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ASYMPTOTIC THEORY OF DIFFRACTION
by

Donald George Larson

ABSTRACT

Given a smooth, convex conducting body of revolution with a plane
electromagnetic wave propagating in the direction of the axis of revolution,
the problem considered is that of finding an expression, valid for small
values of wavelength, which describes the currents in the vicinity of the
caustic in the shaded region of the surface.

The problem is formulated in terms of an integral equation obtainable
from a three-dimensional Green's function. The integration with respect
to the azimuthal variable is carried out by two different schemes and the
results discussed in relation to one another. The remaining integration,
which is over a geodesic path, defines an integral equation which possesses
a singular kernel. This singular equation is then studied in conjunction with
a bounded kernel.

The body of revolution under consideration to this point is then special-
ized to the case of the sphere in order to compare the theory with known

results, and some of the physical implications of the theory are discussed.
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CHAPTER I
INTRODUCTION

1.1 Brief Survey

If an electromagnetic wave exists in space and then an obstacle is intro-
duced into that space, changes occur in the electromagnetic field. In the
study of this phenomenon it has been found that if a complete description of
the currents induced on the obstacle by the original or incident electromag-
netic wave can be obtained, then the induced currents may be used as a source
distribution which generates a scattered field. The field resulting from the
incident field and the obstacle may then be completely described in terms of
the incident field and the scattered field. In this sense it may be remarked
that the problem of properly describing the currents on the surface of the ob-
stacle is of fundamental importance and may be designated as the diffraction
problem.

The problem of adequately describing the surface currents, even in the
case of an obstacle for which an exact solution to the problem can be found, is
very difficult. Many restrictive assumptions must be made before any detailed
study may be undertaken. Therefore, the following set of assumptions is not to
be considered as exhaustive, but is to be interpreted as limiting the class of
problems to be studied in order to establish a starting point.

Consider the case where a plane electromagnetic wave impinges upon a
smooth (i.e. no edges), convex, conducting body of finite volume. Further
require that the dimensions of the body be large when compared to the wave-
length of the incident wave. The finite volume restriction may be removed
in the case where one wishes to consider the two dimensional theory of diffraction.

Under these assumptions it is found that a shadow is formed, and that
even for the case of the large sphere, knowing the exact solution is of little

value because of the slow convergence of the Mie series.



The first effective solution of this shadow problem was completed by
Watson (1918, 1919) when he was able to transform the series solution into
a residue series which converged rapidly. Much later Fock (1946) and Franz
(1954) were able to generalize the theory to include convex bodies other than
the circle and the sphere although a number of questions in connection with
the residue series were left unanswered. In this regard Goodrich and
Kazarinoff (1963) discussed convergence of the residue series and Ursell
(19&38) concerned himself with the problem of exponentially large terms appear-
ing in the application of the Watson transform for a cross-section other than
the circle. Goodrich (1959) extended the work of Fock and was able to pene-
trate more deeply into the shadow zone with the applicability of the solution.

Franz and Depperman (1952, 1954) examined both the problem of the
circle and the sphere by making use of the integral equation of diffraction
theory as set forth by Maue (1949) and by decomposing the problem into a geo-
metric optics wave and a creeping wave. From this stage of development of
the theory until the present time many different authors have coped with several
aspects of the diffraction problem. Because the viewpoint of this work is the
integral equation approach to the diffraction phenomena, the remainder of this
short introduction will be confined to work which deals with this approach.

Cullen (1958) began with the same integral equation that Fock used in one
of his papers and was able to solve the equation directly. Hong (1966) also
studied the surface waves for the scalar and vector incident waves.

In all of the work mentioned to this point it is implicit in the analysis
that the results are not valid if the creeping waves converge. If the creeping
waves do converge to a point, a combination of incoming and outgoing waves
may be continued to a solution which remains finite at this point caustic. This
process was investigated by Franz and Depperman (op cit), Goodrich, Harrison,
Kleinman and Senior (1961) and is also discussed by Honl, Maue and Westpfahl
(1961).



The purpose of this research is to investigate the surface waves in the
neighborhood of the caustic and to investigate the feasibility of attempting to

find terms other than the leading term in this neighborhood.

1.2 Preliminary Remarks

By using the standard Green's function techniques, the exact integral
equation which relates the surface currents to the incident field may be derived.
If the current and the magnetic field quantities are represented by the complex

vectors _j and ﬁ respectively, the resulting equation is (Honl et al):

-;—3(}') +§ nx 17 (1) xVG(F-P)} ds' = nxH(r) (L.2.1)
s

where ;, ' are vectors measuring the distance from the origin to the obser-
vation and source points respectively, n is the outward unit vector normal
to the surface, and the integration is to be carried out over the entire surface.

Making use of the three dimensional Green's function, one may write

_ o) klrrl -y ke

ar |7 -0) 3

VG (r-r') (1.2.2)

It is also to be noted that in this work the time factor e_i(’lJt has been sup-
pressed. This is as far as one can proceed without becoming more specific
as to the nature of the surface under consideration.

The purpose of the next chapter is then two-fold, firstly to adequately
describe the surface and secondly to rewrite the problem in terms of that
description. The reduction to geodesic coordinates (Chapter II) and the
stationary phase argument (Chapter III) follow the work of Hong with minor

exceptions.



CHAPTER II
THE DIFFRACTING SURFACE

2.1 The Geodesic Coordinate System

For a suitably smooth surface the length element can always be reduced
to geodesic coordinates such that

ds2 = du2 + G (u,v) dv2 . (2.1.1)

Further if one picks a point on the surface and considers all of the geodesic
lines emanating from that point (these are the u-lines or the v =constant lines)
and constructs the orthogonal trajectories of the geodesic lines, this defines

a geodesic polar coordinate system and it is then allowable to write
{60, 9 =0 [i G (u v)] =1 . (2.1.2)
’ * |ou ’ u=0

{E may be expanded into a Taylor series in terms of u, and if this is

done the result is

VG(u,v)=u—é1-K(O,v) u3+R(u,v) (2.1.3)

where K (0,v) is the Gaussian curvature evaluated at the origin of the coordi-

nate system, and R (u,v) is of order n> 3 in u.

If ‘JG (u, v) =1G(;) (i.e. the torsion of the geodesic is zero), the geo-
desic curve is limited to a plane curve, and hence the surfaces under consider-
ation must be limited to surfaces of revolution. This results in the simplifi-

cation that if r is a position vector then

or

v =b. (2.1.49)

That is to say that the binormal vector is tangent to the surface if the surface

is a surface of revolution.



Also,
or
ou

I
|

(2.1.5)

The higher order derivatives of T can then be given in terms of the
derivatives of t_, E, and b where t_, H, and %— are the unit tangent,
normal, and binormal vectors respectively. The derivatives are given by

the Gauss-Weingarten equations:

., q

ou gt

% _

v du tt -~ ?

b _ - =

N G[Kttt +lctnn] ’ (2.1.6)
om -

ou = th ]

ov tn

where Kg is the curvature of the geodesic, « t and « tn 2T€ the tangential

and normal components of the curvature of the u = constant curves.

The Gaussian (or total) curvature is given by

A )

K=KgKtn= —rc-}-\ o s (2.1.7)
ou
and
- 1 oG
K4 = 3G g (2.1.8)

In addition to these equations there are conditions that must be imposed

in order to satisfactorily define the mixed partial derivatives.



Among these conditions are the general results known as the Codazi condition

which are given by:

oK
o _ k. (k -k )
ou tt g tn' ’
oK (2.1.9)
—£ =0,
ov

geodesic curve
(v = constant)

geodesic circle
(u= constant)

origin of geodesic
polar coordinate system

FIG. 1: SECTION OF A SURFACE OF REVOLUTION ILLUSTRATING
THE NORMAL, TANGENT, AND BINORMAL VECTORS.



