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CHAPTER I

Introduction

The significant impact of the extreme and rare events such as floods, hurricanes,

earthquakes, and stock market crashes has impelled many researchers to study the

nature and effects of these events. Of interest to the researchers and indeed to the

general public is how to use available historical data from these events such as the

frequency of floods, the severity of earthquakes, and the magnitude of stock market

crashes to make predictions about the size and frequency of the future extreme and

rare events. From the statistical perspective, Extreme Value Theory (EVT) has been

an important and successful set of tools developed for describing and modeling such

events.

A particular area where the tools of EVT has become quite widespread is in

the quantitative finance and risk management. The applications of these tools have

grown tremendously due to the recognition by the financial community that extreme

events and risks are more common than one would think based on the traditional

statistical models. As pointed out by Mandelbrot and Hudson (2004)“Markets are

very, very risky - more risky than the standard theories imagine”. Recent events bear

the concerns expressed: The stock market crash of 1987, the collapse of the Long

Term Capital Management, and the massive losses at Baring PLS, Orange County,

1
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Metallgesellschaft, and the sub-prime meltdown show that extreme losses do occur

more frequently than anticipated. The interested reader in the aforementioned events

should refer to Marthinsen (2008).

The main goal of this thesis is to use concepts and tools from EVT to model,

make inference and develop prediction tools for the extremes of stationary data with

a focus on the financial risk management applications. The background theory and

the tools related to this work are presented within the next three chapters.

Chapter 2 presents a new estimator of the extremal index. The extremal index is

the main parameter that describes and quantifies the clustering characteristics of the

extreme values for many stationary time series. The extremal index has important

applications in a number of areas, such as hydrology, telecommunications, finance,

and environmental studies. In this chapter, an estimator for the extremal index

based on the asymptotic scaling of block maxima and resampling is introduced. It

is shown to be consistent and asymptotically normal for m-dependent time series.

Further, a procedure for the automatic selection of its tuning parameter is discussed

and different types of confidence intervals that prove useful in practice are suggested.

The performance of the estimator is examined through simulations, which show its

highly competitive behavior. Finally, the estimator is applied to two real data sets

of daily Crude Oil prices and extreme temperatures.

Chapter 3 focuses on the point process modeling and estimation of the Value at

Risk (VaR). A point process is a stochastic process, which describes events occurring

at discrete random points of time. Our events of interest are related to the times

when an asset sustains a large loss. VaR is defined as an extreme quantile of the

loss distribution of an asset. It remains one of the most important and widely

used extreme risk measures. The usual VaR is defined only in terms of the marginal
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distribution of the asset returns. This definition ignores important dependence effects

in the behavior of the returns. In this chapter, in addition to using the marginal

distribution, we model the random times at which large losses of an asset occur.

We then define a dynamic VaR measure, which predicts the quantiles of the loss

distribution, conditionally on the present and past behavior of the returns, according

to a certain point process model. The point process based estimation of the VaR

is shown to be superior to the more widely accepted methods of unconditional or

static VaR estimation. An analysis of real data set demonstrates the advantages of

our methodology in practice.

In Chapter 4, new risk measures are proposed to incorporate the clustering of

the large losses as often exhibited by the asset returns. This empirical fact has

important consequences. For example, a risk manager is responsible for assessing

the potential losses that an asset (or an entire portfolio of assets) can sustain. If

clustering of extreme losses is present, it means that once the risk manager observes

one loss, there is a good chance that he or she will see another big loss within a

short period of time. In such short periods, the accumulation of the large losses can

wipe out a significant portion of the value of an asset. The new risk measures we

propose build on the conditional expected shortfall, which is just the expect loss of

an asset given it has sustained a loss. They take into account the duration of the

period of extreme losses. The risk measures are shown to be good predictors for the

accumulation of extreme losses. Additionally, a new procedure for estimating the

extremal index is proposed and verified through a simulation study. This procedure

combines two established estimators of the extremal index to obtain better estimates

of the extremal index and more accurately identify the independent clusters of the

extreme values.



CHAPTER II

Estimation of the Extremal index Based on Scaling and
Resampling

2.1 Introduction

Advances in computer technology have enabled the collection by research organi-

zations and businesses of large time series data sets. These data sets are primarily

characterized by the fine granularity (high frequency) of the time intervals at which

the observations are collected; for example, Internet traffic is sampled at millisecond

intervals, while stock trades at every second. Such time series data are characterized

by the presence of long range dependence (the autocorrelation function decays at a

polynomial rate) and the heavy tailed nature of the marginal distribution (see, e.g.

Adler et al. (1998)). In many cases, another phenomenon can be observed, namely

the presence of clustering of very large or very small values (extremes) of the data.

For example, in Internet traces this is the result of bursty arrivals, while in data on

the returns of a financial asset this is due to the arrival of an external market shock.

The daily log-returns of the spot price of West Texas Intermediate crude oil are

shown for the period September 2006 – March 2007 in Figure 2.1. A pronounced

temporal clustering of the extreme values can be seen, indicating the presence of local

dependence in the extremes. Such a behavior is of interest to subject matter experts

and it has important implications in practice, since it concerns large consecutive

4
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Figure 2.1: Observe the clustering of extremes, particularly evident in the extreme price drops or
’losses’ (above the horizontal dotted line).

changes associated with large financial losses or gains. Therefore, quantifying the

nature of the dependence structure as well as the duration of extreme events becomes

an essential part of the understanding of these time series data.

The extremal index θ is the main parameter that describes and quantifies the

clustering characteristics of the extreme values in many stationary time series. An

informal interpretation of θ is given in Leadbetter et al. (1983), namely θ ≈(mean

cluster size)−1. For example, for the crude oil log-returns, the extremal index is

estimated to be around 0.56, which means that on the average, two large size losses

or gains are recorded in relatively short time span. The modeling and analysis of

rare events (extremes) has been an active area in probability and statistics (see e.g.

Leadbetter et al. (1983), Resnick (1987), Embrechts et al. (1997), Beirlant et al.

(2004)). In the context of extremes, the study and the estimation of the extremal

index θ, formally defined next, plays an important role.
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Let X = {Xk}k∈Z be a strictly stationary time series. Let also

Mn := max
1≤k≤n

Xk and M iid
n := max

1≤k≤n
X̃k,

where the X̃k’s are independent and identically distributed (iid) random variables

with the same distribution as the Xk’s. Formally, the time series X is said to have

an extremal index θ, if for some norming sequences cn > 0 and dn, we have

(2.1.1) P{c−1
n (M iid

n −dn) ≤ x} w−→ H(x) and P{c−1
n (Mn−dn) ≤ x} w−→ Hθ(x),

where H(·) is a non–degenerate extreme value distribution (see e.g. p. 417 in Em-

brechts et al. (1997)). An important mixing condition when dealing with the extremal

index as follows:

Definition II.1 (Condition D(un)). For any integers p,q, and n

1 ≤ i1 < . . . < ip < j1 < . . . < jq ≤ n

such that j1 − ip ≥ l we have

|P{
∨
i∈A1

⋃
A2
Xi ≤ un} − P{

∨
i∈A1

Xi ≤ un}P{
∨
i∈A2

Xi ≤ un}| ≤ αn,l,

where A1 = {i1, . . . , ip}, A2 = {j1, . . . , jq}, un = cnx + dn, and αn,l → 0 as n → ∞

for some sequence l = ln = o(n).

The condition D(un) is a form of an asymptotic independence condition but it

is weaker than most traditional conditions since it only considers the events of the

form {X ≤ x}. This condition gives the criteria to ensure asymptotic independence

of extreme values of a stationary process when the groups of extreme values are

separated both in the level and separation distance. If X is a strictly stationary

sequence with F (x) marginal distribution and D(un), satisfying

lim
n→∞

nF̄ (un(τ)) = τ
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for all τ > 0, and if limn→∞ P{Mn ≤ un(τ)} exists for some τ > 0, then

lim
n→∞

P{Mn ≤ un(τ)} = e−θτ ,

where θ is the extremal index of X. Note if θ exists, it will not be a function of un(τ).

We now directly state Theorem 3.7.1, page 66, from Leadbetter et al. (1983), which

gives the necessary regularity conditions for the existence of the extremal index.

Theorem 3.7.1 - (Leadbetter et al. (1983))

Suppose un(τ) is defined for τ > 0 and is such that n(1− F (un(τ)))→ τ , and such

that D(un(τ)) holds for each such τ . Then there exists constants θ, θ′, 0 ≤ θ ≤ θ′ ≤ 1

such that lim supn→∞ P{Mn ≤ un(τ)} = e−θτ , lim infn→∞ P{Mn ≤ un(τ)} = e−θ
′τ .

Hence if P{Mn ≤ un(τ)} converges for some τ > 0, then θ = θ′, and P{Mn ≤

un(τ)} → e−θτ for all τ > 0.

Here, we focus on the non–degenerate case when the extremal index θ is positive.

Observe that in this case the same normalization and centering sequences for the

partial maxima Mn and M iid
n above yield non–degenerate limit distributions. The

extremal index takes values in the interval [0, 1]; a value close to 0 indicates a very

strong short range extremal dependence, while a value close to 1 a rather weak

dependence. In fact, for iid Xk’s, by (2.1.1), we have θ = 1. The extremal index,

however, characterizes only the dependence of the extremes in the time series data

and thus the data may still exhibit strong dependence, even though θ ≈ 1. The case

of θ = 0 is considered pathological.

Theoretical properties of the extremal index have been studied fairly extensively;

(Leadbetter (1983), O’Brien (1987), Hsing et al. (1988), Leadbetter and Rootzén

(1988), and references therein). The problem of estimating θ has also received some

attention in the literature: Hsing (1993), Smith and Weissman (1994), Weissman

and Novak (1998) and Ferro and Segers (2003). For example, Hsing (1993) studied
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an estimator based on the idea that θ is proportional to the inverse of the mean

cluster size of exceedances above a certain threshold. A key tuning parameter for

this estimator is that the data are examined in blocks of size r. An alternative

estimator proposed by O’Brien (1987) is based on the length of runs of values of the

process falling below a prespecified threshold, given that an exceedance has occurred.

The properties of these estimators are studied in Hsing (1993), Smith and Weissman

(1994) and further refined in Weissman and Novak (1998). Recently, Ferro and Segers

(2003) proposed another estimator which does not require the specification of a block

size or a run length, and it exhibits a fairly robust performance in practice.

Applications of the extremal index in various scientific areas include its incorpo-

ration in calculations of the Value-at-Risk measure (Longin (2000) and Klüppelberg

in Finkenstädt and Rootzén (2004)), in the study of the Nasdaq and S&P 500 in-

dices (Galbraith and Zernov (2006)) and in the study of GARCH processes (Laurini

(2004)). The estimation of the extremal index θ is an important practical prob-

lem with rapidly expanding areas of application to finance, insurance, hydrology and

telecommunications, to name a few (for more details, see e.g. Embrechts et al. (1997)

and Finkenstädt and Rootzén (2004)).

Most previous estimators of θ exploit its connection to the point process of ex-

ceedance. Here, we introduce a new method for estimating θ based on the asymptotic

scaling properties of block–maxima and resampling. Specifically, let X1, . . . , Xn be a

data sample from a heavy–tailed time series (see (2.2.2)) with positive extremal index

θ. The maximum values of the data calculated over blocks of size m, scale at a rate

m1/α, where α > 0 denotes the tail index of the marginal distribution of the data.

Further, the normalized limit of the block maxima is proportional to θ1/ασ, where

σ := c
1/α
X > 0 is an asymptotic scale coefficient of the Xk’s (see (2.2.2)). Thus, by ex-
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amining a sequence of growing, dyadic block sizes m = 2j, 1 ≤ j ≤ blog2 nc, j ∈ N,

and subsequently estimating the mean of logarithms of block–maxima one obtains es-

timating equations involving both the tail index α and the parameter θ1/ασ. In these

equations, the scale σ and the extremal index θ are, however, coupled. Although,

in principle θ can be calculated by solving an appropriate nonlinear equation, the

resulting estimate proves to be too variable. Hence, we resort to resampling. Specif-

ically, we consider either a bootstrap or a random permutation sample of the original

data and then apply the previous methodology. The resampled data behaves, asymp-

totically, as an independent sequence with unit extremal index, that yields a second

set of estimating equations of the tail index α and the parameter σ. By combining

the resulting two estimating equations, one based on the original data and another

based on the resampled data, we obtain a numerically stable estimate of θ.

The resulting estimators for θ are shown to be consistent and asymptotically nor-

mal for m−dependent sequences, while at the same time exhibiting good numerical

performance in finite samples. An additional advantage of the resampling is that it

provides a supplementary way of calculating confidence intervals for θ. Simulation

studies show that the proposed estimator is a competitive alternative to existing

ones. Further, it provides new insights at the important parameter θ from the per-

spective of resampling and can be successfully used to analyze small as well as large

data sets in practice.

The remainder of the Chapter is organized as follows: Section 2.2 describes the

proposed estimator. Its asymptotic properties are established in Section 2.3. Several

methodological and implementation issues are discussed in Section 2.4, while Sec-

tion 2.5 focuses on the evaluation of the estimator through an extensive simulation

study. Two important data sets of daily Crude Oil prices and Wooster Extreme



10

Temperatures are examined in Section 2.6. The proofs and some auxiliary results

are given in the Appendix.

2.2 The max–spectrum based estimator of θ

Let X = {Xk}k∈Z be a positive ergodic strictly stationary sequence with heavy

tailed marginals and positive extremal index θ > 0. Specifically, assume that

(2.2.2) P{Xk > x} = 1− F (x) ∼ cXx
−α, as x→∞

for some α > 0 and cX > 0, where an ∼ bn means an/bn → 1, as n → ∞. The

parameter α is called the tail index of the distribution (see e.g. Resnick (2006)).

Given a sample path X1, . . . , Xn, we define the dyadic block maxima as follows:

(2.2.3) D(j, k) := max
1≤i≤2j

X2j(k−1)+i ≡
2j∨
i=1

X2j(k−1)+i ,

where j = 1, . . . , blog2 nc, k = 1, . . . , bn/2jc, and where b·c denotes the integer part

function. For heavy–tailedXk’s, relation (2.1.1) holds withH(x) = exp{−cXx−α}, x >

0 and normalization constants cn := n1/α and dn := 0. Therefore,

(2.2.4) 2−j/αD(j, k)
D−→ θ1/ασZ1/α, as j →∞.

where Z is a standard 1−Fréchet random variable, i.e. P{Z ≤ z} = exp(−z−1),

z > 0, and where σ := c
1/α
X is the asymptotic scale coefficient of the Xk’s. Due to

the nature of the Fréchet extreme value distribution, the extremal index parameter

θ appears in the scale coefficient of the limit distribution of the dependent maxima.

This feature will play an important role in the estimation of θ discussed below.

Next, introduce the statistics

(2.2.5) Yj :=
1

nj

nj∑
k=1

log2(D(j, k)).
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where nj = bn/2jc. The statistics Yj, j = 1 . . . , blog2(n)c will be referred to as the

max–spectrum of the data, and the j’s as scales. By the assumed ergodicity and

provided that the moments exist, for a fixed j, we get

(2.2.6) Yj
a.s.−→ EYj = j/α + E log2(2−j/αD(j, k)), as n→∞.

Assuming uniform integrability, Relation (2.2.4), on the other hand, implies that

(2.2.7) EYj ' j/α + log2(σ) + E log2(Z)/α + log2(θ)/α, as j →∞,

where an ' bn means an − bn → 0, as n → ∞. This indicates the existence of

a linear relationship between the statistics Yj and j up to an error term, which

becomes negligible as nj and j grow. The slope of a linear fit of Yj versus j yields

an estimator of 1/α and thus α. Although our goal is to estimate θ, the estimation

of the tail index α is an intermediate step and an integral part of our analysis.

Observe that on the other hand for iid data, we have θ = 1 and thus (2.2.7)

becomes:

(2.2.8) EY iid
j ' j/α + log2(σ) + E log2(Z)/α,

where {Y iid
j } is the max–spectrum of an iid data set with the same distribution as

the Xk’s. Relations (2.2.7) and (2.2.8) suggest a method to obtain an estimate of

θ. Namely, resample the data, for example, by randomly drawing (with or with-

out replacement) a sample X∗1 , . . . , X
∗
k of size k = k(n) from the set {X1, . . . , Xn}.

Intuitively, this destroys the dependence structure of the data, resulting in an ap-

proximately independent sample with the same marginal distribution as the original

stationary sequence.

Let Y ∗j be as in (2.2.5) where now the D(j, k)’s are based on the resampled data

X∗1 , . . . , X
∗
k . Since for an iid sequence we have θ = 1, we expect the resampled
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sequence to have θ ≈ 1, whereas α and σ will remain unchanged. Thus, Relation

(2.2.7) becomes

(2.2.9) E[Y ∗j ] ' j/α + log2(σ) + E[log2(Z)]/α,

where the term log2(θ)/α is no longer present since log2(θ ≈ 1) ≈ 0.

Thus, in view of (2.2.7) and (2.2.8), we have

Y ∗j ≈ j/α+log2(σ)+E log2(Z)/α, and Yj ≈ j/α+log2(σ)+E log2(Z)/α+log2(θ)/α.

Taking the difference between the last two estimating equations, replacing α by its

estimate α̂ based on (2.2.7), and solving for θ we obtain the following estimator for

the extremal index:

(2.2.10) θ̂(j) = 2−α̂(j)(Y ∗j −Yj).
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Figure 2.2: Left panel: The max–spectrum of Xn = max{ 2
3Xn−1,

1
3Zn}, θ = 1/3, with Zi’s iid

standard 1−Fréchet (solid line) and the max–spectrum of iid copies of the Xk’s (broken
line). The two spectra are essentially linear with equal slopes. Right panel: boxplot of
θ̂(j)’s obtained from different resampled versions of a single path of the process. The
horizontal line is the theoretical value of θ = 1/3.

Observe that for a single data set, one can obtain a large set of estimates θ̂(j),

based on different resampled versions of the data. Thus, resampling allows us to
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gauge the variability of the estimates as well as the range of scales j where the

asymptotics in (2.2.7) and (2.2.8) become applicable.

Figure 2.2 illustrates the main principle behind the proposed estimator. The left

panel shows the combined max–spectra of a dependent sequence and an iid sample.

The two max–spectra are parallel with equal slopes ≈ 1/α, since the marginal distri-

butions behind the two spectra are the same. The difference is in the intercept and

this is where the value of θ is derived from. The right panel shows boxplots of θ̂(j)

estimates obtained from 200 independent resampled versions of a single path of the

process on the left. Observe that the medians of the θ̂(j)’s closely follow the true

value θ = 1/3 over a range of scales (for more details, see Section 2.4 below).

Remarks

1. The statistics Yj’s in (2.2.5) are not only dependent in j, but more importantly,

they have different variances in j since they involve averages of nj ≈ n/2j terms.

Thus, to reduce the variance in the regression estimators of α, it is essential to

use a weighted or generalized least squares method (see e.g. Stoev et al. (2006),

for more details).

2. The proposed resampling procedure avoids the problem of estimating the scale

parameter σ = c
1/α
X , however, an estimate of α is still needed. The algorithmic

implementation of the estimators θ̂(j) and other important practical issues are

discussed below.

The appropriate resampling sample size k(n), from the perspective of asymp-

totics, is o(
√
n) (see, Section 2.3).

3. The estimate θ̂(j) depends on the scale j, as indicated. An automatic procedure

for the choice of j is presented in Section 2.4.
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2.3 Theoretical properties

2.3.1 Description of the asymptotic regime

Let X = {Xk}k∈Z be a strictly stationary time series with marginal c.d.f. F as in

(2.2.2) and let also

(2.3.11) Mn = max
1≤i≤n

Xi ≡
n∨
i=1

Xi.

We shall assume that

(2.3.12) Fn(x) := P{Mn ≤ n1/αx} = exp{−c(n, x)x−α}, x ∈ R,

for some function c(n, x) > 0, n ∈ N, such that Fn(x) ∈ (0, 1).

As in (2.2.4), if the time series X has a positive extremal index θ ∈ (0, 1], then

(2.3.13) n−1/αMn
D−→ (θcX)1/αZ1/α, as n→∞,

where Z is a standard 1−Fréchet variable: P{Z ≤ x} = e−x
−1
, x > 0.

Our asymptotic results rely on the moment behavior of f(Mn/n
1/α), for certain

deterministic functions f and involve some additional technical conditions, outlined

below (for more details, see the Appendix).

Condition 1. There exists β > 0 and R ∈ R, such that

(2.3.14)

|c(n, x)− θcX | ≤ c1(x)n−β, for all x > 0, and c1(x) = O(x−R), x ↓ 0,

where θ ∈ (0, 1].

Condition 2. Fn(0) = 0 and for all x > 0,

(2.3.15) c(n, x) ≥ c2 min{1, xγ}, for some γ ∈ (0, α),

for all sufficiently large n ∈ N, where c2 > 0 does not depend on n.

Remarks
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1. The conditions (2.3.14) and (2.3.15) are not very stringent. For example, let

(2.3.16) Xk = max{Zk, Zk−1, . . . , Zk−m+1}, k ∈ Z,

where the Zk’s are independent, standard α−Fréchet. We then have

P{Mn ≤ n1/αx} = P{Z−m+1 ≤ n1/αx, · · · , Zn ≤ n1/αx} = exp{−c(n, x)x−α},

where the function c(n, x) = (n + m− 1)/n = 1 +O(1/n) does not depend on

x and β = 1, in this simple case.

Conditions 1 and 2 above hold for a more general class of moving maxima

processes (see Proposition II.8).

2. Condition 1 and Relation (2.3.12) imply (2.3.13), that is, the extremal index of

the time series X is precisely equal to θ in (2.3.14). Thus (2.3.14) quantifies

further the rate of the convergence in (2.3.13).

Description of the asymptotic regime: To obtain the consistency of statistics

based on the max–spectrum Y = {Yj}, we focus on the range of scales [j(n), `+j(n)],

where ` ∈ N is fixed and where j(n)→∞, as n→∞. We then define

(2.3.17) α̂(j) :=
(∑̀
i=0

wiYi+j(n)

)−1

,

where the weights wi’s are fixed and such that
∑`

i=0wi = 0 and
∑`

i=0 iwi = 1. The

weights wi’s can be obtained, for example, either from GLS or WLS regression of

Yi+j(n) versus i, for 0 ≤ i ≤ ` (see Stoev et al. (2006), for more details).

The estimator θ̂ in (2.2.10) involves both the max–spectrum Y of the dependent

data and the max–spectrum Y ∗ of the resampled data. Observe that

(2.3.18) θ̂(j) = 2−α̂(j)(C∗(j)−C(j)), where
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(2.3.19) C∗(j) := Y ∗j − j/α and C(j) := Yj − j/α,

since trivially Y ∗j − Yj = C∗(j) − C(j). We will establish the asymptotic normality

of θ̂(j) in three steps:

(Step 1.) We first establish rates of convergence for the quantities α̂(j) and C(j),

which are based on the max–spectrum {Yj}.

(Step 2.) We then show that the C∗(j)’s are asymptotically normal (under certain

conditions) in two resampling schemes: bootstrap and random permutations.

(Step 3.) We finally combine the results from Steps 1. and 2. above to establish

the asymptotic normality of θ̂(j).

