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CHAPTER I

Introduction

1.1 Introduction

Sandwich structures, constructed by bonding two stiff, thin-walled face sheets to

a light weight, relatively flexible thick core, are widely used in various industrial ap-

plications demanding a high bending stiffness per unit weight. The large separation

introduced by the relatively thick and low stiffness core and the relatively thin and

high axial stiffness of the face sheets (compared to the core) aid in effectively increas-

ing the thickness of the sandwich beam, leading to a large bending stiffness per unit

weight. Under in-plane compression, a sandwich structure has a very different failure

mechanism than a corresponding monolithic structure. Typical sandwich panels are

shown in Fig. 1.1. Failure of a sandwich beam under end compression is by a number

of competing mechanisms, two of which are global and local buckling instabilities.

Many useful theoretical analyses have been conducted in the past to analyze the

global and local buckling of a sandwich beam. Many of these studies modeled the

face sheet as an Euler-Bernoulli beam [45, 37, 22, 1, 43] with the differences among

the analyses being in the modeling method of the core. Plantema [45] assumed

exponential functions to describe the stress decay away from the face sheet into the

core, so that the displacements of the face sheet which are transmitted to the core

1
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damp out rapidly in the thickness direction. Léotoing et al. [37], and Frostig and

Baruch [22], assumed the core as a linear elastic foundation, and applied a higher-

order theory to describe the displacement fields of the core. In the analysis of Allen [1]

and Niu and Talreja [43], the core is assumed to be a elastic isotropic material. They

suggested a unified expression for the wrinkling stresses of the possible deformation

modes expressed through a case parameter, when the beam is pinned at each end.

The effect of the core shear response and its incorporation in carrying out non-linear

material and kinematic analyses are addressed in the work of Baz̆ant and Beghini

[6], and Beghini et al. [10]. A comprehensive review of past work in sandwich beam

buckling studies, up to 1998, is contained in the review by Ley et al. [39].

A number of experimental studies have also been performed to investigate com-

pression response. Fleck and Sridhar [20] tested various sandwich columns made of

different combination of material and having different geometrical properties. They

observed different failure modes depending on the material properties of the core and

geometrical properties of the column. Fagerberg [19] uncovered a transition in the

failure mode by examining sandwich beams of different core stiffness. He postulated

that the transition from wrinkling to pure compression failure of the face sheet oc-

curs when the modulus of the core is sufficient to support the face sheet, in effect a

sandwich beam with a high ratio of Ec/Ef , where Ec is the core Young’s modulus

and Ef the face sheet Young’s modulus.

Despite of the wide ranging engineering applications of sandwich structures and

the many theoretical and experimental studies on the static response of such struc-

tures, the dynamic response of sandwich structures subjected to dynamic compres-

sive loading has not received as much attention. Since the outstanding capability

of absorbing impact energy due to a tailorable core material, “optimized” sandwich
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structures are now widely being considered for structural systems where crashwor-

thiness is an important requirement. Examples are floors of helicopters, the crew

exploration vehicle (CEV) of NASA and several ship structures.

Previous work in the dynamic domain has focused on transverse loading of sand-

wich structures, with respect to blast protection [21, 51, 59, 57]. However, an equally

important consideration for structural integrity and collapse is a thorough under-

standing of the response and failure of a sandwich structure when subjected to short

duration axial loading. For instance, modern ships used by the US navy that con-

sist of acreage application of sandwich panels can, under extreme condition such as

impacting a glazier, be subjected to suddenly applied axial compressive loads.

The objective of the present thesis is, therefore, to explore the differences in

response of a sandwich structure when subjected to static and dynamic axial com-

pressive loads. To achieve this objective, a sandwich beam type structure is studied,

both theoretically and experimentally. At the time of writing this thesis, several

publications related to the thesis work were already prepared. As a result, several

chapters in the thesis are self contained publications that have already appeared in

journals or are currently under review and in preparation. Where this is the case, a

footnote will indicate so.

1.2 Organization of the thesis

The next two chapters of this thesis address the static buckling of a sandwich

beam, where each constituent (core and face sheet) is treated within the framework

of 2D linear elasticity. Both periodic and non-periodic buckling modes are addressed

and the importance of choosing the correct work–conjugate stress and strain measure

in formulating the buckling problem is discussed. The analysis presented can be used
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as a benchmark in comparing other simplified sandwich beam models (for example,

when face sheets are treated as Euler-Bernoulli or Timoshenko beams) as well as

finite element based solution.

Chapter IV addresses the dynamic buckling of an impacted column and the time

evolution of the buckle pattern in the case of a slightly imperfect column. Initially,

new ideas related to the notion of a “critical time to buckle” are introduced using a

monolithic Euler-Bernoulli beam column that is suddenly impacted by a falling mass.

Next, the analysis is extended to a thick sandwich column, where the thin face sheets

are treated as beam-columns and the core as an equivalent elastic foundation.

Chapter V presents the result of an experimental study on the static response of

an axially compressed sandwich column. Different column length as well as different

ratios of face sheet to core thickness are investigated. Different failure modes are

identified and the result from the experiments are compared against theoretical and

finite element based prediction.

Chapter VI contains the result of an experimental study on the dynamic buckling

of a sandwich column. Sandwich columns of various lengths are subjected to axial

impact by a falling mass. Time dependent load and strain data with ultra high-

speed imaging are used to capture the dynamic buckling event. The experimental

results are compared against analytical studies of Chapter IV and finite element

based simulation of the impact event. Final conclusion and a summary of findings

are presented in Chapter VII along with suggestions for future work.

1.3 Original contributions of the thesis

1. A comprehensive 2D elastic analysis of a sandwich column under axial com-

pression loading has been conducted. The solution for both periodic and non-
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periodic buckling modes can be used as a benchmark to verify other simplified

models of sandwich columns and finite element based computation.

2. Using a 2D elasticity formulation (where both the face sheets and core are

treated as 2D elastic continua), the proper work conjugate measure for sandwich

beam buckling have been formulated, extending previous work by Bažant [5, 9,

6]. The correct FE formulation of the 2D buckling problem has been presented.

3. The “critical time to buckle”, a new notion that corresponds to the critical load

in static buckling of columns, has been introduced and quantified for a column

that is impacted at one end. The formulation has been extended to sandwich

column using a beam on an elastic foundation model.

4. A comprehensive set of experimental results in support of the theoretical findings

in items 1, 2, and 3 have been presented. In addition, new failure mechanisms

and the temporal history of how a sandwich column responds to axial impact

has been uncovered through the experimental results.
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(a)

(b)

Figure 1.1: Typical examples of sandwich constructions. (a) composite laminates face sheets cov-
ering a PVC foam core or a aramid honeycomb core (b) Aluminum face sheets with a
aluminum foam core



CHAPTER II

Exact elastic solution of the sandwich beam buckling
problem1

2.1 Introduction

Most theories on static stability problems of a compressively loaded sandwich

beam have been developed with their own sets of assumptions. These assumptions

are typically made on the basis of the beam geometry, the material behavior, and the

buckling deformation mode. Many theoretical analyses for sandwich structures have

been conducted in the past with the assumption of an isotropic core with ‘thin’ face

sheets, e.g., foam cores covered with metal or quasi-isotropic thin fiber-reinforced

laminate skins [1, 22, 38, 43, 45]. However, many sandwich structural components

used in various industrial applications consist of cores with orthotropic phases and

with face sheets whose thickness can be an appreciable amount of the core thick-

ness. The latter is true in applications involving heavily loaded marine structures.

In addition to the assumptions made on the geometry and the material, the most

common assumption on the buckling deformation mode is that of periodicity. A

large number of analytical predictions on global and local instabilities of sandwich

panels have been derived, assuming that the buckling deformation mode is sinusoidal

[1, 22, 30, 33, 38, 43, 45]. This assumption on the deformation mode precludes the

1The results in this chapter have been published as journal articles. See Ref. [30] and [29] in the bibliography.

7
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possibility of a non-uniform buckling mode, which can sometimes occur at a lower

externally applied load than the corresponding load for the periodic buckling mode.

In previous studies, the modeling methods for the face sheets and the core have

also included different sets of assumptions. Typically, the face sheets are modeled

as Euler-Bernoulli beams [1, 22, 38, 43, 45], with the differences among the analyses

being in the modeling method of the core. The core can be assumed as a model

of linear decay of through-the-thickness deflections [1], a high-order transversely

flexible material [22], an elastic foundation [38], a linear elastic isotropic material

[43], a model of exponential decay of through-the-thickness deflections [45], and so

on. Since these assumptions are valid when certain specific conditions are satisfied,

it is important to determine the range of validity of these previous theoretical studies

with respect to accuracy.

Baz̆ant and co-workers [6, 7, 8, 10] have systematically evaluated the effect of core

shear on buckling of sandwich beams where the face sheets are treated as beams.

Using an energetic variational analysis of critical loads and the initial post-critical

response, these studies have shown the form of the proper tangent shear modulus

that needs to be used in conjunction with different formulations of sandwich panel

buckling problems. Even though the significance of the proper conjugate incremental

stress and incremental strain measure for buckling problem was introduced as early

as 1971 [5], it appears that the importance of these findings with respect to the

sandwich beam buckling problem have gone unnoticed.

The sandwich beam model considered here treats both the face sheet and core as

linear elastic two-dimensional (2D) continua. The materials can be either orthotropic

or isotropic. Very general deformation modes are considered corresponding to find

various buckling deformation modes and corresponding buckling loads. This com-
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prehensive analysis on the general static instability problem of a sandwich beam is

based on the constituents remaining linear elastic.

In developing the analysis, the procedure to find the critical buckling stress is

discussed first, based on two possible buckling deformation modes of the beam: one

is referred to as wrinkling and the other as edge buckling. Both are short wavelength

buckling modes. The results obtained are compared with previous theoretical and

experimental results. Finite Element Analyses (FEA) are performed to support the

theoretical predictions.

2.2 Problem formulation

2.2.1 Theoretical study

The sandwich panel to be studied here is schematically illustrated in Fig. 2.1. The

top face sheet and the bottom face sheet with thickness of tt and tb, respectively, are

separated by the core of thickness tc. Perfect bonding is enforced at the interfaces

between the face sheets and the core. Local cartesian coordinate systems are assigned

to each layer with superscripts t, c, and b denoting the top face sheet, the core, and the

bottom face sheet, respectively. This nomenclature will be applied to any quantity

defined in this paper. The sandwich panel is subject to axial compressive loading

and assumed to undergo a plane strain deformation in the xz–plane. It is of interest

to inquire the existence of a new equilibrium state where the deformed configuration

is not the trivial uniform straining parallel to the x–axis. The method to solve this

buckling problem is similar to what has been presented by by Fu and Waas for the

2D thick orthotropic ring [23], Ji and Waas for periodic buckling of sandwich beams

[30], and for the 2D fiber micro buckling of a layered material [53].

Baz̆ant and Beghini [6, 7] showed that, for sandwich type structures with a soft

core situated at the middle, the Green–Lagrange strain measure must be used if the
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strains are small and the elastic moduli are kept constant throughout the analysis.

The objective stress measure, which is energetically conjugate to the Green–Lagrange

strain measure, is the second Piola–Kirchhoff stress, σij, and the corresponding in-

cremental stress measure is the Trefftz stress τij = σ′ij + σ0
kjui,k. A superscript “0”

is used to identify quantities associated with the initial position of equilibrium while

a superscript “ ′” denotes those quantities arising due to the disturbance from the

initial state of stress. Then, the field equations governing the incremental stresses

arising due to the perturbation in the x–direction from the uniformly strained state

are,

∂

∂x

[
σ′xx + σ0

xx

∂u

∂x

]
+

∂σ′xy

∂y
+

∂σ′xz

∂z
= 0

∂

∂x

[
σ′xy + σ0

xx

∂v

∂x

]
+

∂σ′yy

∂y
+

∂σ′zy

∂z
= 0

∂

∂x

[
σ′xz + σ0

xx

∂w

∂x

]
+

∂σ′yz

∂y
+

∂σ′zz

∂z
= 0

(2.1)

The face sheets and core are assumed to be homogeneous and linearly elastic

orthotropic solids. Consequently, it is assumed that the perturbed stresses are re-

lated to the perturbed strains in the same manner as in the unperturbed material.

Therefore, the stress-strain relationship without “′” for simplicity is

(2.2)





σi
xx

σi
yy

σi
zz

σi
yz

σi
xz

σi
xy





=




ci
11 ci

12 ci
13 0 0 0

ci
12 ci

22 ci
23 0 0 0

ci
13 ci

23 ci
33 0 0 0

0 0 0 ci
44 0 0

0 0 0 0 ci
55 0

0 0 0 0 0 ci
66








ei
xx

ei
yy

ei
zz

2ei
yz

2ei
xz

2ei
xy





(i = t, c, or b)

where ci
jk are the stiffness constants and ei

jk are the linearized strain components.

Note that the specific elastic moduli corresponding to the incremental stresses ex-
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pressed in the field equation Eq. (2.1) are used. The strains associated with the

incremental displacements are simplified to the form of

(2.3) ei
jk =

1

2

(
ui

j,k + ui
k,j

)

by employment of the classical linear elasticity theory [44].

Using the above constitutive relations, Eq. (2.2), and the strain–displacement

relations, Eq. (3.3), to eliminate the stress in favor of the strains in Eq. (2.1), yields,

(ci
11 − σi)

∂2ui

∂xi2
+ ci

55

∂2ui

∂zi2
+ (ci

13 + ci
55)

∂2wi

∂xi∂zi
= 0

ci
33

∂2wi

∂zi2
+

(
ci
55 − σi

)∂2wi

∂xi2
+

(
ci
13 + ci

55

) ∂2ui

∂xi∂zi
= 0

(2.4)

where σi is the initial stress applied to each layer. Note that the second equation of

Eq. (2.1) is automatically satisfied due to the restriction to a plane strain deformation

in the xz–plane.

The general nontrivial solution to Eq. (2.4) proceeds by seeking to examine the

presence of general deformed states of adjacent equilibrium. Thus, let the solutions

to Eqs. (2.4) be

ui(xi, zi) = e−αxi

ψ(zi)

wi(xi, zi) = e−αxi

φ(zi)

(2.5)

where α = p + ri and i is the imaginary number, defined as i =
√−1. Note that

the exponential function is used to represent the general buckling deformation mode

in the x–direction. For example, if p = 0, then Eq. (2.5) represents the typical

sine-wave type of deformation in the x–direction. Many previous studies assumed

periodic buckling modes in problems of global and local instabilities of uniformly

strained sandwich structure, but it has been shown that the sinusoidal assumption

is not always justified in the sandwich buckling problem [25, 29].
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Assuming that the sandwich beam is symmetrical, i.e., the top and the bottom

face sheet have identical geometrical and material properties, only one half of the

beam need to be considered in this analysis. Substituting Eq. (2.5) into Eq. (2.4)

and solving for ψ(zi) and φ(zi), the following characteristic equation is obtained:

(2.6) λ4 − 2
{(

1 +
1

2βi
2

)
si − βi

1 +
βi

3 + βi2

3

βi
2

}
α2λ2 + α4 1

βi
2

(1− 2si)(βi
1 − si) = 0,

where βi
1 = ci

11/2c
i
55, βi

2 = ci
33/2c

i
55, βi

3 = ci
13/2c

i
55, and si = σi/2ci

55. The four roots

of the characteristic equation are

λ1 = α
√

ρ1 + ρ2

λ2 = −α
√

ρ1 + ρ2 = −λ1

λ3 = α
√

ρ1 − ρ2

λ4 = −α
√

ρ1 − ρ2 = −λ3,

where

ρ1 =

(
1 +

1

2βi
2

)
si − βi

1 +
βi

3 + βi2

3

βi
2

ρ2 =

√
ρ1

2 − 1

βi
2

(1− 2si)(βi
1 − si).

Applying the general material properties of the sandwich beam for ρ1 and ρ2, it is

easily found that ρ1 + ρ2 < 0 and ρ1 − ρ2 < 0. Therefore, suppose that

ρ1 + ρ2 = −µ2
1

ρ1 − ρ2 = −µ2
2

(2.7)

where µ1 and µ2 are positive numbers. Then, the displacement fields of the face

sheet and the core can be obtained as follows;

ui(xi, zi) = e−αxi[
ki

1B
i sin(µi

1αzi) + ki
1A

i cos(µi
1αzi) + ki

2D
i sin(µi

2αzi)

+ ki
2C

i cos(µi
2αzi)

](2.8)
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wi(xi, zi) = e−αxi[
Ai sin(µi

1αzi) + Bi cos(µi
1αzi) + Ci sin(µi

2αzi)

+ Di cos(µi
2αzi)

]

where

ki
1 =

1− 2si + 2βi
2µ

i2

1

µi
1 + 2βi

3µ
i
1

ki
2 =

1− 2si + 2βi
2µ

i2

2

µi
2 + 2βi

3µ
i
2

.

The solutions given above are next subjected to traction and displacement conti-

nuity conditions at the interface between the top face sheet and the core;

ut − uc = 0

wt − wc = 0

∆fxt −∆fxc = 0

∆fzt −∆fzc = 0

at zt = −ht

2
and zc =

hc

2

(2.9)

and traction free boundary conditions at the outer surface of the top face sheet;

∆fxt = 0

∆fzt = 0

at zt =
ht

2

(2.10)

where ∆fxi and ∆fzi are x and z components of traction, respectively. The traction

components associated with Eq. (2.4) are

∆fx =

(
σ′x + σ0

x

∂u

∂x

)
κ + σ′xyθ + σ′xzµ

∆fy =

(
σ′xy + σ0

x

∂v

∂x

)
κ + σ′yθ + σ′yzµ

∆fz =

(
σ′xz + σ0

x

∂w

∂x

)
κ + σ′yzθ + σ′zµ

accompanying the displacements u, v, and w, where κ, θ, and µ are the direction

cosines of the normal to the undeformed boundary surface.
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In addition to the above conditions, the displacement fields uc(xc, zc) and wc(xc, zc)

may be subjected to restrictions placed on the deformation mode. In the transition

from the uniformly strained state to the perturbed state, two deformation modes

of the core are possible. The core can deform anti-symmetrically where the core

displacements associated with the perturbation from the uniform straining are con-

strained to satisfy,

uc(xc, zc) = −uc(xc,−zc)

wc(xc, zc) = wc(xc,−zc)

(2.11)

Or the core can deform in a symmetric deformation mode for which the core dis-

placements satisfy,

uc(xc, zc) = uc(xc,−zc)

wc(xc, zc) = −wc(xc,−zc)

(2.12)

Substitution of the displacement fields corresponding to different sets of boundary

conditions into Eq. (2.9), Eq. (2.10), and Eq. (2.11) or Eq. (2.12) results in a sys-

tem of eight linear algebraic homogeneous equations. Vanishing of the determinant

associated with this system gives an equation implicit in ε of the form

(2.13) f(ε, ρ, η) = 0

where ε (ε = σ/ct
55) is a normalized buckling stress and ρ (ρ = pht/2) and η (η =

rht/2) are non-dimensional deformation factors. The solution of Eq. (2.13) for a

specified ρ and η is the value of buckling stress, σ, associated with the transition to an

adjacent state of equilibrium. Once this stress is found, the constants At, Bt,. . . etc.

can be determined up to an arbitrary constant. This enables to characterize the

buckling mode shapes associated with a given value of buckling stress. In the sections

to follow, several cases with different geometrical and material properties will be

discussed and compared against previous studies.
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2.2.2 Finite element modeling

In order to support the theoretical finding, finite element (FE) computations were

performed using the commercial software package ABAQUS. A comprehensive dis-

cussion of the ABAQUS FE formulation is given later in Chapter III. Eigenvalue

buckling analyses are used to predict the buckling load and its associated buckling

deformation mode. The face sheets and the core were modeled as linear elastic 2D

continua. Eight-noded quadratic plane strain elements were used for both the face

sheets and the core. A sufficiently fine mesh was used with over 3000 elements

as shown in Fig. 2.2 resulting in characteristic element lengths that are very small

compared to the wrinkling wavelength. Possible buckling modes, depending on geo-

metrical and material parameters of the sandwich beam, observed from finite element

analyses are illustrated in Fig. 2.3. The entire beam is uniformly strained from the

left end, controlled by the axial displacement. The face sheet and the core are axially

fixed at the other end in Fig. 2.3 (b), but the boundary condition in which the core is

not subjected directly to the compressive loading is enforced to the structure shown

in Fig. 2.3 (c).