2.2 The Distance Between Two Points on the Surface

The position vector used in the last section is sufficient to define the
geodesic coordinates associated with an arbitrary smooth body, but in the
work which follows it is necessary to define the distance between two points
on the surface in terms of the geodesic coordinates. In order to accomplish
this, define R by:
R = ;(u', v -;(u, v) (2.2.1)

and make use of (2.1.4), (2.1.5) and (2. 1.6) in writing a Taylor series expan-

sion for R about the point (u,v). The result of this expansion is

L TuRE — .
R Rtt Rbb +Rnn (2.2.2)

where the components are given by:

1 2 3 1 . 4 1 v .2 4
R =(@W-u-=k (u-u) --kk (u-u -— (-4k k -3k +k)
t( )Bg( ‘ Sgg( 120( g8 g 8
5 1 2 1.2 2
o (' - -— 1_ - = 1_ 1 +
(u*-w) + . . . 5 GKtt (v'-v) 2GKtt (u*-uw)(v'-v)
{even terms in (v'—v)} (2.2.3)
R
b , . , 1 . 2, 1 2, 3
— = (y'- - V) - — - -y) - = - +
"E‘ (v'-v) + o (u'-u) (v'-v) 5 Kg;ctn(u w (v'-v) 5 GKt (v'-v)
{odd terms in (v'-v)} (2.2.9)
1,2 1. . .3 [ 1 L2
= - - - = - +. .. +}-5 -
Rrl §Kg(u w) 6Kg (u'-w 5 Glctn(v V)
- LGK Kk, (u'-u) (v'-v)2 + {even terms in (V'-V)}] . (2.2.5)
2 tt tn

In the above equations (and in the following) the metric and various cur-
vatures appearing without argument are to be interpreted as the value of the
function at the point (u,v). The dots appearing above some functions signify

the derivative of that function with respect to u.



The distance between two points on the diffracting surface may also be written

R=|r-r'

=[Ri + p2 + p'2 - 2pp' cos (¢'-¢)] 1/2
. 1/2
=[R(2) +4 pp' sin’ LZZQ] (2.2.6)

where RZ is the component of the distance which is parallel to the axis of
rotation of the diffracting surface, (p', #") and (p,@) are the polar coordinates
(referred to the axis of symmetry) of the source and observation points res-

pectively, and Ro is the distance between source and observation points when

p =9

7

my

FIG. 2: ILLUSTRATION OF THE ALTERNATE DISTANCE PARAMETERS
AND THE INCIDENT (VECTOR) PLANE WAVE.



2.3 Formulation of the Problem

The nonhomogeneity appearing in (1. 2. 1) contains an incident magnetic
field vector which may be expressed by

-ikt (B, v) - T (u, v)

H(u,v) = [sin¢ n (B,v) - cosPhb(B, v)] e (2.3.1)

where B is the u value assigned to the shadow boundary, and ¢ is the polar-
ization angle of the incident field (refer to Fig. 2). It is convenient to nor-
malize the radius of the circular cross-section of the body of revolution to the
maximum radius which occurs; namely the radius at the shadow boundary.

Under this assumption

H(u,v) = [sinvE(B, v) - cosvb (B, v)] o ikt (B, v)e r(u,v) (2.3.2)

This incident magnetic field may then be operated upon to produce the
incident surface wave which will explicitly contain the factors sinv and cosv
as listed below in (2. 3. 4).

This is as far as the present discussion of the incident field will go in
this report, namely to observe the appearance of the factors sinv and cosv
which will motivate some of the assumptions in the work to follow. For an
asymptotic estimate of the incident field and its application to the penumbra
region refer to the work of Hong (1966).

If now 3(;) is written in the form
J(r) =6(0) t () + B(x) b (1), (2.3.3)

and substituted into the integral equation, the result is of the general form

6@ T@ +p@ b @) = sinva BoE<osv 3D TD -

ff ds' [o@ tE) +pE b)) meve (-1 . (2.3.9)
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Thus it is seen that if the unit vectors do not change rapidly as a function
of r and if the main contribution to the integral comes from a neighborhood of
the point (u,v) (i.e. r 2y ), then each of the component currents must sat-
isfy the integral equation which also arises when an acoustically hard surface
is subjected to a plane acoustic wave. For this reason the first problem to be
studied will be the scalar problem under the assumption, at least for the present,
that the only differences which show up in these problems are the conditions
which must be satisfied at the shadow boundary.

By using the notation of the last section and (1. 2. 2), the scalar equation of

interest may be written

1
¥ (u,v) = zwinc(B’ v) [sinv ] - él_”ff dv' du' 4G (u") ¢(u', v')

COosvVv

. 1_1§R H(u‘,v')-ﬁ elkR (2.3.5)
R
where
R=r1 (u',v) - r(u,v) . (2.3.6)
1
The notation |sinv means that any one of the three quantities may multiply
cos v

the other factor. The "one'" multiplier refers to the scalar problem and the
two remaining factors indicate which component of the vector problem is under
consideration.
Because the particular problem of interest in this paper is the description
of the currents deep in the shadow region, it is assumed that the incident wave
term in the integral equation will be deleted. That is to say that the main concern
of this research will be the study of the homogeneous integral equation. This
approach was taken by Franz and Depperman (1952) in their study of creeping waves.
In Cullen's paper it is stated that the homogeneous equation has no non-

trivial solution because it would represent a free oscillation of current which
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would radiate energy and damp out.

Honl et al (1961) consider the homogeneous integral equation approach to be
a valid approximation (in the optical limit) as long as the integration is carried
out only over the shaded region of the body, and as long as values are chosen
for the constants appearing in the solutions so that a smooth transition is ob-
tained as one moves into and through the penumbra region.

Goodrich (1969) is presently working on research that would indicate that it is
possible that the concept of using the homogeneous equation and confining the
integration to be over the shadow region only may be exact in the case of the
circle and the sphere.

With these thoughts in mind the only touchstone used in this research will

be the results obtained for the currents in the vicinity of the caustic.



CHAPTER III
REDUCTION OF THE TWO-FOLD EQUATION

3.1 Observations Concerning the Point of Stationary Phase

First consider the exponential factor contained in the integrand of (2. 3.5)

and notice that
S I o P S
ov' ov' Rt ov' b ov' n dv'

_ G(v'-v)

R [1+Ktt(u'—u)+. . ] . (3.1.1)

This means that the integrand contains a point of stationary phase at the
point v' = v. (assuming ¥ (u,v) does not vary rapidly as a function of v).

In the following work designate the difference r (u',v) - T (u,v) by the
symbol I_{o. If a stationary phase analysis is carried out for the integration
with respect to v', the equation that remains will contain the factor exp(ikRo).

Notice that Ro may also be expressed by

R =[R2 +R2] 1/2
0 to no
2 . 1/2
g o2 S 03
= 1_ - 1 _ - 1
lu ul 1 To (u'-u) 2 (u'-u) " +...
2 L]
* 2 % 3
= L - 1 - 1_
Iu ul 1 54 (u'-u) o (u'-u)” + ... (3.1.2)

This result indicates that the integration may be partitioned according as
u'<u or u<u'. Also it may be noticed that if the leading term in the above

expansion for RO is removed, the resulting expansion, namely

K.2 K K
]u'—ul --2—2- (u'—u)2 ——gzg (u'—u)3 +...

12
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possesses a point of stationary phase at u' = u. This observation in turn
indicates that the unknown should perhaps be written as the sum of an in-
coming and an outgoing surface wave. If this is substituted into the integral

equation, the exponential terms that appear are given by
2 2

5 3 . “g 3
exp 1le-24 (u-u') ) , exp vik (—u+2u' - 94 (u'-u) ) ,

2 2
K

exp {ik (u-2u' - ﬁ' (u—u')3 )} , and exp {ik(—u - ;1{ (u'-u)S)}

where the first term corresponds to the outgoing wave for u' <u, the second
one corresponds to the outgoing wave for u'> u, the third one corresponds to
the incoming wave for u' < u, and the fourth and last one corresponds to the
incoming wave when u'> u. The first and fourth exponentials listed above
contain a point of stationary phase when u' = u. If ,however, either the second
or third exponentials have points of stationary phase, they must occur when
Ro is a decreasing function of its argument. This is not possible if the variable
of integration is restricted to the shadow region of a convex body. Therefore
both of these integrations may be asymptotically neglected if the difference of
u and u' is large enough that k Iu' - ul >> 1. The maximum contribution to these
these two integrals will then also appear in the neighborhood of u' = u. For
these reasons the kernel of the equation may be approximated by its behavior
near the point u'=u in all of the work to follow.

The last observation of this section is to point out that neglecting the
integrations which do not possess a point of stationary phase is tantamount to
assuming that there is no coupling between incoming and outgoing waves for the

high frequency case.



