
BIOMECHANICAL ANALYSES OF ANTERIOR VAGINAL 
WALL PROLAPSE: MR IMAGING AND COMPUTER 

MODELING STUDIES 
 
 

by 
Luyun Chen 

 
 
 
 

A dissertation submitted in partial fulfillment 
Of the requirements for the degree of 

Doctor of Philosophy 
(Biomedical Engineering) 

In The University of Michigan 
2008 

 
 
 
 
 
 
 
 
 

Doctoral Committee: 
Research Professor James A. Ashton-Miller, Co-Chair 
Professor John O.L. DeLancey, Co-Chair 
Professor Douglas C. Noll 
Professor Gregory M. Hulbert



 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
              ©                         2008

Luyun  Chen 

All Rights Reserved 



 ii

 
 
 
 
 
 
 
 
 

To my parents



 iii

Acknowledgements 

Thank you Professor James A. Ashton-Miller and Professor John O.L. DeLancey for the 

guidance, assistance, patience and encouragement; to Professor Douglas C. Noll and 

Professor Gregory M. Hulbert for serving on my committee and for the helpful advice 

and comments; to Yvonne Hsu for all the wonderful corporations and contribution on 

clinical insights; to Biomechanics Research Lab and Pelvic Floor Research Group for 

stimulating and friendly interdisciplinary research environment; to NIH grants NICHD 

R01 HD038665, P50 HD044406, for financial support. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv

Preface 

Chapter 2 to chapter 6 of this dissertation were written as separate papers, published or to 

be submitted to technical journals. For that reason some repetition of material does occur, 

particularly in the introduction of each chapter.



 v

Table of Contents 
 
 
Dedication .....................................................................................................................ii 
Acknowledgements .....................................................................................................iii 
Preface..........................................................................................................................iv 
List of Figures...........................................................................................................vii 
List of Tables............................................................................................................xiv 
List of Appendices....................................................................................................xv 
Chapter 1 Introduction..............................................................................................1 

1.1 What is pelvic organ prolapse and how big is the problem? .....................................................1 
1.2 Why is improving understanding mechanisms of anterior vaginal wall prolapse important?...2 
1.3 What are risk factors for pelvic organ prolapse? .......................................................................3 
1.4 What structures are responsible for normal pelvic floor support?.............................................4 

Levator ani muscle support .....................................................................................................4 
Connective tissue support........................................................................................................5 

1.5. A brief historical overview and the present understanding of the mechanisms underlying 
anterior vaginal wall prolapse. ........................................................................................................6 
1.6 What is the evidence for connective tissue failure in the development of AVP? .................... 11 
1.7 What is the evidence that suggests levator ani muscle impairment also plays a role in AVP? 12 
1.8 Hypothesis and Specific Aims................................................................................................. 12 

Aim 1: Morphological measurement of anterior vaginal wall support system using MR 
imaging.................................................................................................................................. 13 
Aim 2:  Biomechanical modeling of AVP ........................................................................... 13 
Aim 3. In vivo assessment of the compliance of the anterior compartment and the 
exploration of more extensive ways to validate model ......................................................... 14 

References ..................................................................................................................................... 15 
Chapter 2 Cross-sectional Area Measurement of Levator Ani Muscle in w
omen with and without prolapse ..........................................................................19 

2.1 Introduction ............................................................................................................................. 19 
2.2 Materials & Methods:.............................................................................................................. 21 

2.2.1 Develop and validate measurement technique on women with unilateral levator ani 
muscle defect......................................................................................................................... 21 
2.2.2 Quantify muscle cross-section loss in women with and without prolapse ................... 28 

2.3 Results ..................................................................................................................................... 31 
2.3.1 Results for women with unilateral levator ani muscle defect....................................... 31 
2.3.2 Results for women with and with prolapse .................................................................. 33 

2.4 Discussion ............................................................................................................................... 35 
Chapter 3 Geometrical Analyses of Anterior Vaginal Wall in Women Wit

h and Without Prolapse..........................................................................................44 
3.1 Vaginal Thickness, Cross-Sectional Area, and Perimeter in Women With and Those Without 
Prolapse ......................................................................................................................................... 44 

ABSTRACT.......................................................................................................................... 44 
3.1.1 Introduction .................................................................................................................. 45 



 vi

3.1.2 Materials and Methods ................................................................................................. 46 
3.1.3 Results .......................................................................................................................... 49 
3.1.4 Discussion .................................................................................................................... 52 

3.2 Anterior vaginal wall length and degree of anterior compartment prolapse seen on dynamic 
MR images .................................................................................................................................... 56 

ABSTRACT.......................................................................................................................... 56 
3.2.1 Introduction .................................................................................................................. 56 
3.2.2 Materials and methods.................................................................................................. 57 
3.2.3 Results .......................................................................................................................... 60 
3.2.4 Discussion .................................................................................................................... 62 

References ..................................................................................................................................... 65 
Chapter 4 2D Conceptual Lumped Parameter Model .....................................70 

4.1 Introduction ............................................................................................................................. 71 
4.2 Methods................................................................................................................................... 72 
4.3 Results ..................................................................................................................................... 77 
4.4 Discussion ............................................................................................................................... 79 

Chapter 5 Development of a 3-D Finite Element Model of Anterior Vagin
al Wall Support to Evaluate Mechanisms Underlying Cystocele Formation87 

ABSTRACT.................................................................................................................................. 87 
5.1 Introduction ............................................................................................................................. 88 
5.2 Methods................................................................................................................................... 89 
5.3 Results ..................................................................................................................................... 94 
5.4 Discussion ............................................................................................................................. 101 
References ................................................................................................................................... 104 

Chapter 6 In Vivo Assessment of Anterior Compartment Compliance and
 Its Relation to Prolapse ......................................................................................107 

ABSTRACT................................................................................................................................ 107 
6.1 Introduction ........................................................................................................................... 108 
6.3 Results ................................................................................................................................... 112 
6.4 Discussion ............................................................................................................................. 112 
References ................................................................................................................................... 115 

Chapter 7 General Discussion.............................................................................. 117 
Chapter 8 Conclusions...........................................................................................125 
Chapter 9 Suggestions for Future Research.....................................................127 
Appendices................................................................................................................129

 



 vii

 List of Figures 

Figure 1-1. Photograph of the anterior vaginal wall protruding from the vaginal 
introitus showing two types of cystocele. Left; distention type AVP with stretched 
anterior vaginal wall (AVW). Right, displaced AVP with intact AVW that has 
become detached form supports (cervix, Cx also seen).  (© DeLancey ) .....1 

 
Figure 1-2 Illustration of levator ani muscle. Pubic portion include puboperineal 

muscle (PPM), puborectalis muscle (PRM) and puboanalis muscle (PAM). ICM: 
iliococcygeal muscle; ATLA: Arcus tendineus levator ani; EAS: external anal 
spincter; PB: perineal body. (From DeLancey private collection) .................5 

 
Figure 1-3 Anatomy of anterior vaginal wall support and sites of support failure 

(Bladder removed) (© DeLancey ) .................................................................6 
 

Figure 1-4. Bonney’s analogy of vaginal prolapse.  The eversion of an intussuscepted 
surgical glove finger by increasing pressure within the glove is analogous to 
prolapse of the vagina © DELANCEY 2002, with permission).....................8 

 
Figure 1-5 . Diagrammatic display of vaginal support.  A. Invaginated area in a 

surrounding compartment; B. The prolapse opens when the pressure (arrow) is 
increased; C. Closing the bottom of the vagina prevents prolapse by constriction; 
D. Ligament suspension; E. Flap valve closure where suspending fibers hold the 
vagina in a position against the wall allowing increases in pressure to pin it in 
place ©DELANCEY 2002, with permission).................................................9 

 
Figure 1-6 The extant understanding of cystocele formation supported by scientific 

studies. ..........................................................................................................10 
 

Figure 1-7 Variation between women with AVP (© DeLancey) ......................... 11 
 

Figure 2-1: Axial proton density MR image of a woman with a right unilateral defect. 
The left levator ani muscle is intact (denoted by *) while the right side portion of 
the muscle is missing.  PB denotes pubic bone; U: urethra; V: vagina; R: Rectum; 
OI: obturator internus muscle. ......................................................................22 

 
Figure 2-2.  Reconstructed 3-D model showing the pubic bone and levator ani muscle 

with a right unilateral defect (A).  In B, the dashed region shows the expected 
location of the missing muscle after reflecting the muscle from the normal across 
the midline side. ............................................................................................24



 viii

 
 

Figure 2-3.  Separating the pubic portion of levator ani from the iliococcygeus portion 
on MR scans. a): identification of the middle point (triangle) on the mid-sagittal 
MRI; b & c): identification of the two lateral points on MRI (cross and diamond). 
The following structures were identified in MRI to help for orientation. PS: pubic 
symphysis; PB:pubic bone; B: bladder; A: anus; OI: oburator internus; U:uterus 
(with fibroids); PRM: puborectalis muscle. ICM: iliococcygeus muscle.....25 

 
Figure 2-4: 3-D view of the separation of the pubic portion from the iliococcygeal 

portion of the levator ani. The dashed line represents the plane of separation, 
while the triangle, cross and diamond have the same meaning as in the preceding 
figure. ............................................................................................................25 

 
Figure 2-5.  Reference points for determining fiber direction in the pubic portion of 

the levator ani. a) Origin points on axial MR at its junction with obturator internus 
(OI) as open circle on patient’s left and filled circle on patient’s right; b&c) Right 
(filled square) and left (open square) insertion point on sagittal MR scans. The 
following structures are identified aid orientation. PB: pubic bone; B: bladder; V: 
vagina; R: rectum; A: anus............................................................................26 

 
Figure 2-6. Lines connecting the origin and insertion points (see preceding figure) 

were used to estimate muscle fiber direction.  The dashed region shows the 
expected location of the muscle on the defective side, were it intact. ..........26 

 
Figure 2-7.  Steps to quantify levator ani muscle loss in a subject with a unilateral 

defect. A: Frontal view of the 3-D reconstruction model of levator ani was built. 
B: The pubic portion is separated from the iliococcygeal portion; here only the 
pubic portion is shown. C: The line of estimated fiber direction of the pubic 
portion was determined.  Equally-spaced cutting planes perpendicular to the 
fiber direction line were placed. D: The resulting cross-sections are shown. 
Cross-sectional areas were then calculated.  Due to the defect on the right, 
muscle is not present at location 1, therefore, it is not shown. .....................27 

 
Figure 2-8 A: Cross-sectional area perpendicular to dnormalT muscle direction; B: 

Cross-sectional area perpendicular to remaining muscle direction. .............28 
 

Figure 2-9 Axial MRI showing the levator ani.  a: intact pubovisceral muscle 
bilaterally as demonstrated by arrows;  b: complete loss of bilateral muscles.  © 
DeLancey 2006 .............................................................................................29 

 
Figure 2-10 3-D Slicer models.  a: ¾view of the levator ani muscle and pubic bone;  

b: levator ani with pubic bones removed;  c: lateral view of muscle.  © 
DeLancey 2006 .............................................................................................30 

 
 

Figure 2-11: Levator model and cross-sections. Fiber direction line for the left side of 
pubic portion of levator ani muscle is shown. The locations of cross-section areas 



 ix

(CSA) are shown and numbered 1 (most ventral) to 17 (most dorsal).  The model 
has been cut at CSA 7.  CSA 8 to 16 are not numbered in the figure.  © 
DeLancey 2006 .............................................................................................30 

 
Figure 2-12.  Bilateral comparison of muscle cross-sectional area of pubic portion of 

levator ani muscle perpendicular to its fiber direction. Bars are standard error and 
* denotes p<0.05. ..........................................................................................32 

 
Figure 2-13: Levator cross-section areas at various locations (Mean ± SEM).....34 
Figure 3-1-1. Axial slices at 5-mm intervals arranged caudal to cephalad starting from 

the image in the upper left (image 0). Vaginal tracings were made from above the 
level of the vestibular bulbs (VB), represented by asterisks (*), caudally (image 0) 
to below where the cervix (C) could be seen (image -4.0). U, urethra; V, vagina; R, 
rectum; B, bladder. © DeLancey 2004. ........................................................47 

 
Figure 3-1-2. Selected 3-dimensional model as it appears in I-DEAS 9.0. The sacrum 

(Sac), pubic bone (PB), and pelvic organs have been shown for orientation. B, 
bladder; U, urethra; UT, uterus; V, vagina; R, rectum. © DeLancey 2004...48 

 
Figure 3-1-3. Steps in obtaining vaginal measurements: A. Threedimensional I-DEAS 

9.0 vaginal model. B. Longitudinal axis determined in the mid-sagittal plane, 
with 5 equally spaced locations along the longitudinal axis marked. C.Sample 
cross sections: Location 1 is near the vaginal apex, and location 5 is near the 
hymen. D. Mid-sagittal diameter, perimeter, and cross-sectional area were 
calculated for each axial cross section. © DeLancey 2004. .........................49 

 
Figure 3-1-4. Vaginal mid-sagittal diameter at each of the 5 vaginal locations. Refer to 

Figure 3-1-3 for vaginal locations. The aggregate mean of the 5 individual 
segments is also shown at right. Error bars indicate standard error of the mean.
.......................................................................................................................50 

 
Figure 3-1-5. Cross-sectional area at each of the 5 vaginal locations. The aggregate 

mean of the 5 individual segments is shown at right. Error bars indicate standard 
error of the mean...........................................................................................51 

 
Figure 3-1-6. Vaginal perimeter. The aggregate mean of the 5 individual segments is 

shown at right. Error bars indicate standard error of the mean.....................52 
 

Figure 3-2-1 MR image at maximal Valsalva showing anterior vaginal wall tracing 
(solid black line), distal vaginal wall (x), bladder location (triangle), cervical os 
location (circle), and coordinate system (dotted lines) .................................59 

 
Figure 3-2-2 Area under the anterior vaginal wall profile. Pubic bone, sacrum, and 

coccyx are traced. The anterior vaginal wall tracings are shown. A line (small 
dotted) is used to connect the two ends of the vaginal wall tracing to create an area 
(shown in gray). Examples aligned using horizontal large dotted reference line. a 
Minimal descent of most caudal bladder point (triangle). b Greater descent of the 
bladder point with longer vaginal wall length and larger area. c Similar vaginal 



 x

wall length to B but smaller area and lesser descent of bladder point..........60 
 

Figure 3-2-3 Vaginal length during Valsalva and distance of the most caudal bladder 
point below normal. There is a linear correlation y = 0.69 x − 0.85, R 2 = 0.30 61 

 
Figure 3-2-4 Subject examples showing relationship between apical support and 

vaginal length in determining the size of cystoceles. Top row: MR image with 
maximal Valsalva. Bottom row: Coordinate axis, vaginal tracings, as well as 
bladder and cervical locations. Images have been standardized for pelvic size and 
orientation. a Subject who had uterine descent and large cystocele. b Subject with 
relatively well-supported apical compartments who had large cystocele with a 
long anterior vaginal wall. c Subject with cystocele and a normal vaginal wall 
length. d Subject with cystocele with a short vaginal wall length ................62 

 
Figure 4-1, Model Development. A: mid-sagittal MR image. B: modeled element 

traced or projected on mid-sagittal MR image. C: lumped parameter 
biomechanical model. Pubovisceral muscle ( PVM ) is modeled as a spring in 
parallel with an active force generator. PS: pubic symphysis; SAC: sacrum; PM: 
perineal membrane; LA plate: levator plate; R: rectum; V: vagina; CL: cardinal 
ligament spring; US: uterosacral ligament spring; B: bladder; UT: uterus.  
Copyright: Biomechanics Research Laboratory, University of Michigan, 2006 73 

 
Figure 4-2.  Force diagram showing the loading of the anterior vaginal wall and its 

support system. .............................................................................................76 
 

A: loading anterior vaginal wall with normal muscular support ; B: loaded pelvic floor 
with defective muscular support and part of vaginal wall exposed to 
intra-abdominal pressure (light grey arrows). IAP denotes intra-abdominal 
pressure; Fpvm: tensile force generated by pubovisceral muscle between the 
projection of its origin on the pelvic side wall and insertion on the levator plate; 
Tc and Tu: tensile forces generated by the cardinal and uterosacral ligaments; D: 
the decent of the most dependent point of vaginal wall from end of perineal 
membrane (PM) which is used as the measurement of prolapse size in the 
simulation.  Note descent of the vaginal apex as well as vaginal wall protrusion. 
Copyright: Biomechanics Research Laboratory, University of Michigan, 2006 76 

 
Figure 4-3. Simulated deformation of the model anterior vaginal wall, and its support 

system, under maximal Valsalva with various degrees of pubovisceral muscle 
(PVM) and cardinal and uterosacral ligament impairment (indicated in percent). 
D presents the size of prolapse measured as the decent of the most dependent 
point of vaginal wall from end of perineal membrane. Copyright: Biomechanics 
Research Laboratory, University of Michigan, 2006....................................78 

 
Figure 4-4:  Prolapse size measured by the most dependent point on the vaginal wall 

as a function of apical support impairment for different degrees of pubovisceral 
muscle (PVM) impairment. Copyright Biomechanics Research Laboratory, 
University of Michigan, 2006 .......................................................................79 



 xi

 
Figure 4-5. Validation of the model. A: mid-sagittal MR image of resting status; B: 

mid-sagittal MR image at maximum Valsava; C: sample model simulation result 
having a similar configuration as in (b). In this figure PS denotes pubic symphysis; 
SAC: sacrum; PM: perineal membrane; PVM: pubovisceral muscle; LA plate: 
levator plate; R: rectum; V: vagina; CL: cardinal ligament; US: uterosacral 
ligament; B: bladder; and UT: uterus Copyright Biomechanics Research 
Laboratory, University of Michigan, 2006 ...................................................80 

 
Figure 5-2 The material property of vagina, ligaments and levator ani muscle used in 

the model simulation,....................................................................................93 
 

Figure 5-3 Vaginal wall tissue material properties at different stage of tissue 
adaptation. The curve on the left most (status 0) is the original data from Yamada 
(Yamada, 1976) which is assigned as status 0. Status 3, vaginal tissue has the 
longest dead band..........................................................................................93 

 
Figure 5-4 Outcome measurements. The illustration is the model configuration at 

maximum abdominal pressure and shows the four outcome measurements: a: 
apical descent, middle of vagina apex displacement from its position at rest; h: 
hiatus size at maximum loading, measured as tip of posterior vaginal 
compartment to distal end of vaginal wall (fixed); d: Prolapse size, measured as 
the vertical descent of the most dependent point of the vagina to distal end of 
vagina; Exposed Vaginal Length measured as the length of vaginal wall 
unsupported by the posterior vaginal compartment (and therefore exposed to the 
pressure differential with intra-abdominal pressure acting on the proximal surface 
and atmospheric pressure acting on its distal surface)..................................95 

Figure 5-5. Model validation.  At left side is one model-generated simulation result 
with a similar cystocele formation to that seen clinically in the dynamic MRI on 
right side of the figure...................................................................................96 

 
Figure 5-6 Lateral view of a mid-sagittal plane section of the 3D finite element model. 

Panel A: In this simulation, all support elements (levator ani muscle, cardinal 
uterosacral ligament, paravaginal support) have normal material properties. Panel 
B: In this simulation, the levator ani muscle was set to have a 60% reduction in its 
properties, and a 50% reduction in cardinal and uterosacral ligament and 
paravaginal support properties. LA denotes levator ani, CL: cardinal ligament, 
AVW: arterial vaginal wall, PC: posterior compartment, US: uterosacral ligament
.......................................................................................................................96 

 
Figure 5-7.  Sequential development of a typical simulated cystocele. In this 

simulation, the levator ani muscle had a 60% impairment, apical and paravaginal 
support properties were set to having a 50% impairment,,.  The abdominal 
pressure was then increased from zero to 100 cmH2O over time course (plotted on 
the vertical axis of the bottom illustration) at four different time points (seen on 
the horizontal axis of the bottom plot). The first row shows the three-quarter view, 
while the second row shows a sagittal section. The color map shows the stress 



 xii

distributions in the different regions, with red indicating a low stress region and 
blue indicating a high stress region...............................................................97 

Figure 5-8 Relationship between cystocele size and intra-abdominal pressure in a 
simulated cystocele. In this simulation, the levator ani muscle had a 60% 
impairment, apical and paravaginal support were set to having a 50% impairment. 
The best fit line for non-zero cystocele size data points is plotted. The linear 
regression equation and coefficient of determination are shown in the illustration.
.......................................................................................................................98 

 
Figure 5-9 Simulated cystocele size for models with different impairment patterns at 

increasing values of maximum intra-abdominal pressure loading. ..............99 
 

Figure 5-10 Effects of muscle impairment on cystocele formation. The outcome 
measurement was normalized to model outcome with intact LA muscle resistance 
to stretch........................................................................................................99 

 
Figure 5-11 Effects of apical and paravaginal impairments on cystocele formation. 

Simulations had 60% levator ani muscle impairments and were loaded with 
168cmH2O maximum intra-abdominal pressure. For apical impairment 
simulations, models had normal paravaginal support, but a varying degree of 
apical support impairment with remaining apical connective tissue stiffness 
ranging from from 20% to 100% of the normal value. For paravaginal impairment 
simulations, models had normal apical support but varying degree of paravaginal 
support impairment with remaining paravaginal connective tissue stiffness 
ranging from 20% to 100% of normal values.............................................100 

 
Figure 5-12 Relationship between vaginal tissue status and cystocele size. Vaginal 

tissue dead band status 0, 1, 2, 3 were as shown in figure 5-3. ..................101 
 

Figure 6-1 The upper tracings were constructed from dynamic mid-sagittal images of 
the subject whose lines is marked with an asterix. Black dots represent the most 
dependent bladder point and black triangles the location of the normal bladder 
point in nullipara. The graph showed the relationship between intra-abdominal 
pressure and bladder location during loading (solid tracing) and unloading 
(dashed tracing) cycle. Straight line is the best fitted line for the loading curve.
..................................................................................................................... 111 

 
Figure 6-2 Best fit lines for the loading curves for all subjects. Solid lines present data 

for women with prolapse, dashed line were the data for women with normal 
support......................................................................................................... 113 

 
Figure 7-1 The understanding of cystocele formation supported by scientific data 

extant at the time this dissertation work started in the year 2002. IAP denotes 
intra-abdominal pressure; AVW: anterior vaginal wall; T: tension; and ε : strain.
.....................................................................................................................120 

 
Figure 7-2 A new conceptual (systems analysis) model for the mechanism of anterior 



 xiii

vaginal wall prolapse showing the factors leading to the development of a 
cystocele of size ‘d’. The black ‘putative’ portion represents the historical 
understanding in the year 2002 (when this dissertation research was started). The 
dark grey ‘novel’ portion represents the contribution of this dissertation. In 
particular, the idea of focusing on the pressure differential acting on the exposed 
distal portion of vagina as the driving force to the development of prolapse 
(Chapter 4 & 5) is held to be a key contribution. The light grey ‘potential’ portion 
represents tissue adaptational mechanisms that could act over time and need to be 
investigated in the future. In this dissertation the effect of a single loading cycle, 
with different magnitudes of intra-abdominal pressure, IAP, was investigated, but 
the effect of multiple loading cycles should be investigated in the future. IAP 
denotes intra-abdominal pressure; PVM: pubovisceral muscle, pubic portion of 
levator ani muscle; AVW: anterior vaginal wall; α : active contraction of levator 
ani muscle; P0: atmosphere pressure;  Δp : pressure differential ; T: tension; and 
ε : strain.......................................................................................................121 

 
Figure A-1. Tracings of the uterosacral ligament on axial MR images. .............132 

 
Figure A-2. Tracings of the cardinal ligament on coronal MR images...............133 

 
 

Figure B-1 Image registration framework implemented using ITK ...................142 
 

Figure B-2 First row are the sequential MR images during Valsalva loading cycle. 
Second role are the calculated deformation field between adjacent images. For 
example 1-2 means deformation field between image 1 and 2. Third role, first 
image is the tracing of anterior vagina wall at first image. 2’, 3’, 4’ and 5’ are the 
calculated location of anterior vaginal wall. ...............................................143



 xiv

List of Tables 

 
Table 2-1: Comparison of mean ± standard error cross-sectional area (CSA) in cm2 of 

left and right side in ten women with normal muscle...................................31 
 

Table 2-2: Comparison of mean ± standard error cross-sectional area (CSA) in cm2  
calculated using “normal” fiber direction with that calculated using remaining 
fiber direction................................................................................................32 

 
Table 2-3: Patient demographics (mean ± SEM values).......................................33 

 
Table 2-4:  Mean ± SEM cross-sectional areas (in cm2) in women with and without 

prolapse. ........................................................................................................35 
 

Table 3-2-1 Linear regression modeling ...............................................................61 
 

Table 4-1: Dimension and material property of each element of the 2-D biomechanical 
model.............................................................................................................74 

 
Table A-1 Result .................................................................................................136 

 



 xv

 List of Appendices  

 
Appendix A ...............................................................................................................130 
Appendix B ...............................................................................................................140



 1

Chapter 1  

Introduction 

1.1 What is pelvic organ prolapse and how big is the problem? 

Pelvic organ prolapse is a distressing and debilitating condition for women. It is a 

problem that most women don’t like to discuss, even when the symptoms interfere with 

their work, intimate relationships or ability to travel. Pelvic floor prolapse occurs when 

the network of muscle and connective tissue supporting the female pelvic organs weakens 

and sags. As a result, the vagina, bladder, uterus or rectum can slip out of position, 

sometimes protruding into or even inverting the vagina.  