2.3 Results and discussions

The buckling deformation modes of a sandwich panel in uniaxial compression

loading depends on p and r. As discussed before, certain values of p and r that induce

specific buckling behavior will be examined. The buckling modes to be considered

here are divided into two categories; periodic and non-periodic modes.

p = 0 and r 6= 0 −→ periodic mode

p < 0 and r 6= 0 −→ non− periodic mode
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Assumption of a periodic buckling mode has been commonplace in previous studies

of the global and local buckling behavior. However, there exists the possibility that

non-periodic buckling modes may render the lowest buckling stress.

2.3.1 Periodic buckling mode

If the real part of α is zero, Eq. (2.13) is reduced to

(2.14) f̂(ε, η) = 0,

where ε is the normalized global buckling or wrinkling stress and η is the corre-

sponding dimensionless wavelength. For the numerical evaluation of the results, the

material properties used in the experiments of Fagerberg [19] have been chosen. The

material properties are listed in Table 2.1 for the lamina in the facesheet and Table

2.2 for the cores. The stacking sequence of the face sheet is [0/90]s building a total

thickness of 1mm. These material properties will be continuously used for future

studies and comparisons.

In order to understand the full buckling behavior of the sandwich beam in a

compressive load, the variation of the determinant equation, Eq. (2.14) with the

critical stress, ε, is plotted in Figure 2.4, as a function of the wavelength. The full

buckling behavior can be visualized if the determinant equation is obtained without

making any assumptions about the deformation mode of the core. Since all three

layers have to be considered here and each layer has 4 unknown constants in its

displacement fields, 12 linear algebraic homogeneous equations are deduced from 4

traction free conditions at the outer surface of the top and the bottom face sheet, 4

displacement and 4 traction continuity conditions at the interface between the face

sheets and the core.

In Figure 2.4, one solution can be found corresponding to a short wavelength,
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and two other solutions corresponding to a moderate or large wavelength. The zero

solution, however, is of no interest because it represents the pre-buckled initial equi-

librium state of the beam. The buckling stress for the anti-symmetrical deformation

mode is found to be always lower than that of the symmetrical one. Therefore, the

first root other than zero in Figure 2.4 is the buckling stress corresponding to the

anti-symmetrical deformation mode, and the second root corresponds to the symmet-

rical mode. It is interesting to note that when the wavelength is short, the two roots

collapse to a single point. This aspect will be discussed later. As the wavelength

becomes large, the double root becomes separated and the gap between the two roots

becomes wider as shown. The buckling stress for the anti-symmetrical deformation

mode decreases while the other stress increases in the large wavelength limit. For

further analysis, it is convenient to decouple the deformation modes to observe the

relationship between the buckling stress and its corresponding wavelength, and to

compare the two deformation modes. In the following discussion, the symmetric and

anti-symmetric deformation modes will be considered and treated separately.

The buckling stresses corresponding to the two deformation modes of the core are

shown together in Figure 2.5. From Table 2.2, material properties corresponding to

three cores (H30, H80, and H100) are chosen to capture the buckling behavior of the

two deformation modes with respect to variation in the stiffness of the core. As dis-

cussed in Figure 2.4, the buckling stresses are the same regardless of the deformation

modes in the regime of the short wavelength. Furthermore, it is now easily seen that

the buckling stresses of the anti-symmetrical mode are always lower than that of the

symmetrical mode. These characteristics of the buckling behavior were also shown

in Figure 2.4.



18

Short wavelength buckling

As the length of the beam becomes shorter, sandwich structures tend to fail due

to wrinkling. Since wrinkling initiates other failure mechanisms such as core shear

failure or delamination between the face sheet and core, the wrinkling stress can be

used as the compression strength of the sandwich beam. In the following section, the

discussion will be focused on this local buckling behavior, or wrinkling. Results from

the present analysis are compared with previous works by Fagerberg [19], Léotoing

et al. [37], Niu and Talreja [43], and Plantema [45].

In the short wavelength regime, the critical buckling stress corresponding to each

case in Figure 2.5 is found by computing the minimum value of ε, and the correspond-

ing η is the associated critical non-dimensional wavelength. Figure 2.5 shows that the

critical stress increases and its half wavelength decreases as the core gets stiffer. It is

interesting to note that the minimum stress corresponding to the symmetrical defor-

mation mode may coincide with the anti-symmetrical deformation mode, depending

on the tc/tt ratio in Figure 2.6. If the core is very thick compared to the thickness

of the face sheet, only the near regions of the face sheets will be affected due to the

perturbation from the face sheets and the middle area remains undeformed. This

results in little interaction between the top and bottom face sheet, so that the criti-

cal stress predicted by both deformation modes are identical in the short wavelength

limit. This wrinkling stress, obtained from the case corresponding to a large value

of tc/tt will be used for comparison of predicted wrinkling stresses with previous

analyses, as will be discussed later. For a small value of tc/tt, as indicated in Figure

2.6, wrinkling is absent and the critical stress shows a continuous dependence on the

buckling wave length, although, for tc/tt = 10, the minimum stress corresponding to

the symmetric mode is very close to that of the anti-symmetric mode.
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Comparison of different wrinkling studies

The present analysis is compared with previous results reported in the literature,

in Figure 2.7. The plot shows the critical stresses corresponding to each analysis with

various ratios of the Young’s modulus of the core and the face sheet, corresponding to

materials used in Fagerberg’s experiment [19]. In Figure 2.7, the theoretical critical

stresses and the FE predictions, except for the result by Léotoing et al. [38], show

good agreement with the experimental result in a region of moderate modulus of the

core. The values from Léotoing et al. analysis show a higher critical stress in all cases

than the experimental results and other analytical predictions. The critical stresses

from Niu and Talreja’s analysis [43] are also close to the result of the present analysis.

Plantema [45], Léotoing et al., and Niu and Talreja used the same technical beam

theory for the face sheet, however, the modeling method for the core was different

in each case, as mentioned before. Plantema used a exponential decay model for the

vertical displacement of the core, and assumed the core thickness is much larger than

that of the face sheet. Léotoing et al. developed a higher order elastic foundation

theory for the core. Niu and Talreja modeled the core as a linear elastic medium like

in the present analysis.

Even though the theoretical results agree very well with the experimental results

in a certain region, there is a sudden change in the critical stress of the experimental

results as the core is made stiffer. This is due to a transition in the failure mode

from wrinkling to kink band failure of the axially loaded fiber in the face sheet

[54]. According to Fagerberg [19], the observed failure mode of a sandwich beam

with a core that has a moderate or high modulus is not affirmatively wrinkling or

compression failure. Although the present analysis shows very good agreement the

experimental result when the core is H80 (see Figure 2.7), the real failure mechanism
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is too complicated to analyze through a model such as that discussed here. This might

be caused by the co-existence of two deformation modes shown in Figure 2.5, leading

to mode coupling, which warrants a post buckling analysis. Alternatively, a refined

micromechanics based analysis of the face sheets may be needed to capture local

face sheet instabilities. In the regime where the wrinkling occurs first, the present

analysis reproduces the experimental result very closely, and is in close agreement

with the FE prediction.

Evaluation of previous analysis

The previous analyses show similar buckling behavior with the present analysis in

Figure 2.7. However, they exhibit different characteristics when the core gets stiffer.

The analytical prediction of Niu and Talreja [43] is compared with the result from the

present analysis in Figure 2.8. The results of FE analyses are also plotted in Figure

2.8 to verify the buckling mode and stress. Figure 2.8 shows the curves for the critical

stress with respect to the ratio of the core modulus to the face sheet modulus. It is

noted that the critical stress of the present analysis in Figure 2.8 is obtained based

on the core carrying axial load because the stiffness of the core in the x–direction is

of the same order of magnitude as that of the face sheet. FE predictions indicate

that local buckling occurs first up to a certain ratio of the modulus between the face

sheet and the core and, beyond that, global buckling becomes a dominant failure

mode. The prediction of the present theoretical analysis reproduces this finding and

is in very good agreement with the finite element prediction as shown in Figure 2.8,

if the minimum stress is taken as the critical stress between the global and the local

buckling stress.

The global buckling of Niu and Talreja [43] is discounted because the local buckling

stress is always lower than the global buckling stress regardless of the modulus ratio.
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The reason that the trend of their critical stress is different from that of the finite

element analysis reported here is that the face sheet in their analysis is considered as

an Euler-Bernoulli beam. This modeling method of the face sheet places a restriction

on the prediction of the buckling of a sandwich beam with a thick face sheet. As

the ratio of the core modulus to the face sheet modulus increases, the wrinkling

wavelength decreases to the order of the thickness of the face sheet. This implies that

Euler-Bernoulli beam theory is not appropriate in that wavelength regime. However,

the critical stress predicted in [43] is lower than that of the present analysis and the

finite element analysis as shown in Figure 2.8. This is because the core is assumed

not to carry axial load. Figure 2.9 depicts the error incurred by this assumption,

i.e., the difference between the critical loads when the core carries the applied axial

load and when the core doesn’t carry the applied axial load. The critical loads are

obtained from the finite element computation. Thus, the results of Figure 2.9 can be

used to demarcate those cases that warrant neglect of the core axial load carrying

capability.

The present analysis and the FEA produce the same trend as shown Fig. 2.8, but

the present analysis continually is lower than the FEA prediction. The deviation is

perhaps caused by the FE implementation of the eigenvalue buckling problem. The

commercial code ABAQUS uses the Jaumann rate of Cauchy stress in formulating the

eigenvalue buckling problem. As pointed out in [5], this stress rate is not energetically

conjugate to any finite strain measure. Consequently, this formulation can lead to

results for buckling loads that are different than the values presented in this paper,

where a different set of conjugate incremental stress and strain measures are used to

formulate the buckling problem. The latter choice is a correct pair of energetically

work–conjugate quantities. Baz̆ant and Cedolin [9] have shown that the deficiency
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associated with the Jaumann rate of Cauchy stress may be relieved by using the

Jaumann rate of Kirhhoff stress, which is conjugate to the logarithmic strain measure

associated with the Biezeno–Hencky formulation for the infinitesimal elastic stability

problem. It is stressed again that if the incremental elastic moduli are to remain

constant during the buckling deformation, then the Green–Lagrange strain and the

second Piola–Kirhhoff stress must be used in the problem formulation. A detailed

discussion regarding the fully 3D elastic stability problem is provided in [9].

Evaluation of previous analysis for an orthotropic sandwich beam

Predictions of the present analysis are now compared with FE predictions for a

sandwich structure with orthotropic phases. H is defined as

(2.15) H =
ht

2ht + hc
,

and the length of the sandwich panel is 5ht, while the width of the panel is 10ht.

Material properties for each case are described in Table 2.3 from Kardomateas [33],

who used classical elasticity to investigate short wavelength periodic wrinkling of a

sandwich panel. In that study, non-periodic deformation modes were not addressed.

Results from [33] are compared against the present analysis and FE predictions in

Fig. 2.10. Good agreement among the present analysis, the FEA results, and results

from [33] are observed for all the cases except for Case 4 where H=0.01. In this case,

as shown in Fig. 2.10, the disagreement among the analyses are as large as 30%.

2.3.2 Edge buckling

When it is assumed that the compressive uniaxial load on the sandwich beam is

carried only by the face sheets, the FE predictions reveal that the buckling deforma-

tion is localized as shown in (c) of Figure 2.3. Goodier and Hsu [25] examined edge

buckling by modeling the face sheets as an Euler beam and the core as an elastic
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foundation. They showed that when the face sheets are sufficiently long and pinned

at both ends, and the base of the elastic foundation is free to move, the deflection is

localized at the ends and the edge buckling stress is much lower than the wrinkling

stress. The elastic foundation on the “floating” base in their work is analogous to

a core without axial load carrying capability. Since the face sheets carry practically

most of the axial load applied to an entire sandwich structure having a low modulus

core, this type of local failure should be considered carefully. In addition, experimen-

tal test conditions on compressed sandwich beams may involve boundary conditions

that preclude the introduction of load into the core.

Sokolinsky and Frostig [49] studied boundary and loading condition effects on

the deflection mode shape of a sandwich panel with a soft core using a closed-form

high-order linearized buckling analysis. The face sheets were modeled as an Euler–

Bernoulli beam and the core were modeled using the high–order theory. When the

core is “soft”, i.e., the core stiffness is much lower than the face sheet stiffness, the face

sheet absorbs most of compressive loads applied to the sandwich structure and the

buckling deformation is non-periodically localized as discussed before. They found

various non-periodic deflection modes of the sandwich panel for specific loading and

boundary conditions, while the core was assumed to carry no axial load.

The FE analysis is applied to verify non-periodic localized buckling modes as

predicted by the generalized two-dimensional analysis presented in this paper and

the results are shown schematically in Fig. 2.3, while quantitative comparisons are

indicated in Fig. 2.11. The first case, Fig. 2.3 (c1), is a sandwich beam for which

the face sheets are supported at their left edges resulting in null bending moment in

the face sheets and the beam is compressed from the right side. In the second case,

Fig. 2.3 (c2), the face sheets are simply supported at their left edges and the beam is
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compressed from the right side. The load carrying capability of the core is eliminated

in both cases. Figure 2.11 compares results of each case from the present analysis and

FE analysis. The deformation modes are extracted from the middle surface of the top

face sheet along the normalized longitudinal length of the sandwich beam. As shown

in Fig. 2.11, the present analysis results show good agreement with the results of the

FEA. For further discussion of the edge buckling results, the case corresponding to

Fig. 2.3 (c1) is now considered.

Fig. 2.12 compares the edge buckling stress with the wrinkling stress calculated

from the present analysis. The edge buckling stress can be predicted when the buck-

ling deformation mode is assumed to be non-periodic. In the present analysis, the

non-periodic buckling mode can be obtained if the real part of α in Equation Eq. (2.5)

is less than zero. The assumption of a periodic buckling mode, which is commonly

used in the sandwich beam buckling problem, results in the wrinkling stress in Figure

2.12. Material and geometrical properties of Fagerberg’s beam were again used for

the numerical evaluation. Fig. 2.12 clearly shows that the edge buckling stress is

much lower than the wrinkling stress, and the modeling of the buckling deformation

mode should be reconsidered when the core cannot sustain an applicable axial load.

As seen from the results in Fig. 2.12, it is important to understand how the sandwich

structure is loaded in order to establish whether the core carries any of the applied

load. Fig. 2.13 shows the dominant buckling behavior when different assumptions

on the deformation mode is made for a wider region of Ec/Et ratios. The geometry

of the sandwich beam is identical to those in the experiment of [19]. The face sheet

and the core are modeled as isotropic materials. In the small Ec/Et ratio regime,

periodic and non-periodic deformation modes result in the same buckling behavior.

As the core is made stiffer, edge buckling begins to dominate. The wrinkling stress is
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higher than the edge buckling stress in this regime because the core begins to carry

an appreciable amount of the axial load. Therefore, when a sandwich structure is de-

signed for the face sheet to carry most of the applied load corresponding to a specific

support and loading condition, the assumption of a periodic buckling deformation

mode may mislead the critical load prediction, unless all possible buckling modes are

considered simultaneously.

2.4 Conclusion

A two dimensional elasticity analysis for predicting general instabilities of a sand-

wich beam is presented. The face sheet and the core of the sandwich beam are

modeled as 2D linear elastic orthotropic continua. The analysis investigates different

types of buckling modes that are present in a compressed sandwich beam, including

periodic and non-periodic deformation modes. When the core is unable to carry any

significant axial load and is unconstrained from moving in the transverse direction,

edge buckling prevails. In other situations, the anti-symmetrical wrinkling mode

is found to yield the lowest buckling stress when the sandwich beam is sufficiently

short. For longer beams, global Euler buckling is seen to prevail. The transition of

the buckling mode depends on a number of factors, which include the face sheet to

core thickness ratio and the ratio of core to face sheet stiffness, for a given length

of beam. Predictions from finite element analyses have been used to support the

analytical predictions.
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Material Property Value
E1 107 GPa
E2 15 GPa
G12 4.3 GPa
ν12 0.3
ν21 0.043
t 0.25 mm

Table 2.1: Material properties of the lamina in the face sheets
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Core Young’s Modulus(MPa) Shear Modulus(MPa)
H30 20 13
H45 40 18
H60 56 22
H80 80 31
H100 105 40
H130 140 52
H200 230 85

Table 2.2: Material properties of the core material
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Case 1 Ec/Et = 0.001, νt = 0.35, νc = 0
Case 2 Ec/Et = 0.002, νt = 0.35, νc = 0

Et
1 = 40, Et

2 = Et
3 = 10 Ec = 0.075

Case 3 Gt
23 = 3.5, Gt

12 = Gt
31 = 4.5 νc = 0.30

νt
12 = 0.26, νt

23 = 0.40, νt
31 = 0.065

Et
1 = 181, Et

2 = Et
3 = 10.3 Ec

1 = Ec
2 = 0.032, Ec

3 = 0.390
Case 4 Gt

23 = 5.96, Gt
12 = Gt

31 = 7.17 Gc
23 = Gc

31 = 0.048, Gc
12 = 0.013

νt
12 = 0.28, νt

23 = 0.49, νt
31 = 0.0159 νc

31 = νc
32 = νc

21 = 0.25

Table 2.3: Geometric and material parameters used in Fig. 2.10 (moduli unit: GPa)
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Figure 2.1: Configuration of a sandwich panel
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Figure 2.2: Finite element model of the sandwich beam
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Figure 2.3: Buckling modes from finite element analysis: (a) Global buckling; (b) Anti-symmetrical
and symmetrical wrinkling; (c) Edge buckling



32

η increases

ε

f (ε)

Figure 2.4: Variation of the determinant with non-dimensional buckling stress for the full deforma-
tion mode of the core
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CHAPTER III

Correct formulation for the static buckling analysis of a
sandwich beam1

3.1 Introduction

The global and local instability problem of a sandwich beam subjected to axial

compression has been widely studied theoretically and experimentally in the past

decades. There are many useful theoretical models for predicting the global and local

buckling of a sandwich beam structure. Early analytical models were developed using

specific sets of assumptions for the face sheet and the core [1, 22, 25, 37, 43, 45]. The

face sheet has typically been treated as an Euler–Bernoulli beam or a Timoshenko

beam. The core has been modeled in a multitude of ways, some of which are a non–

linear spring on an elastic foundation, an elastic continuum and so on. In order to

ascertain the conditions under which the different sets of assumptions are valid, it is

prudent to examine the sandwich beam buckling problem in a general setting. To this

end, the sandwich beam buckling problem, under uniaxial loading is re–examined in

a plane strain setting, where each constituent is treated within the framework of

classical two–dimensional (2D) elasticity.