2.3.2 Main results

We establish next the asymptotic normality of θ̂(j) defined in (2.3.18), by following

the three steps outlined in the previous section.

Step 1: The following result provides rates of convergence for α̂(j) and C(j), in the

asymptotic regime described above.

Proposition II.2. Let X1, . . . , Xn be a sample from an m−dependent, strictly sta-

tionary time series X = {Xk}k∈Z, which satisfies Conditions 1 and 2 above.

Then, for α̂(j) and C(j) in (2.3.17) and (2.3.19), we have, as n→∞

(2.3.20) α̂(j) = α +OP
(

1

2j(n) min{1,β}

)
+OP

(
2j(n)/2

n1/2

)
, and

(2.3.21) C(j) = C +OP
(

1

2j(n) min{1,β}

)
+OP

(
2j(n)/2

n1/2

)
,

with C = log2(θ)/α + log2(cX)/α + E log2(Z)/α, where Z is a standard 1−Fréchet

variable.

The proof of this result is given the Appendix. Observe that Proposition II.2 is

valid for an arbitrary stationary m−dependent time series which satisfies (2.3.14)
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and (2.3.15). It is valid, in particular, for the simple process {Xk}k∈Z in (2.3.16) and

more generally for the moving maxima processes in (2.5.26) below (see Proposition

II.8 in the Appendix).

Step 2: We now employ resampling to obtain an approximately independent data

sample X∗1 , . . . , X
∗
k . Here, we consider two resampling schemes: bootstrap and per-

mutations and in both cases, we obtain asymptotic normality results for the max–

spectrum. The sample X∗1 := Xi1 , X
∗
2 := Xi2 , . . . , X

∗
k := Xik is a bootstrap sample

from the data X1, . . . , Xn if the indices i1, . . . , ik are drawn randomly and with re-

placement from the set {1, . . . , n}. When these indices are drawn without replace-

ment and k ≤ n, we obtain a permutation sample. We need the following:

Lemma II.3. Let i1, . . . , ik be collection randomly drawn indices either with replace-

ment or without replacement from the set {1, . . . , n}.. For any fixed m ∈ N, we

have

P{ min
1≤j′<j′′≤k

|ij′ − ij′′| ≥ m} ≥ 1−mk2/(n− k).

The proof is given in the Appendix. This result implies that for k(n) = o(
√
n), n→

∞, the indices {ij, 1 ≤ j ≤ k} are spaced by at least m−lags away from each

other, with probability asymptotically equal to 1, as n→∞. Therefore, if the data

X1, . . . , Xn come from an m−dependent time series, for the purposes of asymptotics

in distribution, both the bootstrap and the permutation samples of size k = o(
√
n)

become essentially independent, with high probability, as n → ∞. This fact and

Proposition 4.2 in Stoev et al. (2006), readily imply the following result.

Theorem II.4. Let X = {Xi}i∈Z be a strictly stationary m−dependent time series,

which satisfies Conditions 1 and 2 above. Let X∗1 , . . . , X
∗
k be either a bootstrap or a

permutation sample from X1, . . . , Xn, where k(n) → ∞ is such that k(n) = o(n1/2),
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as n→∞, and let Y ∗ be its corresponding max–spectrum.

Let j(k)→∞, n→∞, be such that k/2j(k)(1+2β) +j(k)22j(k)/k −→ 0, as k →∞.

Then, for C∗(j) in (2.3.19), we have

(2.3.22)
√
kj(C

∗(j)− C∗) D−→ N (0, σ2
C∗), as n→∞,

where kj = k(n)/2j(n). Here C∗ := log2(cX)/α+E log2(Z)/α, and σ2
C∗ = α−2Var(log2 Z),

where Z is a standard 1−Fréchet variable.

The proof is given in the Appendix.

Step 3: The following Theorem is the main result of the Section. It combines the

results of Proposition II.2 and Theorem II.4 to establish the asymptotic normality

of θ̂(j).

Theorem II.5. Assume the conditions of Theorem II.4 and let α̂(j) be as in (2.3.17),

where Y is the max–spectrum of the data X1, . . . , Xn. Let also C(j) and C∗(j) be

as in (2.3.19), where Y ∗ is the max–spectrum of either a bootstrap or a permutation

sample X∗1 , . . . , X
∗
k of the data.

Let k(n) = o(
√
n), n→∞ and j(k)→∞, k →∞, be such that

(2.3.23) k/2j(k)(1+2 min{1,β}) + j(k)22j(k)/k −→ 0, as k →∞,

Then, for θ̂(j) in (2.3.18), we have

√
kj(θ̂(j)− θ)

D−→ N (0, θ2π2/6), as n→∞,

where kj = k(n)/2j(n).

The proof of this result is given in the Appendix. A few important remarks follow.

Remarks
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1. Theorem II.5 applies, for example, to the class of moving maxima processes

in (2.5.26), under mild assumptions on the innovations Zk’s (see Conditions 1′

& 2′ below). It holds, for example, for Pareto, mixtures of Pareto or Fréchet

innovations.

2. Let δ ∈ (0, 2 min{1, β}) be arbitrary and suppose that k/2j(k)(1+2 min{1,β}) ∼

k−δ, k → ∞. We then have 2j ∼ k(1+δ)/(1+2 min{1,β}), k → ∞ which, since

δ < 2 min{1, β}, implies that Relation (2.3.23) holds. This yields the rate

kj ∼ k(2 min{1,β}+δ)/(1+2 min{1,β}) in Theorem II.5. Since k = o(
√
n) and since

δ > 0 can be taken arbitrarily small, we can achieve rates up to n
min{1,β}

(1+2 min{1,β}) .

For example, if β > 1/2 the rate of n1/4 is possible while the best possible rate

is o(n1/3).

2.4 Implementation issues

We present next an algorithmic implementation for the proposed estimator of θ

and discuss its main features. We then propose a second algorithm for the automatic

selection of scales.

In Theorem II.5, we only consider resampled sets from the data of size k(n) =

o(
√
n). In practice, we found that the estimators of θ continue to work well even if

one considers random permutations of the entire data sample of size k(n) = n. Using

bootstrap instead of permutations results in estimates θ̂(j) with larger variances and

bias (for large j’s). Thus, in the sequel, we focus on permutation based resampling

and utilize the entire data set.

Algorithm 1. (estimation of θ)

1. Compute the Yj’s and the α̂(j)’s as in (2.2.5) and (2.3.17) based on the original

data.
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2. Randomly permute (i.e. shuffle) the data, Nin times and collect the Nin statistics

Y ∗j .

3. Find the Nin differences of Y ∗j −Yj and compute the sample mean for the positive

differences only: ∆(j) = mean{Y ∗j − Yj}+.

4. Obtain the estimates of θ for each scale j: θ̂(j) = max{2−α̂(j)∆(j), 1}.

5. Repeat steps 2, 3, and 4 Nout number of times and collect the θ̂(j) values.

6. Produce a sequence of θ̂(j) boxplots from the Nout available values, per each

scale j.

7. Visually inspect the boxplots of θ̂(j) and select a range of scales where the

medians of the boxplots stabilize. Estimate θ by using the median values from

this range of scales.

We now discuss the steps in the above algorithm.

Step 1: The estimate α̂(j) is based on the range of scales j, . . . , j + `, where

j+ ` = blog2(n)c−1 is chosen to be the second largest available scale in the data. In

practice, we discard the highest scale since it involves an average of at most two block–

maxima. We recommend using either generalized least squares with the asymptotic

covariance matrix for the max–spectrum given in Stoev et al. (2006) or weighted

least squares which account for the fact that Var(Yj) ∝ 1/nj ∝ 2j. Both approaches

are comparable and considerably better than ordinary least squares regression, which

should not be used.

Steps 2 & 3: We introduce an inner loop with Nin iterations to reduce the vari-

ability of Y ∗j − Yj. This considerably improves the variance of the θ estimates. On

step 3, we average only the positive differences Y ∗j −Yj since by Relations (2.2.7) and
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Figure 2.3: Estimation of θ for the process Xn = max{ 1
2Xn−1,

1
2Zn}, θ = 1/2, Zi iid standard

1−Fréchet, with sample size of n=213, Nout = 500 and Nin = 25. Left panel: Boxplots
of θ̂(j)’s with the last two scales omitted. Right panel: A “heat map” visualizing the
Kruskal–Wallis test for the automatic selection of scales – black corresponds to p−values
greater than 0.05.

(2.2.9), we have EY ∗j ≥ EYj. Our experiments indicate that replacing the “mean”

by “median” in step 3 yields similar results.

Step 4: As in Ferro and Segers (2003), we take the minimum of the calculated

estimate and 1 to ensure that θ̂(j) ∈ [0, 1].

Step 5: This step yields a sample of Nout estimates of θ for each scale j. The

choice of the parameters Nout and Nin is discussed in Section 2.5.

Step 6: In practice, the estimation of θ requires selecting the range of scales, where

the best bias/variance trade–off is achieved. Estimating θ over the larger scales j

(larger block sizes) involves lower bias, but leads to larger variance as the number of

block–maxima is reduced. At lower scales j (smaller block sizes) the bias grows but

the variance is reduced (see Figure 2.3). In general, reliable estimates of θ can be

obtained from the middle range of scales. The choice of the scales j is addressed in

the sequel.

Figure 2.3 (left panel) illustrates the above algorithm over a simulated process with
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known extremal index θ = 1/2. A stable range of scales 4 to 7 can be observed. In

practice, we recommend taking the median of the sample of the pooled Nout estimates

θ̂(j) from each one of the scales j in the stable range. In this case we obtained a point

estimate of 0.52. One can also obtain an empirical 95% confidence interval, based

on 0.025–th and 0.975–th empirical quantiles of the pooled θ̂(j) values to obtain

(0.40, 0.62). We discuss further the validity of such type of confidence intervals in

Section 2.5.3.

Remark: In a simulation study where independent sequences of data are generated

and computation time may be of a lesser concern, we recommend setting Nout = 500

and Nin = 25. Our experience shows that for the real date, in a finite sample

situation, where resampling may not produce independent sets, setting Nout = 200

and Nin = 1 produce satisfactory results. Using Nin = 1 in such cases leads to

slightly larger variance, leading to wider confidence intervals, but prevents missing

the ’true value’ due to the bias.

The selection of the stable range of scales j in Step 6 of the above algorithm is

subjective. To aid one in the selection of the scales range, we recommend using the

Kruskal–Wallis test to automatically determine a range of scales with approximately

equal medians:

Algorithm 2. (automatic selection of scales)

1. For every given range j1 ≤ j ≤ j2, j1 < j2 of possible consecutive scales in the

data, perform a Kruskal–Wallis test for equality of the medians, based on the

samples of Nout values of θ̂(j).

2. Consider the array of p−values: p(j1, j2) from Step 1. Declare the medians over

the range [j1, j2] ’statistically different’ if p is less than a prescribed significance

threshold.
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3. Produce a pooled estimate of θ based on the longest scale range where the

medians are not statistically different.

4. If there are ties in Step 3, pick the range starting at the lowest scale. If all

medians are statistically different, pick the middle scale and recommend visual

inspection.

The proposed automatic scale selection procedure is evaluated in Section 2.5. One

possible method to visualize the results of this analysis is to construct a heat map

of the p-values for the Kruskal–Wallis tests – see the right panel of Figure 2.3. The

axes correspond to scales j1 and j2 and the regions in black indicate ranges of scales

[j1, j2] with p−values greater than 0.05. This heat map shows that the medians over

the scale range [j1, j2] = [5, 7] are not statistically different at a level of 5%. A point

estimate based on the pooled values from scales 5 to 7 is 0.52 with an empirical 95%

confidence interval of (0.39, 0.63).

2.5 Performance evaluation

We provide next a brief description of two established estimators for θ, together

with a number of processes for which θ can be computed explicitly. We then present

a brief simulation study on the performance of these estimators.

2.5.1 Brief Description of Competing Estimators

The first estimator is based on the characterization of the extremal index given

by O’Brien (1987). In this characterization, θ is expressed as the limiting probability

that an exceedance is followed by a run of observations below a high threshold un:

θ = lim
n→∞

P
{ rn∨
j=2

Xj ≤ un|X1 > un

}
,
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where rn = o(n) is the length of runs of values of the process falling below the

threshold given that an exceedance has occurred. This characterization motivates

the definition of the runs estimator for a fixed high threshold u and a specified runs

length r as follows:

(2.5.24) θ̂runs =

∑n−r
j=1 I(Xj ≥ u ≥

∨j+r
i=j+1Xi)∑n−r

j=1 I(Xj > u)
.

The runs estimator is asymptotically normal and consistent, under certain conditions

(See Weissman and Novak (1998) and references therein for additional information.)

The second estimator is due to Ferro and Segers (2003). An interesting aspect of

this estimator is that it does not require an auxiliary parameter (run length in the

case of the runs estimator). However, one still has to choose the threshold. Using

a point process approach, Ferro and Segers (2003) show that the inter–exceedance

times - time differences between successive values above a threshold un - of the

extreme values normalized by F̄ (un) converge in distribution to a random variable

Tθ with a mixture distribution. This is a mixture of a point–mass 1 − θ at t = 0

and an exponential distribution with rate θ. Using a moment estimator, they first

obtain:

θ̂1 =
2(
∑N−1

i=1 Ti)
2

(N − 1)(
∑N−1

i=1 T 2
i )
, and then consider θ̂2 =

2(
∑N−1

i=1 (Ti − 1))2

(N − 1)(
∑N−1

i=1 (Ti − 1)(Ti − 2))
.

Here {Ti} are the inter–exceedance times and N is the number of exceedances of a

fixed high threshold u. The second estimator θ̂2 is a bias corrected version allowing

for zero inter–exceedance times.

The final form of the estimator ensures that it always lies between 0 and 1:

(2.5.25) θ̂F/S =

 1 ∧ θ̂1 if max{Ti : 1 ≤ i < N − 1} ≤ 2,

1 ∧ θ̂2 if max{Ti : 1 ≤ i < N − 1} > 2.
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The Ferro–Segers estimator is consistent for m-dependent strictly stationary se-

quences.

2.5.2 Summary of numerical results

We start by presenting three types of processes with closed form expressions for the

extremal index. These processes will be further used in to evaluate our estimators.

• The max-autoregressive (armax) process of order one is defined as:

Xn = max{bXn−1, (1− b)Zn}, where 0 ≤ b < 1,

and where {Zn}n∈Z is an iid sequence of standard α−Fréchet random variables. For

such processes θ = 1 − bα can take any value in the interval (0, 1] (see e.g. Beirlant

et al. (2004) for additional information).

• The linear process {Yn}, n ∈ Z is defined as:

Yn =
∑
j∈Z

ψjZn−j, n ∈ Z, where
∑
j∈Z

|ψj|δ <∞, for some 0 < δ < min{1, α}.

Here {Zn}n∈Z is an iid sequence of heavy–tailed innovations with exponent α >

0. When the Zn’s are symmetric, we have θ = (ψα+ + ψα−) /‖ψ‖αα, where ψ+ =

maxj(ψj ∨ 0), ψ− = maxj(−ψj ∨ 0), and ‖ψ‖αα =
∑

j∈Z |ψj|α (see, e.g. Corollary 5.5.3

in Embrechts et al. (1997)). We will use iid t-distributed innovations Zn’s where the

degrees of freedom parameter is also equal to the tail index α.

• The moving maxima process X = {Xk}k∈Z is defined as:

(2.5.26) Xk := max
1≤i≤m

aiZk−i+1, k ∈ Z,

with some coefficients ai > 0, i = 1, . . . ,m, and m ≥ 1, where the Zk’s are iid,

positive heavy–tailed random variables with tail exponent α. The extremal index θ

of X is: θ = max1≤i≤m a
α
i /
∑m

i=1 a
α
i .
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Figure 2.4: armax processes with θ = 0.2, 0.5, and 0.8 and α = 1. Note that the lower the extremal
index, the higher the degree of clustering.

Simulation setup: In the interest of space, we present selected results for the

processes under consideration that demonstrate best the behavior of the various

estimators.

◦ Xn = max{bXn−1, (1− b)Zn}, with Zi iid standard 1−Fréchet.

◦ Yn = 0.50Zn + 0.20Zn−1 + 0.10Zn−2, with Zi iid t-distributed with α degrees of

freedom.

◦ Wn = max{0.80Zn, 0.20Zn−1, 0.40Zn−2}, with Zi iid Pareto with tail index α.

Figure 2.4 illustrates a few sample paths corresponding to the armax processes above.

• Parameters: For the armax processes, we fix the tail index at α = 1 and vary the

coefficient b to obtain a range of θ values. The coefficients of the linear and moving

maxima processes are fixed (as indicated above), and the values of α for the Zk’s are

varied to obtain a range of θ values. For all processes, other choices of parameters

produced analogous results. For each type of process, 500 independent sample paths

were generated of length 213 = 8192 for the armax and moving max processes and

214 = 16384 for the linear processes.

• Estimators: A range of thresholds corresponding to the largest 10% order statis-

tics were selected for both the Ferro–Segers and the runs estimators. Further, for
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the runs estimator, run lengths of 1, 5, and 9 were used.

• Results: For each generated sample path, the Ferro–Segers, the runs 1, 5, and

9 at each selected threshold were computed. The proposed max–spectrum based

estimator was computed using both GLS and WLS and setting Nin = 25. The

threshold (Ferro-Seggers and runs estimators) and the scale (proposed estimator)

achieving the best Root-Mean-Square-Error (RMSE) is reported in Tables 2.1 – 2.3.

The results demonstrate that the proposed estimator exhibits a good overall per-

formance in terms of RMSE and for many settings outperforms the Ferro-Segers

estimator. The GLS and WLS variants produce similar results. The runs estimator

performs exceptionally well for the armax process, if the “correct” run-length pa-

rameter is specified. However, it is quite sensitive to the type of process and to the

choice of the run-length parameter. On the other hand, the other two estimators are

fairly robust for linear processes and moving maxima, as shown next.

θ α GLS WLS F/S Runs− 1 Runs− 5 Runs− 9

0.10 1.00 0.0189 0.0197 0.0140 0.0109 0.0127 0.0137
0.20 1.00 0.0226 0.0256 0.0206 0.0164 0.0218 0.0247
0.30 1.00 0.0325 0.0291 0.0272 0.0223 0.0298 0.0343
0.40 1.00 0.0334 0.0290 0.0306 0.0272 0.0381 0.0440
0.50 1.00 0.0335 0.0308 0.0316 0.0302 0.0436 0.0520
0.60 1.00 0.0350 0.0310 0.0326 0.0316 0.0485 0.0569
0.70 1.00 0.0323 0.0285 0.0348 0.0327 0.0493 0.0584
0.80 1.00 0.0274 0.0243 0.0365 0.0323 0.0508 0.0638
0.90 1.00 0.0212 0.0206 0.0363 0.0284 0.0506 0.0621

Table 2.1: RMSE values for Xn = max{bXn−1, (1− b)Zn}, with Zi iid standard 1−Fréchet. The first
column contains the θ values. The last 6 columns contain the best RMSE values for the
max-spectrum estimates via GLS, WLS, and the competitors. The sample sizes were fixed
at 213, with Nout = 500, and Nin = 25.

Figure 2.5 illustrates the estimators for 500 independent realizations of a linear

process with θ = 0.625. The boxplots for the WLS (GLS boxplots were very similar)

method and the median of the estimates of the Ferro–Segers and the runs estimators

per threshold are shown. The runs estimator is quite sensitive to the choice of

the run–length and exhibits systematic bias. The Ferro–Segers and max–spectrum
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θ α GLS WLS F/S Runs− 1 Runs− 5 Runs− 9

0.36 0.10 0.0226 0.0291 0.0172 0.0100 0.0155 0.0198
0.48 0.50 0.0262 0.0299 0.0204 0.0181 0.0322 0.0373
0.63 1.00 0.0328 0.0315 0.0235 0.0265 0.0441 0.0509
0.74 1.50 0.0226 0.0203 0.0404 0.0333 0.0509 0.0611
0.83 2.00 0.0147 0.0238 0.0598 0.0412 0.0576 0.0667
0.89 2.50 0.0032 0.0162 0.0007 0.0003 0.0000 0.0007
0.93 3.00 0.0013 0.0004 0.0002 0.0043 0.0043 0.0043

Table 2.2: RMSE values for Yn = 0.50Zn + 0.20Zn−1 + 0.10Zn−2, with Zi iid t-distributed. The first
column contains the θ values. The tail index values are in the second column. The last
6 columns contain the best RMSE values for the max-spectrum estimates via GLS, WLS,
and the competitors. The sample sizes were fixed at 214, with Nout = 500, and Nin = 25.

θ α GLS WLS F/S Runs− 1 Runs− 5 Runs− 9

0.36 0.10 0.0212 0.0287 0.0212 0.0085 0.0143 0.0181
0.45 0.50 0.0244 0.0311 0.0256 0.0557 0.0274 0.0334
0.57 1.00 0.0315 0.0325 0.0329 0.0867 0.0400 0.0474
0.68 1.50 0.0353 0.0340 0.0350 0.0844 0.0471 0.0560
0.76 2.00 0.0348 0.0328 0.0365 0.0606 0.0482 0.0571
0.83 2.50 0.0320 0.0323 0.0378 0.0324 0.0527 0.0625
0.88 3.00 0.0301 0.0297 0.0400 0.0124 0.0501 0.0594

Table 2.3: RMSE values for Wn = max{0.80Zn, 0.20Zn−1, 0.40Zn−2}, with Zi iid Pareto. The first
column contains the θ values. The tail index values are in the second column. The last
6 columns contain the best RMSE values for the max-spectrum estimates via GLS, WLS,
and the competitors. The sample sizes were fixed at 213, with Nout = 500, and Nin = 25.

estimators are more robust and do not exhibit such strong bias, a fact observed in

numerous other experimental settings.
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Figure 2.5: WLS simulation results for Yn = 0.50Zn + 0.20Zn−1 + 0.10Zn−2, θ = 0.625, Zi iid
t-distributed with df = α = 1.00, and a sample size of 214, with Nout = 500 and
Nin = 25. Left panel: Boxplots of max-spectrum θ̂. Right panel: θ̂ obtained form the
runs and Ferro–Segers estimators. In both plots, the solid horizontal line corresponds
to θ = 0.625.
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Best Scale Auto Selection

Process θ α RMSE Median SD RMSE Median SD

AM 0.20 1.00 0.0252 0.22 0.0195 0.0439 0.22 0.0404
AM 0.50 1.00 0.0313 0.52 0.0268 0.0748 0.52 0.0713
AM 0.80 1.00 0.0257 0.81 0.0221 0.0717 0.81 0.0702

LP 0.48 0.50 0.0303 0.49 0.0301 0.0672 0.48 0.0670
LP 0.74 1.50 0.0200 0.76 0.0154 0.0635 0.74 0.0631
LP 0.89 2.50 0.0230 0.87 0.0090 0.0738 0.84 0.0620

MM 0.45 0.50 0.0324 0.47 0.0271 0.0513 0.47 0.0493
MM 0.68 1.50 0.0336 0.69 0.0276 0.0666 0.69 0.0638
MM 0.83 2.50 0.0337 0.85 0.0226 0.0700 0.84 0.0686

Table 2.4: Best RMSE values versus the RMSE from the automatic scale selection procedure.