14

3.2 Development of the Asymptotic Integral Equation

In this section an asymptotic treatment of the v' integration appearing

in(2. 3.5) will be carriedout. To accomplish this recall that if

(00]

2= 18 =2+ zAngn,Al#O (3.2.1)
then n=1
Ez) =€ _+ i B_ z" (3.2.2)

n=1

where Bn is defined, by way of residue theory and Cauchy's integral formula,

) dn—l [ £ ] n}
nB = - (3.2.3)
n (n-1)! {dg"n_l £(&)

£=0

by the following equation

With this in mind examine the exponential factor and let

W2 R-R_ o .
5 = 5 = z AW-0",A 40 . (3.2.4)
n (0]
(v'-v) (v'-v) ol
R-R

If £(£) is then chosen to be _v——\% , then

L

o -1/2

£ _ oyl

K5 z An (v'-v) . (3.2.5)
n=0

Therefore, for the problem under consideration, the series of interest
is given by
00
1. -
dviv) 2 0B Wil (3.2.6)
dw n

n=1
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where an is calculated by placing (3.2.5) into (3. 2. 3) which yields the
result

X fT& AL o /2
"B = —7; — [2 KPEP] .(3.2.7)
Ao (n-1)! d& =0 )
For reference the first three Bn are listed:
a2 B -
o) 1
A1
ZAO B2 = -3 (3.2.8)
o
2
L I s N
o) 3 4 2 A
A o)
o}
Next consider the factor
1-ikR - = n
' 1 1 LAY = LI
y(u', v R3 n(u,v)-R f Cn(v v) . (3.2.9)
n=0

Since this factor is to be evaluated in the neighborhood of u'= u, the approxi-
mation n (u',v) 2~ -n (u,v) may be used to simplify the results. The first

few Cn are also listed for reference.

1-ikR _ _ 1-ikR
- ' 1 v)e ~ 1
C,=Wu',v) —=— n (u,v) R W', v) —= Ky
R 0
)
3y (u', v) H-ikR,
17 T oR_ ©
Y & (3.2.10)

2 1 ! 3 _s 2 - —

202 = [8 gg(uz,v) 12111:R k_+yfu', v") é% L 1;R 8_R2 n+'R +
ov' g R oV

3 2

- 2 - -
+ yl(u',v") L-ikR 92 (n-R)] .
R ov' vi=v
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By making use of all of this information, a series in powers of w may be

n(u',v")-R = f anwn. (3.2.11)
R’

n=0

written as follows

_Suw(,

The an may be evaluated from the series representations of the factors in a
straightforward manner. The results for the first few a_are listed (in terms
of Bn and Cn) below in (3. 2. 14). ,

Under the substitution R = RO + w and the general result (3.2.11) the

integral equation (2.3.5) becomes

2
1 .
Y(u,0) = - —;r'fdu' ‘1G(u' e f a_n_ nelkw dw

Under the transformation ikw2 = -t

w a .2 a - m a

n n ikw 0 41 n e
a — w e dw—+» — A= —
o) a 2 k a

(o] (0] Z
n=0 n=0 2

,_.
=]
>
8
o
M|=,
—
o
1
L d
Q.
[ ad

where t=0 corresponds to the point of stationary phase and the stationary
phase theory along with the theory of contour integration allow the integration
to be carried out over the path indicated.

Using the fact that the above integration with respect to t defines the
Gamma function of argument n-l +1, (3.2.12) is transformed as follows:

2

inz
4

®, & Wl{F)e
w(u,0) = du’ G(u a 2 — (3.2.13)

e
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Finally using (3.2.11), (3.2.6), and (3.2.9), (3.2.13) may be written

in terms of Bn and Cn as follows:

= - — —_— 1 1 — — 4+
¥ (u, 0) 4]’7& du *JG(u) C,B,e 1+ 2B1 + c, -
T
2\ i+ 3
B B, C C,B 2 -
1 3 271 271 \e ( 2)
+— B + + . . .
:\®3, Y77 Yo, JE tON (3.2.14)

This derivation is purely formal and until one becomes more precise about
the limits of the v' integration and the corresponding limits of the w and t
integrations the terms other than the leading term are apt to be overshadowed
by the error introduced by arbitrarily extending the limits of integration. For
the purpose of this report the first term is all that is required and therefore
no analysis other than this will be undertaken. The only purpose of the section
following this one is to complete, in some sense, the formalism established and

it will be referred to only once in the work to follow.

3.3 Decomposition of the Integral Equation

In the case where the axiallyincident field is giventobe scalar field itis recog-
nized that for a body of revolution the surface field should not be a function of v.
Therefore, in (3.2.10) all terms involving derivatives of y/(u, v) with respect
to v may be dropped. It is then noticed that a factor /(u,0) is common to each
of the Cn listed in (3.2.10). In order to introduce the unknown explicitly, make
the substitution ao = (u) 3'2) in (3.2.13) and Co = y(u) CE) in (3. 2. 14).

The equation finally attains the general form

¥ (u) =,‘%fdu‘t//(u') A(u,u') [1+ B(‘%’\ul) + C(l;;u') + ] (3.3.1)

where X is taken to be a complex constant.
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From this representation it is easily seen that if y(u) is assumed to

be of the form wl wz
=y + = T +... .3.
% wo i + " (3.3.2)

that the following identification can be made:

0,0 = f du' y_(u) A(u,u)

l[/l(U.) = ,{—%[I du‘(//1 (u") A (u,u") +f du'dxo(u')A(u, u') B(u, u')]

wz(u) = ,{%[fdu'wz(u')A(u, u') +fdu'(//l (u) A(u,u") B(u,u"

+f du'wo(u')A(u, u')C(u,u')]

It is immediately noticed that if the homogeneous equation contained in the

(3.3.3)

set (3. 3.3) possesses only the trivial solution, that (3. 3.1) necessarily possesses
only the trivial solution. If (3.3.1) were cast as a Fredholm equation, it is very
likely that there would be no solution for the cond;tions on the non-homogeneous
terms which would be required by the alternative theorem would not normally

be satisfied. If the problem were cast as a Volterra equation, and the homo-
geneous equation possesses a non-trivial solution, the procedure would be
straightforward in that each of the non-homogeneous equations must be solved,

and then the solution(s) of the homogeneous equation must be appended to that

solution.

3.4 An Equation Defining the Outgoing Surface Wave

As indicated in 3.1 it will be assumed that no coupling exists between

the incoming and the outgoing surface waves. The equation that governs the
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outgoing surface wave may then be written

N iR,
ylu = - " ﬁf du' JG(u") ¢(u C:) Ble . (3.4.1)
0

The product y(u') C(‘) is given direetly by (3. 2. 10); however, further work is
needed to approximate the factor B_.

First note that (3. 2. 8) indicates that
1 32R 1/2
B1 = ['2' — ] . (3.4.2)
ov
v=0
By following the procedure established in (3. 1. 1) and applying (2. 2. 3), (2.2.4),
and (2.2.5) an approximation may be obtained for B, for values of u' near

1
u. The following procedure is an outline of the application of this plan.

2 aRb 2 ath 82Rn
"R (—BT) PR T TR T 2
ov o}

v=0 ov ov

QO
=
—

|

(U
=

v=0

2
G Ly L b
Ri{“"tt‘“ w- 5 KgKtn(u “)}

_{1+I€ (u'—u)}R {K. t+l<t H}]

~ 'l(;(“) ('{-Gm' [1+:c (u'—u)—- g (U= ]) . (3.4.3

(o)

I

In light of (2.1.7) and (2.1, 8) it is noticed that the quantity contained in
the parentheses is nothing more than the first few terms of the series expansion
G(u') about the point u. Therefore (3.4.3) may be approximated by
1

Blz ZRO [G(u')'G(u)] 4 . (3.4.4)

If these approximations are substituted into (3.4. 1) the integral equation becomes
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1
143 u ) 4 ' 1-ikR0 ikRO
(,0([1) = - 4 V; K.gf du [G(u)] lp(u) m e . (3.4. 5)
0

This equation may be written 9

: u .
Wu) = -\’81? g f dr ﬁT e 22 =) (3.4.6)
0

under the assumption that y(u) contains a factor elku (i.e. that it is outgoing)

and the transformation u-u'= 7. It is to be observed that the solution of

(3.4.6) must be multiplied by G_1/4(u) in order to be a solution of (3.4.5).

3.5 An Equation Defining the Incoming Surface Wave

In the development of (3. 4. 6) no approximations concerning the kernel
were made that would be changed by considering u'> u. The only differences
which must be accounted for are the region of integration, and the approxi-
mation of Ro according to (3.1.2). The equation of interest may then be

written directly, and is KZ
3
ikT-ik £ T

- B-u . ikt
1-ikr 24
Uu) = - ‘\‘—B;k K I dr e Yutr)  (3.5.1)
g V'T
0

-ik
under the assumption that y{u) contains a factor e "% and the transformation

T=u'-u. Again, the solution of (3.5.1) must be multiplied by G—1/4(u) to be

a solution of the original equation which represents the surface field. The value
u= B represents the shadow boundary.

