heat flow to the ambient amounted ot 0.1 - OGH°F/mina The
lateral temperature variation as checked with the five upper thermocouples
(TC-1 ... 5 of Figure 18) did not exceed 0.1°F/cm, and the vertical thermal

gradient obtained from TC-1 and the lower thermocouple TC-6, was no greater
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than 0.15°F/cm, when an experiment was carried out. For the case of a
soluble gas the liquid was thoroughly stirred prior to heater shut-off to
ensure uniform composition throughout. With the high speed camera at the
desired speed as read on the counter and the back light switches on, the
event was triggered by momentarily closing switch S5 of the timer unit
(see Figure 24)0 At the same time a stop-watch was started to fix the
time for the single frames taken with the 35 mm camera. The high inten-
sity floodlight, not needed for the single frame exposures, was only
switches on during the high speed film recording to prevent heating of

the liquid. From readings of the thermocouples in the liquid no tempera-
ture change could be traced to result from the use of the flood light over
periods of time up to one minute, the maximum time this light was on during
an experiment. TImmediately following the event, tank vacuum, hydrostatic
pressure, barometer and temperature readings were made.

After every other run the high-speed films and corresponding
single frames were developed. For both cameras it was found satisfactory
to use Kodak Plus~-X negative film, normslly developed and fixed. For the
high speed camera triple perforated 35 mm film was used to enable subsequent
slitting of the film into two 16 mm single perforated strips, suited for

conventional movie projection.,

C. Reduction of Data

1. Properties
The state of the bulk liquid is defined by its temperature, T  ;
pressure, p, , and composition x] . The temperature was obtained as the

mean value of TC-1 ... TC-3, the three thermocouples closest to the bubble,
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corrected according to the calibration for the particular gauge 22 copper-
constantan wire used. The calibration curve was based on the ice-, steam-
and tin-point. The liquid pressure at the location of the bubble was ob-
tained from barometer readings corrected for temperature, the reading of
tank vacuum and hydrostatic head of the liquid in the tank corrected for its
temperature. The equilibrium gas composition, x, at T, , was calculated

(30)

from steam tables according to Equation (22). For the case of a non-
soluble gas the liquid was considered pure water when the electrical
resistivity exceeded 200,000 ohm-cm. In the course of the sequential
injection of several bubbles of the soluble gas, the liquid composition
deviated slightly from that of pure water, x! = 1.0 . The measured re-
sistivity was related directly to composition with the use of the standard
curve shown in Figure 27, obtained from resistivity measurements of solu-
tions of ammonishydroxide of known concentration. As seen from Figure 27
the resistivity was found not to change with temperature over the range
26-37°C, in which the measurements of liquid samples were also conducted.
In all experiments using ammonias as the gas, the mole fraction of ammonia,
1 - x! , was in the range 10“5-10'40

The thermal diffusivity a‘(?x) is obtained from Jakob and

(28)

Hawkins and the two important dimensionless property groups, dJa and
Lu , are evaluated at T from the graphs shown in Figures 28 and 29.
The plot of Ja-numbers vs temperature for water was prepared from steam
tables<50) according to the definition of Equation (50). The Lu-number

for the diffusion of water wvapor through respectively nitrogen, helium and

ammonia was evaluated from Gilliland's equationl

L For the pressure and temperature range investigated in the present study,

Equation (122) gives values of the mass diffusivity consistent with those
determined when using the more accurate Chapman-Enskog formula (see
Reference 5 p. 510 ff).
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(%EJ (122)
where T 1is the absolute temperature in °K, p the total pressure in atm,
M the molecular weight, V +the molecular volumes (cm3/gmole) at the normal
boiling point obtained from Reference 59. In forming the Lu-number accord-
ing to the definition of Equation (50), the thermal diffusivity for water
was again obtained from Reference 28. The Lu-number for the diffusion of
ammonia through water was calculated according to the definition of Equation
(lOl) using the constant value(45> 3’ = 1.5 x lO"5 cm?/sec for the mass
diffusivity, which is little affected by pressure and temperature.

The assumption of ideglity of the binary system, prompted by
the analysis, is only partly approximated by the ammonia-water system chosen
for the soluble gas case. While equilibrium gas compositions calculated
according to Equation (22) were found to be consistent with data summarized

(43)

by Perry , the heat of evaporation of mixtures indicated some non-

ideality. However, a value of F = = 0.8, based on the gas com-

Beon/Begn

position, was found to adequately approximate the data of Reference 43 for

1 atm over the range 0.6 < x" < 1 , and was used in the calculations. The
(30, L3)

Henry law constant KE calculated based on vapor pressure data

using Equation (94), is valid only for very dilute solutions. A more

accurate value, used in the calculations, was obtained from the definition,

Kg = (1-x%)/(1-x") , by employing the experimentally determined equilibrium

molefraction x¥* at Too s as taken from Table 24, Section 3 of Reference h5o
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Figure 28.

Ja-number vs Saturation Temperature for Water.
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2. Transient Bubble Size

The remaining data, in essence equivalent mean bubble radius as
function of time, is obtained from the high speed film and the single
frames exposed during the transient process. The approach followed in
getting the initial bubble size, and composition, X, , being important
for the interpretation of the data, is subsequently explained in detail
for the case of a nonsoluble gas.

The spherical symmetry in the liquid is experimentally rather
undisturbed by the method of suspending the bubble from the injector tip,
whereby part of its surface is left unexposed to the liquid, provided the
sector taken up by the injector may be considered adiabatic. The approach
to symmetry also in the gas phase calls for the displacement of the volume
of the spherical sector subtended to the unexposed area of the bubble sur-
face. Although the bubble undergoes growth this correction to the system
geometry is approximately accomplished by a constant sector of 60° top
angle, formed by an extension of the teflon valve tip as shown in Figure
30(a). The resulting system geometry, as shown during the growth process
in Figure 30(c) and (d), simulates the analytical idealization of spherical
symmetry in the two phases. The equivalent mean bubble radius is thus
determined as the radius of a sphere having a volume equal to the volume
displaced in the liquid, V(I) in Figure 30(c). Because of its smallness
and the nonwetting nature of teflon, the ring shaped volume Vring in
Figure 36(a) will not be filled with liquid when a bubble has departed

from the tip, but it will contain a mixture of water vapor and gas of the

equilibrium composition, x . The same applies to any small cavity left
(o]
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on the teflon tip and visible on the film prior to the injection moment.
The water vapor existing in these cavities will be present in the initial
bubble formed on the injector tip and constitutes the only contribution

to an initial non-zero gas composition x Owing to the supposed well

O .
mixing taking place during the injection, Xy is assumed uniformly

distributed and is calculated in the following way,

X, = Xeo ——VR;(;V(O) (123)
where
VO = (VMAX+VR) (1-x) + [V(O)+VR] X, (124)
since
o A UMK
fo = 1- Xeo B Y0 (125)

Here, referring to Figure 30(a), (b) and (d), VR 1is the difference between
the ring shaped volume, Vring , and the tip volume VJCip , V(0) 1is the
visible volume prior to bubble formation, i.e., that of the tip plus any
possible remanent cavities on this, and VMAX 1is the asymptotic bubble
volume of the equilibrium composition x . As seen from Equation (124)

the initial bubble volume, VO , is calculated from the measured volumes
v(0) , VR and VMAX and the gas composition X, previously determined.
This i1s a necessary procedure because VO is in fact not observable but
represents an idealization. Although the inJjection of the gas to form the

initial bubble volume VO 1is very rapid (~ 3 ms) the growth process is

already in progress when this has been accomplished. VO can therefore not
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be obtained from the film, even if the exact formation time was known.

The asymptotic bubble volume, VMAX, being a critical quantity, was obtained
as follows. Starting from frame number Il, chosen about 20 frames from
the end of the high speed film, the first local maximum in bubble volume
was located. The arithmetic mean of the volumes on subsequent frames in-
cluding the next local maximum was then determined. This mean value was
taken to be VMAX wunless the volume on the first still picture, recorded
30-50 sec after the introduction of the bubble, exceeded this in which case
the volume from the still picture was used.

Bubble volumes were obtained in the following way from the two-
dimensional picture appearing on the films. The measurements were carried
out_on a 30-40 times magnified picture of the negative film frame, back
projected onto an opaque glass screen in a specially designed film analyzer.
With a ruler system designed for the purpose the characteristic lengths as
shown in Figure BO(e) were measured. Bubble length H along the axis of
assumed symmetry, five diameters Yo =+ TN with an even spacing of H/h
along the axis, and the tip diameter 12 of the injector as reference length.
Expressing the diameter variation y(x) as a fourth order polynomial
" through the five diameters yO(O) cee yu(h'H/h) , a close approximation to

the actual volume is obtained from

H 3
. wf s
v - (@ 7 [ swfa - (G

0

RN
=
\4

(126)

where

INT = & ﬁ) (127)
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L1 is the true value in desired units of the reference length 12 appear-
ing in the magnified picture. The integral INT of Equation (127) is ob-
tained by analytical integration of the square of the approximating poly-
nomial, y(x) , as obtained by Newton's interpolation formula for a poly-
nomial of fourth order. The explicit form of INT appears in part (1)

of the computer program, Appendix V-1l. The equivalent mean radius, R(I) B

of the bubble having the volume V(I) is then calculated from
RO) = 3=
m =z v (128)

3. Computer Program

Because of the extend of arithmetic manipulation needed for the
reduction of data following the above procedure, a program was prepared
for the processing to be carried out on an IBM 7090 digital computer.

The computer program for the case of a nonsoluble gas comprises
three maln parts: reduction of experimental data; calculation of the ana-
lytiéal solution for the particular conditions of the experiment, and
plotting of both theoretical and experimental points. The actual program
written in the MAD (Michigan Algorithm Decoder) language and utilizing
the subroutine library MESS (Michigan Executive System Subroutines) is
reproduced in Appendix V-1l. The nomenclature for the program is listed
in Appendix V-2, followed in Appendix V-3 by a typical sample of the data
input for a single run (RUN 523). Subsequent to general input data comes,
in format, the data from each picture successively. In the process of

measuring the characteristic dimensions of a bubble in the film analyser
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these data cards were directly punches by the operator, made possible by
locating the film analyzer, next to a conventional key-punch machine,

To illustrate the results of the digital computer program, the
print-out, likewise from run 523, has been included in Appendix Vb,

First, in Part 1(a) of this a complete table of the input from the bubble
measurements is printed, giving frame number und characteristic lengths.
Then follows in Part 1(b) the'reduced experimental data in the form of
initial and asymptotic conditions and a table of dimensional and dimension-
less bubble growth. Next, in Part 2, the analytical solutions to dimension-
less bubble growth are given: (a) for small values of time, (b) at the

Join point Ty s (¢) for intermediate values of time, (d) at the join point
T , and (e) for large values of time. Part 3 gives the symbols used in
the plots and the dimensionless time, TAUMS , corresponding to one milli-
second, and the print-out is completed by plots of respectively P vs 7T

and Q vs T , in which the titles list the parameter values and substances
for the experiment.