Automatic selection of scales: We illustrate next the performance of the auto-

matic selection procedure, introduced in Section 2.4. We use a subset of the armax,

linear and moving maxima processes, described in the simulation setup above. As be-

fore, for each process, we generate 500 independent realizations, of length 213 = 8192

for the armax (AM) and moving maxima (MM) processes and 214 = 16384 for the

linear processes (LP). We now use Nout = 200 and Nin = 1 and thus we obtain 200

dependent estimates of θ per scale, for each sample path. We apply the automatic

selection procedure based on the Kruskal–Wallis test (at a level of 5%) for each set of

200 resampled θ estimates. We thus obtain a single θ estimate per simulated path.

This procedure is repeated for each independent realization and RMSE values

are computed based on the obtained θ estimates from the automatic procedure. We

report the best RMSE value (lowest RMSE value among scales), the median and the

standard deviation of the estimates based on the automatic procedure and the same

values corresponding to the scale at which the best RMSE value was obtained (as in

Tables 2.1–2.3).

Table 2.4 indicates that the automatic selection procedure performs very well in

terms of bias (as compared to the best–RMSE scale). The RMSE values for the

automatic selection method are larger than the best-scale-RMSE values. This is

due to the larger variance as seen from the reported standard deviations. Such a
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behavior is to be expected since the automatic selection procedure does not involve

any knowledge of the true value of θ. In practice, since θ is unknown, one cannot

identify the best scale j and hence one cannot achieve the best–RMSE. In such a

setting the automatic selection procedure appears to perform well, by producing

estimates with low bias and paying a small price in higher variability.

2.5.3 Confidence Intervals

We discuss next two procedures to construct confidence intervals and investigate

their coverage probabilities. The first one is based on asymptotic normality (Theorem

II.5) and the second on resampling. We examine the coverage probabilities over the

same set of processes as in Section 2.5.2.

• Asymptotic confidence intervals: For an appropriately chosen scale j in view of

Theorem II.5, we propose the following asymptotic 100q% confidence interval:

(2.5.27) θ̂(j)± z(1−q)/2θ̂(j)π
√

1/6nj,

where z(1−q)/2 is a (1 + q)/2−th quantile of the standard normal distribution and

n and nj = bn/2jc are the total sample size and the number of block–maxima

involved in the calculation of the Yj statistic, respectively. Table 2.5 displays coverage

probabilities for nominal levels .05 and .10 for scales j between 4 and 8, where the θ̂(j)

estimates typically stabilize. These results are based on 500 independent realizations

for each process.

• Resampling–based confidence intervals: These are based on the estimated θ’s

from many shuffled (resampled) versions of a single sample path. The computed θ

estimates are pooled across a range of scales with reasonable estimates, and then

take the appropriate empirical quantiles:

(2.5.28) (θ̂(j1, j2)( 1−q
2

), θ̂(j1, j2)( 1+q
2

)),
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90% - Scales 95%- Scales

Process θ α 4 5 6 7 8 4 5 6 7 8

AM 0.20 1.00 36 72 82 85 89 48 84 90 93 96
AM 0.50 1.00 88 96 96 96 96 94 99 98 99 99
AM 0.80 1.00 99 99 99 99 98 100 100 100 100 99

LP 0.48 0.50 56 81 80 72 65 68 88 85 78 70
LP 0.74 1.50 94 90 88 84 79 98 95 93 89 83
LP 0.89 2.50 49 80 90 89 86 62 87 93 93 89

MM 0.45 0.50 68 95 99 99 99 82 98 100 100 100
MM 0.68 1.50 93 99 99 100 100 98 100 100 100 100
MM 0.83 2.50 99 99 100 100 99 100 100 100 100 99

Table 2.5: Coverage probabilities for a selected set of processes using equation (2.5.27).

90% - Scales 95%- Scales

Process θ α 4 5 6 7 8 4 5 6 7 8

AM 0.20 1.00 10 33 37 34 31 13 38 43 40 34
AM 0.50 1.00 34 58 62 61 61 40 66 69 67 68
AM 0.80 1.00 75 79 79 80 81 83 85 86 88 87

LP 0.48 0.50 31 61 58 56 53 36 69 66 64 60
LP 0.74 1.50 79 75 75 71 74 86 82 82 80 80
LP 0.89 2.50 20 57 75 82 83 28 65 82 90 90

MM 0.45 0.50 17 55 68 74 79 20 63 75 81 87
MM 0.68 1.50 31 67 78 81 83 37 79 86 88 90
MM 0.83 2.50 60 81 84 85 84 70 88 92 91 89

Table 2.6: Coverage probabilities for a selected set of processes using equation (2.5.28).

where θ̂(j1, j2)(τ) represents the empirical τ−th quantile of the pooled θ̂(j) values

across scales j1 ≤ j ≤ j2. The coverage probabilities based on (2.5.28) are reported

in Table 2.6.

• Empirical confidence intervals based on Normality: To further assess the validity

of the asymptotic results, we produced empirical confidence intervals based on 500

independent estimates of θ under the assumption that the θ̂(j)’s follow approximately

a normal distribution. Namely, we estimate the standard error of the θ̂(j) and

compute 100q%−confidence intervals as follows:

(2.5.29) θ̂(j)± z(1−q)/2S.E.(θ̂(j)).

Table 2.7 indicates that the empirical confidence intervals based on independent

samples and normality assumptions have relatively accurate coverages. This shows

that the asymptotic approximation in Theorem II.5 is in fact applicable. This fact is

further confirmed by the coverages reported in Table 2.5. The coverage probabilities
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90% - Scales 95%- Scales

Process θ α 4 5 6 7 8 4 5 6 7 8

AM 0.20 1.00 62 88 92 89 87 62 88 92 89 87
AM 0.50 1.00 79 90 94 94 94 79 90 94 94 94
AM 0.80 1.00 91 94 95 94 98 91 94 95 94 98

LP 0.48 0.50 67 91 89 87 86 81 95 91 91 91
LP 0.74 1.50 89 90 89 90 89 94 95 97 95 95
LP 0.89 2.50 45 76 86 91 90 56 85 93 94 93

MM 0.45 0.50 52 82 85 89 89 66 90 92 95 94
MM 0.68 1.50 64 84 90 90 90 75 92 94 95 94
MM 0.83 2.50 79 89 90 88 97 87 93 95 93 98

Table 2.7: Coverage probabilities for a selected set of processes using equation (2.5.29).

therein are near their nominal levels but the confidence intervals based on equation

(2.5.27) are generally wider. In a real data analysis one could only use equation

(2.5.27) and not equation (2.5.29) since no independent realizations of the process

are available.

As expected, the coverage probabilities in Table 2.6 are not as accurate as the ones

obtained from the 500 independent values of θ and the resulting confidence intervals

tend to undercover θ, on the average. Nevertheless, this method together with the

asymptotic confidence intervals in (2.5.27) yields useful confidence lower bound in

practice.

Tables 2.5 – 2.7 indicate coverage probabilities for the middle range of scales.

Figure 2.6 illustrates further these coverages for confidence intervals based on (2.5.27)

– (2.5.29). For lower scales, the coverage probabilities suffer substantially due to bias;

however, as j increases all methods rapidly improve. The asymptotic confidence

intervals based on (2.5.27) generally provide reasonable coverage results for scales j

beyond 3 or 4.

Ferro and Segers (2003) compare the coverage probabilities of their estimator and

the runs estimators. Their estimator is shown to be quite robust and the confidence

intervals have relatively accurate coverage probabilities for thresholds corresponding

to the 0.90th and up to the 0.99th quantiles. The runs perform very poorly, due to
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Figure 2.6: Coverage probabilities (for 95% confidence intervals) based on equations (2.5.27) des-
ignated as normal, (2.5.29) designated as true, and (2.5.28) designated as dependent
resampling are shown. The left, center and right panels correspond to an armax, linear,
and moving maxima processes, respectively (with corresponding θ values 0.50, 0.74, and
0.68). The solid line in all three plots corresponds to the nominal value of 0.95.

the large systematic bias of the runs estimator.

There is a heuristic correspondence between the scales j and the quantiles of

the data. Namely, the block–maxima on scale j involve roughly the largest 1/2j

proportion of the data. Thus, the qth quantile corresponds to a scale of j ≈ − log2(1−

q). Hence, the range of 0.90th to 0.99th quantile in the Ferro–Segers estimators

corresponds to scales j between 3 and 7. This and Figure 2.6 suggest that the

asymptotic confidence intervals perform relatively well and are comparable to the

Ferro–Segers estimator over its corresponding range of thresholds.

2.6 Applications

Crude Oil Data: The daily log returns of West Texas Intermediate (WTI) crude oil

prices from January 2, 1986 to March 6, 2007 (5342 observations) are analyzed and

the extremal index estimated. Note that the daily log returns (referred as returns

henceforth) are approximately equal to the daily percentage changes in the price.
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Figure 2.7: Top Plot: West Texas Intermediate (WTI) crude oil prices from January 2, 1986 to
March 6, 2007. Bottom Plot: The daily log returns of oil prices for the same period.

WTI represents a benchmark against which all oil bound for the US is priced at and

hence its market is deep and liquid. The data were obtained from Energy Information

Administration (see http://www.eia.doe.gov/). For a useful reference on oil markets

see Geman (2005).

Figure 2.7 shows a plot of the data and the corresponding returns. The return

series appears to be approximately stationary, with the exception of a few instances,

the result of events of major economic impact. In the top panel, the run up of the

oil prices before the first Persian Gulf war can be seen, together with its subsequent

rapid drop once it became apparent that the coalition forces would prevail. A similar
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Figure 2.8: Q-Q plots of the log–returns of WTI crude oil prices versus normal (left panel) and
t-distribution with df=3 (right panel).

pattern is observed at the onset of the recent Iraq war. The run up in oil prices over

the course of the last three years is also evident in the plot.

We address next the question of whether the data exhibit heavy tailed behavior.

In general, returns are assumed to be normally distributed. In Figure 2.8 q-q plots

of the returns versus the normal distribution and a t-distribution with 3 degrees of

freedom are shown. The first plot indicates a strong departure from normality in the

tails, while the second one fits the data fairly well, suggesting that the tail index is

about 3.

For the remainder, separate analyses are carried out for the positive (right tail of

the distribution) and negative (left tail) returns. This is motivated by the empirical

fact that positive and negative returns exhibit different behavior. The presence of

heavy tailed marginals was confirmed by estimating the tail index using the max-

spectrum and Hill estimators. Values of α ≈ 2.8 and 3 were obtained for the right

and left tails, respectively.

We estimate next the extremal index θ of the returns using the max-spectrum, the

runs 1, 5, 9 and the Ferro–Segers estimators. The results are shown in Figure 2.9.
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Figure 2.9: Top Row: Estimates of θ for the right tail. The left panel is the max spectrum estimates.
The right panel is the Ferro–Segers and runs estimates. The solid horizontal line in both
plots corresponds to the max spectrum point estimate of 0.56. Bottom Row: Estimates
of θ for the left tail. The left panel is the max spectrum estimates. The right panel is
the Ferro–Segers and runs estimates. The solid horizontal line in both plots corresponds
to the max spectrum point estimate of 0.53.

The max-spectrum estimates of θ were obtained by setting Nout = 200 and Nin = 1

and using WLS. It can be seen that stable θ estimates for the right tail can be

obtained at scales j = 4 to j = 5. Pooling these results yield a value for θ = 0.56

with a 95% confidence interval of (0.50, 0.63) based on equation (2.5.28). It should

be noted that the automatic selection procedure chooses scale j = 5, which gives

comparable results. The 95% confidence interval obtained from (2.5.27) is (0.54,

0.58). The main reason that these confidence intervals are narrow is because they

ignore the uncertainty regarding scale selection. For the left tail, we choose the
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median value at scales j = 5 and to obtain a pooled estimate of 0.53 with a 95%

confidence interval of (0.47, 0.61) using (2.5.28) and (0.51, 0.55) using (2.5.27).

A reasonably stable estimate obtained from the Ferro–Segers procedure is around

0.51 for the right tail and 0.42 for the left one. However, another choice for the

left tail is 0.50, corresponding to the range of 0.90th to 0.92nd quantiles. The max-

spectrum and Ferro–Segers estimates are to some extent in agreement for the right

tail and possibly for the left tail as well, depending on the choice of a stable range for

the Ferro–Segers estimate. On the other hand, the results of the runs-1 estimator are

highly suspect. The results of the runs-1 indicate little or no clustering of extremes (as

θ̂ ≈ 1). The fact that runs-1 fails to capture the clustering may be explained by the

behavior of financial returns, where one extremely large positive return is commonly

followed by a large negative return. Thus runs-1 often identifies clusters with a single

extreme value, as in the case of independent data. Increasing the number of the run

length parameter yields estimates more in agreement with the other two procedures.

The results strongly suggest clustering of large losses and gains that can in turn have

serious consequences in terms of risk exposure of portfolios that include WTI.

Wooster Temperature Data: We now examine the daily minimum temperature

series for Wooster, OH, available through the ismev R package. This data set covers

the years 1983 to 1987 and has served as a benchmark for several previous studies of

the extremal index. We focus in our analysis only on the winter periods (December

21-March 21) and retain a total of 456 observations. The sign of the data values has

been reversed, so that large values represent extremely low temperatures. The series

is approximately stationary and heavy tailed over the chained winters. Coles (2001)

using the runs estimator for various thresholds and runs lengths obtains estimates

in the range of 0.16 to 0.42. Ferro and Segers (2003) using their method obtain
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Figure 2.10: Left Panel: Wooster winter 1983-1987 daily minimum temperatures. Right Panel:
Max spectrum estimates of θ. Note only 26 point, all point above the dashed line in
the left panel figure, were used to estimating θ.

estimates in the range of 0.4 to 0.6 depending on the threshold, but settle on the

final value of 0.60 for a stable point estimate. Laurini and Tawn (2003) using their

proposed extremal index estimator obtain estimates ranging from 0.40 to 0.65 with

a final estimate of 0.65. See also Smith et al. (1997) for a more detailed analysis of

this data set.

For our analysis we set Nin = 200, and Nout = 1 and use WLS. The sample size

of 26 - only 26 observations out of total sample size of 456 are positive - used for the

max spectrum estimator is quite small in this case. With only 2 scales to examine,

we report our results for each scale and the pooled version. Pooling the results from

scales 1 and 2, we obtain a point estimate of 0.58, with a 95% confidence interval

of (0.27,1) based on equation (2.5.28). The point estimate and the corresponding

95% confidence interval based on equation (2.5.28) for scale 1 is 0.61 and (0.42,0.88)

correspondingly. For scale j = 2 the results are 0.50 and (0.26,1). This interval is

fairly wide and hence its usefulness rather doubtful. The confidence intervals based

on equation (2.5.27) are (0.61, 0.63) and (0.54, 0.58) for scales 1 and 2 respectively.
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Our results are consistent with the results of previous studies.

2.7 Appendix

2.7.1 Rates of convergence for moment functionals of dependent maxima

Proposition II.6. Suppose that f : (0,∞)→ R is an absolutely continuous function

on any compact interval [a, b] ⊂ (0,∞), and such that f(x) = f(x0)+
∫ x
x0
f ′(u)du, x >

0 for some (any) x0 > 0.

Let for some m ∈ R and δ > 0,

(2.7.30) xm|f(x)|+ esssup0<y≤xy
m|f ′(y)| −→ 0, as x ↓ 0,

(2.7.31) x−α|f(x)|+ x1+δesssupy≥xy
−α|f ′(y)| −→ 0, as x→∞.

Suppose also that the time series X = {Xn}n∈Z satisfies Conditions 1 and 2, where

c1(x) is such that:

(2.7.32)

∫ ∞
1

c1(x)x−α|f ′(x)|dx <∞.

Then, E|f(Mn)| < ∞, for all sufficiently large n ∈ N, and for some Cf > 0, inde-

pendent of n,

(2.7.33) |Ef(Mn/n
1/α)− Ef(Z)| ≤ Cfn

−β,

where Z is an α−Fréchet variable with scale coefficient σ := c
1/α
X .

Proof: The proof is similar to the proof of Theorem 3.1 in Stoev et al. (2006). Indeed,

as in the above reference, one can show that E|f(Z)| < ∞ and E|f(Mn)| < ∞, for

all sufficiently large n. Further, by using the conditions (2.7.30) and (2.7.31) and

integration by parts, we have that

(2.7.34) Ef(Mn/n
1/α)− Ef(Z) =

∫ ∞
0

(G(x)− Fn(x))f ′(x)dx,
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where Fn(x) := P{Mn/n
1/α ≤ x} and G(x) = P{Z ≤ x}. Since Fn(x) = e−c(n,x)x−α ,

by the mean value theorem, we have

|G(x)− Fn(x)| = |e−cXx−α − e−c(n,x)x−α| ≤ |c(n, x)− cX |x−αe−min{θcX , c(n,x)}x−α

≤ n−βc1(x)x−α
(
e−c2x

−(α−γ)
+ e−θcXx

−α
)
,

where in the last inequality, we used Relations (2.3.14) and (2.3.15).

Thus, by (2.7.34), we have that

|Ef(Mn/n
1/α)− Ef(Z)| ≤ n−β

∫ ∞
0

c1(x)x−α|f ′(x)|
(
e−c2x

−(α−γ)
+ e−cXx

−α
)
dx

=: n−β
(∫ 1

0

+

∫ ∞
1

)
.(2.7.35)

The last integral is finite. Indeed, since the exponential terms above are bounded,

Relation (2.7.32) implies that the integral “
∫∞

1
” is finite. On the other hand, condi-

tions (2.3.14) and (2.7.30) imply that, c1(x)|f ′(x)| = O(x−R), x ↓ 0, for some R ∈ R.

However, for all p > 0, we have (e−c2x
−(α−γ)

+e−cXx
−α

) = o(xp), x ↓ 0, since α−γ > 0.

This implies that the integral in “
∫ 1

0
” in (2.7.35) is also finite. This completes the

proof of (2.7.33). �

Proposition II.7. Let X = {Xk}k∈Z be a strictly stationary time series which satis-

fies Conditions 1 and 2 in Section 2.3.1 above. Suppose that
∫∞

1
c1(x)x−α−1+δdx < 0,

for some δ > 0.

Then, with Mn := max1≤k≤nXk, we have E| ln(Mn)|p < ∞, for all p > 0 and all

sufficiently large n ∈ N. Moreover, for any p > 0 and k ∈ N, we have:

∣∣∣E| ln(Mn/n
1/α)|p−E| ln(Z)|p

∣∣∣ = O(n−β), and
∣∣∣E(ln(Mn/n

1/α))k−E(ln(Z))k
∣∣∣ = O(n−β),

as n→∞, where Z is an α−Fréchet random variable with scale coefficient θ1/αc
1/α
X .
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Proof: It is enough to show that the functions f(x) := | ln(x)|p and f(x) :=

(ln(x))k, p > 0, k ∈ N satisfy the conditions of Proposition II.6. In the first

case, for example, |f ′(x)| = px−1| ln(x)|p−1, x > 0. Therefore, the assumption∫∞
1
c1(x)x−α−1+δdx < ∞ implies (2.7.32), since | ln(x)|p−1 ≤ constxδ, for all x ∈

[1,∞). The conditions (2.7.30) and (2.7.31) are also fulfilled in this case, and hence

Proposition II.6 yields the desired order of convergence. The functions f(x) =

(ln(x))k, k ∈ N can be treated similarly. �

Note that Proposition II.7 readily implies:

(2.7.36) E(Yj − j/α) ≡ E log2(D(j, k)/2j/α) = E log2(θ1/αc
1/α
X Z1) +O(1/2jβ),

as j → ∞, where Z1 is a standard α−Fréchet variable. This important fact is used

in the proofs of the asymptotic results given below.

In the remainder of the section we illustrate that Conditions 1 and 2 in Section

2.3.1 apply to a general class of moving maxima processes.

Let {Zn}n∈N be a sequence of iid random variables with cumulative distribution

function P{Z ≤ z} = FZ(z). As in Stoev et al. (2006), for a function c(z) > 0 such

that c(z)→ constant > 0, as z →∞ , it is assumed that

(2.7.37) FZ(z) = exp{−c(z)z−α}, z > 0,

and two further conditions, analogous to Conditions 1 and 2, are imposed:

Condition 1′. There exists β′ > 0, such that

(2.7.38) |c(z)− cZ | ≤ Kz−β
′
, for all z > 0,

where cZ > 0 and K ≥ 0.

Condition 2′. FZ(0) = 0 and for all x > 0,

(2.7.39) c(z) ≥ cmin{1, zγ}, for some γ ∈ (0, α),
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with c > 0.

Observe that (2.7.38) implies c(z)→ cZ , z →∞, and in fact

P{Z > z} = 1− FZ(z) ∼ cZz
−α, as z →∞.

The following result shows that the moving maxima process X defined in (2.5.26)

satisfies conditions Conditions 1 & 2.

Proposition II.8. If the Zn’s satisfy Conditions 1′ and 2′, then the process X =

{Xk}k∈Z in (2.5.26) satisfies Conditions 1 and 2 with γ as in (2.7.39),

(2.7.40) β = min{1, β′/α} and c1(x) := const(1 + x−β
′
),

where β′ is as in (2.7.38). Moreover, the extremal index of X is

θ = max
1≤i≤m

aαi /
m∑
i=1

aαi .

Proof: We first derive the marginal distribution of the Xk’s. By (2.7.37) and

(2.5.26), we have

P{Xk ≤ x} = P{Zk ≤ x/a1, . . . , Zk−m+1 ≤ x/am} = exp{−
m∑
i=1

c(x/ai)a
α
i x
−α}.

Thus, in view of (2.7.38), c(x/ai)→ cZ , x→∞, and hence, as x→∞

(2.7.41) P{Xk > x} ∼ σα0 x
−α, where σα0 := cZ

m∑
i=1

aαi .

We now focus on the maxima Mn := max1≤i≤nXi. For n > m, and x > 0, we have

that Fn(x) := P{Mn/n
1/α ≤ x} equals

Fn(x) = P{X1 ≤ n1/αx, . . . , Xn ≤ n1/αx}

= P
{ 0∨
j=2−m

gj,mZj ≤ n1/αx,

n−m+1∨
j=1

a(1)Zj ≤ n1/αx,

m−2∨
j=0

hjZn−j ≤ n1/αx
}
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where

a(1) :=
m∨
k=1

ak, gj,m =
m∨

k=2−j

ak, hj =

1+j∨
k=1

ak.

Therefore, by using the independence of the Zj’s and Relation (2.7.37), we get

Fn(x) = exp{−c(n, x)x−α}, x > 0, where

c(n, x) =
1

n

( 0∑
j=2−m

c(n1/αx/gj,m)gαj,m + (n−m+ 1)aα(1)c(n
1/αx/a(1))

+
m−2∑
j=0

c(n1/αx/hj)h
α
j

)
.(2.7.42)

We will now show that Relation (2.3.14) holds with β and c1(·) as in (2.7.40). Let

cX := cZa(1) = cZ max1≤i≤m a
α
i . By (2.7.42), we have

|c(n, x)− cX | = |c(n, x)− cZaα(1)|

≤ 1

n

0∑
j=2−m

∣∣∣c(n1/αx/gj,m)− cZ
∣∣∣gαj,m +

(n−m+ 1)

n

∣∣∣c(n1/αx/a(1))− cZ
∣∣∣aα(1)

+
1

n

m−2∑
j=0

∣∣∣c(n1/αx/hj)− cZ
∣∣∣hαj +

C

n
=: A1 + A2 + A3 +

C

n
,(2.7.43)

where the constant C does not depend on x. In the last relation, we add and subtract

the finite number of 2(m−1) terms of the type gαj,mcZ and hαj cZ and apply the triangle

inequality.