In both equations it is seen that the point of stationary phase may be associ-
ated with a "source" and/or "sink" point, and that the field at an observation
point depends upon the distance (along the surface) from the "source" point to
the extent that the integration is to take place over that distance interval. The
upper limits of integration may, in some cases, be extended under the assump-
tion that this will not appreciably change the result of the integration. This is,

for instance, the approach taken by Honl et al (1961).
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Designate by (//(1, 2 (u) the solutions of (3.4.6) and (3. 5. 1) respectively.

Then by associating the upper sign with the one, and the lower sign with the two,

both equations may be summarized by

fz 3
. 00] . ikT-ik T
1,2 - 4 -
‘l/( , )(u) — _“’___8;1( Kgf dr 1 ;k’r . 2 S//(l’Z) (Wi 7).
0

(3.5.2)

3.6 Remarks Concerning the Vector Problem

If only the first term of (3. 2. 14) is considered and it is assumed that the
unknown may be written in terms of a product of a function of v only with a
function of u only, it is evident that any choice for a function of v will satisfy
the requirements in the shadow region. If it is assumed that the first term
of (3. 2. 14) applies up to the shadow boundary the nonhomogeneous term from
(2. 3.5) may be used to limit the class of acceptable choices. Again this as-
sumption is of a formal nature and to justify its use one should supply an answer
to the question: "In what regions of the surface is it valid to apply saddle point
integration techniques ?"

If the nonhomogeneous term in (2. 3.5) is assumed to have a factor cosv
it is readily apparent that if the unknown is assumed to possess a factor of cos v,
then this factor is common to all terms. That is to say that it is an acceptable
choice for the function of v in the solution. Similar remarks apply for the case
where the nonhomogeneity contains a factor sinv.

The generalization formed by taking a linear combination of sinv and cosv
does not readily yield any information from either (2. 3.4) or (2.3.5). In fact
when viewed in these equations any attempt at generalization does not seem
appropriate or necessary.

The conclusions are that each of the components of the vector problem,
when viewed as functions of u, must satisfy the scalar equation. However,
to be properly identified, they must be multiplied by the appropriate polariza-

tion factor, cosv or sinv, before being interpreted as the currents induced
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by ana incident electromagnetic plane wave. In light of this discussion the
factors sinv and/ or cosv may be dropped from the discussion and reintro-

duced at will without changing any results.



CHAPTER IV
AN ALTERNATE REDUCTION OF THE TWO-FOLD EQUATION

4,1 Alternate Form of the Kernel

By making use of the alternate form for describing the distance between
two points on the surface, the integration of the three-dimensional Green's

function, elkR/R, may be carried out as follows:

2 2 §-p

+ !
ik Ro 4pp'sin 3

f¢+7r KR f¢+7r
=
R2+ 4pp! sm:2 M

§-n
1 1 i2k Vpp V
- dz e
1
ep f . 1-2° R .
- _-2’ + z

4pp
\/Ri ;
- izk App" Y 7— t+z
1 1 22 3 4 e 4op
= —_— dz |1+—+=2z"+... (4.1.1)
pp' 2 8 2 B
+

-1 Ro 2
— +z
4pp’

Consider for a moment the following integration by parts:

2n ik x2+ z2 2n-1 . 2 2
dz e . Z o ik yx +z _
z

ik

ik

b 2. 2
3 2n-1f 4 20D elkVX +2" @.1.2

a
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If this result is applied to the preceeding equation with a = -1%, b=1-,
and n >0 itis seen that, from the second term on, the integration is O(k_l),
If the limits of the first integration are extended to include all of the real
axis, the error introduced is twice the above integration by parts with a =1,
b-+o and n =0 and is therefore also O(k-l).

The same results could have been obtained in the original form of the
integral by recognizing the point of stationary phase at §'=¢ (the points
-7, 7 are not candidates as points of stationary phase because they do not
lie in the open interval under consideration) replacing sin .@_'Z;Q by the first

term in its series expansion and extending the limits of integration.

Then, using the equation (Magnus and Oberhettinger, 1949, p. 27):

1k X +t
(kx) I T\— (k, x real and positive) (4.1.3)

it is seen that

P+ ikr _
f dg' eR =ﬁ [iﬂ Hgl) (kR ) +0O(k 1)] (4.1.9)
p-x '

The three dimensional Green's function for the Neumann boundary condition

may be written in the operator notation

ikR
1-ikR kR _ d\e
= e = (1 kdk) = . (4.1.5)

If, in the Neumann problem, the integration with respect to the azimuthal

variable and the above operator are interchanged the result is

(1-k£—)f¢+7d¢' ei;m =(1 k df{)r- [ (1)(kR)+0(k )]

-

= AT [kR H(l)(kR)+O(1)] . (4.1.6)
']pp
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By forgetting for a moment the factor multiplying the brackets of this

equation it is noticed that

3
2kR ilkR - —
R 1Y (kr )~\’——9 e( ° 4) (4.1.7)
o1 o) T

for large values of the product kR0 . If this is compared with the corresponding
part of the kernel in (3. 4.5), assuming in that equation that kRo >>1, itis ob-

‘served that the functional form in both representations is the same.

4.2 An Error Analysis

A question may be asked at this point. An assumption that the unknown
contained an exponential factor moves the point of stationary phase from some
non-zero point (the point u'-u = (2n+1)x in the case of the sphere) to the point
u'-u = 0. At this point R0 = 0. What error is introduced into the problem by
using the asymptotic representation of the Hankel function?

Consider, for a moment, the integration

N
u_-—!

© () K (1)
f kROH1 (kRo) Y(u") du' = f kRoH1 (kRo) ¢ (u") dut +
0 0

+] ko 1 (R ) gy aw +
o1l 0
"k

® (1)
+ I g 0R )y )@ (4.2,
e

where it is to be assumed that N is large enough that it is reasonable to replace
kRoH(ll) (kRo) by its asymptotic representation in the first and third integrations
on the right-hand side of (4.2.1). The second integration may be bounded as

follows
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N N
u+ = w =
I “ i B @R ) v aw | < L f k) B (ie(u-wn) diw
u

N N :
K Tk
N
= g— f z i HE)I) (z) dz (4.2.2)
-N

where it has been assumed that /(u) is bounded and that § is the maximum
value of /(u) in the interval under consideration. ¢ may include k to some
power, in which case (4.2.2) simply demonstrates that the contribution of the
middle integral is of the order of the solution generated plus one in inverse
powers of k. Therefore, to this order the solutions generated by the asymp-
totic approximation of the Hankel functions are valid, and as k == o may be
written as integrations from 0 to u and from u to @ as recorded previously

in Chapter Three.

4.3 Development of the Alternate Equations

The kernel of the equation, namely kRoH(ll) (kRo), has only one extreme
value when the kernel is assumed to be a function of a real (non-negative)

variable and this occurs when Ro = 0. Because this point is also the stationary
phase point when considering the shadow region (away from the caustic) it

seems reasonable to assume that the major contribution to the integration will
come from a neighborhood of this extreme value, and that the contribution

gained from allowing u' to stray away from this neighborhood will not appreciably
alter the results. This reasoning again allows the kernel of the equation to be
approximated by its behavior near this extreme value which in turn requires

~

that u' = u. Thus it is again assumed that

n (u',v) > - n (u,v) (4.3.1)
and consequently _ K
1 —_
&2") ‘R =R (4.3.2)

=
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Incorporating this information into the problem, one obtains the integral equation

ik
__ _8 r 4] Glu) (1) :
vl = - - fdu Sor ROH (R )y (). (4.3.3)

From the geometry of the problem it is evident that the polar coordinate

distances must be of the general form

p(w) = r(u) 4G(u)

p(u") = r(u) 4G(u" (4.3.4)

if it is now assumed that the origin of the coordinate system is somewhere
along the axis of rotation of the body under consideration. Fortunately, even
though (4. 3.4) would require further information concerning r(u) and r(u'),
the geometric mean of the two polar coordinate distances may be easily related
to the geodesic coordinates of the surface.

The desired result may be derived from the series which defines the
components of two R spaces along with the Taylor series expansion for

A{G(u') , as was done when evaluating oR . When doing this it is found

2
that ov
2.,.2 2 ““tn 2
~ 1 1_yq) - L
R Ro+v ldG(u) G(u'") [1+ nctt(u u) 5 (u'-u)
4
-R - t+k nb|+ ¥ G(u) G(u") 1<2 +:c2 . (4.3.5)
[0} tt tn 4 tt tn :
In the last term of this expression k, — 1, k, —» u , and
th u-»0 tt u-+0

"G(u) = Therefore, this term behaves functionally as vWG(u') and

is, consequently, bounded for small u. Further if v4 is neglected in comparison
with v2 (recall that the original kernel of the equation possesses a point of

2
stationary phase at v = 0), this equation may be compared directly with R~ as

calculated from the R found in (4.1.1) and the identification
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pp' = VG(u) G(u" |:1+ é (K; Kyp T l.(gK.tn) (u'-u)3:|
1’ G(u) G(u") , u>e>0.
(4.3.6)

= 2

{G_(u)_G(T')‘ (%") EGg' (u'-u)2 (1- -z-,) s u—+0.

is then apparent.