The analytical Part (2) of the computer program was used for
. the parameter study reported in Chapter II-D.

For the case of a soluble gas a computer program was written to
include three parts, reduction of experimental data, plot of these and
calculation of the initial bubble behavior according to the analysis,
Equation (106). The latter part also provided numerical results from

which the parameter study of Figure 13 was prepared.
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E. Results

In this section the experimental results are presented and dis-
cussed, and the uncertainty of the results is illustrated by a sample cal-
culation.

Because of the nature of the process under study -an initial
value, transient problem depending on many parameters- the experimental
program was planned to cover a number of particular conditions for which
in each case the analytical solutions were compared to experiment. In the
range of agreement between experiment and theory the results can thus con-
veniently be presented by the parameter study based on the analysis.

1. Discussion of Experimental Results

a. Case of a Nonsoluble Gas

In comparing experiment with theory two nondimensional representa-

tions are used, namely

Pty = # (Ja,lu, xe  x.)
and
Q1) = (P'1L/Ué54> - f(Ja,lH}Xw;*a)

In nondimensionalizing time to T = a‘t/Rg , one of the five parameters,
RO ,» has been accommodated. The relative nondimensional bubble size, Q ,
normalizes growth to the interval 0<Q <1 , and was found most useful
in the representation of the data.

For the case of a nonsoluble gas, the range of parameter values
subject to study in the experiments reported here, using nitrogen and

helium as gas and water as the volatile liquid, are summarized in Table II.
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TABLE IT

PARAMETER RANGE IN EXPERIMENTS FOR THE NONSOLUBLE GAS CASE

System Ja Lu X X Ro(mm)

Hp0-Np 170-570

> 0.15 | > 0.0%
90-235 0.65-1.5
< 0.k < 0.9

H 0-He 540-1530

The values of the Ja- and Lu-numbers are based on a system ftemperature
range of T; = 206-150°F with corresponding saturation pressures of
p¥ = 26.5-7.6 inch Hg abs. The presence of remanent gas prior to bubble
injection sets a lower limit for X, o The upper limit for x corres-
ponds to a compromise between the desires for: considerable bubble growth
(P, = 1.8-2.4) reasonable initial size (R, = 0.65-1.5 mm) and the bubble
to stay on the injector tip when growth terminates (Ry ~ 1.6-1.8 mm)

A summary of the experimental runs conducted is tabulated in
Appendix VI-1l giving the conditions for each run. Plots of experimental
data and calculated analytical solutions for a number of runs are shown
in Figures 31-40, directly reproduced from the print-out obtained from
the IBM 7090 digital computer according to the program shown in Appendix

V-1. To clearly identify the sequence of the experimental points in the
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plots a solid line has been drawn through successive points. In addition,
the intermediate and asymptotic solutions Jjoined at point T, are included.
The characteristic parameters for each run appears in the title of the
graph, where A(mm2/sec) is the thermal diffusivity and RO(mm) the initial
bubble radius.

Figure 31 for Run 511, shows the bubble formation P(T) represent-
ative for a number of runs made under conditions where no growth occurred.
As seen from the title of the graph, P = 1.009, hence the formation size
R, » 1s practically identical to the asymptotic size, R, , and the plot
shows how the equivalent bubble radius approaches its initial value in the
course of 3-4 ms. The oscillations in bubble shape, being associated with
a volume oscillation as discussed in Appendix II, appears clearly in the
plot. Taking these into account the actual gas injection is seen to have
been terminated in less than 3 ms. Because the initial bubble size is chosen
considerably smaller in the cases where growth occur, by reducing the activa-
tion time of the inJjector valve, it can be concluded that a formation time
of 3 ms was in no case exceeded, which is in agreement with the less
accurate oscilloscope measurements of inJjector solenoid current discussed
in Section III-B.

Next, relative dimensionless bubble growth Q(7) for nitrogen
in water is presented in Figures 32-37. The first three graphs, Runs 523,
504 and 702, show bubble growth under practically identical values of the
governing parameters, Jda , Lu , X, » Xy s but with a considerable difference
in the randomly introduced initial disturbance responsible for the subse-

quent oscillations superimposed the transient growth. A particularly large
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amplitude of oscillation was obtained in Run 702 which, as the only run
included here, was carried out with the experimental set-up inverted such
that the bubble was blown vertically upwards. Despite the considerable
difference in amplitude of oscillation the transient growth is virtually
identical for the three runs, indicating that the second approximation
to the dynamic bubble chape, Equation (19) has only at most a secondary
effect on the process studied here. Although not conclusively demonstrated,
this secondary effect tends to accelerate the growth.

Comparing next Figure 35 of Run 524 to e.g., Run 523 in Figure
32, the effect of a change in x_, and x, resulting in an increase in

o)

P

o Of nearly 15% shows the corresponding decrease in growth rate. Finally,

Runs 517 and 521 in Figures 36 and 37 show the considerable increase in
growth rate with up to a 2.5 fold and a 3 fold simultaneous increase in
respectively Ja-number and Lu-number.

Figures 38-4L0 show Runs 601, 609, and 613, all for helium in
water and for increasing Ja and Lu. For unchanged system temperature and
pressure the use of a different gas implies a change in the Lu-number only,
hence a change in the initial and intermediate growth rates. Comparing
thus Run 504 to Run 601 the effect of a 3 fold increase in Lu-number alone
is seen for the case of Ja ¥ 90 , while the similar effect for
Ja = 220-240 1is seen by comparing Run 521 and Run 613,

b. Case of a Soluble Gas

For the case of a stationay bubble initially containing a soluble
gas four experiments are reported here in which ammonia gas was inJjected

into water. The conditions for the experiments, Runs 951, 953, 954 and 955
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are listed in Appendix VI-2 and the transient bubble collapse in the form of
equivalent radius (mm) versus time (ms) is shown in Figures 41-4h directly
reproduced from the print-out of the digital computer program for this case.

The study of the collapse, opposed to growth, of a statlionary gas
bubble initially of nearly spherical shape suspended on the injector tip,
made it necessary to adopt a different procedure of data reduction. Thus,
the radius plotted versus time is the equivalent radius of a spherical
bubble bhaving the actual volume of gas present on the tip, implying that
the asymptotic bubble radius is zero. Consequently, the experimental results
represents spherical bubble collapse only in the initial part of the tran-
sient when the bubble volume is large compared to the volume of the teflon
tip, Vtip in Figure 30, subtracted from the visible volume

Based on the resistivity measurements of liquid samples, its com-
position, using the standard curve of Figure 27, ranged from 1.6 - 1.85 x 1095
for the molefraction of ammonia, hence the liquid was far from saturated,
providing for eventual bubble collapse in all cases. Because of this, no
remanent gas phase could be present on the injector tip prior to bubble in-
Jjection, and the initial gas composition could be assumed to be pure ammonia,
Xg =0 .

Runs 951 and 953 in Figures 41 and 42, were conducted at essen-
tially the same, relatively high temperature, T ¥ 205°F but at different
pressures, thus showing the effect of decreased volatility of primarily the
liquid component A (water) for which the equilibrium gas composition,

T

X at Ty , 1s a measure. The maximum bubble radius being nearly the same,

permits direct comparison of the much slower collapse in Run 951 to that in
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Run 953. According to the single 35 mm pictures taken subsequent to the
high speed film, collapse was completed in the order of mirutes after
initiation of Run 951, while for Run 953 the gas pbase had vanished when
the first picture was taken 48 seconds after bubble injection.

Runs 954 and 955 were conducted to show the same trend, but at
a relatively low temperature of T % 178°F, where all of the dimension-
less properties for the rate of the process are greater and the solubility,
x¥ , of the gas higher (see Appendix VI-2). The results, shown in Figures
L3 and 44, indicate the corresponding increase in the rate of collapse
with decreasing volatility of the liquid, and when compared to Run 591 and
953 the much more rapid collapse is evident. The first 35 mm frame from
Run 954, taken 7.8 seconds after bubble initiation, shows that collapse
has been completed, while this is seen to occur at 50-75 ms directly from
the high speed film in the more extreme case of subcooling (%! = 0.758)
for Run 955.

The analytical prediction of the initial bubbles behavior,; cal-
culated according to Equation (106), is given in Appendix VI-2 in terms
of the phase-growth parameter X . The results, indicating initial growth
in all cases, cannot be compared directly to the experimental results
because the initial bubble size, unlike the case of a nonsoluble gas, may
not be calculated from its asymptotic size. The observed bubble formation
times measured from the high speed film for the case of no growth, Run 511,
and measured from solenoid current, Figure 26, are in the order of 3 ms + 1 ms.
Although their smallness have been conclusively established, their exact

values are not known in each experiment, and it becomes impossible to con=
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clude from the plots of transient bubble size if initial bubble growth

has in fact been experienced. The tendency for growth, however,

compared to the tendency for collapse is clearly demonstrated by

comparing, for example, Run 951 to Run 953, and noting the calculated values
of the growth parameter listed in Appendix VI-2 of respectively -8.18 and

-6.0k4,

c. The Case of Bubbles Having Translatory Motion

A number of experiments were conducted for the injection of
respectively nitrogen and ammonia into water with the view tank in an
inverted position from that shown in Figure 17. A sufficient amount of
the gas was inJjected to enable bubble departure and subsequent rise through
the liquid under the influence of buoyancy forces. By removing the simple
1 inch objective lens from the optical system shown in Figure 24, the view
field of the camera was enlarged to cover the bubble rise up to 40 mm above
the injector tip. This provided for an observation time of about 140-170 ms
for the case of a growing bubble and more than 200 ms for the collapsing
bubble rising more slowly.

Firstly, two experiments, Runs 805 and 806, are included to
show the effect of translatory motion on the rate of growth for nitrogen
bubbles injected into water. The nearly identical conditions for the two
experiments, listed in Appendix VI-1, were chosen to provide growth-rates
great enough to ensure completion of the growth during the available obser-
vation time. In this way the initial bubble size could be calculated and
comparison made with the analysis for the case of a stationary bubble.

The resulting bubble growth, plotted in dimensionless reprééenta—

tion as Q vs T , is compared to the analytical solutions for the stationary
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bubble in Figures 45 and 46, where for clarity the time scale has been
expanded compared to Figures 32-L0. The effect of translatory motion as
an increase in the growth-rate does not appear significant until some time
after departure and acceleration of the bubble when a flow transition has
eventually occurred. This observation may be verified by comparing the
bubble growth in Figures 45 and 46 to Figure 47, showing the position of
the bubble center versus time for Runs 805 and 806. Bubble departure occurs
at A , while the flow transition takes place over the region marked B - C
As seen from Figure 47, which also gives bubble velocity and Reynolds number,
Re = 2°R=V/v , for a number of bubble positions for Run 805, the bubble is
practically accelerated at the time of departure to a velocity which remains
nearly constant until transition occurs. Although the Reynolds number is
very large the liquid motion is believed to be laminar over this part of
the bubble rise. In the transition region B - C marked by an increase
followed by a decrease and again an increase in bubble velocity to a nearly
constant value beyond point C , a new stable flow regime is established
believed to be turbulent.