Now, by applying Relation (2.7.38) to each one of the absolute value terms in A1,

we obtain

(2.7.44) A1 ≤
Kaα(1)

n

0∑
j=2−m

n−β
′/αx−β

′
gβ
′

j,m ≤
m− 1

n1+β′/α
Kaα+β′

(1) x−β
′
=

C1

n1+β′/α
x−β

′
,

where the constant C1 does not depend on n and x and where in the last inequalities

we used that gj,m ≤ a(1). One obtains a similar bound for the term A3 in (2.7.43):

(2.7.45) A3 ≤
C3

n1+β′/α
x−β

′
,
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where the constant C3 does not depend on n and x.

Now, for the term A2 in (2.7.43), we also have by (2.7.38) that

(2.7.46) A2 ≤
n−m+ 1

n
Kaα+β′

(1) x−β
′
n−β

′/α ≤ C2

nβ′/α
x−β

′
,

where the constant C2 does not depend on n and x.

By combining the bounds in (2.7.44) – (2.7.46), for the terms in (2.7.43), we

obtain

|c(n, x)− cX | ≤
(C1 + C3)

n1+β′/α
x−β

′
+

C2

nβ′/α
x−β

′
+
C

n
,

which shows that (2.3.14) holds with c1(x) = const (1 + x−β
′
), where β := β′/α.

We now show that (2.3.15) holds. Since (2.3.15) involves a lower bound, we can

ignore the two positive sums in (2.7.42). Recall (2.7.39) and note that c(n1/αx/a(1)) ≥

c′2 min{1, (n1/αx/a(1))
γ}. Since, for sufficiently large n, n1/α > a(1), and (n1/αx/a(1))

γ ≥

xγ, we obtain c(n1/αx/a(1)) ≥ c′2 min{1, xγ}. Therefore, by (2.7.42), since for all suf-

ficiently large n, (n − m + 1)/n ≥ 1/2, we have c(n, x) ≥ c2 min{1, xγ}, where

c2 = aα(1)c
′
2/2. This implies (2.3.15) and completes the proof of the proposition. �

2.7.2 Proofs for Section 2.3.2

Proof of Proposition II.2: Recall that by (2.2.3),

(2.7.47) D(j, k) :=
2j∨
i=1

X2j(k−1)+i and introduce D̃(j, k) :=
2j−m∨
i=1

X2j(k−1)+i.

Observe that D̃(j, k), k = 1, . . . , nj (nj = bn/2jc) are independent in k since they

are “separated by m” block–maxima of the m−dependent process X..

Recall also that by (2.2.5)

Yj :=
1

nj

nj∑
k=1

log2D(j, k) and introduce the statistics Ỹj :=
1

nj

nj∑
k=1

log2 D̃(j, k).
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We first establish Relation (2.3.20). Let

(2.7.48) Ĥ =
∑̀
i=0

wiYi+j(n), and H̃ =
∑̀
i=0

wiỸi+j(n),

so that α̂(j) in (2.3.17) equals 1/Ĥ. The weights wi’s, the range ` and the quantity

j(n) are described in Section 2.3.1.

To prove that α̂(j) − α = OP (an), n → ∞, for some an → 0, it suffices to show

that E(Ĥ−H)2 = O(a2
n), where H := 1/α.. Observe that by adding and subtracting

the term H̃, and by applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we get

E(Ĥ −H)2 ≤ 2E(Ĥ − H̃)2 + 2E(H̃ −H)2 = 2Var(Ĥ − H̃)

+2(EĤ − EH̃)2 + 2E(H̃ −H)2

=: 2A1 + 2A2 + 2A3,(2.7.49)

where in the last relation we also used the fact that Eξ2 = Var(ξ) + (Eξ)2.

We will first show that A1 = o(1/nj) in (2.7.49) is negligible. Indeed, by (2.7.48),

we have

(2.7.50) Ĥ − H̃ =
∑̀
i=0

wi(Yi+j(n) − Ỹi+j(n)),

and thus by using the inequality Var(ξ0 + · · ·+ ξ`) ≤ (`+1)2(Var(ξ0)+ · · ·+Var(ξ`)),

we get Var(Ĥ − H̃) ≤ (1 + `)2
∑`

i=0w
2
iVar(Yi+j(n) − Ỹi+j(n)). Thus, by Lemma II.9

below, since ` is fixed,

(2.7.51) Var(Ĥ − H̃) ≤ const

nj

∑̀
i=0

Var
(

log2D(i+ j(n), 1)− log2 D̃(i+ j(n), 1)
)
,

where nj = n/2j(n). Lemmas II.10 and II.11, on the other hand, yield

(2.7.52) Var(Ĥ − H̃) = o(1/nj), as n→∞.
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Now, we focus on the term A2 in (2.7.49). By (2.7.50), we have

√
A2 =

∑̀
i=0

wi(EYi+j(n) − EỸi+j(n)) =
∑̀
i=0

wi log2(D(i+ j(n), 1)/2(i+j(n))/α)

−
∑̀
i=0

wi log2(D̃(i+ j(n), 1)/2(i+j(n))/α)

=
∑̀
i=0

wiE log2(Z) + o(1/2j(n)β)

−
∑̀
i=0

wi

(
E log2(D̃(i+ j(n), 1)/(2(i+j(n)) −m)1/α)

− 1

α
log2((2i+j(n) −m)/2i+j(n))

)
,

where the last relation follows from (2.7.36) and where Z is an α−Fréchet variable

with scale coefficient (θcX)1/α. Now, since D̃(i+j(n), 1)/(2i+j(n)−m)1/α is a properly

normalized block–maximum (recall (2.7.47) above), by Relation (2.7.36), we further

have that

√
A2 =

∑̀
i=0

wiE log2(Z)−
∑̀
i=0

wiE log2(Z) + o(1/2j(n)β) +O(log2(1−m/2j(n))

= o(1/2j(n)β) +O(1/2j(n)),

as r →∞, since log2(1− x) = O(x), x→ 0. We thus have,

(2.7.53) A2 = O(1/2j(n) min{1,β}), as j(n)→∞.

Consider now the term A3 in (2.7.49). As above, we have

E(H̃ −H)2 = Var(H̃ −H) + (EH̃ −H)2 =: A′3 + A′′3,

and as in (2.7.51), we get

A′3 ≤ (`+ 1)2
∑̀
i=0

wiVar(Ỹi+j(n)) = o(1/nj) = o(2j(n)/n), as nj →∞.
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Also, as argued above, since
∑`

i=0wi(i+ j(n))/α = 1/α ≡ H, we obtain

EH̃ −H =
∑̀
i=0

wi(E log2 D̃(i+ j(n), 1)− (i+ j(n))/α) = O(1/2j(n) min{1,β}),

as j(n)→∞ (see (2.7.53) above). By combining the bounds for terms A1 , A2 and

A3 in (2.7.52), (2.7.53) and the last two relations, we obtain

Ĥ = H +OP (1/2j(n) min{1,β}) +OP (2j(n)/2/n1/2), as j(n), n/2j(n) →∞.

This completes the proof (2.3.20).

The proof of (2.3.21) is simpler. By introducing the quantity C̃(j) := Ỹj − j/α,

we have

C(j)− C̃(j) = Yj − Ỹj =
1

nj

nj∑
k=1

log2(D(j, k)/D̃(j, k)).

One can similarly show that Var(C(j)− C̃(j)) is of order o(1/nj), as n→∞. Thus,

the order of C(j)−C is dictated by the orders of the bias and standard error for the

quantity C̃(j). These can be handled as the terms A2 and A3 in (2.7.49). �

The following three lemmas were used in the proof Proposition II.2.

Lemma II.9. Under the conditions of Proposition II.2, for all j > log2m, we have

Var(Yj − Ỹj) ≤
3

nj
Var(log2(D(j, 1)/D̃(j, 1))).

Proof: For notational simplicity, let ξk := log2(D(j, k)/D̃(j, k)), k = 1, . . . , nj. We

have, by the stationarity of ξk in k, that

Var(Yj − Ỹj) =
1

nj
Var(ξ1) +

2

n2
j

nj−1∑
k=1

(nj − k)Cov(ξk+1, ξ1).

Note that ξk+1 = log2(D(j, 1 + k)/D̃(j, 1 + k)) and ξ1 = log2(D(j, 1)/D̃(j, 1)) are

independent if k > 1. Indeed, this follows from the fact that the process X is

m−dependent, and since ξk+1 and ξ1 depend on blocks of the data separated by at



48

least 2j > m lags. Therefore, only the lag–1 covariances in the above sum will be

non–zero and hence

Var(Yj − Ỹj) ≤
1

nj
Var(ξ1) +

2

nj

∣∣∣Cov(ξ2, ξ1)
∣∣∣ ≤ 3

nj
Var(ξ1),

since by the Cauchy–Schwartz inequality we have |Cov(ξ2, ξ1)| ≤ Var(ξ2)1/2Var(ξ1)1/2 =

Var(ξ1). This completes the proof of the lemma. �

Lemma II.10. For D(j, k) and D̃(j, k), defined in (2.7.47) above, for any fixed k,

we have D(j, k)/D̃(j, k)
P−→ 1, as j →∞.

Proof: Let δ ∈ (0, 1/α) be arbitrary and observe that

(2.7.54)

P{D(j, k)/D̃(j, k) < 1} = P{R > D̃(j, k)} ≤ P{R > 2jδ}+ P{2jδ > D̃(j, k)},

where R = max1≤i≤mX2j(k−i)+1. Now, by stationarity,

P{R > 2jδ} = P{ max
1≤i≤m

Xi > 2jδ} → 0, as j →∞.

On the other hand, Relation (2.3.14) implies that 2−j/αD̃(j, k)
d→ Z, as n → ∞,

where Z is a non–degenerate α−Fréchet variable. Thus, since δ ∈ (0, 1/α), we have

that

P{2jδ > D̃(j, k)} → 0, as j →∞.

The last two convergences and the inequality (2.7.54) imply that P{D(j, k)/D̃(j, k) <

1} → 0, j →∞. Since trivially P{D(j, k)/D̃(j, k) > 1} = 1, we obtainD(j, k)/D̃(j, k)

converges in distribution to the constant 1, as j →∞. This completes the proof since

convergence in distribution to a constant implies convergence in probability. �

Lemma II.11. The set of random variables
∣∣∣ log2

(
D(j, k)/D̃(j, k)

)∣∣∣p, j, k ∈ N is

uniformly integrable, for all p > 0, where D(j, k) and D̃(j, k) are defined in (2.7.47).
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Proof: Let q > p be arbitrary. By using the inequality |x + y|q ≤ 2q(|x|q +

|y|q), x, y ∈ R, we get

E
∣∣∣ log2

D(j, k)

D̃(j, k)

∣∣∣q ≤ 2qE| log2(D(j, k)/2j/α)|q + 2qE| log2(D̃(j, k)/2j/α)|q.

In view of Proposition II.7, applied to the block–maxima D(j, k) and D̃(j, k), we

obtain

E| log2(D(j, k)/2j/α)|q = E| log2(M2j/2
j/α)|q −→ const, as j →∞.

Thus the set {E| log2(D(j, k)/2j/α)|q, j, k ∈ N} is bounded. We similarly have that

the set {E| log2(D̃(j, k)/2j/α)|q, j, k ∈ N} is bounded since log2(2j−m) ∼ j, j →∞,

for any fixed m.

We have thus shown that

sup
j,k∈N

E
∣∣∣ log2

D(j, k)

D̃(j, k)

∣∣∣q <∞,
for q > p, which yields the desired uniform integrability. �

Proof of Lemma II.3: Suppose that the indices i1, . . . , ik are drawn without re-

placement. Let A1 = Ω and

(2.7.55) Aj := {ω ∈ Ω : |ij′(ω)− ij′′(ω)| ≥ m, for all j′ 6= j′′, 1 ≤ j′, j′′ ≤ j},

for j ≥ 2, that is, Aj is the event that the first j random indices are spaced further

away from each other by at least m lags.

We need to show P(Ak) ≥ 1−mk2/(n− k). Note that

(2.7.56) P(Aj+1) = P(Aj+1|Aj)P(Aj) ≥ (1− 2mj/(n− j))P(Aj).

Indeed, the probability P(Aj+1|Aj) of choosing the index ij+1 to be within m lags

from one of the chosen j indices i1, . . . , ij is at most 2mj/(n− j). Thus,

P(Ak) =
k−1∏
j=1

P(Aj+1|Aj)P(A1) ≥
k−1∏
j=1

(1− 2mj/(n− j)).
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Now, by the inequality
∏k−1

j=1(1−xj) ≥ 1−
∑k−1

j=1 xj, valid for all xj ∈ [0, 1], we obtain

(2.7.57) P(Ak) ≥ 1−
k−1∑
j=1

2mj/(n− j) ≥ 1−mk(k− 1)/(n− k) > 1−mk2/(n− k).

The case when the indices are drawn with replacement is similar. �

Proof of Theorem II.4: Consider either a bootstrap or a permutation sample

X∗l = Xil , l = 1, . . . , k, where i1, . . . , ik are randomly chosen indices from {1, . . . , n},

independently from the original data X1, . . . , Xn. In the case of bootstrap these

indices are chosen with replacement and in the case of permutations – without re-

placement, respectively.

Let the event Ak be defined as in (2.7.55), which corresponds to the indices being

spaced by at least m−lags away from each other. Thus, since the time series X =

{Xi}i∈Z is m−dependent,

(X∗1 , · · · , X∗k)1Ak
D
= (X̃1, · · · , X̃k)1Ak ,

where X̃l, l = 1, . . . , k are iid random variables with the same distribution as the

Xn’s which are independent from the event Ak. Observe that the event Ak is also

independent from the time series X since it depends only on the random indices

i1, . . . , ik. Further, note that in the last relation, we have only equality in distribution

and not equality almost surely.

Now, by Lemma II.3, we have P(An)→ 1, as n→∞, since k(n) = o(
√
n). Thus,

Lemma II.12 implies that any statistic based on the bootstrap or the randomly per-

muted sample will have the same limiting distribution as the corresponding statistic

based on the iid sample {X̃l}1≤l≤k.

Let C̃∗(j) = Ỹj − j/α be defined as the quantity C∗(j) in (2.3.19), but where now

Ỹj is the max–spectrum based on the iid data X̃1, . . . , X̃k. Theorem 4.1 in Stoev
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et al. (2006) implies that

(2.7.58)
√
kj(C̃

∗(j)− C)
D−→ N (0, σ2

C∗), as k →∞,

where σ2
C∗ is as in Theorem II.4. As argued above, Lemma II.12 and Relation (2.7.58)

imply (2.3.22), which completes the proof of the theorem. �

Lemma II.12. Let Xn, X and Yn be real random variables such that Xn
D→ X,

as n → ∞. Let also An and Bn be some events such that Yn1Bn
D
= Xn1An. If

P(An) = P(Bn)→ 1, n→∞, then Yn
D→ X, as n→∞.

Proof: Let f : R → R be an arbitrary bounded and continuous function. Since

E|f(Yn)1Bcn | ≤ constP(Bn) = o(1), as n→∞, we have

Ef(Yn) = Ef(Yn)1Bn + o(1) = Ef(Xn)1An + o(1) = Ef(Xn) + o(1), as n→∞.

This shows that limn→∞ Ef(Yn) = limn→∞ Ef(Xn), which completes the proof. �

Proof of Theorem II.5: Recall Relation (2.3.18) and observe that by Proposition

II.2, we have

α̂(j) = α +OP (bn), and C(j) = C +OP (bn),

as n→∞, where

(2.7.59) bn = 1/2j(k(n)) min{1,β} + 2j(k(n))/2/n1/2.

Also, by Theorem II.4, we have a−1
n (C∗(j)−C∗) D−→ N (0, σ2

C∗), as n→∞, where

an = 1/
√
kj = 2j(k(n))/2/k(n)1/2. Relation (2.3.23), implies that bn = o(an), n→∞.

Indeed, since k(n) = o(n), n → ∞, we have 2j(k(n))/2/n1/2 = o(2j(k(n))/k(n)1/2) ≡

o(an), as n→∞. This shows that the second term of bn in (2.7.59) is negligible with

respect to an. By Relation (2.3.23), we also have k/2j(k)(1+2 min{1,β}) → 0, as k →∞,
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or, equivalently 1/2j(k) min{1,β} = o(2j(k)/2/k1/2), as k → ∞. Hence, the first term of

bn in (2.7.59) is also of order o(2j(k(n))/2/k(n)1/2) ≡ o(an), as n→∞.

Now, by using the fact that bn = o(an), n→∞ and the ’Delta–method’ (see e.g.

Theorem 3.1 in van der Vaart (1998)), applied to the function f(x, y, z) = 2x(y−z)

and x0 = α, y0 = C and z0 = C∗ (see also (2.3.18)), we obtain

a−1
n (θ̂(j)− θ) D−→ ∂zf(α,C,C∗)Z ∼ N (0, σ2

θ), as n→∞.

Since ∂zf(x0, y0, z0) = − ln(2)αθ, we obtain

σ2
θ =

(
∂zf(α,C,C∗)

)2

σ2
C∗ = ln(2)2θ2Var(log2(Z)),

where Z is a 1−Fréchet variable (see Theorem II.4).

It remains to show that σ2
θ = θ2π2/6, or equivalently, ln(2)2Var(log2(Z)) = π2/6.

Since ln(2) log2(x) = ln(x), x > 0, we have that

ln(2)2Var(log2(Z)) = Var(ln(Z)) =

∫ ∞
0

ln2(x)de−x
−1 −

(∫ ∞
0

ln(x)de−x
−1
)2

.

By making a change of variables, we obtain

Var(ln(Z)) =

∫ ∞
0

ln2(u)e−udu−
(∫ ∞

0

ln(u)e−udu
)2

= γ2 + π2/6− (−γ)2 = π2/6,

where γ denotes the Euler constant and where the last two integrals are given, for

example, by Relations 4.331 (1) and 4.335 (1) on pages 573 and 574 in Gradshteyn

and Ryzhik (1965). This completes the proof of the theorem. �



CHAPTER III

Joint Modeling of Extremes and their Clustering with
Applications in Finance

3.1 Introduction

In this chapter, we propose a new method to estimate the Value at Risk (VaR)

of an asset by explicitly taking into account the extremes of the asset returns and

their arrival intensities. Quoting Tsay (2005), page 289, VaR’s intuitive definition

and interpretation follows:

With probability 1− q, the potential loss encountered by the holder of the

financial position over the time horizon T is less than or equal to VaR.

For example, suppose the VaR for an asset’s daily percentage changes has been esti-

mated to be 2.0% with q = 0.99. Suppose that the value of the asset is $1, 000, 000.

This means that a of loss of 2.0%, or $20, 000, of the asset value occurs every 100

(100 = 1/(1− 0.99)) days on average. In the non-finance statistical literature, VaR

is referred to as the return level.

VaR as a risk measure has been criticized by Artzner et al. (1999) for not being

a coherent risk measure; One characteristic of a coherent risk measure is that the

risk of holding two assets must be less than sum of the risks associated with each

asset. VaR can violate this characteristic. However, it still remains a popular and

53
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widely used extreme risk measure since it is easily communicable to the corporate

decision makers. Furthermore, regulatory bodies such as the Bank for International

Settlements (BIS) have adopted VaR for setting capital requirements. A recent

article by Jorion (2007a) discusses the strengths and weaknesses of VaR.

Many risk managers mainly at financial institutions utilize VaR to monitor and

control risk. For example, a violation of VaR by a trader’s position may alert the

risk manager to force the trader to reduce the risk by either hedging, pruning down

the position, or even liquidating the position. VaR can be extended or re-applied for

other types of risk such as credit risk and operational risk. The discussion and the

applications of VaR in operational risk can be found in Panjer (2006). Bluhm et al.

(2002) applies VaR to credit risk.

Jorion (2007b) provides an encyclopedic treatment of VaR. Other textbook level

treatments are given by Dowd (2005), Christoffersen (2003), and Hull (2007). McNeil

et al. (2005) focus more on the quantitative aspects of VaR, where as Crouhy et al.

(2006) give a less quantitative and a broader overview of VaR. Dowd and Blake

(2006) give an up-to-date account on the more recent advances in the estimation of

VaR and other risk measures with emphasis on the insurance applications.

In this chapter, we propose a new method to estimate VaR. We estimate VaR,

conditionally on the past and current behavior of the asset and show that this leads to

substantial improvements over the benchmark methodology. Out method estimates

conditional VaR by modeling the times of the occurrence and the magnitude of the

extreme losses with a marked point process. A marked point process is a stochastic

process such that some event of interest occurs at random times with additional

random variables associated with the occurrence of the event. In our case, large losses

occur at random times with random magnitudes. We will assume that the times of
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the extreme losses above a fixed threshold are governed by a point process with

stochastic intensity, which we estimate from the data. We incorporate the estimated

intensity along with the classic Generalized Pareto Distribution (GPD) model for

the tail of the loss distribution to estimate VaR. Intuitively, during high intensity

periods, the large losses tend to cluster, and thus successive violations of VaR can

occur. Such successive violations of VaR are not predicted by the classical theory,

which models only the marginal distribution of the loss and ignores the temporal

dependence. Our results show that incorporating the intensity into VaR estimation

is able to account for this clustering. The stochastic intensity of the point process

of the extreme losses is modeled in the general framework of the Autoregressive

Conditional Duration (ACD) model first described in Engle and Russell (1998). To

the best of our knowledge, with the exception of Focardi and Fabozzi (2005), this is

the first time ACD models have been used outside the high frequency domain. Our

approach is similar to Chaves-Demoulin et al. (2005), except we will estimate the

stochastic intensity from the ACD model rather than assume a specific form for it.

The remainder of the chapter is organized as follows: In Section 3.2, we review

the two key building components of our modeling strategy which are point processes

and tail modeling. In Section 3.3, we derive explicit equations for predicting the next

day VaR, based on the past data, and also the future 10 day cumulative excess quan-

tiles. Section 3.4, contains some theoretical results regarding the stationarity of our

model. In Section 3.5, we illustrate our methodology on real data sets; specifically,

we describe the data and their key features, apply the proposed methodology, and

compare the results to two benchmark methods of unconditional quantile estimation

and GARCH. We conclude in Section 3.6, and comments on our future work.
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3.2 Background Information

In this section, the two main theoretical underpinnings of our model are described

in detail. We will only highlight the references most relevant to our work as extensive

literature exists in both areas. The first subsection describes point processes, and

the second subsection presents the modeling of the excesses over a high threshold via

GPD.

3.2.1 Point Processes

A point process is simply a collection of random points in space and/or time.

Our focus will be on point processes in time. Each point represents the time of the

occurrence of a predefined event. A particularly general definition of a point process

is given by Brémaud (1999).