For small values of u'-u it can be shown from (2. 2. 3) and (2. 2. 5) that

u'-u

24

sin

R022£ ﬁlu'-ul. (4.3.7)

where £ has units of length.

Because the form of RO isprecisely the form that one obtains for the sphere
problem it would appear reasonable to assign the convention that when u' goes
through 27f length units the perimeter of the obstacle (around the v = constant
section) will have been traversed once. This, along with the @' integration of
section 4.1 implies that integration with respect to u' from zero to 7 is suffi-
cient to have defined one integration over the entire surface. By covering the
entire surface with the integration it is tacitly assumed that the creeping waves
exist in the illuminated region as well as in the shaded region. This will be
discussed further later in the paper.

One further simplification to be used is to assume that the unknown is
a function of ku instead of the u that has been written thus far.

Using these thoughts and assuming for the moment that u is bounded
away from zero, one notices that the equation takes the form

wiku) = - i:j- fﬂdu' [%%1\{)_)] /e k lu'-ul H(ll)(k [u'-u]) ¥(ku").

0 (4.3.9)
a(a) 1/4
G(u)

answer obtained is multiplied by G-l/ 4 (u) as was done in the preceding work.

(1)
1

The factor may be removed from consideration as long as the

If H, ' (k lu' -u|) is replaced by the first term of its asymptotic expansion (for
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large values of k |u'-u|) it is noticed that the equation obtained is precisely

the same equation that generated the equations for the incoming and outgoing

surface waves of Chapter Three if it is assumed that the term (kR ) 1/2 may

be neglected when compared to (kR ) 1/2 in (3.4.5). This equation, under

these conditions has been solved (refer to the work of Hong, 1966), and these results
will be assumed to be known.

If it is no longer required that u be bounded away from zero the second
part of (4. 3.6) applies. The first thing to come into discussion is the last factor
of this expression. As long as u' is greater than u this factor may be immedi-
ately neglected. In order to integrate over the entire surface one could add to
the integral from u to 7, the integral with limits of 27 and 27+u. From the
symmetry of the problem the latter integral will be the same as an integration
from 0 to u. Therefore the last factor will be neglected entirely for all values
of u'.

Thus this equation is given by
Tl 1/4
1" G( ') ' u (1) : .
Yiku) = f G(u) = (klu'-ul) y(ku") ,

and it is seen that the factor to be removed from this equation contains an

1/4
|
additional factor ofJ% . The factor [ Gf( ))] q’ T may be deleted from

this equation with the understanding that any solutions of the '"deleted" equation

1/ 2G—1/ 4(u) before they may be interpreted as solutions

(4.3.9)

must be multiplied by (u)
of (4.3.9).

Because the last two integral equations are intended to specify the same
unknown in different regions of the surface it is not unreasonable to attempt

some connection between the two. The solution of (4. 3. 8) was found (in the
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work by Hong) by finding a solution in the penumbra region and using this
as a vehicle for launching the creeping waves into shadow region. These
launched waves are then supported by (4. 3. 8).

In this connection it should be noted that, as long as one stays away
from the caustic, the equation for the surface currents, when written in
terms of the geodesic polar coordinate system, is exactly the same as the
equation, when one stays away from the shadow boundary, written in terms
of the geodesic coordinate system generated by the shadow boundary and the
direction of the incident field at each point of the shadow boundary. With
these thoughts in mind the "connection" between these equations will simply
be that the solution in the shadow region will be the sum of the solution
generated by Hong and the solution generated by (4. 3. 9).

It is possible, however, that a solution of (4. 3. 8) could be a factor
in the solution of (4.3.9). If this is so, this factor may be removed in the
same manner as the other factors have been removed and need not be considered

until the final step when it must be introduced as a multiplier.



CHAPTER V
THE SOLUTION IN THE VICINITY OF THE CAUSTIC

5.1 Observations Concerning Possible Solutions

The starting point of this discussion will be the equation obtainable from
(4.3.9) after removing all of the known common factors. This equation may be

written

‘
4 (k) = au 1Y (efu-u'}) o (k) + g i D edu -u) g ()
T 1 ! :

0 4 (5.1.1)

At this stage of the development of the problem it is of some benefit to
consider the behavior of the equation and its solution for negative values of u.
It is apparent from the physical problem that if the incident plane wave is a
scalar wave, one would not expect any difference in the induced surface wave
if one were merely to consider different initial geodesic paths. That is to say
that the surface wave should be independent of v and in particular the solution
of the problem should be an even function of its argument (assuming of course

1/4

a distance factor from the equation valid in the neighborhood of the caustic, will

that the removed factors, the convergence factor, G u), in all cases and
not introduce any phase change and therefore only their magnitudes are of impor-
tance for u <0).

For the case in which the incident wave is a vector plane wave, each of the
components, when considered as a function of u only, must also be an even
function of its argument. This will first be demonstrated for the binormally

directed component.

31
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If one considers the incident magnetic field on the illuminated portion
of the surface, but close to the shadow boundary, it is apparent that at dia-
metrically opposite points on the surface the tangential components are neg-

atives of one another, as is indicated in Fig. 3a. By letting € denote a small

A(p+e,vem) ﬁt((i*i,v'fﬂ) Hy(pWv) n(g,v)

< )
" Jt (g,v) /'
te
Ho(pte,v) e
J_( e, -J. (@ )
blpte, vam) T (pve) e(pvem) A(p,vem) Hy (g, v+m)
Figure 3a Figure 3b

FIG. 3: RELATIONSHIP BETWEEN THE POLARIZATION AND INDUCED
CURRENT.

positive quantity (to insure being slightly on the illuminated side of the shadow

boundary) the following equations may be seen to hold:

n(B+e, v+m) X -n(B+e, v)
t (B+e, v+m 2 t (B+e, v) (5.1.2)

b (B+e, v+1) 2 -b(B+e, v)

Therefore, the vector describing the b component may be written

v (k{Bre}, v

Za'b (k{B+€}, v+m)

sin(v+7) wb (k{B+¢€}) E(B+ €, V+MX F(B+ €, v+m)

= -sin(v+7) L[/b(k{3+€}) b (B+e, v) (5.1.3)

while for the diametrically opposite point,
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Jb (k{B+€}, v) = sinvy, (k{B+€Pn (B+e, v) x [-t(B+e, v)]
= —sinvwb (k {B+€}) b (B+e, v) (5.1.4)

Upon comparing (5.1.3) and (5. 1.4) it is Seen that the "total" b component of
the surface field which is launched into the shadow region is an odd function of
its argument. If one considers only z//b (k§ B+ e}) (i. e. do not consider the
sign change introduced by sin(v+ ) ) , it is seen that it is an even function of
its argument. Because this function is even when entering the penumbra
region, it is reasonable to expect it to be an even function throughout the shadow
region and, indeed, over the entire surface.

In a similar fashion the same results may be drawn for the t-directed
current component by recognizing that the incident b-directed magnetic field
does not change directions at diametrically opposed points. Refer to Fig. 3b.

In line with these thoughts, integrate in the opposite direction (or if
preferred integrate from -w£ to 0 which, due to the symmetry of the problem
will yield the same result as the integration given in (5. 1. 1))and evaluate

YA-ku). This results in

4i _ e (1) ' ' ‘7T£' (1) k{u!' ku'
T—,{-G-\ Y(-ku) = - du H1 (-k{u+u'}) ¢ (ku") - du H1 (k{u'+u})y(ku').
0

-u

(2 e
=f du'H1 (k{u-u'p) y(-kuy+f du' H1 (kfu'-uPy (-ku') .
0

u

(5.1.9)

If it is assumed that y{-ku) = /(ku) and (5.1.5) is added to (5.1.1), the

result is a third equation given by
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. u l
k‘,l‘%-: ¥ (ku) =f du' J1 (k{u-u'}) w(ku‘)+f du' Jl(k{u'-u}) Uku') ,
0 u (5.1.6)

A fourth equation could be generated by taking the difference between (5. 1. 5)
and (5.1.1), but this equation, which involves Y 1(ku), retains the singularity
which appears in (5. 1.1) and (5. 1. 5) and destroys the incoming, outgoing surface
wave interpretation while offering no new insight into the problem. This equation
will therefore not be considered.