 

Figure 1-1. Photograph of the anterior vaginal wall protruding from the vaginal introitus showing 
two types of cystocele. Left; distention type AVP with stretched anterior vaginal wall (AVW). Right, 
displaced AVP with intact AVW that has become detached form supports (cervix, Cx also seen).  
(© DeLancey )  
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Figure 1-1 shows pictures of examples of anterior vaginal wall prolapse taken during a 

clinical exam.  The functional consequences of pelvic organ prolapse include, but are not 

limited to, urinary incontinence, voiding dysfunction, fecal incontinence, sexual 

dysfunction, and difficulty with defecation. Although some women treat their symptoms 

conservatively with pessaries, medications, physiotherapy, or behavioral therapy, others 

resort to protective undergarments and vaginal deodorizers to avoid odors. Women who 

are the most impaired seek surgical solutions. A majority of the approximately 300,000 

female pelvic floor operations performed each year are performed for pelvic organ 

prolapse (i.e., approximately 200,000 operations each year) (Boyles et al, 2003).  This 

makes pelvic organ prolapse the pelvic floor disorder most often requiring surgical repair 

and it costs society of over one billion dollars per year (Subak et al, 2002). 

Approximately one out of 10 American women (Olsen et al, 1997) will require surgery 

for pelvic floor dysfunction during their lifetime and 29% will undergo re-operation 

(Olsen et al, 1997). This latter statistic is a relatively high re-operation rate and indicates 

that the methods of surgical repair may be open to improvement.  

Thus, pelvic floor prolapse is not only socially embarrassing and disabling, but the 

treatments are also costly and can place women at risk of additional surgery. This 

spectrum of problems creates an enormous socioeconomic burden on our society.  

 

1.2 Why is improving understanding mechanisms of anterior vaginal wall prolapse 

important? 

Anterior vaginal prolapse (AVP), clinically referred to as “cystocele,” is the most 

common form of pelvic organ prolapse (Hendrix et al, 2002) and an important problem 

whose successful treatment remains a challenge, even for experienced surgeons. The 

anterior vagina is the prolapse site with the highest rates of persistent and recurrent 

support defects (Shull et al, 2000). Blinded follow-up in a recent randomized prospective 

study of surgical techniques for AVP at an institution known internationally for 

excellence in urogynecologic surgery found that only 30-45% of patients had satisfactory 

or optimal results at 24 months (Weber et al, 2001). A review of the published articles for 
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surgical outcomes showed that recurrence of the AVP accounted for 42% of operative 

failures for pelvic organ prolapse (Sze et al, 1997). The inability to predict the patients 

who will experience surgical failure remains a significant barrier to developing more 

successful treatment.  An improved understanding of the mechanisms underlying AVP 

will aid more successful treatment development and selection. 

1.3 What are risk factors for pelvic organ prolapse? 

Despite the prevalence of the problem, any understanding of the mechanisms 

underlying pelvic organ prolapse lag far behind the epidemiology. Risk factors for and 

correlates of pelvic organ prolapse are primarily based on expert opinion and are 

supported by limited epidemiologic and clinical evidence. Existing data suggest that age 

and ethnicity are associated with pelvic organ prolapse (Hendrix et al. 2002). Of greater 

interest to clinicians, however, are risk factors that maybe amenable to intervention to 

reduce injury to the pelvic floor. One such potential risk factor is childbirth, and, in 

particular vaginal birth. In the Oxford Family Planning Asscociation prolapse 

epidemiology study, parity was the strongest risk factor for pelvic organ prolapse, with an 

adjusted risk ratio of 10.85 (Mant et al, 1997). Although this trauma to the pelvic floor 

cannot be easily avoided, there has been increasing interest in understanding the specific 

aspects of the labor and delivery process that affect the pelvic floor. Lien et al. developed 

computer models to simulate vaginal birth and study the possible injury mechanisms 

identifying stretch injury of the ventral pubovisceral muscle as one candidate (Lien et al, 

2004, 2005). There is scant evidence about other risk factors that are possibly amenable 

to efforts to prevent pelvic organ prolapse. In one study or ergonomic significance 

(Jørgensen et al, 1994), nursing assistants were more likely to undergo surgery for pelvic 

floor disorders than the general population, but no adjustment was made for vaginal birth.  

Surgical injury to the pelvic floor and underlying connective tissue disorders have also 

been implicated in pelvic organ prolapse. Obesity, cigarette smoking with chronic cough, 

previous hysterectomy, constipation, and estrogen deficiency have all been commonly 

implicated in the cause of pelvic organ prolapse. However, there is little, if any, evidence 

that mechanistically relates these factors to the development of AVP.  
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1.4 What structures are responsible for normal pelvic floor support? 

The pelvic floor organs, when removed from the body, exist only as a limp and 

formless mass. Their shape and position in living women is determined by their 

attachments to the pubic bones through the muscles and connective tissue of the pelvis. 

The viscera are often thought of as being supported by the pelvic floor, but are actually a 

part of it. For example, the support of anterior compartment of pelvic floor consists of 

levator ani muscle, apical connective mesenteric tissue such as cardinal and uterosacral 

ligaments, paravaginal connective tissue, and the anterior vaginal wall itself. 

 

Levator ani muscle support 

The levator ani muscle, the main muscle comprising the pelvic floor, is believed to 

play a very important role in pelvic floor support. The levator ani muscle (LA) has a 

complex shape with muscle fibers running in multiple directions. The muscle structure 

can be simplified by dividing the levator ani muscle into two regions (Lawson et al, 1974, 

Kearney et al, 2004).  The pubic portion of the muscle arises from the pubic bone and 

then attaches to the perineal structures and walls of the pelvic organs. The other portion is 

the iliococcygeal muscle, which forms a relatively flat, horizontal shelf that spans the 

pelvic opening from one pelvic sidewall to the other (Figure 1-2).  

 



 5

 
 
Figure 1-2 Illustration of levator ani muscle. Pubic portion include puboperineal muscle (PPM), 
puborectalis muscle (PRM) and puboanalis muscle (PAM). ICM: iliococcygeal muscle; ATLA: 
Arcus tendineus levator ani; EAS: external anal spincter; PB: perineal body. (From DeLancey 
private collection) 
  

 

Connective tissue support 

The anterior vaginal wall is supported by different connective tissues in different 

regions (Figure 1-3). The cardinal and uterosacral ligament attach the cervix and uterus to 

the pelvic side wall and provide the support for the vaginal apex, which is referred as 

“apical support” or “Level I” support.  In the mid-portion of the vagina, the connective 

tissue attaches the vagina laterally and more directly to the pelvic walls and is used 

referred as “paravaginal support” or “Level II” support. It is not a separate layer from the 

vagina, as is sometimes inferred, but is a combination of the anterior vaginal wall and its 

attachments to the pelvic wall. In the distal vagina, the vaginal wall is directly attached to 

surrounding structures without any intervening connective tissue. Anteriorly it fuses with 

the urethra, posteriorly with the perineal body and laterally with the levator ani muscle 

and is usually referred as “Level III” support. 
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Figure 1-3 Anatomy of anterior vaginal wall support and sites of support failure (Bladder removed) 
(© DeLancey ) 
 

Anterior vaginal wall 

The anterior vaginal wall, a very important part of anterior compartment pelvic floor 

support, makes up the central support “fabric”, suspended as it is from the surrounding 

‘frames’ of the pelvis by attachments at two sides (i.e., “paravaginal” support) and the 

proximal one end (i.e., “apical” support).  Its distal end is fused with the levator ani 

muscle (Level III support).  

1.5. A brief historical overview and the present understanding of the mechanisms 

underlying anterior vaginal wall prolapse.  

Pelvic organ prolapse is a remarkably common problem, yet the disease mechanism 

resulting in its occurrence remains poorly understood. In 1918, Paramore described the 

support of the vagina as being like a ship in its berth, floating on the water and attached 

by ropes on either side to a dock (Paramore 1918).  The ship is analogous to the vagina, 

the ropes to the ligaments, and the water to the supportive layer formed by the pelvic 

muscles. The ropes function to hold the ship (pelvic organs) in the center of its berth as it 
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rests on the water (pelvic muscles). If, however, the water level were to fall far enough 

that the ropes would be required to hold the ship without the supporting water, the ropes 

would all break.  

 

In 1934, Bonney pointed out that the vagina is in the same relationship to the 

abdominal cavity as the in-turned finger of a surgical glove is to the rest of the glove 

(Figure 1-4) (Bonney 1934).  If the pressure in the glove is increased, it forces the finger 

to protrude downwards in the same way that increases in abdominal pressure force the 

vagina to prolapse. Figure 1-5a and Figure 1-5b provide a schematic illustration of this 

prolapse phenomenon. In Figure 1-5c, the lower end of the vagina is held closed by the 

pelvic floor muscles, preventing prolapse by constricting the base of the invaginated 

finger closed.  Figure 1-5d shows suspension of the vagina to the pelvic walls.  Figure 

1-5e demonstrates that spatial relationships are important in the “flap-valve” closure 

where the suspending fibers hold the vagina in a position against the supporting walls of 

the pelvis; increases in pressure force the vagina against the wall, thereby pinning it in 

place. Vaginal support is a combination of constriction, suspension, and structural 

geometry. 
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Figure. 1-4. Bonney’s analogy of vaginal prolapse.  The eversion of an intussuscepted surgical 
glove finger by increasing pressure within the glove is analogous to prolapse of the vagina © 
DELANCEY 2002, with permission) 
 

The Ship-in-berth analogy and surgical glove analogy both point out the interaction 

between levator ani muscle and endopelvic fasica, which is one of the most important 

biomechanical features of pelvic organ support.  However there are no scientific studies 

of this phenomenon and experiments investigating this interaction and supporting those 

theories are lacking. 

 

In 2002, at the time this dissertation research was started, there were several 

competing hypotheses that have been proposed to explain how anterior vaginal wall 

prolapsed occurs. A first hypothesis involved midline stretching of the vaginal wall, 

while a second involved peripheral detachment in the paravaginal and apical areas of 

support to the vaginal wall. The first hypothesis focuses on the stretching of the 

fibromuscular vaginal tube (fascia) as the disease mechanism of prolapse. This has also 

been referred to as a distention cystocele (Nichols et al. 1996). The distention cystocele 

implies that the vagina becomes thin and attenuated in the formation of the cystocele (or 
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hernia). The other hypothesis focuses more on the connections of the vaginal tube to the 

pelvic sidewall (Richardson 1976, 1981). When these connections break, a paravaginal 

defect or a displacement cystocele is thought to occur.(Nichols et al. 1996,Richardson et 

al. 2000).  
 

 
 

Figure 1-5 . Diagrammatic display of vaginal support.  A. Invaginated area in a surrounding 
compartment; B. The prolapse opens when the pressure (arrow) is increased; C. Closing the bottom 
of the vagina prevents prolapse by constriction; D. Ligament suspension; E. Flap valve closure 
where suspending fibers hold the vagina in a position against the wall allowing increases in 
pressure to pin it in place ©DELANCEY 2002, with permission). 
 
 

Figure 1-6 shows a systems analsysis model of the extant cystocele formation 

theories that are supported by scientific studies. Intra-abdominal pressure loaded on 

anterior compartment causes the tension in the paravaginal supports and vaginal wall 
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itself. Impairments in paravaginal connective tissue and/or the weakening of anterior 

vaginal wall result in an abnormal vaginal wall elongation and cause the vagina to bulge 

based on the geometric constraints provided by the paravaginal attachments.  

 
Figure 1-6 The extant understanding of cystocele formation supported by scientific studies. 
 
 

However, these theories only concentrate on the connective tissue support failure.  

Levator ani muscle plays an important role in pelvic organ support. A recent study of our 

group (DeLancey et al. 2007) showed that pubococcygeal muscle (PCM) damage is four 

times more common in women with prolapse. Neither of these findings can explain this 

observation. Also, we observed that there are distinguishable vaginal deformation 

patterns in women with AVP when performing Valsalva (Figure 1-7). Therefore, we 

hypothesize that the occurrence and magnitude of AVP is not explained by any single 

mechanism but involves combination of connective tissue support failure at one or more 

sites, also involving an interaction with pubococcygeal (levator) muscle impairment.  
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Figure 1-7 Variation between women with AVP (© DeLancey) 
 

 

1.6 What is the evidence for connective tissue failure in the development of AVP? 

The mechanical characteristics of pelvic connective tissue samples taken from 

women undergoing surgery for prolapse suggest that there may be multiple sites of tissue 

failure. The shear strength of vaginal wall specimens has been found to be lower in 

patients with pelvic floor dysfunction than in normal controls (Kondo et al. 1994) and 

great variability in the tensile and bending strengths of the samples has also been 

observed (Cosson et al. 2004). The resiliency of the apical support structures, such as the 

uterosacral ligaments, has also been found to be significantly reduced among women 

with symptomatic uterovaginal prolapse (Reay et al. 2003). The variation in these studies 

suggests that there are different sites of failure. Although, in general, each of these 

studies confirms that women with pelvic floor dysfunction have tissues that, on average, 

are inferior to control women, there is no single explanation to account for the clinical 
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variability seen. The proposed AVP mechanism has the potential to build on these finding 

by considering specific support defects in the vagina or uterosacral ligaments present in 

an individual woman. 

 

1.7 What is the evidence that suggests levator ani muscle impairment also plays a role 

in AVP? 

That levator ani weakness may be involved in the development of AVP is suggested 

by a study by DeLancey et al. that showed that the rate of levator ani defect was four-fold 

higher (DeLancey et al. 2007) and the contraction force developed by the levator ani was 

46% lower in women with prolapse compared with controls (Morgan et al.2005). Several 

other studies have also suggested the clinical importance of levator ani injury. For 

example, Koelbl et al. (1989) biopsied the region where the levator ani muscle is 

normally found during surgery on women with cystocele and found a substantial number 

of women lacking normal muscle at this site. A further study by the same group (Hanzal 

et al. 1993) showed that 53% of the women who had missing muscle also experienced 

operative failure, while there were no failures among those with normal muscle on biopsy. 

These visible manifestations are supported by histological studies revealing muscle 

fibrosis and evidence of direct myogenic muscle damage among parous and older women. 

More recently, magnetic resonance (MR) imaging has revealed morphologic and 

structural changes in the levator ani muscles in women with pelvic floor dysfunction 

(Tunn et al. 1998, Hoyte et al. 2001, Singh et al. 2003). So, levator ani weakness does 

appear to be a contributory factor, but the mechanism by which it plays a role remains 

unclear.  

1.8 Hypothesis and Specific Aims 

In this dissertation we hypothesize that the occurrence and magnitude of AVP is not 

explained by any single mechanism but involves combination of connective tissue 

support failure at one or more anatomic site and also involves an interaction with 

pubococcygeal muscle impairment. This dissertation involves an approach which 
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combines measurements in living women, via MR imaging with theoretical 

biomechanical modeling simulations to test the above hypothesis. 

Aim 1: Morphological measurement of anterior vaginal wall support system using 

MR imaging 

There are mainly two purposes for these morphological measurements. The first is to 

compare the key structural elements’ morphology in women with normal support and 

women with AVP.  This includes the anterior vaginal wall support system comprised of 

the levator ani muscle, the apical and paravaginal support connective tissues, and the 

anterior vaginal wall. Morphological differences will provide insight into how the AVP 

patients differ from normal age-matched controls. The other purpose is to establish the 

average morphology in women with normal support thus providing useful geometric 

information for biomechanical models (Aim 2). 

 

Aim 2:  Biomechanical modeling of AVP 

An essential aim of this thesis is to develop biomechanical models of the anterior 

vaginal wall support system in order to improve the understanding of the mechanism 

underlying the development of AVP. 

 

The models range from simple, two-dimensional, lumped parameter models to 

anatomically more accurate finite element models. Biomechanical models can yield 

powerful insights and are relatively inexpensive, fast and safe to implement. Unlike 

biological systems in vivo, the model allows one to vary a single factor at a time so that 

the sensitivity of the system to changes in this factor, or a combination of factors, can be 

analyzed. 
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Aim 3. In vivo assessment of the compliance of the anterior compartment and the 

exploration of more extensive ways to validate model 

By incorporating intra-abdominal pressure and structural displacement information, 

the compliance of the support system can also be estimated. By comparing MR images in 

the resting and maximum Valsalva states we can explore the feasibility of estimating the 

deformation field under load using a non-rigid 3-D image registration method and the 

possibility of using this information to validate the biomechanical model developed in 

Aim 2.  

 

Hence the overall goal of this dissertation is to try to understand the biomechanical 

mechanisms underlying the development of anterior vaginal wall prolapse in women.  
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Chapter 2  

Cross-sectional Area Measurement of Levator Ani Muscle in 

women with and without prolapse 

2.1 Introduction 

 
Despite the prevalence of the problem, the disease mechanism responsible for organ 

prolapse is still not fully understood. However injury and deterioration of muscle, nerve 

and connective tissue are believed to play a role in altering normal pelvic organ function 

and predicposing to prolapsed (for example, Boreham et al, 2002, Takano et al, 2002, 

Smith et al, 1989). 

 

There is also a growing body of evidence that the levator ani muscles are important 

to pelvic organ support. Magnetic resonance (MR) imaging reveals levator ani muscle 

morphology. A visible defect in the pubic portion of the levator ani can be seen in 18% of 

primiparous women six months after vaginal delivery (DeLancey et al, 2003, Dietz et al, 

2005, Kearney et al, 2006), and these types of defect have been found in women with 

pelvic floor dysfunction (Kirschner-Hermanns et al, 1993, Tunn et al, 1998, Hoyte et al, 

2001, Singh 2003).  The iliococcygeal portion is less commonly affected (in only 2% of 

women, DeLancey et al, 2003). The pubic portion contains muscle fibers that originate 

from the pubic bone and include the pubovisceral muscle and puborectal muscle 

(Kearney et al, 2004).  Despite the association between prolapse and levator damage, 
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there are women with prolapse who do not have levator damage and women with normal 

support who do have levator damage. This has led some investigators to quantify levator 

ani muscle bulk to see if this explains the discrepancy.Several techniques have been used 

 

to quantify muscle bulk and therby loss in muscle bulk.  For example, Hoyte 

measured the distance from the pubic bone to the remaining muscle (Hoyte et al, 2001) as 

well as muscle thickness (Hoyte et al, 2004).  Levator ani muscle volume has also been 

quantified (Fielding et al, 2000, Hoyte et al, 2001).  Our group has assessed the degree 

of muscle damage visible in 2-D images (Kearney et al. 2006).  This later technique 

focused on the amount of muscle missing but did not quantify how much muscle remains.  

Thus, despite a levator injury, a woman who started off with a larger muscle may end up 

with the same amount of muscle as a woman who inherently had smaller muscles.  

While comparing muscle volume provides useful information about muscle loss, muscle 

volume does not correlate as well with force because, although a longer parallel fibered 

muscle of a given cross-sectional area has a larger volume, it will not develop more force 

than a shorter muscle parallel-fibered muscle of the same cross-sectional area.  The 

maximum force developed by striated muscle is related to its cross-sectional area 

measured perpendicular to muscle fiber direction and has been measured to be between 4 

and 8 Kg/cm2 (Ikai et al, 1968, 1970).  Therefore cross-sectional area measurement 

perpendicular to muscle fiber direction, rather than muscle volume, is the appropriate 

way to relate muscle morphology to function.  

  The levator ani muscle has a complex shape with fibers running in multiple directions. 

In particular, the muscle fibers in the pubic portion of the levator ani muscle run in a 

different direction than those in the iliococcygeal muscle (Lawson et al, 1974, Kearney et 

al, 2004, Singh et al, 2002). Therefore, the two regions must be separated prior to 

measurements of cross-sectional area perpendicular to the fiber direction.  The muscle 

fibers in these regions also do not run perpendicular to standard axial, coronal or sagittal 

MR scan planes, so cross-sectional area measurements cannot be properly performed on 
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standard 2-D images.   
 

 

2.2 Materials & Methods: 

 
We first developed a method for quantifying the cross-sectional area of pubic portion 

of the levator ani muscle perpendicular to its muscle fiber direction. Then, the method 

was used to quantify the loss in cross-sectional area in women with unilateral levator ani 

defects where normal and abnormal muscle could be seen in the same individual.  We 

then used this technique to investigate the extent of the muscle loss at different locations 

along the length of the muscle and also validate the technique’s ability and sensitivity to 

detect muscle defects. The null hypotheses were tested that there would be no difference 

in (a) cross-sectional area between the defect and normal sides, nor (b) in the 

cross-sectional area along the length of the muscle.  

Then we applied this 3-D technique to women with and without muscle defect and 

prolapse to test the hypotheses that levator ani cross-sectional area would not vary with 

defect severity as identified on MR scans.  We also tested the hypothesis that these 

cross-sectional areas would not differ in women with normal support from those with 

pelvic organ prolapse. 

2.2.1 Develop and validate measurement technique on women with unilateral levator 

ani muscle defect 

2.2.1.1 Unilateral levator ani muscle defect study group 

A convenience sample of twelve women with a unilateral levator ani muscle defect 

were selected from an IRB-approved study comparing muscle anatomy in women with 

prolapse and women with normal pelvic organ support. The prolapse patients were 

recruited through the University of Michigan Urogynecology Clinic.  The controls were 

recruited through advertisements as well as through the Women’s Health Registry; a list 

of women who expressed interest in participating in women’s health projects. Patients 
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were excluded if they had previous surgery for prolapse or incontinence, genital 

anomalies, or had delivered in the past year.  Patients were enrolled between June, 2001 

and September, 2003. Women with visible unilateral defects in the pubic portion of the 

levator ani muscle on MR images were selected so that, within the same individual, 

normal muscle morphology on one side could be compared with abnormal muscle 

morphology on the other side (Figure 2-1).  This circumvents inter-individual 

differences in muscle appearance and bulk.  These women represented both individuals 

with prolapse and normal support.   
 

 
Figure 2-1: Axial proton density MR image of a woman with a right unilateral defect. The left 
levator ani muscle is intact (denoted by *) while the right side portion of the muscle is missing.  PB 
denotes pubic bone; U: urethra; V: vagina; R: Rectum; OI: obturator internus muscle. 
 

In the 12 women selected, five had prolapse of one vaginal wall or a cervix at least 1 

cm below the hymen and seven had normal support of all pelvic structures with no 

vaginal wall lower than 1 cm above the hymen as assessed by clinic evaluation (POP-Q) 

(Bump et al, 1996).  The average age was 56.2 ± SD 11.9 years and average BMI was 

27.3 ± SD 4.0 Kg/m2.  Parity was 3.15± SD 1.77. Ten additional women with normal 
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intact levator ani muscle on MRI were selected as control group to validate the method. 

Five had prolapse and five had normal pelvic organ support. The average age was 62.5 ± 

SD 3.34 years and average BMI was 27.5 ± SD 5.0 Kg/m2.  Parity was 2.8± SD 1.75. 

 

To compare the normal and defective sides, we first separated the levator ani in the 

midline.  Each side was then designated as either “normal” or “defective”. Within 12 

women, five had defective muscle on left side and seven had defective right side muscle. 

2.2.1.2 Model reconstruction 

Multiplanar, two-dimensional, fast spin, proton density MR images (echo time 15 ms, 

repetition time 4000 ms) were obtained by use of a 1.5 T superconducting magnet 

(General Electric Signa Horizon LX) with version 9.1 software.  The fields of view of 

axial and coronal images were both 16×16 cm and the field of view in sagittal images 

was 20×20 cm.  All three views had slice thicknesses of 4 mm with a 1 mm gap between 

slices. 