Definition: A random point process on the positive half-line is a sequence

{Tn}n≥0 of nonnegative random variables such that, almost surely,

1. T0 ≡ 0,

2. 0 < T1 < T2 < . . . ,

3. limn→∞ Tn = +∞.

The sequence {Tn}n≥0 denotes the times of the events. With each random variable

Ti, we can associate another random variable Yi. The Yi’s are called marks and the

two dimensional sequence {(Ti, Yi)}n≥0 is then called a marked point process. We are

most often interested in the times between the occurrence of the events, i.e. the inter-

arrival times. We will let the sequence {Xn}n≥0, Xi = Ti − Ti−1, X0 = 0, represent

the inter-arrival times of the events of the process. Furthermore, a counting random

variable, N(s, t), is associated with the point process, which counts the number of
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events in the time interval (s, t). By convention, we let N(0, t) = N(t), when s = 0.

We will let Ht represent the history of the process up to time t. Formally, we can

define the history of the process as follows: Let Fn = σ{(Xi, Yi), 1 ≤ i ≤ n}, and let

N(t) = sup{n :
∑n

i=1 Xi ≤ t}. Then N(t) is a stopping time. Define Ht = FN(t),

where Fτ = {A ∈ Fn : A ∩ {τ ≤ n} ∈ Fn} for a stopping time τ with respect to the

filtration {Fn}n≥0.

Another important function associated with a point process is the intensity func-

tion, denoted as λ(t). The intensity function λ(t) is the instantaneous mean rate of

the event occurrence. The units of λ(t) are number of events per unit of time as we

exclude the possibility of two events occurring simultaneously. The most well known

point process is the Poisson process where λ(t) is constant. Poisson processes gener-

ally provide the starting model for the analysis of most point processes. When λ(t)

is a deterministic function of time, the point process is called a non-homogeneous or

non-stationary Poisson process. A process when λ(t) itself is a stochastic process is

called a doubly stochastic process or a Cox process. Generally the intensities of Cox

processes are driven by some outside stochastic process, which is independent from

the point process itself.

Processes such that λ(t) is causally dependent on the point process itself are

called the self-exciting point processes. In such processes, the marks are considered

endogenous to the process itself. Detailed analysis of such processes from an applied

perspective is in Snyder and Miller (1991). Karr (1991) and Daley and Vere-Jones

(2003) provide a measure theoretic (and very dense) coverage. Engle and Russell

(1998) give a good summary as well. The seminal results and applications are con-

tained in Hawkes (1971b), Hawkes (1971a), Hawkes (1972), and Hawkes and Oakes

(1974). Not surprisingly, self-exciting processes are sometimes referred to as Hawkes
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processes. As discussed in Daley and Vere-Jones (2003), page 183, self-exciting

processes come “closest to fulfilling, for point processes, the kind of role that the

autoregressive model plays for conventional time series.” This is one of the main

advantages of the self-exciting point process modeling.

Our focus will be on the self-exciting marked point process. The intensity for the

next infinitesimal time interval, (t, t+ dt), is determined conditionally on the values

of the point process and its marks in the past time interval (0, t). Furthermore, given

the conditional specification of the intensity function, the statistical structure of the

point process can be characterized completely. Namely, all the finite-dimensional

distributions of the inter-arrival times and the associated marks can be explicitly

handled. We now provide a non-mathematical heuristic definition of a self exciting

marked point process. This definition is sufficient for our purposes.

• We initialize the process by N(0) = 0.

• Our processes will be conditionally orderly that is at any time t ≥ t0, for an

infinitesimally small time interval (t, t + dt), conditional on any events defined

by the realization of the process on (t0, t], the probability of two or more events

to occur in (t, t + dt) will be infinitesimally small relative to the probability of

one event to occur.

• We will assume that the last event of the process occurred at time t or before.

A formal definition is provided in Snyder and Miller (1991), pages 288–291. The

resulting marked point process is called a self-exciting process. Its stochastic behavior

is best understood in terms of its conditional intensity function, defined as follows:

λ(t|Ht) = lim
∆t→0

P{N(t, t+ ∆t) > 0|Ht}
∆t

.
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The conditional intensity λ(t|Ht) can be interpreted as the intensity of the point

process immediately after t. For questions concerning the existence of the conditional

intensity, we refer the reader to page 70 of Karr (1991). For N(t) ≥ 1, we have the

following equivalence:

(3.2.1) P{N(t, t+ 1) = 0|Ht} = exp
[
−
∫ t+1

t

λ(y|Ht)dy
]
.

This is analogous to a formula for the non-homogeneous Poisson process, when the

conditioning is ignored. We will make use of this quantity later on. See Snyder

and Miller (1991), page 291, for the derivation of this result, or page 287 of Davison

(2003) for a heuristic argument.

Example: The shot noise process used in the study of electrical current fluctua-

tions is an example of a self-exciting point process. Formally, the shot noise process

can be defined as

λ(t|N(t), T1, . . . , TN(t)) =

N(t)∑
i=1

g(t− Ti).

In this case, the intensity function at time t becomes a linear combination of the

difference between the current time, and the previous occurrence times through a

function g().

There are various ways to statistically model self-exciting processes. A popular

one in the context of the analysis of high frequency financial data was the ACD

models first put forth by Engle and Russell (1998). In this paper, the authors

propose a model for the point process by explicitly describing the times between the

buy/sell transactions of a stock. The original ACD model, which includes the marks,

is defined as:

(3.2.2) XN(t)+1 = ΨN(t)+1εN(t)+1,

(3.2.3) E[XN(t)+1|Ht] ≡ ΨN(t)+1,
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where {εi} are independent and identically distributed non-negative noise terms. In

the context of Engle and Russell (1998), at time t, XN(t)+1 represents the time till

the next buy or sell transaction. The term ΨN(t)+1 is Ht measurable at time t since

its value depends on the previous realized (historical) values of Xi and Yi.

The model bears close resemblance to the GARCH models. Like the GARCH

models, the ACD models have proven to be very useful in capturing the clustering

effects of certain processes. The literature on the ACD modeling is extensive. Ex-

cellent up-to-date reviews of such models are given in Tsay (2005), Pacurar (2006),

Bauwens and Hautsch (2006) and the references therein.

Various forms and parameterizations of the equations (3.2.2) and (3.2.3) are pos-

sible. Our interest is in the log-ACD model as first suggested by Bauwens and Giot

(2000):

(3.2.4) XN(t)+1 = exp(ΨN(t)+1)εN(t)+1,

(3.2.5) ΨN(t)+1 = ω + αεN(t) + βΨN(t) + ηYN(t),

where εi’s are iid exponential random variables with mean 1. The marks, Yi’s, are

iid positive random variables independent from the error terms εi’s. Note, we only

included the last mark YN(t) rather than all the past marks Y1, . . . , YN(t).

The intensity of the log-ACD model for t ≥ TN(t) is

(3.2.6) λ(t|Ht) = exp(−ΨN(t)+1) = exp{−(ω + αεN(t) + βΨN(t) + ηYN(t))}.

The random variable XN(t)+1, in the context of our modeling, represents the time

till the next event of large loss. At a fixed point of time t, conditionally on the

realization of XN(t) and YN(t), XN(t)+1 is simply an exponential random variable
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multiplied by a known constant ΨN(t)+1. This follows from the conditional speci-

fication of the model in equations (3.2.4) and (3.2.4). As mentioned in Daley and

Vere-Jones (2003), page 231, the conditional intensity can be defined by the hazard

function corresponding to XN(t)+1. Using this fact, we now give a detailed derivation

for the equation (3.2.6):

λ(t|Ht) =
d

dx
P{XN(t)+1 ≤ x|Ht}/P{XN(t)+1 > x|Ht}

=
d

dx
P{εN(t)+1 ≤ xe−ΨN(t)+1|Ht}/

P{εN(t)+1 > xe−ΨN(t)+1 |Ht}

= exp(−ΨN(t)+1) exp(−x ΨN(t)+1)/ exp(−x ΨN(t)+1)

= exp(−ΨN(t)+1) = exp{−(ω + αεN(t) + βΨN(t) + ηYN(t))}.

An advantage of this model is that the intensity is positive regardless of the signs

of the coefficients ω, α, β, and η in equation (3.2.5). Note also that the intensity

does not explicitly depend on the value of N(t).

3.2.2 Tail Modeling

Our presentation in this section draws mainly from Leadbetter et al. (1983), Em-

brechts et al. (1997), Coles (2001) and Richard Smith’s discussion in Finkenstädt

and Rootzén (2004). Let {Z,Z1, . . . , Zn} be a sequence of iid random variables such

that for suitably chosen normalizing constants an > 0, and bn, as n −→∞,

P{(max(Z1, Z2, . . . , Zn)− bn)/an ≤ z} D−→ G(z),

where G(z) is a non-degenerate generalized extreme value (GEV) distribution:

(3.2.7) G(z) = exp
{
−
(

1 + ξ
z − µ
ψ

)−1/ξ

+

}
.

The parameters µ, ψ > 0, and ξ of the limiting distribution G are the location,

scale and shape parameters, respectively. Now, consider the distribution of an excess
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of Z over a high threshold u, namely Z−u, where we have Z−u > 0. Then Pickands-

Balkema-De Haan theorem - a statement of this theorem can be found in McNeil et al.

(2005), page 277 - implies that conditionally on the event {Z > u}, the distribution

of Z − u has approximately the Generalized Pareto Distribution:

(3.2.8) P{Z − u < z|Z > u} ≈ H(z) = 1−
(

1 + ξ
z

σ

)−1/ξ

+
.

The support of the distribution H is defined on

{z : z > 0, 1 + (ξz)/σ > 0},

and σ > 0 is defined as:

σ = ψ + ξ(u− µ).

The original result is due to Pickands (1975). The final form of H(z) depends on the

sign of ξ:

1. ξ < 0: the distribution H(z) has a finite upper end point of −σ/ξ.

2. ξ > 0: the distribution H(z) is heavy tailed and more precisely:

1−H(z) = H̄(z) ∼
(
ξ
z

σ

)−1/ξ

, z → +∞.

3. ξ = 0: the distribution H(z) reduces to the exponential distribution H(z) =

1− exp(−z/σ).

The important point here is that all distributions satisfying (3.2.7), will have GPD

excess distribution beyond an appropriately chosen threshold.

Example: Let Z follow a Cauchy distribution with CDF,

F (z) = 1/2 + arctan(z)/π, −∞ < z < +∞.
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Note that as z → +∞, arctan(z) ∼ π/2 − 1/z so F (z) ∼ 1 − /(πz). Then with

bn = 0 and an = n/π, we obtain

lim
n→∞

P{(max(Z1, Z2, . . . , Zn)−bn)/an ≤ z} = lim
n→∞

(1−1/zn)n = exp{−(1+z−1)−1}.

The distribution in the right hand side of the last expression is GEV with ξ = 1, and

µ = ψ = 1. Now, using the approximation in equation (3.2.8) for the CDF again we

have:

P{Z−u < z|Z > u} =
F (z + u)− F (u)

1− F (u)
≈ 1− π/(u+ z)− 1 + π/u

1− (1− π/u)
= 1−(1+z/u)−1.

The distribution on the right hand side is GPD with ξ = 1, and σ = u.

Equation (3.2.8) can be used to obtain an extreme quantile estimate from F .

Define first the quantile of a distribution F as follows:

zq = inf{zq ∈ R : F (zq) ≥ q}, q ∈ (0, 1).

Pick a threshold u such that excesses above u are approximately GPD. A typical

threshold corresponds to the 0.90 quantile of the data. Various methods can be used

to choose the thresholds. For a detailed description on the choice of threshold refer

to Embrechts et al. (1997), Chapter 6. Conditioning on the event {Z > u}, we need

to solve for zq:

1− q = P{Z > zq} = P{Z − u > zq − u|Z > u}P{Z > u}.

The first term on the right hand side of the above equation is then approximated by

the GPD:

(3.2.9) P{Z − u > zq − u|Z > u} =
(

1 + ξ
zq − u
σ

)−1/ξ

+
.

P{Z > u} is just the proportion of values over the threshold u so if u is set at the

0.90 quantile of the data, then P{Z > u} = 0.10. We let P{Z > u} = 1 − qu and
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Figure 3.1: The point process of the extremes: our focus will be on the Xi and on the excesses
Yi = Zi − u over the fixed threshold u.

thus,

1− q =
(

1 + ξ
zq − u
σ

)−1/ξ

+
(1− qu).

Solving the above equation for zq we obtain the quantile estimator:

(3.2.10) zq = u+
σ

ξ

[(1− qu
1− q

)ξ
− 1
]
.

The above equation is only valid for zq > u and q < qu, regardless of the sign of ξ.

3.3 Methodology

3.3.1 Estimating the 1-Day VaR

Our goal in this section is to obtain an expression and its estimate for the quantile

of the one day ahead predictive distribution of the returns, conditionally on the past

and current data. We shall refer to this quantile as the 1 day VaR since it predicts

the value of VaR for the next day, given the past and current conditions in the
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market, as captured by our model. More precisely, the 1 day VaR is a quantile of

the following conditional CDF:

P{Zt+1 ≤ z|Ht} = FZt+1|Ht(z).

Thus the qth quantile of this distribution is:

(3.3.11) ztq = inf{z ∈ R : FZt+1|Ht(z) ≥ q},

which is a solution to

(3.3.12) P{Zt+1 > ztq|Ht} = 1− q.

We will take equation (3.3.11) to be the formal definition of 1 day VaR:

1 day VaR = ztq.

We now give the precise definitions of N(t), Xi, and Yi in the context of our model

defined in equations (3.2.4) and (3.2.5).

Let {Zn}n≥1 denote the negative daily log-returns of a financial asset. Our event

of interest is when the loss exceeds a pre-specified high threshold u: {Zi ≥ u}. We

will assume that this is the event of a large loss from the perspective of a long holder

of the asset. The counting variable of our point process, N(t), counts the number of

large losses up to time t. The sequence {Xn}n≥1 will represent the interexceedance

(inter-arrival) times between the large losses, which can be dependent on the previous

excesses Yi = Zi − u. We will assume that the excesses {Yn}n≥1 are iid. This

assumption in general is not met for the real data. We could have, for example, taken

this dependence into account by time series modeling of the excesses. However, based

on our own experimentation, additional modeling of the dependence of the excesses

does not lead to significantly better estimation of ztq; our results in subsection 3.5.3

are quite satisfactory.
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From (3.3.12), and ztq > u, we have:

P{Zt+1 > ztq|Ht} = P{Zt+1 − u > ztq − u|Ht}

= P{Zt+1 − u > ztq − u|Zt+1 > u,Ht} ×

P{Zt+1 > u|Ht}(3.3.13)

Using relationship (3.2.1) and noting that

{Zt+1 ≤ u|Ht} = {No exceedance from t to t+ 1|Ht},

the second term on the right hand of (3.3.13) is

P{Zt+1 > u|Ht} = 1− P{N(t, t+ 1) = 0|Ht}

= 1− exp
[
−
∫ t+1

t

λ(y|Ht)dy
]
.

The first term in the right hand side of equation (3.3.13) can be approximated via

equation (3.2.9). Thus equation (3.3.13) becomes

P{Zt+1 > ztq|Ht} =
(

1 + ξ
ztq − u
σ

)−1/ξ

+

(
1− exp

[
−
∫ t+1

t

λ(y|Ht)dy
])
.

Simplifying the notation λ(y|Ht) = λ we obtain a solution for (3.3.12) as follows:

(3.3.14) ztq = u+
σ

ξ

[(1− exp(−λ)

1− q

)ξ
− 1
]
.

Note, regardless of the sign of ξ, the above estimate is valid for ztq > u, and λ ≥

− log(q).

At time t, we have a realized marked point process: N(t) = n, and {(Xi =

xi, Yi = yi), i = 1, . . . , n} as shown in Figure 3.1. The future marks Yi and the

interexceedance times Xi are conditionally independent, given the past. Therefore,

by conditioning, the joint likelihood of the data can be expressed as

fX1,Y1(x1, y1)
n∏
i=2

fXi,Yi | Xi−1,Yi−1
(xi, yi | xi−1, yi−1) =
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fX1(x1)
n∏
i=2

fXi | Xi−1,Yi−1
(xi | xi−1, yi−1)︸ ︷︷ ︸

I

n∏
j=1

fYj(yj)︸ ︷︷ ︸
II

.

We describe next our methodology for estimating the parameters in the model

by essentially maximizing the above likelihood function. We focus on component II

first. Assuming that the threshold u is set sufficiently high so that the marks Yi are

iid GPD, the parameters σ and ξ can be estimated via maximum likelihood (MLE).

The log-likelihood is

(3.3.15) log(
n∏
j=1

fYj(yj)) = n log σ + (1 + 1/ξ)
n∑
i=1

log(1 + ξyi/σ).

The MLE of the GPD parameter is of non-regular nature as the support of the

distribution depends on the parameters. Smith (1985) investigated the MLE proper-

ties of the GPD parameter estimation and concluded that the MLE based estimates

still maintain the usual asymptotic MLE properties as long as ξ > −1/2.

The residuals defined below provide a useful diagnostic tool for assessing the GPD

assumption and the goodness-of-fit of our model:

(3.3.16) Ŵi = (ξ̂−1) log(1 + ξ̂Yi/σ̂).

By simple variable transformation, one can verify that Ŵi form an iid sequence of

exponential random variables with mean 1 if Yi are iid GPD with parameters ξ̂

and σ̂. In practice, the independence assumption can be checked via an ACF plot

of the residuals. Additionally, a Q-Q plot of the Ŵi residuals versus the standard

exponential random variable should look linear if our GPD assumption of the excesses

is met.

An important remark regarding a potential pitfall in the GPD estimation of ξ

needs to be made here. Often times, GPD MLE underestimates ξ. One culprit
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is the presence of extremal dependence, i.e. extremal index θ < 1. The effective

sample size n of the data is reduced to θn for the purposes of studying the tail

and marginal distribution of the data. Another potential reason is the slow rate of

convergence of the conditional excess distribution to the limiting GPD. Table 1 in

Degen et al. (2007) shows the rate of convergence of the excess to GPD as a function

of the threshold level for various distributions. The rates can be quite slow. For

example if the returns are log-normal - a common assumption made in the finance

literature - the rate is O( 1
log(u)

). However, poor estimates of ξ do not lead to poor

quantile estimates based on (3.3.22) and (3.3.12). This fact was observed, tested via

simulations, and reported in McNeil and Frey (2000).

Now, we focus on maximizing component I. We will assume the set up in equations

(3.2.4) and (3.2.5). The choice of the exponential distribution is motivated by the

results in Hsing et al. (1988) showing that for increasing thresholds, under general

conditions, the exceedance point process converges to a cluster Poisson process with

exponentially distributed random times between the clusters of exceedances. Fur-

thermore, our own extensive experimentations with different error distributions such

as the Weibull and Generalized Gamma, and also with more complicated functional

forms of ψi did not lead to better results.

For suitably chosen initial value ψ0, the log-likelihood of the component I is

(3.3.17)

log
(
fX1(x1)

n∏
i=2

fXi | Xi−1,Yi−1
(xi | xi−1, yi−1)

)
= l(ω, α, β, η) = −

n∑
i=1

( xi
eψi

+ ψi

)
.

Component I residuals for the model diagnosis and goodness of fit purposes are

obtained as follows:

(3.3.18) ε̂i = Xi exp{−ψ̂i}.
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The above residuals form a sequence of approximately iid exponential random vari-

ables when the model fits. Similar to the Ŵi, the residuals ε̂i are examined via ACF

and Q-Q plots. The values of the ψ̂i’s can be computed from the past values of the

data and the estimated parameters.

Components I and II can be optimized separately to estimate our parameters.

The maximization can be performed using any standard statistical packages. In

our work, we used the R’s “optim” function. This function is the general purpose

optimization tool in R. We used the default method of optimization which is Nelder-

Mead. We chose the Nelder-Mead method since it performed with the minimum

amount of difficulty in our experimentations among various optimization routines.

The standard errors for both components are computed numerically by asking the

optim function to return differentiated Hessian matrices. The standard errors for

component II could also be obtained by plugging the estimates into the expected

Fisher information matrix as given by Embrechts et al. (1997), Page 357. The code

for the optim usage can be found in Section 3.7.

The outputs from the components I and II maximization are our parameter es-

timates: ω̂, α̂, β̂, and η̂. Now that we have obtained the estimates for the model

parameters, we can proceed in estimating the 1 day VaR.

The first step is to obtain an MLE estimate of the intensity λ(y|Ht), for the time

interval t to t + 1 by using (3.2.6). We will consider including the excess in three

forms, leading to three different intensities. They are as follows:

λlinear(t|Ht) = exp{−(ω + αεN(t) + βΨt + η(YN(t)))}(3.3.19)

λlog(t|Ht) = (YN(t))
η exp{−(ω + αεN(t) + βΨN(t))}(3.3.20)

λplain(t|Ht) = exp{−(ω + αεN(t) + βΨN(t))}(3.3.21)
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We will name these linear, log, and plain versions. Unlike the first two versions,

the last version implies that the intensity is not affected by an excess. In the plain

version, we are actually excluding the marks. As a byproduct of our investigation,

we will be able to infer on how large excesses can affect the time to the next large

loss or gain based on the statistical significance of η. The MLE estimated equivalents

of the intensity functions are:

λ̂linear(t|N(t) = n,XN(t) = xn, YN(t) = yn) = exp{−(ω̂ + α̂ε̂n + β̂Ψ̂n + η̂(yn))},

λ̂log(t|N(t) = n,XN(t) = xn, YN(t) = yn) = (yn)η̂ exp{−(ω̂ + α̂ε̂n + β̂Ψ̂n)},

λ̂plain(t|N(t) = n,XN(t) = xn) = exp{−(ω̂ + α̂ε̂n + β̂Ψ̂n)},

where ε̂n = xn exp{−ψ̂n}. The values xn and yn are just the last observed interex-

ceedance time and the excess value respectively. From now on, we will suppress the

version subscripts for our intensities.

In the second step, an estimate of 1 day VaR, ẑtq, is obtained by directly substi-

tuting our parameter and intensity estimates into the equation ( 3.3.14):

(3.3.22) ẑtq = u+
σ̂

ξ̂

[(1− exp(−λ̂)

1− q

)ξ̂
− 1
]
.

We will have three versions of ẑtq based on the three versions of the intensities defined

in equations (3.3.19)-(3.3.19).

3.3.2 Estimating the T-Day Excess VaR

We may also be interested in estimating the cumulative T -day excess conditional

quantile, with T representing the future time horizon over which the excesses will

accumulate. For the T day ahead cumulative excess loss distribution of the returns,

P

{
T∑
i=1

Yt+i ≤ y|Ht

}
= F∑T

i=1 Yt+i|Ht
(y),
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we define its corresponding conditional quantile as follows:

(3.3.23) yTq = inf{y ∈ R : F∑T
i=1 Yt+i|Ht

(y) ≥ q},

which is a solution to

P

{
T∑
i=1

Yt+i > yTq |Ht

}
= 1− q.

Let yTq be the T-day cumulative excess loss VaR. Closed form solutions for yTq can not

be obtained. In subsection 3.5.4, we will outline a simulation procedure to estimate

yTq .