It is worth noticing at this point that if the kernel of (5. 1.5) is considered
(2)

) (k |u-u'! ), the transposed kernel is given by

to be H

H(lz)* (kiu'-ul) = H(ll) (klu'-ulﬂ< )

D
=H " (k|u'-u]). (5.1.7)

Therefore, the integral operators defined for these two equations are the adjoints
of one another; but, because of the singularities of the kernels, nothing may be
inferred about the possibility of solutions which are members of a particular
class of functions.

On the other hand, the combination of the two adjoint problems, (5.1.6),
yields a Fredholm equation with a square integrable, symmetric kernel. How-
ever the multiplier appearing on the left-hand side of (5. 1. 6) is complex and is
therefore certainly not a possible candidate for an eigenvalue. This in turn
implies that if any non-trivial solutions to this problem do in fact exist, they

are not members of the class of integrable functions.

5.2 The Volterra Equation

Define the variables z and & by the equations

z=ku, &=ku (5.2.1)

and rewrite (5.1.6). This results in the equation
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Z k7t
i16"
W) = - f dle(z-S)w(mf dE J (£-2) y(8) (5.2.2)
0 Z .

Suppose now that the solution can be represented by a series of Bessel

functions for values of z> 0. The second term may then be examined as

follows:
k! kat
f dE’Jl(€-Z)Jn(S) = f dEJ(')(%’-Z)Jn(E)
’ ’ kg
= |3 (knl-2)J (knl)+J (z)+ j; I (E-2) 31 (E)dE
< J (knt) |1-J0(k7w —z)l. (5.2.3)

Since, for large k, the inequality (5.2.3) is O(k_l/ 2) this integral may be
neglected with respect to the first integration provided the solution of the
remaining Volterra equation meets the above assumption.

The Volterra equation that remains possesses no integrable solutions
but may possess singular solutions (refer to Mikhlin, 1960). In anticipation
of this, consider extending the discussion to include generalized functions. In
particular, introduce the Dirac &-function into the kernel of the integral equation

by defining the operator L by the following:

Z
L[¢]=L dS[Zé(z—E)-i— 1—4@ 7, (z—s)]MS). (5.2.4)

In this terminology the problem under discussion is to find a sequence of

(generalized) functions, ta/ , such that
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L [ta/] =0 almost everywhere, (5.2.5)

with the added restriction that the sequence should contain at least one function
which approaches a finite, non-zero limit as its argument approaches zero.
The last restriction is necessary, even in the case where membership to ta/

is severly restricted, because there is no uniqueness theorem for (5. 2. 5)

once one allows nonintegrable solutions. Physically, of course, it is known
that there is a finite non-zero current at the caustic.

In view of the fact that one physically expects a smooth solution in the
shadow region with the possible exception of the caustic, the generalized
function terms appearing in the sequence will also be required to be smooth
with the exception of the caustic. This means that the generalized functions
appearing here will be restricted to being the Dirac 6-function and its deriv-

atives.

5.3 The Generation of Solutions

In the following work use will be made of the following convolution

Z
Q0
n
fo dSJu(z-E)Jv(E) = 2 Z (-1) Ju+v+2n+1(z) . (5.3.1)
n=0

Also the convention will be used that

Z
f a6 (8 £(8) = 5 KO) . (5.3.2)
0

By using these equations and the definition of L, the solution generated by

6(z) may be evaluated as follows:

L [8(2)] = 25(2) + % 3 (2)

if6 14_' "_6' 2 n
L[ 5 Jl(z)] J()+( - ) 2 2 (-1°J, (2
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indicating that

[a() 1FJ()+( ) Z(l)J .]=26(z) (5.3.3)

While this series does represent a formal solution of (5. 2. 5) it is not an
acceptable choice because it does not contain a function which remains finite
and non-zero when z = 0.

If the series generated by 6'(z) is evaluated in the same fashion (recalling

n

-1
( 2) f(0) , and using the recursion

z

the general formula J‘ dEé(n)(E) f(z) =
0

formula 2J '(2) =J (z) -J (z)) the comparable steps are given by:

L[a'()]———J'()

3 i i 2
2] () o § ot

and therefore

. ) 2
L |6'(2) + g J'1 (z) - (g) [Jz(z) -2 i (—l)nJ2n+4:| +

+ ... 0. (5.3.4)

Thus it is seen that if z is assumed to be close enough to zero so that z2 may
be neglected, an acceptable generalized function, i.e. one which meets all of
the requirements set forth above, to use as a solution is

—6( z) + lj: J'1 zZ) . (5.3.5)
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For the reason that (5. 3. 4) turned out to be identically zero it may be
stated that the series ta not only satisfies (5.2.5), but also satisfies the more

stringent problem

L [t,] =0

in the sense of distributions.

That is to say that with the definition

®
<f,g> =I f(x) g(x) dx (5.3.6)

-
for the scalar product of two (real) functions, the sequence,ta , satisfies the
equation

<L[t], #>= <t, P>, (5.3.7)

where the symbol @ in this equation is used to denote the class of test functions
which are infinitely continuously differentiable and vanish outside of some
bounded set.

The series indicated in (5. 3. 4) is actually the least singular solution of
(5.2.5) in the sense that 6(2n+1)(z) may be used to generate a suitable solution
for any value of n. This solution may also be generated by taking the appro-
priate number of derivatives of the least singular solution. Thus a more
general solution would be a linear combination of the least singular solution
and its derivatives. However, in view of the recursive relationships for
Bessel functions, it is not to be expected to gain any further information by
considering the derivatives of the least singular solutions.

The solution generated thus far appears to be applicable to the scalar

case and to the t-directed current component in the vector case. From the
formalism established it is very difficult to say anything about the b-directed

current component because the current doesnot pass through the caustic in
a discontinuous fashion, but travels around the caustic in smaller and smaller

circles as u becomes smaller. One obvious approach is to write the convolution
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Y

%
in the other sense, i.e. define the operator L. by the equation

£ Z 3
L [v] =I e [26('«;-=>+‘—'gE Jl(s)] v (2-9). (5.3.9
0

Now when the approximation y(z) = 6(z) is made on the right side of the
equation it must be noticed that the two dimensional 6-function is no longer
being evaluated at the origin of the rectangular coordinate system used to

form the first solution. The coordinate system has been transformed, and

in evaluating the transformed 6-function, the Jacobian of the coordinate trans-
formation must be used (refer to Friedman, 1956). Since the area of the caustic
is locally a spherical surface (as evidenced by the disappearance of the cur-
vature variable in the equations valid near the caustic) it is assumed that locally
the Jacobian appears as 'VT}.(-J . Thus in the region of the caustic (but not
exactly at the caustic), the factor of the volume é-function in which we are

interested is given by

8(z-8) ~ 6(z-§) (5.3.9)
G(z) A | o

This then is the generating function which will be used on the right-hand side
6(z)

%
of (5.3.8). Symbolically, in the operator notation, let L [—Z—] be defined
#
tobe 1/z L [6(z)] . Therefore the first attempt, which was subsequently dis-
carded, may be put into use by simply dividing it by z since

Jl(z)

2 . 3.
. z-rO*l (5.3.10)

It is to be noted that this solution does satisfy (5. 2.5) but, because the
6-function does not '"add out" as it did in the previous case, it does not satis-

fy the more restrictive problem that the previous solution did.
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5.4 Decomposition of the Solution

The work of the last section possesses several deficiencies which
will now be pointed out and steps will be taken to rectify them to some
extent. One major difficulty which may not be arbitrarily removed is the
problem of uniqueness. Therefore in the work to follow the initial source
function which is used to generate the solutions will be assumed to be of
unit magnitude and all results will therefore be normalized to this extent.
The allowable source functions are to be restricted to those allowed in the
last section under the conditions that each one must generate at least one
term which is finite and non-zero at the caustic.

In the development of (5. 1. 6) it was assumed, from physical rea-
soning, that the ''total solution" of the problem must be an even function
of its argument. In attempting to decompose the total solution into two
parts which may be interpreted as incoming and outgoing surface waves,
it may not be inferred that each of these waves is represented by an even
function. That is to say that (5.1.1) and (5.1.5) may in fact possess solu-
tions which contain terms which would have added to zero when (5. 1. 6) was
formed.

With these thoughts in mind it may be of benefit to outline precisely
the intended purpose of this section. Firstly the study of the singular equa-
tions under the influence of the allowable source functions will be undertaken.
Secondly, the results of this study will then be compared to the results of the
last section as far as functional behavior is concerned. Part of the purpose
of this comparison is to discover what part the terms neglected in the last
section by assuming z 2 0 play in the description of the solution.

