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Translational Research in Melanoma

Susan Tsai, MD, Michael S. Sabel, MD*
University of Michigan Comprehensive Cancer Center, University of Michigan Health System,

1500 East Medical Center Drive, Ann Arbor, MI 48109, USA

Current treatment of malignant melanoma exemplifies not only the need
for translational research but also many of the frustrating challenges of mov-
ing from the bench to the bedside. Melanoma remains somewhat unique
among solid tumors in that its treatment, at early stage or advanced disease,
primarily is surgical. Although adjuncts may play a role in some situations,
radiation is of limited benefit and, more importantly, chemotherapy has
been uniformly disappointing in adjuvant and metastatic settings. This leaves
clinicians with few viable options for reducing the chance of recurrence after
surgery and for treating unresectable disease. This fact is even more sobering
when considering the rate at which malignant melanoma is increasing in the
United States and worldwide. It is with this cost in mind that there has been
a fervent attempt to identify novel approaches to melanoma therapy and rap-
idly translate these therapeutic approaches to clinical use.

Unfortunately, there are several obstacles to translational research in
melanoma. Animal models of melanoma are limited in their translatability
to the human model, particularly regarding carcinogenesis. Despite the
widespread use of the murine B16 melanoma cell line in preclinical studies,
it is a model for transplantable tumors, which differ inherently from spon-
taneously arising melanomas, limiting translatability, particularly when
studying immunotherapy. Further, although there is a wealth of promising
preclinical data focusing on the unique relationship between melanoma and
the immune system, immunotherapy has yet to be translated to the clinical
setting successfully. There even has yet to be a randomized trial demonstrat-
ing an overall survival benefit to melanoma vaccines. Areas of research that
are making great strides in other solid tumors, such as tumor markers or ge-
nomic analysis, are hampered in melanoma not only by differences in
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biology but also by the limited availability of fresh primary tumor specimens
for study.

Notwithstanding these challenges, recent studies have provided much-
needed insight into melanoma biology, prompting exciting areas of clinical
research into the prevention and treatment of melanoma, including targeted
therapies and new approaches to immunotherapy.

Chemoprevention of melanoma

Although the majority of translational research in melanoma focuses on
therapy, increasing knowledge of the genetic and molecular events responsi-
ble for melanoma development has prompted a search for strategies to pre-
vent melanoma. UV radiation likely is the primary initiating event in most
melanomas, causing direct DNA damage through signature mutations (C/
T and CC/TT) that have been documented in genes associated with mela-
nocytes transformation, such as the oncogenes NRAS or BRAF or the
tumor-suppressor gene CDKN2A [1–4]. Beyond malignant transformation,
UV radiation also causes damage to nonmelanocytic cells (keratinocytes
and dendritic cells [DCs]). This can lead to the loss of local control and sup-
pression of the local immune response, contributing to the subsequent for-
mation and proliferation of melanoma [1,5]. Strategies to preventing
melanoma address some or all of the events related to UV radiation, includ-
ing inducing apoptosis of DNA-damaged melanocytes or nonmelanocytic
cells, enhancement of DNA repair, and enhancement of local immune re-
sponses [6].

The design and implementation of chemoprevention strategies face sev-
eral unique challenges compared with therapeutic strategies. First, the
agents of choice must have little to no toxicity; otherwise, there is poor com-
pliance [7]. The use of a single agent may not be ideal; combinations of
agents with a broad spectrum of anticarcinogenic mechanisms likely are
needed given the heterogeneity of the carcinogenesis process. Finally, trans-
lating chemoprevention from bench to bedside is challenging (for reasons
discussed previously). Animal models of UV-induced melanoma do not
mimic human melanoma development completely, although the newly de-
scribed transgenic hepatocyte growth factor/scatter factor mouse model
seems most characteristic of human melanoma [8]. The ultimate goal, to
demonstrate the ability of these interventions to prevent melanoma in pro-
spective randomized trials, will be extremely costly, as it will require large
populations to be studied for long periods of time. Alternatively, researchers
will need to identify and validate surrogate endpoint biomarkers [9].

Despite these challenges, several agents have emerged as candidate che-
moprevention agents in melanoma, some of which are summarized in
Table 1. Several of these agents occur naturally. Curcumin is the major yel-
low pigment extracted from turmeric, a spice used commonly in India and
Southeast Asia. Resveratrol is found in grapes, mulberries, and peanuts.
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Table 1

Agents proposed for chemoprevention of melanoma

Agent Mechanism Potential Side effects

Statins Inhibition of protein prenylation,

preventing post-translational

modification of the Ras superfamily,

diminishing their oncogenicity

Strong preclinical data. Epidemiologic

studies fail to demonstrate a significant

decrease in melanoma among statin users.

Small risk for myositis but otherwise good

side-effect profile, including cardiovascular

benefit

Curcumin Multiple, including antioxidant, inhibition

of tyrosine kinases, COX and lipoxygenase

inhibition, suppression of NF-kB

Good preclinical data in B16 melanoma

and UV-induced carcinogenesis. Limited

absorption and rapid metabolism are

limiting factors.

Topical: yellow staining of skin

Oral: excellent tolerance

Reservatrol Scavenging of free radicals, suppression of

NF-kB, COX inhibition

Topical administration shows several

mechanisms of action in preclinical data.

Oral administration still being studied

Minimal

Epigallocatechin-

3-gallate

Protection against UV-induced COX activity

and prostaglandin production. Free radical

scavenger. Increase in IL-12 and

augmented immune response.

Topical administration inhibits tumor

formation in mice. No strong evidence in

melanoma, although people have used

green tea for chemoprevention of other

cancers for many years.

Little to no side effects

Silymarin Scavenging of free radicals, suppression of

NF-kB, COX inhibition. Inactivation of

PI3K-Akt and MAPK signaling.

Most data in nonmelanoma skin cancers.

Limited preclinical data for melanoma.

Excellent tolerance

Sorafenib Inhibition of Raf kinase and receptor

tyrosine kinases leading to apoptosis

of melanoma cells

Promising data on treatment of melanoma.

Associated pathways are appealing targets

for chemoprevention but limited data.

Significant for chemoprevention, including

rash and hypertension.