There are different mathematical formulations in the literature describing the in-

finitesimal elastic stability of a solid or with and without initial stress. Baz̆ant [5]

1This chapter is currently being prepared as a journal paper.

42



43

consolidated the different mathematical formulations by proposing a unified gen-

eral treatment of the infinitesimal elastic stability problem. He showed that when

a certain finite strain measure is selected to describe the incremental deformation,

its conjugate incremental stress and the corresponding constitutive model must be

used in order to recover the same end result regardless of the choice of stress and

strain measure. The conditions that are necessary for the equivalence between the

different formulations was presented in [5]. In particular, the correct work–conjugate

relations between the finite strain and the incremental stress, and the correspond-

ing constitutive model should be consistently used throughout the problem solution

phase.

Baz̆ant and Beghini [6, 7] modeled a sandwich beam as a two constituent perfectly

bonded solid with a thin face sheet, modeled as a Euler–Bernoulli beam, and a

2D linear elastic core. For a sandwich beam having a relatively soft core material

compared to the face sheets, they showed the proper formulation that needed to be

used in order to use a constant tangent modulus when the strains are small and the

deformation is restrained to be in the linear elastic range. They showed that the

formulation associated with the Green–Lagrange strain is suitable for this case.

In developing the presentation here, different formulations for the equilibrium

equation governing the instability of a sandwich beam in uniaxial compression are

discussed. Each constituent of the beam is treated as an orthotropic continuum in a

general 2D plane strain setting. The predictions from the different formulations are

compared against each other and also with previous theoretical predictions in order

to assess the range of validity of the different solutions. In addition, a new set of

finite element equations associated with the sandwich beam buckling problem is also

derived.
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3.2 Problem formulation

3.2.1 Theoretical study

The sandwich structure is illustrated in Fig. 3.1. A core of thickness hc is bonded

to and situated between a top and a bottom face sheet, with thickness of ht and

hb, respectively. Perfect bonding is enforced at the common boundaries of the face

sheets and the core. Sets of local cartesian coordinates are placed in each layer as

shown in Fig. 3.1 with subscripts t, c, and b denoting the top face sheet, the core,

and the bottom face sheet, respectively. This nomenclature is preserved throughout

this presentation. u, v, and w with subscripts t, c, and b denote displacements of

the top face sheet, the core, and the bottom face sheet, respectively, in the x, y,

and z directions, respectively. The sandwich beam is subjected to a plane strain

deformation in the xz–plane, by the application of a compressive load in the x–

direction through smooth rigid end platens that are parallel to the z–axis and move

in the x–direction.

When a solid body is considered in a slightly disturbed state from an initial

strained state, the general equations governing the incremental stresses arising due

to the perturbation from the initial state are [5],

∂σ∗xx

∂x
+

∂σ∗xy

∂y
+

∂σ∗xz

∂z
= 0

∂σ∗xy

∂x
+

∂σ∗yy

∂y
+

∂σ∗yz

∂z
= 0

∂σ∗xz

∂x
+

∂σ∗yz

∂y
+

∂σ∗zz

∂z
= 0

(3.1)

where

(3.2) σ∗ij = σ
′(m)
ij + σ0

kjui,k −
(
1− m

2

) (
σ0

ikekj + σ0
jkeki

)

and eij = 1/2(ui,j + uj,i). A superscript ‘0’ is used to identify quantities with the

initial position of equilibrium while a superscript ‘′’ denotes quantities arising due
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to the disturbance. The superscript ‘(m)’ indicates the particular pair of work–

conjugate stress and strain measure that need to be used. Baz̆ant [5] proposed a

general unified formulation for the finite strain tensor ε
(m)
ij and the corresponding

constitutive stiffness C
(m)
ijkl tensor in the form of

(3.3) ε
(m)
ij = εij −

(
1− m

2

)
ekiekj

(3.4) C
(m)
ijkl = Cijkl +

1

4
(2−m)

(
σ0

ikδjl + σ0
jkδil + σ0

ilδjk + σ0
jlδik

)

where the value of m classifies the different formulations. For example, m = 2

yields the second order Green–Lagrange strain, εij, while m = 1 corresponds to the

Biot strain measure, [12]. When m = 0, the second order Biezeno–Hencky strain is

obtained [11]. Since the stress and the strain measure must be energetically related

to each other, the correct pair of incremental stress and incremental strain, and the

corresponding constitutive model with the same value of m must be used throughout

the problem solution phase after a particular choice of finite strain measure is decided

upon [5, 9].

In this paper, four formulations of the sandwich problem are considered. The first

two (Case 1 and Case 2) are approximations specialized to thin walled structures,

while Case 3 and Case 4 correspond to different values of ‘m’ in a finite strain setting.

• Case 1: Formulation for thin-walled structures using the approximation of con-

stant stiffness tensor, but incorrectly using, m=0 in Eq. (3.2) (instead of m = 2)

• Case 2: Formulation for thin-walled structures, where the strains are approxi-

mated by neglecting axial deformation compared to rotation and using m = 0

in Eq. (3.4)

• Case 3: Biezeno–Hencky formulation (m = 0)
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• Case 4: Trefftz formulation (m = 2)

Case 1 and Case 2 may be regarded as special cases of m = 0 formulations. When the

rotations are much larger than the axial deformations during buckling deformation of

a thin-walled structure, the axial strain components eij are often ignored compared

to the rotational effects ωij. For this case (Case 1 and Case 2), Eq. (3.2) is simplified

to

(3.5) σ∗ij = σ
(m)
ij + σ0

kjωik

Case 1 employs the constant modulus approximation which is not the correct cor-

responding constitutive model to Eq. (3.5) .The results of Case 1 will be compared

against the results of Case 2 in order to examine the effect of the improper use of

the m = 0 formulation. In Case 3, the Biezeno–Hencky formulation is employed

to address the buckling problem of a thin–walled structure, without any simplifying

approximations. The Trefftz formulation (Case 4) is designated as an assessment of

other cases in various analytical discussions forthcoming.

Baz̆ant and Beghini [7] showed that, for sandwich type structures, the Green–

Lagrange strain measure must be used if the strains are small and the elastic moduli

are kept constant. The differential field equations of Trefftz [52], are associated

with the Green–Lagrange finite strain measure. To summarize, Table 3.1 shows the

different approximation to the strain, incremental stress, and constitutive relations

used in addressing the buckling problem of a sandwich beam.

The sandwich beam considered here is uniformly strained in the x–direction, re-

sulting in zero initial stresses in Eq. (3.2), except σ0
xx = −σ. The field equations

governing the incremental stresses arising due to the perturbation from the uni-

formly strained state can be obtained by substitution of Eq. (3.2) into Eq. (3.1).
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Then, for the different cases, the following equilibrium equations are obtained.

Case 1 and Case 2:

∂σ
′(0)
xx

∂x
+

∂σ
′(0)
xy

∂y
+

∂σ
′(0)
xz

∂z
= 0

∂σ
′(0)
xy

∂x
+

∂σ
′(0)
yy

∂y
+

∂σ
′(0)
yz

∂z
= 0

∂

∂x

[
σ′(0)

xz − ω′yσ
0
xx

]
+

∂σ
′(0)
yz

∂y
+

∂σ
′(0)
zz

∂z
= 0

(3.6)

Case 3:

∂

∂x

[
σ′(0)

xx − σ0
xx

∂u

∂x

]
+

∂

∂y

[
σ′(0)

xy − σ0
xxexy

]
+

∂

∂z

[
σ′(0)

xz − σ0
xxexz

]
= 0

∂

∂x

[
σ′(0)

xy − σ0
xxω

′
z

]
+

∂σ
′(0)
yy

∂y
+

∂σ
′(0)
zy

∂z
= 0

∂

∂x

[
σ′(0)

xz − ω′yσ
0
xx

]
+

∂σ
′(0)
yz

∂y
+

∂σ
′(0)
zz

∂z
= 0

(3.7)

Case 4:

∂

∂x

[
σ′(2)

xx + σ0
xx

∂u

∂x

]
+

∂σ
′(2)
xy

∂y
+

∂σ
′(2)
xz

∂z
= 0

∂

∂y

[
σ′(2)

xy + σ0
xx

∂v

∂x

]
+

∂σ
′(2)
yy

∂y
+

∂σ
′(2)
zy

∂z
= 0

∂

∂x

[
σ′(2)

xz + σ0
xx

∂w

∂x

]
+

∂σ
′(2)
yz

∂y
+

∂σ
′(2)
zz

∂z
= 0

(3.8)

Application of the appropriate constitutive models, Eq. (3.4), to each case yields

the governing equations for each case expressed in terms of displacements;

Case 1:

(λi + 2Gi)
∂2ui

∂x2
i

+ Gi
∂2ui

∂z2
i

+ (λi + Gi)
∂2wi

∂xi∂zi

= 0

(λi + 2Gi)
∂2wi

∂z2
i

+
(
Gi − σi

2

)∂2wi

∂x2
i

+
(
λi + Gi +

σi

2

) ∂2ui

∂xi∂zi

= 0

(3.9)

Case 2:

(λi + 2Gi − 2σi)
∂2u

∂x2
+

(
Gi − σi

2

) ∂2u

∂z2
+

(
λi + Gi − σ

2

) ∂2w

∂x∂z
= 0

(λi + 2Gi)
∂2w

∂z2
+ (Gi − σi)

∂2w

∂x2
+ (λi + Gi)

∂2u

∂x∂z
= 0

(3.10)
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Case 3 and Case 4:

(λi + 2Gi − σi)
∂2u

∂x2
+ Gi

∂2u

∂z2
+ (λi + Gi)

∂2w

∂x∂z
= 0

(λi + 2Gi)
∂2w

∂z2
+ (Gi − σi)

∂2w

∂x2
+ (λi + Gi)

∂2u

∂x∂z
= 0

(3.11)

It is worthwhile noting that the final forms of the governing equations for Case 3

and Case 4 are the same. Baz̆ant [5] has already shown that a problem described by

one formulation (or by Eq. (3.2), Eq. (3.3), and Eq. (3.4), with a particular value of

m) is mutually equivalent with another mathematical formulation. Therefore, it is

no surprise that Eq. (3.11) results for both Case 3 and Case 4.

The nontrivial solution to the governing equations for all the cases can be obtained

by seeking the presence of nonuniform states of adjacent equilibrium of the uniformly

strained sandwich. Here we exclude edge buckling and limit discussion to the case

of periodic buckling in the x–direction. Then, the perturbed shape of each layer of

the sandwich beam may be assumed as

ui(xi, zi) = ψ(zi) cos(αxi)

wi(xi, zi) = φ(zi) sin(αxi)

(3.12)

Assuming that the sandwich beam is symmetrical, i.e., the top and the bottom

face sheet have identical material and geometrical properties, only one half of the

beam need to be considered in this analysis. Using (3.12) in Eq. (3.9) or Eq. (3.10)

or Eq. (3.11) and solving for ψ(yi) and φ(yi), the following solutions to the field

equations are obtained for each case;

Case 1:

ui(xi, zi) =
[
Bi sinh(αzi) + Ai cosh(αzi) + kiDi sinh(µiαzi)

+ kiCi cosh(µiαzi)
]
cos(αxi)

wi(xi, zi) =
[
Ai sinh(αzi) + Bi cosh(αzi) + Ci sinh(µiαzi)

+ Di cosh(µiαzi)
]
sin(αxi),
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where

(3.13) ki =
µi(1 + 2βi)

2− µ2
i + 2βi

Case 2:

ui(xi, zi) =
[
k1Bi sinh(µ1αzi) + k1Ai cosh(µ1αzi) + k2Di sinh(µ2αzi)

+ k2Ci cosh(µ2αzi)
]
cos(αxi)

wi(xi, zi) =
[
Ai sinh(µ1αzi) + Bi cosh(µ1αzi) + Ci sinh(µ2αzi)

+ Di cosh(µ2αzi)
]
sin(αxi),

(3.14)

where

µ1 =

√
2− 3si

2− si

µ2 =

√
1− si + βi

1 + βi

(3.15)

k1 =
2− 3si − 4(1 + βi)µ

2
1

(2 + si + 4βi)µ1

k2 =
2− 3si − 4(1 + βi)µ

2
2

(2 + si + 4βi)µ2

(3.16)

Case 3 and Case 4:

ui(xi, zi) =
[
k1Bi sinh(µ1αzi) + k1Ai cosh(µ1αzi) + k2Di sinh(µ2αzi)

+ k2Ci cosh(µ2αzi)
]
cos(αxi)

wi(xi, zi) =
[
Ai sinh(µ1αzi) + Bi cosh(µ1αzi) + Ci sinh(µ2αzi)

+ Di cosh(µ2αzi)
]
sin(αxi),

(3.17)

where

µ1 =

√
2− 3si

2− si

µ2 =

√
1− si + βi

1 + βi

(3.18)
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k1 =
2− 3si − 4(1 + βi)µ

2
1

(2 + si + 4βi)µ1

k2 =
2− 3si − 4(1 + βi)µ

2
2

(2 + si + 4βi)µ2

(3.19)

For all cases, βi = λi/2Gi, α = 2π/λ and λ =wavelength of the deformation mode.

Ai, Bi, Ci, and Di are arbitrary unknown constants associated with the above solu-

tions.

In view of symmetry, the solutions obtained above are subject to traction and

displacement continuity conditions at the interface of the top face sheet and the

core, and traction free conditions at the external surface of the top face sheet. These

equations are:

ut − uc = 0

wt − wc = 0

∆fxt −∆fxc = 0

∆fzt −∆fzc = 0 at zt = −ht/2, zc = hc/2

(3.20)

∆fxt = 0

∆fzt = 0 at zt = ht/2

(3.21)

In addition to the conditions, Eqs. (3.20) and (3.21), the displacement fields uc(xc, zc)

and wc(xc, zc) are subjected to the restrictions to an antisymmetrical deformation

or a symmetrical deformation.

Substitution of the displacement fields corresponding to different sets of boundary

conditions in (3.20) and (3.21) results in a system of eight linear algebraic homoge-

neous equations for eight arbitrary unknown constants At, Bt, . . . etc. for each of

the cases and within each case for either symmetric or antisymmetric deformation.

Vanishing of the determinant associated with this system gives an equation implicit
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in ε of the form

(3.22) f(ε, η) = 0

where ε (ε = σ/Et) is a normalized buckling stress and η (η = λ/tt) is a non-

dimensional half wavelength, where λ is the buckle wavelength. The solution of

Eq. (3.22) for a specified η is the value of buckling stress associated with the transi-

tion to an adjacent state of equilibrium. Once this stress is found, the constants At,

Bt,. . . etc. can be determined up to an arbitrary constant. This enables to character-

ize the buckle mode shapes associated with a given value of buckling stress. In the

following sections, the theoretical predictions from different cases will be discussed

and compared with each other.

3.2.2 Simplification of the differential equations

Before comparing the theoretical predictions for the buckling stress of a sandwich

beam, Eq. (3.6), Eq. (3.7), and Eq. (3.8) are applied to a monolithic structure and

simplified to the case of a slender beam. The differential field equations for a three-

dimensional (3D) body under uniaxial compressive loading, Eq. (3.6), Eq. (3.7), and

Eq. (3.8) can be reduced for the buckling problem of a one-dimensional (1D) column.

The formulations of Case 1 and Case 4 will be discussed here for the simplification

of the full equilibrium equations from a 3D solid to the Euler-Bernoulli Navier beam

[14]. This discussion is intended to examine the differences in the formulations more

clearly in a simple setting.

The problem considered here is a slender beam under uniaxial compression as

shown in Fig. 3.2. Neglecting the effect of shear deformation, the kinematics of the
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displacement fields are

U(x, z) = u(x)− z
dw

dz

W (x, z) = w(x)

(3.23)

where U and W are the displacements of the beam in x and z directions, respectively,

and u and w are the displacements of the centerline in x and z directions, respectively.

The resultant forces of the beam are defined as
∫

A

σxx dA = Nx

∫

A

σxz dA = Vx

∫

A

σxxz dA = Mx

(3.24)

where Nx=axial force, Vx=shear force, and Mx=moment due to the stress distribu-

tion. In addition to these definitions, a superscript ‘′’ will be used to represent a

perturbation quantity, and a superscript ‘0’ designate the initial state. Similarly, a

superscript ‘∗’ will be used for denoting quantities in the perturbed state.

The governing equation for the 1D beam proceeds by integration of the full dif-

ferential equations and applying the kinematic relations. This procedure is followed

for case 1, first. The first of Eq. (3.6) is associated with the axial force equilibrium.

This equation is integrated over the cross-sectional area of the beam, to get,

(3.25)

∫

A

∂σ′xx

∂x
dA +

∫

A

∂σ′xy

∂y
dA +

∫

A

∂σ′xz

∂z
dA = 0

Using the integrated properties of the column over the cross-sectional area, as

(3.26)

∫

A

dA = A,

∫

A

z dA = 0,

∫

A

z2 dA = I

where A=cross-sectional area and I=area moment of inertia, the equation for axial

equilibrium is obtained as

(3.27)
dN ′

x

dx
= 0
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indicating that the perturbation to the axial force N ′
x = 0. Since, N0

x = −P=constant,

where P is the applied end compression, the second of Eq. (3.6) is automatically sat-

isfied under the restriction to a planar deformation state in the xz–plane. The third

of Eq. (3.6), when integrated over the cross-sectional area of the beam, provides

(3.28)

∫

A

∂

∂x

[
σ′xz − ω′yσ

0
xx

]
dA +

∫

A

∂σ′yz

∂y
dA +

∫

A

∂σ′zz

∂z
dA = 0

where

(3.29) ω′y =
1

2

(
∂U ′

∂z
− ∂W ′

∂x

)

Using the kinematics of the beam, Eq. (3.23), Eq. (3.28) is rewritten in terms of the

resultant forces,

(3.30)
dQ′

x

dx
= 0

where Q′ is the shear force component of the column subjected to uniaxial load and

can be written as

(3.31) Q′ = V ′
x + N0

x

dw′

dx

The governing equation associated with moment equilibrium can be obtained by

integrating the first equation over the cross-sectional area after multiplying by z

throughout. Then,

(3.32)

∫

A

∂σ′xx

∂x
z dA +

∫

A

∂σ′xy

∂y
z dA +

∫

A

∂σ′xz

∂z
z dA = 0

This equation can be rewritten as,

(3.33)
∂

∂x

∫

A

σ′xxz dA +

∫

A

[
∂(zσ′xz)

∂z
− σ′xz

]
dA = 0

or in terms of the resultant forces,

(3.34)
d2M ′

x

dx2
+

d

dx

(
N0

x

dw′

dx

)
= 0
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after differentiation with respect to x and using the shear force equilibrium relation,

Eq. (3.30). The resultant moment in Eq. (3.34), can be written in terms of the

displacement fields with the constitutive relation,

M ′
x =

∫

A

σ′xxz dA

=

∫

A

E(m)ε′xxz dA

(3.35)

where E(m)=Young’s modulus and ε′xx=axial strain associated with the perturbation.