Axial, sagittal and coronal MR-images were imported into a three-dimensional (3-D) 

imaging program (3-D Slicer, version 2.1b1) and aligned using anatomic landmarks 

(arcuate pubic ligament, pubic bone, pubic symphysis, etc). To reduce modeling artifacts 

from partial volume averaging of oblique structures on a single scan plane, 3-D 

volume-rendering models were generated by combining models built from axial and 

coronal planes. The combined models were imported into I-DEAS version 9.0 (EDS, 

Plano, TX), an engineering graphics program (Figure 2-2A).  

A mirrored model of the normal muscle (dashed outline) was superimposed on the 

contralateral defective side to visualize the area of missing muscle (Figure 2-2B). 

Volumes of the overall levator ani muscle including both the pubic portion and 

iliococcygeal portion on the normal and defective sides were calculated in I-DEAS ®. 
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Figure 2-2.  Reconstructed 3-D model showing the pubic bone and levator ani muscle with a right 
unilateral defect (A).  In B, the dashed region shows the expected location of the missing muscle 
after reflecting the muscle from the normal across the midline side. 
 

2.2.1.3 Separate pubic portion of levator ani muscle 

 
The pubic portion of the levator ani muscle was separated from the iliococcygeal 

portion by establishing a dividing plane through three anatomical landmarks that could be 

identified independent of whether or not there was a defect in the levator ani.  The 

middle landmark was defined as the upper aspect of the puborectalis “bump” on the 

mid-sagittal slice (Figure 2-3a).  Two lateral landmarks for the plane were defined as the 

most medial origin of the iliococcygeus from the arcus tendineus levator ani (ATFP).  

As the ATFP directly overlies the obturator internus muscle, the point of connection of 

the iliococcygeal and the obturator internus on the left and the right sides was used as the 

landmark (Figure 2-3b & c). All landmarks were imported into the I-DEAS based model.  

The levator ani muscle was then divided into a pubic portion and an iliococcygeus 

portion on both normal and defective sides by a plane constructed using the landmarks 

described above (Figure 2-4).  The volumes were calculated for each portion of the 

muscle. 
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Figure 2-3.  Separating the pubic portion of levator ani from the iliococcygeus portion on MR 
scans. a): identification of the middle point (triangle) on the mid-sagittal MR image; b & c): 
identification of the two lateral points on MR image (cross and diamond). The following structures 
were identified in MR image to help for orientation. PS: pubic symphysis; PB:pubic bone; B: 
bladder; A: anus; OI: oburator internus; U:uterus (with fibroids); PRM: puborectalis muscle. ICM: 
iliococcygeus muscle 
 

 
 

Figure 2-4: 3-D view of the separation of the pubic portion from the iliococcygeal portion of the 
levator ani. The dashed line represents the plane of separation, while the triangle, cross and 
diamond have the same meaning as in the preceding figure.  
 

2.2.1.4 Identify muscle fiber direction 

 
Although there is evidence that the pubic portion of the levator ani has a 

parallel-fibered morphology (Janda et al, 2003), its muscle fiber direction is not directly 
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observable on the MR scans, so it was approximated by establishing a line between the 

middle of the origin point and the center of the insertions using anatomic landmarks 

independent of muscle presence or absence. The muscle origins were defined in axial MR 

images as lying 1.5 cm above the arcuate pubic ligament, and 0.2 cm medial from the 

obturator internus insertion on the left and right pubic rami, based on the senior author’s 

dissection and MR imaging experience (Strohbehn et al, 1996). The insertion points were 

defined in the sagittal plane as the center of the intersphincteric groove on slices 0.5 cm 

lateral to the mid-sagittal slice on either side (Figures 2-5 & 2-6). 

 
Figure 2-5.  Reference points for determining fiber direction in the pubic portion of the levator ani. 
a) Origin points on axial MR image at its junction with obturator internus (OI) as open circle on 
patient’s left and filled circle on patient’s right; b&c) Right (filled square) and left (open square) 
insertion point on sagittal MR scans. The following structures are identified aid orientation. PB: 
pubic bone; B: bladder; V: vagina; R: rectum; A: anus 
 

 
Figure 2-6. Lines connecting the origin and insertion points (see preceding figure) were used to 
estimate muscle fiber direction.  The dashed region shows the expected location of the muscle on 
the defective side, were it intact.   
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2.2.1.5 Calculate muscle cross-sectional area 

 
Using I-DEAS, five equally-spaced cross-sectional ‘cutting’ planes were passed 

perpendicular to the fiber direction line.  The resulting cross-sections were numbered 

from ‘1’ at the pubic origin to ‘5’ at the insertion end (Figure 2-7).  Since location 5 lay 

dorsal to the edge of the muscle with the defect, the cross-sectional areas were only 

calculated bilaterally from locations 1 to 4.  Figure 2-7 shows a graphical demonstration 

of the sequence of steps used to quantify the unilateral levator ani muscle loss.  

Two-sided paired t-tests were used to compare for bilateral differences in cross-sectional 

area and volume.  

 

 
 

Figure 2-7.  Steps to quantify levator ani muscle loss in a subject with a unilateral defect. A: 
Frontal view of the 3-D reconstruction model of levator ani was built. B: The pubic portion is 
separated from the iliococcygeal portion; here only the pubic portion is shown. C: The line of 
estimated fiber direction of the pubic portion was determined.  Equally-spaced cutting planes 
perpendicular to the fiber direction line were placed. D: The resulting cross-sections are shown. 
Cross-sectional areas were then calculated.  Due to the defect on the right, muscle is not present at 
location 1, therefore, it is not shown. 
 

One might hypothesize that the fiber direction of the remaining muscle could change 

due to the presence of the defect and the use of the normal fiber direction may cause 

some error in estimation of the cross-sectional area of the remaining muscle.  We 

therefore performed additional analysis by approximating the defect muscle direction by 

curving and rotating the normal muscle fiber direction line to best fit the remaining 

muscle model.  We then estimated the degree of error by calculating the cross-sectional 

area perpendicular to remaining muscle fiber direction and comparing it with the normal 

fiber direction by using a paired t- test (Figure 2-8). 
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Figure 2-8 A: Cross-sectional area perpendicular to normal muscle direction; B: Cross-sectional 
area perpendicular to remaining muscle direction. 
 

2.2.2 Quantify muscle cross-section loss in women with and without prolapse 

To perform this analysis, sixty subjects were selected from an ongoing IRB-approved 

case-control study comparing findings in women with normal support to women with 

pelvic organ prolapse between November 2000 and April 2005.  Of these, 30 women 

had pelvic organ prolapse as demonstrated by a vaginal wall or the cervix being at least 1 

cm beyond the introitus upon supine examination during maximal Valsalva.  Thirty 

controls, who had normal support with vaginal wall and cervix 1 cm or more above the 

hymen were also selected for analysis.  In both the prolapse and control group, women 

were selected from the parent study with 10 having “no levator ani defects”, 10 having 

“minor” defects and 10 having “major” defects (see below).  Patients were selected such 

that the mean age of each group would be similar.  Subjects were all Caucasian with the 

exception of one African-American woman.  For the parent study, women with prolapse 

had been recruited from the University of Michigan Urogynecology Clinic while controls 

were women recruited through advertisements, as well as through the Women's Health 

Registry, a database of women who expressed interest in participating in women's health 

projects.  Women were excluded if they had previous surgery for prolapse or 

incontinence, had genital anomalies, or had delivered in the past year.   

The severity of the defect in the pubovisceral portion of the levator ani muscle 
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was determined using MR images and a visual scoring system 6.  Defects were scored 

on each side as “0” = no defect, “1” = less than 50% loss, “2” = more than 50% loss and 

“3” = loss of all significant muscle (Figure 2-9).  Scores from both sides were added 

together for a summed score ranging from 0 to 6.  Summed scores were then grouped 

into three categories: 0 = no defect; 1-3 = minor defect; and 4-6 = major defects as 

previously described ( Kearney et al, 2006).   

 
Figure 2-9 Axial MR images showing the levator ani.  a: intact pubovisceral muscle bilaterally as 
demonstrated by arrows;  b: complete loss of bilateral muscles.  © DeLancey 2006 
 

Using the same technique described earlier, axial, sagittal, and coronal MR images 

were imported into a 3-D imaging program (3-D Slicer, version 2.1b1, Brigham and 

Women’s Hospital, Boston, MA) and aligned using anatomic landmarks.  3-D 

volume-rendering models were generated from axial and coronal planes (Figure 2-10) 

and then imported into I-DEAS® version 9.0 (UGS, Plano, TX), an engineering graphics 

program to perform measurements.  

The muscle fiber direction was approximated by establishing a line between the 

middle of the origin point and the center of the insertions using anatomic landmarks 

described earlier. Using I-DEAS®, cross sectional areas of the pubic portion were 

calculated perpendicular to a fiber direction line from the pubic origin to the middle of 

the visceral insertion at 17 equidistant points (Figure 2-11).  One-way ANOVA was 

performed; P<0.05 was considered significant.  A power calculation was not possible at 
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the beginning of the study since no data were available concerning these measurements.  

Therefore, a post-hoc power calculation was performed. 

 

 

 

Figure 2-10 3-D Slicer models.  a: ¾view of the levator ani muscle and pubic bone;  b: levator ani 
with pubic bones removed;  c: lateral view of muscle.  © DeLancey 2006 

 

 
Figure 2-11: Levator model and cross-sections. Fiber direction line for the left side of pubic 
portion of levator ani muscle is shown. The locations of cross-section areas (CSA) are shown and 
numbered 1 (most ventral) to 17 (most dorsal).  The model has been cut at CSA 7.  CSA 8 to 16 
are not numbered in the figure.  © DeLancey 2006 
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2.3 Results  

 

2.3.1 Results for women with unilateral levator ani muscle defect 

In the women with normal levator ani muscle, there is no significant difference 

between left and right cross-sectional areas at any location (Table 2-1).  

 

Table 2-1: Comparison of mean ± standard error cross-sectional area (CSA) in cm2 of left and right 
side in ten women with normal muscle. 
 

 
Locatio

n 1 

Locatio

n 2 

Locatio

n 3 

Locatio

n 4 

CSA of left side (cm2) 
1.30 ± 

0.20 

2.26 ± 

0.15 

2.84 ± 

0.11 

2.62 ± 

0.21 

CSA of right side (cm2) 
1.20 ± 

0.25 

2.23 ± 

0.17 

2.71 ± 

0.14 

2.74 ± 

0.19 

P-value 0.43 0.84 0.35 0.42 

 

 

In the women with a unilateral defect, the defective side had a significantly smaller 

muscle cross-sectional area at each location in the pubic portion of the levator ani (Figure 

2-12).  However, the extent of the cross-sectional area loss differed depending on 

location. The largest mean cross-sectional area loss (81%, P=0.0002) was near the pubic 

origin (location 1), while near the insertion (location 4) the loss in mean cross-sectional 

area was not statistically significant (13.5%, P=0.1987).  

There was not a statistically significant difference in the cross-sectional areas 

calculated using the “normal” fiber direction compared to the approximated remaining 

fiber direction (Table 2-2), thereby validating the use of the “normal” fiber direction on 

the defective side. 
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Figure 2-12.  Bilateral comparison of muscle cross-sectional area of pubic portion of levator ani 
muscle perpendicular to its fiber direction. Bars are standard error and * denotes p<0.05. 

 

 

Table 2-2: Comparison of mean ± standard error cross-sectional area (CSA) in cm2  calculated 
using “normal” fiber direction with that calculated using remaining fiber direction. 
 

 

Loca

tion 

1 

Loca

tion 

2 

Loca

tion 

3 

Loca

tion 

4 

CSA perpendicular 

to ‘normal’ muscle 

direction  

0.19 

± 

0.06

1.19 

± 

0.23

2.12 

± 

0.19 

2.43 

± 

0.18

CSA perpendicular 

to remaining 

muscle direction  

0.24 

± 

0.10

1.15 

± 

0.20

2.09 

± 

0.20 

2.31 

± 

0.20

P-value 0.24 0.33 0.60 0.42

 

The overall volume of the levator muscle was 13.69% smaller on the defective 
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side(17.96 ± 1.4 cm3 ) than on the normal side (20.81± 1.35 cm3 , P=0.0004).  This was 

primarily attributable to a reduction in the pubic portion of levator ani muscle (defective 

side: 9.16 ± 0.83 cm3 normal side: 12.19 ± 0.71 cm3, a 24.6% volume reduction, 

P<0.0001), while the iliococcygeal portions were not significantly different (defective 

side: 8.80 ± 1.25 cm3; normal side: 8.62 ± 1.12 cm3, P<0.0001P=0.64).  

2.3.2 Results for women with and with prolapse 

Patient demographics are presented in Table 2-3.  There was no significant 

difference in BMI between women with and without prolapse (mean BMI: 

prolapse=27.16 kg/m2, controls=25.92 kg/m2, P-value = 0.2689).  The max POP-Q point 

is also shown which represents the most dependent vaginal wall point.  All patients with 

prolapse were Stage II or greater.  Of the 30 patients with prolapse, the majority had 

anterior compartment prolapse (N=25) while three patients had posterior compartment 

prolapse and two had apical prolapse.  

  

Table 2-3: Patient demographics (mean ± SEM values). 
Defect 

status 

Group 

status 
Age (year) 

Vaginal 

parity 
BMI  (kg/m2) 

Max 

POP-Q(cm) 

Normal 63 ± 2.4 2.8 ± 0.3 23.7 ± 0.6 -1.2 ± 0.1 
None 

Prolapse 62 ± 3.1 2.7 ± 0.5 29.5 ± 1.4 +1.9 ± 0.4 

Normal 60.6 ± 2.5 2.5 ± 0.6 25.9 ± 1.5 -1.5 ± 0.2 
Minor 

Prolapse 61.5 ± 1.9 4.6 ± 0.7 25.3 ± 1.1 +2.6 ± 0.3 

Normal 60.4 ± 2.8 2.9 ± 0.5 28.2 ± 1.3 -1.2 ± 0.1 
Major 

Prolapse 62.3 ± 3.5 3.7 ± 0.7 26.7 ± 1.4 +2.5 ± 0.5 

 

 

The mean cross-sectional areas at each location are shown in Figure 2-13.  In 

locations (2 - 7), the women with major defects had the smallest cross-sectional area, 

followed by those with minor defects.  These cross-section locations represent where the 

muscle originates from the pubic bone.  We designated locations 2-10 as the ventral 

portion of the muscle based their locations on our 3-D models.  The mean (± SEM) 
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cross-sectional area values for areas 2 – 10 taken as a group were as follows:  no defects, 

2.04 cm2 ± 0.16; minor= 1.44 cm2 ± 0.11; and major= 1.30 cm2 ± .12 (p < .001).  A 

post-hoc power calculation revealed that the current sample size had 96% power to detect 

a cross-sectional area difference between the different defect status groups in the ventral 

portion. 

 
Figure 2-13: Levator cross-section areas at various locations (Mean ± SEM). 

 

In the dorsal portion of the muscle, at cross-section locations 11 through 14, where 

the fibers of the sling of the puborectal muscle predominate behind the rectum, the 

women with major defects had the largest cross-sectional area compared to the minor or 

no defect groups (no defect group= 2.43 cm2 ±. 0.13; minor= 2.00 cm2 ±. 0.17; and 

major= 2.67 cm2 ±. 0.20, p= 0.03).   

The cross-sectional areas of the pubic portion of the levator muscle in women with 

prolapse and those with normal support in each defect grade are compared in Table 2-4.  

Within each group, (normal, minor, major) when the patients were divided according to 

prolapse status, there were no statistically significant differences in the cross-sectional 
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area in either the ventral or dorsal regions. 

 

 

Table 2-4:  Mean ± SEM cross-sectional areas (in cm2) in women with and without prolapse. 
 

 Ventral Dorsal 

 Prolapse Normal P-value Prolapse Normal P-value 

   None   1.97  ± 0.29 2.11 ± 0.14

 

0.65 2.32 ± 0.25 2.55±0.11 0.40 

Minor 1.51 ± 0.20 1.36  ± 0.09

 

0.52 2.00 ± 0.25 2.00±0.26 0.99 

Major 1.34 ± 0.21 1.25  ± 0.12

 

0.73 2.67 ± 0.34 2.66±0.24 0.98 

 

 

2.4 Discussion 

In this chapter, a new technique was developed allowing levator ani muscle 

cross-sectional area to be measured perpendicular to muscle fiber direction.  This is 

important for assessing the relationship between levator ani function and morphological 

changes in the muscle because muscle contractile force is proportional to cross-sectional 

area, not thickness or volume. 

At first, we applied this technique to a group of women with unilateral levator ani 

muscle defect. Since there is no left and right difference in cross-sectional area in normal 

levator ani muscle, having a normal muscle on one side and a visibly defective muscle on 

the other side within the same individual offers a unique opportunity to validate the 

technique’s capability to detect differences in cross-sectional area between the normal 

side and the side with defect.   

Since the levator ani muscle damage usually appears in localized regions and more 

often in the pubic portion rather than in the iliococcygeal portion (Delancey et al, 2003), 

we focused on quantifying the cross-sectional area in the pubic portion to increase the 
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sensitivity of the method for identifying muscle defects.  The finding of smaller volume 

in the pubic portion, but not in the iliococcygeal portion, shows that our method of 

separating the two parts of the muscle was effective in isolating the defective area.   

Once the two parts of the muscle had been separated, muscle fiber direction for the 

pubic portion was determined independent of muscle presence by identifying muscle 

origin and insertion.  A smaller cross-sectional area was detected in the defective muscle 

near the pubic origin corresponding to the anatomical location of the visible MR defect. 

Since no visible defects were evident in the iliococcygeus muscle, calculations of its 

cross-sectional area were omitted.   

Several techniques have been used to quantify levator ani muscle morphology.  

Bernstein used perineal ultrasonography to visualize and measure the thickness of levator 

ani muscle (Bernstein et al, 1997). However, because image resolution is limited, it is not 

clear which portion of the levator ani muscle was measured or what angle of fiber 

direction was used.  Aukee measured the thickness of the distal part of the 

pubococcygeal in static axial MR image and found it to be significantly correlated with 

EMG values during a maximal contraction (Aukee et al, 2004).  This measurement only 

reflects one dimension of the muscle and the relationship of this dimension to fiber 

direction is not known.  Hoyte et al quantified the levator ani muscle volume and levator 

ani angle using 3-D reconstructed models (Hoyte et al, 2004).  Although volumetric 

techniques do provide a measurement of morphologic change, quantifying cross-sectional 

area of the intact muscle perpendicular to its fiber direction, as done in this study, is more 

appropriate from a biomechanical perspective because only then can the contractile force 

developed by the muscle be estimated.  The smaller the cross-sectional area of residual 

muscle left by the defect, the smaller the contractile force it can develop.  

Levator ani muscle shape is complex as evidenced in these 3-D reconstructions.  

This complexity precludes useful measurements of the muscle being made in standard 

MRI planes because slice angle variation in 2-D static MRI scans can cause measurement 

variations of up to 15% (Hoytel et al, 2001).  Also, as stated earlier, fiber directions do 

not correspond to standard image acquisition planes and they can vary from subject to 

subject. Therefore we conclude that 3D reconstruction and establishment of fiber 
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direction in 3-D space is preferred for cross-sectional area measurements meant to reflect 

functional differences. 

There were several challenges in developing this measurement method.  The first 

was in the technique for levator ani separation.  There are some small regions of the 

muscle where the iliococcygeal and the pubic portions overlap, for example, behind the 

rectum.  Therefore separation of the pubic and iliococcygeal portions of the muscle does 

not preclude the possibility for inclusion of a small portion of the iliococcygeal muscle in 

the pubic portion, and vice versa.  In addition, subdivisions in the pubic portion, such as 

the puborectalis and pubococcygeus, cannot be separated at the present time. Further 

refinements in the technique may allow more accurate separations to be made in the 

future.  

Identification of muscle fiber direction is also a challenge.  Although it is possible 

with MRI to see fiber direction in coarse grained muscles such as the gluteus maximus, it 

is not possible, at present, to consistently see individual fibers within the pubic portion of 

the levator.  The straight line used to approximate muscle fiber direction from the 

muscle origin to insertion point allows us to circumvent this problem.  However, some 

muscle fibers do not follow this approximate fiber direction. For example, cross-sectional 

areas calculated at location 4 are not strictly perpendicular to the fiber direction as some 

fibers cross the midline at this point.  This problem does not affect locations 1, 2 or 3.   

We were concerned that a defect might also change the remaining fiber direction; 

however, our calculations showed that the differences in measurements were not 

statistically significant (Table 2-2).  

Then we applied this technique to a larger group of women to investigate the muscle 

loss in women with and with prolapse and different degree of levator ani muscle defect. 

It is noteworthy that women with major defects exhibited a 36 % reduction in 

cross-section area in the ventral portion of the levator ani muscle compared with women 

without defects, whereas in the posterior portion of the muscle, women with major 

defects exhibited a 9% larger cross-section area compared to those without defects.  

While women with minor defects similarly exhibited a 29% smaller cross-section area in 

the ventral portion of the muscle compared to those with no defects, they had a smaller 
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cross-section in the dorsal portion of the muscle.   

The finding of smaller cross-section area in the ventral portion based on severity of 

visible defects on MR images reinforces the hypothesis that defects in the levator ani is 

localized to this area (DeLancey et al, 2003, Dietz et al, 2005). This region is where the 

pubovisceral or pubococcygeal muscle (pubovaginal muscle, puboanal muscle and 

puboperineal muscle) predominate.  Comparing cross-sectional area of the muscle 

between the groups begins the process of using morphological differences to explain 

differences in muscle function.  For a parallel-fibered, non-pennate muscle, the smaller 

the cross-sectional area, the smaller the maximal force a muscle can generate. 

What might explain the paradoxical finding of increased muscle cross-sectional area 

in the dorsal region of the pubic portion in women with severe defects?  In this region, 

the fibers of the puborectalis muscle predominate and form a sling behind the rectum 

(Kearney et al, 2004, Lawson et al, 1975). The increased cross-sectional area could 

represent compensatory hypertrophy. Alternatively this increased posterior 

cross-sectional area may represent disrupted muscle that has retracted dorsally; however, 

if this muscle has retracted because of detachment of its origin or insertion, atrophy 

should have occurred within months of the injury.  Further research will be needed to 

clarify these newly-identified issues.  

In both ventral and dorsal regions of the pubic portion of the levator ani muscle, 

cross-sectional area measurements did not show statistically significant differences when 

women with prolapse were compared with women having normal support for each level 

of defect. This does not mean that muscle defects are unimportant to the occurrence of 

prolapse because muscle defects happen more often in the ventral levator ani of women 

with prolapse 10 and differences in levator ani morphology have been observed between 

women with prolapse and normal support (Hoyte et al, 2001, Singh et al, 2003).  

However, when defects are present, the amount of muscle is the same regardless of 

whether there is prolapse or not.  In other words, a woman with prolapse and a defect in 

the levator ani muscle had a similar levator cross-sectional area compared to a woman 

with a similar severity of levator defect, but normal support.  This is logical because the 

pelvic organ support system consists of connective tissue, striated muscle, and smooth 
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muscle.  Therefore, damage in any one of these systems will not explain all occurrences 

of prolapse.   

 

This study quantified differences in levator ani muscle cross-sectional area 

perpendicular to the fiber direction in different patient populations.  It should help 

investigators assess the biomechanical role of levator ani muscle loss in causing pelvic 

organ prolapse.  The difference in cross-sectional area in the ventral and dorsal regions 

of the muscle indicates that the levator ani muscle is affected in a nonuniform manner, 

consistent with the fact that the levator ani is composed of several different component 

muscles that are differentially affected by damage.  Specific patterns of damage to 

specific muscle elements may be important for the development of pelvic floor 

dysfunction. 
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Chapter 3 Geometrical Analyses of Anterior Vaginal Wall in 

Women With and Without Prolapse 

3.1 Vaginal Thickness, Cross-Sectional Area, and Perimeter in Women With and 

Those Without Prolapse 

ABSTRACT 

OBJECTIVE: Use axial magnetic resonance imaging to test the null hypothesis that no difference 

exists in apparent vaginal thickness between women with and those without prolapse.  