COX-2

inhibitors

COX inhibition, prevention of UV-induced

prostaglandin production

Promising mouse data. Case control studies

suggest a decreased incidence of melanoma

in patients on a COX inhibitor.

Significant cardiac risk precluding use

Retinoids Induction of apoptosis by binding of

RAR or RXR in nuclei and interference

of transcription factors controlling

differentiation and proliferation

Shown effective in nonmelanoma skin

cancers. Limited data on melanoma;

however,

because melanoma is relatively apoptosis

resistant, there is promise.

Need careful monitoring for

hypercholesterolemia,

hypertriglyceridemia, increased LFTs,

myalgias/arthralgias, and dry skin and

mucous membranes.
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Epigallocatechin-3-gallate is the major constituent of green tea. As under-
standing of melanocyte biology and carcinogenesis improves, more agents
likely will be identified as potential instigators. A dedicated effort by basic
scientists and clinicians will be necessary to move forward and potentially
prevent the development of melanoma in high-risk populations.

Targeted therapies in melanoma

Inhibitors of signal transduction

Recent studies have shed light on the cumulative genetic and molecular
events that result in neoplasia. Transforming mutations in oncogenes and
loss of heterozygosity of tumor suppressor genes have been a major focus of
target molecular therapies. Transforming mutations in oncogenes can have
an impact on pathways that regulate cellular proliferation, differentiation,
cell cycle control, and apoptosis. Two such pathways have garnered signifi-
cant interest in the field of melanoma biology: the RAS– mitogen-activated
protein kinase (MAPK) pathway and the phosphoinositide kinase-3
(PI3K)/AkT pathway.

The MAPK signal transduction pathway has been of significant interest
since the discovery of frequent mutations of BRAF kinase. MAPK signaling
begins when receptor tyrosine kinases bind with their ligand, which trans-
mits activation signals via the RAS GTPase on the cell inner surface
(Fig. 1). Once activated, RAS can bind several effector proteins, the best

Integrins

Extracellular matrix

FAK

Tyrosine
Kinase

Receptor

RAS

BRAF

MEK

ERK

PI3K

PDK1

AKT

mTOR

Growth factors

Medi-522

Tyrosine

Kinase

Inhibitors

Temsirolimus

Everolimus

AP23573

Sorafenib

ARRY142886

PD0325901

Tipifarnib

Lonafarnib

PIP2 PIP3

PTEN

Fig. 1. The MAPK signal transduction pathway.
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characterized of which are RAF and PI3K. The RAF family of kinases
(A-RAF, BRAF, and C-RAF) links RAS and the MAPK pathway. Once
activated, RAF phosphorylates and activates MAPK/eukaryotic protein
kinase (EPK) kinase, which then activates extracellular signal-regulated
kinase (ERK). ERK also can be activated when integrins on the cell surface
adhere to the extracellular matrix, activating focal adhesion kinase. ERK
relays multiple proliferative or survival signals through phosphorylation of
a variety of targets in the cytoplasm and nucleus. Aberrant activation of
this pathway results in immortalization, growth factor–independent growth,
ability to invade and metastasize, and avoidance of apoptosis. Therapeutic
targeting of this pathway is approached from many angles. Inhibitors of
RAS-MAPK signal transduction include farnesyl transferase inhibitors that
interferewith the translocation ofRAS to the cellmembrane.Direct inhibitors
ofRAF, such as sorafenib (BAY43-9006), or ofMEK, such asARRY142886/
AZD6244 and PD0325901, are alternative inhibitory mechanisms.

Sorafenib is a RAF tyrosine kinase inhibitor that inhibits the MAPK
pathway. It targets the ATP-binding site of the kinase and, at low concen-
trations, inhibits wild-type and mutant BRAF and other tyrosine kinase re-
ceptors, including vascular endothelial growth factor receptors VEGFR-2
and VEGFR-3, c-kit, and platelet-derived growth factor receptor
b (PDGFR-b). It is Food and Drug Administration approved in the treat-
ment of advanced renal cell cancer, with the most common toxicities diar-
rhea, rash, and hand-foot syndrome [10]. As a single agent, sorafenib has
not shown significant activity in metastatic melanoma, but in combination
with chemotherapy, it is associated with an improvement in response rate
and progression-free survival. Based on these responses, an Eastern Coop-
erative Oncology Group (ECOG) phase III trial was initiated to assess car-
boplatin and paclitaxel with or without sorafenib. Sorafenib also is being
examined in combination with other targeted agents. Other inhibitors that
target mutant BRAF specifically also are in clinical trial as are agents that
inhibit other targets within the MAPK pathway (Table 2).

Another pathway involved in cell survival is the PI3K pathway, which is
altered in a variety of human tumors. After activation through RAS, phos-
phorylation of PIP2 to PIP3 occurs. This ultimately leads to the activation
of Akt (protein kinase B). Phosphatase and tensin homolog deleted on chro-
mosome 10 (PTEN) serves to negatively regulate the PI3K pathway by de-
phosphorylating PIP3. Akt, once activated, phosphorylates several targets
that control cell survival, proliferation, and invasion. At least 13 substrates
for Akt are recognized and can be divided into two main subgroups: regu-
lator of apoptosis and regulators of cell growth, protein synthesis, and cell
cycle regulation. The PI3K pathway represents another set of targets for
therapeutic intervention. A popular target is the mammalian target of
rapamycin (mTOR). mTOR is a serine-threonine kinase that functions
downstream of Akt. Members of the TOR subfamily are inhibited by rapa-
mycin, a macrolide antibiotic with immunosuppressive properties.
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Table 2

Targeted therapies in clinical trials for melanoma

Agent Company Targets Mechanism of action

17-AAG HSP90 Disrupts HSP 90 complexes

Aprinocarsen (Affinitak,

ISIS 3521)

ISIS (Carlsbad, CA) PKC-a Antisense oligonucleotide

ARRY-1422886 Array BioPharma (Boulder, CO) MEK Tyrosine kinase inhibitor

AZD2171 AstraZeneca (Wilmington, DE) VEGFR, PDGFR, c-KIT, FGFR Tyroskine kinase inhibitor

