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Abstract

This report presents a formulation for nonlinear viscoelastic force elements in multibody
systems. The formulation of nonlinear viscoelastic force elements is based on the
assumption that the relaxation function can be expressed as a sum of functions which are
nonlinear in the deformation and exponentially decreasing in time. These forces can
represent elastomeric mounts or bushings in automotive suspension systems. The
numerical implementation of the nonlinear viscoelastic bushing model into the a general
purpose rigid multibody dynamics code is described, and an extension of the formulation
wherein component flexibility is included is also presented. The validation of the
formulation is carried out by developing two models for bushings, one using a nonlinear
elastic model, and the other using a nonlinear viscoelastic model, and comparing the
simulation results of the two models with experimental data. For this purpose, a simple
system consisting of a lower control arm supported by bushings is built at the Center's test
facility and subjected to a simulated road load event. Comparison with test results shows
that the viscoelastic bushing model gives a better load prediction than the conventional
nonlinear elastic bushing model.



1. Introduction

The use of multibody system dynamics as a viable tool in computer-aided
engineering has recently received wide acceptance in many engineering and manufacturing
industries, especially in the automotive industry. The recognition of the potential of
multibody dynamics as a CAE tool is due to tremendous strides in the development of this
field of study as evidenced by the enormous amount of publications on the subject during
the last decade. Recent developments in this field cover a wide range of issues including the
choice of coordinates which describe the dynamic systeml, the choice of methods for the
formulation of the equations of motion?, the development of algorithms for the efficient
numerical solution of the equations of motion3.4, the modeling of material properties and
mechanical constraints36, the proper modeling of component flexibility’-19, among others.
The unifying objective of these developments is to enhance the ability of multibody
dynamics simulation to predict the actual behavior of the dynamic system that is being
modeled. The ultimate goal is to have a general-purpose multibody dynamics code that can
predict the behavior of a dynamic system during the design stage so that the performance of
the system can be evaluated before expensive prototypes are built. In the ideal situation, the
multibody dynamics code can help engineers determine the optimal design for the dynamic
system and only one prototype of the final design is needed to verify the performance
measures that have been predicted by the computer simulation.

This report describes part of the research effort at the Center for Automotive
Structural Durability Simulation. The research described in this report deals with the proper
modeling of bushing forces between suspension system components. This study was
motivated by engineers at Ford Motor Company whose experience have led them to the
conclusion that the modeling of bushing forces in automotive suspension systems plays an
important role in predicting the dynamic behavior of the suspension system. The choice of
the bushing model is especially crucial in the prediction of the loads that act on the
suspension system components that are supported by bushings. The accurate prediction of
the dynamic loads that act on the suspension system components is important because these
loads feed directly into the fatigue life prediction of the components. Considering the
modeling of bushing forces in the multibody dynamics codes, the present state-of-the-art is
to model the bushing forces as a Kelvin solid which is represented by a spring in parallel
with a viscous damper. The spring force is a nonlinear function of the instantaneous
deformation of the bushing and viscous damping force is a linear function of the
instantaneous relative velocity of the two components that are connected by the bushing.
One main drawback of this approach is that the nonlinear elastic bushing model provides a



dynamic response in which the energy dissipation is a linear function of the excitation
frequency. Hence, the nonlinear elastic bushing model will damp out the high frequency
content of the dynamic response and will, in general, capture the correct energy dissipation
characteristic of the material at only one particular excitation frequency. Experimental
results indicate that bushings, which are made of elastomeric material, exhibit a
deformation history-dependent behavior which can be characterized as one with 'fading
memory'. These results suggest that the bushing response fits nicely into the theory of
nonlinear viscoelasticity. The development of the nonlinear viscoelastic force model for the
bushing response is discussed in a separate report. It is sufficient to note in this report that
the history-dependent, nonlinear viscoelastic force model for the bushing force is
characterized by a convolution integral where the kernel is a series of exponential functions
which can capture the 'fading memory' characteristic of the polymeric material in the
bushing.