In the laminar region the small departure of the measured growth-
‘rate from the analytical prediction in case of no motion supports the

(5)

"stagnant film" theory, which assumes the bubble to be surrounded by a
stagnant liquid film of a thickness large compared to the penetration of

the potential distribution associated with the mass transfer. In the transi-
tion and turbulent regions, on the other hand, the significant departure

from the analytical prediction supports the "penetration" theory<5) which

assumes full slip between the liquid and the gas phase, the latter being
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well mixed by its induced toroidal motion, hence predicting higher rates
of mass transfer,

Secondly, Run 901 and 903 are included in Figures 48 and L9 to
show the collapse of an inJjected ammonia bubble rising through water. The
conditions for the experiments are given in Appendix VI-2. Despite the
greater maximum bubble sizes and the higher volatility of the liquid, the
resulting collapse times for Run 901 and 903 are comparable to that of
Run 954 for the stationary ammonia bubble. The plot of bubble position
versus time in Figure 50 for Runs 901 and 903 showsthe characteristic flow
transition marked B - C . The initial velocity oscillations over the
region A - B are ascribed to the observed bubble oscillations.

d. Bubble Oscillations

For a number of the experiments involving the study of a stationary
bubble, measurements were made of frequency and amplitude of the bubble
oscillations. The results are summarized in the table in Appendix VI-3,
giving Run number, the mean radius, E', for which the measurements were
made, experimental frequency and the theoretical frequency calculated from
Equation (2) for the spherical zonal harmonics of second mode. The agreement
between observed and analytical frequency indicates that the second harmonic
is the dominating mode of oscillation, hence that the bubble shape could
be taken to that of Equation (19) in the first approximation. Based on
measured amplitudes in radius and bubble length along its assumed axis of
symmetry, the relative equivalent radius, Req/R , and relative polar
amplitude, a/R, of the oscillation were calculated. As seen from Figure
IT-1 of Appendix II only a qualitative agreement is observed with the

analytical relationship given by Equation (II-5).
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2. Experimental Uncertainty

A Careful evaluation of the uncertainty of the experimental
results 1is particularly required in the present investigation because
of the extensive calculations involved in the data reduction, tending
to obscure the entries of uncertainty. The basic data serving as input
are, liquid temperature, liquid pressure at bubble position, and bubble
volumes versus time.

The uncertainty of a single temperature measurement using a
Leeds & Northrup portable precision potentiometer Model 8662 is estab-
lished to 0.3°F. The liquid temperature is obtained as the mean value
of three readings, hence BT = 0,17°F . Despite the diverse corrections,
the uncertainty on the liquid pressure remains that associated with the
reading of the 30 inch mercury manémeter, established to ®dp, = 0.1 inch Hg.
The reading accuracy of the bubble dimensions has been established to one
or two units of the scale in the ruler system used, depending on sharpness
and grain size of the film. Sample calculations of the change in bubble
volume resulting from a small change in either of the dimensions indicate
it reasonable to employ &V(I) = V(I) 8H/H as a measure for the uncertainty
on bubble volume. H is the measured bubble length and ©H = 1.5 ., Based
on an accuracy of 0,001 inch in measuring the dimensions leading to the
residual volume, VR , it is found that ©®VR = 0.011 mm; .  The uncertainty
of the time coordinate is related to the film speed, SPEED , read on an
electronic counter connected to the camera magnetic pick-up. With a one
second counting period, as used here, the accuracy for the film speed is

one count in a second, or + 16 fps , hence 8t/t = 16/SPEED .
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In executing the plots of P(7) and Q(7) as part of the digital
computer program for data reduction, the plot resolution -defined as one
printer space horizontally and one printer line vertically- was chosen to
correspond to the uncertainty in the results. The true nature of the data
is thus not obscured by the method of reproduction. Referring again to
Run 523 for P = 1.8, for example, &P/P = 1.4 implies that 8Q = 0.0k,
which should be compared to the resolution of 0.025 per line in the ordi-
nate direction. In the absissa direction one printer space corresponds
to 0.5 on 10°°7T while 8(10°:7) = 0.12 for 1007 = 4.0 .

The general expression for the accumulation of error or uncertainty,

8q , on a quantity, q , given as a function of a number of observables, 8y

q=9{a, a, ... a,)
(31)

€ach encumbered with an error or uncertainty Sai , 1s

14

i~

~
i
.

n 9 /2
&g = [0 (5 %))

=4

% 50| (129)

where the latter form of Equation (129) applies when the order of the

individual contribution is nearly the same. Based on the approach followed
in the data reduction and employing Equation (129) the uncertainties on the
ultimate results are calculatel. Table III shows representative values for

the uncertainties for an experiment (Run 523).
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TABLE III

CALCULATED EXPERIMENTAL UNCERTAINTIES FOR RUN 523

Quantity % Uncertainty
P 2.1
T 3.2
Ja 0.3
Lu 0.5
Xq L,9
Xeo 0.5
Ro | 1.4
P, 1.4




CHAPTER IV

SUMMARY OF RESULTS

In Chapter II the bubble dynamic problem was stated for a
stationary spherical bubble, and approximate solutions derived for the
transient growth of the bubble containing a nonsoluble gas, growth
being governed by heat transport in the liquid and mass transport in
the gas. The initial growth or collapse was predicted for the case of
a soluble gas bubble, including the effect of mass transport in the
liquid, and a solution for its collapse in a nonvolatile liquid was
derived. The governing parameters were established for dimensionless
bubble growth or collapse as the Ja-number and Lu-numbers, respectively
characterizing the dimensionless rate of heat and mass transport. The
ratios Jae/Lu and Jaz/Lu' were shown to represent the relative sig-
nificance of mass to heat transport for the rate of the processes.

In Chapter III the experimental simulatipn of the analytical
model of a stationary bubble was described and the bubble formation
time, although not known exactly in each experiment, was established to
be about 3 ms, a time small compared to the duration of the transient
growth or collapse studied.

For the nonsoluble gas case of nitrogen and helium bubbles in
water the intermediate and asymptotic solutions derived in the analysis
were shown to describe bubble growth adequately within the range of
parameters given in Table II. The observed bubble oscillations, con-

sistent in frequency with the second spherical zonal harmonics, could

-1ho-
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not be concluded to cause a detectable departure from the analytical
prediction of bubble growth in which oscillations were neglected. The
influence of bubble oscillations on the transient heat and mass trans-
port processes is therefore concluded to be a second order effect. The
effect of translatory bubble motion was shown to appear as a significant
increase in growth rates when the rising bubble had been accelerated

and a transition in the fluid motion had occurred.

For the case of a soluble gas increasing collapse rates were
experimentally demonstrated for increasing values of the governing
rate-parameters, Ja, Lu, Lu', for decreasing liquid volatility, x ,
and for incregsing solubility of the gas, x¥*. The collapse rates of
gas bubbles having translatory motion were shown to exceed those for

the stationary bubbles.
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APPENDIX T

DEPARTURE FROM INTERFACE EQUILIBRIUM DURING MASS TRANSFER

The macroscopic concepts of temperature and concentration of
a component in a mixture indicate these to be continuous functions in a
continuum. A non-equilibrium state owing to the transfer of heat or mass
inside the continuum is menifested in gradients in these continuous func-
tions for the potentials for transfer, Near a gas-liquid boundary,
however, the gas kinetic theory associates the non-equilibrium state
owing to interface transfer with a temperature discontinuity (Jjump) pro-
portional to the mean free path of the gas molecules, and with a
discontinuity in partial pressure of the component transferred.

In the present analysis where the intra-phase energy and mass
transport will be related to the interface transport in terms of macro-
scopic properties and potentials, the primary assumption is that the
interfacial temperature discontinuity is negligible, as in all cases of
a dense gas phase. The discontinuity in concentration distribution is
retained and the corresponding departure from the phase-equilibrium state
“at the interface is evaluated for the case of the nonsoluble gas suddenly
exposed to a volatile liquid.

Firstly, for a pure substance exposed to its vapor the net
interfacial mole flux leaving the liquid may be written in terms of the

Knudsen condensation coefficient oy as(5u)

_ e (I-1
N ° Jz7 MRT, (£~ ) )

-1h45-
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where M 1is the molecular weight, R the universal gas constant, and

Ts is the liquid surface temperature, p: the corresponding equilibrium

(saturation) vapor pressure, D is the actual pressure of the vapor,

and 0, may be related to the conventionally defined condensation coeffi-

1
(ko)

cient ¢ approximately by

20'1
2+ 0

(I-2)

Introducing the Clapeyron equation integrated between p: and P

Equation (I-1) may approximately be written as

1 h@

N = o /27 MRTs (7—5“7)(4/9//_4/(),)7 (I-3)

where T¥ is the saturation temperature corresponding to the actual vapor
pressure D and the average temperature T may be taken to Ts with
little error.

The effect of interfacial non-equilibrium on interface mass
transfer in a one-component system may then be described in terms of
macroscopic properties simply by the mass flux dependent deviation from
the saturation condition at the interface given by Equation (I-3). This
effect causes the so called "interface resistance to transfer,'" which
does not manifest itself physically and mathematically as a resistance at

the interface, but rather is a result of the changed conditions for the

intra-phase energy transport. Consider thus evaporation at a rate N >0
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governed by heat conduction in the liquid. The increase in TS above the
saturation value T¥* , reduces the driving potential for heat diffusion to
the interface, hence facilitating an evaporation rate less than that antici-
pated, were the interface temperature taken to TS

Secondly, for the case of a binary ideal gas-liquid system the

above analysis applies when Equation (I-1) is replaced by equations of the

form
1 * N
N‘ = . — - X.). 1=AB (I‘)‘")
L n ,2,{_/_ MLRT (/Pi /pm bS) ) )
where X. is the molefraction of component i in the gas at the inter-

18

face and p?s is the vapor pressure of component i that would be in
equilibrium with the liquid at temperature Ty and liquid composition

Xiy - For the nonsoluble gas case, Ny =0 and the mole flux for the

volatile liquid component A becomes

i
Na W zr bgRT (x¢=%s) B,

where x. 1s the actual gas composition at the interface, and X: is
the equilibrium composition corresponding to the actual temperature of

the liquid

¥ = f(T5 p,) (1-6)
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Accounting for the departure from equilibrium at the interface the simul-
taneous intra-phase heat and mass transport in respectively the liquid and
gas is subject to Equations (I-5) and (I-6), rather than the phase-
equilibrium relation, X, = f(TS,pm), The resulting actual values of the

interface potentials, TS and x are such that the driving potentials

s
for both intraphase heat and mass transport are reduced,

The departure from a state of phase-equilibrium discussed above
is small, except for extremely high rates of interface mass transfer., The
mathematical idealization - physically approached in the gas injection
process - of a sudden step change in thermodynamic state in a gas-liquid
system predicts unbounded mass transfer rates during the first moments of
the transient when a state of phase-equilibrium is assumed to prevail at
the interface. The latter assymption is indirectly demonstrated to be
satisfactory for the present study by evaluating the encountered departure
from phase-equilibrium according to Equation (I-5) from the mass transfer
rates predicted from the analytical model, Thus, from Equation (30) the
evaporating mole flux for the expanding bubble is