AZD6244 AstraZeneca (Wilmington, DE) MEK Tyrosine kinase inhibitor

Bevacizumab (Avastin) Genentech (San Francisco, CA) VEGF Monoclonal antibody

Bortezomib (PS-341, Velcade) Millenium (Cambridge, MA) Cell cycle regulatory proteins Proteasome inhibitor

Cilengitide (EMD 121974) Integrin Angiogenesis inhibitor

CNTO 95 Centocor (Horsham, PA) aV integrin Monoclonal antibody

Everolimus (RAD001) Novartis (Basel, Switzerland) PI3K/AkT/PTEN mTOR inhibitor

Imatinib (STI-571, Gleevec) Novartis (Basel, Switzerland) c-KIT Tyrosine kinase inhibitor

Marimastat (BB2516) Matrix metalloproteinases (MMPs) MMP inhibitor

MEDI-522 (Abergrin, Vitaxin) MedImmune (Gaithersburg, MD) aVb3 integrin Monoclonal antibody

Oblimersen Bcl-2 Antisense oligonucleotide

PD0325901 (CI-1040) Pfizer (New York, NY) MEK Tyrosine kinase inhibitor

PI-88 Progen (Queensland, Australia) VEGF, FGF 1, FGF 2 Growth factor inhibitor

RAF-265 (Chir 265) Novartis (Basel, Switzerland) BRAF, CRAF, VEGFR Tyrosine kinase inhibitor

Sorafenib (Bay 43-9006,

Nexavar)

Bayer (West Haven, CT) and Onyx

(Richmond, CA)

BRAF, CRAF, PDGFR-b, VEGFR,

FGFR, c-KIT, FLT-3, RET

Tyrosine kinase inhibitor

Semaxanib (SU5416) VEGFR-1 Tyrosine kinase inhibitor

Sunitinib (SU011248, Sutent) Pfizer (New York, NY) VEGFR, PDGFR, FLT-3, c-KIT,

FGFR 1, RET

Tyrosine kinase inhibitor

Temsirolimus (CCI-779) Wyeth-Ayerst (Madison, NJ) PI3K/AkT/PTEN mTOR inhibitor

Tibifarnib (R115777,

Zarnestra)

Johnson & Johnson (New

Brunswick, NJ)

RAS Farnesyltransferase inhibitor

UCN-01 PDK-1, Chk1 kinase PKC-a/b/g inhibitor

Abbreviations: FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; HSP, heat shock protein; PDGFR, platelet derived growth factor

receptor; PKC, protein kinase C; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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Temsirolimus (CCI-799) is an ester derivative of rapamycin, which inhibits
mTOR kinase activity, which is responsible for the translation of proteins
required for progression through the cell cycle. Preclinical investigation of
CCI-779 demonstrates growth inhibition in multiple solid tumor lines and
animal models. In phase I clinical trials, dose-limiting toxicities included
myelosuppression, diarrhea, stomatitis, fatigue, dermatitis, and hyperlipid-
emia [11]. As a single agent, temsirolimus did not have enough activity to
warrant further testing as a single agent [12]. Several ongoing studies are ex-
amining its potential when combined with sorafenib, bevacizumab, or other
targeted agents. Several other mTOR inhibitors, such as everolimus (Novar-
tis) and AP-23573 (Ariad Pharmaceuticals, Cambridge, Massachusetts), are
in phase I and II trials currently open to accrual.

Antiapoptotic therapies

One of the consequences of constitutive MAPK and PI3K/AkT signal
transduction is the deregulation of apoptosis and tissue homeostasis.
Drug resistance in melanoma also is attributed partially to overexpression
of Bcl-2, an antiapoptotic protein that locks the release of cytochrome C
[13]. Cells transfected with Bcl-2 demonstrate multidrug-resistant phenotype
multiple tumor lines. Reciprocal targeted inactivation of Bcl-2 augments
chemotherapeutic responses in in vivo models [14].

Oblimersen sodium is an 18-base phosphorothioate antisense oligonucle-
otide that binds the first six codons of the Bcl-2 mRNA open reading frame
and mediates RNA cleavage by RNase H, thus degrading the message. In
xenotransplantation models for human melanoma, down-regulation of
Bcl-2 concentration has been observed with the administration of oblimersen
and dacarbazine (DTIC) [15]. A phase I/II clinical trial was performed in pa-
tients who had metastatic melanoma. Toxicities included fever, liver func-
tion abnormalities, rash, and lymphopenia. One complete response and
two partial responses were observed [16]. A phase III trial in 771 patients
was performed in which randomized patients received DTIC alone or
DTIC plus oblimersen given by intravenous infusion. Overall survival was
not statistically significant between the two groups (9.1 months for combina-
tion group versus 7.9 months for DTIC alone), but the overall response rate
favored the combination arm (11.7% versus 6.8%, P ¼ .019).

Another target of apoptosis is nuclear factor kB (NF-kB). Its constitutive
activation is associated with impaired apoptosis in a variety of tumor lines.
In healthy individuals, NF-kB regulates the expression of genes involved in
normal immunologic responses. Persistent activation of NF-kB, however,
inhibits apoptosis and promotes proliferation leading to hyperplasia. Bo-
ronic acid-–erived compounds inhibit the proteosome pathway, which helps
to control NF-kB degradation. In the animal models, a combination of
a proteosome inhibitor, bortezomib, and temozolimide significantly reduced
tumor growth [17]. A phase II study of bortezomib in 27 patients was
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terminated because of lack of clinical responses [18]. Six patients achieved
stable disease although four of the six patients were removed from the study
for significant toxicities. Median time to disease progression was 1.5
months; however, median overall survival was 14.5 months. Although bor-
tezomib was not effective as a single agent, a phase II trial of combination
carboplatin and paclitaxel with bortezomib is ongoing, based on the previ-
ous animal models.

Antiangiogenic therapy

Neoangiogenesis is crucial for continued neoplastic proliferation and me-
tastasis. The development of new vessels is a key step for neoplastic progres-
sion. Several proangiogenic factors, including vascular endothelial growth
factor (VEGF), basic fibroblastic growth factor (FGF), and transforming
growth factor-beta, are produced by tumor cells. Endothelial cells express
a family of tyrosine receptor kinases that bind VEGF with high affinity
and stimulate several signaling pathways that induce endothelial cell mitosis,
migration, and neoangiogenesis [19]. These growth factors serve as potential
targets for molecular therapies.