The axial strain is expressed in the general form as

(3.36) ε′xx =
dU ′

dx
+

(
1

2
− α

)(
dU ′

dx

)2

+
1

2

(
dW ′

dx

)2

where α = 1−m/2 and m indicates the choice of the particular formulation. When

the deformation is assumed to be very small, the second order perturbation quantities

in Eq. (3.36) can be neglected compared to the first order quantities. Using the

kinematic relations, Eq. (3.23), and Eq. (3.26), the resultant moment is expressed in

terms of the transverse displacement field as,

(3.37) M ′
x = −E(m)I

d2w′

dx2

Combining Eq. (3.34) and Eq. (3.37) results in the Euler-Bernoulli Navier beam

equation, for the transverse buckling displacement,

(3.38) E(m)I
d4w′

dx4
+ P

d2w′

dx2
= 0

In a similar manner, the governing equation of equilibrium for a monolithic beam,

corresponding to case 4 are,

(3.39)
dN∗

x

dx
= 0

(3.40)
d2M∗

x

dx2
+

d

dx

(
N0

x

dw′

dx

)
= 0
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where

N∗
x = N ′

x + N0
x

du′

dx

M∗
x =

∫

A

(
σ′xx + σ0

xx

∂U ′

∂x

)
z dA =

∫

A

σ∗xxz dA

(3.41)

Note that the initial axial force effect appears in the axial force equilibrium equa-

tion and the moment equilibrium equation, which is not different than the case 1

formulation.

As before, the resultant moment can be expressed in terms of the displacement

field as,

M∗
x =

∫

A

σ∗xxz dA

=

∫

A

E(m)ε∗xxz dA

(3.42)

where E(m)=Young’s modulus. The axial strain ε∗xx in the perturbed state can be

written as

(3.43) ε∗xx =
dU∗

dx
+

(
1

2
− α

)(
dU∗

dx

)2

+
1

2

(
dW ∗

dx

)2

where α = 1−m/2. Since the displacement field in the current state U∗ = U0 + U ′

and W ∗ = W0 + W ′, Eq. (3.43) can be rewritten as,

ε∗xx =
dU0

dx
+

(
1

2
− α

)(
dU0

dx

)2

+
1

2

(
dW0

dx

)2

+
dU ′

dx
+ (1− 2α)

dU0

dx

dU ′

dx
+

dW0

dx

dW ′

dx

+

(
1

2
− α

)(
dU ′

dx

)2

+
1

2

(
dW ′

dx

)2

(3.44)

In addition to the approximation noted above, the out-of-plane displacement is re-

garded as zero in the initial flat state. Thus, Eq. (3.44) simplifies to,

(3.45) ε∗xx = ε0
xx +

dU ′

dx

[
1 + (1− 2α)

dU0

dx

]
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where

(3.46) ε0
xx =

dU0

dx
+

(
1

2
− α

)(
dU0

dx

)2

+
1

2

(
dW0

dx

)2

Using Eq. (3.23) and Eq. (3.26), the resultant moment is obtained in terms of the

transverse displacement field as,

(3.47) M∗
x = M0

x − E(m)I
d2w′

dx2

[
1 + (1− 2α)

du0

dx

]

Since the rotation is also zero in the initial state, M0
x = 0. Thus,

(3.48) M∗
x = −E(m)I

d2w′

dx2

[
1 + (1− 2α)

du0

dx

]

Eq. (3.40) and Eq. (3.48) result in the general form of the governing equation for the

Euler-Bernoulli beam subject to axial load, as

(3.49)
d2

dx2

[
E(m)I

d2w′

dx2

{
1 + (1− 2α)

du0

dx

}]
+ P

d2w′

dx2
= 0

In the initial flat state, the axial force is balanced by the applied force and the

internal axial force may be written as,

(3.50) N0
x = E(m)A

du0

dx

Therefore, since N0
x = constant = −P , it follows that,

(3.51)
du0

dx
= − P

E(m)A

Substitution of Eq. (3.51) into Eq. (3.49) yields

(3.52) E(m)I
d4w′

dx4
+

P

1− (1− 2α)P/E(m)A

d2w′

dx2
= 0

When the beam is simply supported and m = 2, for example, the critical buckling

load is obtained from

(3.53)
P

1− P/(2EA)
=

π2EI

L2
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which reduces to,

(3.54) Pcr =
PE

1 + π2

24

(
t
L

)2

where PE=classical Euler buckling load for a simply-supported beam. Eq. (3.54)

includes the effect of beam “compressibility”, which is usually very small for a slender

beam. As the beam slenderness increases, i.e., t/L → 0, the critical buckling load

converges to the classical Euler buckling load. Bažant and Cedolin [9] have derived

the expression for a Timoshenko beam that corresponds to Eq. (3.54).

3.3 Results and discussions

3.3.1 Analytical models for the sandwich buckling load

Theoretical models predicting the global and the local instability of a sandwich

beam under uniaxial compression has been developed. The results from different

cases will be now compared with each other considering the effect of the conjugate

relationship of the finite strain, the incremental stress, and the constitutive model.

The material properties of Fagerberg [19] is adapted here for the numerical evaluation

of the results. The same properties have been chosen for comparison of different cases.

The material properties are listed in Table 3.2 for the lamina in the face sheet and

Table 3.3 for the cores. The stacking sequence of the face sheet is [0/90]s, resulting

in a total thickness of 1mm.

Ji and Waas [30] conducted a parametric study related to the instability of a

sandwich beam. Various parameters such as the thickness ratio of the face sheet to

the core and the ratio of moduli between face sheets and core were varied. Fig. 3.4

compares the results from various cases in the present study, producing inconsider-

able differences between the different cases, for variation in the buckling stress as a

function of wavelength. Fig. 3.5 shows the buckling stress variation with its corre-
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sponding wavelength for all cases. The core properties are listed in Table 3.3. The

core is assumed to undergo antisymmetrical deformation in these calculations. It

is well known that the buckling stress profile of the antisymmetrical deformation of

the core is more meaningful in predicting the global or local buckling of a sandwich

beam in compression [29]. Therefore, only the antisymmetrical deformation mode of

the core will be considered throughout this presentation. As can be seen in Fig. 3.5,

the discrepancies between the different formulations appear to be insignificant over-

all. A distinction tends to develop when the wavelength becomes longer or the core

becomes stiffer, yet the differences are small. Furthermore, the general shapes of the

profile for all the cases resemble each other very closely.

In Fig. 3.6, the theoretical models presented here are compared with simplified

buckling formula by Baz̆ant and Beghini [8] and experimental results performed by

Fleck and Sridhar [20]. Baz̆ant and Beghini modeled a sandwich beam with face

sheets as an Euler–Bernoulli Navier beam bonded to a 2D linear elastic core. They

derived the critical buckling load with the m = 2 formulation. Finite element analysis

was also performed and the results are shown in Fig. 3.6. The results between 2D

elastic analyses are very close to each other regardless of the slenderness of the beam,

and this may be caused by the very small thickness ratio between the face sheets

and core (only 1/10 in experiments of [20]). However, the result from the simplified

buckling formula by Baz̆ant and Beghini is lower than the elastic solutions and the

difference increases as the beam slenderness decreases. This is expected when the

beam becomes thick because the face sheet is assumed to have no shear deformation

in their analysis. In addition, the critical buckling load calculated by Baz̆ant and

Beghini is continuously lower than the experimental results, whereas the results

from 2D elastic cases discussed in this chapter forms a lower bound bound for the
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theoretical predictions.

Case 1 and Case 2 begin to depart from Case 3 and Case 4 when the core modulus

becomes stiffer as illustrated in Fig. 3.7. Ji and Waas [30] revealed the transition

of the instability mode from global buckling to wrinkling [30]. Although all the

cases reproduce this alteration in the buckling modes at the same position, the

disagreement between critical stresses among the cases grows as the core modulus

increases. As shown in Fig. 3.5, the critical wavelength becomes shorter as the core

becomes stiffer. When the wavelength becomes comparable with the characteristic

beam thickness of the face sheet, the axial strains εij cannot be ignored compared

to the rotational components ωij. The critical stress of Case 1, which fails to use an

appropriate constitutive model conjugate to the finite strain measure, differs more

than the results of Case 2 from the predictions of Case 3 and Case 4.

3.3.2 Finite element analysis

Finite Element Analysis (FEA) is usually performed to simulate and validate the

theoretical approach of determining the critical stress and its buckling behavior. The

FEA results using the commercial software package ABAQUS are also illustrated in

Fig. 3.7. It is interesting to note that the FE computations reproduce the results

from Case 1 very closely. In the FEA, the face sheets and the core are modeled as

linear elastic materials, equivalent to the two-dimensional elastic model presented

here. The reason that the FEA results disagree with the buckling stress of Case

4 should be sought by closely examining the FE implementation of the eigenvalue

buckling problem.

The general form of the equilibrium condition in the buckled state is expressed in
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terms of the principle of virtual work, as

(3.55)

∫

V

Πij
∂δvi

∂Xj

dV =

∫

S

tiδvi dS +

∫

V

biδvi dV

where Πij=nominal stress, δvi=virtual velocity field, ti=nominal traction on the

boundary S of the initial state, bi=body force per unit volume of the base state, and

V =volume of the body in its reference configuration. The corresponding rate form

of Eq. (3.55) is

(3.56)

∫

V

Π̇ij
∂δvi

∂Xj

dV =

∫

S

ṫiδvi dS +

∫

V

ḃiδvi dV

The left hand side of Eq. (3.56) can be expressed in terms of the Kirchhoff stress

rate τ̇ , so that Eq. (3.56) reduces to

(3.57)

∫

V

Π̇ij
∂δvi

∂Xj

dV =

∫

V

τ̇ij
∂δvi

∂xj

−
(

τik
∂vj

∂xk

)
∂δvi

∂xj

dV

Eq. (3.57) is obtained from Eq. (3.56) using the relations

Πij = τik
∂Xj

∂xk(
∂δxi

∂Xj

)·
=

∂δvi

∂xk

∂xk

∂Xj

(3.58)

Since the deformation is infinitesimal during the transition from the unbuckled to

the buckled state, the Kirchhoff stress and its rate form can be approximated as

τij = Jσij ' σij

τ̇ij = Jσ̇ij + J̇σij ' σ̇ij + vk,kσij

(3.59)

where J = 1 + uk,k (Jacobian of the transformation).

As discussed earlier, if the elastic moduli are kept constant, the Green–Lagrange

strain and its associated formulation, i.e., m = 2, should be used. Now, σ̇ij can be

rewritten using Truesdell’s stress rate as,

(3.60) σ̇ij = σ̂ij + σkjvi,k + σkivj,k − σijvk,k
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where the superscript ‘∧’ denotes the stress rate. Note that Truesdell’s stress rate

has been chosen because it is work-conjugate to the Green–Lagrange strain measure.

Substitution of Eq. (3.60) into Eq. (3.57) yields

(3.61)

∫

V

Π̇ij
∂δvi

∂Xj

dV =

∫

V

σ̂ijδvi,j dV +

∫

V

(σkjvi,k + σkivj,k − σikvj,k) δvi,j dV

Using the symmetric properties of the stress, σij = σji, the above equation is simpli-

fied to

(3.62)

∫

V

Π̇ij
∂δvi

∂Xj

dV =

∫

V

σ̂ijδėij dV +

∫

V

σkjvi,kδvi,j dV

where ėij = (1/2)(vi,j + vj,i), is the linearized small strain in terms of the velocity

fields.

The rates of the surface traction ti and the body force bi in Eq. (3.56) can be

expressed as

ṫi =
∂ti

∂Fjk

Ḟjk

ḃi =
∂bi

∂Fjk

Ḟjk

(3.63)

since ti and bi are dependent on the change in geometry through Fij, the latter

being the deformation gradient. When the initial and the current configurations are

assumed to be almost identical,

∂ti
∂Fjk

Ḟjk ' ∂ti
∂Fjk

vj,k

∂bi

∂Fjk

Ḟjk ' ∂bi

∂Fjk

vj,k

(3.64)

Applying Eq. (3.62), Eq. (3.64), and the corresponding constitutive model for the

Truesdell rate of the Cauchy stress,

(3.65) σ̂ij = Cijkl ėkl
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Eq. (3.56) now becomes,

∫

V

δėijCijklėkl dV +

∫

V

σkjvi,kδvi,j dV

−
∫

S

δvi
∂ti

∂Fjk

vj,k dS −
∫

V

δvi
∂bi

∂Fjk

vj,k dV = 0

(3.66)

To formulate the eigenvalue buckling problem, the stress, the surface traction,

and the body force in Eq. (3.66) are decomposed as initial and perturbed quantities,

such that

σij = σ0
ij + λσ′ij

ti = t0i + λt′i

bi = b0
i + λb′i

(3.67)

where λ is a constant multiplier to be determined. Substituting Eq. (3.67) into

Eq. (3.66) and rearranging terms, the final equation for the buckling problem is

obtained as,

∫

V

δėijCijklėkl dV +

∫

V

σ0
kjvi,kδvi,j dV −

∫

S

δvi
∂t0i
∂Fjk

vj,k dS −
∫

V

δvi
∂b0

i

∂Fjk

vj,k dV

− λ
[ ∫

V

σ′kjvi,kδvi,j dV −
∫

S

δvi
∂t′i

∂Fjk

vj,k dS −
∫

V

δvi
∂b′i

∂Fjk

vj,k dV
]

= 0

(3.68)

When the velocity fields are discretized as

(3.69) v = Nq̇

with N being the assumed shape functions, each term of Eq. (3.68) is transformed

into,

(3.70)

∫

V

δėijCijklėkl dV = δq̇T

[∫

V

BTCB dV

]
q̇

(3.71)

∫

V

σkjvi,kδvi,j dV = δq̇T

[∫

V

(
∂N

∂x

)T

σ
∂N

∂x
dV

]
q̇



63

(3.72)

∫

S

δvi
∂ti

∂Fjk

vj,k dS = δq̇T

[∫

S

NT ∂t

∂q
dS

]
q̇

(3.73)

∫

V

δvi
∂bi

∂Fjk

vj,k dS = δq̇T

[∫

V

NT∂b

∂q
dV

]
q̇

Here, B is the derivative of N with respect to x. Thus, the FE formulation for the

eigenvalue buckling problem reduces to,

(3.74)
[
K0 + λK′] q̇ = 0

where

(3.75) K0 =

∫

V

BTCB dV +

∫

V

(
∂N

∂x

)T

σ0 ∂N

∂x
dV −

∫

S

NT∂t0

∂q
dS−

∫

V

NT∂b0

∂q
dV

(3.76) K′ =
∫

V

(
∂N

∂x

)T

σ′ ∂N

∂x
dV −

∫

S

NT∂t′

∂q
dS −

∫

V

NT∂b′

∂q
dV

The commercial code, ABAQUS, uses the Jaumann rate of Kirhhoff stress τ̂
(J)
ij

to fomulate the buckling problem. The relation between the Kirhhoff stress rate τ̇ij

and τ̂
(J)
ij is

(3.77) τ̂
(J)
ij = τ̇ij − τkjω̇ik + τikω̇kj

where

(3.78) ω̇ij =
1

2
(
∂vi

∂xj

− ∂vj

∂xi

)

Therefore, the left hand side of Eq. (3.56) becomes,

(3.79)

∫

V

Π̇ij
∂δvi

∂Xj

dV =

∫

V

τ̂
(J)
ij δėij + τij (δvi,kvk,j − 2ėikδėkj) dV

Now, with the right hand side of Eq. (3.56) and with Eq. (3.79), Eq. (3.56) is rewritten

as

(3.80)∫

V

τ̂
(J)
ij δėij dV +

∫

V

τij (δvi,kvk,j − 2ėikδėkj) dV −
∫

S

∂ti
∂Fjk

Ḟjk dS−
∫

V

∂bi

∂Fjk

Ḟjk dV = 0
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Following assumptions similar to before on the small perturbation, Eq. (3.80) be-

comes

(3.81)∫

V

δėijC
(J)
ijklėkl dV +

∫

V

σij (δvi,kvk,j − 2ėikδėkj) dV−
∫

S

∂ti
∂Fjk

vj,k dS−
∫

V

∂bi

∂Fjk

vj,k dV = 0

where C
(J)
ijkl = C

(0)
ijkl− δklσij [5], which is the corresponding constitutive model for the

Jaumann rate of the Cauchy stress. In fact, Eq. (3.81) is identical with Eq. (3.68),

since a consistent problem formulation is independent of the choice of m.

As given in their theoretical manual, ABAQUS uses the C
(J)
ijkl = Cijkl for C

(J)
ijkl

appearing in the first term of Eq. (3.81), instead of C
(J)
ijkl = C

(0)
ijkl − δklσij. Conse-

quently, in the ABAQUS FE formulation, terms associated with the volume integral

∫
V

σ0
ij ėikδėkj dV and

∫
V

σ′ij ėikδėkj dV in K0 and K′ of Eq. (3.74) are non-vanishing.

These extra terms results in stiffer K0 and K′ than the stiffness matrices in Eq. (3.74)

when the body is in compression, and, consequently, causes the higher eigenbuckling

loads as shown in Fig. 3.7. Since σ0 and σ′ of the core is not negligible for stiffer

cores, the discrepancies in Fig. 3.7 becomes larger as the core stiffness becomes of

the same order as the face sheet stiffness.

Fig. 3.8 shows the eigenbuckling load computed from Eq. (3.74) and Eq. (3.81)

with C
(2)
ijkl instead of C

(J)
ijkl. The only difference between Eq. (3.74) and Eq. (3.81) with

C
(2)
ijkl is the extra term

∫
V

σij ėikδėkj dV . The buckling load obtained from ABAQUS

and the present analysis in Chapter II are also shown to support the argument

regarding the deficiency of the ABAQUS FE formulation. Fig. 3.8 clearly shows that

FE formulation with the extra term overpredicts the buckling load since the extra

term results in stiffer K matrix when the body is in compression. The discrepancy

increases as the core becomes stiffer since the effect of σ in the extra term becomes

significant for the stiff core material.



65

In addition to the extra terms, Baz̆ant [5], has shown that the Jaumann rate

of Cauchy stress is not energetically associated with any admissible finite strain

measure. This deficiency results in the fact that the equilibrium equations expressed

in terms of the Jaumann rate of Cauchy stress are not suitable for evaluating stability,

unless the material is incompressible [5, 9]. The Jaumann rate of Cauchy stress

can be regarded as a special case of the objective stress rate corresponding to the

Biezeno–Hencky formulation, m = 0;

(3.82) σ̂
(0)
ij = σ̇ij − σkjω̇ik + σikω̇kj + σijvk,k

without the last term σijvk,k. It seems that the Jaumann’s stress rate considers

the rotational deformation only, somewhat analogous to neglecting the axial strain

compared to the rotational strain for thin-walled structures presented ealier in Case

1 and Case 2.