METHODS: Magnetic resonance imaging studies of 24 patients with prolapse at least 2 cm beyond 

the introitus were selected from an ongoing study comparing women with prolapse with normal 

control subjects. The magnetic resonance scans of 24 women with prolapse (cases) and 24 women 

without prolapse (controls) were selected from those of women of similar age, race, and parity. The 

magnetic resonance files were imported into an experimental modeling program, and 3-dimensional 

models of each vagina were created. The minimum transverse plane cross-sectional area, mid-sagittal 

plane diameter, and transverse plane perimeter of each vaginal model were calculated.  

RESULTS: Neither the mean age (cases 58.6 years +/- standard deviation [SD] 14.4 versus controls 

59.4 years +/- SD 13.2) nor the mean body mass index (cases 24.1 kg/m(2)+/- SD 3.3, controls 25.7 

kg/m(2)+/- SD 3.7) differed significantly between groups. Minimum mid-sagittal vaginal diameters 

did not differ between groups. Patients with prolapse had larger minimum vaginal cross-sectional 

areas than controls (5.71 cm(2)+/-  

standard error of the mean [SEM] 0.25 versus 4.76 cm(2)+/- SEM 0.20, respectively; P = .005). The 

perimeter of the vagina was also larger in the prolapse group (11.10 cm +/- SEM 0.24) compared with 
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controls (9.96 cm +/- SEM 0.22) P = .001. Subgroup analysis of patients with endogenous or 

exogenous estrogen showed 

prolapse patients had larger vaginal cross-sectional area (P = .030); in patients without estrogen group 

differences were not significant (P = .099).  

CONCLUSION: Vaginal thickness is similar in women with and those without pelvic organ prolapse. 

The vaginal perimeter and cross-sectional areas are 11% and 20% larger in prolapse patients, 

respectively. Estrogen status did not affect differences found between groups. 

 

3.1.1 Introduction 

Pelvic organ prolapse is a remarkably common problem, yet the disease mechanism 

resulting in its occurrence remains poorly understood. There are competing hypotheses 

that have been proposed to explain its cause. For example, 2 differing mechanisms have 

been used to explain the formation of a cystocele: vaginal wall stretching versus vaginal 

wall detachment. The first focuses on stretching of the fibromuscular vaginal tube (fascia) 

as the disease mechanism of prolapse. This has also been referred to as a distention 

cystocele (Nichols et al 1996). The distention cystocele implies that the vagina becomes 

thin and attenuated in the formation of a cystocele. The other focuses more on the 

connections of the vaginal tube relative to the pelvic sidewall( Richardson et al, 

1976,1981). When these connections break, a paravaginal defect or a displacement 

cystocele occurs (Nichols et al, 1996, Richardson et al, 2000). Similar considerations 

have been voiced concerning support of the posterior vaginal wall (Hoyte et al, 2000). 

Magnetic resonance imaging is a tool that can be used to study pelvic floor structures. On 

axial magnetic resonance images, the vagina is a discreet structure with visible 

boundaries. The outer border of the vagina is delineated by a dark line that represents the 

fibromuscular wall of the vagina. Because the vagina is a potential space that is not filled 
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with fluid or air, the structure inside the dark fibromuscular circumference is made up of 

the coapted walls of the vagina. This allows the overall thickness of the vaginal wall to be 

measured and quantified.  

To help gain insight regarding the role of each of the above hypotheses in explaining 

pelvic organ prolapse, we used magnetic resonance imaging to test the null hypothesis 

that no difference exists in apparent vaginal thickness between women with and those 

without prolapse.  

3.1.2 Materials and Methods 

Axial magnetic resonance scans of 25 women with prolapse of a vaginal wall or 

cervix at least 2 cm beyond the introitus were selected from an ongoing institutional 

review board–approved study comparing women with prolapse with normal control 

subjects. The prolapse patients were recruited through the University of Michigan 

Urogynecology Clinic. The controls were recruited mainly through advertisements, as 

well as through the Women's Health Registry, a list of women who expressed interest in 

participating in women's health projects. Patients were excluded if they had previous 

surgery for prolapse or incontinence, had genital anomalies, or had delivered in the past 

year. Patients were enrolled between June 2001 and September 2003. The magnetic 

resonance scans of 25 women with prolapse (cases) and 25 women without prolapse 

(controls) were selected from those of women of similar age, race, and parity. One patient 

in whom the prolapse was protruding at the time of magnetic resonance was excluded 

because this created a double layer of vagina, which would have confounded results. A 

control subject was therefore also excluded to produce 24 patients in each group for 

analysis. Multiplanar 2-dimensional fast-spin proton density magnetic resonance images 

(echo time 15 ms, repetition time 4,000 ms) of all pelvises were obtained by use of a 1.5 

T superconducting magnet (Signa Horizon LX, General Electric, Milwaukee, WI) with 

version 9.1 software. The fields of view in both axial and coronal images were 16 x 16 

cm, and the field of view in the sagittal images was 20 x 20 cm. All 3 views had slice 

thicknesses of 4 mm, with a 1-mm gap between slices.  
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The outer margin of the vagina was traced to include the fibromuscular wall by using 

3-dimensional computer graphics and modeling software (Slicer 2b1; Massachusetts 

Institute of Technology, Cambridge, MA). In subjects with a uterus and cervix, the vagina 

was traced until the cervix could be seen (Figure 3 -1-1) to avoid including the cervix in 

the vaginal wall measurements. The vagina was traced in all of the axial slices to the level 

of the introitus, noted by the visibility of the vestibular bulbs (Figure 3 -1-1). Blinding of 

the investigator was attempted but often not possible because of the visible nature of the 

prolapse in many of the magnetic resonance images. Three-dimensional models based on 

the axial magnetic resonance tracings were then constructed. The models were imported 

into I-DEAS 9.0 (EDS, Hook, UK), an engineering computer-aided analysis and design 

program (Figure 3-1-2), to make measurements perpendicular to the long axis of the 

vagina to avoid 2-dimensional measurement errors (Figure 3-1-3A). The longitudinal axis 

of the 3-dimensional vaginal models was determined as the midline of the vagina 

contours in the mid-sagittal plane (Figure 3-1-3B). Five equally spaced points were 

selected along the longitudinal axis of each model, and cross sections of the vagina 

perpendicular to the longitudinal axis were made (Figure 3-1-3C). The minimum 

diameter in mid-sagittal plane, cross-sectional area, and length of the perimeter of the 

vagina were calculated at each cross section (Figure 3-1-3D). The perimeter of the 

vaginal wall was measured as the circumferential length of the outer vaginal wall margin 

on each cross section.  
 

 
Figure 3-1-1. Axial slices at 5-mm intervals arranged caudal to cephalad starting from the image in 
the upper left (image 0). Vaginal tracings were made from above the level of the vestibular bulbs 
(VB), represented by asterisks (*), caudally (image 0) to below where the cervix (C) could be seen 
(image -4.0). U, urethra; V, vagina; R, rectum; B, bladder. © DeLancey 2004. 
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Descriptive statistics were generated, including the mean and standard error of the mean 

(SEM). The measurements at each cross section were summed for the groups, and an 

aggregated average was calculated. A repeated-measures analysis of variance was used to 

test for group and level effects. Two-sided, 2-group, t tests were used to test group 

differences. P < .05 was considered significant.  

 

 
Figure 3-1-2. Selected 3-dimensional model as it appears in I-DEAS 9.0. The sacrum (Sac), pubic 
bone (PB), and pelvic organs have been shown for orientation. B, bladder; U, urethra; UT, uterus; V, 
vagina; R, rectum. © DeLancey 2004. 
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Figure 3-1-3. Steps in obtaining vaginal measurements: A. Threedimensional I-DEAS 9.0 vaginal 
model. B. Longitudinal axis determined in the mid-sagittal plane, with 5 equally spaced locations 
along the longitudinal axis marked. C.Sample cross sections: Location 1 is near the vaginal apex, 
and location 5 is near the hymen. D. Mid-sagittal diameter, perimeter, and cross-sectional area were 
calculated for each axial cross section. © DeLancey 2004. 
  
 

 
 

3.1.3 Results 

Subject groups had similar mean age and body mass index (Table 3-1-1). The analysis of 

variance showed that mid-sagittal vaginal diameters did not differ by group. There was, 

however, a significant difference by location (Table 3-1-2, Figure 3-1-4). The vaginal 

cross-sectional areas differed significantly by group but not by level (Table 3-1-2). The 

case group had mean cross-sectional areas that were 20% larger than those of controls 

(5.71 cm2± SEM 0.25 versus 4.76 cm2± SEM 0.20, respectively; P = .005; Figure 3-1-5). 

The perimeter of the vagina was significantly different by group as well as location 

(Table 3-1-2). The perimeter was significantly longer in the case group than in the 

controls (11.10 cm ± SEM 0.24 versus 9.96 cm ± SEM 0.22, respectively; P = .001; 

Figure 3-1-6). Post hoc tests of statistical power were calculated for group differences in 
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mid-sagittal diameter, cross-sectional area, and perimeter and were found to be 5%, 83%, 

and 92%, respectively.  

 

 

 

  

 
Figure 3-1-4. Vaginal mid-sagittal diameter at each of the 5 vaginal locations. Refer to Figure 3-1-3 
for vaginal locations. The aggregate mean of the 5 individual segments is also shown at right. Error 
bars indicate standard error of the mean.  
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Figure 3-1-5. Cross-sectional area at each of the 5 vaginal locations. The aggregate mean of the 5 
individual segments is shown at right. Error bars indicate standard error of the mean.  
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Figure 3-1-6. Vaginal perimeter. The aggregate mean of the 5 individual segments is shown at right. 
Error bars indicate standard error of the mean.  

A subanalysis was performed to examine the effect of estrogen status on vaginal 

cross-sectional area and vaginal thickness. In the case group, 16 patients were either 

premenopausal or on hormone replacement therapy, compared with 14 in the control 

group. Eight patients in the case group and 10 in the control group were postmenopausal 

and not on hormone replacement therapy. Comparing cases and controls who were 

estrogenized, the case patients had 19% larger mean cross-sectional areas (5.90 cm2± 

SEM 0.33) than the controls (4.96 cm2± SEM 0.25; P = .030). Among women without 

estrogen, there was a trend toward the case group having larger mean cross-sectional 

areas (case 5.33 cm2± SEM 0.34, controls 4.48 cm2± SEM 0.34; P = .099), but the 

difference was not statistically significant. When mean mid-sagittal diameter was 

examined based on hormonal status, there were no group differences in either women 

with estrogen (case 1.31 cm ± SEM 0.08, control 1.35 cm ± SEM 0.07; P = .699) or those 

without estrogen (case 1.28 cm ± SEM 0.09, control 1.21 cm ± SEM 0.09; P = .614). The 

mean mid-sagittal vaginal diameters in the controls with (n = 14) and those without (n = 

10) estrogen were compared, but no significant differences were found.  

3.1.4 Discussion 

As judged by its appearance on magnetic resonance scans, vaginal thickness in women 

with prolapse was not different from that in women with normal support. There was less 

than a 1% difference in the mid-sagittal diameter between the groups. Because the 

mid-sagittal diameter is the sum of the anterior and the posterior vaginal walls, women 

with prolapse do not appear to have thinner vaginas.  

Women with prolapse do have a 20% larger mean vaginal cross-sectional area. Because 

the mid-sagittal diameters of the 2 groups were similar, the larger cross-sectional area of 

the prolapse group must be due to a larger vaginal width, which is represented by the 

11% larger vaginal perimeter. These data indicate that there is more vaginal tissue in 

women with prolapse than in women without prolapse. This contradicts the clinical 

assumption that the vagina in women with prolapse is thin.  
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The fact that the same trends in cross-sectional area and mid-sagittal vaginal diameter 

were maintained regardless of estrogen status confirms that hormonal status was not a 

confounding variable in this study. Although estrogen status did not change the trends in 

mean cross-sectional area and mid-sagittal diameter between the groups, it has been well 

established that the presence of estrogen positively affects vaginal maturation.( Blakeman 

et al, 2001, Vardy et al, 2003) Indeed, the 10% larger mid-sagittal vaginal diameter in 

control patients with estrogen compared with controls without estrogen suggests that, 

with a larger sample size, the difference in thickness might become statistically 

significant.  

Historically, pelvic surgeons have focused on attenuation of the "endopelvic fascia" as the 

cause of prolapse. In 1954, Ricci performed definitive anatomical studies on pelvic 

connective tissue and provided an excellent review of the origin of the myth of the 

endopelvic fascia.(Vardy et al, 2003, Ricci et al, 1954) Repeated histologic examination 

has failed to demonstrate a clear "fascial" layer. After performing a literature review and 

performing their own histologic studies, Weber and Walters (Weber et al, 1997) described 

the vagina as being made up of 3 layers: mucosa, muscularis, and adventitia. The 

adventitial layer is a connective tissue layer of collagen and elastin that separates the 

muscular wall of the vagina and the paravaginal tissues. The adventitia is variably 

discrete and does not form a complete capsule surrounding the vagina as a true fascial 

layer.( Weber et al, 1997) Because of the lack of discrete fascial covering, our tracing 

outside the fibromuscular wall includes all the important structural layers of the vagina. 

In a study of (Boreham et al, 2002) women with enteroceles, vaginal wall muscularis was 

found between vaginal epithelium and peritoneum in all cases; this also suggests that it is 

not a site-specific defect in the fibromuscular wall that leads to prolapse.(Tulikangas et al, 

2002)  

Although the site-specific defect theory for prolapse has become less popular because of 

the lack of histologic evidence, a significant body of research remains focused on the 

vaginal tube as the source of the problem. Boreham et al (Boreham et al, 2002) found that 

the morphometry of anterior vaginal wall tissue obtained from women with prolapse was 

significantly altered compared with that from women with normal support. Women with 
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prolapse had decreased fractional area of smooth muscle and disorganized smooth muscle 

bundles with decreased -actin staining.( Boreham et al, 2002) In a separate 

study,(Boreham et al, 2002) they found that the decreased fractional area of smooth 

muscle was also present in the posterior vaginal wall and that women with prolapse had 

smaller and fewer nerve bundles in the muscularis compared with controls. Boreham et al 

(Boreham et al, 2001) also found that caldesmon, a protein that inhibits smooth muscle 

contractility, had increased expression in the vaginal smooth muscle of women with 

prolapse. A number of other studies have focused on collagen differences in the vaginal 

tube of women with prolapse compared with controls. Although differences in collagen 

content have been found, it is difficult to determine whether these differences resulted in 

or are a result of prolapse.  

The mechanical strength of the vaginal wall is determined by its composition, tissue 

architecture, and thickness, all of which influence its material properties. Few studies 

have examined the thickness of the vaginal wall in prolapse compared with controls. 

Tulikangas et al (Tulikangas et al, 2002) found that the muscularis layer was thicker in 

women with enteroceles compared with controls. Shrinkage due to formalin fixation and 

differences between excised tissue and in situ tissues may help explain why vaginal 

thickness in that study was approximately half that found in the present study. We are not 

aware of any other studies that have quantified vaginal wall thickness in patients with 

prolapse or controls. Our findings that vaginal wall thickness appears similar in both 

groups suggest that it is not the fibromuscular tube of the vagina that is defective. 

However, we are not able to comment on the vaginal tissue architecture or composition, 

both of which can influence the material properties of the vagina.  

A strength of this study is the development of a method to quantitatively describe the 

anatomy of prolapse compared with normal women. Measurements done on 

2-dimensional axial magnetic resonance images are inaccurate because they are not 

usually acquired perpendicular to the longitudinal axis of the vagina. This is due to the 

position of the patient in the magnetic resonance scanner as well as the natural sagittal 

curvature of the vagina. The variations in slice angle can lead to systemic errors in the 

measurements of the 2-dimensional magnetic resonance images.(Hoyte and Ratiul, 2001) 
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By varying the slice angle of magnetic resonance images, Hoyte and Ratiu (Hoyte and 

Ratiu, 2001)found that 2-dimensional measurements can differ by up to 15%. To 

circumvent this error, we created 3-dimensional models of the vaginas of our subjects. 

This allowed for accurate comparisons of the vaginal tube of women with prolapse and 

that of normal controls.  

Although we found that the thicknesses of the vaginas between groups were not 

statistically different, we cannot preclude the possibility that the material properties of the 

vaginal wall might differ in their functional capacities. It has also been observed that 

women with prolapse have dilated venules in the vaginal wall. (Boreham et al, 2002) led 

to errors in measurements of vaginal wall thickness in the present study. In addition, the 

study was performed on women in the supine posture when the gravity vector acts 

posteriorly rather than caudally, a difference that may affect the tensile loading of the 

vaginal wall in women with prolapse. This might have led to an underestimation of group 

differences in the supine posture.  

To date, a unifying theory explaining the cause of pelvic organ prolapse based on 

objective scientific data does not exist. Different theories have been proposed, but data to 

resolve these differences are not available. Magnetic resonance imaging allows us to 

gather data that can be used to test the hypotheses concerning these long-debated issues. 

Although the development of prolapse is likely the common end point of different disease 

mechanisms, our study suggests that more attention should be focused on the connections 

of the vagina to the pelvic sidewall rather than the vagina itself.  
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3.2 Anterior vaginal wall length and degree of anterior compartment prolapse seen 

on dynamic MR images 

ABSTRACT 

The objective of the study was to determine the relationship between midsagittal vaginal wall 

geometric parameters and the degree of anterior vaginal prolapse. We have previously presented data 

indicating that about half of anterior wall descent can be explained by the degree of apical descent 

present (Summers et al. 2006). This led us to examine whether other midsagittal vaginal geometric 

parameters are associated with anterior wall descent. Magnetic resonance (MR) scans of 145 women 

from the prior study were suitable for analysis after eight were excluded because of inadequate 

visibility of the anterior vaginal wall. Subjects had been selected from a study of pelvic organ prolapse 

that included women with and without prolapse. All patients underwent supine dynamic MR scans in 

the midsagittal plane. Anterior vaginal wall length, location of distal vaginal wall point, and the area 

under the midsagittal profile of the anterior vaginal wall were measured during maximal Valsalva. A 

linear regression model was used to examine how much of the variance in cystocele size could be 

explained by these vaginal parameters. When both apical descent and vaginal length were considered 

in the linear regression model, 77% (R2 = 0.77, p < 0.001) of the variation in anterior wall descent was 

explained. Distal vaginal point and a measure anterior wall shape, the area under the profile of the 

anterior vaginal wall, added little to the model. Increasing vaginal length was positively correlated 

with greater degrees of anterior vaginal prolapse during maximal Valsalva (R 2 = 0.30, p < 0.01) 

determining 30% of the variation in anterior wall decent. Greater degrees of anterior vaginal prolapse 

are associated with a longer vaginal wall. Linear regression modeling suggests that 77% of anterior 

wall descent can be explained by apical descent and midsagittal anterior vaginal wall length.  

Keywords  Pelvic organ prolapse - Anterior prolapse - Cystocele - Apical descent - Vaginal 

length - Dynamic MR images  

3.2.1 Introduction 

The anterior vaginal prolapse is the most common form of pelvic organ prolapse 

(Hendrix et al, 2002) as well as the site with the highest rates of persistent and recurrent 

support defects (Shull et al, 2000). Blinded follow-up in a randomized prospective study 

of surgical techniques to correct anterior vaginal prolapse at an institution known for 

excellence in urogynecologic surgery found that only 30–45% of patients had satisfactory 
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or optimal results at 24 months (Weber et al, 2001). The high rate of suboptimal 

outcomes and the inability to predict which patients will fail surgery suggest a lack of 

knowledge regarding the disease mechanism of anterior wall prolapse.  

Dynamic magnetic resonance (MR) imaging in the midsagittal plane has given us the 

ability to study the deformation of the anterior vaginal wall during Valsalva. Previous 

analysis using this approach found that about half (R2 = 0.53) of anterior wall descent can 

be explained by the degree of apical descent present(Summers et al, 2006). The fact that 

apical descent only explains half of anterior wall descent raises the question of what other 

changes are involved. This led us to investigate the relationship of other midsagittal 

geometric factors, such as anterior vaginal wall length, displacement of the distal vagina, 

and anterior vaginal wall shape, to the degree of anterior wall descent. We hypothesized 

that these three factors would also predict a significant proportion of the variance in 

anterior wall descent.  

 

3.2.2 Materials and methods 

A secondary analysis was performed on the sample described in our original report 

(Summers et al, 2006). In brief, we recruited women representing varying degrees of 

pelvic organ support as part of an on-going study at the University of Michigan in Ann 

Arbor, MI. The original study is a case–control study where controls with vaginal points 

at least 1 cm above the hymen were matched to cases with prolapse at least 1 cm beyond 

the hymen (DeLancey et al, 2007). Pelvic support was determined using the pelvic organ 

prolapse quantification system on clinical exam. Women were selected from this pool to 

include women in whom the uterus was in situ, the cervix, bladder, and urethra were 

visible in the dynamic sagittal images, and a correct Valsalva maneuver was performed as 

judged by the movement of the abdominal wall and intestinal contents in a caudal 

direction. Women were recruited from the Urogynecology clinic at the University of 

Michigan and from advertisements. Women were excluded if they had a prior operation 

for pelvic organ prolapse or urinary incontinence. This resulted in a sample of 153 

women for the original analysis. The relationship of the apex, as measured by the cervical 
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os location, and the anterior wall descent, as measured by the most dependent bladder 

point, was available in these women from the prior study ( Summers et al 2006). 

Magnetic resonance (MR) scans of 145 women from the prior study were suitable for this 

study with good visualization of the anterior vaginal wall in the dynamic images (mean ± 

SD: age = 53.3 ± 12.5 years, parity = 2.7 ± 1.8, body mass index = 26.4 ± 4.5 kg/m2). 

Eight scans from the original study were excluded because the complete vaginal wall 

could not be adequately seen in sufficient detail for accurate tracing. Although the 

original study included both cases and controls, our analysis concerned the relationship 

between cervix location, bladder descent, and vaginal length and did not depend on group 

status.  

MRI was performed on a 1.5-T system (Signa, General Electric, Milwaukee, WI) using a 

four-channel torso-phased array coil with the subject in the supine position. Before 

starting the examination, the patient was instructed in regards to the straining maneuvers 

to be performed during the examination, starting from minimal to maximal straining. For 

dynamic imaging, a multiphase, single level image of the pelvis in the midsagittal plane 

was obtained approximately every second for 23–27 s using a T2-weighted single-shot 

fast spin-echo sequence (time at rest = 1,300 ms, time of excitation = 60 ms, slice 

thickness = 6 mm, field of view = 32–36 cm, matrix = 256 × 160, one excitation and 

half-Fourier acquisition). The time needed to acquire each of the images was determined 

by the patients’ weight and was approximately a second. A set of 20 successive images 

were acquired in 23–27 s during rest and a graded Valsalva effort as follows: The 

operator instructed the subject to hold her breath in inspiration and initiated the scan and 

after 5 s of imaging during rest, the operator instructed the subject to strain minimally for 

5 s, moderately for 5 s, and maximally for 5 s, then to breath normally and relax for 

another 5–7 s before ending the acquisition. Usually, three images were acquired at rest 

during suspended inspiration, 12 during the graded Valsalva effort, and five during 

post-Valsalva relaxation and normal breathing. These images were placed in a cine-loop 

using RadPix (Version 3.15, Weadock Software, LLC, Ann Arbor, MI) for display as a 

movie clip to evaluate the dynamics of prolapse.  
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The image at maximal Valsalva effort was selected for analysis (Figure 3-2-1). A local 

coordinate system was created using the inferior pubic point as the origin, the 

sacro-coccygeal inferior pubic point (SCIPP) line as the x-axis, and a line perpendicular 

to the SCIPP line through the inferior pubic point as the y-axis (Figure 3-2-1). The 

location of the external cervical os and the most dependent bladder point was previously 

determined using this coordinate system (Summers 2006). Degree of anterior wall and 

apical descent were determined by the location of the most caudal bladder point and 

external cervical os, respectively.  