Previous studies on the dynamic analysis of structures containing viscoelastic
material have been reported in the literature!!-19, Most of these studies deal with the
viscoelastic behavior at the material level and use finite elements or boundary elements to
build up the viscoelastic structure and subsequently determine the dynamic response either
through the frequency domain or Laplace domain, or through a time domain realization of
the equations of motion in the Laplace domain. Because of the use of the finite element
method or the boundary element method to model the viscoelastic structure, all of the
aforementioned studies require expensive calculations and are not suitable for the dynamics
of multibody systems which are made up of several rigid, elastic, or viscoelastic
components. A notable exception is the work by Gaul and Chen!8 who used the boundary
element method to develop a relation between 12 stress resultants and 12 deformation
variables which represent an elastomeric mount in a multibody system. That study,
however, was limited to linear viscoelastic behavior so that the correspondence principle
could be used to replace the elastic isotropic material behavior with the corresponding
viscoelastic constitutive equations. In contrast, the present study efficiently captures the
nonlinear viscoelastic behavior by characterizing the behavior of the elastomeric bushing
not at the material level, but rather, at the component level where stress resultants are
expressed as nonlinear functions of the deformation variables. This approach bypasses the
expensive finite element or boundary element calculations, so that the method can be readily
applied to multibody system dynamics simulation (at the expense, however, of some
predictive capabilities).

In the remainder of this report, we describe the formulation of the bushing forces as
nonlinear viscoelastic force elements in multibody systems and the numerical



implementation of the formulation into the general-purpose multibody dynamics code
ADAMS?0, The verification of the formulation and code implementation is performed by
building a simple multibody system at the Center's test facility and comparing simulation
results with experimental data. The simple multibody system consists of an automotive
suspension system component that is supported by bushings and subjected to prescribed
dynamic loads and boundary conditions. As an additional verification, the proposed
nonlinear viscoelastic bushing model is also compared with the conventional nonlinear
elastic bushing model. Comparison between the two bushing models shows that the
nonlinear viscoelastic bushing model provides a more accurate prediction of the
experimental results.

2. Formulation of the Equations of Motion

The bushing model developed at the Center takes the form of a set of uncoupled
nonlinear viscoelastic force elements. In the context of multibody dynamics, these
nonlinear viscoelastic forces are treated as massless nonlinear force elements that act
between two parts or bodies which are connected by a bushing. The formulation and
implementation of these massless nonlinear viscoelastic force elements can be best
explained by first looking at the equations of motion for a constrained set of rigid bodies,
and subsequently determine how the bushing forces enter into the equations of motion.

Consider a simple rigid multibody system consisting of two bodies, i and j, which
are subject to mechanical constraints. The equations of motion for the rigid multibody
system may be written in the following descriptor form:
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In Egs. (1) and (2), the generalized coordinates (R,0) refer to the rigid body translation and
rigid body orientation, respectively. The rigid body coordinates describe the position and
orientation of the body-fixed frames attached to each part or body in the multibody system,
as shown in Figure 1. Also in Eq. (1), mgg and mggq are the mass matrices associated with

the translational mass and rotational inertia of the rigid body, respectively, and mgg is the



inertial coupling between the rigid body translation and rigid body rotation. The force
vector Q is the generalized force due to external forces, and the force vector F is the
generalized force due to quadratic velocity terms including centrifugal forces. The matrix
[¢R¢9] is the constraint Jacobian matrix, and the vector A is the vector of Lagrange
multipliers associated with the constraints. The equations of motion, Egs. (1) and (2), form
a set of differential algebraic equations (DAE’s) which are, in general, numerically more
difficult to solve than ordinary differential equations (ODE’s).

Now consider the two bodies i and j to be connected to each other by a bushing
whose attachment points are located at point Pionbody i and point Pion body j as shown
in Figure 1. If the bushing forces are treated as masslcss‘ force elements acting between
bodies i andj, the only way that these force elements can enter the equations of motion is
through the generalized force vector Q by treating the bushing forces as external forces
applied to the bodies which are connected by a bushing. In what follows, we will consider
only bushing forces in the radial and axial directions to simplify the discussion. A similar
procedure will apply for the conical and torsional bushing moments. If we consider a
bushing force vector f; acting on body i and whose components are measured with respect
to the bushing coordinate system 7 - sé - #, the generalized forcé vector associated with the
translational coordinates of body i due to the bushing force vector f; is given by

Qi = Ai Apf; 3)
and the generalized force vector associated with the rotational coordinates of body i due to
the bushing force vector f; is given by

Q,=GiibApf; @
where Ap is the orthogonal transformation matrix from the bushing coordinate system to
the body-fixed reference frame, A; is the orthogonal transformation matrix from the body-
fixed reference frame to the inertial reference frame, and u} is the position of point Pi
measured with respect to the body-fixed reference frame. The tilde symbol above the vector

up represents the skew-symmetric matrix operator, and G; is a matrix that maps the time



derivatives of the orientation coordinates to the angular velocity of the body, and is defined

by the equation
o =G; 0; ®)

where @, is the angular velocity of body i and whose components are measured relative to
the body-fixed reference frame. In Eq. (3), the generalized force vector associated with the
rigid body translational coordinates is simply the transformation of the bushing force from
the bushing coordinate system to the inertial reference frame, while in Eq. (4), the
generalized force vector associated with the rigid body orientation coordinates characterizes
the moment of the bushing force vector about the origin of the body-fixed reference frame.