3.4 Conclusion

A two-dimensional linear elastic mechanical model for the exact solution to the

sandwich column buckling problem is presented. In developing the elastic solution,

the general equilibrium equations for the infinitesimal elastic stability of a solid are

considered. It is shown that different mathematical formulations for the incremental

deformation may be used, and they are mutually equivalent with each other if the

proper work conjugate relations of finite strain and incremental stress, and the cor-

responding constitutive model is sustained. The analytical models developed from

various formulations are compared against each other. It appears that the overall

buckling behavior predicted by the theoretical models exhibits inconsiderable differ-

ence with the correct formulation for certain range of material and geometric prop-

erties. However, the discrepancies are likely to increase as the characteristic beam
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length of the face sheet become comparable to the critical wavelength. The new

theoretical model presented here should be used if an elastic solution needs verifica-

tion with respect to simplifying assumptions. Corresponding FE formulation for the

eigenvalue buckling problem is proposed considering the work-conjugate relationship

when the strains are small and constant elastic moduli are used.
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Material Property Value
E1 107 GPa
E2 15 GPa
G12 4.3 GPa
ν12 0.3
ν21 0.043
t 0.25 mm

Table 3.2: Material properties of the lamina in the face sheets
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Core Young’s Modulus(MPa) Shear Modulus(MPa)
H30 20 13
H45 40 18
H60 56 22
H80 80 31
H100 105 40
H130 140 52
H200 230 85

Table 3.3: Material properties of the core material from the experiment of Fagerberg
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Figure 3.1: Configuration of a sandwich panel
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Figure 3.2: Slender beam under uniaxial compressive load
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(a)

(b)

Figure 3.3: (a) Global buckling deformation (b) Local buckling deformation
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CHAPTER IV

Dynamic bifurcation buckling of an impacted column and
the temporal evolution of buckling in a dynamically

impacted imperfect column1

4.1 Introduction

The oldest problem in the literature on structural stability is the celebrated work

of Euler who considered the buckling of a slender rod when subjected to axial end

compression loads that are slowly applied at one end of a simply supported column

[41]. Subsequently, many researchers expanded and extended the notions of buckling,

post-buckling and failure, with considerations ranging from the buckling and post-

buckling of beam-columns, to plates and shells. A comprehensive treatise on the

subject of structural stability is given in [9] and [48].

Long and slender load bearing structural objects are ubiquitous in nature, ranging

from mammalian bones to aerospace fuselages to slender and sleek submarines [55].

They are all susceptible to failing by buckling due to excessive destabilizing axial

loads. Buckling need not to be catastrophic if the effects it induces are reversible,

such as in carbon nanotubes [4], however, in most instances buckling induces large

strains that drive material failure leading to structural collapse [9]. The collapse of

structures due to buckling has received much attention in the past [48], however,

1Parts of this chapter have been published in Ref. [31] in the bibliography. The imperfect column problem is
currently being prepared for submission to the International Journal of Solids and Structures.

78
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buckling of structures subjected to loads that are suddenly applied has not received

as much attention as their static counterpart [32, 40].

When a long slender beam is subjected to a suddenly applied compressive load

at one end, a compressive stress pulse is initiated at the impacted end and travels

along the length of the beam at the longitudinal wave velocity given by c0 =
√

E/ρ,

where E is the Young’s modulus of the beam and ρ is mass density. If a sufficiently

long portion of the beam experiences an axial stress above a certain threshold, then

that portion of the beam can buckle, inducing large out-of-plane, transverse dis-

placements. The pattern of displacements is not uniform as shown in Fig. 4.1 and

is localized at the impacted end leading to a modulated wave pattern associated

with the out-of-plane beam displacement. If the material of the beam is brittle, the

buckling can lead to fragmentation [24].

The dynamic buckling of a beam has a rich history having first received attention

in [36] and [50]. Many analytical and experimental studies on the dynamic buckling of

a beam have been performed since then [3, 13, 15, 17, 24, 26, 27, 28, 35, 42, 46, 47, 56].

In most studies, the effects of the axial stress wave propagation is unaccounted for

by assuming that the strain distribution along the beam length is uniform after the

impact event, a situation that arises at a much later time after the initiation of

impact. In addition to this assumption, dynamic buckling has been typically defined

by observing a sudden change or a transition in a system response to values of an

appropriately defined load parameter, such as in [15]. This definition of dynamic

buckling depends strongly on the particular characteristics of the impacted structure

that are being studied. Furthermore, a transition in the system response is usually

observed in the post-buckling regime, which may be long after the initiation of the

dynamic buckling event. In order to arrive at a more broad but precise definition of
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dynamic buckling, it is necessary to capture the physics of how the initial compression

wave interacts with the beam deformation, leading to the possibility of investigating

the temporal evolution of the beam response, thus leading to a definition of dynamic

buckling and the notion of a “critical time” to buckle.

In this chapter, conditions for dynamic bifurcation buckling of an impacted rod is

derived. The paper is organized as follows; the equations of motion that govern the

problem of a beam impacted by a falling mass is first provided. Next, these equations

are simultaneously solved to show the conditions that are necessary for dynamic

bifurcation buckling. In doing so, it is identified that the ratio of the impactor mass

to beam mass has a strong influence on the time to buckle (t∗), whereas the impactor

velocity is found to have a very slight effect. However, for the contact duration, the

impactor velocity is a non-factor whereas this duration increases with increasing

impactor mass. Our derivations are next applied to available experimental data

in [24]. It is to be noted that the notion of dynamic bifurcation buckling used here

corresponds to one adopted by Wineman [58], who studied the emergence of multiple

equilibrium solutions in a slowly pressurized thin inertialess viscoelastic membrane

using the concepts that we have utilized here.

4.2 Problem formulation

4.2.1 Bifurcation analysis: dynamic buckling of a straight beam

The dynamic buckling problem studied here is illustrated in Fig. 4.2 (a). An elastic

beam of length L is clamped at one end, while the other end is simply supported. The

initially straight and vertical beam is impacted at x = L by a rigid mass M with a

velocity of V0 at time t = 0. Employing classical Euler-Bernoulli beam theory [9], and

denoting the longitudinal and the transverse displacements, by u and w respectively,

in the x and y directions, respectively, the two coupled governing equations of motion
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are;

(4.1a)
∂2u

∂x2
=

1

c2
0

∂2u

∂t2

(4.1b) EI
∂4w

∂x4
+

∂

∂x

[
F (x, t)

∂w

∂x

]
+ ρA

∂2w

∂t2
= 0

where c0 =
√

E/ρ, E=Young’s modulus, ρ=density, I=second moment of inertia,

A=cross sectional area, and F (x, t)=resultant axial load due to the impact which

can be expressed using the wave solution u(x, t) as

(4.2) F (x, t) = EA
∂u

∂x

The initial conditions for the governing equations, Eq. (4.1), are

u(x, 0) = 0

∂u(x, 0)

∂t
= 0 for 0 ≤ x < L

∂u(x, 0)

∂t
= −V at x = L

(4.3)

for the axial motion, and

w(x, 0) = 0

∂w(x, 0)

∂t
= 0

(4.4)

for the out-of-plane motion, respectively. The beam is considered to be fixed at

x = 0, and simply supported at the impacted end, x = L. Consequently, the

boundary conditions are

u(0, t) = 0

M
∂2u(L, t)

∂t2
= Mg − EA

∂u(L, t)

∂x

(4.5)

for the longitudinal displacement, and

w(0, t) = 0 and
∂w(0, t)

∂x

w(L, t) = 0 and
∂2w(L, t)

∂x2
= 0

(4.6)
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for the transverse displacement. Note that the boundary condition at x = L for the

axial motion in Eq. (4.5) is valid as long as the impactor mass is in contact with the

impacted end of the beam.

The axial motion is first considered to obtain the wave propagation as a result of

impulsive axial compression. Once the stress distribution, which is non-uniform in

time and space, is obtained from the wave solution, it can be applied to Eq. (4.1b)

to investigate the existence of dynamic bifurcation. In order to obtain the full wave

solution, Laplace transform of Eq. (4.1a) is taken, considering the initial conditions

Eq. (4.3),

(4.7)
∂2ū(x, s)

∂x2
−

(
s

c0

)2

ū(x, s) =
V0

c2
0

H(x− L)

where ū(x, s) is the transformed axial displacement, u(x, t) and H is the heaviside

step function. Then, ū(x, s) is subjected to the transformed boundary conditions of

Eq. (4.5)

ū(0, s) = 0

M
[
s2ū(L, s) + V0

]
= Mg

1

s
− EA

∂ū(L, s)

∂x

(4.8)

The general solution to the second order ordinary differential equation Eq. (4.7)

can be written as

(4.9) ū(x, s) = C1 e(s/c0)x +C2 e−(s/c0)x +
e
− s

c0
(L+x)

2s2
{ e(s/c0)L− e(s/c0)x} 2V0H(x−L)

where C1 and C2 are unknown constants. The unknown constants can be determined



83

from the boundary conditions, Eq. (4.8). Therefore, ū(x, s) is obtained as

ū(x, s) =
M(g − sV0)

s2
{(

EA
c0

+ Ms
)

e(s/c0)L +
(

EA
c0
−Ms

)
e−(s/c0)L

} ×
(
e

s
c0

x − e
− s

c0
x
)

=
M(g − sV0)

s2

1

EA/c0 + Ms

[
e

s
c0

(x−L) − e
− s

c0
(x+L)

]

− M(g − sV0)

s2

EA/c0 −Ms

(EA/c0 + Ms)2

[
e

s
c0

(x−3L) − e
− s

c0
(x+3L)

]

+
M(g − sV0)

s2

(EA/c0 −Ms)2

(EA/c0 + Ms)3

[
e

s
c0

(x−5L) − e
− s

c0
(x+5L)

]
− · · ·

(4.10)

Now we take inverse Laplace transform of Eq. (4.10) to obtain the axial displacement

in the time domain, which is,

u(x, t)

= f1(x, t)H

(
t− L + x

c0

)
+ f2(x, t)H

(
t− L− x

c0

)

+ f3(x, t)H

(
t− 3L + x

c0

)
+ f4(x, t)H

(
t− 3L− x

c0

)

+ f5(x, t)H

(
t− 5L + x

c0

)
+ f6(x, t)H

(
t− 5L− x

c0

)

(4.11)

where H is the Heaviside step function and fi(x, t) (i = 1, 2, 3, · · · ) are coefficient

functions as a result of the inverse transform. The first two coefficient functions are

written, for example,

f1(x, t) = −c0M

EA
g

(
t− L + x

c0

)
+

(
c0M

EA
g + V0

)
c0M

EA

[
1− e

− EA
c0M

�
t−L+x

c0

�]

f2(x, t) = −c0M

EA
g

(
t− L− x

c0

)
−

(
c0M

EA
g + V0

)
c0M

EA

[
1− e

EA
c0M

�
t−L−x

c0

�](4.12)

and so on. Eq. (4.11) can be used to describe the non-uniform strain distribution in

time and space, considering the wave propagation effect in the beam of finite length.

Next, the out-of-plane equation of motion, Eq. (4.1b), is considered. Obviously,

w0(x, t) = 0 is the trivial solution to Eq. (4.1b) irrespective of time t and axial force

F (x, t). We are seeking to find the critical time t∗ corresponding to the emergence
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of a non-trivial solution w1(x, t) 6= 0 satisfying Eq. (4.1b). If w1(x, t) 6= 0 is another

solution to Eq. (4.1b), along a bifurcated path, then, w1(x, t∗+∆t) must also satisfy

Eq. (4.1b), when ∆t is infinitesimally small. It follows that,

(4.13a)
∂4w1(x, t∗)

∂x4
+

1

κ2

∂

∂x

[
∂u(x, t∗)

∂x

∂w1(x, t∗)
∂x

]
+ β4∂2w1(x, t∗)

∂t2
= 0

(4.13b)

∂4w1(x, t∗ + ∆t)

∂x4
+

1

κ2

∂

∂x

[
∂u(x, t∗ + ∆t)

∂x

∂w1(x, t∗ + ∆t)

∂x

]
+β4∂2w1(x, t∗ + ∆t)

∂t2
= 0

where κ=radius of gyration and β4 = ρA/EI. Using the Taylor series for expand-

ing terms in Eq. (4.13b) and neglecting higher order terms after the expansion,

Eq. (4.13b) can be reduced to

(4.14)
∂

∂t

[
∂4w1(x, t∗)

∂x4
+

1

κ2

∂

∂x

{
∂u(x, t∗)

∂x

∂w1(x, t∗)
∂x

}
+ β4∂2w1(x, t∗)

∂t2

]
∆t = 0

with the aid of Eq. (4.13a). Since ∆t 6= 0, it follows that,

(4.15)
∂

∂t

[
∂4w1

∂x4
+

1

κ2

∂

∂x

{
∂u

∂x

∂w1

∂x

}
+ β4∂2w1

∂t2

]
= 0 at t = t∗

Eq. (4.15) provides the condition to determine t∗. Eq. (4.15) can be further simplified

in view of Eq. (4.13a) to finally yield,

(4.16)
∂4w1

∂x4
+

1

κ2

∂

∂x

[
∂u

∂x

∂w1

∂x

]
+ β4∂2w1

∂t2
= 0 at t = t∗

as the final condition to determine t = t∗.

Following the exposition in [9], a non-trivial solution to Eq. (4.16) is assumed in

the form

(4.17) w1(x, t) = f(t)W (x),

with the D’Alembert substitution f(t) = eiΩt, so that

(4.18) w1(x, t) = eiΩtW (x)



85

Substituting Eq. (4.18) into Eq. (4.16) results in,

(4.19)
d4W

dx4
+

1

κ2

∂

∂x

(
∂u

∂x

dW

dx

)
= Ω2β4W at t = t∗

which is subjected to the clamped-simply supported boundary conditions,

W = 0 and
dW

dx
= 0 at x = 0

W = 0 and
d2W

dx2
= 0 at x = L

(4.20)

The solution to Eq. (4.19) is assumed to be

(4.21) W (x) =
N∑

i=1

Aiφi(x)

where Ai=constant and φi(x) are the eigenfunctions of a clamped-simply supported

beam undergoing free vibration. Consequently, φi(x) satisfies the geometric and

natural boundary conditions prescribed by Eq. (4.20). Using Eq. (4.21), the problem

posed by Eq. (4.19) and Eq. (4.20) can be rewritten as,

(4.22) [kij − Pij] {Aj} = Ω2 [mij] {Aj}

where Ai=column vector consisting of the coefficients, and the kij, Pij, and mij are

defined as

(4.23) kij = kji =

∫ L

0

d2φi

dx2

d2φj

dx2
dx

(4.24) Pij = Pji =
1

κ2

∫ L

0

∂u

∂x

dφi

dx

dφj

dx
dx

(4.25) mij = mji = β4

∫ L

0

φiφjdx

It should be noted that Pij is a function of time. The system, Eq. (4.22), admits a

non-trivial solution when the determinant,

(4.26)
∣∣kij − Pij − Ω2mij

∣∣ = 0
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The solution, Eq. (4.18), is always bounded when all the eigenvalues, Ω, are real.

When one or more of the eigenvalues Ω becomes complex with a negative imaginary

part, the solution becomes unbounded and an instability is indicated. The first

instance at which this occurs, denoted as t = t∗, is called the critical time to buckle.

Once this time is determined, the corresponding mode shape and buckling load can

be obtained.

4.2.2 Response analysis: beam with a initial deflection

When the beam is initially crooked such as in Fig. 4.2 (b), Eq. (4.1b) should be

rewritten as, [18],

(4.27) EI
∂4w

∂x4
+

∂

∂x

[
F (x, t)

∂w

∂x

]
+ ρA

∂2w

∂t2
= EI

∂4w0

∂x4

considering the geometric initial curvature. The initial conditions for the governing

equation, Eq. (4.27), are

w(x, 0) = w0(x)

∂w(x, 0)

∂t
= 0

(4.28)

The axial solution obtained earlier enters as an axial force term in the out-of-plane

equation of motion, Eq. (4.27). Here, we are assuming that

(4.29)
‖ w0(x) ‖

t
¿ 1

, so that the axial wave propagation solution developed earlier for the perfect straight

beam is still valid. The solution to Eq. (4.27) can be assumed as

(4.30) w(x, t) =
N∑

i=1

ηi(t)φi(x)

where ηi(t) are unknown time functions to be solved and φi(x) are the eigenfunctions

of a clamped-simply supported beam undergoing free vibration. Substitution of the
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assumed solution Eq. (4.30) to Eq. (4.27) yields

(4.31) EI

N∑
i=1

ηi(t)φ
′′′′
i (x) +

{
F

N∑
i=1

ηi(t)φ
′
i(x)

}′
+ ρA

N∑
i=1

η̈i(t)φi(x) = EIw′′′′
0 (x)

where ′ denotes differentiation with respect to x and · denotes differentiation with

respect to t. In order to take advantage of orthogonality, Eq. (4.31) is multiplied by

φj(x) and integrated over the beam length. Eq. (4.31) can be rewritten as

[
ρA

∫ L

0

φj(x)2

]
η̈j(t) +

[
EI

∫ L

0

φ′′j (x)2dx

]
ηj(t) +

[
F

{ N∑
i=1

ηi(t)φ
′
i(x)

}
φj(x)

]L

0

−
∫ L

0

F
{ N∑

i=1

ηi(t)φ
′
i(x)

}
φ′j(x)dx = EI

∫ L

0

w′′
0(x)φ′′j (x)dx

(4.32)

The initial displacements can be expressed

(4.33) w0(x) =
N∑

i=1

aiφi(x)

where

(4.34) an = ρAL

∫ L

0

w0(x)φn(x)dx

Here, the orthogonality condition

(4.35) ρAL

∫ L

0

φi(x)φj(x)dx = δij

has been used, where δij is the Kronecker’s delta. Suppose that the initial imperfec-

tion shape corresponds to the first mode shape, which is

(4.36) w0(x) = w(x, 0) =
N∑

i=1

aiφi(x) = a1φ1(x)

then, a series of coupled linear differential equations are obtained

[
ρA

∫ L

0

φ1(x)2

]
η̈1(t) +

[
EI

∫ L

0

φ′′1(x)2dx

]
η1(t)−

[ ∫ L

0

Fφ′1(x)2dx

]
η1(t)

−
[ ∫ L

0

Fφ′2(x)φ′1(x)dx

]
η2(t)−

[ ∫ L

0

Fφ′3(x)φ′1(x)dx

]
η3(t) · · · =

[
EI

∫ L

0

φ′′1(x)2dx

]
a1

(4.37)
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[
ρA

∫ L

0

φ2(x)2

]
η̈2(t) +

[
EI

∫ L

0

φ′′2(x)2dx

]
η2(t)−

[ ∫ L

0

Fφ′1(x)φ′2(x)dx

]
η1(t)

−
[ ∫ L

0

Fφ′2(x)2dx

]
η2(t)−

[ ∫ L

0

Fφ′3(x)φ′2(x)dx

]
η3(t) · · · =

[
EI

∫ L

0

φ′′2(x)2dx

]
a2

(4.38)

[
ρA

∫ L

0

φ3(x)2

]
η̈3(t) +

[
EI

∫ L

0

φ′′3(x)2dx

]
η3(t)−

[ ∫ L

0

Fφ′1(x)φ′3(x)dx

]
η1(t)

−
[ ∫ L

0

Fφ′2(x)φ′3(x)dx

]
η2(t)−

[ ∫ L

0

Fφ′3(x)2dx

]
η3(t) · · · =

[
EI

∫ L

0

φ′′3(x)2dx

]
a3

(4.39)

This system of linear differential equations can be solved numerically. The solution

will be used to study the effects of an initial geometric imperfection on the critical

time and other critical parameters obtained from the bifurcation analysis.

4.3 Results and discussion

4.3.1 Bifurcation analysis: critical time, critical wavelength, and dynamic buckling
load

The conditions derived earlier for dynamic buckling also finds interpretation from

an energetic view point. We find that when the kinetic energy of the impactor,

defined by its mass and velocity, is high enough, and the mass and the beam are

in contact for a sufficiently long time, then the condition for dynamic buckling is

met. If the momentum of the falling mass is not sufficient to overcome the elastic

resistance to buckling (lack of flexural rigidity), then the mass and the beam will lose

contact prior to meeting the condition for dynamic buckling. Once the impacting

mass looses contact, the beam will undergo free vibrational response, limited to

axial motion, since there is not sufficient energy to excite dynamic buckling. This is

because the compressive strain along the beam after the impact is negated due to

the reflected stress wave from the fixed end, which is tensile. Therefore, for dynamic

buckling to occur, the beam must be in contact with the falling mass of a sufficiently
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large kinetic energy, for a sufficiently long duration. A stiffer material such as steel

will require much higher kinetic energy for a longer contact duration in order to

initiate dynamic buckling than for a soft material such as teflon.