 
Figure 3-2-1 MR image at maximal Valsalva showing anterior vaginal wall tracing (solid black 
line), distal vaginal wall (x), bladder location (triangle), cervical os location (circle), and coordinate 
system (dotted lines)  
 
To account for variability in patient size, we normalized all the subjects’ pelvises to a 

SCIPP length of 10.5 cm, which was the mean SCIPP length for our sample. The anterior 

vaginal wall was traced from the anterior vaginal fornix to the external urinary meatus. A 

program was created using MatLab (the Mathwork, version 7.01 R14) to measure the 

length of the vaginal tracings and the SCIPP line. The location of the most distal vaginal 

point (the ventral end of the vaginal length tracing) and the area under the midsagittal 

profile of the anterior vaginal wall were also analyzed using MatLab. Finally, the area 

under the midsagittal anterior wall profile, from its proximal end to its distal end, was 

measured as the absolute area between the profile and a straight line connecting the two 

ends of the vaginal wall tracing (Figure 3-2-2). This parameter was a measure of the 
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complexity of the line shape of the vaginal wall tracing. Because these area calculations 

are a measure of vaginal wall shape rather than a quantification of actual area, 

non-normalized values were used.  

 
Figure 3-2-2 Area under the anterior vaginal wall profile. Pubic bone, sacrum, and coccyx are 
traced. The anterior vaginal wall tracings are shown. A line (small dotted) is used to connect the two 
ends of the vaginal wall tracing to create an area (shown in gray). Examples aligned using 
horizontal large dotted reference line. a Minimal descent of most caudal bladder point (triangle). b 
Greater descent of the bladder point with longer vaginal wall length and larger area. c Similar 
vaginal wall length to B but smaller area and lesser descent of bladder point  
 

A linear regression model was performed with the dependent variable being prolapse size 

as measured by the most dependent bladder point and independent variables being the 

three geometric parameters. We calculated the Pearson correlation coefficient for the 

regression by comparing the previously obtained most dependent bladder point and the 

above vaginal wall parameters at maximum Valsalva: p < 0.05 was considered 

significant.  

 

3.2.3 Results 

Linear regression (Table 3-2-1) showed that 77% (R 2 = 0.77, p < 0.01) of midsagittal 

anterior wall descent can be explained by the combination of apical position and vaginal 

length. The exclusion of the five patients from the original study increased the correlation 

between cystocele and apical position from R 2 = 0.53 to 0.60. Increasing vaginal length 

was positively correlated with greater degrees of anterior vaginal prolapse during 

maximal Valsalva (R 2 = 0.30, p < 0.01; Figure 3-2-3). Thus, 30% (R 2 = 0.30) of the 

variation in anterior wall descent was determined by vaginal wall length alone. The area 
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under the vaginal wall profile and the distal urethral location were also investigated for 

regression modeling but were found not to contribute much to the degree of anterior wall 

descent.  

 

 
 
Table 3-2-1 Linear regression modeling  
 
  Cumulative R 2 R 2 added p value 
Apical 0.60 – <0.001
+Vaginal length 0.77 0.17 <0.001
+Distal point 0.78 0.01 <0.001
+Area under vaginal profile 0.81 0.03 <0.001
 
 
 

 
 
Figure 3-2-3 Vaginal length during Valsalva and distance of the most caudal bladder point below 
normal. There is a linear correlation y = 0.69 x − 0.85, R 2 = 0.30  
 
As would be expected from the correlation found between apical descent and anterior 

wall descent, there were subjects who had uterine descent and large cystoceles 

(Figure 3-2-4a). However, there were also subjects with relatively well-supported apical 

compartments who had large cystoceles with long anterior vaginal walls (Figure 3-2-4b). 

Other morphologic variants existed as well where there were examples of patients with 

cystoceles with normal and short vaginal wall lengths (Figure 3-2-4c, d, respectively).  
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Figure 3-2-4 Subject examples showing relationship between apical support and vaginal length in 
determining the size of cystoceles. Top row: MR image with maximal Valsalva. Bottom row: 
Coordinate axis, vaginal tracings, as well as bladder and cervical locations. Images have been 
standardized for pelvic size and orientation. a Subject who had uterine descent and large cystocele. 
b Subject with relatively well-supported apical compartments who had large cystocele with a long 
anterior vaginal wall. c Subject with cystocele and a normal vaginal wall length. d Subject with 
cystocele with a short vaginal wall length  
 

The relationship between apical descent and vaginal wall length was examined to see if 

apical descent resulted in longer vaginal length. The correlation was R 2 = 0.36, p = 0.02.  

 

3.2.4 Discussion 

Linear regression modeling shows that 77% of anterior wall descent can be explained by 

both vaginal length and apical descent measured on midsagittal dynamic MR images. A 

positive correlation was found between anterior wall descent and anterior vaginal wall 

length with 30% of variation in anterior wall descent being explained by the length of the 

vaginal wall. These relationships suggest that the disease mechanism of anterior wall 

prolapse is likely multifactoral resulting in different morphologic variants of cystocele. 

Anterior vaginal support has been simplified to a trapezoidal vaginal wall with 

connections at the top and laterally (DeLancey et al, 2002). Our previous work supports 

the hypothesis that defects of the apical support are related to cystocele formation 

(Summers et al, 2006). The weak correlation between apical descent and vaginal length 
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and the strong correlation between vaginal length and cystocele size suggest that 

alterations in the actual vaginal wall itself may be involved in cystocele development.  

Vaginal wall characteristics have been previously evaluated. The fraction of smooth 

muscle in the anterior vaginal wall shows great variability among individuals (Morgan et 

al, 2003), and its contractility is significantly decreased in women with pelvic organ 

prolapse (Boreham et al, 2002, Boreham et al, 2002). Patients with prolapse have also 

been found to have alterations in collagen ratios and turn over of collagen (Chen et al, 

2002, Moalli et al, 2004, Norton et al, 1992). Findings regarding the collagen content of 

these tissues have been inconsistent with some studies showing no change (Liapis et al, 

2000, Liapis et al, 2001), and others increased content (Kokcu et al, 2002). Comparison 

of 3D vaginal models of patients with and without prolapse showed similar vaginal 

anterior–posterior thickness between groups suggesting that the vaginal wall of patients 

with prolapse is not attenuated (Hsu et al, 2005). The shear strength of vaginal wall 

specimens was lower in patients with pelvic floor dysfunction than normal controls 

(Kondo et al, 1994), and great variability in the tensile and bending strength of samples 

has also been observed (Cosson et al, 2004)  

The vaginal apex has also been examined as the site of failure. One study reported that 

collagen content was similar between prolapse patients and controls at the vaginal apex 

but was lower in the parametrial tissue (Takano et al, 2002) . The resiliency of the apical 

support structures such as the uterosacral ligaments has also been found to be 

significantly reduced among women with symptomatic uterovaginal prolapse (Reay et al, 

2003).  

Dynamic MR imaging has been used for the evaluation and staging of pelvic organ 

prolapse (Etlik et al, 2005, Lienemann et al, 1997, Singh et al, 2001). Ozasa et al. (Ozasa 

et al, 1992) also used midsagittal dynamic MRI to asses changes in pelvic support in 

women with prolapse. They qualitatively compared descent using the relationship of a 

best-fit levator line and the pubic bone, however, did not perform quantitative 

measurements. The current study has the advantage of quantifying midsagittal changes 
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that occur during Valsalva. These quantifications deepen our understanding of anterior 

compartment prolapse mechanisms.  

There are several limitations of this study. The dynamic sequence used is limited to a 

midsagittal view, thereby not allowing the study of changes that may occur in the lateral 

vaginal wall, which have been observed in anterior compartment prolapse (Richardson et 

al, 1981). Therefore, we cannot comment on the presence or effects of paravaginal 

defects. In addition, these sequences were acquired in the supine position, which may 

limit the descent of the pelvic structures. We minimized this limitation by careful 

coaching the woman to achieve the maximal prolapse and reviewed all the dynamic video 

clips to make sure that Valsalva was performed correctly. In the past, researchers have 

compared supine dynamic MR images with those performed in a sitting position in an 

open configuration scanner and found supine scans during straining to be comparable in 

documenting pelvic floor movement (Fielding et al, 1998, Bertsschinger et al, 2002). An 

additional limitation is represented by the example in Figure 3-2-4d. This woman has 

significant anterior wall prolapse and apical descent but yet has a short vaginal length. 

Although clinically, this woman does not have a shortened wall, she appears to on 

dynamic MR images because the anterior wall is folded in on itself like an accordion.  

The association of increased midline vaginal length in anterior compartment prolapse 

provides objective data to be considered in the clinical thinking and treatment of 

cystoceles. Traditionally, anterior vaginal wall prolapse is attributed to either lateral 

detachment of the anterior vaginal wall at the pelvic side wall, referred to as a 

displacement “cystocele,” or as a central failure of the vaginal wall itself that results in a 

distension “cystocele.” Whether length changes are due to a paravaginal defect, midline 

defect, or are simply due to stretching of the vaginal wall once a cystocele becomes 

present will require further research. The association seen in this study nevertheless raises 

interesting clinical questions. For example, do traditional side-to-side plications address 

excess vaginal length associated with anterior compartment prolapse? 
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Chapter 4 

2D Conceptual Lumped Parameter Model 

ABSTRACT 

Objective: To use a biomechanical model to explore how impairment of the pubovisceral portion of 

the levator ani muscle and/or the apical vaginal suspension complex might interact to affect anterior 

vaginal wall prolapse severity.   

Method: A lumped parameter biomechanical model of the anterior vaginal wall and its support 

system was developed and implemented in Matlab.  The anterior vaginal wall and its main muscular 

and connective tissue support elements, namely the levator plate, pubovisceral muscle, cardinal and 

uterosacral ligaments were included and their geometry was based on mid-sagittal plane magnetic 

resonance scans.  Material properties were based on published data.  The change in the sagittal 

profile of the anterior vaginal wall during a maximum Valsalva was then predicted for different 

combinations of pubovisceral muscle and connective tissue impairment.   

Results: Under raised intra-abdominal pressure, the magnitude of anterior vaginal wall prolapse was 

shown to be a combined function of both pubovisceral muscle and uterosacral and/or cardinal 

ligament (“apical supports”) impairment. Once a certain degree of pubovisceral impairment was 

reached, the genital hiatus opened and a prolapse developed. The larger the pubovisceral impairment, 

the larger the anterior wall prolapse became.   A 90% impairment of apical support led to an increase 

in anterior wall prolapse from 0.3 cm to 1.9 cm (a 530% increase) at 60% pubovisceral muscle 

impairment, and from 0.7 cm to 2.4 cm (a 240% increase) at 80% pubovisceral muscle impairment.   

Conclusions: These results suggest that a prolapse can develop as a result of impairment of the 

muscular and apical supports of the anterior vaginal wall. 

 



 71

4.1 Introduction 

Pelvic organ prolapse is a common disease that prevents women from enjoying a 

full and active life.  In the US, approximately 200,000 women (Boyles et al, 2003) have 

surgery to repair prolapse annually with a cost to society that exceeds one billion dollars 

per year (Subak et al, 2001). Anterior vaginal wall prolapse, clinically known as cystocele, 

is the most common form of pelvic organ prolapse. (Hendrix et al, 2002)  

  

At present, our understanding of anterior vaginal wall support mechanisms is 

focused primarily on paravaginal attachments. (Richardson et al, 1976,DeLancey et al, 

1992)  Recently two additional observations have been made.  First, levator ani muscle 

damage is seen in women with prolapse (Tunn et al, 1998, Singh et al, 2003, Hoyte et al, 

2001, Hoyte et al,2004). Second, anterior compartment prolapse is highly correlated (r = 

0.73) with loss of apical support (Summers et al, 2006).  How these observations help 

explain anterior compartment failure has been unclear and is a goal of the present paper.   
 

A common approach to analyze how a complex biological system works is to 

represent the behavior of interest with a mathematical model.  Such models yield can 

useful mechanistic insights and even predict system responses with reasonable accuracy 

(Alexander et al, 2003).  One class of such models is the “lumped parameter” model in 

which the relevant features of the biological system are divided into relatively few 

subunits.  Through simplifying assumptions, the overall properties of each subunit can 

be approximated by an equation.  Hence, the relationship between the tensile force and 

length of the pubovisceral muscle can most simply be represented by a lumped parameter 

representing the development of active contractile force and another representing the 

passive resistance of the muscle to stretch.  Overall system behavior is then predicted by 

assembling and solving the system of equations that represent the various subunits and 

how they physically interact with one another.   

 

The aim of this study, therefore, was to develop and test a first-generation model 

to investigate how changes in pelvic floor muscle support and apical connective tissue 
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support interact to affect anterior vaginal wall prolapse under conditions of raised 

intra-abdominal pressure.   

4.2 Methods 

A sagittally-symmetric, lumped parameter, biomechanical model of the anterior 

vaginal wall and its support system was developed based on our previous anatomical 

work (DeLancey et al, 1992,DeLancey et al, 1994, DeLancey et al, 1999,DeLancey et al, 

2002).   As a first step, the dimensions and orientation of the anterior vaginal wall and 

its support system were measured from mid-sagittal plane magnetic resonance scans of 

10 healthy volunteers.  This sample size was judged sufficient, based on the authors’ 

previous experience, to yield representative geometry. These women were recruited from 

2001 to 2003 as controls in an case-control study, approved by University of Michigan 

IRBMED, comparing findings in women with normal support to women with pelvic 

organ prolapse.  They denied having incontinence or prolapse symptoms and had 

demonstrated normal support on POP-Q examination (Bump et al, 1996) (no vaginal wall 

point lower than one centimeter above the hymen).  These women had a mean age of 

58.8 years (+ standard deviation of 12.2 years) and parity of 2.45 (+ 1.03).  Axial, 

sagittal and coronal magnetic resonance images of the pelvic floor region were taken at 5 

mm intervals as previously described (Chou et al, 2001). The dimensions and orientation 

of the anterior vaginal wall and levator plate were measured in the mid-sagittal plane at 

rest.  The mean length of the vaginal wall was 7.0 (± 1.0) cm, with a mean vaginal 

inclination angle of 62.4 (± 7.8) o. The mean length of the levator plate was 10.4 ± 0.9 cm 

with a mean levator inclination angle of 47.9 (± 4.8) o.  
 

A 3-D model of the levator ani muscles, vagina, rectum, cardinal and uterosacral 

ligaments (“apical supports”), pubic bone and sacrum was created from a representative 

subject’s MR images using 3-D-Slicer version 2.1b1, as previously described (Chen et al 

2005,Hsu et al, 2005).  The attachments of the levator ani muscle to the pubic bone and 

the lines-of-action of the apical supports were located based on 3-dimensional 

reconstructions. A two-dimensional (2-D), sagittally-symmetric, lumped parameter, 

biomechanical model was then created by projecting the 3-D geometry of anterior vagina 
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wall and its support system onto the mid-sagittal plane (Figure 4-1). The anterior vaginal 

wall was modeled as a deformable and stretchable membrane lying on the rectum, which 

was supported by the levator plate.   The anterior vaginal wall was fixed at the perineal 

membrane which was assumed to be stationary during Valsava.  For simplicity, the 

levator plate was modeled as a rigid “trapdoor” hinged on the sacrum (SAC). To isolate 

the anterior vaginal wall effects, no relative motion was assumed to occur between the 

rectum and the levator plate. The pubovisceral portion of the levator ani muscle (PVM) 

was considered to control levator plate inclination with respect to the pelvis and was 

modeled using both an active contractile element and a passive elastic spring element 

(Fpvm =Factive+Fpassive) 
 

 
 

Figure 4-1 Model Development. A: mid-sagittal MR image. B: modeled element traced or 
projected on mid-sagittal MR image. C: lumped parameter biomechanical model. Pubovisceral 
muscle ( PVM ) is modeled as a spring in parallel with an active force generator. PS: pubic 
symphysis; SAC: sacrum; PM: perineal membrane; LA plate: levator plate; R: rectum; V: vagina; 
CL: cardinal ligament spring; US: uterosacral ligament spring; B: bladder; UT: uterus.  © 
Biomechanics Research Laboratory, University of Michigan, 2006 
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Apical support, provided to the vagina in Level I by the cardinal ligament and the 

uterosacral ligament, was represented by two passive elastic springs (Figure 4-1) attached 

to the top of the vaginal wall.  An exponential relationship between force and elongation 

for anterior vaginal wall membrane and all passive springs (including passive material 

property of pubovisceral muscle and the apical supports) was assumed to present the 

nonlinear (hyperelastic) material property of biological tissue, that is 
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where C1 and C2 are the material property parameters, l is the current length and l0 is the 

initial length.  The material property parameters of the vaginal wall were held constant 

through these simulations to focus on the interaction of apical supports and levator 

activity.  

 

The vaginal wall, pubovisceral muscle and apical supports material properties 

used were based on values from existing literature (Yamada et al 1970, Bartscht et al, 

1988). Table 4-1 shows the dimension and material property of each model element.  

   

Table 4-1: Dimension and material property of each element of the 2-D biomechanical model  
(* R is modeled as rigid spacer allowing no movement relative to the model levator ani plate. LA: 
levator ani; PVM: pubovisceral muscle) 
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length (cm) 

Original inclination (relative 

to horizontal in degrees) 

Equation representing material 

properties 

(F in Newton and l in cm) 

Vaginal wall 7 62 )1(00.1
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The model was implemented in MatlabR (The MathWorks Inc., Natick, MA).  To 

model a Valsalva maneuver, the model abdomen was pressurized with 70 cmH2O of 

intra-abdominal pressure in order to represent a maximum Valsalva maneuver (Howard et 

al, 2000).  In a woman with normal support, clinical observations show that a maximum 

Valsalva maneuver causes little displacement of the pelvic floor, if the pelvic floor 

muscles are actively contracted so as to equilibrate the downward intra-abdominal 

pressure acting on the levator plate (Shafik et al, 2003).  Therefore, in our model we 

assumed that the intact pubovisceral muscle can increase its contractile force sufficiently 

above the baseline resting tone so as to maintain hiatus closure under increased 

intra-abdominal pressure, as observed in women with normal support.  Therefore, the 

model anterior vaginal wall was considered to be completely supported by the rectum and 

levator plate, without tension on the cardinal and uterosacral ligaments.  The mean 

maximum vaginal closure force was assumed to be 2.8 Newtons which is the average 

value reported in the literature (Morgan et al, 2005, Morin et al, 2004) (Figure 4-2a).   

Since the force exerted by the pubovisceral muscles holds the trap door or urogenital 

hiatus closed, intra-abdominal pressure cannot induce inferior-superior tension in the 

anterior vaginal wall because there is no pressure differential being generated. 

 To use the model to simulate the two mechanisms underlying prolapse, we modeled 

the pubovisceral impairment (indicated by Defect%) by simulating loss of both the 

pubovisceral muscle’s active contractile force (Factive) and also its passive spring constant 

(derived its passive resistance to stretch in the uncontracted state), that is  
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Impairment of the connective tissue apical support (indicated by Defect%) was modeled 

as a decrease in their elastic properties, that is   
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Model simulations were run with impairments of 0, 20, 40, 60, 80 % decrements 

in the maximal force that the pubovisceral muscle could generate and 0, 50, 90% 

increases in the elasticity of the apical support. Since we focused on the interaction 

between pubovisceral muscle and apical supports, the material property of the vaginal 

wall was held constant in all simulations.  The primary outcome measure was the 

change in anterior vaginal wall curvature showing anterior vaginal wall deformation, and 

secondary outcome measures were the downward angular displacement of the levator 

plate and the downward translation of the top of the anterior vaginal wall under the action 

of 70 cmH2O intra-abdominal pressure.  We used the descent of the most dependent 

point of the vaginal wall as a measure of prolapse size, as shown in Figure 4-2b. 

 
Figure 4-2.  Force diagram showing the loading of the anterior vaginal wall and its support 
system.  
A: loading anterior vaginal wall with normal muscular support ; B: loaded pelvic floor with 
defective muscular support and part of vaginal wall exposed to intra-abdominal pressure (light grey 
arrows). IAP denotes intra-abdominal pressure; Fpvm: tensile force generated by pubovisceral 
muscle between the projection of its origin on the pelvic side wall and insertion on the levator plate; 
Tc and Tu: tensile forces generated by the cardinal and uterosacral ligaments; D: the decent of the 
most dependent point of vaginal wall from end of perineal membrane (PM) which is used as the 
measurement of prolapse size in the simulation.  Note descent of the vaginal apex as well as 
vaginal wall protrusion. © Biomechanics Research Laboratory, University of Michigan, 2006 
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4.3 Results 

 

General model behavior under load is shown in Figure 2b.  When the system 

with impaired muscle and connective tissue was loaded with maximum intra-abdominal 

pressure (Valsalva), downward rotation of the levator plate occurred when the defective 

pubovisceral muscle could no longer generate sufficient force to counterbalance the 

abdominal pressure increase.  In this situation, the model trap-door begins to ‘open’ such 

that the lower part of the anterior vaginal wall is no longer supported by the levator ani 

plate.  The unsupported distal region of vaginal wall becomes the tensile structure that 

separates a higher intra-abdominal pressure zone and a lower atmospheric pressure zone.  

This pressure differential causes the downward ‘bulging’ (deformation) of the distal 

anterior vaginal wall in the areas not supported by the levator ani muscle.  This, in turn, 

induces a superior-inferior tension force in the upper anterior vaginal wall. The apical 

supports are now placed under tension as they resist the downward movement of the 

upper vaginal wall until a new mechanical equilibrium is achieved in the system.    

 

The specific simulation results with different combinations of pubovisceral and 

apical support impairment are shown in Figure 4-3.  Here, the degree of anterior vaginal 

wall descent is shown as the distance below the perineal membrane, which lies at the 

level of the hymenal ring.  For the results in the top row (Figure 4-3 a, b, and c), the 

apical supports had the normal material parameter constants.  The bottom row shows the 

results with 90% apical support impairment.  In the first column (Figure 4-3 a and d), 

the pubovisceral muscle has normal active contractile function and normal passive 

material properties, while the second and third columns show the effects of increasing 

pubovisceral muscle impairment by 60% and 90%, respectively.   
 

When the pubovisceral muscle has normal properties (Figure 4-3a), no anterior 

wall deformation is seen. With pubovisceral impairment (Figure 4-3b & c), some degree 

of anterior vaginal prolapse occurs.  With normal muscles, but impaired apical support 

(Figure 4-3d), no displacement occurs because the vaginal wall is not subjected to a 

pressure differential.   



 78

 

The interaction between pubovisceral muscle defect and apical support 

impairment is shown in the bottom row (Figure 4-3e and f).  When the apical support 

impairment was superimposed on the pubovisceral muscle impairment there was a loss of 

resistance to the descent of apical anterior vaginal wall, resulting in a much larger 

prolapse. The prolapse size, D, defined as the largest descent of the most independent 

point, is also shown in Figure 4-3. A 90% impairment of apical support led to an increase 

in anterior wall prolapse from 0.3 cm to 1.9 cm (a 530% increase) at 60% pubovisceral 

muscle impairment (Figure 4-3c vs. 3f), and from 0.7 cm to 2.4 cm (a 240% increase) at 

80% pubovisceral muscle impairment (Figure 4-3b vs. 3e).   

 
Figure 4-3. Simulated deformation of the model anterior vaginal wall, and its support system, 
under maximal Valsalva with various degrees of pubovisceral muscle (PVM) and cardinal and 
uterosacral ligament impairment (indicated in percent). D presents the size of prolapse measured as 
the decent of the most dependent point of vaginal wall from end of perineal membrane. © 
Biomechanics Research Laboratory, University of Michigan, 2006 
 

The prolapse size is shown as a function of apical support impairment for 

different degree of pubovisceral impairment in Figure 4-4.  The size of the prolapse 
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increased exponentially with increasing apical support impairment.  

To verify that the simulation results were reasonable approximations of the 

interactions between connective tissue and muscular support of vaginal wall, these 

findings were compared to a typical magnetic resonance image of a patient with cystocele 

in both the resting state as well as under a maximum Valsalva (Figure 4-5).  In the 

resting state, the patient has a relatively normal configuration.  But with increasing 

intra-abdominal pressure associated with a Valsalva maneuver, the levator plate is pushed 

posteriorly and downwards to a more vertical orientation, the anterior vaginal wall is 

pushed inferiorly via the hiatus, while the uterus is pulled down by anterior vaginal wall. 

This scenario matches well with our model simulation thereby helping to validate the 

behavior of our model.   