Bevacizumab (Avastin) is a recombinant humanized monoclonal anti-
body to VEGF that has demonstrated efficacy in patients who have colorec-
tal cancer and improves response and survival when combined with
chemotherapy [20]. A phase II randomized trial of bevacizumab with or
without low-dose interferon in patients who had stage IV melanoma demon-
strated two responses (one complete and one partial) and four prolonged
stabilizations of disease [21]. There was no observed added benefit of the
low-dose interferon. Additional trials in melanoma are examining bevacizu-
mab in combination with chemotherapy, high-dose interferon, or other tar-
geted therapies. Another agent targeting VEGF activity is SU5416, an
inhibitor of VEGFR-1 tyrosine kinase. Although only 1 of 31 patients in
a phase II trial in pretreated stage IV melanoma patients had a response,
MRI showed a significant decrease in tumor perfusion. There may be
a role for SU5416 in combination with chemotherapy.

Thalidomide is a synthetic glutamic-acid derivative first manufactured in
the 1950s as a sedative but was associated with phocomelia and withdrawn
from the market. Judah Folkman first elucidated the effect of thalidomide
on angiogenesis, showing that thalidomide inhibits basic FGF–induced an-
giogenesis. Despite the subsequent intensive study of thalidomide as an anti-
angiogenic agent, the precise mechanism of its activity remains unknown
[22]. In addition to its antiangiogenic properties, thalidomide has immuno-
modulating properties. It costimulates T cells that have been activated par-
tially by the T-cell receptor (TCR) and inhibits monocyte-derived tumor
necrosis factor a [23,24]. Thalidomide has been studied as a single agent
or in combination with temozolimide in patients who have metastatic mel-
anoma. No objective responses were seen in a phase II clinical trial of
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14 patients who had metastatic melanoma [25], but more favorable results
were seen in a study of stage IV melanoma patients who had brain metasta-
ses using thalidomide in combination with temozolimide. Three of 15 pa-
tients who had evaluable disease demonstrated complete or partial
responses. Minor responses or stable disease was observed in seven addi-
tional patients [26]. Unfortunately, and despite initial encouraging results,
the therapy was associated with significant adverse events, most notably
a high rate of thromboembolic events [27].

Not long after the recognition of the antiangiogenic properties of thalid-
omide, efforts were made to synthesize thalidomide analogs that had fewer
side effects than the parent compound. Immunomodulatory drugs (IMiDs)
are compounds based on the thalidomide structural backbone. Second-
and third-generation IMiDs, including CC 5013 (Revlimid) and CC 4047
(Actimid), exert similar antiangiogenic activity with varying levels of immu-
nomodulating activity. A large phase III trial of CC 5013 versus placebo as
second-line therapy in patients who had advanced melanoma was termi-
nated secondary to inactivity of the study drug.

Other targets of antiangiogenic therapies are integrins. The integrin aVb3
can act as the vitronectin receptor, and it seems to play a critical role in mel-
anoma growth and further metastasis. This integrin is specific for tumor-
associated vasculature and is required for melanoma cell survival. Integrin
aVb3 is up-regulated by VEGF and b-FGF. It is expressed on a large per-
centage of cancers, including melanoma, but not by normal melanocytes. Its
expression in melanoma primary lesions increases as they progress from the
horizontal to vertical growth phases, and tumors from stage IV melanoma
patients seem to express the integrin more intensely [28]. MEDI-522 is a hu-
manized form a murine monoclonal antibody to integrin aVb3. A phase II
study comparing MEDI-522 (8 mg/kg per week) with or without DTIC
(1000 mg/m2 once every 3 weeks) in patients who had metastatic melanoma
demonstrated no objective responses in the single therapy arm. The combi-
nation with DTIC demonstrated a 13% response rate compared with no re-
sponses for the single agent [29]. Without a DTIC alone arm, it is impossible
to draw any conclusions, and there were two deaths possibly attributed to
MEDI-522, which raises safety concerns.

Immunotherapy of melanoma

For several decades, vaccines have represented the holy grail of mela-
noma therapy, a quest driven by frustration with standard chemotherapy
and clear evidence of the immune system’s ability to recognize and eradicate
melanoma. Immunotherapy represents the ideal therapeutic, a natural re-
sponse that can be initiated in an outpatient setting, has minimal side effects,
and has long-lasting memory. Conceptually, there are three criteria neces-
sary for the effective generation of an antitumor response, and they seem
within our grasp: the generation of sufficient number of cells with highly
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avid recognition of tumor antigens, appropriate homing of these cells to the
tumor targets, and appropriate activation of these cells. Thus, a plethora of
vaccines has been developed to optimize the generation of tumor avid lym-
phocytes, delivered with various types of adjuvants to increase the
immunogenicity.

Despite multiple phase I and II trials showing promise (Table 3), phase
III trials have been disappointing (Table 4). There are, unfortunately,
many hurdles to successful translation of vaccine therapies from preclinical
studies to clinical use. One difficulty is the need to balance immunogenicity
with feasibility. Approaches that use peptides or allogeneic cells are advan-
tageous in that the treatment easily is standardized and distributed, but
these preparations seem to be less immunogenic. Using autologous tumor
allows for a broader array of relevant antigens and can generate more pow-
erful immune responses, but the approach is limited to patients who have
harvestable tumor. Another problem is finding appropriate surrogates for
phase I and II trials. There are limitations to the ability to measure and com-
pare immune responses generated by vaccines accurately, and current surro-
gate endpoints, such as immunologic assays, tumor infiltration by effector
cells, or even partial clinical responses, do not necessarily predict which ap-
proaches most likely will result in improved survival. It becomes difficult,
therefore, to know which phase I and II data are most worthy of proceeding
to prospective, randomized trials. Over the years, several vaccine strategies
have been examined with variable results.