It is assumed, in analogy with the work of the last section, that (5.1.1)

and (5. 1. 5) may be approximated by the Volterra equations

zZ
o = - 18 f a2 v @ . (5.4.1)
0
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This equation may also be written in terms of the Dirac §-function as
was done in the last section. That equation may in turn be written as a contour
integral where the contour, C, encloses the interval [0, z] . Since the solution
consists of a distribution, as well as classical functions, the contour integra-
tion will provide an analytic representation of the solution at all points in the
complex plane which lie in the complement of the support of the distribution.
That is to say that the analytic representation of the classical part of the solu-
tion will coincide with its restriction to the closed interval, but the represen-
tation of the 6-function is not valid where the §-functions are non-zero.

Since the analytic (Cauchy) representation of the Dirac §-function is

given by (refer to Bremermann, 1965, p. 60)
A -
5(2) = == <6(B), (2 "> = == (5.4.2)
27

the problem now under consideration is expressed by

1 f dt [ 1, ifE 0,2 (z—t)]tlp\(t)=0 (5. 4.3)

2 i (z-t) 4 1
C

where the carat appearing above the unknown is to remind one that the analytic
representation of the solution is now being sought. It may be noticed that since
the Dirac é6-function is an even function, the sign appearing with its represen-
tation in the first term of the kernel is rather arbitrary and the procedure
adopted here is to just follow what is formally indicated. Secondly, in view of
the fact that the constant multiplier is not determinable, the direction of
integration is arbitrary and for this work the counterclockwise path was chosen.
For the sake of convenience make the substitution
A= l—F‘ (5.4.4

in the work to follow.



42

By using the information of the last section the first trial solution for

this equation will be
v (2)=-5— . (5.4.5)

Before one can calculate the function generated by this choice one must
examine the series defining the function Y 1(z) and make the following obser-
vation:

zH(l’z)

B2 = a5 v @] = £ 2 (5.4.6

- m

where the upper sign is associated with the superscript 1 on the Hankel function,
and the lower sign is associated with the superscript 2 on the Hankel functions.
Then, when source function (5. 4. 2) is placed into the contour integration

the calculation will proceed as follows:

i -1 (1,2, o |_L_
"2 § dt [ﬂ'i(z—t) tAH "z t)] 2rit

C
oy, w2
2 [ﬂ'i {z z}+AH1 (2) A<t mz)]
Hgl,z)(z) o
=-A| - + — (5.4.7)
2 iz

The next approximation is obtained by iterating this term. Namely:
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(1,2
H.7 (1)
A -1 (1 2) 1 -1
T2 f at [ﬂi(z-t) rA (2 t)] 2 ot
c
Ly, ] 1
A§ at m(z-t) tAH) (Z—t)] 2mrit
c
(1,2)
H™ (1)
A -1 (1,2, o~ 1
-4 i dtl: 5 tAH t)] -
c
(1,2)
H.™ " (2)
_: 1 -\ al2 - 2
=+ 2A [-A 5 * i -2[H1 (z) + ol 0]
g(ls2
[ ) 1]
=a[+2a-1] — = (5.4.9)

From these results it is immediately noticed that by simply multiplying
(5.4.5) by + 2A and adding that to (5. 4.5) one generates precisely (5. 4. 8).

Therefore one solution of (5. 4. 3) is given by

. (1.2
P =aran (5h) a2 5 2 } . (5.4.9

2 Tiz

It should be recalled that in order to qualify as a surface wave these solu-
tions should be divided by z. If this division is carried out and the two solutions
are added several interesting details become manifest. Firstly, most of the
source terms that appear add to zero. The only one remaining is in fact the
one to be used in the generation of the other solution of interest. Secondly,
except for a factor of two which will be accounted for later, the surface behavior
appears precisely in the fashion predicted in Section 5.3. Thirdly, it is noticed
that all of the terms generated in 5.3, which were subsequently ignored, are
conspicuously absent in the finite surface wave which is generated from the

singular equations.
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-1
If now the generating function is assumed to be (271'122) , the analytic

representation of 6'(z), the procedure follows the pattern established above.

In order to implement this recall that

n
d n! f(t) dt
— f(a) = —— § E— . (5.4.10)
n +
da 2mi (Z_a)n 1
One further computation is needed; namely
2
2AbAg ooz ghAy ) o 2 (5.4.11)
dz 1 2 2 - m
z=0 z=0

When this information is incorporated into the contour integration under the

assumed source function the calculation proceeds as follows:

-1 (1,2) 1
idt [iw(z-t) rAH (z't)] 2
2mit

= .1_ ._L ._]'_. _]_'. 1(1’2) TA 2
=3 l:iﬂ {2 + 2} +AH1 (z) + A ) 2]
Z Z mZz

H'(l’z)
_ (z) - _1 1
=A 2 + 2 + ] 9 . (5. 4. 12)

N

If the first term of this outcome is placed into the contour integral it

generates the next approximation which is

'(1’2)(Z)
A [172a] 12 7 lz]i 24 (5. 4.13)

From this work it is evident that if the approximation

H'(l’z)(z)
Moy =-[1F2a]—— +a [ L T 12] (5. 4. 14)

2
2miz 2 iz
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is placed into the contour integral it produces a remainder term

- . (5.4.15)

An interesting reciprocity has become evident at this stage of the
development of the problem. In treating the problem in the context of a
generalized function one exact solution was found and one solution left a
remainder term at the caustic. After transforming the problem to one of
analytic representation these roles were reversed to the extent that the
exact solution transformed to one with a remainder term and the one with
the term left at the caustic transformed to an exact solution. It is to be
noted that the remainder term in the transformed solution corresponds to a deriv-
ative of the Dirac é6-function with support at the caustic in the generalized solution.

If the two solutions (5. 4. 14) are added, the same remarks may be made
concerning the sum as were made in the previous case. One further point of
interest is to notice that by applying the same formalism to obtain the final
results it is evident that the phase of the solutions representing the two
current components generated at the caustic differ by 1800.

The only remaining question is the factor of two appearing in this section
which was not predicted in the preceding work. In the original Volterra equa-
tion the standard practice of multiplying by one-half was used because the
endpoints of the interval coincided with the support of Dirac é-functions. Phys-
ically, this may be interpreted as considering one-half of the source to be
within the interval and the other half to be outside of the interval. In defining
the path of the contour integration, one could have passed through the end-
points of the interval and would have accomplished a division by two yielding

the same result.



46

5.5 Further Considerations and Refinements

In the formalism of the last section it was found that the source func-
tion required was multiplied by a complex constant in both cases. Also it
is to be noted that when the singular solutions are combined to yield a
bounded solution, in each case the bounded function approaches a limit
of one-half (excluding the complex constant A) as the argument of the
function approaches zero. The first step of this section will be to renor-
malize the problem by multiplying the solutions of Section 5. 4 by the factor

2
1+ 2A

(5.5.1)

which is equivalent to assuming that a source of magnitude two and a phase
angle zero is what will arbitrarily be used to generate the surface field in
the neighborhood of the caustic (for} the b-directed component).

Under the influence of the source of magnitude two the singular expres-

sions for the b-directed current components are given by

(12
(2) = -A 1
wb 1+ 2A z

(z)

(5.5.2)

for z £ 0.
For the scalar problem and the t-directed current component the cor-

responding equation is

A d (1,2
1+ 24 dz H1 (2) . (5.5.3)

!//t( z) =

The denominator appearing in both of these equations is

1 + 150%46"
m  0.632e (5.5. 4)
)

1+
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which means that (5.5.2) may be written

(1,2)
. cen0 40 H7T(2)
_ {6 (0.632) e4;150 46 1
4 Z
(1,2)
0= _ .0 H.” 7 (2)
- i '
= 0.3873¢ 1 (90 +50746") —37—— (5.5.5)

If these two solutions are added, the incoming and outgoing surface waves
combine to yield the finite solution

Jl(z) Jl(Z)
. = - (0.4899) 2

¥, (2) = -2(0.3873) sin 39°14 2 (5.5. 6)

The same procedure applied to (5.5. 2) produces the finite combination

of incoming and outgoing surface waves given by

v(2) = (0.4899) 2 ! (2) . (5.5.7)

o
[op}

Normalized Magnitude
e
=

o
[\V]

z=ku

FIG. 4: MAGNITUDE OF CURRENTS GENERATED AT THE CAUSTIC.
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If one studies the set (3. 3. 3) it becomes apparent that a solution of
the first equation is a term of a solution of each of the remaining equations
in the set. This means that although the work accomplished thus far is only
a first order approximation, it may be considerably sharpened by forming
a geometric series each term of which contains the solution of the homo-

1/2

rest of the multipliers which must appear in the solution go to one as z

geneous equation and the common ratio being k- Because all of the
goes to zero, this hypothesis may be quickly checked by simply summing
the series, multiplying it by 0.4899, and comparing it with the exact value
at the caustic. The "exact'" value for k = 20 was read from a graph on
page 566 of Honl et al (1961) (also to be found in King and Wu, 1959), while
the remaining values were taken from Ducmanis and Liepa (1965).