The contact duration of the striking mass at the impacted beam end can be

obtained by using the wave solution for the axial motion presented earlier (see

Eq. (4.11)). At the instance when the mass looses contact with the beam, i.e.,

when the impacted end becomes free, the boundary condition for the axial motion

at x = L is altered to

(4.40)
∂u(L, t)

∂x
= 0

By substituting the axial wave solution, Eq. (4.11), to Eq. (4.40), the time corre-

sponding to the loss of contact, t̂, can be obtained. Again, the buckling time, t∗, can

be obtained from Eq. (4.26).

Fig. 4.3 shows the contact duration and the buckling time, t∗, for, (a) a fixed

impactor velocity and as a function of impactor mass, and, (b) a fixed impactor

mass and as a function of impactor velocity. As can be seen in Fig. 4.3, the contact

duration is independent of the impact velocity, while it increases as the impactor mass

increases. A critical time to buckle, t∗, does not exist for low impactor velocities and

masses, as shown in Fig. 4.3 (a) and (b), indicating axial free vibration of the beam

after the contact duration t̂. The dynamic buckling is initiated at time t∗ and this

time is also indicated in these figures.

When the beam dynamically bifurcates at, t = t∗, the buckling mode shapes show

modulations over the entire length of beam, which is characteristic of a dynamic

buckling event. In a static, progressive buckling event, the localized pattern is con-

fined to the end where the load is applied. It is to be noted that in a real experiment,

small unintended deviations in the initial straightness of the beam or slight eccen-
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tricity in the direction of the falling mass will result in observed dynamic buckling

initiating earlier than that predicted by the analysis here. The effect of small initial

imperfections on the dynamic buckling of a beam is addressed elsewhere (Ji and Waas

2008). Fig. 4.4 shows typical examples of the deformed beam shape with different

impactor velocities. As illustrated in Fig. 4.4, the buckling wavelength is defined by

dividing the entire beam length with the number of nodes at the undeformed original

beam position. Since the buckle mode shape is localized at the impacted end and

shows non-uniformity along the beam length, such an “averaging” procedure was

implemented for comparing predictions against experiment. Fig. 4.5, Fig. 4.6, and

Fig. 4.7 shows comparisons of the present theoretical normalized wavelengths, (λ/d),

with experimental results for a variety of materials with a wide range of values of

elastic properties. These properties are listed in Table 4.1. In the experiments re-

ported in [24], the buckling event and buckle mode shapes were recorded with the aid

of a high-speed camera. Using the definition of an averaged wavelength as described

here, we have compared our predictions against the experimental data. However,

there is no mention of how the “wavelength” reported in [24], was obtained. As

can be seen from the figures, the analytical “average” wavelengths from the present

analysis are in very good agreement with the all the experimental results. At shorter

wavelengths, it is likely that a better model of the beam (such as a Timoshenko beam

model) would provide even better agreement, and this is a subject of current study.

The present results show that the dependence of dynamic buckling on the relative

properties of the impactor and the beam as depicted in Fig. 4.3 has been captured

accurately by the present analysis.

When the material is brittle (like pasta rods), experimental results indicate that

the rod fragments. Images of the buckling event (see Figure 1 of [24]) show that
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the modulated buckle shape leads to distinct points along the beam length where

the curvature is a maximum. These are also the locations where the strains at

buckling exceed the maximum strain limit of the material leading to fragmentation.

The fragments appear to be of different lengths because the spacing between the

maximum curvature locations is not constant, gradually increasing away from the

impacted end. Because the modulated buckle mode shape has been computed in

the present work, these shapes can be used to obtain statistics associated with the

fragment lengths, thus shedding more insight into the process of fragmentation that

is due to the dynamic buckling event.

Because the internal axial force resultant, N(x, t), is spatially non-uniform, the

dynamic buckling load can be defined as

(4.41) P =
1

L∗

∫ L∗

0

N(x, t)dx at t = t∗

where N(x, t)=internal axial force of the beam at position, x, and time, t, and

L∗ = c0t
∗. It is noted that L∗ = L after the axial strain distribution is fully developed

over the entire beam length (i.e., for t∗ ≥ L/c0). Fig. 4.8 shows the computed

dynamic buckling loads as a function of the impact velocity for the different materials

listed in Table 4.1. It appears that the ratio between the dynamic buckling load and

the static Euler buckling load is very large for the softer material at the same impact

mass and impact velocity. This shows that a larger kinetic energy is required to

initiate dynamic buckling in the stiffer material. These physical attributes have

been quantified accurately in the present paper through the solution of the coupled

equations of motion (Eq. (4.1a) and Eq. (4.1b)), that govern the dynamic buckling

event.
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4.3.2 Dynamic responses of a beam with an initial imperfection

Dynamic buckling will occur earlier than that predicted for the straight beam

if the beam has a geometric imperfection because the crooked beam will deflect

immediately after impact. Fig. 4.9 shows an example of the response of a crooked

beam to the axial impact as time develops. The column is of length 190mm, with

circular cross-section of diameter, t = 1.6mm, impacted by masses of 10 g with a

velocity of 0.3 m/s. The initial shape is assumed to be the first natural vibration

mode of a clamped-simply supported beam. The time is normalized by the critical

time, t∗, and the deflection is measured from the initial deflection. As shown in

Fig. 4.9, the beam starts to deform immediately after impact and the deformation is

localized at the impacted end. As time develops, the axial stress wave propagates to

the other end and the out-of-plane deformation also grows. Notice that the scale of

the magnitude axis when the time reaches the critical time t∗ is much greater than

the other figures.

Fig. 4.10 shows another example for the response of the crooked beam as a function

of the impact velocity. The initial shape is assumed to be the first natural mode of

a clamped-simply supported beam. The response of the crooked beam is measured

by w̄ which is defined by

(4.42) w̄ =
1

L

∫ L

0

‖w(x, t∗)‖dx

where L=beam length, w=out-of-plane displacement, and t∗=critical time obtained

through the bifurcation analysis. Fig. 4.10 also shows the normalized critical time

T ∗ = t∗/(L/c0) for each case. A general trend for the response of the crooked beam

is clearly noticeable in Fig. 4.10. The out-of-plane deformation of the beam begins

immediately after impact and it starts diverging after the critical time. Furthermore,
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the deformation increases as the impactor velocity increases.

When defining the axial load of the beam with a geometric imperfection, the

initial curvature should be accounted for in Eq. (4.43). Thus, for a beam with an

initial geometric imperfection, Eq. (4.43) is altered to

(4.43) P =
1

L∗

∫ L∗

0

EA
[du

dx
+

1

2

(dw

dx

)2 − 1

2

(dw0

dx

)2]
dx at t = t∗

Fig. 4.11 shows the axial load of the crooked beam as a function of the maximum

initial deflection, ŵ0. The maximum deflection, ŵ0, appears as a percentage of the

beam length in Fig. 4.11. The shape of the initial deflection is assumed again to be

the first natural vibration mode of a clamped-simply supported beam. The axial load

is computed at the the critical time, t∗, since the beam will deform immediately after

impact because of the initial deflection. The axial load in Fig. 4.11 is normalized by

the static Euler buckling load. As shown in Fig. 4.11, the axial load decreases as the

initial deflection increases.

The effect of the beam length on the dynamic response of the crooked beam is

also studied in Fig. 4.12. The maximum initial deflection of the beam, ŵ0, is fixed at

2mm. Again, w̄, defined in Eq. (4.42) is used to measure the response of the beam

as the length of the beam changes. The normalized critical time, T ∗, for each case

obtained from the bifurcation analysis is also indicated in Fig. 4.12. As shown in

Fig. 4.12, the response of the beam decreases as the beam becomes longer. In fact,

dynamic buckling occurs very fast according to the critical time in Fig. 4.12 as the

beam length increases. During that short time duration, only a small portion of the

beam will experience a significant deformation because the axial wave propagates as

far as c0t
∗.
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4.4 Concluding remarks

The dynamic bifurcation buckling of an axially impacted column has been consid-

ered. A critical time to buckle, which is the dynamic counterpart of the critical load

corresponding to the celebrated static Euler buckling problem has been derived and

shown to be the first indicator that signals the onset of dynamic bifurcation. Unlike

in the static problem, the dynamic buckling problem results in localized non-uniform

buckle mode shapes associated with the interactions between the in-plane and out-

of-plane deformation responses. The influences of the impactor mass and impactor

velocity have been accurately captured and it is seen that the impactor mass has a

substantial influence on the dynamic bifurcation buckling event. Extensions of the

concept of a critical time to buckle has applications to other beam, plate and shell

structures, including problems for which material rate effects are also important.
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E (GPa) ρ (kg/m3)
Steel 200 7900
Pasta 2.9 1500
Teflon 0.5 2200

Table 4.1: Properties of various beam materials



96

Figure 4.1: Localized buckled shape of a PTFE teflon rod after impact by a steel projectile with
velocity of (a) 0.7 (m/s) (b) 4.6 (m/s) (c) 11.2 (m/s) (d) 26.0 (m/s) reproduced here
from Gladden et al. (2005)
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Figure 4.2: Configuration of a slender beam subjected to axial impact
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CHAPTER V

Experimental investigation of the static response of a
sandwich structure under uniaxial compression

5.1 Introduction

The sandwich structure is composed of two thin, stiff, and strong face sheets cov-

ering a thick, light, and weaker core. The combination of the two different materials

that are bonded to each other creates useful and unique structural advantages. The

major advantage of the sandwich structure is very high stiffness and strength to

weight ratios, due to the high axial stiffness of the face sheet separated by the light

and relatively soft core. Since the core has typically lower density than metals, the

sandwich structure can enhance the flexural rigidity of a structure without adding

substantial weight to the structure. With various advantages given by this sandwich

design, sandwich structures have been widely used in various applications specifically

where the high stiffness per unit weight is greatly required.

The sandwich structure overcomes some drawbacks of the corresponding mono-

lithic structure with the sandwich concept giving better structural performance for

a specific application. However, load carrying sandwich structures show different

response behavior due to the combination of multiple constituents. Especially, the

sandwich structure under end compression exhibits peculiar failure behaviors, not

encountered in homogeneous materials. Various failure modes may appear depend-

108
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ing on the vast choices of material and geometric properties for the face sheet as well

as the core. While the long and slender sandwich column is still susceptible to global

instability, the sandwich structure can also fail by local instabilities in various ways.

If the face sheets are made of laminated composites, a sandwich structure can also

fail due to fiber microbuckling at the fiber/matrix scale.

The various failure modes of sandwich structures under end compression are ex-

amined experimentally in this chapter. The thickness of the core and the sandwich

column length are the major variables for studying a collapse “map” of the sandwich

structure subjected to uniaxial compressive loading. Theoretical analysis is also per-

formed to predict the mechanical behaviors of the structure and compared against

the experimental results. Finite element analysis is used to simulate the compression

tests for comprehensive understanding of the sandwich structure failure mechanism.

5.2 Theoretical analysis of the sandwich column failure in uniaxial com-
pression

Consider a sandwich column of gage length L with a face sheet thickness tf and a

core thickness tc as shown in Fig. 5.1. The sandwich column is clamped at both ends

and subjected to uniaxial compressive loading. The sandwich column may experience

global or local instability due to the uniaxial load, resulting in the significant loss

of load carrying capability of the structure. The sandwich column may also be

collapsed by the failure in one of the constituents in micro mechanical scale before

the macro instability develops. The mechanics of the compressive response of the

sandwich structure is a consequence of competing multiple failure modes such as

global buckling, local buckling, or face sheet micro buckling. This complex failure

mechanism of the sandwich column are mainly caused by the combination of two

different materials, unlike a corresponding monolithic column. The monolithic beam
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is prone to be failed by Euler buckling mode under compression, while various failure

modes are possible for the sandwich column as shown in Fig. 5.2.

Fig. 5.2(a) shows global buckling failure mode of a sandwich column, when the

column is very long and slender. The global buckling mode can also be found for a

very short sandwich column, and the instability is governed by the transverse shear

deformation of the core. Local instability of the face sheet with short waves, known

as wrinkling, is another candidate for the failure modes of the sandwich column as

shown in Fig. 5.2(b). Wrinkling is usually found for a sandwich column with a thick

core having lack of lateral support, since the large thickness of the core prevent the

two face sheets from interacting each other for global deformation. In addition to the

two macrobuckling modes, compression failure of the face sheet due to microbuckling

of the fibers can occur when the axial stress in the face sheet reaches its maximum

strength before the macrobuckling stresses develop. The compression failure of the

face sheet should be considered carefully since the face sheets is much stiffer than

the core and the compressive load is almost carried by the face sheets only.

The failure mechanism of the sandwich in compression is best described in Fig. 5.3,

where the critical failure stresses are plotted against the sandwich column lengths.

The theoretical buckling stress profiles are calculated by the analysis presented in

Chapter II. The face sheet microbuckling stresses can be obtained from compression

tests of the sandwich columns. Fig. 5.3(a) assumes that the face sheet microbuck-

ling stress is smaller than theoretical wrinkling stress. Consequently, the sandwich

column is susceptible to compression failure of the face sheet in a certain range of

the column length, before global buckling becomes dominant collapse mode for the

longer sandwich column. When the transverse normal stiffness of the core becomes

weaker, the wrinkling stress may appear in a certain range of the column length as
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shown in Fig. 5.3(b). The global buckling mode may occur when the column length is

very large or shorter than the wrinkling wavelength as indicated in Fig. 5.3(b). The

microbuckling failure is also expected for a very short sandwich column. Fig. 5.3(c)

shows the failure map of a sandwich column with a thin core. The column behaves

like a whole monolithic beam and the global buckling is dominant failure mode where

the global buckling stress is smaller than the microbuckling stress.

In the following sections, sandwich columns subjected to uniaxial compressive

loading will be experimentally examined with a variance of the column length and

the core thickness. The various failure modes and corresponding critical stresses of

the sandwich columns will be studied using the experimental data. The experimental

results will be compared against the theoretical predictions from the present analysis.

5.3 Experimental setup

5.3.1 Material properties of the face sheet and the core

The sandwich panels experimentally examined here consisted of carbon/epoxy

laminate face sheets over polyurethane foam cores. Two types of sandwich panels

were manufactured with a 12.5 mm thick core and a 25 mm thick core, using resin

transfer molding (RTM) at the University of Utah1. The geometrical and material

properties of the face sheets are identical for the two types of sandwich panels.

The core material was made from a closed-cell polyurethane foam of density 160

kg/m3. The product name of the core is LAST–A–FOAM FR–6710. Mechanical

properties of the core are found in the published data sheet by the manufacturer

[16]. The Young’s modulus of the core is 89 MPa and the shear modulus is 19.5

MPa. Uniaxial compression test on the rectangular block of the core (25mm ×

25mm × 38mm) was performed to obtain the inelastic behavior of the core. The
1We are grateful to Prof. Dan Adams of the Mechanical Engineering Department at the University of Utah for

supplying they sandwich panels at a reasonable cost
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stress-strain curve from the compression test is plotted in Fig. 5.4.

The core is covered by the face sheets comprising four plies of the T300B–3K plain

weave carbon fiber fabric impregnated with the Epon 862 epoxy. The four layers were

stacked in a [0/90/0/90] pattern. The measured average thickness of the face sheets

removed from the sandwich panels was 1.0 mm. Tension tests were performed on

three replicate specimens to obtain the uniaxial Young’s modulus and the Poisson’s

ratio. Since the stacking sequence and the geometry of the woven fabric are balanced,

the properties of the face sheet in the longitudinal and the transverse directions are

the same. The measured Young’s modulus of the face sheet was 48.1±4.0 GPa and

the Poisson’s ratio was 0.21.

5.3.2 Compression testing of sandwich specimens

The sandwich specimens were cut from the panels using a circular saw. Three

groups of specimens with the gage length of 25 mm, 100 mm, 180–200 mm were

tested. All specimens had a width of 61 mm. Both ends of the specimens were

clamped by steel grips with plastic steel putty to constrain end rotations (effec-

tively, clamped condition). While the epoxy adhesive was cured, the specimens were

mounted on a fixture to keep the sandwich columns straight. Strain gages were

bonded at the middle length of the front and back surfaces of the specimens. Par-

allel lines were marked on the core transversely as an indication of the specimen

deformation during compression tests. The configuration of the prepared sandwich

specimens is illustrated in Fig. 5.1.

The specimens were axially compressed by a hydraulically driven testing machine

at the rate of 0.01 mm/s. The end displacement of the specimens during compression

were measured by averaging the displacements from two linear voltage displacement

transducers (LVDT) installed at the right and the left side of the specimens. The



113

strains of the specimens were measured by the strain gauges attached at the middle

length of the front and the back surfaces of the specimens. The compressive load

applied to the specimens was measured from a load cell mounted to the test machine.

A high speed camera with a framing rate of 25 frames per second and a digital single–

lens reflex camera were used to obtain deformation images of the specimen during

the tests and post-mortem.

5.4 Results and discussion

The summary of end compression tests is reported in Table 5.1 and Table 5.2, for

the sandwich specimens of the 12.5 mm thick core and the 25 mm thick core, respec-

tively. The observed failure modes of the shortest specimens was the compression

failure of the face sheet. Since the short column length restrains the evolution of

global or local instability, and alleviates geometrical misalignment effects enhanced

with a longer length, the shortest specimens can be considered to undergo axial com-

pression with negligible bending deformation. Therefore, the failure loads of the 25

mm length specimens correspond to the ultimate (maximum) strength of the sand-

wich specimens. Since the load carried by the core is negligible, the compression

failure load of the sandwich column can be written as

(5.1) Pfail = 2Xf
Cbtf

where Pfail=failure load of the sandwich column, Xf
C=compressive strength of the

face sheet, b=width of the sandwich column, and tf=thickness of the face sheet.

Thus, the ultimate compressive strength of the face sheet can be calculated from the

average failure load of the shortest sandwich specimens. The compressive strength

of the face sheet will be used as a microbuckling failure stress in the present analysis

and the value of the strength is 250 MPa. Face sheet microbuckling failure was also
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observed by Fagerberg [19] during his experimental study.

The responses of the 12.5 mm thick core sandwich specimens in the compression

tests are shown in Fig. 5.5. The end-shortening displacements are normalized by the

column length. All the specimens show linear load-displacement behaviors until the

sandwich columns collapsed at the peak loads. The maximum loads decrease as the

specimens become longer, that may be caused by the enhanced bending deformation

effect since the longer specimen is more sensitive to the geometric imperfection.

In Fig. 5.5, the shortest specimens failed by face sheet compressive failure while

the failures of two other specimens were triggered by global buckling. The growth

of global buckling modes for the 100 mm and 180 mm long specimens are shown

in Fig. 5.6 and Fig. 5.7, respectively, taken from the high speed camera. In the

pictures, the specimens were initially straight and started to deform as the applied

load increased. The deformed modes initiated the collapses of the whole sandwich

specimens. The high speed camera were used because the energy release rate was

too fast for a typical digital camera to take pictures sequentially from the global

deformation to the collapse.