NA = P”R (I-7)
Employing Equation (55) for small values of time when % A, T A,

Equation (I-7) becomes

= ol [ g o
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Equating this result to the expression in Equation (I-5), the departure

from equilibrium is given by

1 x

*

XE-xs = = == = A+ T—— I

: A LN LA s .
[/

A representative numerical evaluation of Equation (I-9) is based on the

following data for Run 523 taken from Appendices V-L4, Part 2(a) and VI

R, = 0.0877 cm
a' =0.1675 x 1072 cm?/sec
T =T =205.4 °F = 369.7 °K
A, =247.8
RHzo - 4.615 x 10° erg/grams/°K

using a lower value of o1 Ho0 = 0.5 as measured for condensation by
2

Nabavianguo) The result

-3 8
X§<- Xy = (,384 x 10 [1 =+ "3‘}-—“‘}

where the time unit is seconds, is valid for t << 14 ms, At one milli-

second after the start of the process this expression indicates a deviation

in interface composition of x: - Xg = 0,00lS, which is negligible compared
to the driving potential for mass transfer, x. - x. = 0.5544 (see Appendix

S e}

V-4, Part 2(a)).
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BUBBLE OSCILILATTIONS

For the case of axisymmetrical potential flow in the incompress-
ible liquid surrounding a gas bubble, Laplace's equation becomes (see e.g.,

Lamb(?’B))

d [( 2 d-Yh
S (-pt) 20 e )Y, = 0 (T1-1)
in terms of spherical zonal harmonics ﬁfn of order n , where u =

cos ¥ and { is the polar angle. Equation (II-1) is Legrendre's equation

satisfied by the Legrendre polynomials of first and second kind

Since for n = 2 the second term of Equation (II-2) diverges for po=+1,
the second zonal harmonic becomes Pg(u), and the bubble shape for a

harmonic undemped oscillation is given by

y-14
r=rlyt) = R [4 + (%) -32%“’—“ : S&n(m)J (11-3)

where a/R is the relative polar amplitude. The variable bubble volume,
V(t) 4is obtained by integration of Equation (II-3)
T
~ 2 -2 .
V() = ZHX resiny rs;ntyohy (I1-4)

0

_]_50-
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Introducing the equivalent radius, Req’ as the radius of a sphere having

the same volume as that of the oscillating bubble, V(t), the relative

amplitude in equivalent radius becomes

[T

PP

. 3
oo (- g (@t - 35 ke - (&bt (11-5)

Figure II-1 shows a plot of Req/R versus a/R, indicating that the
bubble of oblong shape has a smaller volume than that of the oblate shape.
Hence, the effective mean radius is always less than the arithmetic mean

of the maximum and mininum values., For relative polar amplitudes less than

0.2, however, this deviation is negligible,
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Req/R
- 1.2

o EXPERIMENT
— THEORY, Eq({I-5)

Figure II-1. Relative Equivalent Radius vs
Relative Polar Amplitude for

Second Zonal Harmonic Bubble
Oscillation,



APPENDIX IIT
APPLICATION OF THE INTEGRAL TECHNIQUE TO A PROBLEM OF
SPHERICAL PHASE-GROWTH

The usefulness of applying the integral technigue to the problem
of spherical phase-growth may be illustrated by the problem of bubble
growth in a boiling one-component liquid for which an exact solution exists,

The model used considers the growth of a single stationary
spherical vapor bubble, initially of zero size, growing in an inviscous
infinite liquid of initial uniform superheat. Under the assumption of a
single component system and in the absence of surface effects and pressure
gradients, the interface temperature remains constant at the saturation
value throughout the process of growth, which is now governed solely by
the heat transport in the liquid surrounding the bubble,

Based on the use of the parabolic one-parameter profile of
Equation (34%) the formulation is analogous to Equations (45) and (47)

leading to the form

QﬂQL

t

{JQ'Rg (5)3[(2)2’“2/(%)*?45]} = [1- (-6 3a] () (171-1)

o

RR = 2d Ja‘( ) (111-2)

)

T

The characteristic temperature in the Ja-number is in this case the liquid

superheat, hence Ja = (Tw~T*)°(p'C'/p"hfg) . Since the Ja-number is

_155_
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constant, Equation (III-1) may be integrated in its entire form, subject

to the initial condition R(0) = 0. The result,

R /
;T)—‘o" = 0 (111-3)

,' 2
(- wo] (8- (5) -4

—

indicates the constancy of (R/fT), hence the similarity nature of the
solution, namely, the thermal boundary layer thickness, fp , growing
proportional to the bubble radius, R. The form of the solution as

obtained from Equation (III-2) is
R= 2 4t (TII-})
where the growth constant
A (Jaje) = Ja - (%) | (111-5)

is an implicit function of the Ja-number and the density deficiency
€ =1-p"/p', through (R/fy) given by Equation (III-3).

The growth-constant A as function of the Ja-number with € as
parameter is compared in Figure III-1 to the exact solution by Scriven,(55>
Evaluating the Ja-number at the interface condition this solution is

written

K- 26N
Ja 2 22 exp [9\2(4+25)J S;z €Xp[—x—x~f——]c/x (111-6)
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Despite its simplicity, the integral technique produces a rather close
approximation to the cqmparatively'much more complicated exact solution

of Equation (III-6), While the vertical asymptotes for e <1 are
identical in the two solutions, the case, € =1, A - , deviates slightly
For completeness the asymptotic solution, € =1, A -« as obtained by a
number of methods is listed in the table in Figure ITII-1. It may be noted
that neither of the investigators, References 18 and 46, included the
effect of a density deficiency different from unity, rendering their find-

ings less general,



A
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BUBBLE GROWTH CONSTANT AlJa,€)
FOR ONE COMPONENT BOILING
R=2M a't

— EXACT SOLUTION(SCRIVEN 55)
---- INTEGRAL TECNIQUE(PARABOLIC PROFILE)

025
0.75

o]
COMPARISON BETWEEN ASYMPTOTIC SOLUTIONS !
10 €:1, Jo—eo®

METHOD \/Jda

EXACT (SCRIVEN 55) \V3/T 0987
APPROX. (PLESSET, ZWICK 46) /T :0.987
SOURCE THEORY ( FORSTER,ZUBER 48)|{T /2:0.887

INTEGRAL TECHNIQUE 1.00

GROWTH CONSTANT,
]

p'c

"
P hfg

Ja=(Te~TY

Figure III-1. Comparison Between Exact Solution and Solution by Integral
Technique. Bubble Growth in One-component Superheated
Liquid.



APPENDIX IV

CRITERION FOR LINEARIZATION OF EQUATION (65)

The criterion, Equation (67), for the validity of the lineariza-
tion of Equation (65) by retaining its last two terms is obtained as follows.

Writing for simplicity the polynomial form, Equation (65), as

u3 + Qy uz + a Ul - a; =0 (Iv-1)

the coefficients can be expressed in terms of the three roots, U;, U2 and
U3, of Equation (IV-1) as follows
ap= 10-2KYN = —UmU Y

0, = 50 KM*/N

)

Uy Uy Uy
The linearized solution,

U* = a3/a2 , in terms of the three actual roots

" becomes

* 1 1
: Up + Us . (1Iv-3)
U, Uy

Substituting from Equation (IV-2) to eliminate U2 and U3 , Bquation
(IV-3) is written

X | 1

4 3 U4(U4ﬁ'a4)
u1 (u.1 +a4\ + Oy

(TV-4)
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From Equation (IV-4) it is seen that U¥ = U; whenever

Uy (U4+a4)

K (1v-5)
U1 (H4’+a,,) + 4y

Introducing in this case U = a3/a2 , the criterion becomes

03 (G5 +G402) i

K (IV-6)

3
ay

which is the form of Equation (67) when the coefficients from Equation

(IV-2) are substituted.



APPENDIX V

DATA REDUCTION BY DIGITAL COMPUTER
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APPENDIX V-1

PROGRAM FOR NONSOLUBLE GAS CASE

seun  DYNAMICS

OF NONSOLUBLE GAS BUBBLE - INJECTION_COOLING

*4 %R

PART (1)