Peptide vaccines

Growing melanoma-specific T-cell clones in vitro has allowed investiga-
tors to identify the major histocompatibility complex (MHC)-restricted pep-
tide antigens they recognize [30]. Immunogenic peptides can arise from the
genetic mutations that originally led to malignant transformation; they can
be from proteins originally expressed on germ cells (which lack MHC
molecules so the antigens are silent) but now are expressed openly on cancer
cells; or they may be from proteins shared by cancer cells and normal cells.
A major benefit of using peptide vaccines is the ability to standardize, mass
produce, and test them effectively. As the immunogenicity of peptide antigens
alone is weak, the peptides often are delivered to patients along with an
immune adjuvant meant to induce inflammation and improve the immunoge-
nicity, pushing the immune process toward immunity rather than tolerance.
BCG and DETOX (detoxified Freund’s adjuvant, composed of monophos-
phoryl lipid A and a purified mycobacterial cell-wall skeleton) are examples
of adjuvants meant to cause a nonspecific inflammatory response that in-
creases the likelihood of recognition of the administered peptide.

Unfortunately, peptide vaccines have several drawbacks when translated
to clinical use. Even if the peptides are recognized, melanoma cells easily can
escape recognition through antigenic modulation. Because a T cell’s
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Table 3

Clinical trials of vaccines in melanoma

Author Vaccine (adjuvant)

Single peptide vaccines

Rosenberg [121] gp100 (IFA, IL-2)

Cormier [122] MART-1 (IFA)

Rosenberg [123] gp100 (IFA, IL-12 or GM-CSF)

Powell [124] gp100 (IFA)

Speiser [125] MART-1 (IFA, CpG 7909)

Wang [126] MART-1 (IFA)

Marchand [127] MAGE-3

Scheibenbogen [128] Tyrosinase (GM-CSF)

Jager [129] NY-ESO-1 (GM-CSF)

Khong [130] NY-ESO-1 (IFA)

Phan [131] gp100 (anti-CTLA4 mAb)

Ganglioside vaccines

Guthmann [132] GM3 (Neisseria meningitides outer membrane protein complex,

Montanide ISA 51)

Livingston [133] GM2 (BCG)

Chapman [134] GM2 (KLH/QS-21)

Multipeptide or protein vaccines

Chianese-Bullock [34] 12, including MAGE-A1, MAGE-A10, gp100 (GM-CSF and

Montanide ISA-51)

Pullarkat [35] MART-1, gp100, tyrosinase (IFA, SD-9427 [progenipoietin])

Weber [36] gp100, tyrosinase (IFA, GM-CSF)

Lee [37] gp100, tyrosinase (IFA, IL-12)

Slingluff [38] gp-100, tyrosinase (THP, IL-2)

Atzpodien [39] MART-1, gp100, tyrosinase (GM-CSF)

Sanderson [40] gp100, MART-1, tyrosinase (Montanide ISA 51, anti-CTLA-4 mAb)

Marchand [41] MAGE-3 protein (MPL þ QS21)

Davis [42] NY-ESO-1 protein (ISCOMATRIX)

Allogeneic tumor cells

Belli [135] IL-12 gene-modified allogeneic cells

Maio [136] IL-4 or IL-2 gene-modified allogeneic cells

Das Gupta [137] IL-2 gene-modified allogeneic cells

Morton [138,139] Canvaxin (BCG)

Morton [77] Canvaxin (BCG)

Chan [84] Canvaxin (BCG)

Cassel [140] Viral Oncolysate using Newcastle Disease Virus

Wallack [141] VMO

Hersey [142] VMCL

Autologous tumor cells

Mahvi [143] GM-CSF gene-modified autologous tumor cells

Kosomoto [144] GM-CSF gene-modified autologous cells

Stingl [145] IL-2 gene-modified autologous tumor cells

Moiseyenko [146] Tag7/PGRP-s gene-modified autologous tumor cells

Soiffer [147] GM-CSF gene-modified autologous tumor cells

Schreiber [148] IL-2 gene-modified autologous tumor cells

Moller [149] IL-7 gene-modified autologous tumor cells

Sun [150] IL-12 gene-modified autologous tumor cells

Abdel-Wahab [151] IFN-g gene-modified autologous tumor cells

Veelken [152] Autologous tumor cells with IL-2 secreting fibroblasts

Nawrocki [153] Autologous tumor cells with allogeneic melanoma cells secreting IL-6

and SIL6R

Berd [74] M-Vax

Abbreviations: BCG, Bacillus Calmette-Guerin; GM-CSF, granulocytemacrophage colony stim-

ulating factor; IFA, incomplete Freund’s adjuvant; IFN, interferon; IL, interleukin; KLH, keyhole

limpet hemocyanin; VMCL, vaccinia melanoma cell lysates; VMO, vaccinia melanoma oncosylate.
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Table 4

Phase III randomized studies of melanoma vaccines

Investigator Study population Treatment arms N Results

Mitchell Stage III High-dose interferon

versus

Melacine þ low-dose

interferon

604 No difference in survival [114]

Morton Stage III Canvaxin þ BCG

versus

placebo þ BCG

1118 Discontinued secondary to

no effect at interim analysis

Morton Stage IV resected Canvaxin þ BCG

versus

placebo þ BCG

670 No significant difference in

survival [115]

ECOG 4697 (group A) Stage III or stage

IV resected

HLA-A2þ

GM-CSF þ peptide vaccine

versus

GM-CSF þ placebo

versus

peptide vaccine þ placebo

versus

placebo þ placebo

800 for group

A and B

Closed to accrual

Results pending

ECOG 4697 (group B) Stage III or stage IV

resected

HLA-A2-

GM-CSF

versus

placebo

Closed to accrual

Results pending

EORTC 18961 T3-T4N0M0 GM2-KLH/QS-21

versus

observation

1350 Closed to accrual

Results pending

Oncophage/antigenics Stage IV HSPPC-96

versus

physician’s choice

322 No significant survival benefit

in M1a patients [116]
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MEDAREX Stage III or IV

HLA-A*0201þ
MDX-010 (anti–CTLA-4

mAb) alone

Versus

MDX-1379 (gp100 vaccine)

alone

versus

MDX-010 and MDX-1379

750 Accruing patients

Sondak/Southwest Oncology

Group

Stage IB, IIA Melacine

versus

observation

689 No difference in survival [81]

Kirkwood/ECOG Stage III High-dose interferon

versus

GM2-KLH/QS-21 vaccine

880 Improved survival with HDI

[117]