 
 
Figure 4-4:  Prolapse size measured by the most dependent point on the vaginal wall as a function 
of apical support impairment for different degrees of pubovisceral muscle (PVM) impairment. © 
Biomechanics Research Laboratory, University of Michigan, 2006 

4.4 Discussion 

This paper presents the development of a simple 2-D model that was used to 

investigate how anterior vaginal wall muscular and connective tissue supports affect the 

size of anterior vaginal wall prolapse.  The model is suitable for examining first-order 

effects of the interaction between these supportive elements in the presence of 

impairments in the pubovisceral muscle and apical support tissues.  The model is 



 80

focused on anterior vaginal wall prolapse because it is the most common form of pelvic 

organ prolapse (Hendrix et al, 2002) and a form that can be used to initiate meaningful 

investigation into muscle/connective tissue interaction.  We chose to focus on the apical 

connective tissue supports as a result of recent data (Summers et al, 2006) showing a 

strong correlation between apical descent and anterior compartment prolapse, recognizing 

that further work will be needed to add other elements of the support system.  This 

model shows important qualitative results on how a combination of muscular and 

connective tissue impairments affects prolapse magnitude.  The resulting anterior wall 

prolapses also mimic those seen clinically, thereby providing validity for our model.   
 
 

 
Figure 4-5. Validation of the model. A: mid-sagittal MR image of resting status; B: mid-sagittal 
MR image at maximum Valsava; C: sample model simulation result having a similar configuration 
as in (b). In this figure PS denotes pubic symphysis; SAC: sacrum; PM: perineal membrane; PVM: 
pubovisceral muscle; LA plate: levator plate; R: rectum; V: vagina; CL: cardinal ligament; US: 
uterosacral ligament; B: bladder; and UT: uterus © Biomechanics Research Laboratory, University 
of Michigan, 2006 
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The clinical significance of this article lies in its demonstration of the interaction 

between apical connective tissue support and the levator ani muscle impairments that 

result in anterior vaginal wall prolapse. This links research showing that the levator 

muscles are abnormal in women with pelvic organ prolapse (Tunn et al,1998, Singh et al, 

2003, Hoyte et al, 2001, Hoyte et al, 2004)  with observations of connective tissue 

abnormalities in pelvic organ prolapse (Richardson et al, 1976,DeLancey et al, 2002, 

Jackson et al, 1996).  Our simulations also suggest that to some degree normal muscle 

and normal connective tissue function can compensate for injury to the other system.  It 

is when both systems have impairments that the larger anterior vaginal wall prolapse is 

predicted. This can partly explain why women with levator ani muscle defect are more 

likely to have prolapse (Hoyte et al, 2004), but not all women with levator ani muscle 

defects have developed anterior vaginal wall prolapse.   

 

When the intact pubovisceral muscle maintains urogenital hiatus closure, there is 

no tension in the vaginal wall because it is well supported inside the abdominal cavity by 

the levator plate and therefore no pressure differential acts across it.  This assumption is 

based on clinical observations in nulliparous women that reveal minimal descent of the 

pelvic floor during Valsalva when the muscles are contracted.  When the pubovisceral 

muscle is defective and its contractile force is reduced, then the model predicted that less 

hiatal closure force is generated, which agrees with clinical measurements showing a 

30% reduction in force among women with stress incontinence (Morin et al, 2004).  At 

a certain level of pubovisceral defect, the muscles are no longer able to maintain hiatal 

closure, and the distal vagina is now exposed to a pressure differential as it is interposed 

between the high abdominal pressure zone and lower atmospheric pressure.  This 

pressure differential deforms the vaginal wall, driving it inferiorly towards the low 

pressure region.  The behavior of our model extends previous theoretical work of the 

concept of the “pelvic valve” (Porges et al, 1960).   
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It is important to recognize that there are inherent limitations in this type of 

research.  In this first simulation we chose to focus the analysis on the anterior vaginal 

wall and have made some simplifying assumptions.  For example, it was assumed there 

is no deformation of levator plate or rectal movement relative to the levator plate.  

Second, this model is focused on the interaction between muscular support and apical 

suspension on anterior vaginal wall support. In this two-dimensional model, the 

paravaginal supports of the anterior vaginal wall that attach laterally to the pelvic 

sidewall were not specifically modeled because this requires a more complex, 

3-dimensional, approach.  From a structural mechanics point of view, paravaginal 

support adds a reinforcing element to the mid-portion of the vaginal wall which will 

reduce its descent through the hiatus.  In our model, we found that we needed to adjust 

the property of the vaginal wall tissue to be ten times stiffer than published experimental 

results in order to obtain reasonable model results.  This need may reflect the lack of 

paravaginal support.  Also, stretch is not necessarily uniform along each element of the 

model as assumed; it can vary locally along and across the elements, especially if the 

thickness varies.  The effect of non-uniform stretch in these structures requires further 

investigation, particularly if systematic regional variations in properties are found.  

Finally, the elements in the model were assumed to have hyperelastic material properties, 

with increasing resistance to stretch  as is indeed found in many collagenous structures, 

but it is a limitation that no time dependent behavior was represented.  Despite these 

simplifications, we believe this simple model captures the qualitative behavior of the 

system and yields useful predictions.  In the future, distributed parameter models, such 

as finite element models, may prove to be more accurate and better for the 

three-dimensional analyses that are needed.  

 

This is a first attempt to use biomechanical modeling to study the mechanics of 

pelvic organ support. The model offers an opportunity to analyze fundamental concepts 

related to how injury of levator ani muscle and impairment of connective tissue can lead 

to anterior vaginal wall prolapse.   
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Chapter 5 

Development of a 3-D Finite Element Model of Anterior 

Vaginal Wall Support to Evaluate Mechanisms Underlying 

Cystocele Formation 

ABSTRACT 

Objectives: To use biomechanical computer modeling to study the complex structural mechanics of 

anterior wall support. The first aim was to develop a 3D computer model of the anterior vaginal wall 

and its supports.  The second aim was to validate it and then use it to determine which combinations 

of muscle and connective tissue defects could result in formation of a cystocele similar to those 

observed on dynamic magnetic resonance imaging (MRI). 

Methods: A subject-specific 3D model was developed based on MRI scans from a healthy nulliparous 

woman using 3D Slicer (v. 2.6). An engineering graphics program, I-DEASTM, was then used to 

simplify model geometry and include: 1) anterior vaginal wall, 2) levator muscle, 3) cardinal ligament, 

4) uterosacral ligament, 5) arcus tendineus fascia pelvis, 6) arcus tendineus levator ani, 7) paravaginal 

attachments, and 8) the posterior compartment. The 3D model was then imported into ABAQUSTM, a 

finite element analysis program. Tissue properties were assigned from literature values. The effect of 

different combinations of connective tissue and muscle impairments on cystocele formation were 

studied as abdominal pressure was increased from rest to a maximum of 168 cmH2O. An iterative 

process was used to refine anatomical assumptions until convergence was obtained between model 

behavior and deformations observed on dynamic MRI.  

Results: The resulting 3D finite element model predicted realistic cystocele formation in the presence 

of impairment in levator ani muscle apical and/or mesenteric connective tissue, including apical and 

paravaginal support. Simulated cystocele size was sensitive to both the magnitude of abdominal 

pressure and the degree of impairment assigned to the connective tissue and muscle. Simulated 

cystocele morphology was similar to that observed on dynamic MRI.  Larger cystocele formed in the 
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presence of both muscular and mesenteric connective tissue support impairment compare to 

impairment in either support element alone. Apical 

impairment resulted in a larger cystocele compared to paravaginal impairment given the same 

intra-abdominal pressure loading and levator ani muscle impairment. The results suggest that the 

levator ani muscle is the key element; impairment in levator ani muscle caused larger hiatus size, 

longer exposed vaginal length, larger apical descent and resulted in a larger cystocele size.  

Conclusions: This 3D finite element model simulated the formation of a cystocele as seen on dynamic 

MRI.  Presence of a cystocele required a levator muscle impairment, an increase in abdominal 

pressure, and apical and paravaginal support defects.  

 

 

5.1 Introduction 

The anterior vaginal wall prolapse, clinically known as cystocele, is the most common 

form of pelvic organ prolapse (Hendrix et al., 2002).  It is also the site with the highest 

rate of persistent and recurrent support defects (Shull et al., 2000). 

 

A growing number of studies have sought to improve our understanding of normal 

anterior vaginal support mechanisms as well as how these supports ordinarily prevent 

cystocele.  Early studies were focused primarily on the anatomy of paravaginal 

attachments and their failure (Richardson, 1976, DeLancey et al., 1992, 2002). 

Subsequent investigations have revealed levator ani muscle damage in women with 

anterior vaginal wall prolapse specifically (DeLancey et al., 2002) and prolapse in 

general (Tunn et al., 1998, Singh et al., 2003, Hoyte et al., 2001,2004, DeLancey et al., 

2002). Recently dynamic MRI studies have revealed that anterior compartment prolapse 

is also highly correlated (r=0.73) with loss of apical support (Summers et al., 2006). 

 

Each of these observations concerns a particular aspect of anterior vaginal wall support 
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and failure. To begin to integrate these observations into a single disease model，we 

developed a first generation, 2D lumped parameter model (Chapter 4 and Chen et al., 

2006).  This model simulated realistic anterior vaginal wall deformation in mid-sagittal 

plane and provided an important insight on the interaction between muscular support to 

the anterior vaginal wall provided by the levator ani and apical connective tissue support 

provided by the cardinal and uterosacral ligaments. However this 2D mid-sagittal model 

had inherent limitations, most notably that the model did not include the paravaginal 

attachments to the pelvic side wall, as well as the effects of geometries of these bilateral 

attachments.  Furthermore, the levator plate and rectum were modeled as rigid body.  

 

To address those limitations, in this chapter we develop a more complex 3D finite 

element model to investigate how different effects, such as muscular support, apical 

defect, paravaginal defect and vaginal dead band effect, affect cystocele formation.  

5.2 Methods 

The first step was to select MR scans as a part of an institutional review board-approved 

study of nulliparous pelvic anatomy. The subject happened to be a 34-year-old 

nulliparous Caucasian woman.  Axial, sagittal and coronal photon density magnetic 

resonance images of the pelvic floor region were taken at 5-mm intervals, as previously 

described (Strohbehn et al., 1996). The geometry of the woman’s bony pelvic floor 

attachment points lay within one standard deviation of the mean size and shape of a 

group of 278 women: this included a 75th percentile sagittal diameter (measured from the 

midline of the arcuate pubic ligament to the center of the sacrococcygeal junction) and a 

44th percentile lateral diameter (ischial spine separation distance) (Lien et al., 2003) 

 

A 3-D volumetric model was rendered by lofting serial 4 mm-thick axial magnetic 

resonance sections to establish the geometry of the anterior vaginal wall and surrounding 

support tissues using 3D Slicer 2.1b1 (Slicer 2b1; Massachusetts Institute of Technology, 

Cambridge, MA), as described by Hsu et al., 2005 & Chen et al., 2006. The geometric 

model included the following anatomic structures:1) anterior vaginal wall (AVW), 2) 

levator muscles (LA), 3) cardinal ligaments (CL), 4) uterosacral ligaments (US), 5) arcus 
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tendineus fascia pelvis (ATFP), 6) arcus tendineus levator ani (ATLA), 7) paravaginal 

support (PS), and 8) the posterior compartment (PC) as shown in Figures 1A and B. 

 

The volumetric model was imported into I-DEAS (Version 9.0, EDS, Hook, UK), an 

engineering modeling software program, and the model geometry was simplified, 

principally by smoothing the surfaces of the structures (Figure 5-1C).  The simplified 

model was then imported into ABAQUS (Version 6.6-1 ABAQUS, Inc), an engineering 

finite element modeling program that allows one to create the finite element mesh that is 

used to represent the anterior vaginal wall, levator ani muscles and posterior 

compartment, and then to predict how the structures will deform under increases in 

abdominal pressure. The program also predicts the resulting distributions in tissue 

stresses and strains (Figure 1D). The anterior vaginal wall and levator ani muscles were 

modeled in the program as deformable shell elements. The posterior compartment 

including posterior vaginal wall and rectum were modeled as a deformable solid. Lastly, 

the elements used to represent the ligamentous connections (CL, US, PS, ATFP, ATLA) 

to the vaginal wall were 2D truss elements. 

 

The soft tissue attachments to pelvis and stationary structures (known as “boundary 

conditions”) are shown in Figure 1D. The origin of levator ani muscle from the pubic 

bone and ATLA, and the points of attachments of the ligaments to the pelvic sidewall, 

and distal end of the vagina were each assumed to allow rotational, but not translational, 

movements.  

 

All the model elements were assigned hyperelastic material properties based on values 

from existing literature (Yamada et al., 1970, Bartscht et al., 1988) ( Figure 5-2).  

Because this model was only used to simulate cystocele development during straining, 

when patients were asked to increase abdominal pressure with their pelvic muscles 

relaxed, the levator ani muscles were only considered to exhibit passive stretch and 

therefore passive stiffness, without active contractile behavior.  

 

An iterative process was used to refine anatomical assumption based on senior author’s 
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extensive dissection, clinical examination and surgical experience and dynamic MR 

imaging observation (DeLancey et al., 1994, 2002, Summers et al., 2006). The 

deformation behavior of the model under increasing abdominal pressure was then 

examined and compared to that observed on dynamic MRI during Valsalva (Summers et 

al., 2006). When the model behavior did not match with observed behavior, then iterative 

changes were made to anatomical connections, boundary conditions, material properties, 

and/or element type within the constraints of existing knowledge until the model behaved 

in a reasonable manner (Figure 5-1C, D). 

 

To simulate cystocele formation, we set model parameters to simulate impairments in the 

various supportive components (i.e., CL, US, PS and PCM).  An impairment was 

simulated as an decrease in material property stiffness in ligaments, a strategy used 

previously by Chen, et al (Chen et al., 2006).  To simulate a impairment in levator ani 

muscle, their stiffness was considered to be decreased by 60% from normal values, 

consistent with the 60% decrease in maximum muscle strength observed in women with 

prolapse and muscle impairment compared to those who have normal support and intact 

muscle in the OPAL study (DeLancey et al., 2007). This assumption was made because 

Blanpied et al. (Blanpied et al., 1993) showed a linear relationship between the 

contractile force in a muscle and its tensile stiffness.  Tissue adaptation is another 

important factor.  When a structure undergoes sustained stress over time, it can generate 

either additional tissue and/or better quality tissue in order to reduce tissue stress. 

Clinically we found that women with prolapse have a larger vaginal cross-sectional area 

(Hsu et al., 2005).  Loaded tissues can also change their properties over time, as in the 

case of hysteresis and creep.  To begin to simulate the effect of these types of changes 

we simply shifted the stress and strain curve for vaginal properties incrementally to the 

right, as shown in Figure 5-3, and re-executed the simulations. 
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Figure 5-1 Model development. A: 3D volume rendered model of anterior support 
system including pubic bone；B: 3D volume-rendered model without pubic bone; 
C: Geometry simplified surface model; D: 3D finite element model with mesh, 
boundary condition (orange pin representing ligaments and muscle origin is pinned 
to pubic bone and pelvic sidewall), and abdominal pressure loading. PB: pubic 
bone; UT: uterus; V: vagina；R: rectum; CL: cardinal ligament; US: uterosacral 
ligament; ATFP: arcus tendineus fascia pelvis; ICM: iliococcygeus muscle; PCM: 
pubococcygeus muscle; AVW: anterior vaginal wall; PC: posterior compartment; 
PS: paravaginal support; IAP: abdominal pressure 
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Figure 5-2 The material property of vagina, ligaments and levator ani muscle used in the 
model simulation, 
 

 
Figure 5-3 Vaginal wall tissue material properties at different stage of tissue adaptation. The curve 
on the left most (status 0) is the original data from Yamada (Yamada, 1976) which is assigned as 
status 0. Status 3, vaginal tissue has the longest dead band.  
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Simulations of the effects of abdominal pressure on model structures were handled in the 

following manner. The abdominal pressure was considered to act perpendicular to the 

surface of the anterior vaginal wall.  In a previous study of 314 patients with prolapse, 

the 5th percentile, 50th and 95th percentile values of maximum Valsalva pressure were 

determined to be 60, 99 and 168 cmH2O respectively (DeLancey et al., 2007).  

Therefore, the increase in abdominal pressure was simulated with the 20 increments of 

the pressure time relationship shown in Figure 5-6 .  

 

The outcome measurements from the model include the descent of the most 

dependent point of the anterior vagina wall (d), apex descent (a) and hiatus size (h)  as 

well as exposed vaginal length at the maximum intra-abdominal pressure (Figure 5-4). 

The maximum stress in the levator ani muscle and vaginal wall were also calculated. 

 

The model was validated by comparing the mid-sagittal anterior vaginal wall 

deformation under increasing abdominal pressure with that in the dynamic MRI of a 

patient with Stage III cystocele performing the same maneuver, Figure 5-5.  Under 

current assumptions underlying the model’s functional anatomy, it not only correctly 

predicted cystocele formation, but also correctly predicted the increase in size that occurs 

with straining on midline dynamic MRI.  

 

5.3 Results 

When the intact model (without defects in the levator ani muscle, apical and 

paravaginal support) was loaded with up to 100 cmH2O (50th percentile), a slight 

cystocele occurred (Figure 5-6 A). This can be compared with a more typical simulated 

cystocele formation (Figure 5-6B), in which cardinal, uterosacral ligament, and 

paravaginal support was set to 50% impairment and the PCM was set to have a 60% 

impairment. The sequential development of this cystocele with increasing abdominal 

pressure is shown in Figure 5-7. Figure 5-8 shows the relationship between simulated 

cystocele size and intra-abdominal pressure for this simulation. The best fit line for the 
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non-zero cystocele size data points was estimated. The compliance of anterior support 

system was estimated to be 0.49 mm/cmH2O from the slope of the line. 

 

 

 
 

 
 

Figure 5-4 Outcome measurements. The illustration is the model configuration at maximum 
abdominal pressure and shows the four outcome measurements: a: apical descent, middle of vagina 
apex displacement from its position at rest; h: hiatus size at maximum loading, measured as tip of 
posterior vaginal compartment to distal end of vaginal wall (fixed); d: Prolapse size, measured as 
the vertical descent of the most dependent point of the vagina to distal end of vagina; Exposed 
Vaginal Length measured as the length of vaginal wall unsupported by the posterior vaginal 
compartment (and therefore exposed to the pressure differential with intra-abdominal pressure 
acting on the proximal surface and atmospheric pressure acting on its distal surface). 
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Figure 5-5. Model validation.  At left side is one model-generated simulation result with a similar 
cystocele formation to that seen clinically in the dynamic MRI on right side of the figure. 

 
Figure 5-6 Lateral view of a mid-sagittal plane section of the 3D finite element model. Panel A: In 
this simulation, all support elements (levator ani muscle, cardinal uterosacral ligament, paravaginal 
support) have normal material properties. Panel B: In this simulation, the levator ani muscle was set 
to have a 60% reduction in its properties, and a 50% reduction in cardinal and uterosacral ligament 
and paravaginal support properties. LA denotes levator ani, CL: cardinal ligament, AVW: arterial 
vaginal wall, PC: posterior compartment, US: uterosacral ligament   
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The size of the cystocele was found to vary depending on the maximal abdominal 

pressure applied to the model (Figure 5-9). Cystocele size is sensitive to structure 

impairments. At a 168cmH20 maximum intra-abdominal pressure, a levator ani muscle 

impairment alone resulted in slightly larger cystocele than a mesenteric connective tissue 

impairment alone.  The model with the combined impairment had the largest simulated 

cystocele size, as hypothesized.  

 

 
Figure 5-7.  Sequential development of a typical simulated cystocele. In this simulation, the 
levator ani muscle had a 60% impairment, apical and paravaginal support properties were set to 
having a 50% impairment,,.  The abdominal pressure was then increased from zero to 100 cmH2O 
over time course (plotted on the vertical axis of the bottom illustration) at four different time points 
(seen on the horizontal axis of the bottom plot). The first row shows the three-quarter view, while 
the second row shows a sagittal section. The color map shows the stress distributions in the 
different regions, with red indicating a low stress region and blue indicating a high stress region.  
 

Figure 5-10 shows the effect of levator ani muscle impairment alone on the cystocele 

formation. The models with normal mesenteric connective tissue support and varying 

degree of impairments in the pubic portion of the LA were loaded with 168 cmH2O 

intra-abdominal pressure. With increasing muscle impairment, there is a systematically 

increase in hiatus size, which allows a longer length of the vaginal wall to be exposed to a 

pressure differential (high intra-abdominal pressure on the “upper” side and (low) 
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atmosphere pressure on the “lower” side). A larger stress builds up in the vaginal wall 

and caused a larger apical descent (Figure 5-10). A larger cystocele size then results.  

 

Investigations into effects of apical or paravaginal impairment to cystocele formation are 

shown in Figure 5-11. Predominant apical impairment (varying apical impairment at 0%, 

20%, 40%, 60%, 80% but with normal paravaginal support), predominant paravaginal 

impairment (varying paravaginal impairment at 0%, 20%, 40%, 60%, 80% but with 

normal apical support) are shown for 168 cmH2O maximal abdominal pressures and 60% 

levator ani muscle impairment. All cystocele sizes were normalized to cystocele size at 

normal apical and normal paravaginal support. The cystocele size was sensitive to the 

degree of apical impairment with 20% remaining apical support stiffness; the cystocele 

size increased 33% compared to the scenario with normal apical support. However there 

was only a slight change in cystocele size with increasing degrees of paravaginal 

impairment. 
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Figure 5-8 Relationship between cystocele size and intra-abdominal pressure in a simulated 
cystocele. In this simulation, the levator ani muscle had a 60% impairment, apical and paravaginal 
support were set to having a 50% impairment. The best fit line for non-zero cystocele size data 
points is plotted. The linear regression equation and coefficient of determination are shown in the 
illustration. 
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Figure 5-9 Simulated cystocele size for models with different impairment patterns at increasing 
values of maximum intra-abdominal pressure loading. 
 

 
Figure 5-10 Effects of muscle impairment on cystocele formation. The outcome measurement was 
normalized to model outcome with intact LA muscle resistance to stretch. 
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Figure 5-11 Effects of apical and paravaginal impairments on cystocele formation. Simulations 
had 60% levator ani muscle impairments and were loaded with 168cmH2O maximum 
intra-abdominal pressure. For apical impairment simulations, models had normal paravaginal 
support, but a varying degree of apical support impairment with remaining apical connective tissue 
stiffness ranging from from 20% to 100% of the normal value. For paravaginal impairment 
simulations, models had normal apical support but varying degree of paravaginal support 
impairment with remaining paravaginal connective tissue stiffness ranging from 20% to 100% of 
normal values.  
 

 

Simulated cystocele sizes were also sensitive to the vaginal tissue properties (Figure 

5-12). A longer dead band resulted in a larger cystocele size. The relationship between 

cystocele size and vaginal tissue dead band status exhibited a non-linear (exponential) 

relationship, especially for models with combined defects. 
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Figure 5-12 Relationship between vaginal tissue status and cystocele size. Vaginal tissue dead 
band status 0, 1, 2, 3 were as shown in figure 5-3. 
 

5.4 Discussion 

The significance of this study lays in its being the first 3D simulation of cystocele 

formation. The model has realistic anatomical geometry from a living normal woman 

with both connective tissue and muscular supports.  It reproduces realistic cystocele 

similar to those seen clinically, under physiological abdominal pressure loading (Figure 

5-5). Also the estimated anterior compartment compliance from model simulation was 

about 0.49 mm/cmH2O which is close to that measured in living women with prolapsed 

(Chapter 6). By varying one parameter at a time, this validated finite element model 

allows theoretical “what-if” analyses to be performed on the effect of specific parameter 

variations on model behavior in a way that is impossible in living women.  

 

The simulated cystocele size was found to be sensitive to maximum intra-abdominal 

pressure, the presence of impaired structures (levator ani muscle, apical connective tissue, 

paravaginal connective tissue, vaginal wall) and single vs multiple site impairments. The 

finding that impairments in multiple domains (muscle impairment and mesenteric 
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connective tissue impairment, including both apical and paravaginal) result in larger 

cystocele is similar to the result we found in the first generation model (Chapter 4, Chen 

et al., 2006) where we noted that when both muscle and connective tissue impairments 

were implemented in the model, larger cystoceles resulted than when only one or the 

other impairment was present. 

 

The model suggests that levator ani muscle impairment played a very important role 

in cystocele formation. A decreasing in LA muscle resistance to stretch caused a larger 

hiatus size, and allowed a longer length of vaginal wall to be exposed to the pressure 

differential between high intra-abdominal pressure and low atmosphere pressure. This 

caused tension to build up in the vaginal wall tissue, dragged the apex down and thereby 

resulted in larger cystocele size.  