_RECUCTION OF EXPERIMENTAL DATA

INTEGER IsNy RUNy I1ly NUMyJyJOgJdi,12 . #001
DIMENSION V(300), R(300), T(300) *002
DIMENSIOUN P(300),TAU(300),Q(300),TAUL(10),P1(10),Q1(10), %003
1 TAUZ(25),P2(251,02(2%) *003
VECTUR_VALUES INPUT =_$ I[4,8F4.0%$ . #004
VECTUR VALUES. QUTPUT = $14y 6F15.4%§ 005
BEGYND READ_DATA_ - - #006
PRINT COMMENT $1BUBBLE GROWIH  NONSOLUBLE GASS *007
PRINT RESULTS RUN . *008
PRINT COMMENT $OINPUTS *009
PRINT COMMENT $0 1 S HL L2 Y4 Y3 Y2 Yl YOs #010
PRINT COMMENT $ $ 011
EXECUTE ZERO.(T(0)e.oT300)) . . . *013
BEGIN READ FORMAT INPUTy I5S9H19L2:Y4,Y3,Y2,Y1yY0 *014
PRINT FORMAT INPUT,1,S,»H1,L2,Y4,¥Y3,Y2,Y1,Y0 «01i5
B8O = YO _ . 016
Bl = =3.%#Y4 + 16.#Y3 = 36.#Y2 + 48.%Yl - 25.#Y0 017
B2 = 11l.#Y4 — 56.%Y3 + 114.%Y2 = 104.#Y1l + 35.%Y0 %018
B3 = —3.#Y4 +14.%Y3 = 24,¥Y2 + 18.#YL - 5.#Y0 019
B4 = Y4 = 4.%Y3 + 6.#Y2 — 4.8YL + YO 020
INT = (B4%#32./9).P.2 + B4#B3#%128./9. + B4#BZ#128./63. *021
1 + (B3#164/3)ePa2/7, + B4#BL#32./27, + B3#B2#32,/27, 021
2 + B4¥BO®64./15. + BInBLl#32./45, + B2.P.2#%4./45, «021
3.+ B3#B0%8./3, + B2#Bl/9, + B2#BO®4./9., + Bl.P.2/27., #021
4 + BL#B0/3, + B0.P.2 %021
H = H1/S #022
VIT) = (3.141593#INT#H/4.0+ (L17L2).P.3 023
R{I) = (0.75#V{1)/3.141593).P.0.3333 #024
T(I) = SL«I/SPELD *025
WHENEVER I L. Ny TRANSFER TQ BEGIN _ #026
THROUGH SW6y, FOR I = IL 5 1y I 4G. (N-1) %027
WHENEVER T{I) JNE. {SL#I/SPECD), %028
WHENEVER VIMIJG.VIMZ JANDS VIML #029
WHENEVER NUM .E. O _ . . *030
TRANSFER TO SW6A %031
DTHERWISE e *032
TRANSFER TO SW7 #033
END_GF CONDITIONAL . #034
OTHERWISE %035
WHENEVER NUM .E. O, TRANSFER TO SW6B o o %036
END OF CONDITIONAL *037
SW6A NUM = NUM + 1 L o =038
SUM = SUM + V(I) *039
SH6B VIM2 = VIML *040
vINL = viT) %041
SW6 CONTINUE e *042
SW7 VMAX = SUM/NUM %043
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DV = _VIN)/VMAX - 1. e - *044
WHENEVER DVelLoE5 +AND. OVaGeOos <ORe VMAX .Eo 0oy VMAX=V(N) #045
(VMAX+VR) #(1.~X0U) + XUU*(V(0)+VR) e i *046
XOU#(VR+V(0))/VO 047
_ __PTH_= {VMAX/(VO-VR)).P.0.3333 _ %048
P00 ={(1.-X0)/(1.-X00)).P.0.3333 #049
RO_= {.75#VMAX/3.141593).P.0.3333/P00 e . %050
TAUDEL = TDELAY#*#A/{RO.P.2) *051
JJAUMS = A/{(RO.P.2) _ e . . _.. %052
ALPHA = A %053
_ PRINT COMMENT $1REDUCED EXPERIMENTAL DATAS e o =054
PRINT RESULTS SPEEDsNsRUN *#055
_PRINT RESULTS A,L1,VR U < -1
PRINT RESULTS VO, ROy X0 %057
. ___PRINT RESULTS XUO, POOy PTH___ : e _*058
PRINT RESULTS VMAX, NUM,Il *059
. ._._ _PRINT RESULTS E5,TDELAY,TAUDEL e w060
PRINT CUMMENT $0I T(I) MSEC RILI) MM Vi) #061
1 CULMM TAU # S1 . P ) Qs . 061
PRINT COMMENT $ - 062
e LT B ToTIITTITSITTITITTTIo IS *062
J =0 %063
e THROUGH BETA, FOR I = 0y 1y I .G N o o 064
WHENEVER T(I) .NE. (SLeI/SPCED), TRANSFER TO BETA *065
. TAU = A*T{I1)/(RO.P.2) e *#066
P = R{I)/RO 061
. Q= (P - 1.0/(P00 - 1a) R *068
PRINT FURMAT QUTPUT, 1,T(I), RUI},V(I),TAU,P,Q %069
=yl o e *070
TAU(J) = TAU + TAUDEL 071
PLY) = P o %072
QlJ) =@ 073
_BETA CONTINUE ~ o o %074
Jo = J #075

#xxs  PART (2) ANALYTICAL SOLUTION

sxsx  PART (2A)  SMALL VALUES OF TAU
TTTTTTTTT UTINTEGER Iy E29 RUN Y T T 076
e DIMENSION XS(10), D(100) 077
VECTUR VALUES FIRST = § 4F20.4%$ *078
" VECTGR VALUES SECONG = $ BFl4.4 *% ) S *079
PRINT COMMENT $1THEORETICAL BUBBLE GRUWTH - NONSOLUBLE GASS *080
o PRINT RESULTS JA,S14E4 o =081
‘" - PRINT RESULTS LUsEL,E7 e 082
e PRINT RESULTS X00,E2 *083
PRINT RESULTS X0,E3 084
e PRINT COMMENT S$OSMALL VALULS UF TAU$ . *085
DI0)= (XUO - X0)/2. *086
L= LU/{1.-X0)%JALP.2) o 087
THRUUGH SW1ly FOR I = 0y 1y I «G. E2 +088
_  F = D(I)ePe3 + {1.-X00-C)*D(I)oP.2 + 2.%Cx(X0O0-X0)*0(I) - o _ #089
1 C*#(X00-X0).P.2 *089
 FF = 3,%D(1).P.2 + 2.#(1.—XD0-C)#D{I) + 2,.#C*(X00-X0) =090
DUI+1)= D{I) - F/FF *091
_SWL  WHENLVER (.ABS.(D(I+1)/D(I)-1.}) .L. El, TRANSFER TO ALFA =092
ALFA 0(0) = D{I) 093
Y XS10) = x00 - D(O) e ~ %094
A0 = (JA#(X00 - XS(0))).P.2 %095
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UX = 10. - I S *096
Pl = (1.-3.#(X5(0)=X0)/(5.#(1.~X0))).P.-0,3333 *097
DFAU = S1#((Pl.P.3+2.,)/P1-3.)/(4.%A0)/E3 098
PRINT RESULTS XS(0),A0yI %099
PRINT_COMMENT $0 1000#TAU P _ #100

1 ux ') *#100
PRINT COMMENT $ #101
1 s #101
THROUGH SW2, FOR TAU = DTAU,0TAU, UX oLE. 1. *102
A = 4.#A0*TAU/3.7/51 #103
P = 2,#5QRTo(1e+A)*C0OS0(100472-ATAN(((1o+A)ePoe3=1e)ePo0.5) . ®104
1 /3.) *104
UX = (XS(0)=X0)/{{1le=X0)#{1e=1e/PuPos3)) #105
Q = (P-1.)/(P00-1.) *106
SW2 PRINT FORMAT FIRST, TAU, P , UX, Q #107
sses  PART (2B) _ JOIN POINT TAUL = _
PRINT COMMENT $0JOIN POINT _TAULS . _*108
C = C#0.6 *109
THROUGH SW3y FOR-1 = 0y 1y [ +G. E2 110
F = D(I).P.3 + (1,-X00-C)#D(1}.P.2 + 2.#C#(X00-X0)#D([) - %111
1 C#{X00-X0)aPo2 #111_
FF = 3.4D(1)ePs2 + 2.#(1.=XU0-C)#D(I) + 2,#C#*{XU0D-X0) *112
D(I+l) = D(I) - F/FF . #113

SW3 WHENEVER (.ABS.(D(I+1)/D(1) - 1.)) .L. El, TRANSFER TO BETAL *114

BETAL XS(1) = Xx00 - 0(I) *115
Pl = (Le—3.#(XS({L)-X0)/(5.#(1a-X0)))sPo-043333 %116
PLOOT = 2.#LU*(XS{i)=X0)/(Pl®{1.~X5{1))) 117
UTL = PLl*P1DOT/(2.#JA%(X00-x5(1))) *118
TAUL = S1#((PlePe3+24)/P1=3.)/14.#A0) 119
P00 = ((1l.-X0)/{1.-X00))«P.0.3333 %120
Ql = (Pl-1.)/(P0O0~1.) #121
PRINT RESULTS TAUL,PL,PLOOT *#122
PRINT RESULTS QleXStl). uTl »i23
TAUL = TAUL + TAUDEL %124

#se® PART (2C)  INTERMEDIATE VALUES OF TAU
PRINT COMMENT $OINTERMEDIATE VALUES OF TAUS *125
PRINT COUMMENT $OTAUH/TAUM = RELATIVE SIGNIFICANCE OF HEAT TRA ®126
1 NSPORT TO MASS TRANSPORT FOR TAUS %126
PRINT COMMENT $0 _  _Sl#TAU P PDOT #127
1 ut 0XS$ Q TAUH/TAUM CR *127
2 IT1s *127
PRINT COMMENT §  —=-——= #1268
1 s paban e ...®128
2 ——mmemmmeee- $ 128
WO = )./PCO__ . . . __ — =129
CH = S1/(2.%(JA®(1.-X0)).P.2%W0.P.8) *#130
CM = 2.%#51/(5.4LU%W0.P.2) %131
Wl = P1/PO0 *132
DW = {1.-WLl)/E4 e . _*133
J=0 *134
TAU2 = 0. o L L *135
THROUGH SW4y FOR W = W1+DW, DWy W +Ge (lo—  DW) #136
J=J+1 #137
TAUH = (W.P.2 - Wl.P.2)/2. + *138
1 (1oa=W0aPo3)#(WaPo2/(Llo—i-Pa3) = WlePo2/(le~WlePe3))/3e - o #138
2 ({5.-2.%W0.P.3) /9.)# *138
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3 (ELUGM(SQRTa({ Lo#W+WoPe2)/(1otWl+WlePo2))®(Lo-Wl)/(1a=b)) ~ %138 _
4 SQRT4 (3. ) #(ATANS ({2 #W+1.)/SURTe(3e)) — ATANG({2.#Wi+1,)/ *138
5 SQRT.(3.)))) #138
TAUM = —(WePe2Z - W1ePa21/2. + (1.73.)% *139

1 (ELOGo{SQRTo{{ LlotWtWePa2)/{lotWl+W1oPo2))#{le—WL)/(La~W}) *139
2 SQRT.(3.)#(ATAN. ((2.#W+1.)/SQRT4(34)) = ATAN. ((2.%Wl+1.)/ *139

3 SQRT.(3.1)}) *139
TAU = TAUL + CH*TAUH + CMsTAUM %140
RATIO = TAUH#*CH/CM/TAUM %141
P = W/WO %142
PPDOT = S1%(le=WePe3)oPo2/{CH¥W.Po3#(WoPo3~WO0P.3)+ %143
1 CM#WePo3%(1lo=HePe3))/WO0LP.2 *143
_PDOT = PPDOT/P - *144
UT = SQRT.(PPDOT/(2.%#(1le-14/PaPo3)1) *145
XS = X00 = SQRTe{(la=le/P.P.3)#PPDOT/{2.#JA.P2)) ®146
Q = (P-1.1/(P0O0-14) ¥147
DXS = XS = 1. + (1.-X0)/P.P.3 £148
WHENEVER TAU2 .E. 0. *149
WHENEVER  oABSa(DXS/XS)_eLa ET *150
TAUZ = TAU - {E7-DXS/XS)#(TAU-TAU21)/(DXS1/XS1-DXS/XS} %151
P2 = P — (E7-DXS/XS)*(P-P21)/{DXS1/XS1=DX5/XS) +152
Q2 = tP2 - 1.17(P00 = 1.3 : *153
OTHERWISE *154
DXS1 = DXS *155
XS1 = XS __ . o *156
TAUZ1 = TAU %157
P21 = P %158
END OF CONDITIONAL ¥159
END OF CONDITIONAL *160
K = JA.P-2/LU *161
L= 1. - XG0 o *162
NN = 1. - 1./P.P.3 %163
M = (X00-X0) - NN#{1.-X0) *164
Al= 10. - 2.%K#L.P.2/NN %165
A2 = 25. + 20.#K*M#L/NN %166
A3 = 50.%K*#M.P.2/NN Ty
CRITL = A3#(A3+A1%A2)/A2.P.3 *168
TAUT(J) = TAU + TAUDEL *169
PL(J) = P %170
QI(J) = @ 171
SW4 PRINT FORMAT SECOND,TAU,PsPDOT,UT,DXS,QsRATIO,CRITY *172
J1 = J *173
PRINT RESULTS CH, CM *174

ssss  PART (20) _ JOIN POINT VAU2

PRINT COMMENT $UJOIN POINT TAU2$ *175
TAU2 = TAUZ + TAUDEL %176
____PRINT RESULTS TAUZ2,P2,Q2 *177

. **ws PART (2E)  ASYMPTOTIC SOLUTION

_ VECTOR VALUES ARG = Oegelee2re3744105147511091251224245, *178
1 30930514014251509T218e910411549204430. *178