The global buckling failure mode is quantitatively illustrated in Fig. 5.8, show-

ing the typical response of the bending strain of the specimen as the applied load

increases. The bending strain is calculated by averaging the difference of two strain

data obtained from the strain gages attached at the middle length of the front and

the back surfaces of the specimen. The bending strain is initially negligible but starts

to increase dramatically when the applied load reaches a certain value, where the

specimen experiences global out-of-plane buckling deformation. Fig. 5.8 confirms

once again that the failure of the 12.5 mm thick core sandwich specimen is induced

by the global buckling.
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The compressive responses of the 25 mm thick core sandwich specimens are shown

in Fig. 5.9. Similarly, all the specimens show linear load-displacement behavior until

the sandwich columns collapse at the peak loads. Decrease of the maximum load

carrying capability along with the beam length resembles the results from the thin

core sandwich specimens. However, all the specimens in Fig. 5.9 failed by the face

sheet compressive failure at the peak loads. The typical failure sequences are shown in

Fig. 5.10 and Fig. 5.11, for the 100 mm specimen and 200 mm specimen, respectively.

In this image, one of the face sheets failed first when the maximum stress in the face

sheet reached its ultimate strength. Since the broken face sheet lost its load carrying

capability and the core was very weak in shear, the bending deformation progressed

to the other face sheet, leading to its collapse. Fig. 5.12 describe the typical failure

mechanism of the 25 mm thick core sandwich specimens in terms of the bending strain

and the applied load. The bending strain shows negligible increase till the first face

sheet fails. After the first face sheet fails, the bending strain shows dramatic change,

that implies that the sandwich specimen experiences large rotational deformation

because of the loss of balanced load carrying capability from the two face sheets and

a weak core in shear.

5.5 Comparison with finite element analysis

Finite element (FE) analysis were performed using the commercial software pack-

age ABAQUS for comprehensive understanding of the failure mechanism of the sand-

wich specimens under edgewise compressive loading. The face sheets and the core

were modeled as linear elastic 2D continua. Eight-noded quadratic plane strain ele-

ments (CPE8) were used for meshing both the face sheets and the core. The quadratic

elements are preferred over four nodes linear elements since the higher order elements
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are suitable for severe element distortions during the buckling deformation. Since the

geometry and boundary conditions of sandwich column is symmetrical with respect

to the normal surface at the middle length, only half length of the beam was modeled

as shown in Fig. 5.13. A sufficiently fine mesh was used for the characteristic element

lengths to be very small compared to the local buckling wavelength. The entire beam

was uniformly strained from the left end, controlled by the axial displacement.

For the assessment of imperfection sensitivity on the compression response, the

initial geometry of the sandwich model (25 mm long specimen) was perturbed by

0.6, 1.0, and 1.4 degrees in Fig. 5.14. The arc length method was used to perform the

nonlinear geometric analysis to consider the possibility of an unstable equilibrium

path. The inelastic material behavior of the core obtained in Fig. 5.4 was also

employed for the nonlinear static analysis. Fig. 5.14 shows the load-end shortening

responses with the peak loads indicated for each case. The load carrying capacity of

the sandwich panel is weakened as the initial imperfection increases. Fig. 5.15 shows

the result from the static FE analysis, compared against the experimental results.

The FE computation with φ0 = 0.75◦ misalignment is agreeing very well with the

experiential results. The peak load obtained in Fig. 5.15 will be compared with the

experimental loads in Fig. 5.16. The linear eigenbuckling analysis was also performed

for the 12.5 mm thick core sandwich columns to compare the predicted buckling loads

against the experimental results. To estimate the reduction in the buckling load for

the other two cases (100 mm and 180 mm length specimen), a similar imperfection

sensitivity analyses were conducted. The results are indicated in Fig. 5.16 and they

show that small misalignment (φ0 = 0.2◦ for L=100 mm, and φ0 = 0.1◦ for L=180

mm) reduces the buckling stress and brings it closer to the experimental value.

The critical stresses from the experiments, FE analysis, and the present analysis
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are compared in Fig. 5.16. The experimental buckling stress is obtained when the

bending strain experiences a dramatic escalation as shown in Fig. 5.8. The present

analysis and the FE analysis (φ0 = 0◦, perfect) overpredict the global buckling

stresses compared to the experimental results. The present analysis computes the

global buckling load assuming that the sandwich model is perfectly straight and

linearly elastic. The geometric or material nonlinearity and the imperfections in

specimens from manufacturing process may cause the discrepancies since the present

analysis assumes that the materials are perfectly linear elastic, initially straight, and

perfectly bonded to each other. Any perturbation to these factors will lead to the

deterioration of the structural performances of the sandwich specimens, as was shown

with respect to the initial misalignment ,φ0, through the FE analyses. However, the

computed buckling stresses are reasonably in good agreements with the experimental

results. Furthermore, the present analysis successfully predicts the transition in the

failure modes associated with the column length.

5.6 Concluding remarks

The compression failure mechanisms of sandwich specimens with various foam

cores have been examined. The specimens were observed to display global buckling

and face sheet microbuckling. The sandwich specimens with a thick core failed by

microbuckling only since the stiffness from the thick core increased the resistance to

global and local instabilities. The sandwich specimens with a thin core exhibited

transition in the failure mode from microbuckling to global buckling as the column

length becomes longer. The variables studied here, core thickness and column length,

appears as important factors defining failure modes of the sandwich structures. The

imperfection sensitivity on the prebuckling stiffness of the specimens were also ob-
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served and verified by finite element analysis.
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Length (mm) Failure load(N) Observed failure mode
25 31970 Face sheet failure

30952 Face sheet failure
100 28232 Global buckling

27929 Global buckling
180 24034 Global buckling

24665 Global buckling

Table 5.1: Failure loads of the sandwich specimens with the 12.5 mm thick core from uniaxial end
compression tests
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Length (mm) Failure load(N) Observed failure mode
25 27692 Face sheet failure

28995 Face sheet failure
100 24761 Face sheet failure

26569 Face sheet failure
200 22045 Face sheet failure

23782 Face sheet failure

Table 5.2: Failure loads of the sandwich specimens with the 25 mm thick core from uniaxial end
compression tests



121

Figure 5.1: Configuration of a sandwich column uniaxially compressed at both ends
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Figure 5.2: Various possible compressive failure modes of a sandwich column under uniaxial com-
pression
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Figure 5.6: Buckling mode shape growth and failure of the 12.5 mm core sandwich specimen of L
= 100 mm
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Figure 5.7: Buckling mode shape growth and failure of the 12.5 mm core sandwich specimen of L
= 180 mm
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Figure 5.10: Face sheet failure of the 25 mm thick core sandwich specimen of L = 100 mm
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Figure 5.11: Face sheet failure of the 25 mm core sandwich specimen of L = 200 mm
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Figure 5.13: Configuration of the finite element analysis model
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CHAPTER VI

Dynamic failure of a sandwich structure subjected to an
axial impact

6.1 Introduction

Sandwich structures in engineering applications are exposed to various loading

configurations such as static, quasi-static, periodic, impulse, or a combination of two

or three such loading scenarios. If the sandwich structure is compressively loaded,

it is susceptible to global or local instability that may lead to the collapse of the

structure. Static buckling problem of such structures has been studied theoretically

and experimentally by many researchers. However, dynamic buckling or dynamic

instability problem has not been received as much attention as the static counterpart.

Dynamic buckling problem of a simple Euler-Bernoulli beam has received the first

attention by Koning and Taub [36]. They considered a initially crooked beam sub-

jected to shock load. They assumed that the shock load is constant along the beam

length neglecting the non-uniform axial strain distribution in time. The assumption

of constant axial force along the beam length has been favorably accepted for inves-

tigation of dynamic buckling of a beam under axial impact loading [42, 17, 24]. The

effect of the axial stress wave have been moderately studied [2, 32, 35, 56] while the

beam is still assumed to have an initial geometric imperfection. Most of those theo-

retical studies defined dynamic buckling when a selective load parameter experience

137
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a sudden change or transition in a response to the dynamic loading.

Dynamic buckling is an issue to any load-bearing structural elements such as

beams, plates, and shells. When a slender beam is subjected to an impulsive com-

pression load at one end, a compressive stress wave is generated and travels along

the beam with a velocity of c0 =
√

E/ρ, where E=Young’s modulus of the beam

and ρ=density of the beam. The stress wave becomes magnified by superposition of

the incoming and reflecting waves. If the axial stress is developed sufficiently beyond

a certain condition for dynamic buckling initiation, the beam starts out-of-plane

deformation, which may lead to a significant mechanical failure.

Sandwich structures subjected to an axial impact is also susceptible to dynamic

buckling. However, the development of the axial stress wave, that may cause dynamic

buckling, is very different from that of the corresponding monolithic beam because

of the combination of two different materials. If the sandwich beam has a large

separation between the two face sheets, the face sheet can be modeled as a beam on

an elastic foundation. If the core size is relatively small, the axial stress wave should

be treated via finite element analysis, since the axial waves of each layer will not be

separable and have interactions with each other.

In this chapter, conditions for dynamic bifurcation buckling are derived for a

sandwich beam, considering the axial stress wave propagation along the beam length.

The sandwich beam is modeled as a beam on an elastic foundation, assuming that

the core provides large separation between the two face sheets and neglecting the

interaction between the layers. In doing so, the axial wave propagation obtained in

Chapter IV is employed to solve the transverse equation of motion. It appears that

the equation of motion permits multiple non-trivial solutions at a critical time, similar

to the result of the simple Euler-Bernoulli beam discussed in Chapter IV. When
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there exists a critical time satisfying the bifurcation condition, dynamic buckling of

an impacted beam is defined and the first instance at which this occurs is denoted

as the buckling time of the sandwich beam.

Impact tests on the sandwich specimens are also performed with various config-

uration of the specimens. The experimental results are used to study the dynamic

buckling growth of the sandwich beam. Finite element analysis is conducted to sim-

ulate the experimental impact responses of the sandwich specimens to the uniaxial

compression. The experimental and numerical results will be compared in association

with the analytical critical time.

6.2 Problem formulation

6.2.1 Bifurcation analysis: dynamic buckling of a sandwich beam

A sandwich beam studied here is modeled as a beam on an elastic foundation

and is illustrated in Fig. 6.1. The elastic beam of length L is clamped at one end,

while the other end is simply supported. The cartesian coordinate system in the

xz–plane is assigned to the beam with u and w denoting displacements in the x and

z directions, respectively. The beam is supported by a continuous series of springs

that is analogous to the core material. The spring constant Kz is defined as

(6.1) Kz =
Ecb

tc/2

where Ec=Young’s modulus of the core, b=width of the beam, and tc=thickness of

the core. As pointed out in [9], the foundation constant Kz is a function of the

wavelength of the deformation in x–direction. This aspect is considered for future

work, since the assumption of a constant Kz on the predicted critical time to buckle

requires further verification. At the time of submitting this thesis, the analysis with

constant Kz was completed and these results are presented here.
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The initially straight and vertical beam is impacted at x = L by a rigid mass M

with a velocity of V0 at time t = 0. Neglecting the shear deformation effect of the

beam, the two coupled governing equations of motion are written as

(6.2a)
∂2u

∂x2
=

1

c2
0

∂2u

∂t2

(6.2b) EfIf ∂4w

∂x4
+

∂

∂x

[
F (x, t)

∂w

∂x

]
+ Kzw + ρfAf ∂2w

∂t2
= 0

where c0 =
√

Ef/ρf , Ef=Young’s modulus of the beam, ρf=density of the face

sheet, If=second moment of inertia of the beam, Af=cross sectional area of the

beam, and F (x, t)=resultant axial load due to the impact which can be expressed

using the wave solution u(x, t) as

(6.3) F (x, t) = EfAf ∂u

∂x

The initial conditions for the governing equations are

u(x, 0) = 0

∂u(x, 0)

∂t
= 0 for 0 ≤ x < L

∂u(x, 0)

∂t
= −V at x = L

(6.4)

for the axial motion, and

w(x, 0) = 0

∂w(x, 0)

∂t
= 0

(6.5)

for the out-of-plane motion, respectively. The beam is considered to be fixed at

x = 0, and simply supported at the impacted end, x = L. Consequently, the

boundary conditions are

u(0, t) = 0

M
∂2u(L, t)

∂t2
= Mg − EfAf ∂u

∂x

(6.6)
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where g=gravitational acceleration.

The solution to the equation of the axial motion is derived in Chapter IV and

will be used to solve the out-of-plane equation of motion. Eq. (6.2b) can be solved

following similar steps discussed in Chapter IV. The existence of the critical time, t∗,

will be examined, associated with the emergence of a non-trivial solution w1(x, t) 6=

0 satisfying Eq. (6.2b). If w0(x, t) 6= 0 is the trivial solution to Eq. (6.2b) and

w1(x, t) 6= 0 is another solution along a bifurcated path, then, w1(x, t∗ + ∆t) must

also satisfy Eq. (6.2b), when ∆t is infinitesimally small. It follows that,

∂4w1(x, t∗)
∂x4

+
1

κ2

∂

∂x

[
∂u(x, t∗)

∂x

∂w1(x, t∗)
∂x

]

+ γ4w1(x, t∗) + β4∂2w1(x, t∗)
∂t2

= 0

(6.7a)

∂4w1(x, t∗ + ∆t)

∂x4
+

1

κ2

∂

∂x

[
∂u(x, t∗ + ∆t)

∂x

∂w1(x, t∗ + ∆t)

∂x

]

+ γ4w1(x, t∗ + ∆t) + β4∂2w1(x, t∗ + ∆t)

∂t2
= 0

(6.7b)

where κ=radius of gyration, γ4 = Kz/E
fIf and β4 = ρfAf/EfIf . Using the Taylor

series for expanding terms in Eq. (6.7b) and neglecting higher order terms after the

expansion, Eq. (6.7b) can be reduced to

∂

∂t

[∂4w1(x, t∗)
∂x4

+
1

κ2

∂

∂x

{
∂u(x, t∗)

∂x

∂w1(x, t∗)
∂x

}

+ γ4w1(x, t∗) + β4∂2w1(x, t∗)
∂t2

]
∆t = 0

(6.8)

with the aid of Eq. (6.7a). Since ∆t 6= 0, it follows that,

(6.9)
∂

∂t

[
∂4w1

∂x4
+

1

κ2

∂

∂x

{
∂u

∂x

∂w1

∂x

}
+ γ4w1 + β4∂2w1

∂t2

]
= 0 at t = t∗

Eq. (6.9) provides the condition to determine t∗. Eq. (6.9) can be further simplified

in view of Eq. (6.7a) to finally yield,

(6.10)
∂4w1

∂x4
+

1

κ2

∂

∂x

[
∂u

∂x

∂w1

∂x

]
+ γ4w1 + β4∂2w1

∂t2
= 0 at t = t∗
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as the final condition to determine t = t∗.

Following the exposition in [9], a non-trivial solution to Eq. (6.10) is assumed in

the form

(6.11) w1(x, t) = f(t)W (x),

with the D’Alembert substitution f(t) = eiΩt, so that

(6.12) w1(x, t) = eiΩtW (x)

Substituting Eq. (6.12) into Eq. (6.10) results in,

(6.13)
d4W

dx4
+

1

κ2

∂

∂x

(
∂u

∂x

dW

dx

)
+ γ4W = Ω2β4W at t = t∗

which is subjected to the clamped-simply supported boundary conditions,

W = 0 and
dW

dx
= 0 at x = 0

W = 0 and
d2W

dx2
= 0 at x = L

(6.14)

The solution to Eq. (6.13) is assumed to be

(6.15) W (x) =
N∑

i=1

Aiφi(x)

where Ai=constant and φi(x) are the eigenfunctions of a clamped-simply supported

beam on the elastic foundation undergoing free vibration. Consequently, φi(x) satis-

fies the geometric and natural boundary conditions prescribed by Eq. (6.14). Using

Eq. (6.15), the problem posed by Eq. (6.13) and Eq. (6.14) can be rewritten as,

(6.16) [Kij − Pij + Γij] {Aj} = Ω2 [Mij] {Aj}

where Ai=column vector consisting of the coefficients, and the Kij, Pij, and Mij are

defined as

(6.17) Kij = Kji =

∫ L

0

d2φi

dx2

d2φj

dx2
dx
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(6.18) Pij = Pji =
1

κ2

∫ L

0

∂u(x, t)

∂x

dφi

dx

dφj

dx
dx

(6.19) Γij = γ4δij

(6.20) Mij = Mji = β4

∫ L

0

φiφjdx

where δij=Kronecker’s delta. It should be noted that Pij is a function of time. The

system, Eq. (6.16), admits a non-trivial solution when the determinant,

(6.21)
∣∣Kij − Pij + Γij − Ω2Mij

∣∣ = 0

The solution, Eq. (6.12), is always bounded when all the eigenvalues, Ω, are real.

When one or more of the eigenvalues Ω becomes complex with a negative imaginary

part, the solution becomes unbounded and an instability is indicated. The first

instance at which this occurs denoted as t = t∗, is called the critical time to buckle.

Once this time is determined, the corresponding mode shape and buckling load can

be obtained.

6.2.2 Finite element analysis

When the core is not thick enough to prevent the two face sheets from commu-

nicating each other during the dynamic event, the bifurcation analysis based on the

elastic foundation model loses its validity. The sandwich structure should be con-

sidered as a whole assembly to examine the dynamic response to the axial impact.

In this case, the stress wave is combination of the incoming and reflecting waves

as well as the stress waves from other constituents unlike a homogenized material.

In addition, since the core is much softer than the face sheets, the core is likely

to experience the plastic deformation while the face sheets is still in the elastic re-

gion. These complications due to the combination of two different materials are most
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suitably handled through the finite element method. To this end, the commercial

finite element analysis (FEA) package ABAQUS/Explicit is employed to simulate

the dynamic response of an initially imperfect sandwich beam subjected to an axial

impact. The face sheet is modeled with a three–node quadratic beam element to

consider shear deformation and also to include effects of rotary inertia. The face

sheet is assumed as an elastic material, while the core as an elastic–plastic contin-

uum. The inelastic behavior of the core is obtained from Fig. 5.4 in Chapter V. The

core is modeled with a CPS4R element, two-dimensional bilinear solid element with

reduced integration. Perfect bonding is enforced to the interfaces between the face

sheets and the core, and the top and the bottom face sheets are tied to the top and

bottom core surfaces, respectively. The sandwich beam is meshed with a sufficient

number of elements along the length, resulting in no significant change both qualita-

tively and quantitatively with further refinement. An initial clearance between the

mass and beam is considered to simulate the drop impact. Since the material of the

impactor mass is assumed to be much stiffer than the beam, the mass is modeled

with a rigid body element. The FE modeling of the problem is illustrated in Fig. 6.2.

6.3 Experimental setup

The material properties of the face sheets and the core are summarized in Chap-

ter V. Three groups of specimens with the gage length of 55 mm, 100 mm, and

200 mm were prepared for the 12.5 mm thick core sandwich beam. For the 25 mm

thick core sandwich specimen, 100 mm and 200 mm beams were examined. All the

specimens had the same width of 61 mm. The impacted end of the specimen was

restrained from moving perpendicular to the loading direction by the steel wedges

as shown in Fig. 6.1. The other end was clamped by steel grips with plastic steel
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putty to constrain end rotations. Strain gages were attached on the front and back

surfaces of the specimens at 1.5 cm below from the impacted end to obtain the lo-

calized buckling responses. The sandwich specimen was mounted on the fixture that

held the top steel wedge block for the uniaxial movement of the impacted end. The

entire assembly of the sandwich specimen was firmly fastened by a screw to the steel

base to prevent bounce after the impact. Parallel lines were marked transversely to

clarify the deformation during the impact event. The configuration of the prepared

sandwich specimens is illustrated in Fig. 6.1.