 

The apex of vaginal wall was supported by apical connective tissue, including 

cardinal and uterosacral ligament. Impairment in apical support is another important 

factor of cystocele formation. An 80% impairment in apical support can result in a 33% 

larger cystocele size than that with normal apical support. This agrees with our earlier 

clinical findings that variation in apical support explained 60% of variation in prolapse 

size in a group women with a wide spectrum of pelvic floor support (Summer et al., 

2006). 

  

Restoring normal anatomy and function are common goals of reconstructive surgery.  

At present, our ability to specifically determine the location and type of impairment 

responsible for cystocele has been limited.  By providing a specific analysis of regional 

impairments in support the findings of this study can form the framework for new 

imaging studies in women using ultrasound or magnetic resonance scans to make similar 

observations in living women.  It also provides the unique ability to experimentally 

induce specific impairments and see what their effects are in ways that would not be 

ethical in humans.  This should help direct targeted investigations into anatomical 

changes seen in women with cystourethrocele.  Eventually, once we can determine the 

exact nature of structural impairments, targeted operations customized for each patient 
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might be developed that maximize surgical success while minimizing compensating 

distortion that can lead to postoperative problems with function. 

 

It is important to recognize that there are still some inherent limitations in this model. 

First, active contraction of levator ani muscle was not represented in this model. Even 

though the subjects were asked to relax their LA muscles while performing Valsalva, 

because the LA have a postural function they have a constant level of active muscle tone. 

So the present model essentially the situation with a very low level of muscle activity in 

this muscle.  Second, this model still has simplified anatomic structures and geometry. 

At the present time, there is no perineal body in the model, so the model constraint placed 

at the distal end of vagina did not permit movement of the perineal body during Valsalva.  

This might have tended to overconstrain the model and therefore resulted in a 

conservative model prediction of cystocele size. Therefore the quantitative values of 

tissue stresses predicted by the simulation are likely not accurate.  However, the 

qualitative behavior should be reasonable. The model simulations also showed that 

cystocele size is not sensitive to paravaginal impairment, which might have resulted from 

a poor understanding of paravaginal support anatomy and/or unrealistic model 

assumption. The study of more detailed functional anatomy will provide more insights on 

how to better model it in the future. Third, the model has simplified material properties in 

that all elements were assumed to be hyperelastic. Any viscous, plastic or remodeling 

changes in material properties that can occur over a longer period of time were not 

considered in detail (except for the deadband simulation). In addition, the model was 

loaded with a single loading cycle. To study how the loading rate and number of loading 

cycles affect cystocele formation, more sophisticated visco-hyperelastic material 

properties should be used.  Finally, the model was set up based on our best 

understanding of the essential nature of this highly complex anatomy. At present, we 

have based our observations on the anatomy of an average woman with normal pelvic 

floor support.  How abnormal starting geometry and geometric variation in pelvic size 

and shape among normal population would affect cystocele formation needs to be further 

explored.  
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Chapter 6 

In Vivo Assessment of Anterior Compartment Compliance and 

Its Relation to Prolapse 

ABSTRACT 

 
Objective: We tested the null hypothesis that anterior compartment compliance does not differ 

between women with and without prolapse and explored factors predicting variation in cystocele size. 

Methods: Nineteen parous women with normal support (N=10) and varying degrees of anterior 

compartment prolapse (N=9) were taken from an ongoing study [mean ± SD Age: controls = 62±10 

yrs, cases = 53±12 (p=.101) Parity: controls = 3±2, cases = 3±1, (p=.565)]. A bladder catheter was 

placed to measure abdominal pressure (Datascope®). Mid-sagittal pelvic MR images were obtained in 

the supine position from rest to maximum Valsalva over a 20 second interval at approximately a 1 Hz 

sampling rate. In each image, the distance from the most dependent bladder point to the average 

bladder location in 20 nullipara was measured. The relationship between bladder descent and 

abdominal pressure was examined for each subject using linear regression. The slope of the best-fit 

line is a measure of the anterior compartment compliance. The hypothesis was tested using an 

independent t-test. Multivariate analyses of the data from all subjects was also performed. 

Results: Mean compliance was higher for cases (0.5 mm / cm H2O ± 0.06 SEM) than controls (0.3 

mm / cm H2O ± .07, p=.039). Mean resting bladder point was lower in cases (2.4 ± 0.5 cm H20) than 

controls (0.9±0.1 cm H2O, p= .024). Maximum bladder displacement correlated best with compliance 

(R2=.75, p<.01), less well with resting bladder location (R2=.55, p<.01) but not with abdominal 

pressure (R2=.15, p=.102). Linear regression modeling showed that resting bladder point explained 

55% of the variation of maximum bladder displacement (p<.001). Adding the effect of compliance 

increased it to 86% (p<.001) and adding maximum abdominal pressure increased it further to 93% 
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(p=.001). 

Conclusion: The null hypothesis was rejected. Women with cystocele have 67% greater compliance 

of their

 

support system compared to controls. However, resting bladder location was also an important 

predictor of cystocele size. Comment: The anterior vaginal wall support system has been shown to 

depend on the combined action of muscle and connective tissue. To our knowledge, these are the first 

in vivo MR-based compliance measurements of this system in women, and especially those with and 

without cystocele. 

 

6.1 Introduction 

The deterioration and weakening of anterior vaginal wall and/or its connective 

tissue support have been hypothesized to underlie the development of anterior vaginal 

prolapsed (Chapters 4 & 5).  

The material properties of the anterior vaginal wall and its supportive connective 

tissue have been studied in women with and without prolapse. For example, the shear 

strength of vaginal wall specimens was found to be lower in patients with pelvic floor 

dysfunction then normal controls (Kondo et al, 1994) and great variability in the tensile 

and bending strength of samples has also been observed (Cosson et al, 2004). Women 

with prolapse had more extensible vaginal skin and a lower stiffness index compared to 

age-matched controls (Lei et al, 2006, Epstein et al, 2008).  The resiliency of the apical 

support structures such as the uterosacral ligaments has also been found to be 

significantly reduced among women with symptomatic uterovaginal prolapse (Reay et al, 

2003). However, those results contain a systematic bias in that the mechanical tests were 

all conducted in vitro when the tissue samples already had lost their smooth muscle tone. 

 As we know, the pelvic floor organs, when removed from the body, exist only as 

a limp and formless mass. Their shape and position in living women is determined by 

their tensile attachments to the pubic bones, through the muscles, and the connective 
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tissues of the pelvis. The interactions of levator ani muscles, apical connective tissue in 

the form of the cardinal and uterosacral “ligaments”, and the connective tissues forming 

the anterior vaginal wall combine to form the anterior compartment support system.  

The word ligaments is here placed in inverted commas because these are not ligaments in 

the orthopedic sense of the word, but instead are comprised of mesenteric attachments 

involving smooth muscle, nerve and vascular tissue, in addition to connective tissue.  

Clearly, given the relative complexity of the anterior vaginal wall support 

structures and the fact that in vitro tests may not really represent their behavior adequately, 

it would be better to evaluate their load-displacement behavior in vivo if possible. 

Previous biomechanical models have demonstrated how the combined action of 

muscle and connective tissue contribute to anterior compartment support (Chapter 4 and 

Chen et al 2006). The simulated model can reproduce a similar size and shape of 

cystocele to that seen clinically under moderate intra-abdominal pressure.  However, a 

more sophisticated model requires validation using in vivo compliance measurements as 

well. 

Intra-abdominal pressures during cough and Valsalva have been measured during 

clinical exam (Howard et al, 2000, DeLancey et al, 2007), and displacements were 

measured during these activities have been quantified in vivo using ultrasound (Howard 

et al, 2000, Peng et al, 2007).  However, no simultaneous measurements of 

intra-abdominal pressure and prolapse development have ever been made. So the 

relationship between load and displacament remains to be elucidated.  It is tempting to 

use an inexpensive imaging modality such as clinical ultrasound to make such 

measurements.   But it is simply not feasible because contact pressure between the 

ultrasound probe and the prolapse would distort the very measurements being made. 

Dynamic MR imaging allows superior visualization of soft tissue movement 

without direct contact pressure.  As such it is ideal for looking at displacement of the 

anterior compartment during abdominal loading or Valsalva. If we now add a novel 

method for measuring intra-abdominal pressure synchronously to the dynamic MR 

images being made, this permits simultaneous measurements of both abdominal pressure 

and anterior wall shape and displacement. The ability to determine the amount of anterior 

compartment displacement under a known level of intra-abdominal pressure loading 
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allows a calculation of compliance to be made.   

It was therefore our objective to test the null hypothesis that anterior compartment 

compliance does not differ between women with and without prolapse and to explore 

biomechanical factors predicting variation in cystocele size. 

 

6.2 Methods 

 

Nineteen parous women with normal support (N=10) and varying degrees of 

anterior compartment prolapse (N=9) were taken from an ongoing study [mean ± SD Age: 

controls = 62 ± 10 yrs, cases = 53 ± 12 (p=.101) Parity: controls = 3 ± 2, cases = 3 ± 1, 

(p=.565). A catheter was placed in the bladder and connected to a pressure monitoring 

device (Datascope, Montvale, N.J.) to measure abdominal pressure. MRI was performed 

on a 1.5-T system (Signa, General Electric, Milwaukee, WI) using a four-channel, torso 

phased-array coil with the subject in the supine position. Before starting the examination, 

the patient was instructed in regards to the straining maneuvers to be performed during 

the examination, starting from minimal to maximal straining. For dynamic imaging, a 

multiphase, single level image of the pelvis in the mid-sagittal plane was obtained 

approximately every second over an interval 23 – 27 s using a T2-weighted, single-shot, 

fast spin-echo sequence (Repetition time (TR) = 1,300 ms; Echo time (TE) = 60 ms; slice 

thickness = 6 mm; field of view = 32 – 36 cm; matrix = 256 × 160; one excitation and 

half-Fourier acquisition). The time needed to actually acquire each of the images was 

determined by the patient’s weight and was approximately one second. A set of 20 

successive images were acquired in 23 – 27 s during rest as well as a graded Valsalva 

effort in the following manner.  The operator instructed the subject to hold her breath in 

inspiration and initiated the scan.  After 5 s of imaging with the subject at rest the 

operator instructed the subject to strain minimally for 5 s, moderately for 5 s, and 

maximally for 5 s, then to breath normally and relax for another 5 – 7 s before ending the 

acquisition. Usually, three images were acquired at rest during suspended inspiration, 12 

during the graded Valsalva effort, and five during post-Valsalva relaxation and normal 

breathing. The most dependent bladder point was plotted on each image (Figure 6-1). The 

mean location of the normal resting bladder point has been previously determined in 20 
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nulliparous women (Summers et al, 2006).  The displacement of the dynamic MR 

bladder point relative to the normal location in nullipara was determined using MATLAB 

v7.0 (MathWorks, Natick,MA). Abdominal pressure and bladder displacement was 

plotted for each subject and best-fit lines for the loading portion of the curve to the 

maximum displacement were obtained using linear regression (the line slope is a measure 

of compliance)(Figure 6-1). Bivariate analysis (Student t-test) comparing cases and 

controls and multivariate analysis of all subjects (correlation coefficients and linear 

regression modeling) were performed. 

 
Figure 6-1 The upper tracings were constructed from dynamic mid-sagittal images of the subject 
whose lines is marked with an asterix. Black dots represent the most dependent bladder point and 
black triangles the location of the normal bladder point in nullipara. The graph showed the 
relationship between intra-abdominal pressure and bladder location during loading (solid tracing) 
and unloading (dashed tracing) cycle. Straight line is the best fitted line for the loading curve. 
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6.3 Results 

The mean (± SEM) compliance was higher for cases (0.5 ± 0.06 mm/cmH2O) than 

controls (0.3 ± .07 mm/cmH2O, p=.039). The linear relationship of the loading curve was 

demonstrated by coefficients of determination (R2) ranging from 0.21 to 0.98. There was, 

however, variability in compliance (line slope) between subjects (range: 0.005 to 0.097 

cm/cmH2O, Figure 6-2). The mean maximum displacement for the bladder was 4.6 cm.  

The mean resting bladder point in cases (2.4 ± 0.5 cm) was more displaced relative to the 

nullipara than controls (0.9 ± 0.1 cm, p= .024). The mean maximum pressure for controls 

(70.0±23) was not significantly different than that for cases (87.0 ± 27) (p=.154). Pearson 

correlation coefficient between maximal bladder displacement and 1) compliance was 

0.86 (R2=.75, p<.001), 2) resting bladder point was 0.74 (R2=.55, p<.001), 3) maximum 

abdominal pressure was 0.39 (R2=.15, p=.102). Linear regression modeling showed that 

resting bladder point helps to explain 55% of the variation of maximum bladder 

displacement (p<.001). Adding compliance of anterior compartment support increased it 

to 86% (p<.001) and adding maximum abdominal pressure increased it further to 93% 

(p=.001). 

6.4 Discussion 

We have developed a novel approach which allows us to quantify the compliance 

and behavior of the anterior compartment support system under physiologic load.  Using 

this dynamic MR-based strategy, we were able to determine that patients with prolapse do 

have a more compliant anterior compartment support system compared to controls.  

Since compliance has an inverse relationship to stiffness, this corroborates earlier data 

suggesting that women with prolapse have less stiff vaginal tissues (Lei et al, 2007, 

Epstein et al, 2007).  When we performed an analysis to determine the contribution of 

factors to the development of anterior compartment prolapse, as expected we found that 

compliance and abdominal pressure correlated strongly with descent of the anterior 

vaginal wall.   
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Figure 6-2 Best fit lines for the loading curves for all subjects. Solid lines present data for women 
with prolapse, dashed line were the data for women with normal support. 
 

 

 

This study extends the existing literature on the biomechanics of pelvic organ 

prolapse in two important ways.  The first is that it uses an in vivo material property 

testing method to compare women with and without prolapse.  Numerous investigators 

have used in vitro testing method using uni-axial tensiometer to test the property of 

vaginal biopsy specimens (Lei et al, 2007, Rubod et al, 2008), however those specimens 

are lack of smooth muscle tone which exists in living women, also the loading applied to 

those specimens during uni-axial testing is not resemble the physiological loading in 

living women. Second, we were surprised to find that resting bladder point alone 

explained 55% of the variation bladder wall descent.  This finding that prior to loading, 

the starting state of the bladder in women with prolapse differs from those with normal 

support is intriguing.  This may represent long term adaptation of the anterior support 
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system which we currently are not able to quantify.  For example, stretching and 

elongation of the connective tissue supports of the anterior compartment which has 

occurred over time. 

 We encountered several challenges during this study. There tends to be variation in a 

woman’s levator muscle activity during a Valsalva maneuver, despite similar instructions 

being given. For example, during a pelvic examination women tend to contract their 

muscle during Valsalva when they are afraid to pass gas, instead of relaxing their muscle 

as instructed.  Some may be less inhibited in the MR scanner since no one else is in the 

room with them.  Also the effort that women develop during Valsalva can vary from one 

time to the next.  The size of the cystocele may vary from one trial to another, even in 

the same subject, despite careful coaching and training during an office visit that was 

always conducted before the visit at which the dynamic MR exam was conducted. Lastly, 

the 1 Hz data collection rate for the dynamic MR images precluded any meaningful 

measurements from being made during a cough (during which the peak intra-abdominal 

pressure can be reached in half a second).  For this reason, we only studied Valsalva.  

We used the displacement of the most dependant bladder point and the value of 

intra-abdominal pressure required to achieve that displacement to estimate overall 

support system compliance. Even though it is simple to measure and easy to interpret, 

one landmark measurement hardly tells the whole story about system support properties 

and using this technique we tend to lose any insights about how compliance varies from 

one region to another. To address this limitation, we explored the feasibility of using a 

non-rigid image registration method to estimate anterior vaginal wall deformation, 

thereby assessing its support system compliance (see Appendix ‘B’).  However, time did 

not permit the full development of this technique for this application.  However, the 

preliminary results were promising and this is direction that future research might follow. 
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Chapter 7 

General Discussion  

Anterior vaginal prolapse (AVP), clinically referred to as “cystocele,” is the most 

common form of pelvic organ prolapse. Despite its common occurrence, its 

pathomechanics remains poorly understood. This dissertation is a first attempt to 

understand the mechanisms underlying an anterior vaginal wall prolapse from a 

biomechanics point of view. 

 

The approach was to first use advanced magnetic resonance (MR) imaging to 

establish the normal geometry of anterior vaginal wall support system and compare 

morphological differences between women with and without prolapse. Therefore, in 

Chapter 2 a technique was developed to quantify levator ani muscle cross-sectional area 

in women with and without visible muscle defect, and with and without prolapse. A 

localized cross-sectional area decrease was found in the ventral pubic portion of the 

levator ani muscle in women with defects. Surprisingly, in the dorsal pubic portion, 

women with major defect had a slightly larger cross-sectional area compared to women 

with intact muscle, which may imply compensational tissue hypertrophy in this region. 

However muscle cross-sectional areas were not different between women with and 

without prolapse when controlling for muscle status.  This suggests that the muscle 

impairment is an important factor associated with anterior vaginal wall prolapse, but not 

the only factor. 
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In Chapter 3, we investigated how vaginal thickness and vaginal length associate with 

prolapse. We found that women with prolapse have thicker and longer vaginal walls -- in 

contrast to the common prevailing belief that it is a deterioration and thinning of vaginal 

tissue that is the cause of anterior vaginal wall prolapse. We found that descent of the 

apex of the vaginal wall and 

vaginal wall length are two strong predictors for prolapse size; in fact they explained 77% 

of variation among prolapse size. This provides the clinical evidence that apical support 

and the vaginal wall itself are important support elements as well. 

 

Therefore, the disease model we proposed is that the occurrence and magnitude of 

AVP is not explained by any single mechanism, but involves a combination of connective 

tissue support failure at one or more sites (including apical and/or paravaginal support) 

and also involves an interaction with pubococcygeal muscle impairment. 

 

We tested this idea using biomechanical computer models, including both a 

theoretical 2D lumped parameter model (Chapter 4) and an anatomically more accurate, 

3D, subject specific finite element model (Chapter 5).  Those validated models allow us 

to analyze the pathomechanics of anterior vaginal wall prolapse by examining “what-if” 

scenarios, which include situations that are not amenable to experimentation in live 

individuals for obvious ethical reasons.  

 

Our simulation results suggest why the levator ani muscle plays an important role in 

pelvic floor organ support, thus helping to explain the clinical observations of levator ani 

muscle impairments in these patients. For example, Delancey and colleagues found that 

women with prolapse have a larger hiatus on average (DeLancey et al. 1998), but why 

this might be so was not understood at the time. Later they found that women with 

prolapse are four times more likely to have levator ani muscle defect (DeLancey et al. 

2007). Our MRI measurements (Chapter 2) showed that visible muscle defects on MR 
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images are directly associated with decreasing of muscle cross-sectional area.  This in 

turn has been associated with a decrease in the isometric force that this muscle can 

generate and therefore the muscle’s ability to resist stretch. This can help to explain why 

the hiatus may be larger in prolapsed women, but did not really explain why prolapse 

occurs. Our model simulations suggest that the impairment in pubic portion of levator ani 

muscle causes the enlarged hiatus which observed in these women.  This allows a longer 

length of vaginal wall to be exposed to the action of a pressure differential between high 

intra-abdominal pressure (during physical activities such as straining, coughing, lifting, 

etc) and low atmosphere pressure, resulting in an increase in larger vaginal tissue stress 

and placing more load on connective tissue support. This increase stress drags down the 

apex and results in cystocele formation. Our model (Chapters 4 and 5) provided 

mechanistic insight in the relationship between muscle impairment and cystocele 

formation helping to link the clinical findings reviewed above. 

 

The models also help to explain the importance of apical support. With muscle 

impairment present and the anterior vaginal wall subjected to a pressure differential 

loading, with intraabdominal pressure acting on its superior surface, and atmospheric 

pressure acting distally on its inferior surface, this tensile load has to be resisted by both 

apical and paravaginal connective tissue supports. Our model suggested that apical 

impairment resulted in a larger cystocele size compared to paravaginal impairment, a 

result which agrees with Summers’ clinical finding (Summers et al. 2005). 

 

This dissertation therefore extends the existing literature on pelvic organ prolapse 

mechanism. We can see this by examining Figure 7-1 which shows the extant 

understanding supported by scientific data at the time this dissertation research was 

started in 2002. In this understanding intra-abdominal pressure loaded on anterior 

compartment causes the tension in paravaginal support and vaginal wall itself.  

Impairments in paravaginal connective tissue and/or the weakening of anterior vaginal 

wall were thought to result in an abnormal vaginal elongation and in turn cause vaginal 

bulging based on the action of its geometric constraints, such as at the apex, paravaginal 

attachments and the distal location of vaginal wall. The biomechanical studies had 
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concentrated on the material properties changes observed in the vaginal wall and its 

supporting connective tissue. 

 

This dissertation is the first time the interaction between muscle, connective tissue 

and anterior vaginal wall structures has been systematically investigated in the presence 

and absence of structural defects. Figure 7-2 shows a conceptual (systems analysis) 

model of our current understanding of the biomechanical mechanism underlying 

cystocele formation. The black portion shows the existing understanding at the time this 

dissertation started. The dark grey portion shows the contribution of this dissertation 

work. The light grey portion shows hypotheses yet to be investigated in the future. 

 
Figure 7-1 The understanding of cystocele formation supported by scientific data extant at the time 
this dissertation work started in the year 2002. IAP denotes intra-abdominal pressure; AVW: 
anterior vaginal wall; T: tension; and ε : strain. 
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Figure 7-2 A new conceptual (systems analysis) model for the mechanism of anterior vaginal wall 
prolapse showing the factors leading to the development of a cystocele of size ‘d’. The black 
‘putative’ portion represents the historical understanding in the year 2002 (when this dissertation 
research was started). The dark grey ‘novel’ portion represents the contribution of this dissertation. 
In particular, the idea of focusing on the pressure differential acting on the exposed distal portion of 
vagina as the driving force to the development of prolapse (Chapter 4 & 5) is held to be a key 
contribution. The light grey ‘potential’ portion represents tissue adaptational mechanisms that 
could act over time and need to be investigated in the future. In this dissertation the effect of a 
single loading cycle, with different magnitudes of intra-abdominal pressure, IAP, was investigated, 
but the effect of multiple loading cycles should be investigated in the future. IAP denotes 
intra-abdominal pressure; PVM: pubovisceral muscle, pubic portion of levator ani muscle; AVW: 
anterior vaginal wall; α : active contraction of levator ani muscle; P0: atmosphere pressure;  Δp : 
pressure differential ; T: tension; and ε : strain. 
 

The core concept is that impairment weakening the levator ani muscle’s (box 5 in 

Figure 7-2) resistance to stretch causes an enlarged genital hiatus, which exposes longer 

the anterior vaginal wall (box 1) to a pressure differential, which causes abnormally 

larger tensile stress being placed on the paravaginal support (box 4), the apical support 

(box 7) and the anterior vaginal wall (box 2), causing the abnormal elongation in those 

structures, eventually causing cystocele formation (model output, “d”).  

 

There are some positive feedback mechanisms in this conceptual model which 

provide insights that help to explain how cystocele can gradually develop over the years. 

The exposed anterior vaginal wall causes the tension in vaginal tissue because of pressure 

differential. This tension loads the apical support system and causes apical descent. Then 
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this apical descent causes a longer length of vagina to be exposed to the pressure 

differential which in turn causes larger tension in vaginal wall and larger loading on 

apical support until a new equilibrium is again established in the system. A second 

positive feedback mechanism is caused by the anterior vaginal wall having a trapezoidal 

shape - narrower at distal end than at the apex.  As increasing vaginal length is exposed 

to the pressure differential, the area of vagina exposed to the pressure differential will 

increase non-linearly due to this trapezoidal shape, thereby leading to a non-linear 

increase in the force dragging down the apex. Thirdly, an impairment during vaginal birth 

or due to intrabdominal pressure overloading during activities like lifting, tripping or 

slipping, could injure the apical support system and thereby decrease the stiffness of 

apical support system material properties; this  will cause an even larger apical descent, 

and eventually a larger cystocele.  

 

This conceptual model provides useful insights that help explain why vaginal parity 

is the most important risk factor to predict prolapse and how insults to the pelvic floor 

during vaginal birth in a young woman can cause cystocele formation later in the 

woman’s life (usually starting to become symptomatic in their 50s or 60s). 