. VECTOR VALUES ER = luy+8965,.80904.7346,.6708,.6157,.5069, *179
1 «42764432169025547.2108,.17904415529,.13699,.122485, 179

. 2 .110705,.08059,.0705244.05642,.037613,.02821,.018806 179
TTUTTTTTTTTTTTVECTUR VALUES THIRD =T$ 3F20.4 «% *180
 PRINT COMMENT $1ASYMPTOTIC SOLUTION § o *181

PRINT CUMMENT $0 S1=TAU P #182
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Qs =182
PRINT COMMENT $ »183
______________ s %183
G = 2.#JA#(X00-X0)/{P0O0C.P.2-1.) #1184
THROUGH SW5A, FOR J=1, 1, J.G.21 £185
P2(J) = SQRT.(PC0.P.2 = (PO0.Pe2-1.)%ER(J)) *186
TAU2(J) = S1#{ARG(J)/G).P.2 #1817
WHENEVER P2(J) .G. P2 AND. J +G. 1 «188
TAUNUL = TAU2(J-1) + (P2-P2(J-1))={TAU2(J)-TAU2{J-1})/ 189
(P2(J)-P21J-1)) 189
TRANSFER TQO SW58 *#190
END OF CONDITIONAL #191
SWS5A CONTINUE %192
SW58 I =1 #193
THROUGH SW5,FOR J = 0y 1y JeGe 21 #194
TAU = S1#(ARG(J)/G).P.2 + TAU2 -TAUNUL *195
P = SQRT.({PO0.P.2 - (PO0.P.2 -1.)#ER(J)} *196
Q = {P-1.)/(P0QC-1.) *197
WHENEVER P +Gos P2y I =1 + } #198
TAU2(I) = TAU + TAUDEL ) #199
p2(1) =9 #200
Q2{I) = @Q «201
SW5 PRINT FORMAT THIRD, TAU, P, Q #202
12 =1 #203
sxxs  PART (3) PLOT OF ANALYSIS AND EXPERIMENT
INTEGER QORA. 2204
INTEGER IMAGE 205
INTEGER LINEL,IVCyIHC, IRUN, INOM *206
INTEGER I1JA,ILU,IX0,IX00,1A, IR0, IPOC,CRUNyCAsCRO+GAS]1,GAS2 207
DIMENSION IMAGE(1000) *208
VECTOR VALUES NSCALE = 1+09240,1 %209
VECTOR VALUES ORDP = $ NONDIMENSIONAL BUBBLE SIZE P$ %210
VECTOR VALUES ORDQ = $ RELATIVE NONDIMENSIONAL BUBBLE SIZE Q$ %211
PRINT COMMENT $8PLOT OF P{TAU) AND Q(TAU}S #212
PRINT COMMENT $00 JOIN POINT TAULS #213
PRINT COMMENT $ . INTERMEDIATE THEORYS$ #2114
PRINT COMMENT $ X JOIN POINT TAUZS #215
PRINT COMMENT $ + ASYMPTOTIC THEORYS #216
PRINT COMMENT & # EXPERIMENTAL POINTSS #217
PRINT RESULTS TAUMS *218
PRINT CUMMENT $+ *219
1 MILLISECOND = TAUMSS %219
PRINT COMMENT $1%$ %220
PRINT COMMENT $-3% %221
EXECUTE PLOT14{NSCALE NHLyHSBHyNVL,NSBV) %222
EXECUTE PLOT2.(IMAGEsXMAX s XMIN,)YMAX,YMIN) #223
EXECUTE PLOT3.($0%,TAUL,PL1,1) %224
EXECUTE PLOT3.($.$,TAUL(1),PL{1)sJ1) #225
EXECUTE PLOT3.($+$,TAU2(1},P2{1),12) #226
EXECUTE PLOT3.($X$,TAU2,P2,1) #2217
EXECUTE PLOT3.($#$,TAU(1),P(1),J0) #228
EXECUTE TITLE. *229
EXECUTE PLOT4.{29,0RDP) %230
PRINT COMMENT $0 #231
NONDIMENSIONAL TIME 1000#TAU = 1000#A*#T/R0.P.2$ #231
PRINT COMMENT $1§ #232
PRINT COMMENT $-% #233
EXECUTE PLOT1.{NSCALE,NHL1,NSBHL,NVL1,NSBV1) #234
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EXECUTE PLOT2.(IMAGE,XMAX1,XMINL,YMAXL,YMINL) %235
EXECUTE PLOT3.($0$,TAUL1,Q1,1) ’ 236
EXECUTE PLOT3.($.5,TAUL(1),QLl{1),J1) #237
EXECUTE PLOT3.($+$,TAU2(1),Q2(1),12) #238
EXECUTE PLOT3.($X$,TAU2,Q2,1) #239
EXECUTE PLOT3.($%$,TAU(1),Q(1),J0) %240
EXECUTE TITLE. %241
EXECUTE PLOT4.(38,0RDQ) 2242
PRINT COMMENT $0 ] %243
1 NONDIMENSIONAL TIME. 1000#TAU = 1CO0#A#T/R0.P.2$ #243
FYTE) TITLE FOR PLOT

INTERNAL FUNCTION %244
ENTRY TO TITLE. #245
IA = 10000#ALPHA %246
IR0 = RO %247
IR0 = (9#JRO + RQ)#1000 2248
IX0 = 1000#X0 #249
IPO0O = POO #250
I1P00 = (9+IP00 + PCO)*1000 #251
I1X00 = 1000#X00 252
CRUN = $ 000s #253
CA = $0.0000$ #254
CRO = § 06,0008 #255
LINEL = (NSBV#NVL+1)/6 + 1 %256
THROUGH SW8 »FOR I = IVCy LINELy 1oGo(IVC+2#{HSBH-1)#LINEL) #257
Su8 IMAGE(I) = § $ #258
THROUGH SW9, FOR I = IHCy 1y I oGe (IHC+NSBV/3) #259
SW9 IMAGE(I) = $ $ #260
o IMAGE(IRUN) = S$SRUN $ *261
IMAGE (IRUN+1) = ORA.(BNBCD.(RUN),CRUN) #262
IMAGE (INCM) = $0 JOIs *263
IMAGE (INOM+1) = $N POINS #264
IMAGE (INOM+2) = $T TAUlS #265
I = INOM + LINEL #266
IMAGE(I) = $. INTS #267
IMAGE(I+1) = SERMEDIS =268
IMAGE(I+2) = S$ATE THS *#269
IMAGE(I+3) = SEORY § *270
I = INOM + 2#LINEL *271
IMAGE(I) = $X JOIS 272
IMAGE(I+1) = $N POINS 273
IMAGE (1+2) = $T TAUZ2S$ *274
I = INOM + 3#LINEL *275
IMAGE(I) = $+ ASYS 276
IMAGE(I+1) = $MPTOTIS *277
IMAGE(I+2) = $C THEQS - %278
IMAGE(I+3) = SRY s #279
I = INOM + 4s#LINEL =280
IMAGE(I) = $# EXPS$ 281
IMAGL(I+1) = SERIMENS *#282
IMAGE(I+2) = STAL PUS *283
IMAGE(I+3) = S$INT $ 284
I = INOM = 1 + 6#=LINEL v 2285
J =1 #286
IMAGE(IL) = $ JA = § #287
IMAGE(I+1)= I1JA #288
IMAGE(I+3) = § A = $ 289

IMAGE (I+4) = ORA. (BNBCD.(IA),CA) ) i %290
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e L= J % LINEL — _ =291
IMAGE(I) = $ LU = § #292
IMAGE(I+1) = ILU €293
IMAGE(I+3) = § RO = § #294
IMAGE(I+4) = ORA.(BNBCD.{(IR0),CRO) ~ e %295
I = J + 2#LINEL €296
IMAGE(I) = § X0 = § e e #297
IMAGE(I+1) = ORA.(BNBCD.(IX0),CRO) *298
IMAGE(I+3) = $P0OO = § 5299
IMAGE(I+4) = ORA.{(BNBCD.(IPCOO),CRO) #300
I = J +3=LINEL e #301
IMAGE(I) = $X00 = § #302
IMAGE(I+1) = ORA,(BNBCD,{IX00),CRO) *303
IMAGE(1+3) = $WATER § %304
I = J + 4=LINEL *305
IMAGE({I+3) = GASI #306
IMAGE(I+4) = GAS2 e I «307
FUNCTION RETURN #308
END OF FUNCTION o #309
TRANSFER TO BEGYND #310
END OF PROGRAM #311




APPENDIX V-2

NOMENCIATURE FOR COMPUTER PROGRAM FOR THE CASE
OF A NONSOLUBLE GAS

AO A, in Equation (56)

Al Coefficient in Equation (IV-2)
A2 Coefficient in Equation (IV-2)
A3 Coefficient in Equation (IV-2)
ATPHA o (mmg/sec)

ARG vNT  in Equation (84) (table)
A o' and % A,7 in Equation (55)

BO...B4 intermediate coefficients in INT

CH Cy in Equation (69)

CM Cy in Equation (69)

CRITL Equation (67)

c Lu/ (782 (1-x,))

D X = Xg

DXS X, - X in Equation (85)

DTAU Ar, time increment

DV V(N)/VMAX - 1

DW increment for w in Equation (69)
ER eP¥Terre br  in Equation (84) (table)
F function from Equation (56), F =0
FF oF/ D

G b in Equation (84)
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H,H1

I1
INT

JA

L1

L2

U

NUM
P1DOT
Pl
P2
PDOT
POO

PFDOT

PTH
Ql
Q2

RO
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bubble length in Equation (126), H = H1/S
frame number

frame number from which VMAX is averaged
integral of Equation (127)

Ja-number

Equation (66)

actual reference length of injector tip
measured reference length of injector tip
Equation (66)

Lu-number

Equation (66)

maximum number of pictures for a run

number of frames used in obtaining the average value of VMAX

P, dimensionless bubble size P = R/RO

theoretical value of P including the effect of residual volume
Ql

%

Q, relative dimensionless bubble size Q = (P-l)/(Pw-l)

R,, initial radius in mm



RATIO

RUN
Sl

SPEED

sUM
TAU1
TAU2
TAUDEL
TAUH
TAUM
TAUMS
TAUNUL
TAU

TDEIAY

- UTl
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CmIy/Cylg in Equation (70)

R, bubble radius in mm

run number

scaling factor for time (S1=1000)
film speed (fps.)

scaling factor for ruler system used in measuring bubble
dimensions

sum of volumes used for determining VMAX

T, in Equation (60), join point

1

s Join point

time delay, (here zero)

7y in Equation (69) T =Cq Iy
Ty in Equation (69) T = Cm Iy
nondimensional time corresponding to 1 ms
T, in Equation (8k4)

T dimensionless time T = a't/R§

time delay (here zero)

time in milliseconds

(R/fT)l in Equation (6L4)

(R/fp) in Equation (52)

(R/fx) in Equation (52)

VO initial bubble volume in mm5
asymptotic bubble volume in mmj

residual volume Figure 30(a)

bubble volume in mm5



WO

Wl

X0

X00

X551

X5

Yi..