3.4 Theoretical results

In this section, we provide sufficient conditions for the strict stationarity of our

model. We state a key theorem from Brandt (1986) which we use to establish the

result. The notation used in the theorem is as it appears in the paper and does not

correspond to the notation we have been using.

Theorem III.1. Brandt, 1986

If the sequence Ψ = {(An, Bn)} is stationary and ergodic and one of the conditions

−∞ ≤ E[log(A0)] < 0 and E[(log(B0))+] <∞,

or

P (A0 = 0) > 0

is satisfied, then

yn(Ψ) =
∞∑
j=0

(
n−1∏
i=n−j

Ai)Bn−j−1, n ∈ Z,

is the only proper stationary solution of

Yn+1 = AnYn +Bn, n ∈ Z

for a given Ψ. Furthermore the solution converges absolutely almost surely.
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This theorem is applicable in a number of situations, including time series analysis

of non-linear processes such as GARCH and ARCH processes. The following result

gives the conditions under which the log-ACD model is strictly stationary.

Theorem III.2. Define the Log-ACD model as follows:

Xi = exp(Ψi)εi,

Ψi = ω + αεi−1 + βΨi−1 + ηf(Yi−1),

where {εi}i≥0 and {Yi}i≥0 are iid almost surely positive, and f : R+ 7→ R+. The

sequence {Xi}i≥1 is stationary if

0 ≤ β < 1, and E[f(Yi)] <∞.

Furthermore, when {Yi}i≥0 are GPD with parameters ξ and σ, E[f(Yi)] < ∞ if

f : y 7→ y and ξ < 1 or f : y 7→ log(y).

Proof: We will use the Brandt (1986) result in a straight forward manner. Apply

the Brandt theorem to Ψ:

Ψi︸︷︷︸
Yn+1

= β︸︷︷︸
An

Ψi−1︸︷︷︸
Yn

+ω + αεi−1 + ηf(Yi−1)︸ ︷︷ ︸
Bn

.

The sequence {(An, Bn)} = {(β, ω + αεi−1 + ηf(Yi−1))} is a two dimensional iid

sequence and hence stationary and ergodic.

We need to check the conditions:

−∞ ≤ β < 0, and E[log(ω + αεi−1 + ηf(Yi))] <∞.

Note −∞ ≤ log(β) < 0 since 0 ≤ β < 1. Using Jensen’s inequality we have,

E[log(ω+αεi−1 +ηf(Yi))] ≤ log(E[ω+αεi−1 +ηf(Yi)]) = log(ω+α+ηE[f(Yi)]) <∞,



73

since E[f(Yi)] <∞. The stationarity of Xi follows from the stationarity of Ψi.

Now for Yi ∼ GPDξ,σ, and f(Yi) = Yi, E[Yi] <∞ if and only if ξ < 1 as shown in

Embrechts et al. (1997), page 165. If f(Yi) = log(Yi), and ξ > 0, then E[log(Yi)] <∞,

since,

E[log(Yi)] = E[log(ξYi/σ)]− log(ξ/σ) ≤ ξE[(ξ−1) log(1 + ξYi/σ)] = ξ

as (ξ−1) log(1 + ξYi/σ) is just an exponential random variable with rate 1, from

(3.3.16). If ξ ≤ 0, all the moments of Yi exist so again a simple application of the

Jensen’s inequality would yield E[log(Yi)] <∞. �
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Item Data Start Date End Date Length

1 S&P 500 01-01-1960 10-18-2007 12,031

2 WTI Oil 01-02-1986 10-10-2007 5,495

3 IBM 01-02-1980 10-12-2007 7,012

4 AT 07-19-1984 10-12-2007 5,862

5 JNJ 01-02-1980 10-12-2007 7,012

6 JPM 12-30-1983 10-12-2007 6,001

7 10 Year Bond 01-02-1962 10-15-2007 11,435

8 USD/GBP 01-02-1990 10-17-2007 4,478

Table 3.1: Summary information of the data.

3.5 Illustration of Methodology on Data Sets

3.5.1 Data Description

Table 3.1 gives a summary of the data we will use for our analysis. The frequency

for all data is daily. All data were obtained from Yahoo! Finance

(http://finance.yahoo.com/) with the exception of the 10 year US Treasury bond

and the currency rates (both downloaded from http://www.federalreserve.gov) and

the oil data (downloaded from http://www.eia.doe.gov/). For our analysis, we used

the differenced log returns of the data. For the stocks, only dividend adjusted data

were used.

We focus on the key empirical features of the data, which are related to our

estimation of VaR: the tail behavior and the clustering of the extreme values. The

period from 01-02-1986 to 10-10-2007 is chosen for a total of 5,468 trading days of

S&P 500, Oil, and IBM to illustrate these features. We initially focus on the losses,

but deal with the gains later on as well.

To show how large data values cluster, we estimate the extremal index using the

Ferro-Segers estimator for a moving block of size 1000 (about 4 years of trading data)

for each sequence of data and present the results in Figure 3.2. As seen in Figure

3.2, all data sets exhibit clustering of extreme values, i.e. θ < 1. This could lead to

successive violations of one’s VaR estimates. The patterns for the IBM and S&P 500
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data sets are similar as one would expect. The pattern for the Oil data set seems to

be the opposite of the IBM and S&P 500 patterns with more clustering in the early

periods of the series and less in the later periods.

Using the same blocks, we estimate the shape parameter ξ via GPD modeling

and MLE. Based on Figure 3.3, we can see that Oil and IBM exhibit heavy tails, i.e.

ξ > 0. S&P500 at times exhibits “short” tails, i.e. ξ < 0. The results seem to go

against the conventional wisdom that the tails are always either heavy or normally

distributed. However, recall our discussion that the ξ are generally underestimated

when using the GPD modeling, and estimation via MLE.

The values of θ and ξ change over time, which suggests the presence of non-

stationarity. Note that we have not included confidence intervals in our analysis.

Our purpose up to this point, has been descriptive and exploratory.
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Figure 3.2: θ estimates for the three assets: S&P 500, IBM, and WTI Crude Oil.
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Figure 3.3: ξ estimates for the three assets: S&P 500, IBM, and WTI Crude Oil.
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Figure 3.4: Top Panel: WTI oil price per barrel , Bottom Panel: Negative log returns of Oil. The
dotted line corresponds to the 0.90 quantile of the data for this period.

3.5.2 Example 1 Day VaR Estimation

In this section, we adopt the view of a practitioner interested in using the proposed

methodology. We illustrate our method for estimating the 1 day VaR at a fixed level

of q = 0.99, and we give a detailed analysis including all the relevant diagnostics.

Whenever possible, we provide interpretations of the estimated values. We choose

the last 1000 days of oil data from October 2003 to October 2007. See Figure 3.4.

Our method is most effective when high degree of clustering is present. However, our

estimate of the extremal index is about 0.98 for this period which indicates minimal

clustering of the extreme losses.

The first step is to estimate the GPD shape and scale parameters, ξ and σ,

in equation (3.2.8). The top left panel of Figure 3.5 shows the successive MLE

estimates of the shape parameter against higher thresholds. There seems to be a

stable region just above the line ξ = 0. Our estimate of ξ at the threshold value of
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Version ω̂ α̂ β̂ η̂ Ê[ε] Ê[ε2] λ̂ ẑt
q=0.99

Plain 1.704(1.057) 0.271(0.130) 0.130(0.458) - 1.012 1.899 0.046 0.040
Linear 0.667(0.366) 0.172(0.162) 0.703(0.195) -14.135(5.504) 1.017 1.852 0.055 0.042
Log 0.027(0.898) 0.222(0.204) 0.547(0.356) 0.155(0.084) 1.014 1.879 0.053 0.042

Table 3.2: Parameter estimates for our three version of Oil Returns from October 2003 to October
2007. Quantities in parentheses are standard errors.

0.023, corresponding to the 0.90 quantile of the data, is 0.062 with a standard error

of 0.086, giving us a 95% confidence interval of (-0.106, 0.230). Note the units of the

threshold of 0.023 is in percent points so this value corresponds to a loss of 2.3% in

the asset value. The confidence interval contains the value of zero, thus indicating

that the assumption of the returns being normally or log-normally distributed seems

to be valid. The estimated σ at various quantile levels (not shown here) also showed a

stable region around the threshold value of 0.023. The corresponding point estimate,

standard error and the 95% confidence interval are 0.011, 0.0015, (0.008, 0.014)

respectively. The Q-Q plot of the excesses versus the GPD quantiles in the top left

panel of Figure 3.5 indicates that we have a good fit.

Note that the selection of the appropriate threshold for quantile estimation re-

mains an open problem. Prominent researchers have dubbed this the “Achilles heel”

of the extreme value theory. For a discussion of the ways to choose the appropriate

threshold see Beirlant et al. (2004) Sections 4.7 and 5.8.

The ACF and the Q-Q plot of the Wi residuals, as defined in equation (3.3.16),

are displayed in the bottom portion of Figure 3.5. A slightly significant peak is seen

at the lag of 9 but otherwise there does not appear to be any dependence based

on the ACF plot. The Q-Q plot indicates that the Wi residuals are exponential, as

expected, when the excesses are iid GPD. The first and the second sample moments

of the Wi are 1.000 and 2.017 respectively, which are very close to the theoretical

moment values of 1 and 2 for an exponential random variable with mean 1.
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Figure 3.5: Top Left Panel: ξ estimates for the Oil, Top Right Panel: Q-Q plot of the Oil excess
versus GPD. Bottom Left Panel: ACF of Wi residuals, Bottom Right Panel: QQ-Plot
of Wi residuals versus Exponential with mean 1.

Next, we estimate the parameters related to the intensities based on the three

versions suggested in Section 3.3. The intensity estimates are obtained via equations

(3.3.19) to (3.3.21) and the corresponding residuals are computed using equation

(3.3.18). Table 3.2 displays our parameter estimates. Figure 3.6 displays the diag-

nostics for the ACD models. We also estimate the conditional quantile estimates

using equation (3.3.22). Devoting more attention to the estimated intensities and

quantiles, we summarize the results from Table 3.2 and Figure 3.6 next.

The estimated intensities give the instantaneous probability of an exceedance.

For example, the linear version predicts that there is a λ̂ = 0.055 instantaneous

probability that a value over a threshold of u = 0.023 will occur. This instantaneous
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probability can be taken as an estimate for the next time period since we assume

no information arrives from now to the next time period. Typically λ = 0.1, but

in this case a lower probability is predicted. This is partly due to the fact that the

last interexceedance time (not shown) is 36 days, that is we are not in a state where

extreme values are arriving intensely. All three versions give very similar estimates

for the one day ahead 0.99 VaR as seen under the column ẑtq=0.99.

Not all estimated parameters are statistically significant at 5%, i.e. the 95% would

contain zero. However, η is statistically significant in the linear version and very close

to being significant in the log version. The entire 95% confidence interval for η in

the linear version is below zero, suggesting only negative values for η. Based on this

period, we have statistical evidence that large losses increase the intensity of the

process and thus increase the probability of observing a large loss in the next period.

Using equation (3.3.19), and the estimated values of 2.582 and 2.723 for ε̂100 and

ψ̂100 respectively, for an observed 2% in the excess loss over the threshold of 2.3%,

that is for a total loss of 4.3%, the next period intensity and thus the instantaneous

probability of observing another large loss is 0.064:

λ̂linear = exp{−(0.667 + 0.172(2.582) + 0.703(2.723)− 14.135(0.02))} = 0.064.

Another interpretation is that an increase of ∆ units in the excesses increases λlinear

by 100× exp(−14.135∆)%.

The diagnostics show that the plain version seems to capture the dependence of

the Xi by removing the dependence in the residuals well. The Q-Q plots of our

models also indicate that the slight clustering effect, as seen in the lower part of

the Q-Q plot of the oil interexceedance times, has been removed. However, in this

case some of the apparent clustering is due to the discreteness of the interexceedance

times of the oil data. The moments of the residuals match well with the moments of
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an exponential distribution although there appears to be some under-dispersion, as

seen from the values of Ê[ε2] in Table 3.2.

3.5.3 Backtesting the 1 Day VaR

To validate our modeling procedure and assess its accuracy in predicting the large

quantiles, we use the backtesting procedure as described in McNeil and Frey (2000).

We perform our predictions and backtesting on both the gains and the losses of the

returns. We now briefly describe the procedure. Additional general information on

backtesting can be found in Jorion (2007b), Hull (2007), Dowd (2005), McNeil et al.

(2005), and Christoffersen (2003).

For each time series of the returns {z1, . . . , zn}, a moving window of 1000 days - ap-

proximately four years of trading data - in a set {zt−999, . . . , zt}, t ∈ {1000, 1001, . . . , n−

2, n− 1} is considered. The data from each window is used to estimate our parame-

ters and predict the 1 day VaR based on equation (3.3.22) and each intensity version

in equations (3.3.19) to (3.3.21). The estimated VaR, ẑq
t, for each quantile level

q ∈ {0.95, 0.99, 0.995}, is compared with the realized value zt+1. We say a violation

has occurred, when ẑq
t < zt+1.

Under the null hypothesis that our model is accurately predicting the quantiles,

the number of violations is a binomial random variable with the expected value

equal to (n − 1000)(1 − q) and the success probability of 1 − q. Therefore, a two

sided binomial test can be used to assess whether our predictions are overestimat-

ing or underestimating the conditional quantiles. Larger p-values will support the

null hypothesis and thus support the method being used. From a practical perspec-

tive, overestimating VaR is detrimental to the risk taker as it may trigger overly

conservative capital reserve requirements and thus limit the profit potential. On

the other hand, underestimating VaR means underestimating risk, which can lead
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to large financial losses. Thus, accurate estimates of VaR, which neither over- nor

under-estimate the loss are desirable.

We compare our method to the unconditional EVT, based on equation (3.2.10)

and a GARCH model. The competing GARCH model is given by:

σ2
t = α0 + α1σ

2
t−1 + α2z

2
t−1,

where zt|Ft−1 ∼ N (0, σ2
t ), and Ft−1 represents the information set available in

{zt−999, . . . , zt}. This model is similar to the RiskMetricsTM as described in Tsay

(2005), page 290. The difference between our model and RiskMetrics is that the lat-

ter model assumes α0 = 0 and α1 +α2 = 1. Our model is quite common for GARCH

process modeling of the returns. Likewise at each moving block, we estimate the

GARCH parameters, and obtain the conditional quantile based on

ẑq
t = σ̂tΦ

−1(q),

where Φ() denotes the cdf of a standard normal random variable.

Tables 3.3 to 3.4 report the expected number of violations, the observed number

of violations, and the two sided binomial test p-values for our three models, based on

modeling the intensities and excesses, the unconditional EVT, and GARCH process

with normal innovations. We choose 5% as our level of significance.

At the 0.95 quantile prediction, the GARCH based method fails 6 out of 16 times,

the unconditional EVT fails 5 out of 16 times. Among our methods, the linear and

the plain versions fail only once each and the log version fails 2 out of 16 times. The

major downfall of the unconditional EVT at this level is due to its inability to adjust

for the clustering of the extremes.

At the 0.99 quantile prediction, the GARCH method fails 15 out of 16 times. The

unconditional EVT fails 4 out of 16 times. Except for the plain version for the bonds,
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SP500 Oil USD/GBP Bond ATT IBM JNJ JPM

0.95 Quantile
Expected 551.5 224.7 173.85 521.7 243.05 300.55 300.55 250
GARCH 562(0.65) 187(0.01) 168(0.65) 531(0.68) 275(0.04) 281(0.25) 303(0.89) 255(0.75)
Uncond. EVT 629(0.00) 231(0.67) 169 0.71) 617(0.00) 258(0.33) 315(0.39) 272(0.09) 276(0.09)
Plain 602(0.03) 218(0.65) 178(0.75) 581(0.01) 257(0.36) 295(0.74) 283(0.30) 255(0.75)
Linear 576(0.28) 225(0.98) 179(0.69) 585(0.00) 275(0.04) 308(0.66) 295(0.74) 251(0.95)
Log 590(0.09) 242(0.24) 181(0.58) 583(0.01) 269(0.09) 316(0.36) 287(0.42) 261(0.48)

0.99 Quantile
Expected 110.3 44.94 34.77 104.34 48.61 60.11 60.11 50
GARCH 140(0.00) 52(0.29) 56(0.00) 196(0.00) 76(0.00) 88(0.00) 86(0.00) 69(0.01)
Uncond. EVT 141(0.00) 47(0.76) 39(0.47) 160(0.00) 53(0.53) 66(0.45) 50(0.19) 62(0.09)
Plain 131(0.05) 42(0.66) 35(0.97) 135(0.00) 52(0.63) 64(0.61) 57(0.69) 59(0.20)
Linear 115(0.65) 44(0.89) 38(0.58) 140(0.00) 53(0.53) 61(0.91) 56(0.59) 56(0.39)
Log 121(0.31) 48(0.65) 37(0.70) 149(0.00) 52(0.63) 62(0.81) 58(0.78) 61(0.12)

0.995 Quantile
Expected 55.15 22.47 17.385 52.17 24.305 30.055 30.055 25
GARCH 78(0.00) 33(0.03) 30(0.00) 133(0.00) 44(0.00) 61 0.00) 57(0.00) 47(0.00)
Uncond. EVT 75(0.01) 27(0.34) 24(0.11) 93(0.00) 32(0.12) 35(0.37) 28(0.71) 32(0.16)
Plain 66(0.14) 20(0.60) 24(0.11) 79(0.00) 32(0.12) 36(0.28) 32(0.72) 30(0.32)
Linear 61(0.43) 21(0.76) 23(0.18) 76(0.01) 32(0.12) 32(0.72) 30(0.99) 32(0.16)
Log 57(0.80) 26(0.46) 24(0.11) 81(0.00) 31(0.17) 33(0.59) 32(0.72) 34(0.07)

Table 3.3: The gains theoretical expected number of violations, observed number of violations, and
the corresponding p-values in parenthesis for our models, unconditional EVT and GARCH
with normal errors.

none of our methods fail.

At the 0.995 quantile prediction, the GARCH method always fails. The GARCH

method, particularly at the higher quantile levels, fails since the normal innovations

are not able to account for the size of the losses. The unconditional EVT fails 4

times. Except for the bonds losses, our method never fail. The unconditional EVT

seems to be competitive with ours at the highest quantile. This is due to the fact

that there is less clustering of extremes at highest quantile level.

We have solid evidence in favor of our method. The linear version seems to have

a slight edge overall but there is no clear winner among our three versions. All

methods seem to have trouble with the bonds data. Even though we have treated

the loss and the gains sides separately, it is clear from the table that most often the

losses and the gains fail at the same time for the same method. Note since we were

applying all the methods to the same data sets, we can point out that our p-values

were higher on average.
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SP500 Oil USD/GBP Bond ATT IBM JNJ JPM

0.95 Quantile
Expected 551.5 224.7 173.85 521.7 243.05 300.55 300.55 250
GARCH 534(0.45) 198(0.07) 167(0.59) 485(0.10) 211(0.04) 246(0.00) 253(0.01) 216(0.03)
Uncond. EVT 608(0.01) 244(0.19) 144(0.02) 620(0.00) 264(0.17) 307(0.70) 273(0.10) 265(0.33)
Plain 591(0.08) 231(0.67) 158(0.22) 551(0.19) 241(0.89) 290(0.53) 276(0.15) 253(0.85)
Linear 577(0.27) 222(0.85) 168(0.65) 559(0.09) 257(0.36) 297(0.83) 271(0.08) 255(0.75)
Log 573(0.35) 232(0.62) 167(0.59) 574(0.02) 245(0.90) 308(0.66) 29(0.66) 263(0.40)

0.99 Quantile
Expected 110.3 44.94 34.77 104.34 48.61 60.11 60.11 50
GARCH 178(0.00) 66(0.00) 51(0.01) 166(0.00) 68(0.01) 94(0.00) 87(0.00) 73(0.00)
Uncond. EVT 129(0.07) 48(0.65) 27(0.19) 135(0.00) 51(0.73) 67(0.37) 55(0.51) 51(0.89)
Plain 120(0.35) 48(0.65) 28(0.25) 128(0.02) 45(0.60) 61(0.91) 56(0.59) 44(0.39)
linear 110(0.98) 47(0.76) 28(0.25) 118(0.18) 45(0.60) 57(0.69) 56(0.59) 43(0.32)
Log 114(0.72) 50(0.45) 33(0.76) 123(0.07) 49(0.96) 62(0.81) 58(0.78) 45(0.48)

0.995 Quantile
Expected 55.15 22.47 17.385 52.17 24.305 30.055 30.055 25
GARCH 112(0.00) 47(0.00) 32(0.00) 116(0.00) 39(0.00) 64(0.00) 60(0.00) 48(0.00)
Uncond. EVT 74(0.01) 29(0.17) 11(0.13) 81(0.00) 26(0.73) 35(0.37) 25(0.36) 24(0.84)
Plain 69(0.06) 27(0.34) 12(0.20) 63(0.13) 24(0.95) 33(0.59) 30(0.99) 24(0.84)
Linear 68(0.08) 26(0.46) 12(0.20) 62(0.17) 25(0.89) 32(0.72) 29(0.85) 26(0.84)
Log 66(0.14) 24(0.75) 12(0.20) 63(0.13) 24(0.95) 33(0.59) 31(0.86) 26(0.84)

Table 3.4: The losses theoretical expected number of violations, observed number of violations, and
the corresponding p-values in parenthesis for our models, unconditional EVT and GARCH
with normal errors.

3.5.4 Backtesting the 10 Day Cumulative Excess Losses and Gains

We outline a simulation algorithm to estimate yTq in equation (3.3.23) with T = 10

using the previously estimated model parameters for the 1 day VaR.

1. Let L be the number of excess losses that will occur in the time duration T = 10.

Randomly draw L ε̂i Log-ACD residuals (as defined in (3.3.18)) with replace-

ment such that L = 0 if ε̂1 > 10 and else

L = min
(

min{n ∈ N :
n+1∑
i=1

ε̂i > 10}, 10
)
.

2. Randomly draw L Yi excesses with replacement to obtain the cumulative sum

Sj =
L∑
i=1

Yi.

3. Repeat steps 1 and 2 1000 times and collect the Sj terms.

4. By equation (3.2.10), obtain q = 0.95 and q = 0.99 quantile estimates for

V aRT=10 from the empirical distribution of the Sj.
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5. Move the data window by 1 day and repeat steps 1 to 4.

By directly resampling from the Log-ACD model residuals, we mimic the current

market conditions; for example, during high intensity periods with large losses, the

residual values are small and the excesses are large. We also tried generating the

number of excesses via the estimated intensity function, and generating the excesses

from the estimated GPD model, but the resampling results were better on average.

Once the estimated values for yTq at q = 0.95 and q = 0.99 are obtained, we can

compare them to the realized cumulative excesses, and similar to the 1 day analysis,

we collect the number of violations. However, we will not be able to perform the

binomial test as we did for the 1 day violations since the time periods overlap,

which introduces dependence. In Tables 3.5 to 3.6, we merely report the number of

violations along with the expect number of violations. The ”Uncond. EVT” row is

obtained by setting L = 1 since we would expect the returns to exceed the q = 0.90

quantile in 1 day out of 10 days. We simply use the unconditional extreme quantile

equation (3.2.10) with qu set to 0.90. In other words, we are eliminating the effect

of our conditional estimation.