Wallack Stage II VMO

versus

placebo

250 No difference in survival [118]

Hersey Stage IIB and III VMCL

versus

placebo

No difference in survival [119]

Voit Stage III NDV-lysate 17 No difference in survival [120]

Abbreviations: BCG, Bacillus Calmette-Guerin; GM-CSF, granulocyte macrophage colony stimulating factor; HSPPC, heat shock protein peptide com-

plex; IFA, incomplete Freund’s adjuvant; KLH, keyhole limpet hemocyanin; VMCL, vaccinia melanoma cell lysates; VMO, vaccinia melanoma oncosylate.
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recognition of an antigen depends on the presentation of that antigen on
a specific MHC molecule, only in patients who have a specific human lym-
phocyte antigen (HLA) phenotype can a given peptide induce an immune
response. For example, MART-1/Melan-A is a well-defined protein antigen
expressed by 80% of melanomas. This peptide binds to HLA-A2, which is
expressed by only approximately 45% of whites. Therefore, only 36% of pa-
tients (80% of 45%) possibly benefit from a vaccine comprised of MART-1/
Melan-A [31]. Today, many vaccine trials are limited to patients who are
HLA-A2 positive.

With these limitations in mind, newer approaches to increasing the im-
munogenicity of peptide vaccines include modifying the peptides by
substituting amino acids (heteroclitic peptides) that increase the affinity of
peptide binding [32,33], using multiple peptides [34–40], using entire proteins
[41,42], or using anti-idiotype antibodies [43–52]. One of the most promising
approaches to peptide vaccination seems to be the combination of tumor
peptide antigens with heat shock proteins (HSPs). HSPs are highly con-
served intracellular chaperone molecules that carry potentially immuno-
genic peptides. They are produced by cells in response to stress and when
complexed with peptides, they readily are taken up by DCs for presentation
to naı̈ve T-cells [53–55]. The combination of tumor peptides and autologous
HSPs results in cross-presentation with MHC-class I presentation of
exogenous peptide by APCs, ultimately eliciting tumor-specific immunity
[56–58]. HSP 70, HSP 90, and HSP 96 seem to play an important role in pro-
cessing of antigen before being taken up by antigen presenting cells [59–61].
HSP-peptide complexes can be generated by fusing individual peptides to
HSPs [60] or readily can be purified from individual tumors for use as a ther-
apy [61,62]. In the latter case, it is conceivable that these complexes may rep-
resent the total set of processed peptides from a population of tumor cells,
although using HSP purified from individual tumors has the same limita-
tions as other approaches requiring autologous tumor. Autologous HSP
peptide complex-96 (HSPCC-96 [Oncophage]) has been evaluated in several
clinical trials that have demonstrated evidence of immune responses and ob-
jective responses [63–66], although a phase III trial of patients who had met-
astatic melanoma treated by Oncophage or physician’s choice failed to
demonstrate a clear benefit to the vaccine [67]. There is some suggestion
of a survival benefit in M1a disease, and a second phase III trial for M1a
and M1b disease is planned.

Cellular vaccines

Accepting the inherent limitations of using a limited number of peptides,
tremendous focus has been placed on using melanoma cells as the antigenic
source. The use of autologous tumor theoretically ensures that all biologi-
cally relevant antigens are presented to the immune system. Autologous cel-
lular vaccines, however, are a veritable poster child for the obstacles facing
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immunotherapists. Although preclinical studies show these vaccines to be
the most immunogenic, early attempts to use irradiated autologous tumor
cells as vaccines had little success owing to the poor immunogenicity of na-
tive tumor cells themselves [68,69]. With the addition of adjuvants, the re-
sults improved, albeit modestly [70–72]. Markedly improved results were
seen when Berd and colleagues [73] conjugated the hapten ditnitrophenyl
to proteins on autologous tumor cells to increase the immunogenicity. A to-
tal of 77 patients who had clinically evident nodal metastases were given the
vaccine (known as M-Vax) with BCG, in the adjuvant setting after lympha-
denectomy. The investigators reported more favorable than expected 5-year
relapse-free and overall survival rates (45% and 58%, respectively) [74,75].
An initial randomized trial was attempted; however, there were considerable
difficulties with specimen transportation and vaccine manufacturing issues,
illustrating the difficulties of doing large trials with autologous vaccines. A
new randomized trial was initiated for stage III melanoma comparing M-
Vax to high-dose interferon-a, using a lower dose of M-Vax, which requires
a smaller amount of a patient’s tumor tissue to create the vaccine, but also
had difficulties.

Beyond the technical complexities inherent in procuring tumor and pre-
paring a vaccine, another inherent problem with autologous cellular vac-
cines is that they are limited to individuals who had sufficient tumor for
preparation of a vaccine. Therefore, clinical trials, and ultimately the clinical
use of autologous cellular vaccines, must be restricted to patients who have
bulky nodal or resectable distant metastatic disease. Such patients have
a poor overall prognosis and likely have significant residual tumor burden,
making them less-than-ideal candidates for any immunotherapeutic ap-
proach. For this reason, many investigators have sought an alternative strat-
egy. Given that melanoma-associated antigens are common among a large
number of patients, it is reasonable to expect that an allogeneic vaccine, pre-
pared from cultured tumor cell lines, could stimulate a relevant antitumor
immune response [76,77]. Allogeneic vaccines can be standardized, pre-
served, and distributed in a manner akin to peptide vaccines. Unfortunately,
this approach also has seen difficulty in clinical translation.

