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ABSTRACT 
 

Effects of Nanofibrous Scaffolding Architecture on Bone Tissue Development 
from Embryonic Stem Cells 

 

by 

 

Laura Ann Smith 

 

 

 

Chair:  Peter X. Ma 

 

 Embryonic stem cells, typically isolated from the inner cell mass of blastocysts, 

represent a potentially unlimited cell source for tissue engineering. However, the 

potential tumorgencity of the undifferentiated cells and the heterogeneous cell population 

generated by current differentiation protocols impede the use of embryonic stem cells as 

a clinical cell source for tissue engineering applications.  This thesis examines the effects 

of emulating the differentiation signals provided by the extracellular matrix during 

development with synthetic poly (L-lactic acid) nanofibers on the differentiation of the 

embryonic stem cells to osteoblasts. 
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First, undifferentiated mouse embryonic stem cells were seeded onto two 

dimensional nanofibrous thin matrices or flat (solid) films. With osteogenic 

supplementation the nanofibrous architecture was found to promote the osteogenic 

differentiation and mineralization of the mouse embryonic stem cells. α2 and α5 integrin 

appear to contribute to this osteogenic differentiation. 

Next, the effects of biologically active factors and three dimensional culture were 

examined on mouse embryonic stem cells which were partially differentiated via 

embryoid body formation prior to seeding on the materials. The nanofibrous architecture 

was found to facilitate further differentiation of the cells in the absence of osteogenic 

stimulation, while the cells cultured on solid film required osteogenic supplements and 

growth factors to support osteogenic differentiation. Three dimensional culture on 

nanofibrous scaffolding was found to further enhance the osteogenic differentiation and 

mineralization more than two dimensional culture on either the nano-fibrous or solid 

architecture and three dimensional culture on the solid-walled scaffolding. 

The osteogenic differentiation of human embryonic stem cells was examined 

next.  In both two and three dimensional culture, the nanofibrous architecture enhanced 

the osteogenic differentiation and mineralization of the human embryonic stem cells 

compared to the solid architecture.  

In summary, the nanofibrous architecture enhances the osteogenic differentiation 

of mouse and human embryonic stem cells compared to the more traditional solid-walled 

tissue engineering scaffolding architecture.  This indicates that emulating size scale of the 
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extracellular matrix with synthetic nanofibers is advantageous in promoting osteogenic 

differentiation of embryonic stem cells. 

 