From the tables we can see that unconditional EVT performs very poorly com-

pared to our conditional methods. At the 0.95 quantile prediction, for both the

gains and losses, our methods seem to perform well except for the S&P 500 data.

The linear and the plain versions have a slight edge. Our results for the 0.99 quantile

prediction are not satisfactory. As a matter of fact a discernable pattern seems to

be that the number of violations is twice the expected ones on average. However,

our method still outperforms the unconditional method considerably. This may be

contributed to the downward bias in estimating ξ when summing random number of

the excesses.
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SP500 Oil USD/GBP Bond ATT IBM JNJ JPM

0.95 Quantile
Expected 551 224 173 521 243 300 300 250
Plain 672 187 172 539 299 335 309 319
Linear 614 175 179 567 293 330 316 353
Log 645 202 170 624 308 357 304 326
Uncond. EVT 1230 340 334 1423 517 474 436 494

0.99 Quantile
Expected 110 45 35 104 49 60 60 50
Plain 232 74 25 238 99 139 101 126
Linear 208 70 34 226 114 149 105 122
Log 206 84 27 232 113 151 104 120
Uncond. EVT 708 165 203 970 313 255 213 296

Table 3.5: The gains theoretical cumulative excess expected number of violations and observed num-
ber of violations based on simulations.

SP500 Oil USD/GBP Bond ATT IBM JNJ JPM

0.95 Quantile
Expected 551 224 173 521 243 300 300 250
Plain 624 268 137 543 280 300 281 239
Linear 603 255 145 556 278 334 289 233
Log 607 260 160 590 317 326 307 230
Uncond. EVT 1243 385 277 1219 559 505 483 455

0.99 Quantile
Expected 110 45 35 104 49 60 60 50
Plain 261 97 57 245 62 120 67 97
Linear 210 100 61 240 70 123 79 88
Log 249 103 55 256 80 111 92 94
Uncond. EVT 713 222 165 789 295 232 211 264

Table 3.6: The gains theoretical cumulative excess expected number of violations and observed num-
ber of violations based on simulations.
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3.6 Final Remarks

The results show that our proposed method is accurately predicting the 1 day VaR.

Specifically, the practitioner would find our practical example in subsection 3.5.2 with

its guidelines and recommendations useful for estimating the 1 day VaR. Further-

more, the investigation of the estimated intensities could be of great interest since it

would answer the question “given the current market conditions, what is the prob-

ability of experiencing a large loss tomorrow?” This could be a useful risk measure

in its own right. We have additional results from analyzing the estimated intensities

collected from our backtesting. We are working to extend the results to the expected

shortfall and other risk measures. We would like to investigate, which form of the

three proposed intensities is best to use since at this point there are no clear winners.

The inclusion of the excesses in the intensity brings new insight, since it allows us

to test the hypothesis of whether large losses increase the conditional probability

of observing another large loss. Our results for the 10 day excess VaR were not

satisfactory at q = 0.99 level. A possible reason is that the ξ in the second round

of GPD estimation is underestimated. We plan to investigate the reasons for such

unsatisfactory performance and possibly suggest new ways to obtain estimates for

the cumulative losses and gains quantiles. Lastly, we are working to create prediction

intervals for our estimates in two ways: delta method, and simulation. Since all of

our unknown parameters and their standard errors are estimated via MLE, we can

apply the delta method directly to the equation (3.3.22). However, due to the small

sample sizes we are dealing with, the results of the delta method need to be taken

with caution. Another alternative is to take a simulation based approach similar to

the one taken in subsection 3.5.4. The coverage probabilities would could aid us in
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deciding which method, simulation or delta method, to use.

3.7 Appendix

The following code is a part of the main function for backtesting our data which

includes the use of the optim function.

( This part of the code for the main function is omitted.)

start.index = i

end.index = i + window.size - 1

temp.data = x[start.index:end.index]

q.level[i] = quantile(temp.data, prob = prob.threshold)

durations = get.interarrival.times(temp.data, threshold = q.level[i])

excesses = temp.data[which(temp.data > q.level[i])] - q.level[i]

acd.mle.1 = optim(c(initial.omega.1, initial.alpha.1, initial.beta.1,

initial.eta.1),

negloglikelihood.elog2acd11.with.excesses,

my.data = durations, my.excesses = excesses,

hessian = T,

control=list(maxit=3000) )

acd.mle.2 = optim(c(initial.omega.2, initial.alpha.2, initial.beta.2),

negloglikelihood.elog2acd11,

my.data = durations,

hessian = T,

control=list(maxit=3000) )

acd.mle.3 = optim(c(initial.omega.3, initial.alpha.3, initial.beta.3,

initial.eta.3),
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negloglikelihood.elog2acd11.with.excesses.log.form,

my.data = durations, my.excesses = excesses,

hessian = T,

control=list(maxit=3000) )

( This part of the code for the main function is omitted.)



CHAPTER IV

Incorporating Clustering of Large Losses into Risk Measures

4.1 Introduction

The classical risk measures such as VaR and Expected Shortfall (ES) are defined

for fixed periods of time such as 1 day to 10 days. VaR was defined in the previous

chapter. ES answers the question, given that an asset has sustained a large loss,

how much loss can be expected, on average? Note that such measures are used as

predictions about the future losses. These measures as defined, are unconditional, in

a sense that the dependence in the data is ignored, and only the marginal distribution

of the losses is considered. However, it has been shown for example in McNeil and

Frey (2000), Chaves-Demoulin et al. (2005), Christoffersen and Gonçalves (2005), and

Chapter 2 of this thesis that if one introduces conditioning in estimating the risk,

that is taking into account the dependence of the losses in addition to the marginal

distribution of the losses, one obtains better predictions for the future losses.

These methods, in large part, work better because they are able to account for the

temporal clustering of large losses that many financial and tradable assets exhibit. As

mentioned in Chapter 1, accumulation of large losses due to the temporal clustering

could have grave consequences if provisions for handling such cases have not been

made. The drawback in employing such methods is that the estimation procedure

91



92

is more complicated, and the results may be difficult to interpret or communicate

to the non-technical decision makers. This brings us to the main question that this

chapter is attempting to answer:

Can a single statistic incorporate the clustering of large losses into a risk measure?

To answer this question, we must be able to decluster, that is to identify the

beginning and the ending periods of the clusters of large losses. Therefore, declus-

tering becomes an important step in our investigation. A parameter that is directly

related to declustering is the extremal index. Recall that an extremal index close to

1 implies that the average cluster size is near 1, and an extremal index close to 0

implies that average cluster size is much large than 1. Recall also that an extremal

index of say 0.5 does not imply that exactly 2 large values happen consecutively. The

correct interpretation is that within a short period of time - within a cluster - 2 large

losses are expected to occur. An up-to-date reference on declustering is Chapter 10

of Beirlant et al. (2004).

In this chapter, new risk measures are defined and an estimation procedure is

proposed and tested to answer the above question. The proposed procedure first

identifies the clusters of extremes, which may be viewed as approximately indepen-

dent. The isolated clusters of extremes correspond to the extreme states of the asset.

Once the extreme states are identified, various statistics can be defined. For example,

one may be interested in the cumulative loss during such states. Then, a straightfor-

ward approach in estimating the extreme state cumulative loss is to sum the losses

in each cluster and then average them. This risk measure would estimate the mean

cumulative loss an asset can sustain during an extreme state. Note that this new

measure takes into account the temporal accumulation of the large losses. A second
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contribution in this chapter is the discovery that combining of two estimators of the

extremal index leads to a better estimator.

The following remark is in order: The extreme states correspond to the periods

when the asset is incurring large losses in a short duration of time. This is to be

differentiated from high volatility periods when an asset’s return could fluctuate in

the loss and gain directions. In practice, the extreme state and high-volatility periods

may coincide, overlap, or they may be completely unrelated.

4.2 Introduction to Declustering

The key task in our estimation of the risk measures is accurate declustering: this

corresponds to identifying the approximately independent clusters of the large losses.

Declustering of extremes and the estimation of the extremal index, θ, are inherently

related problem as summarized by the following relationship:

(4.2.1) θ ≈ Number of Independent Clusters with at Least One Exceedance

Total Number of Exceedances
,

where exceedances are just the data values exceeding a pre-specified threshold u.

The important takeaway from the relationship above is that an accurate estimation

of θ will lead to better declustering results and vice versa. Declustering can be

accomplished in two ways:

1. Decluster the data first by specifying auxiliary parameters, and without esti-

mating θ first. Then use relationship (4.2.1) to obtain an estimate of θ. The

runs approach as defined in equation (2.5.24) uses this method.

2. Estimate θ first and then using asymptotic theory justifications, decluster the

data. Ferro and Segers (2003) propose this approach.
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Figure 4.1: Illustration of the Runs Method. The left picture displays the separated clusters by
dashed vertical lines when r = 1 and thus θ̂ = 3/4. The middle picture is just the plot
of the data. The right picture displays the declustering when r = 2 and thus θ̂ = 1/2.

Our previous discussion of the Ferro-Segers and the runs estimators in subsec-

tion 2.5.1 focused on the estimation of θ and not on the method of declustering. In

the next two subsections, we elaborate on the declustering methods. In the last sub-

section, we propose a new method to combine the two estimators to achieve better

declustering and estimation of θ.

4.2.1 Runs Based Declustering

In the runs method, the run-length auxiliary parameter, r, is used to identify

the independent clusters. Recall from Section 2.5.1 that this same parameter was

defined to obtain an estimate of θ. A cluster begins when a large value exceeds a pre-

specified threshold u, and continues until r consecutive values fall below u. Figure

4.1 illustrates how the runs method selects clusters. The center plot is a display of

the data. The dashed horizontal line in all three plots depicts the fixed threshold

level. The left-most plot shows the case when r = 1. Three independent clusters are

identified. Starting with the first exceedance, a cluster is terminated as soon as one

value falls below the threshold; therefore, θ̂ = (#clusters)/#(exceedances) = 3/4.
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The right-most plot shows the case when r = 2. Now, two independent clusters

are identified. Starting with the first exceedance, a cluster is terminated as soon as

two values fall below the threshold; therefore, θ̂ = 2/4. This simple example also

illustrates that the choice of r can substantially affect both the delcustering and

estimation of θ.

4.2.2 Ferro-Segers Based Declustering

This declustering method is due to Ferro and Segers (2003). We describe it briefly

next. The declustering involves the estimation of θ, first, as discussed in Section 2.5.1.

The method proposes an automatic way to select r. Recall from Section 2.5.1 that the

interexceedance times consist of two groups: one group corresponding to the inter-

cluster times, and the other one corresponding to the intra-cluster times. Based on

the asymptotic theory, it is postulated, that the 1 − θ proportion of the smallest

interexceedance times belong to the intra-cluster times, and the rest belong to the

inter-cluster times. Therefore, given m sorted interexceedance times, we can take the

(bmθc+1)th interexceedance time as the smallest interexceedance time that separates

the clusters. Now, declustering can proceed as in the previous subsection 4.2.1 with

r = bmθc+ 1.

4.2.3 Combing estimators

Generally the runs method of θ estimation produces the lowest rmse values once

the correct value of r is chosen. Here by “correct value of r”, we mean the one that

leads to the smallest rmse - root mean square error - value. Results from Chapter 2

of this thesis shows that the runs method beats Ferro-Segers often with the correct

choice of r. Even Ferro and Segers (2003) in their own simulations show that the

runs method gives the lowest rmse values especially at higher threshold levels. The
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main advantage of the Ferro-Segers estimator is that it does not require the selection

of the additional parameter r. Our experience shows that the Ferro-Segers estimator

tends to identify r well. Therefore, we propose the following four step procedure to

estimate θ and decluster:

1. Choose a high threshold u. We recommend choosing u corresponding to at least

the 0.90 quantile of the data.

2. Estimate the runs parameter r via Ferro-Segers, as described in Section 2.5.1.

3. Decluster the data, as discussed in subsection 4.2.1 using the value of r from

step 2.

4. Using the runs parameter r from step 2, estimate θ via the runs method, as

described in Section 2.5.1.

In Section 4.4.1, we conduct a simulation study to verify our estimation procedure.

4.3 New Risk Measures

In this section, the new risk measures are defined and motivated first. The esti-

mation procedure is then presented.

4.3.1 Definitions

Let {X1, . . . , Xi, . . . , Xn}, E[X2
i ] < ∞, be a realization of a strictly stationary

process with θ ∈ (0, 1]. The Xi will represent the negative daily return series of an

asset. For a fixed large threshold u such as P (Xi < u) = q with q ≥ 0.90, and

r ∈ {0} ∪ N, define the extreme state beginning at time period i as follows:

(4.3.2) A(i,r) = {Xi > u} ∩ {Xi+L(θ)−1 > u} ∩ {Xi+L(θ) ≤ u, . . . , Xi+L(θ)+r ≤ u},

where L(θ), taking values in N, is a random variable denoting the duration of the

extreme state in days such that no r consecutive values in the set {Xi, . . . , Xi+L(θ)−1}
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are less than or equal to u. The smaller the θ, the larger the L(θ) will be and vice

versa. From now on we will let L(θ) = L.

An extreme state always begins when a return value at time i exceeds a high

threshold u, that is when a large loss occurs, and it ends when another large loss

occurs at the end of L days, followed by r days of “calm”, when all returns are below

u. When L = 1, the extreme state consists of a single large loss. Our measures of

risk will be only affected by the values in {Xi, . . . , Xi+L−1} but we need to include

the event {Xi+L ≤ u, . . . , Xi+L+r ≤ u} to demarcate the end of an extreme state

in a precise manner. We will treat r as an auxiliary parameter and u as a non-

random quantity. The reason we do not define an extreme state simply as a cluster

of consecutive large losses is that financial data could exhibit a pattern in which

large losses are inter-dispersed with gains. This motivates the following definitions

for new measures of risk:

Extreme State Cumulative Return:

(4.3.3) M1(u, r) = EX,L

[ L+i−1∑
j=i

Xj

∣∣∣ A(i,r)

]
.

Extreme State Cumulative Loss :

(4.3.4) M2(u, r) = EX,L

[ L+i−1∑
j=i

XjI{Xj > 0}
∣∣∣ A(i,r)

]
.

Extreme State Cumulative Excess Loss :

(4.3.5) M3(u, r) = EX,L

[ L+i−1∑
j=i

XjI{Xj > u}
∣∣∣ A(i,r)

]
.

Extreme State Adjusted Expected Shortfall :

(4.3.6) M4(u, θ) = EX [ Xi | Xi > u ]/θ.

The notation EX,L emphasizes that the expectation is taken with respect to X and

L. However, for ease of notation, we will drop the subscripts from now on. Similarly,
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Mi(u, r) emphasizes that the risk measure is a function of u and r, but again we will

drop the u and r from the notation henceforth.

Typically, the expected shortfall is defined as

E[ X | X > VaR ].

However, we define our risk measures relative to a fixed threshold u rather than VaR

for the following reasons:

1. The estimation of VaR would introduce additional complexity and further un-

certainty into our risk measures. Estimation of extreme quantiles such as VaR

using the empirical distribution of the data leads to poor results as shown in

Novak and Beirlant (2006). We believe choosing u as a fixed quantity over-

comes this issue without reducing the practical usefulness of the risk measure.

Otherwise, we would have to resort to semi-parametric estimation methods bor-

rowed from the extreme value theory, for example in McNeil and Frey (2000) or

extrapolation methods as suggested by Inui and Kijima (2005).

2. Theoretically, the extremal index, and thus the declustering results should be

independent of the chosen threshold. However, as pointed out by Ancona-

Navarrete and Tawn (2000), most existing estimators actually estimate θ(u),

the extremal index, as a function of the threshold, rather than θ and conclude

that the established methods do well only when θ(u) ≈ θ. By defining our

risk measures using u, the degree of clustering and the large losses are both

defined relative to the same threshold. This keeps our risk measures consistent

in terms of our definition. Estimating θ at VaR , generally leads to θ̂ ≈ 1 since

VaR typically corresponds to very high quantile of the data with very few data

points. It is even possible that the estimated VaR is not even an observed value
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of the data.

We will refer to E[ X | X > u ] as the adjusted expected shortfall.

M1 measures the mean total (negative) return during an extreme state. We use

the word ”return” rather than loss since this is just a straight forward mean of the

sums of the returns for each extreme state. It is possible that during an extreme

state for several gains to occur, which offset the losses. Thus, M1 can take negative

values or values close to 0. For each extreme state, M2 takes into account only the

losses whereas M3 measures the total excess losses. We always have that M2 ≥ M1

and M2 ≥M3. The measure M4 is simply an adjustment made to the usual expected

shortfall, with u in place of VaR, to account for the clustering of large values; the

idea is to incorporate the factor 1/θ in order to account for the expected size of a

cluster. When no clustering is present, theoretically θ = 1 and with L = 1, then

M1 = M2 = M3 = M4 = E[ Xi | Xi > u ]. This would for example be the case

for iid data, when on average large losses occur in an isolated manner, rather than

in clusters. Finally, when E[L] = 1/θ, and the extreme state consist only of losses,

M3 reduces to M4. Therefore, M4 can be viewed as a proxy and a more convenient

way to estimate M3, since only an estimate of θ and the adjusted expected shortfall

without declustering is needed.

Perhaps the most important risk measure from the perspective of the risk manager

is M2. If clustering of large losses is present, then a large value of M2 tells the risk

manager that the assets can experience large losses in short durations of time on

average. This clustering of large losses could lead to the triggering of margin calls,

automatic sell offs, or severe capital withdrawals. As mentioned before, since losses

can be inter-dispersed with gains, the risk manager can take this into account in

M1. A large discrepancy between M1 and M2 would tell the risk manager that the
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extreme states consists of both large losses and large gains. When M1 ≈M2 then the

extreme states consist mostly of large losses. M3 and M4 may be of interest when

excess losses trigger a transaction such as insurance or re-insurance payments made

over a pre-specified level.

4.3.2 Estimation

In this section, we give a step by step procedure for estimating the risk measures

and provide relevant comments. Our assumption is that the estimated risk measures

for an observed period of time give reasonable estimates for the next unobserved

extreme state time period. This is a reasonable assumption for stationary data.

Later in Section 4.4.2, we elaborate on how to check the validity of the estimation

procedure.

1. Choose a reasonably large window size, n, for example n = 1000. We will use

this value for our data analysis.

2. Choose a threshold u relevant to the asset. We recommend setting u to at least

q = 0.90 quantile of the data. This would give bn(1 − q)c large losses or 100

when q = 0.90 and n = 1000. For q = 0.90, typical values of u for stocks and

stock indices can be chosen around 1.5%, 1% for treasury bills and bonds, and

about 2-3% for crude oil and natural gas.

3. Estimate the extremal index as outlined in subsection 4.2.3. If θ̂ = 1, then you

can assume M1 = M2 = M3 = M4 = E[ Xi | Xi > u ]. At this point there

is no use in going any further. One can just resort to estimating the adjusted

expected shortfall by any established methods.

4. When θ̂ < 1, decluster the data as outlined in subsection 4.2.3, obtaining m

clusters. Note 1 ≤ m ≤ 99 if u is set to the 0.90 quantile of the data and
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n = 1000. You will have m sets of approximately independent clusters. Denote

the cluster sizes as {L1, . . . , Lm}. We will represent the corresponding data

within the clusters as Xi,j where the second subscript j represents the cluster

number, j ∈ {1, . . . ,m}, and the first subscript i, 1 ≤ i ≤ Lj, represents the

element number within the cluster j.

5. Estimate the risk measures by just the empirical versions of the equations (4.3.3)

to (4.3.6) as follows:

(4.3.7) M̂1 =
m∑
j=1

( Lj∑
i=1

Xi,j

)
/m.

(4.3.8) M̂2 =
m∑
j=1

( Lj∑
i=1

Xi,jI{Xi,j > 0}
)
/m.

(4.3.9) M̂3 =
m∑
j=1

( Lj∑
i=1

Xi,jI{Xi,j > u}
)
/m.

(4.3.10) M̂4 =

∑n
k=1XkI{Xk > u}
bn(1− q)cθ̂

.

That is sum the values within each cluster, and then take the sample mean

of the resulting cluster statistics. For later reference, we define the following

quantities as well:

(4.3.11) SM1
j =

Lj∑
i=1

Xi,j.

(4.3.12) SM2
j =

Lj∑
i=1

Xi,jI{Xi,j > 0}.

(4.3.13) SM3
j =

Lj∑
i=1

Xi,jI{Xi,j > u}.

Note that our estimation is fully non-parametric.
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4.4 Simulations

In this section, we conduct two sets of simulation experiments. The first corre-

sponds to checking that our 4 step combined runs and Ferro-Segers estimation gives

better results than just the Ferro-Segers when estimating θ. The second set of sim-

ulations is done to validate that our estimated risk measures correctly predict the

next unobserved value.

We will use three linear processes for our simulations. The noise terms {Zi}i∈Z for

all the processes will have t-distribution with 4 degrees of freedom. Recall that the

tail index, α, for a t-distribution is equal to its degrees of freedom so that P (Zi > z) ∼

cz−4, as z →∞, and c is a constant. Given (a0, a1, a2, a3, a4) = (0.9, 0.8, 0.7, 0.6, 0.5),

the three processes are:

(4.4.14) Xn(1) =
4∑
i=0

aiZn−2i −
4∑
i=0

aiZn−2i−1,

(4.4.15) Xn(2) =
4∑
i=0

aiZn−2i,

(4.4.16) Xn(3) = Zn.

The theoretical values of the extremal index computed via Corollary 5.5.3 in Em-

brechts et al. (1997) for both Xn(1) and Xn(2) is 0.4380132. The qualitative extremal

behavior of Xn(1) is quite different than Xn(2) even though they both have the same

extremal index. The extremes of Xn(1) tend to whipsaw, whereas the extremes of

Xn(2) occur in successions. Xn(3) is just an iid process and its extremal index is 1.

See Figure 4.2 for the sample plots.

Note, we do not assume or model the asset returns with simple linear processes.

However, some important features of the asset returns can be replicated with the
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Figure 4.2: From left to right, sample paths of the Xn(1), Xn(2), and Xn(3) processes as defined
in (4.4.14) to (4.4.16). The dashed lines in each plot correspond to the 0.90 quantile of
the data.

above models, namely the clustering of the extremes, the tendency to have large

losses followed by large gains and the heavy tail behavior of the returns.

4.4.1 Combined Estimator RMSE Simulations

For our simulation study, we generate 1000 sets of values of Xn(1), Xn(2), and

Xn(3), with sample sizes of n = 1000 and 10000. At each run, the extremal index

is estimated via the Ferro-Segers estimator as described in Section 2.5.1, and the

proposed combined estimator as described in Section 4.2.3 with the thresholds set

to the qth quantile of the data with q ∈ {0.85, 0.86, . . . , 0.98, 0.99}. The rmse at

each threshold level is estimated for each process. The results are summarized in

Figure 4.3. The top row is for n = 1000 and the bottom row is for n = 10000.