YL
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W, = 1/P,

w, = P /P,

w = P/P

X
o

X
0

*s1

X_, interface composition
s

bubble diameters, Yo + V)

in Figure 30(e)
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APPENDIX V-3

DATA INPUT FOR RUN 523

RUN=523,

NHL=6:HSBH=89NVL=5oNSBV=20vXMIN=0o9XMAX=500oYMIN=looYMAX=2-2¢

= = = = = = = MAX1=1e2% .
IVC=435,IHC=5519IRUN=4519 INOM=484,
GAS]1=SNITROGS+GAS2=%EN $s FE7=.005s
RUN=5234SPEED=1008e9JA=91e79LU=18509X00=e89319A=616751911=170sN=195,
JUA=% 91,73 11 li=9% 1858

000 001 058 127 Q94 Q84 055 040 000
001 001 068 127 160 167 163 130 000
002 001 084 127 160 203 205 176 000
003 001 096 127 128 207 109 160 000
004 001 115 127 128 179 198 160 000
005 001 128 127 127 165 186 180 000
006 001 139 127 125 146 179 186 Q00
007 001 159 127 126 149 169 175 000
008 001 177 127 126 156 160 160 000
009 001 195 127 125 160 156 138 000
010 001 207 127 126 161 1564 127 Q000
0I1 001 222 127 125 163 150 119 000
012 001 230 127 125 165 155 114 000
013 001 204 127 125 165 166 136 000
014 001 179 127 126 166 173 164 000
015 001 163 127 126 164 188 176 000
016 001 154 127 126 176 193 194 000
018 001 141 127 126 194 221 191 000
020 001 134 127 150 220 220 179 000

-

[O

I

182 001 205 127 127 198.203 164 000
184 Q001 189 127 129 200 206 173 000
186 001 173 127 129 200 215 19] 000
188 001 161 127 129 208 226 197/ 000
-190 001 155 127 190 223 231 1%1 000
192 001 150 127 170 233 231 186 000
193 001 094 067 067 114 120 103 000
195 001 093 067 067 113 118 099 000
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-172-

APPENDIX V=i

BART 1_BUBBLE GROWTH

.

NONSOLUBLE GAS

(&)

RUN = 523 .
INPUT
I S HL L2 Y4 Y3 Y2 Yl YO {{INPUT. CONT'D)
0 1 58 127 94 84 55 40 0 88 1 171 127 127 200 214 194 ___ 0 _
1 1 68 127 160 167 163 130 0 90 1 159 127 125 204 227 199 O©
2 1 84 127 160 203 205 176 _Q o 92 1 149 127 145 215 230 199 0 _
3 1 96 127 128 207 109 160 0 94 1 144 127 170 231 228 183 0
4 1 115 127 128 179 198 160 0 96 1 144 127 183 230 224 176 O
5 1 128 127 127 165 186 180 O 98 1 143 127 160 226 224 186 0
6 1 139 127 125 146 179 186 0 100 1 152 127 130 216 230 186 0
7 1 159 127 126 149 169 175 0 102 1 161 127 128 204 220 197 0O
8 1 177 127 126 156 160 160 __ 0 . — 104 1 176 127 128 201 213 187 0O
9 1 195 127 125 160 156 138 0 106 1 200 127 128 196 204 165 0
. 10 1 207 127 126 161 154 127 O 108 1 208 127 129 194 198 165 0 _
11 1 222 127 125 163 150 119 0 112 1179 127 129 193 211 186 O
12 1 230 127 125 165 155 114 0 J7T 114 17162 127129 202 217 195 0O
13 1 204 127 125 165 166 136 0 116 1 153 127 127 217 228 190 0
14 1 179 127 126 166 173 164 .0 . . __ __ _ 118 1 146 127 160 231 2327196 "0
15 1 163 127 126 164 188 176 0 120 1 140 127 185 235 232 191 0
16 1 154 127 126 176 193.194 0 """71227 "1 144 127 177 235 234 188 O
18 1 141 127 126 194 221 191 0 1 152 127 150 228.234 190 0
20 1 134 127 150 220 220 179 0O - L1610 127 130 212 228 201 O
22 1 135 127 180 225 212 163 0 1 176 127 129 199 217 193 0
24 1 129 127 170 224 218 166 = 0 _ — 130 1 194 127 12871937204 175 0
26 1 130 127 140 209 221 188 0 132 1 206 127 127 192 196 162 0
28 1 144 127 126 194 211 194 0  ___ 134 1 204 127 127 193 199 161 ©
30 1 163 127 130 190 196 185 0 136 1 180 127 127 195 209 186 0 _
32 1 190 127 126 184 196 161 0 138 1 164 127 130 206 221 200 O
34 1 216 127 126 181 189 150 0 140 1 155 127 130 220 234 197 O
36 1 201 127 127 180 187 167 _ 0 S 142 1 150 127 165 233 236 190 0~
38 1 185 127 128 184 197 169 0 144 1 146 127 190 238 232190 0
40 1158 127 128 191 209 186 O e, 146 1 148 127 175 237 230 185 0
42 1 146 127 128 203 217 194 0 148 1 151 127 145 227 233 191 0
46 1 133 127 190 228 222 179 0 150 1156 127 134 209 225 200 O
44 1 138 127 135 222 228 181 O 152 1 170 127 127 199 216 190 0
48 1 135 127 185 230 223 179 0 154 1 190 127 126 198 204 175 0
50 1 144 127 155 231 227 178 0 156 1 203 127 128 197 202 164 0
52 1 152 127 127 208 229 200 O _T7T188 1 201127 128195 206 171 O
54 1 164 127 126 195 218 201 0 160 1 185 127 127 197 211 187 0
56 1 187 127 127 190 200 180 © 162 1 171 127 127 204 220 195 ©
58 1 208 127 128 186 189 152 0 164 1 160 127 128 216 228 190 0
60 1 213 127 127 184 185 148 O 166 1 150 127 160 225 229 193 0
62 1 184 127 127 183 197 180 0 168 1 146 127 172 230 232 190 0
64 1 168 127 126 191 210195 O = 170 1 147 127 170 231 230 185 0
66 1 157 127 127 209 228 193 0 172 1 149 127 160 227 228 192 0
68 1 145 127 150 231 236 19: 0 174 1 159 127 130 218 229 188 0
70 1 134 127 200 239 231 192 0 176 1 169 127 127 206 222 193 0
72 1 138 127 200 243 234 180 O 178 1 184 127 126 199 2137189770
T4 1 139 127 170 234 232 195 0 180 1 199 127 128 198 207 173 0
76 1 149 127 127:214 229 200 O . =~ 182 1 205 127 127 198 203 164 O
78 1 165 127 126 196 215 193 (¢} ; 184 1 189 127 129 200 206 173 0
80 1 186 127 127 190 201 177 0 H 186 L 173 127 129 200 215 191 O
82 1 202 127 127 189 196 163 0 ‘I 188 1 161 127 129 208 226 197 O
84 1 211 127 128 187 194 158 0 , 190 1 155 127 190 223 231 181 ~ 0
86 1 194 127 126 191 201 174 0 192 1 150 127 170 233 231 186 O
_ 193 1 94 67 67 114 120 103 0
195 1 93 67 67 113 118 99 0
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SPEED = 1008.000000, N = 195, RUN 523