The quantity k under discussion here is the dimensionless product
of the phase constant and a characteristic length of the body under consid-
eration. This length was chosen to be the normalized radius at the shadow
boundary (assuming the caustic to caustic length = 2a > 2; if not, choose
the length to be a). In any case, the dimension of each k in the work to

follow is clear from context.

TABLE 1: MAGNITUDE OF THE CURRENT AT THE CAUSTIC
ASYMPTOTIC PREDICTION VS. EXACT VALUE

k 0.4899 —— Exact Value

2 1.67 1.41
3 1.16 1.27
4 0.98 1.18
6 0. 83 1.04
8 0.76 0.94
10 0.72 0. 86

20 0.63 0.61
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In order to check the expressions derived thus far, the body under
consideration will be specialized to the case of the sphere. When making
this specialization it is to be noted that the following three substitutions
may be made, if desired, in order to cast the solution in terms of the stan-
dard notation of the sphere problem. One may replace k by ka (this is a
result of the definition of the length unit in the geodesic coordinate system);
'V'G_(E)‘ may be replaced by sin 6; and u may be replaced by 7-0 everywhere
else it appears.

In order to attempt a complete comparison, use will be made of the
following current component expressions (for details concerning these

expressions see, for example, Goodrich (1959)):

f(E)=-1-— mgft— dt (5.5.98)
N w(t) ’ T
-0
and ®
(£) = = i dt (5.5.9)
J LR w'(t) "
-0
where
&= (E) 1/3 (5.5.10)
= 2 u . Oe

and w(t) is the Airy integral defined by

3
w(t) = fl?r‘f exp (iz— -Zé-) dz . (5.5.11)
P

In the construction of the curves to follow, use was made of the National
Bureau of Standards tables (1964) and the tabulation of f(§) and g(£) found
in Logan (1959). Since all of the calculations made in order to construct the
graphs were made by hand, no attempt was made to establish the number
of significant figures, nor are any tabulated values summarized here. The

value of k chosen for the calculations is k=10.
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The first attempt at comparing consisted of combining the currents
launched at the shadow boundary with the currents generated at the caustic.
While the results for the b-directed current were remarkably good (refer
to Fig. 5), the t-directed current did not fare so well. However it was
discovered that if the magnitude of J '1 (ku) was used, the magnitude of the
current improves in some regions (refer to Fig. 6).

As mentioned on page 30, it is possible that the solution found in the
region of the shadow boundary will be a factor in the solution which is valid
at the caustic. Since a magnetic field vector at the caustic may be assumed
to be the source for both currents, and because it would be tangent to the
surface (for both components), it is most likely that the same factor appears
in both solutions. With this in mind g(£) was normalized, and denoted by g(£),
and all of the assumptions concerning both the solution at the caustic and the
solution at the shadow boundary are incorporated into the following descriptions

of the current components:

) -1/3 - 2J . (ku)
_ ik(B-w | (k 1 fka*  _g(® 1
wb(ku) =e [ (2) f(B-£) - 0.4899 TR-1 "1/ - ]
G (v
(5.5.12)

and

ik(B-u) | i g
Y (ku) = el [g(B- §) +0.4899 =— 2J! (ku)] . (5.5.13)

t 1K -1 G1/4(u) 1

o e\ 173
where B = (5) B.
Figures 7 and 8 illustrate the results obtained from (5. 5. 12) and
(5.5.13). It is noticed that wt(ku) again suffers bady (insofar as magnitude
is concerned) at alternate peaks of the solution. If it assumed that the phase

variation is due entirely to g(£) (i.e. the factor g(f) is insensitive to the
J. (ku)

ku

phase changes of the current generated at the caustic) and J 'l(ku)
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FIG. 9: AN ILLUSTRATION OF THE EXACT CURRENT MAGNITUDES.
The surface of the sphere is the zero magnitude reference.



o6

may be replaced by their respective magnitudes. The results of this
assumption are also found in Figs. 7 and 8, and appear to be more
applicable than the previous results.

It appears to this observer that the latter description of the currents
is the one to be preferred in that the general trend seems to be more in line
with what one would expect from an analysis such as this.

The points labeled as exact in Figs. 5,6,7 and 8 were taken from

Ducmanis and Liepa (1965).



CHAPTER VI
SUMMARY AND CONCLUSIONS

6.1 Physical Interpretations

In writing the integral equation which describes the surface field, it
was found that the only curvature term which appears in the equation for
the leading term in the expansion is the curvature of the geodesic, I(g .
Furthermore when the equation was specialized to the region of the caustic
it was found that the curvature of the geodesic divided out. Because a
value of Kg = 1 would represent a sphere, this is interpreted as meaning
that the region of the caustic will appear locally to be a sphere for all
bodies of revolution (provided of course that the radius of such a sphere is
large enough to apply the asymptotic formalism).

From previous work it is apparent that the penumbra region behaves
as a generator to the extent that non-zero currents in that region launch
creeping waves into the shadow region. As long as one remains away from
the caustic region the behavior of the creeping waves is influenced almost
entirely by the conditions in the penumbra region. This work points out
that the caustic may be thought of as a source/sink, generating outgoing
waves and absorbing incoming waves, and that the behavior in the region of
the caustic is influenced almost entirely by the source/sink concept. This
interpretation was anticipated in a paper by Kazarinoff and Senior (1962).

Further the results of this work would indicate that the source/sink
at the caustic may be considered as a point antenna residing on the surface
at the caustic. As such, it would be expected that any deleted neighborhood
of the caustic lies in the shadow region of the surface with respect to this

source and would therefore be governed by the slowly varying shadow region

o7
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solution (determined only by the polarization of the source). As it turns

out the currents generated by the caustic and modulated by the slowly varying
solution will creep around the surface and will converge at the caustic in the
illuminated region. For the reason that the creeping waves have travelled

so far and have all but disappeared, the source in the illuminated region will
not be as strongly excited as the source in the shaded region was, and its
effect will be more difficult to observe in view of the fact that it is masked by
the current induced by the incident wave. This statement must be presumed
because of mathematical difficulties in decoupling incoming and outgoing waves
asymptotically for oblate spheroids for example (because of the argument
concerning R(7) being a decreasing function of 7), although for spheres

and prolate spheroids this argument holds and the results should follow immed-

iately once one discovers the strength of the source.

6.2 Comparison with Previous Results

If one were to study equation (4. 3. 9) and decide that, except for the
convergence factor, everything should be expressed as a product of k and
u, one would be tempted to multiply and divide by 'f? By doing this it would
be recognized that the solution must now contain a factor of m instead of
the factor Of"—l? as assumed in this work.

After doing this, one would observe that if the solutions obtained in
Chapter 5 were asymptotically expanded, the results at the caustic would
remain finite instead of going to zero as they presently do. (This serendipity
comes about because the approach in this work generated a uniformly
asymptotic kernel for the singular equations.) This writer believes that
this is precisely the problem encountered in attempting to continue the
solution known to be valid away from the caustic to a solution valid at the
caustic and that the appearance ofll? in such a continuation is in error.

This problem is also discussed in Kazarinoff and Senior (1962).
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6.3 Comments Concerning Further Study

In view of all of the places where terms of some order of k have
been neglected in this work , it does not seem feasible to go back and study
these terms in order to generate higher order terms, especially in view
of the fact that there is no tight bound on the error introduced by using the
convolution of the kernel and the unknown to describe the unknown.

It appears that the next areas of advancement should be: 1) to study
more carefully the representation of creeping waves on bodies other than
the circle and the sphere under the following consideration. The represen-
tation of the creeping waves is in a sense complete for these geometries

because the surface field, regardless of how many times it has wound around
A.u
the body, is representable by the series z e ) . This representation does

not appear to apply to the case where the cross section is not circular, and

in fact should probably be replaced by a representation of the order of

zfj(u) e)\ju where the fj(u) are periodic functions in some sense (i.e.
periodic, almost periodic, or mean periodic). 2) Work must be done in

the case where the distance cannot be expressed as the difference of two
surface variables, and thus the convolution results, as applied in this paper,
are no longer of any value. Such a case would be the problem of diffraction
by an ellipsoid, and would be further complicated by the fact that the geodesic

torsion will not be zero.
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