The combined estimator clearly beats the Ferro-Segers estimator for Xn(1). In case

of the Xn(2) process, the combined estimator outperforms the Ferro-Segers for the

quantiles above q > 0.90. Since the thresholds are generally set at large quantiles,

and we are concerned about clustering of large losses at larger quantiles, this is good

news too. For the Xn(3) process, the Ferro-Segers estimator marginally outperforms
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Figure 4.3: RMSE values for the combined method estimation of θ. Top row is for n = 1000,
bottom row is for n = 10000.

the combined estimator. This can be attributed to the fact that for iid data, we do

not need the additional sophisticated declustering step, which adds to the variance of

r and therefore leads to a small bias in estimating the extremal index. The combined

estimator tends to underestimate θ. However, the gap is small and becomes even

smaller for n = 10000. This would lead to the overestimates of the risk measures.

Although this is not a desirable effect, it would have been even more problematic, if

the estimation underestimated risk.

4.4.2 Cluster Prediction Simulations

In this section, we carry out a simulation study to validate our proposed risk

measures by examining their predictive ability. In the risk management literature,

this process of observing the predictive performance of a risk measure is called back-

testing. The main idea is to generate a long sequence of a desired process, estimate
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the risk measures in a small subset of the sequence and compare the result with the

next out-of-sample value. We will still use the same processes in equations (4.4.14)

to (4.4.16) represented by X(k), k ∈ {1, 2, 3}. Next, we describe the simulation and

backtesting procedures.

1. Generate N data points from X(k), where N is the length of the long sequence

of the process.

2. Choose n � N , where n is the size of the small subset of the sequence or the

window size.

3. Set c = 1. The final value of c = C will be the eventual number of predictions

we will make. This quantity is random and unknown in the beginning.

4. For {Xc(k), . . . , Xn+c−1(k)}, set u to the qth quantile of the data, estimate θ and

decluster by the combined method, as described in Section 4.2.3. The outputs

from this step are θ̂, r, m set of clusters, and ŜM1
j , ŜM2

j , ŜM3
j , j ∈ {1, . . . ,m}.

5. Estimate M1 to M4 as defined in (4.3.3) to (4.3.3) via equations (4.3.7) to

(4.3.10) to obtain M̂1, M̂2, M̂3, and M̂4. We will also refer to these quantities

as in-sample values.

6. Recalling the definition of the extreme state in equation (4.3.2), obtain the one

cluster ahead risk measures by rolling forward through the data starting from

n+ c until the next extreme state is identified. Use r from Step (4) to identify

the cluster ahead. Compute the cluster ahead risk measures to obtain M+
1 , M+

2 ,

M+
3 = M+

4 , where the superscript + represents the one cluster ahead. We will

also refer to these quantities as out-of-sample values. Let the position of the

termination of the one cluster ahead be l.
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7. Obtain the following standardized differences at each step c:

(4.4.17) D̂M1
c =

M+
1 − M̂1

SD(ŜM1
j )

,

(4.4.18) D̂M2
c =

M+
2 − M̂2

SD(ŜM2
j )

,

(4.4.19) D̂M3
c =

M+
3 − M̂3

SD(ŜM3
j )

,

(4.4.20) D̂M4
c =

θ̂(M+
4 − M̂4)

SD(
∑n

j=1XjI{Xj > u}/bn(1− q)c)
,

and the following empirical proportions :

(4.4.21) P̂M1
c =

#{M+
1 > M̂1}
m

,

(4.4.22) P̂M2
c =

#{M+
2 > M̂2}
m

,

(4.4.23) P̂M3
c =

#{M+
3 > M̂3}
m

,

where for example, #{M+
1 > M̂1} counts the number of clusters such that

M+
1 > SM1

j ,

for j ∈ {1, . . . ,m}.

8. Set c = l− n+ 1 so the window is {Xl−n+1(k), . . . , Xl(k)}. Therefore, we move

the window of the data up to the end of the one cluster ahead.

9. Increment c by 1, go back to step (4) and repeat until the end of the data

sequence is reached. We will now have C standardized differences and empirical

proportions.
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To test our results we conduct two tests:

1. Under the null hypothesis that risk measures are being correctly estimated, the

mean of the standardized differences is zero. That is

(4.4.24) H0 : E[D̂Mi
c ] = 0, H1 : E[D̂Mi

c ] > 0,

for all i ∈ {1, 2, 3, 4}. We choose the alternative to be one sided to the right,

since the underestimation of the risk is of most concern here. However, the

differences tend to be severely skewed and a simple t-test is not applicable.

Therefore, we use a bootstrap test as described on page 224 of Efron and Tib-

shirani (1993) with no assumptions about the distribution of the standardized

differences. Even though the tails of the standardized differences may be heavy,

using the bootstrap is justified as long as E[(DMi
c )2] < ∞, that is the second

moment of the standardized differences exist. This fact is proved in Mason and

Shao (2001). See Section 4.7 for the R code used in bootstrapping the mean.

2. Under the null hypothesis that the one cluster ahead risk measures come from

the same distribution as the past m clusters, the sequence of the empirical

proportions P̂Mi
c will follow a uniform distribution. That is, for {1 ≤ c ≤ C},

we expect to have

P̂Mi
c

d
≈ iid uniform(0, 1),

for all i ∈ {1, 2, 3}. This is simply due to the fact that for any continuous

random variable Y = 1− FZ(Z),

P{Y > y} = P{Z < F−1
Z (1− y)} = FZ(F−1

Z (1− y)) = 1− y,

so Y is a uniform (0, 1) random variable. Empirical proportions are just the

empirical versions of P{Y > y}. A histogram of the empirical proportions
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X(1) X(2) X(3)
n = 1000 n = 10000 n = 1000 n = 10000 n = 1000 n = 10000

M1 0.5240 0.4370 0.1870 0.4390 0.5110 0.4920
M2 0.3100 0.4380 0.1910 0.4340 0.5000 0.5080
M3 0.3010 0.4330 0.1960 0.3920 0.5040 0.5200
M4 0.2790 0.3870 0.2040 0.3950 0.5250 0.5390

Table 4.1: P-values for testing the hypothesis that the standardized differences are zero.

should yield a uniform distribution under the null hypothesis. One could even

perform a goodness of fit test but we will not pursue this here.

In testing our results, we are making the assumption that the clusters are approx-

imately independent and this independence becomes more pronounced as the sepa-

ration between the cluster grows. For more details on the theoretical backing of this

assumption refer to Hsing et al. (1988).

We run our simulations with n = 1000 and n = 10000 for N = 20000, and N =

200000 respectively. The threshold value u is always set to the 0.90 quantile of the

data. This means that when θ < 1, max(m) = 99 for n = 1000, and max(m) = 999,

when n = 10000. The main function written in R is in Section 4.7. Table 4.1

contains the p-values for testing the hypothesis in equation (4.4.24). All p-values are

greater than the most common significance levels of 0.01 to 0.10. Furthermore, with

the exception of two cases, the p-values improve for larger sample sizes.

It is also worthwhile to examine the standardized differences. We pick two sets:

Figures 4.4 and 4.5 show the histogram, boxplots, and time plots of D̂M1
c for X(1)

and D̂M3
c for X(3) with n = 1000 and n = 10000. Although two sets were picked,

the results for the rest of the standardized differences are quite similar. The obvious

feature of the standardized differences is their right skewness. The standardized

differences D̂M1
c for X(1) tend to have a slightly more symmetrical distribution since

this process could produce large gains and losses within the same cluster. The

standardized differences D̂M3
c for X(3) are very right skewed since the iid process
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Figure 4.4: Plots of D̂M1
c for X(1). Top row is for n = 1000, bottom row is for n = 10000.

on the average produces only large losses within clusters even though they rarely

happen.

The histograms of the empirical proportions for all the risk measures and the

processes are shown in Figures 4.6 - 4.8. In all the cases, the empirical proportions

appear uniform and the fit to uniform seems to improve for n = 10000. There is a

slight peak or “bump” in the smaller values of the histograms in Figure 4.8 for the

X(3) process. This indicates that in slightly higher percentages of the times, the

out-of-sample values were less than the in-sample values.

Finally, we examine the extremal index estimates, as shown in Figure 4.9. As

in the previous figures, the top row is for n = 1000, and the bottom row is for

n = 10000. The dashed lines in the plots indicate the theoretical θ values. Our

combined estimator seems to be doing a good job. The variability and bias seem to

be substantially reduced for the X(1) process with the large sample size. A slight
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Figure 4.5: Plots of D̂M3
c for X(3). Top row is for n = 1000, bottom row is for n = 10000.

bit of bias is present for the X(2) process. Although the variance appears reduced

for the X(3) process, θ̂ values seem to oscillate between 1 and 0.9.



111

Emp. Prop., x1, m1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x1, m2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x1, m3

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x1, m1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x1, m2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x1, m3

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure 4.6: Histogram of the empirical proportions for the X(1) process. Top row is for n = 1000,
bottom row is for n = 10000.

Emp. Prop., x2, m1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x2, m2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x2, m3

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x2, m1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x2, m2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Emp. Prop., x2, m3

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure 4.7: Histogram of the empirical proportions for the X(2) process. Top row is for n = 1000,
bottom row is for n = 10000.
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Figure 4.8: Histogram of the empirical proportions for the X(3) process. Top row is for n = 1000,
bottom row is for n = 10000.
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Figure 4.9: Extremal Index estimates for X(1), X(2) and X(3). Top row is for n = 1000, bottom
row is for n = 10000.
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M1 M2 M3 M4

Gains Losses Gains Losses Gains Losses Gains Losses

S&P 500 0.1320 0.0010 0.1110 0.0150 0.0980 0.0100 0.1550 0.0440

WTI Oil 0.7900 0.0180 0.5530 0.0320 0.5110 0.0340 0.3570 0.0180

IBM 0.0000 0.0040 0.0020 0.0010 0.0030 0.0010 0.0380 0.0030

ATT 0.1940 0.2260 0.2040 0.2090 0.1780 0.1800 0.0460 0.1770

JNJ 0.3410 0.1380 0.2900 0.1970 0.2820 0.1840 0.5540 0.1470

JPM 0.0100 0.0260 0.0030 0.0180 0.0050 0.0180 0.0250 0.0270

10 Y ear Bond 0.0020 0.0810 0.0010 0.0210 0.0030 0.0220 0.0020 0.0190

USD/GBP 0.6650 0.9490 0.6930 0.9350 0.6530 0.9050 0.5160 0.9130

Table 4.2: P-values for testing the null hypothesis of zero mean for the standardized differences.

4.5 Application of the New Risk Measures to Financial Data

In this section, we use the same data as described in Table 3.1 to estimate our

defined risk measures, and backtest them by reporting the p-values and examining

the empirical proportions. We follow the same estimation and backtesting procedure

as we did for the simulated data with n = 1000 and u set to the 0.90 quantile

of the data. We conduct our analysis for both the gains and the losses. Table 4.2

contains the p-values for testing the null hypothesis of zero mean for the standardized

differences, as stated in equation (4.4.24) for all our risk measures.

Taking the level of significance to be 5%, we have good results in 32 out of 64

cases, i.e. the p-value is greater than 0.05. The success of our backtesting seems to

depend on the asset and sometimes on the gains or the losses. The p-values for the

S&P 500 and Oil gains are good but the losses indicate that the risk measures are

being underestimated. ATT, JNJ, and USD/GBP give excellent results while IBM,

JPM, and the 10 Year Bonds returns give poor results. The worst offender seems to

be IBM.

To see the effects of the clustering, we examine Figure 4.10 of the estimated

Mi, i = {1, 2, 3, 4}, measures for IBM and USD/GBP along with the concurrent

estimated 1 day adjusted expected shortfall (ES). In both cases, the estimated risk
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Figure 4.10: The top plot the estimated IBM Mi losses. The bottom plot is the estimated
USD/GBP Mi losses. ”ES” is just the estimated 1 day expected shortfall for the
same period of estimation of the Mi measures. Thus ES ignores clustering.

measures are significantly greater than the 1 day adjusted expected shortfall with the

differences being more in the case of IBM. If no clustering were present, then all the

risk measures would be approximately equal to the 1 day adjusted expected shortfall.
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Figure 4.11: USD/GBP losses diagnostics plots for M2 with ξ and θ estimates of the returns.

In the IBM case, M4 seems to track M3 well, supporting our assertion that M4 is

a proxy for M3. For a significant number of time periods, there are discrepancies

between M2 and M1 which indicates that large losses and possibly large gains mingle

together in the extreme states. In the USD/GBP case, the risk measures tend to be

approximately equal except for later time periods for M1 and M2. It appears that a

few gains occur in the extreme states. There is even a time from about the 140th to

150th periods when all the risk measures collapse into the 1 day adjusted expected

shortfall. Similar to the IBM case, M4 tracks M3 well.

We will now focus on the IBM and USD/GBP loss sides and their correspond-

ing M2 risk measures for further investigations of the results. We start with the

USD/GBP diagnostics in Figure 4.11. The boxplot shows a number of outliers for

D̂M2
c . The plot certainly shows that the distribution is right skewed. The empirical

proportions look approximately uniform except there is a bump in the lower part of

the histogram. This indicates that a slightly higher percentages of the out-of-sample
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Figure 4.12: IBM losses diagnostics plots for M2 with ξ and θ estimates of the returns.

values were less that the in-sample estimated risk measures. The GPD-MLE esti-

mates of ξ for the negative returns of USD/GBP imply light tails but recall from

Chapter 3 that GPD-MLE underestimates ξ in the presence of dependence. The ex-

tremal index estimates are based on the combined estimator. Extreme loss clustering

is present except from about the 140th to the 150th time periods, when the extremal

index is estimated to be 1. We also observed this in the lower plot of Figure 4.10,

where all the risk measures are the same in the absence of clustering. Note both

ξ and θ estimates show stability, in a sense that the estimated values tend not to

change for long time periods.

The IBM diagnostics tell a different story as seen in Figure 4.12. First note the

extreme outliers present in the boxplot of D̂M2
c . The distribution of D̂M2

c is very

skewed. Furthermore, the GPD-MLE estimates of ξ of IBM negative returns at

certain periods come dangerously close to the value of 0.50, and may well be 0.5 due

to the underestimation by GPD-MLE. When ξ = 0.50, the second moments do not
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exist. This would violate our assumption that the second moments for the return

series exist. Our assumption that standardized differences possess a second moment

is also in jeopardy. A Hill plot of ξ for D̂M2
c is shown in Figure 4.13. It appears that

the D̂M2
c have infinite second moment but the first moment exists. Further details

on the estimation of 1/ξ via Hill plots are in Hill (1975). Since the first moment

appears to exist, our hypothesis of testing for the mean of zero is still valid but our

bootstrap procedure of testing for this hypothesis appears not to be valid. We would

like to argue that the accuracy of our risk measures in predicting the out-of-sample

values is not correctly reflected by the low p-values for the IBM case, since the

bootstrap procedure is not valid. Furthermore, even though there is a slight peak in

the histogram of the empirical proportions near 1, the bump is slight; had our risk

measure systematically underestimated the out-of-sample values, this bump would

have appeared much larger. As a simple first attempt to correct for the presence of

extreme skewness, leaving the 5 largest D̂M2
c out of the 380 values, and redoing the

bootstrap test increases the p-value to 0.12 from 0.001. This is a drastic change.

Admittedly, this is too ad hoc of a procedure to follow but we plan to investigate

ways to correct our bootstrap procedure for our purposes. Our investigation of the

other risk measures for IBM, and the rest of the data sets showed a general trend: the

heavier the standardized differences, the worse the p-values. However, the empirical

proportions did not indicate that a high proportion of the times, the risk measures

were being underestimated.
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Figure 4.13: IBM Hill plot estimates of α = 1/ξ.

4.6 Final Remarks

We have statistical evidence that the risk measures we have defined capture well

the clustering effect in the extreme losses. To the best of our knowledge, the effect

of clustering has never been taken into account explicitly, in the available literature,

when measuring risk. We view temporal dependence and clustering as an integral

part to measuring and predicting risk. Furthermore, our combined estimator is

better able to estimate the extremal index in terms of rmse. In a practical scenario,

we recommend estimating θ first. If θ ≈ 1, then there is no need to estimate any

of our risk measures. Otherwise, estimate M1, and M2 next. A large difference

between these two measures indicates that the extreme states consist of both large

losses and gains. In this case, M2 can be taken as an average estimate of the worst

case scenario, and M1 would provide an estimate of the average loss in an extreme

state. If M1 ≈ M2, then M2 should be taken as the risk measure. If excess losses

above a certain threshold are of concern, then M3 would be the risk measure of

choice. Recall also that M4 provides an estimate of M3 with the advantage that no
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declustering needs to be done.

There are a number issues that need further attention and work. We discuss them

next.

Perhaps the foremost issue is that of confidence intervals for our defined risk

measures. We have not addressed how to create confidence intervals for our estimated

risk measures. Confidence intervals for risk measures have not been fully studied in

the available literature, and only recently researchers have begun to look into it. The

latest explicit focus on the confidence intervals is in Christoffersen and Gonçalves

(2005). Investigation of the asymptotic normality and consistency of our estimators

will be helpful in this matter. Another approach would involve the bootstrap.

The next pressing issue is that of the bootstrapping test for the mean zero null

hypothesis. If the data have heavy tails such that the moments of order greater

than or equal to 2 do not exist, then the normalized bootstrapped distribution of the

sample mean will not converge to the limit of the sample mean when the bootstrap

resample size is equal to the sample size. These issues were investigated and reported

in Athreya (1987) and Knight (1989). A fix, at the expense of efficiency and change

of the test statistic, is suggested by setting the bootstrap resample size l = l(n)

to satisfy l = l(n) → ∞, with l/n → 0 as n → ∞. DasGupta (2008) suggests

setting l = 2
√
n, but we do not know the origins for this rule of thumb. We plan to

investigate this area since testing for the null hypothesis of mean zero is of critical

importance to the validation of our work.

Finally, in our work we have taken the liberty to define a new expected shortfall as

the conditional expectation of a loss given that a return has exceeded a non-random

quantity u. Certainly the additional step of estimating the VaR introduces more

complexity and uncertainty for our procedure. We plan to investigate incorporating
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the estimation of the VaR with our own defined risk measures. This, we believe, is

merely a technical detail and all our conclusions should remain the same.
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4.7 Appendix

The following code is the main function for backtesting.

obtain.risk.measure.differences.5 = function(x, u.prob = 0.90,

use.default.ei = T, ei.default = 1,

window.size=1000, end.cut.off = 250, gpd.u.prob = (u.prob -0.05))

{

n = length(x)

( This part of the code for the main function is omitted.)

i = 0

repeat

{

if ( (final.index + end.cut.off) >= n) break

i = i + 1

temp.data = x[start.index : final.index]

u = quantile(temp.data, prob = u.prob, names=FALSE)

z = (temp.data > u)

if (use.default.ei)

{

dc.obj = decluster.intervals(z, ei.default)

r.par[i] = dc.obj$par

ei[i] = ei.default

}

if (!use.default.ei)
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{

ei[i] = exi.intervals.modified(z)

if ( ei[i] == 1 )

{

dc.obj = decluster.intervals(z, 1)

r.par[i] = dc.obj$par

} else

{

dc.obj = decluster.intervals(z, ei[i])

r.par[i] = dc.obj$par

ei[i] = exi(temp.data, u = u, r = r.par[i])

}

}

index.matrix = create.exst.matrix(dc.obj)

no.of.clusters = dim(index.matrix)[1]

no.clus[i] = no.of.clusters

m.obj = estimate.m.measures.2(temp.data, index.matrix, u = u )

m1[i] = m.obj$m1

m2[i] = m.obj$m2

m3[i] = m.obj$m3

m1.sd[i] = m.obj$m1.sd

m2.sd[i] = m.obj$m2.sd

m3.sd[i] = m.obj$m3.sd

gpd.threshold = quantile(temp.data, prob = gpd.u.prob,

names=FALSE)
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gpd.mle.obj = gpd.fit(temp.data, gpd.threshold, show=F)

xi[i] = gpd.mle.obj$mle[2]

sigma[i] = gpd.mle.obj$mle[1]

one.day.gpd.ES = ( u / (1 - xi[i]) ) *

( 1 + (sigma[i] -

xi[i] * gpd.threshold) / u )

m31[i] = one.day.gpd.ES / ei[i]

one.day.observed.ES =

mean(temp.data[which(temp.data > u)])

m32[i] = one.day.observed.ES / ei[i]

m32.sd[i] = sd(temp.data[which(temp.data > u)])

m31.sd[i] = m32.sd[i]

if ( sum(1*(x[(final.index + 1):(final.index + end.cut.off)]

> u))== 0)

{ break }

m.obj.plus = obtain.m.plus.measures.2(x[(final.index + 1):

(final.index + end.cut.off)], r = r.par[i], u = u)

diff.m1[i] = (m.obj.plus$m1.plus - m1[i]) /

( m1.sd[i] / sqrt(no.of.clusters) )

diff.m2[i] = (m.obj.plus$m2.plus - m2[i]) /

( m2.sd[i] / sqrt(no.of.clusters) )

diff.m3[i] = (m.obj.plus$m3.plus - m3[i]) /

( m3.sd[i] / sqrt(no.of.clusters) )

diff.m31[i] = ei[i] * (m.obj.plus$m3.plus - m31[i])

/ ( m31.sd[i] / sqrt(length(z[z==T])) )
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diff.m32[i] = ei[i] * (m.obj.plus$m3.plus - m32[i])

/ ( m32.sd[i] / sqrt(length(z[z==T])) )

start.index = start.index + m.obj.plus$skip

final.index = final.index + m.obj.plus$skip

pval.m1[i] = sum(1*(m.obj.plus$m1.plus > m.obj$m1val))

/ no.of.clusters

pval.m2[i] = sum(1*(m.obj.plus$m2.plus > m.obj$m2val))

/ no.of.clusters

pval.m3[i] = sum(1*(m.obj.plus$m3.plus > m.obj$m3val))

/ no.of.clusters

pval.m31[i] = sum(1*(m.obj.plus$m3.plus >

(temp.data[which(temp.data > u)] / ei[i]) )) /

length(temp.data[which(temp.data > u)])

pval.m32[i] = sum(1*(m.obj.plus$m3.plus >

(temp.data[which(temp.data > u)] / ei[i]) )) /

length(temp.data[which(temp.data > u)])

m1.plus[i] = m.obj.plus$m1.plus

m2.plus[i] = m.obj.plus$m2.plus

m3.plus[i] = m.obj.plus$m3.plus

m4.plus[i] = m.obj.plus$m3.plus

raw.diff.m1[i] = (m.obj.plus$m1.plus - m1[i])

raw.diff.m2[i] = (m.obj.plus$m2.plus - m2[i])

raw.diff.m3[i] = (m.obj.plus$m3.plus - m3[i])

raw.diff.m4[i] = (m.obj.plus$m3.plus - m32[i])

}
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( This part of the code for the main function is omitted.)

}

The following code is the main function for bootstrapping the mean.

perform.bootstrap = function(y, n=1000)

{

y.mean = mean(y)

y.tilde = y - y.mean

t.stat = numeric(n)

for (i in 1:n)

{

temp = sample(y.tilde, replace=T)

t.stat[i] = (mean(temp))/(sd(temp)/sqrt(length(temp)))

}

y.obs = mean(y)/(sd(y)/sqrt(length(temp)))

p.value = length(t.stat[t.stat > y.obs])/n

out = list(y.obs = y.obs, t.stat=t.stat, p.value = p.value)

out

}
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