Considering the bushing force vector f;, the bushing force is modeled as a set of
nonlinear viscoelastic forces which depend not only on the instantaneous bushing
deformation, but also on the history of the bushing deformation. The nonlinear viscoelastic
bushing forces developed at the Center are based on a modified Pipkin-Rogers
superposition principle?! where the nonlinear viscoelastic force is given by

ta
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where f; is the bushing force vector measured with respect to the bushing coordinate
system, A; is the bushing deformation vector measured with respect to the bushing
coordinate system, and R is the relaxation function which characterizes the bushing's
viscoelastic response. The first term on the R.H.S. of Eq. (6) represents the instantaneous
response of the bushing, while the second term on the R.H.S. of Eq. (6) represents the
history-dependent response of the bushing force. The bushing deformation vector A;
whose components are measured with respect to the bushing coordinate system is related to
the global bushing deformation vector by the following transformation:

Ai=Ab A} dj; )

where d;; is the bushing deformation measured with respect to the inertial reference frame,
and the orthogonal matrices Ap and A; are the bushing coordinate system-to-body reference
frame and body reference frame-to-inertial reference frame transformation matrices,
respectively. The global bushing deformation vector d;; is in turn related to the generalized

coordinates through the following relation:
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where Ri and Ri are the position vectors of the origins of the body-fixed reference frames
attached to bodies i and j, respectively, A; and A; are the body reference frame-to-inertial
reference frame transformation matrices for bodies i and j, respectively, and up and ujp are
the position vectors of the bushing attachment points on bodies i and j, measured with
respect to their respective body-fixed reference frames. Egs. (8), (7), (6), (4), and (3) form
the algorithmic sequence for the computation of the generalized forces due to bushing
forces acting on body i. A similar procedure applies to the computation of the generalized
forces due to the bushing forces acting on body j .

3. Uniaxial Nonlinear Viscoelasticity

Thus far, we have not made any assumption on the mathematical description of the
nonlinear viscoelastic bushing force, except for the fact that the bushing force can be
decomposed into an instantaneous force response and a history-dependent force response
that is characterized by a convolution integral, the kernel of which is the time derivative of
the vector of relaxation functions as depicted in Eq. (6). As a first attempt, we can assume
that the bushing force components are decoupled, i.e., radial forces, axial forces, torsional
moments, conical moments, and their work-conjugate deformation components are
independent. With this assumption, the viscoelastic bushing force can be decomposed into
two force components along two orthogonal radial directions and a force component along
the axial direction. Similarly, the bushing moments can be decomposed into two conical
moments about the two orthogonal radial directions and a torsional moment about the axial
direction. Furthermore, the bushing force or moment components depend only on their
associated work-conjugate deformation component. Using the above assumption, each
component of the nonlinear viscoelastic force-displacement relation of Eq. (6) simplifies to
the uniaxial nonlinear viscoelastic force-displacement relation, which can be written as the

following scalar equation:
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where f(t) is the viscoelastic bushing force component along a radial or axial direction, and
A(t) is the corresponding bushing deformation along the same direction. The scalar
function R[A(s),t-s] is the relaxation function of the bushing force component along the
given direction. We further assume that the relaxation function can be expressed as the sum



of integer powers of the bushing deformation where each term in the series is multiplied by
a time-dependent function, i.e.,

N
RIAG).t-s) = Y, A%(s) Gu(t-s) (10)
k=1

where each of the time-dependent functions Gi(t-s) is expressed as a series of exponential
terms, i.e.,

N
Gu(t-s) = gxo + Y, Ex; eXpl-(t-8)/%;] (11)
j=1

Combining Egs. (9) - (11), we obtain the following expression for the nonlinear
viscoelastic bushing force along a particular direction:

N N N . [
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where each of the stiffness coefficients in the instantaneous force response is given by

N
G(0) = D, g (13)
=0

The parameters N, Nk, gro, gkj» and T (j=1,Nk and k=1,N) are bushing material
parameters which are determined from experiments and processed through an extrapolation
procedure. The extrapolation procedure and the bushing parameter identification process
are described in a separate report. The bushing force component of Eq. (12) is calculated
by applying the trapezoidal rule to compute the convolution integral, resulting in the
following discrete time approximation of the bushing force:

N k Y & gkj sn+1
F(tn) = 3, A'a)) G0) - X, ¥ 2 (14)
k=1 k=1 j=1 Kj

where fﬁ}l is the numerical approximation to the convolution integral and computed from

the following recursive equation:
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and the recursion is started by setting
Tj=0 (16)

The recursive algorithm for the numerical computation of the nonlinear viscoelastic force
obviates the need to store the entire deformation history of the bushing, thus improving the
computational efficiency in the calculation of the bushing forces. It is worthwhile to note
that the recursive algorithm is possible only because we have chosen to use exponential
terms in the time-dependent functions Gy(t-s).

The computation of the viscoelastic bushing forces is carried out in ADAMS
through a user-written subroutine. Appendix A contains the source code of an ADAMS
user-written subroutine that calculates the nonlinear viscoelastic forces for any bushing
whose material parameters are stored in a data file.

4. Validation

In order to validate the implementation of the nonlinear viscoelastic bushing force
element into the multibody dynamics code, we use the code that we have developed to
model a simple multibody system consisting only of two bodies, namely, an automotive
suspension system component and the ground, wherein the two bodies are connected by
bushings. Two bushing models are used for comparison: the conventional nonlinear elastic
model and the proposed nonlinear viscoelastic bushing model, hereafter referred to as NLE
and VISCO, respectively. The material parameters for both models were obtained from a
suite of tests performed for every bushing. For this purpose, a special bushing testing
machine was built at the Center. The bushing testing machine has two linear actuators
which can provide axial and radial forces along the bushing's principal directions, and two
rotary actuators which can provide torsional and conical bushing moments. The bushing
testing machine was used in conducting static tests, harmonic tests, ramp tests, and
simulated road load tests on each individual bushing in order to determine the time-
dependent response of the bushing. A parameter identification procedure was employed to
process the results obtained from the bushing tests and to come up with a set of bushing



material parameters that can be used directly in Eq. (12). The experimental procedures and
the parameter identification procedure are described in a separate report.

In order to validate the results of the simulation, an experimental set-up of the
automotive suspension system component was also built at the Center. For this purpose, a
remote parameter control (RPC) test set-up was built at the Center. The RPC test set-up
consists of a lower control arm supported by two bushings and subjected to prescribed
dynamic loads and displacements at the ball joint attachment to the spindle. Load cells were
attached to the bushings in order to measure the forces transmitted across the bushings. In
addition, LVDT’s were attached at the outboard end of each bushing to measure the
bushing deformation. Dynamic tests were conducted for this RPC test set-up, and the
experimental results are compared with the simulation results that are obtained from the
VISCO and NLE bushing models.

A finite element model of the lower control arm shown in Figure 2, wherein the
bushing supports at the front end and at the rear end are illustrated. The ball joint at the
lateral end is subjected to prescribed dynamic loads along the fore-aft and lateral directions
and a prescribed displacement in the vertical direction. The prescribed forces and
displacements can be seen as insets in Figure 2. The entire event takes place in 1.8
seconds. The maximum peak-to-peak applied force along the fore-aft direction is 13.4 kN
and the maximum peak-to-peak applied force along the lateral direction is 13.2 kN. The
maximum peak-to-peak prescribed displacement along the vertical direction is 46.7 mm.
These three time-varying inputs are applied to the RPC test as well as the simulation using
the VISCO and NLE bushing models.

Figures 3 and 4 show the fore-aft bushing forces for the front bushing and rear
bushing, respectively. These figures show the time history of the bushing forces obtained
from the RPC test, VISCO simulation, and NLE simulation. The figures show that the
maximum difference, in terms of peak-to-peak forces, between the nonlinear viscoelastic
bushing model and the nonlinear elastic bushing model is approximately 15% of the
maximum peak-to-peak applied force, while the maximum difference between the nonlinear
viscoelastic bushing model and the measured test data is approximately 12% of the
maximum peak-to-peak applied force. We note that the high frequency response in
nonlinear elastic bushing model is damped out because the linear viscous damper in the
nonlinear elastic bushing model provides energy dissipation that is linear with frequency.
We also note that the RPC test can not measure the high frequency response because of
limitations in the sampling rate of the load cells. Table 1 summarizes the comparison of
bushing forces obtained from NLE simulation, VISCO simulation, and test results. From