Melacine consists of a lysate of two homogenizedmelanoma cell lines com-
bined with the adjuvant DETOX. Initial phase I and phase II trials demon-
strated a clinical response to Melacine [78], but a phase III trial comparing
Melacine with combination chemotherapy in patients who had metastatic
melanoma demonstrated no statistically significant difference in median
survival duration between the two groups [79]. As Melacine was statistically
equivalent to chemotherapy with much less toxicity, it was approved in
Canada as a treatment for advanced melanoma [80]. A prospective random-
ized trial evaluating Melacine in the adjuvant setting for patients who had
intermediate-thickness, node-negative melanoma also failed to demonstrate
a survival benefit to the vaccine [81]. Retrospective analysis, however, demon-
strated a relationship between success of the vaccine andHLA alleles. In their
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initial work, Mitchell and colleagues [80] reported a strong association
between patient HLA phenotype and evidence of clinical benefit from Mela-
cine, specifically in patients who expressed at least two of the following five
alleles: HLA-A2, A28, B44, B45, and C3. In the randomized trial, the 81 pa-
tients in the vaccine arm expressing two or more of these alleles had a better
disease-free survival than the 70 patients in the observation arm who had two
or more of these alleles (4-year disease-free survival rate 87% versus 64%,
P ¼ .0001). The specific alleles contributing the major component of this
effect were HLA-A2 and C3. In the vaccine arm, patients positive for
HLA-A2 or HLA-C3 had a significantly better 4-year disease-free survival
rate than patients in the observation arm or among patients given the vaccine
but negative for both alleles. A follow-up phase III clinical trial to examine
Melacine in patients expressing HLA antigens HLA-A2 or HLA-C3 (approx-
imately 59% of the study patients in the original trial) was planned but,
unfortunately, further development of the vaccine was abandoned.

Canvaxin is an allogeneic vaccine composed of three viable, irradiated,
melanoma cell lines chosen for their high content of immunogenic melanoma-
and tumor-associated antigens [82,83]. In a phase II study of patients who had
metastatic melanoma, the median survival of treated patients was 23 months
compared with 7.5 months for historical controls [77]. A more significant
survival advantage was seen in patients who underwent resection of clinically
detectable disease before vaccination [84]. In a case-control study of 88 pa-
tients who had stage IV melanoma and who had complete resection of metas-
tases followed by Canvaxin who were matched to 88 controls having surgery
only, the 5-year survival was 40% for Canvaxin; this was compared with 13%
for the control group [85]. A similar approach was used in a study to evaluate
the use of Canvaxin in patients who had American Joint Committee on
Cancer stage III melanoma. Canvaxin was given as adjuvant therapy to
283 patients who underwent lymphadenectomy for palpable nodal disease.
Compared to historical controls, the 5-year survival rate increased from
39% to 53%, and the median survival rate increased from 35.1 months to
90 months [77,83]. Unfortunately, two subsequent randomized trials failed
to demonstrate any benefit of Canvaxin plus BCG compared with placebo
plus BCG in patients who had stage III melanoma and in patients who had
stage IV melanoma who have undergone surgical resection.

Dendritic cell vaccines

DCs are a unique system of cells that induce, sustain, and regulate im-
mune responses. DCs express a variety of molecules at various stages of
maturation, allowing them to capture antigens, process them, and then pres-
ent them to naı̈ve T cells. DCs can prime T cells to class I and class II MHC-
restricted antigens and are the most potent cells for the initiation of T-cell–
mediated immunity [86,87]. Most of the vaccine therapies (described previ-
ously) depend on DCs to take up tumor-associated antigens and present
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them to T cells to generate an immune response. DC vaccines attempt to by-
pass this step by delivering to the patient DCs already expressing tumor an-
tigens. One approach to DC vaccines is to load exogenous peptides onto the
empty MHC class I molecules. This approach is limited, however, to known
tumor antigens and to patients who have a given HLA type. In addition, re-
sponses are limited to cytotoxic T cells. Another approach is to expose im-
mature DCs to unfractionated tumor material. This allows for antigen
expression on MHC class I and class II epitopes and the diversification of
immune responses. This approach is attractive in that immune responses
can be generated without the need for the molecular characterization of tu-
mor specific antigens. One potential drawback is that these methods may in-
duce potentially toxic autoimmune responses to unknown antigens. Early
clinical trials have demonstrated the ability of DC-based vaccination to gen-
erate objective tumor responses in melanoma-bearing patients (Table 5). Al-
ternative DC vaccine approaches being examined include the use of tumor
RNA; transduction of DCs with retroviruses, poxviruses, or adenoviruses
encoding specific antigens; or fusing tumor cells and DCs together [88,89].

Anti–cytotoxic T-lymphocyte–associated protein 4 monoclonal
antibodies

One of the most promising areas of translational research in melanoma is
direct immune modulation and the blockade of cytotoxic T-lymphocyte–as-
sociated antigenn 4 (CTLA-4). Although much of the research on immuno-
therapy to date has focused on generating tumor-specific effector cells,

Table 5

Dendritic cell vaccines in clinical trial in melanoma

Author Dendritic cell type (antigens)

Nestle [154] Immature DCs (MART-1, gp100, MAGE-3, tyrosinase)

Panelli [155] Immature DCs (MART-1, gp100)

Mackensen [156] Mature DCs (MAGE-1, MAGE 3, MART-1, gp100, tyrosinase)

Toungouz [157] Immature DCs (MAGE-A1, MAGE-A3)

Gajewski [158] Immature DCs (MAGE-3, MART-1)

Thurner [159,160] Mature DCs (MAGE-3)

Schuler-Therner [161] Mature DCs (MAGE-3)

Bancherau [162] Mature DCs (MART-1, gp100, tyrosinase, MAGE-3)

Lau [163] Immature DC (gp100, tyrosinase)

Hersey [164] Immature DCs (MAGE-3.A2, tyrosinase, gp100, MART-1)

Lotze [165] Immature DCs (MART-1, tyrosinase, gp100)

de Vries [166] Mature DCs (gp100, tyrosinase)

Butterfield [167,168] Mature DCs (MART-1)

Chakraborty [169] Immature DCs pulsed with tumor lysate

Chang [170] Immature DCs pulsed with tumor lysate

Nestle [154] Immature DCs pulsed with tumor lysate

Griffioen [171] Immature DCs pulsed with tumor lysate

Dillman [89] Immature DCs pulsed with tumor cells
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only recently has it begun to focus on tolerance and the inherent controls on
the immune system that dampen this response. Regulatory T cells play an
important role in down-regulating responses to antigens through several
mechanisms, including the expression of CTLA-4. CTLA-4 is a cell surface
molecule that binds to the B7 family of TCRs. It is up-regulated in activated
cells and serves as an immunologic’brake.’’ The role of CTLA-4 initially was
suggested by the severe autoimmunity and lymphoproliferative disorders
seen in knockout mice. Ultimately, it was shown in a series of preclinical
studies that the blockade of CTLA-4, primarily through the use of monoclo-
nal antibodies, could augment an antitumor immune response [90]. Based
on these findings, different antibodies blocking CTLA-4 have been devel-
oped and moved into clinical trials.