The specimens were axially impacted by a falling weight guided by linear motion

bearings installed in the drop tower apparatus. The impactor mass was 32.65 kg and

the impact velocity was 2.1 m/s falling from 23 cm above the impact surface. The

applied compressive load was measured from the load cell attached to the impactor.

The responses of the specimens were measured by the strain gauges attached to the

front and the back surfaces of the specimens. Oscilloscopes with high sampling rate

of 4GHz were used for the data acquisition. Two high speed cameras with a speed

of 1 millisecond and 100 microsecond were used to obtain the sequential evolution of

the failure modes of the sandwich specimens for a very short duration.

6.4 Results and discussion

6.4.1 Results of sandwich specimens with 25 mm thick core

The test results of the sandwich specimens are summarized in Table 6.1. The peak

loads of the specimens are similar to each other although they tend to decrease as the

specimen becomes longer, which was observed from the static events in Chapter V.

The gross-section strength, associated with the peak load, is based on the full cross

section area, b(tc+2tf ), where b=width of the beam. The failure time, tF , is shortened

for the smaller specimen since it has lower capability of absorbing the impact energy
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than the bigger size. The failure time is obtained when the load reaches its maximum

value, ignoring the initial time delay region. The time delay, tD, is defined as time

duration before the load starts to increase fairly linearly. The initial time delay is

unavoidable in the experiments since it is the time for the two surfaces between the

impactor mass and the impacted end of the specimen to be in complete contact

with each other. If the two contact surfaces are perfectly parallel to each other, the

load profile will start without any time delay and follow the linear line indicated in

Fig. 6.3. For example, Fig. 6.3 shows the initial time delay region and the failure

time.

The impact response of the 100 mm long sandwich specimen with a 25 mm thick

core is shown in Fig. 6.3. The load profile is acquired from the load cell attached

to the impactor mass. Initially, there is a lag of the load before it starts to increase

linearly until the sandwich specimen collapses at its ultimate strength. The time

duration for the initial lag is defined as time delay, tD, as addressed earlier. Four

points from A to D indicated in Fig. 6.3 are associated with the deformation images

taken by the high speed camera with a speed of 100 microsecond, listed in Fig. 6.4. Up

to the point A, there is no predominant out-of-plane deformation, but the specimen

is axially compressed. As the load increases, the face sheet at the impacted end

undergoes localized deformation, leading to the failure of the sandwich specimen. As

shown in Fig. 6.4 (d), the failure triggers the first delamination propagating to the

other end of the specimen and then the delamination on the other side.

Fig. 6.5 shows the impact responses of the sandwich specimens of the length 200

mm with the same thickness of the core as in Fig. 6.3. The initial load profiles are

very similar to that of the shorter specimen. However, it is interesting that there

exist level-off regions for a very short time duration at around half of the maximum
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load. The sequential deformation images of a specimen are shown in Fig 6.6, cor-

responding to the points A through D as indicated in Fig. 6.5. From the points A

to B, the sandwich specimen experiences axial compression with no bending defor-

mation as shown in Fig. 6.6(a) and Fig. 6.6(b). The sandwich specimen is failed

by delamination initiated from the impacted end as shown in Fig. 6.6(c). For the

finer examination of the failure growth between the points B and C, higher speed

camera with 10,000 frames per second was used to obtain the images in Fig. 6.7.

It appears that the sandwich specimen experiences axial compression with no pre-

dominant bending deformation before the inflated deformation at the impacted end

occurs. Once the out-of-plane deformation initiates, the specimen experience buck-

ling deformation which then drive the delamination over the interlaminar strength

of the specimen. This is an important finding of the present study.

Fig. 6.8 shows the out-of-plane deformation of the face sheet with the length of

20 cm from FE analysis. Note that the FE analysis considers the initial imperfection

and the response is obtained after the axial impact. The initial imperfection shape

is obtained from the eigenbuckling analysis through FEA and the maximum amount

of the initial deflection is 1% of the beam length. The time interval for the first four

shapes is 4tw, where tw is the time for the stress wave to travel along the face sheet

from the impacted end to the other end. The normalized deformation, w/L, shows

unsubstantial increase until the time reaches the critical time, t∗. The critical time

will be discussed in detail later in association with the bifurcation analysis discussed

earlier. After the critical time, even with the shorter time interval, 1.3tw, the out-

of-plane deformation shows sudden growth. The deformation is intensified at the

impacted end, that causes the delamination in the experiments. The corresponding

sequential deformations of the whole sandwich beam is shown in Fig. 6.9. The
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sandwich beam loses the load carrying capability after the inflated deformation at

the impacted end.

The dynamic buckling shapes observed in Fig. 6.4 and Fig. 6.6 are the localized

deformation, causing delamination from the impacted end. FEA also simulates the

inflated deformation at the end as shown in Fig. 6.9 (f). The overall deformation

of the sandwich specimens are not predominant throughout the dynamic buckling

development. It can be concluded that the core is thick enough to paralyze the gross

dynamic buckling of the sandwich beam, and the sandwich specimen is failed mainly

by the individual deformation of the face sheet, not by the deformation of the entire

assembly. Therefore, this sandwich beam can be modeled as a beam on an elastic

foundation.

The bifurcation analysis finds the critical time, t∗, when the axial strain in the

beam satisfy the emergence of dynamic buckling of the beam. The analytical critical

times for the face sheet of the lengths 10 cm and 20 cm, obtained from the present

analysis, are plotted in Fig. 6.10. As the core becomes stiffer, the critical time

increases since the transverse normal stiffness of the core provides additional support

for the face sheet to resist dynamic buckling deformation. The analytical critical time

for the 200 mm long sandwich specimen is compared against the experimental result

in Fig. 6.11. As shown in the figure, the dynamic buckling initiates well before the

peak load and the beam is experiencing the temporal evolution of the out-of-plane

deformation until it causes the collapse of the sandwich specimen. The bending

strain response in Fig. 6.11 also indicates that a global deformation of the entire

assembly is not observed for the thick sandwich specimen.
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6.4.2 Results of sandwich specimens with 12.5 mm thick core

Fig. 6.12 shows the impact responses of the 55 mm long sandwich specimens

with a 12.5 mm thick core. The load profiles are similar to other test results. The

deformation growth along the load profile is shown in Fig. 6.13 at the points A, B,

and C. The pictures in Fig. 6.13 were taken with the time interval of 1 millisecond.

The sandwich specimen shows little deformation until it collapses at the point C.

The deformation growth is shown in Fig. 6.14, that were taken between the point

B and C with the time interval of 100 microsecond. The buckling deformation

becomes apparent when the load reaches the maximum and it causes the failure of

the sandwich specimens when the deformation exceeds the ultimate strength of the

sandwich structure. The deformed shape for this thinner core sandwich specimens is

different than the thicker one observed in Fig. 6.4 and Fig. 6.6. The face sheets can

interact with each other due to the small thickness of the core and, as a result, the

whole assembly of the structure deforms together unlike the thicker specimens that

failed by the individual buckling of the face sheets.

Fig. 6.15 shows the load configuration as a function of time for the sandwich

specimens of the length 100 mm with the 12.5 mm thick core. The typical deformed

shape for this sandwich specimen is shown in Fig. 6.16 with the time interval of 1

millisecond. Similarly with the other test results, the sandwich beam is compressed

with no bending deformation up to the point B and is seen to fail after the peak load.

The out-of-plane deformation grows and is localized as shown in Fig. 6.17 (e). As

can be seen in the sequential images in Fig. 6.17, the localized deformation triggers

the collapse of the entire sandwich structure at its ultimate strength. Again, the

buckling deformation is observed in the entire beam.

Fig. 6.18 shows the dynamic responses of the 200 mm long sandwich specimens



150

with the 12.5 mm thick core. From the points A to B indicated in Fig. 6.18, the

images of Fig. 6.19 (a) and (b) shows that the specimen is axially compressed with-

out obvious out-of-plane deformation. As the load increases, the specimens starts to

deform as shown in Fig. 6.19(c) at the point C on the load profile. The enhanced

deformation over the limit strength of the sandwich structure results in the gross

failure as shown in Fig. 6.19(d). Fig. 6.20 shows the detailed buckling deformation

growth with the finer time interval of 100 microsecond. The images were obtained

from the point B on the load profile Fig. 6.18. The buckling deformation is not ob-

vious in the beginning but is enhanced until the load reaches the maximum strength

of the sandwich specimen.

The failure mechanisms of the sandwich specimens with the core of the 12.5 mm

thickness exhibit the similar processes even with the different beam lengths. The

specimens are initially compressed with no predominant bending deformation, and

then fail by the buckling deformation clearly observed around the peak loads. In

fact, the dynamic buckling initiates well before the peak loads even though the

deformation is not apparent in the images. The dynamic event is well explained

in Fig. 6.21 showing typical load and strain responses of the sandwich beam. The

load axis is normalized by the analytical dynamic buckling load and the time axis

is normalized by the critical time. The critical time in this case is obtained from

FE analysis when the sandwich model loses its load carrying capability. The axial

strains and the bending strains are obtained from the strain gages attached on the

front and back surfaces of the face sheets at 15 mm below the impacted end. When

the load increases and reaches the first level-off region, the bending strain starts to

suddenly increase from being negligible, i.e., dynamic buckling initiates. However,

the deformation is too small to be captured by the high speed camera images. The
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sandwich specimens then enters a new equilibrium state and is stabilized with the

growing buckling deformation. The sandwich beam can sustain the impact load

after the onset of dynamic buckling until the ultimate strength of the structure is

exceeded. The ultimate strength is dictated by delamination resistance between face

sheets and core and the core shear capacity.

The dynamic buckling events are also examined using FE analysis. Since the

core is not thick enough to apply the bifurcation analysis to this sandwich specimen,

FE analysis is suitable to analyze the mechanism of the dynamic buckling growth.

Fig. 6.22 shows the growing out-of-plane deformation as time increases, computed

from the FE analysis for the 200 mm long sandwich specimen. As can be seen in the

figure, the deformation reveals the sudden change after some point that is defined

even with the short time duration. This point in time can be defined as the critical

time, t∗. The corresponding deformation shapes of the whole assembly are shown in

Fig. 6.23. FE analysis predicts the localized deformed shape around the impacted

end, which is in reasonable agreement with the experimental results in Fig. 6.19. The

associated loads are also in good agreement with the experimental data in Fig. 6.18.

The buckling deformation causes the failure of the sandwich structure and, hence,

the loss of load carrying capability as shown in Fig. 6.23 (h).

6.5 Conclusion

Dynamic bifurcation buckling analysis for the sandwich beam is presented based

on an elastic foundation model for the core. The critical time is defined as a quantity

to define the onset of the dynamic buckling of a sandwich beam. For the sandwich

beam with a thinner core, FE analysis is performed to investigate the emergence of

dynamic buckling of the beam subjected to an axial impact. Dynamic buckling is seen
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to occur when the superposed axial strain waves satisfy a certain condition. Impact

tests on sandwich specimens with various configuration were performed to study the

dynamic buckling growth. It is observed that the buckling deformation occurs after

the axial deformation. The sandwich specimens starts to buckle at some point and

is stabilized in a new equilibrium state with the growing buckling deformation until

the buckling deformation drives other failure mechanism (interlaminar shear failure

between face sheets and core and core shear collapse). The critical time obtained

from the bifurcation analysis is a good indicator of the start of deformation growth

(buckling evolution), which the onset of the dynamic buckling well before the entire

collapse of the structure.
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Figure 6.1: Configuration of a sandwich column uniaxially impacted from the top
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Figure 6.2: Model configuration for the Finite element analysis
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Figure 6.3: Load profile of the 10 cm long sandwich specimen with a 25 mm thick core
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(a) Point A (b) Point B (c) Point C (d) Point D

Figure 6.4: Dynamic buckling evolution causing the collapse of the sandwich beam after the axial
impact. The corresponding loads to the each deformation are indicated in Fig. 6.3 from
the point A to the poind D. The time interval between the pictures is 100 microsecond.
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Figure 6.5: Load profiles of the 20 cm long sandwich beams with a 25 mm thick core
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(a) Point A (b) Point B (c) Point C (d) Point D

Figure 6.6: Dynamic buckling evolution causing the collapse of the sandwich beam after the axial
impact. The corresponding loads to the each deformation are indicated in Fig. 6.5 from
the point A to the poind D. The time interval between the pictures is 1 millisecond.
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(a) Point B (b) (c)

(d) (e) (f)

(g) (h) Peak load (i) Point C

Figure 6.7: Out-of-plane deformation evolution from the point B to the point C indicated in Fig. 6.5.
The time interval between the pictures is 100 microsecond.
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Figure 6.8: Out-of-plane deformation growth of the face sheet computed from FE analysis. The
analytical critical time is defined when there is a sudden change of the deformation,
causing the loss of load carrying capability of the sandwich beam.
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(a) P = 12501 (N) (b) P = 17009 (N) (c) P = 20418 (N)

(d) P = 24375 (N) (e) P = 26281 (N) (f) P = 15054 (N)

Figure 6.9: Deformation growth of the sandwich beam from FE analysis. Deformations of the face
sheet from (a) to (f) are plotted in Fig. 6.8
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Figure 6.11: Load vs. axial and bending strain. No significant change in the bending strain is not
observed until it reaches to the ultimate compressive strength.
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Figure 6.12: Load profiles of the 5.5 cm long sandwich beams with a 12.5 mm thick core
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(a) Point A (b) Point B (c) Point C

Figure 6.13: Typical example of the failure growth of the sandwich specimen of the length 5.5 cm.
The time interval between the pictures is 1 millisecond.



167

(a) Point B (b) (c) Peak load

(d) (e) (f) Point C

Figure 6.14: Dynamic buckling evolution from the point B to the point C indicated in Fig. 6.12.
The time interval between the pictures is 100 microsecond.
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Figure 6.15: Load profiles of the 10 cm long sandwich beams with a 12.5 mm thick core
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(a) Point A (b) Point B (c) Point C

Figure 6.16: Dynamic buckling evolution of the 10 cm length of the sandwich beam. The points
through A to C are indicated in Fig. 6.15. The time interval between the pictures is 1
millisecond.
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(a) Point B (b) (c) (d) Peak load (e)

(f) (g) (h) (i) (j) Point C

Figure 6.17: Out-of-plane deformation evolution from the point B to the point C indicated in
Fig. 6.15. The time interval between the pictures is 100 microsecond.
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Figure 6.18: Load profiles of the 20 cm long sandwich beams with a 12.5 mm thick core
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(a) Point A (b) Point B (c) Point C (d) Point D

Figure 6.19: Dynamic buckling evolution causing the collapse of the sandwich beam after the axial
impact. The corresponding loads to the each deformation are indicated in Fig. 6.18
from the point A to the poind D. The time interval between the pictures is 1 millisec-
ond.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) Peak load (j) (k) (l)

Figure 6.20: Out-of-plane deformation evolution from the point B to the point D indicated in
Fig. 6.18. The time interval between the pictures is 100 microsecond.
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Figure 6.21: Load vs. axial and bending strain. Dynamic instability initiates when the bending
strain starts to take off from the axis. The sandwich beam is stabilized until it reaches
to the ultimate compressive strength.
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Figure 6.22: Out-of-plane deformation growth of the face sheet computed from FE analysis. The
analytical critical time is defined when there is a sudden change of the deformation,
causing the loss of load carrying capability of the sandwich beam.
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(a) P = 2934 (N) (b) P = 15383 (N) (c) P = 21353 (N) (d) P = 30829 (N)

(e) P = 37733 (N) (f) P = 40132 (N) (g) P = 26567 (N) (h) P = 5717 (N)

Figure 6.23: Deformation growth of the sandwich beam from FE analysis. Deformations of the face
sheet from (a) to (f) are plotted in Fig. 6.22



CHAPTER VII

Conclusions and suggestions for future work

An analytical method for predicting global and wrinkling instabilities of a sand-

wich beam is presented. The sandwich beam is modeled as a 2D-linear elastic con-

tinuum. Field equations representing a solid slightly deformed from a state of initial

stress and under conditions of plane strain is adopted in the analysis. The results

obtained yield the buckling stress and the associated wavelength. The results have

shown that the buckling stress for the anti-symmetrical deformation mode is always

lower that that of the symmetrical one. The buckling behavior of the two modes is

parameterized according to the ratio of core thickness to the face sheet thickness.

The results are compared with previous experimental results, theoretical analyses,

and a finite element analysis prediction. Since the present analysis has fewer assump-

tions than previous analyses, the limitations of previous investigation are discussed

for different combination of geometry and material properties. The results presented

here, which have been verified by finite element analysis and compared against ex-

perimental results, reproduce the buckling behavior accurately for a wide range of

material and geometric parameters. The results that have been presented here are a

good prediction of the overall behavior of a sandwich beam in a uniaxial compressive

load environment regardless of the core modulus and thickness ratio. In particular,
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for thick face sheets and for relatively stiff cores, the present model is found to be

more accurate than previous models that assume beam like behavior for the face

sheets and neglect the axial load carrying capability of the core. The results from

finite element analysis have verified the findings of the present analytical model.

In addition the correct formulation of the 2D elastic sandwich column problem has

been presented along with a FE formulation of the problem. The latter has revealed

deficiencies in the formulation adopted by popular commercial codes1.

An analytical prediction of dynamic buckling is also presented in this thesis. Dy-

namic buckling of a structure under uniaxial impact compression is studied. Fully

coupled equations of inplane and out-of-plane motions are solved to find the con-

dition of the onset of dynamic buckling. There exists a critical time for the axial

strain to satisfy the emergence of the buckling deformation. The bifurcation condi-

tion is derived for the simple Euler-Bernoulli beam as well as the sandwich beam.

Experimental studies are also performed to investigate the failure mechanism of the

sandwich structure under axial impact loading. The sequential responses of the sand-

wich specimens reveal that the structure initially experiences the axial deformation

only until the buckling deformation emerges at a certain load value corresponding

to the critical time. FE analysis is also performed to simulate the dynamic response

and it is found that there exist a sudden increase of the bending deformation after

numerous superpositions of axial strain waves.

The dynamic buckling analysis presented here has numerous potential applica-

tions in various fields. The analysis is not dependent on the beam response, but is

derived quantitatively so that it is adaptable to various engineering applications. The

dynamic buckling analysis can be extended further for better understanding of more

1such as ABAQUS
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complex material under dynamic loading. The analysis can be improved considering

inelastic behavior of the material, orthotropic material, shear deformation, and var-

ious combinations of material and geometric properties for the sandwich structure.

The analysis combined with fracture mechanics can be used to explain the failure

mechanism of the sandwich structure under axial loading. The latter is suggested for

future work. In addition, extension of the Euler-Bernoulli model to a Timoshenko

beam model is suggested for the impact buckling problem, so that shear deformation

effects can be accounted for. Adopting the work of Von Karman [34], the effects of

column plasticity on the “critical time to buckle” can be captured and this is also

suggested for future work. Finally, it is possible to develop a sandwich beam FE

model that includes cohesive zone models for the face sheet-core interface. Such a

model in conjunction with an explicit FE code can be used to obtain a comprehensive

response model for the sandwich beam impact problem.
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