 

In this dissertation, we did not directly consider the mechanisms of adaptation in 

tissues loaded over longer periods of time (Figure 7-2: light grey “future” portion). Our 

MR imaging studies showed that women with prolapse have slightly larger muscle 

cross-sectional area in their dorsal portion of levator ani, they also tend to have larger 

vaginal cross-sectional area and larger vaginal length. These findings suggest tissue can 

slowly adapt to abnormally increased loading placed onto them as the result of muscle 

impairment. This might be another reason for the delay we see in cystocele formation 

over the years between vaginal delivery and when cystocele is first noticed.  

 

There are several limitations to the approach used in this dissertation. First, all the 

MRI measurements were landmark-based and relied on considerable anatomical expertise. 

Second, subject’s levator ani muscle activity during Valsalva maneuver is difficult to 

control. Even though we did carefully train subjects to relax their muscle when increasing 
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their intra-abdominal pressure, variation in Valsalva effort and activity of levator ani 

muscle during a Valsalva can occur, cystocele formation during the Valsalva can be trial- 

and subject specific. However the effect of active muscle contraction has yet to be 

incorporated into our model simulations. Clearly, voluntary or involuntary increases in 

levator activity would tend to stiffen the muscle by engaging more muscle cross bridges 

in the strongly bound state, thereby increasing its resistance to stretch deformation, and 

vice versa.  So the higher the levator stiffness the more resistance there is to hiatal 

expansion.  Third, material properties were assumed to be classically hyper-elastic in 

nature. Time-dependent factors such as a tissue’s viscous properties and the effects of 

loading rate, number of loading cycles were not addressed in the model. It would 

certainly have been better to have used visco-hyperelastic properties in the models had 

they been available, which was not the case at the time of writing.  Fourth, the tissue 

failure criteria and the possibility of tissue adaptation (whereby a tissue loaded 

repetitively over time might change its material properties such as stiffness by changing 

its structure or density) were not considered in this model. Fifth, impairments in support 

structures were simulated simply by decreasing their stiffness; the initial geometry 

changes caused by impairment were also not considered at present time.  In the case of 

the apical support, the 50% decrease in stiffness was simply an arbitrary value.  It 

remains to be seen whether future experimental measurements show impairments of this 

magnitude.  Sixth, the anatomy of some regions, especially the paravaginal attachments, 

and the attachments of the distal vagina remain to be defined in detail, so these need to be 

studied in the future and incorporated into the model.  For example, it is likely that the 

distal end of the vagina is not fixed in every patient and its attachment can deform and 

even translate distally under abdominal pressure loading in some patients.  Seventh, 

even though our models have been shown to be able to reproduce a similar size and shape 

of cystocele as that of seen in the real patient, a more extensive, specific and quantitative 

model validation method is still in the future. Also, we did not consider inertial loading 

effects caused by any deceleration of abdominal content momentum by the apical support 

and pelvic floor.  Presumably these inertial effects are small during the slow movements 

associated with a Valsalva.  But they can be large during vigorous physical activity such 

as jump landings.  
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Despite these limitations, we believe the model captured many of the important 

features of cystocele formation and the results support the working hypothesis posited in 

Chapter 1. 
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Chapter 8 

Conclusions 

 

This dissertation is a first attempt to understand the biomechanical mechanisms 

underlying an anterior vaginal wall prolapse using MR imaging and biomechanical 

modeling approach. We evaluated the effect of pathological changes in three components 

of anterior vaginal wall support: 1) levator ani muscle, 2) vaginal wall, and 3) paravaginal 

and apical suspension. The following conclusions were drawn: 

 

1. Women with major defects exhibited a smaller (i.e., 50% less than women without 

defect ) cross-section area in the ventral portion of the levator ani muscle, whereas 

in the posterior portion of the muscle, women with major defects exhibited a slightly 

larger (17%) cross-section area compared to those without defects. However 

cross-sectional area measurements did not show statistically significant differences 

between women with and without prolapse for each level of defect.  There was 

evidence of compensatory muscle adaptation and hypertrophy in the region of the 

levator ani adjacent to the defect site.    

2. Using a similar technique, vaginal cross-sectional area was larger for women with 

prolapse compared to women with normal support.  Positive correlations were 

found between anterior vaginal wall descent, cystocele size, and anterior vaginal 

wall length. Combined with apical descent, these parameters explained 77% of 

cystocele size. 
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3. A 2-D, sagittal plane, lumped parameter model showed that a combined impairment 

in both muscular and connective tissue support of the anterior vaginal wall was 

needed to produce 

4. the largest cystocele. A 90% impairment of apical support led to a 530% increase in 

anterior wall prolapse in the presence of a 60% pubovisceral muscle impairment.  

4.  A 3-D, subject-specific, anatomically accurate, finite element model demonstrated 

that realistically-shaped and -sized cystoceles can develop due to a levator defect.  

This allows a pressure differential to act across the distal vaginal wall, thereby 

tensioning the vaginal wall and its apical supports, which in turn causes the 

prolapse to form in the distal vagina.  This sequence of events helps to explain the 

clinical observations of hiatal size and muscle weakness in women with AVP.  

5 By simultaneously measuring intra-abdominal pressure as the displacement of the 

most dependent bladder point, the compliance of the anterior vaginal wall support 

system in women with prolapse was estimated as 0.5 mm / cm H2O, or 67% higher 

than was found in healthy age-matched controls.  This suggests that in women with 

prolapse, apical support compliance is increased relative to controls.
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Chapter 9 

Suggestions for Future Research 

This dissertation provides useful insights into biomechanical mechanisms underlying 

an anterior vaginal wall prolapse. We focused on the interplay among: 1) levator ani 

muscle, 2) anterior vaginal wall, and 3) apical and paravaginal connective tissue support.  

We also investigated the mechanical factors resulting from the alterations in these 

supports that are involved in the development of prolapse.  There are many factors that 

remain to be investigated, such as the effect of vaginal childbirth, the effect of aging on 

tissues, the effect of occupations involving heavy lifting and chronic coughing which 

both heavily load the pelvic floor, and the effects of collagen and elastin disorders, 

neuromuscular dysfunction, hormonal effects as well as tissue adaptation over time. 

These effects are all worthwhile investigating in the future.  

 

The initial geometry used in the present model was based on the anatomy of a single 

woman with normal support. How abnormal initial geometry might affect the stress 

distributions in different support structures and lead to cystocele formation remains to be 

investigated. Also the morphological variation in the anterior vaginal wall support system 

that exists in a population needs to be delineated, as do how those variations affect the 

formation of the cystocele.   

 

The present 3D model has a simplified structure and geometry. The model can be 

improved by incorporating the perineal body and its support, and a separated posterior 

vaginal wall and rectum, so that organ competition during the development of 
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prolapse can be studied.  Also in some regions, the functional anatomy of the 

paravaginal support needs to be further clarified and implemented in the model.  

 

Studies are needed to provide the model with more accurate material properties. 

Because most tissues are highly anisotropic, biaxial test data will be needed along with 

muscle fiber and collagen fiber mapping. The lack of representation of striated levator 

and smooth muscle tone and activity also needs to be remedied.  Finally, data are needed 

on the visco-hyperelastic behavior and injury criteria of the salient tissues.  Once 

available, the effects of different pressure and inertial loading rates can usefully be 

examined. Finally a more specific and extensive model validation technique is needed for 

future models that take into account any inter-individual and ethnic morphological 

differences.  
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Appendix A 

Cardinal and Uterosacral Ligament Load-Sharing Depends on 
Their Relative Orientations 

ABSTRACT 
Objective: The aim of this project is to use a 2-D biomechanical model to investigate how variation in 

cardinal and uterosacral ligament inclinations affect the tension in each ligament as it supports the 

pelvic viscera (“pelvic load”) in static equilibrium.  Data for the 2-D model was derived from 3-D 

models of the cardinal and uterosacral ligaments of women with normal pelvic support.   

Methods: Supine MRI scans of volunteers with normal support on POP-Q (all points at least 1 cm 

above the hymen) examination were obtained from a study of pelvic organ support.  3-D models 

were constructed from a convenience sample of 15 women in whom axial and coronal proton density 

MR scans clearly showed ligament anatomy that could be reconstructed using the 3-D Slicer© 

software. Each model was segmented into equal parts using I-DEASTM software, whereupon the 

centroid of each model segment was found.  The 3-D lines-of-action of the four ligaments were then 

determined either using these centroids or their approximate origin and insertion points.  The angles 

between the ligaments (U-C) and of each ligament relative to the cranio-caudal body axis (C, U) were 

measured.  We represented the averaged actions of the left and right uterosacral ligaments in the 

sagittal plane by a single cable (whose tension is Tu) and, similarly, the left and right cardinal 

ligaments by a second cable [tension: Tc].  A “pelvic load” (arbitrarily set at 1 Newton [N]) was 

suspended from each ligament and deflected by the levator plate whose angle was set using MRI 

measurements.  Tu and Tc were then calculated for each individual in the upright posture using their 

measured angles.   
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Results:  Tc was 51% greater than Tu (P=0.0002).  However, the variability (range×100%/mean 

tension) of Tu was greater (98%) than the variability of Tc (36%).  The variance in angle C was 

larger than the other two angles.   

Conclusion: Biomechanical model analysis using data from women with normal support suggests that 

the cardinal ligaments may carry more tension than the uterosacral ligaments.  However, the 

variability in uterosacral tension is greater across individuals.  Comment: Individual differences in 

ligament geometry might predispose a certain woman to ligament injury under conditions of increased 

ligament load (e.g. loss of pelvic muscle support).   

 

Introduction 

The cardinal and uterosacral ligaments have long been credited with contributing to 

utero-vaginal support.  Varying anatomists have studied these structures from cadaveric 

dissections and cross-sectional anatomy (Blaisdell 1917, Campbell 1950, Range 1964, 

DeLancey 1992).  These studies have provided some understanding of the structures’ 

histologic content and structural arrangement.  However, a biomechanical understanding 

of how the ligaments function to provide pelvic organ support has been lacking.  The 

biomechanical relationship of the ligaments can be simplified as being analogous to a 

light suspended by two cables.  In this example, the light represents the pelvic viscera 

and provides the “load” or force placed on the cables.  The cables are the cardinal and 

uterosacral ligaments.  The angles of inclination of the cables or the ligaments affect the 

tension placed on each ligament as it supports the pelvic viscera.  These angles can be 

estimated from 3-D models of the cardinal and uterosacral ligaments constructed from 

magnetic resonance images.  These calculations can then be used to develop 2-D 

biomechanical models to investigate how variation in inclination of the cardinal and 

uterosacral ligaments affect the tension in each ligament as it supports the pelvic viscera 

(“pelvic load”) in static equilibrium.   

Materials and Methods 

Supine MRI scans of 15 volunteers with normal support (all points at least 1 cm above 

the hymen) on POP-Q examination and clearly defined cardinal and uterosacral ligament 
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anatomy were selected from a larger study of over 300 women with and without normal 

pelvic organ support.  All MR scans were obtained as multiplanar two-dimensional fast 

spin proton density MR images (echo time 15 ms, repetition time 4000 ms) using a 1.5 T 

superconducting magnet (General Electric Signa Horizon LX) with version 9.1 software.  

The field of view in axial and coronal images are both 16x16 cm and the field of view in 

the sagittal images is 20x20 cm.  All three views had slice thicknesses of 4 mm with a 1 

mm gap between slices.   

Axial and coronal MR-images were imported into a three-dimensional (3-D) imaging 

program (3-D Slicer, version 2.1b1) and aligned using anatomic landmarks.  The 

uterosacral ligament was traced on axial MR images (Figure A-1) and the cardinal 

ligament was identified and traced on coronal MR images (Figure A-2).   
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Figure A-1. Tracings of the uterosacral ligament on axial MR images. 
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Figure A-2. Tracings of the cardinal ligament on coronal MR images. 

 

Figure A-3. Left lateral view of 3-D cardinal and uterosacral ligament models. Arrows demonstrate 
the line of action of the ligaments.  C: cardinal ligament; US: uterosacral ligament PS:pubic 
symphysis; U: uterus; V: vaginal;  
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Figure A-4. Determining the lines of action of the ligaments. a) 3D models of the right cardinal and 
uterosacral ligament. b) Using best fit line through centroids to determine the axis of ligaments. c) 
Measuring the angle between the cardinal and uterosacral ligament.  

θ 

Cardinal 
Ligament 

Uterosacral 
Ligament 

a b c 

3-D volumetric models were constructed from these axial- and coronal traces using 

the 3-D Slicer© software (Figure A-3).  The 3-D models were then imported into 

I-DEASTM version 9.0 (EDS, Plano, TX), an engineering graphics software.  Each 

model was segmented into equal parts using I-DEAS, and the centroid of each model 

segment was found.  The 3-D lines-of-action for the four ligaments were determined by 

using the best fitted straight line of the centroid (Figure A-4).  For four of our models, 

subjects had very curved uterosacral ligaments because of the supine acquisition of the 

MR scans. For those models we determined the line-of-action by connecting the origin 

and insertion points.  
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Figure A-5: Suspension model 

The angles between the uterosacral and cardinal ligaments (U-C) and of each ligament 

relative to the cranio-caudal body axis (C, U) were measured in 3-D space.  These 

angles were then projected onto the sagittal plane and used for the angles in the 2-D 

biomechanical model (Figure A-5).  In this model, we represented the averaged actions 

of the left and right uterosacral ligaments in the sagittal plane by a single cable (whose 

tension is Tu) and, similarly, the left and right cardinal ligaments are represented by a 

second cable (Tc).  A “pelvic load” (arbitrarily set at 1 Newton [N]) was suspended from 

the ligaments and deflected by the levator plate (Figure A-1) whose angle was set at 45o 

from the horizontal (using MRI measurements of women with normal support).  We 

calculated the tension placed on the cardinal and uterosacral ligaments using these 

parameters.  Secondary analysis was performed using levator plate angle (LPA) of 54o 

based on measurements of prolapse patients. Tu and Tc were then calculated for each 

individual in upright posture using their measured angles.   

 
Results 
 
The variance in angle C was larger than the other two angles.  Using the levator plate 

angle of women with normal support (45o), the tensions in the cardinal and the 

uterosacral ligaments were almost the same.   Changes in the levator plate angle caused 

changes in the tension on the ligaments.  If the levator plate was changed to 54o as in 
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prolapse geometry, Tc (0.74 N) was 51% greater than Tu (0.49 N) (P=0.0002).  However, 

the variability (range×100% / mean tension) of Tu was greater (98%) than the variability 

of Tc (36%).  

 

Table A-1 Result 
 

Discussion 

The geometry of the cardinal and uterosacral ligaments and their orientation relative to 

the direction of the force placed upon them affects their tension.  Changing the angles of 

the ligaments relative to the body axis also changes their angles relative to the loading 

force thereby changing ligament tension.  The ligament which is more aligned to the 

loading direction will have a greater tension than the ligament that is less aligned.  

Finally, changing the levator plate angle from 45o (normal women) to 54o (prolapse 

women) increases the difference between the angles of the ligaments relative to the load, 

thereby increasing the difference between Tc and Tu. The cardinal ligaments then carry 

more tension than the uterosacral ligaments because they are better aligned with the 

pelvic load force than the uterosacral ligament.  Moreover, inter-individual variation in 

the calculated tension in the uterosacral and the cardinal ligaments varies widely.  

Therefore, there may be certain individuals who, because of their geometry, have 

ligaments subjected to greater tension for any given pelvic load.  

The uterosacral and cardinal tissues are critical components of Level I support and 

provide support for the vaginal apex (DeLancey et al 1992).  The cardinal ligaments are 

oriented in a relatively vertical axis (in the standing posture) while the uterosacral 

 Mean ± SD Min Max 
C (o) 25.0 ± 8.6 13.2 47.0 
U (o) 81.0 ± 5.9 69.0 92.5 
U-C (o) 73.5 ± 8.1 59.0 80.6 
Tc (N) 
LPA=45o 0.62± 0.09 0.47 0.77 

Tu (N) 
LPA=45o 

 
0.63±0.120.12 0.36 0.77 

Tc (N) 
LPA=54o 0.74 ±0.08 0.63 0.89 

Tu (N) 
LPA=54o 0.49 ±0.13 0.19 0.67 
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ligaments are more dorsal in their orientation.  Neither are true ligaments in the sense of 

a skeletal ligament that is composed of dense regular connective tissue similar to knee 

ligaments.  They are “visceral ligaments” that are similar to bowel mesentery.  They 

are made of blood vessels, nerves, smooth muscle, and adipose tissue intermingled with 

irregular connective tissue.  They have a supportive function in limiting the excursion of 

the pelvic organs much as the mesentery of the small bowel limits the movement of the 

intestine. When these structures are placed on tension, they form condensations that 

surgeons refer to as ligaments (Campbelln 1950, Range et al 1964).   

Both the cardinal and the uterosacral ligaments are visible from pelvic MR images.  The 

cardinal ligament is a mass of retroperitoneal areolar connective tissue in which blood 

vessels predominate; it also contains nerves and lymphatic channels (Range et al 1964).  

It has a configuration similar to that of “chicken wire” or a fishing net in its natural state 

but when placed under tension assumes the appearance of a strong cable as the fibers 

align along the lines of tension (Range et al 1964).  Because of it relatively vertical 

orientation, it is best seen on the coronnal MR images.  It is demarcated by the vessels 

and lymphatic elements lateral to the pelvic organs (Figure A-2).  The 3-D models of the 

cardinal ligaments often have an amorphous “cloud-like” appearance which at times 

made approximations of their lines of action challenging. 

The uterosacral ligaments are bands of tissue running under the rectovaginal peritoneum 

composed of smooth muscle, loose and dense connective tissue, blood vessels, nerves, 

and lymphatics (Campbell 1950).  They originate from the postero-lateral aspect of the 

cervix at the level of the internal cervical os and from the lateral vaginal fornix 

(Campbell 1950).  Because of their relatively antero-posterior orientation, they are best 

seen in the axial scan images.  While macroscopic investigation observed insertion of 

the ligament to the levator ani, coccygeus, and the presacral fascia (Blaisdell 1917), MRI 

examination showed the uterosacral ligaments overlie the sacrospinous ligament and 

coccygeus in 82% of the cases and over the sacrum in only 7% of the cases (Umeck et al 

2003).  The difference between the appearance of these structures in MRI and on 

dissection may have to do with the tension placed on the structures during dissection and 

will require further research to clarify.  The 3-D models from the tracings showed the 

uterosacral ligaments to have a “band-like” appearance. 



 138

This study is unique in its attempt to understand how the orientation of the cardinal and 

uterosacral ligaments affects load sharing.  It also nicely demonstrates the important 

contribution of the levator plate angle to this arrangement.  Small changes to the levator 

plate angle in the 2-D model changed the tensions on both of the ligaments.  The 

technique developed in this study of using 3-D measurements and applying them to 

simplified biomechanical models is an important tool in furthering our understanding of 

pelvic organ support.  The limitation is that these are preliminary results which will 

likely need refinement.  We hope to continue this work in the future. 
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Appendix B 

Vaginal Wall Deformation Estimation Using Non-Rigid Image 
Registration 

 
ABSTRAT 

 
Anterior compartment support system composed of a variety of structures: levator ani muscle, apical 

and paravaginal connective tissue and anterior vaginal wall itself. The unique mechanical properties of 

each of these structures form the composite compliance of anterior compartment support in living 

women. It would be helpful to be able to associate anterior vaginal wall deformation pattern under 

intra-abdominal pressure loading with structural impairment. In this chapter, we present an approach 

toward the quantification of anterior vaginal wall deformation via non-rigid registration of serial 

dynamic MR images when women perform Valsalva using the framework implemented in the Insight 

toolkit. Demons registration method was shown to perform well. This lay the groundwork for more 

sophisticated validation of biomechanical modeling using the finite element method. 

 
Introduction 
 
The interactions of levator ani muscles, apical connective tissue in the form of the 

cardinal and uterosacral ligaments and the connective tissues forming the anterior vaginal 

wall combine to form a complicated anterior compartment support system. 

 

By observing from mid-sagittal dynamic MR sequence during Valsalva, we noticed that 

the deformations of pelvic floor region are distinguished between women with normal 

support and women with AVP. Even within the women with AVP, the deformation 

patterns are very different in some from the others. 
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Previously we assess the anterior compartment compliance in vivo by tracing the location of most 

independent bladder point. However, during cystocele formation, the vaginal wall stretch is highly 

un-uniformed. And because of the anatomy of anterior vaginal wall, it is hard to identify enough 

visible landmarks to accurately estimate the deformation in different portion of anterior vaginal wall. 

The non-rigid image registration technique has been successfully used to detect the deformation of 

biological tissue and organ in other parts of the body, such as myocardial contraction, abdominal 

deformation due to respiration, lung deformation during respiration cycle and tissue changes 

secondary to tumor growth (Rueckert 1999, Petitjean 2004, Rohlfing 2004, Perperidis, 2003 

Sundaram 2005). The goal of this chapter is to investigate the feasibility of use non-rigid image 

registration technique to estimate the vaginal wall deformation when women are performing Valsalva.  

 

Method 
 
Image Requistion 

For dynamic imaging, a multiphase, single level image of the pelvis in the midsagittal plane was 

obtained approximately every second for 23–27 s using a T2-weighted single-shot fast spin-echo 

sequence (time at rest=1,300 ms, time of excitation=60 ms, slice thickness=6 mm, field of 

view=32–36 cm, matrix=256×160, one excitation and half-Fourier acquisition). The time needed to 

acquire each of the images was determined by the patients’ weight and was approximately a second. A 

set of 20 successive images were acquired in 23–27 s during rest and a graded Valsalva effort as 

follows: The operator instructed the subject to hold her breath in inspiration and initiated the scan and 

after 5 s of imaging during rest, the operator instructed the subject to strain minimally for 5 s, 

moderately for 5 s, and maximally for 5 s, then to breath normally and relax for another 5–7 s before 

ending the acquisition. Usually, three images were acquired at rest during suspended inspiration, 12 

during the graded Valsalva effort, and five during post-Valsalva relaxation and normal breathing. 

 

 
 
Demons deformable registration 
 
Intensity-based automatic deformable image registration algorithm, known as the ‘Demons’, was used 

to estimate the deformation between images. This method computes a deformable registration based 

on intensity changes and is derived from the work by Thirion (Thirion 1998). The registration is 

driven by the concept of optical flow and was initially used in computer vision research. Optical flow 

calculates an image velocity approximating image motion from sequential time-ordered images. The 

demons algorithm is based on gradient calculations from the fixed image to determine the demons 

force required to deform the moving image. The diffusion model assumes that so-called “demons” at 
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every voxel from the fixed (reference) image are applying forces that push the voxels of the moving 

image into matching up with the fixed image. The inputs to the registration are a moving image m and 

a fixed image f. The optical flow velocity can then be written as 

 

   

                         (7-1) 

 

 

v is the displacement during the time 

interval between the two image frames. 

Represents the relationship between the neighboring points in the fixed image (such as an dege), K is 

the reciprocal of the diagonal of a pixel and the (m-f) term represents the differential force of the 

interaction between the fixed and the moving images. Equation (7-1) is calculated iteratively; after 

each iteration, the optical flow computation is followed by regularization of the deformation field 

using a Gaussian filter. This method was implemented in ITK. Figure 7-1 showed the framework of 

image registration. 

 

 
Figure B-1 Image registration framework implemented using ITK 
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Result 
 
Sequential MR images during one Valsalva loading cycle were registered using Demons algorithm. 
The previous image was set to be moving image and was registered toward image at later time point. 
Deformation field was calculated and represented as deformed grid. To validate the registration, 
anterior vaginal wall at first image was traced. And it was deformed according to calculated 
deformation field between first and second image, 2’ was the deformation result. As you can see that 
anterior vaginal wall in 2’ matches well with that in MR image 2. Then sequentially 3’,4’, 5’ was 
generated by deform anterior vaginal wall based on calculated deformation field. They all match well 
with that in original MR images. 

 
Figure B-2 First row are the sequential MR images during Valsalva loading cycle. Second role are 
the calculated deformation field between adjacent images. For example 1-2 means deformation 
field between image 1 and 2. Third role, first image is the tracing of anterior vagina wall at first 
image. 2’, 3’, 4’ and 5’ are the calculated location of anterior vaginal wall. 
 
Discussion for future work  
 
This chapter provided a framework to estimated deformation field of anterior vaginal wall support 

system using demons deformable image registration technique. We can assess the system compliance 

in different support structure by analyzing the deformation in different region associated with 

intra-abdominal pressure. This lay the groundwork for more sophisticated validation of biomechanical 

modeling using the finite element method.  
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