MDX-010 is a humanized anti–CTLA-4 monoclonal antibody. A phase II
study of 56 patients who had progressive stage IV melanoma, using two
different dosing schedules, resulted in an overall objective response rate of
13% [91]. When combined with interleukin (IL)-2, a phase I/II study showed
an overall response rate of 22%. Ticilimumab (CP-675206) is another human
anti–CTLA-4 monoclonal antibody undergoing testing [92]. The use of anti–
CTLA-4 monoclonal antibodies may be limited by grade III/IV autoimmune
toxicities, including severe autoimmune colitis. Multiple phase III studies are
ongoing to explore the safety and efficacy of CTLA-4 inhibition further in
metastatic and adjuvant settings and alone or in combination with vaccines,
other immune modulators, or chemotherapy.

Adoptive immunotherapy

Passive immunotherapy involves delivering to the host components of the
immune system that previously were sensitized to host tumor antigens.
These may include antibodies [93,94] or nonspecific lymphoid cells activated
in vitro by exposure to high concentrations of IL-2, known as lymphokine-
activated killer (LAK) cells [95]. Unfortunately, neither of these approaches
has had tremendous success in melanoma. A clinical trial of LAK cells plus
IL-2 versus IL-2 alone in stage IV melanoma demonstrated no significant
difference in response rates between the two treatments [96]. A more fruitful
approach has been to use tumor-specific effector cells for adoptive immuno-
therapy. Tumor-reactive T cells are more efficient than LAK cells in medi-
ating tumor regression. The T cells in patients who have cancer, however,
often are functionally impaired [97]. In vitro culture of these T cells can
restore their effector function. Although this approach is more complex
and expensive, it shows tremendous potential in the clinical setting.

Initial approaches to adoptive cellular immunotherapy involved purifica-
tion of tumor infiltrating lymphocytes (TIL) from metastatic foci, ex vivo
expansion in the presence of high-dose IL-2, and infusion of TIL back
into the patient. In human studies, approximately 30% of TIL from patients
who have melanoma exhibit specific cytolytic reactivity [98]. When adoptive
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immunotherapy is performed with TIL, objective responses are seen in 10%
to 30% of patients [99,100]. Several mechanisms are being explored to
improve the effectiveness of the T cells and their ability to traffic and survive
at the tumor site. These include activating the cells in the presence of mono-
clonal antibodies (anti-CD3 or anti-CD28) or irradiated tumor cells, devel-
oping methods for isolating and selecting the T-cell subsets most responsible
for antitumor reactivity, and genetically engineering the T cells [101,102].
Another promising approach has been to lymphodeplete patients using
cyclophosphamide and fludarabine before adoptive transfer of T cells [103].

One drawback to adoptive cellular immunotherapy is that harvesting TIL
from metastatic foci requires that patients have procurable stage IV disease.
This limits the clinical settings in which the effect of this approach might be
clinically relevant. Dreno and colleagues [104,105] generated T cells from
invaded lymph nodes instead of from metastatic lesions for infusion back
into patients who had stage III melanoma. There was no difference in either
disease-free survival or overall survival in patients receiving adoptive immu-
notherapy plus IL-2 comparedwith patients receiving IL-2 only.One explana-
tion might be that compared with TIL, lymph nodes contain only a small
percentage of T cells that are tumor specific. One method to overcominge
this drawback is to give patients a vaccine, then excise the vaccine-draining
lymph nodes and use these lymphocytes for adoptive cellular immunotherapy
[106–109]. In clinical trials by Chang and colleagues [110,111], patients who
had melanoma or renal cell carcinoma received intradermal inoculations of
autologous tumor vaccineswithBCG. Seven to 10days later, vaccine-draining
lymphnodeswere removed, expanded, and delivered back to patients; durable
tumor responses were seen in some patients [112]. More recent efforts have
focused on developing lymphocytes that are completely independent of pre-
existing antitumor T cells. Retroviral gene transduction into peripheral blood
mononuclear cells may be one method of achieving this. Peripheral blood
mononuclear cells from patients were tranduced with the gene for the TCR-
a and -b chains against the MART-1 melanoma antigen. Seventeen patients
received a nonmyeloablative chemotherapy regimen with fludarabine and
cyclophosphamide followed by the administration of the transduced T cells
and IL-2. Two patients had complete responses [113]. These encouraging
results have spawned investigations into other TCRs, such as p53.

Summary

Recent advancements in the fields of molecular biology and immunology
have provided a window of opportunity to provide true multimodality treat-
ment for melanoma. As stand-alone therapies or in combination with chemo-
therapy, the addition of targeted molecular therapies or immunotherapies
ultimately may serve an important role in disease control. There are many
challenges, however, still faced in moving these promising therapies toward
clinical use. To date, the road to improved systemic therapy in melanoma
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is paved with a plethora of approaches that seemed promising but ultimately
failed to deliver. Better preclinical models that reflect human melanoma
carcinogenesis and the immune response/tolerance to melanoma more accu-
rately are needed. Similarly, superior assays of response for phase I and II
trials that may predict the likelihood of clinical success more accurately
desperately are needed. In order to understand better why promising preclin-
ical data fail to succeed in clinical evaluation, research must shift from the
development of new drugs or methods that generate an immune response
to the other side of the equation: how melanoma cells develop resistance or
avoid immune recognition. The current concept of translational research
also must be re-evaluated. The occasional complete or partial response in
stage IV diseasemay not guarantee clinical success nor does a lack of response
against measurable metastatic disease mean that a treatment might not eradi-
cate microscopic disease in the adjuvant setting. It is imperative to redesign
the methodology by which new therapies are moved from preclinical studies
through clinical testing and ultimately into clinical use, not only to avoid
wasting valuable resources on therapies unlikely to succeed but also to avoid
giving up on other therapies too soon.
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