A= «167510, Ll = 2.082000, VR ~+306000

vo = 2.785530, RO = 2876954, X0 168971

X00 = 893100, POO = 1.980842, PTH 1.9221179

VMAX = 21.960408, NUM = Sy 11 170

E5 = 100000, TDELAY = 000000, TAUDEL 2000000

1 T(1) MSEC R(L) MM viI CU. MM TAU & S) P Q

0 +0000 5837 «8330 0000 6656 ~+3409
1 <9921 1.0608 5.0000 «2161 1.2096 2137
2 1.9841 1.3133 9.4887 <4322 1.4976 «5073
3 2.9762 1.2774 8.7323 +6483 1.4567 <4656
4 3.9683 1.3644 10.6411 28643 1.5559 5667
5 4.9603 1.4058 11.6388 1.0804 1.6031 «6148
6 5.9524 1.4106 11.7594 1.2965 1.6086 «6205
7 69444 1.4449 12.6378 1.5126 1.6477 6603
8 7.9365 1.4687 13.2729 1.7287 1.6748 6880
9 8.9286 1.4739 13.4132 1.9448 1.6807 6940
10 9.9206 1.4816 13.6236 2.1609 1.6894 «7029
1l 10.9127 1.4998 14.1336 2.3769 1.7103 .7241
12 11,9048 1.5214 14.7519 2.5930 1.7348 « 7492
13 12.8968 1.5196 14.7019 2.8091 1.7329 « 7472
14 13.8889 1.5229 14.7963 3.0252 1.7366 «71510
15 14.8810 1.5158 14.5901 3.2413 1.7285 - 7427
16 15.8730 1.5543 15.7294 3.4574 1.7723 1874
18 17.8571 1.5744 16.3485 3.8895 1.7953 «8108
20 19.8413 1.5880 16,7755 4.3217 1.8108 «8266
22 21.8254 1.5825 16.6027 447539 1.8045 <8203
24 23.8095 1.5632 16.0014 5.1861 1.7825 + 7978
26 25.7937 1.5614 15.9473 5.6182 1.7805 «7957
28 27.7778 1.5777 16.4531 6.0504 1.7991 «8147
30 29.7619 1.6011 17.1966 644826 1.8258 8419
32 31.7460 1.6225 17.8930 6.9148 1.8501 8667
34 33.7302 1.6537 18.9455 73469 1.8857 «9030
36 35.7143 1.6428 18.5732 7.7791 1.8733 +8903
38 37.6984 1.6256 17.9957 8.2113 1.8537 8703
40 39.6825 1.6044 17.3018 B8.6434 1.8295 <8457
42 41.6667 1.6114 17.5286 9.0756 1.8375 <8538
44 43.6508 1.6147 17.6386 9.5078 1.8413 <8577
46 45406349 1.6205 17.8290 9.9400 1.8479 8645
48 47.6190 1.6316 18.1977 10.3721 1.8606 8774
50 49.6032 1.6590 19.1293 10.8043 1.8918 «9092
52 51.5873 1.6691 19.4800 11.2365 1.9033 29209
54 53.5714 1.6722 19.5903 11.6686 1.9069 9246
56 55.5556 1.6702 19.5183 12.1008 1.9045 9222
58 57.5397 1.6502 18.8280 12.5330 1.8818 <8990
60 59.5238 1.6441 18.6195 12.9652 1.8748 8919
62 61.5079 1.6414 18.5274 13.3973 1.8717 -8888
64 63.4921 1.6553 18.9998 13.8295 1.8875 <9048
66 65.4762 1.6756 19.7087 14.2617 1.9107 «9285
68 67.4603 1.6920 20.2944 14.6938 1.9294 9476
70 69.4444 1.6815 19.9169 15.1260 1.9174 «9353
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__(PART (b))  CONTAD)
12 T71.4286 1.6920 2042932 15.5582 1.9294 <9475
74 73.4127 1.6842 20.0135 15.9904 1.9205 «9385
76 75.3968 1.6699 19.5090 164225 1.9042 «9219
78 T17.3810 1.6586 19.1138 16.8547 1.8913 «9087
80 79.3651 1.6627 19.2586 172869 1.8960 «9135
82 81.3492 1.6722 19.5892 17.7191 1.9068 9245
84 83.3333 ,1.6796 19.8511 1841512 1.9153 «9332
86 85.3175 146822 19.9446 18.5834 1.9183 «9362
88 87.3016 1.6878 20.1428 19.0156 1.9246 «9427
90 89.2857 l.6811 19.9023 19.4477 1.9169 «9348
92 91.2698 1.6784 19.8078 19,8799 1.9139 «9317
94 93,2540 1.6T744 19.6665 20.3121 1.9093 «9271
96 95,2381 1.6628 19.2597 207443 1.8961 29136
98 97.2222 1.6556 19.0114 21.1764 1.8879 «9052
100 99,2063 1.6639 19,3000 21.6086 1.8974 «9149
102 101.1905 1.6762 19.7316 2200408 1.9114 «9292
104 103.1746 1.6921 20.2982 224729 1.9296 49477
106 105.1587 1.6994 20.5605 2249051 1.9378 «9561
108 107.1429 1.7085 20.8930 2343373 1.9482 . 9667
110 109.1270 1.6941 20.3683 23.7695 1.9318 «9500
112 1111111 1.6801 19.8675 24.2016 1.9158 «9337
114 113.0952 1.6684 19.4550 2446338 1.9025% «9201
116 115.0794 l.6724 19.5976 25.0660 1.9071 «9248
118 117.0635 1.7031 20.6961 25.4981 1.9421 « 9605
120 119.0476 1.6906 202432 2549303 1.9278 «9459
122 121.0317 1.7007 20,6075 2643625 1.9393 <9517
124 123.,0159 1.7084 20.8909 267947 1.9482 «9667
126 125.0000 1.7111 20.9890 27.2268 1.9512 «9698
128 126.9841 1.7049 20.7631 27.6590 le9442 «9626
130 128.9683 1.6940 203646 28.0912 1.9317 «9499
132 130.9524 1.6885 2041692 2845234 19255 «9435
134 132.9365 1.6880 20.1510 2849555 19249 <9429
136 134.9206 1.6839 200044 29.3877 1.9202 <9382
138 136.9048 1.6983 2045223 29.8199 1.9366 «9549
140 138.8889 1.7067 20.8280 3042520 1.9462 « 9647
142 140.8730 1.7201 2l.3212 30.6842 1.9614% «9802
144 142.8571 1.7215 21.3725 31.1164 1.9630 .9818
146 144.8413 1.7103 20.9582 31.5486 1.9502 «9688
148 146.8254 1.7009 20.6160 31.9807 19396 «9579
150 148.8095 1.6830 19.9727 324129 1.9192 <9371
152 15047936 1.6776 19.7801 3248451 1.9130 «9308
154 152.7778 1.6928 20.3236 33.2772 1.9304 « 9485
156 154.7619 1l.7054 20.7801 33.7094 1.9447 «9632
158 156.7460 1.7140 21.0972 34,1416 1.9545 <9732
160 158.7302 1.7085 2048922 34,5738 1.9482 <9667
162 160.7143 1.7061 20.8064 35,0059 1.9455 «9640
164 162.6984 1.6959 20.4328 35.4381 1.9338 «9520
166 164.6825 1.6975 20.4924 35.8703 1.9357 « 9540
168 166.6667 1.6966 204596 36.3024 1.9347 «9529
170 168.6508 1.6914 20.2736 36.7346 1.9288 =« 9469
172 170.6349 1.695L 20,4039 37.1668 1.9329 .9511
174 172.6190 1.6952 20.4105 37.5990 1.9331 «9513
176 174.6032 1.7027 20.6810 38.0311 1.9416 « 93600
178 176.5873 1.7159 21.1675 38.4633 1.9567 <9754
180 178,5714 1.7206 21,3390 38,8955 1.9620 .9808
182 180.5556 1.7144 21.1110 39.3277 1.9550 «9736
184 182.5397 1.6949 20.39178 39.7598 1.9327 .9509
186 184.5238 1.6909 20.2529 40.1920 1.9281 « 9462
188 186.5079 1.6928 20,3213  40.6242 1.9303 .9485
190 188.4921 17246 21.4878 41.0563 1.9665 - 9854
192 190.4762 1.7099 209445  41.4885 1.9498 9684
193 191.4683 1.7662 23.0821 41,7046 2.0140 1.0338
195 193.4524 1.7371 21.9604 42.1368 1.,9808 1.0000
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(@)  ASYMPTOTIC SOLUTION

SIsTAU I D
. 4.17370 1.0000 ) 20000
4.7418 1.1413 «l441]
e 4,7564 1.2484 - «2532
4.7806 1.3327 «3391

e 4.8145 o 1.4009 L4087
4.8581 1.4573 <4662
5.0096 1.5626 «5736
5.2216 1.6351 «6475

) 5.8275 1.7273 .T415 )

6.6757 1.7824 1971

~ 7.7662 1.8186 .8346
9.0990 1.8440 + 8605
10.6742 1.8627 «8796
12.4917 1.8770 <8942

14.5515 1.8883 . 90556 -

16.8537 1.8974 «9149

,,,,,,,,,,,,, 28.4658 1.9204 .9384
35.7558 1.9281 « 9462
_ 53.2039 1.9388 N «+9571
113.7875 1.9529 «9715
- 198.6046 _ 1.9599 .9787
440.9390 ) 1.9669 «3858

PART 3 _ PLOT OF P(TAU) AND Q(TAU)

__JOIN POINT TAUL
INTERMEDIATE THEGRY
JUIN POINT TAUZ2
ASYMPTOTIC THEORY
EXPERIMENTAL POINTS

i
* + X O

_ _1000*TAUMS = .217815 1 MILLISECOND = TAUMS
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APPENDIX VI-1

DATA FOR THE CASE OF A NONSOLUBLE GAS

SPEED Peo Q!
Run Liquid Ges (fps) T(°F) (inch Hg) (m®/sec) R, (mm) Ja In Xy X, P, Comment
504 HKO N, 1000 2041  28.15 0.1674 0.761 93.8 191 0.903 0.227 1.999 Stationary
511 Hy0 W, 4000 5 29.4 0.1435 1.548 450 1600 0.030 0,001 1,010 Formation
517 Hz0 N, 102k 163.8 11.97 0.1627 0.820 184,3 421 0.883 0.156 1.93% Stationary
521 HyO N, loak  1k9.2 7.98 0.1603 0.661  241.0 587 0.929 0.387 2,053 Stationary
523 H0 N, 1008 205.4 29.37 0.1675 0.877 91.7 185 0.893 0.169 1.981 Stationary
524 H0 Np, 1088  205.1  27.90 0.1675 0,747 92,0 186 0.933 0.231 2,257 Stationary
601 Hy0 He 1008  206.3 29.17 0.1676 0.8%9 90.4 560 0,915 0.326 1,994 Stationery
609  HYO He  26b0  164.0  11.35 0.1627 0.709  180.5 112k 0.935 0.405 2.090 Stationary
613 Hx0 He 2672 15%.2 8.92 0.,1611 0.803 22h,7 1430 0.908 0.386 1.884 Stationary
702 HO N, 1008  202.8  27.93 0.1672 0.76k4 95.% 190 0.89%0 0.203 1.935 Injector
Facing up
805  Hy N, 1otz 180.7  18.1k 0.1648 3,010  1%.2 291 0.8% 0.010 1.902 Moving

806 H0 N, 977 180.3 18.00 0.1647 2,994 137.k 297 0.85% 0.010 1.892 Moving
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APPENDIX VI-2

DATA FOR THE CASE OF A SOLUBLE GAS

Run 901 903 951 953 95k 955
Liquid H 0 Hz0 Hx0 H0 Hx0 Hy0
Gas i, NE, NH, NH, ;8 NH
SPEED 1008 1008 992 1008 1008 1008
fps

T,°F 181.3 197.8 204 .3 205.3 177.4 178.0
Polpsia) 9.01 11.8 13.7 14,27 7.87 9.48
%r;un2 sec) | 0.1649  0.1667  0.167h 0.1675 0.16k44 0.1645
pexlo'5

(ohm-cm) 30 30 38 36 35.5 36
p*B(psia) 6ho 779 835 846 613 617

Kp ref.(47)| 0.0578 0.0588 0.0600 0.0788 0.0526 0.0624
Ja 135.4 104.0 93.2 91.5 14k,0 42,5
Lu 405 285 258 252 312 308
Iu' 9x10° 9x103 9x107 9x107 9x100 9x107
x" 0.858 0.932 0.920 0.901 0.901 0.758
(1-x2)x10° | 2.5 2.5 1.6 1.8 1.85 1.8
x) n 0 n O n O n O ~ O n O
L-x¥ 0.0082 0.0040 0.0048 0.0078 0,0052 0.0151
if;B/hng 0.8 0.8 0.8 0.8 0.8 0.8
(1-¢)x10" 3.3 4.5 £.0 5.0 2.9 2.9

A, Eq.(106)| -8.76 -9.00 -8.18 -6.0k4 -8.97 -4.63
Comment Moving Moving Stationary Staetionary Stationary Stationary



APPENDIX VI-3

DATA FOR BUBBLE OSCILIATIONS

Mean Measured Theoretical Relative Relative
Radius TFrequency Frequency Polar Equivalent
Eq. (20) Amplitude Radius
RUN R f fin a/R Reg/R
(mm) (sec™1) (sec-1)
50k 1.k9 T7 76 .073 .973
510 1.46 79 83 .194 972
511 1.51 78 79 116 .93k
513 1.61 70 66 k2 .987
522 1.30 96 93 122 .992
523 1.69 56 63 AT .991
601 1.57 67 69 .115 LOTh
609 1.48 7 78 .130 .970
613 1.5%0 e 76 .13%8 . 960
702 1.4t 80 7 .061 .973
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