this table we observe that the predicted nonlinear viscoelastic bushing forces obtained from
the VISCO model are closer to the test results than those obtained from the NLE model.
Figures 5 shows the rear bushing displacement along the fore-aft direction. This
figure shows the time history of the bushing displacement obtained from the RPC test,
VISCO simulation, and NLE simulation. As expected, the nonlinear viscoelastic bushing
model shows higher peaks in the predicted bushing displacement compared to the nonlinear
elastic bushing model. Again this is attributed to the fact that the conventional nonlinear
elastic model damps out the high frequency response. This figure also shows that the
predicted peak displacements and the measured peak displacements do not compare as well
as the corresponding bushing forces. It is interesting to note that the nonlinear viscoelastic
bushing model captures the frequency of the measured bushing displacement whereas the
nonlinear elastic bushing model shows errors in amplitude and a phase shift in the bushing
displacement with respect to the measured displacements. Table 2 summarizes the
comparison of the maximum peak-to-peak displacement response obtained from NLE
simulation, VISCO simulation, and test results. The table shows that the nonlinear
viscoelastic bushing model gives a better estimate of the actual bushing displacement than
the nonlinear elastic bushing model. Also from this table, we observe that the predicted
bushing displacements obtained from the multibody system dynamics simulation do not
agree well with the measured displacements. The discrepancy between the predicted
displacements and measured displacements can be as high as 90% of the measured
displacements. This discrepancy is due to the fact that component flexibility has been
ignored in the formulation of the equations of motion. This contention is supported by
calculations performed using the fully nonlinear finite element code ABAQUS2 wherein
the flexibility of the control arm is considered. A comparison of dynamic responses
between a rigid body model and a flexible body model of the lower control arm is shown in
the time history plots of Figures 6 through 7. The finite element calculations show that
there is load redistribution due to the flexibility of the component, so that the front bushing
experiences larger peak-to-peak displacements and the rear bushing experiences smaller
peak-to-peak displacements, which are consistent with the experimental results. The results
of the finite element analysis also indicated that the predicted bushing forces can be
improved if component flexibility is taken into account. Figures 8 and 9 clearly show the
load redistribution due to component flexibility. These figures also show the high
frequency response due to the vibration of the flexible component. It should also be noted
that the finite element calculations, which required a fully nonlinear dynamic analysis due to
the relatively large vertical motion imposed at the ball joint, required computation times



which are orders of magnitude higher compared to that of the multibody system dynamic
analysis.

5. Extension to Flexible Multibody System Dynamics

Based on the results of the validation of the code as reported in the previous
section, the assumption of rigid bodies in multibody dynamics is adequate if bushing forces
are the only concern in the dynamic simulation. However, if the displacements of some
points of interest are required from the dynamic simulation, the assumption of rigid bodies
is no longer adequate even for relatively stiff components such as the lower control arm, as
the results of the code validation have shown. In this regard, we present an extension of the
formulation of bushing forces to the dynamics of flexible multibody systems. Similar to the
formulation of the generalized forces due to bushing forces in the equations of motion for
rigid multibody systems, we first present the equations of motion for a flexible multibody
system, and subsequently introduce the generalized forces due to the bushing forces that act
on a deformable body in the multibody system.

Consider now the two bodies i andj in Figure 1 to be deformable bodies. The
equations of motion for the flexible multibody system can be written in the following

descriptor form23:
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where the generalized coordinates (R,0, q¢) refer to the translation of the body reference
frame, the orientation of the body reference frame, and the deformation of the flexible
body, respectively. The mass matrix is a function of the orientation of the body reference
frame and the elastic deformation. The force vector Q refers to the generalized forces due to
externally applied loads, and the force vector F includes the centrifugal forces as well as the
Coriolis forces arising from the elastic deformation. The equations of motion as expressed
in Eq. (17) are based on the assumption that small elastic deformations are superposed on
the gross rigid body motion. The force vector Ps refers to the elastic forces within the
deformable body. This force vector can be decomposed into a force vector due to the



(linear) structural stiffness matrix and a force vector due to a stress-dependent stiffness
matrix which captures the stiffening effects from the rigid body rotation.

Similar to the case of rigid multibody systems, the bushing forces enter the
equations of motion through the generalized force vector Q by treating the bushing forces
as external forces that act between two bodies or parts that are connected by a bushing. The
generalized force vector due to the bushing forces will be of the same form as that of the
generalized bushing force vectors formulated for the case of rigid multibody systems, with
some minor modifications which account for the elastic deformation of the bodies which
are connected by the bushing. Again, in the following discussion, we will consider only
the contribution of radial and axial bushing forces to the generalized bushing force vector.
The contribution of conical and torsional bushing moments to the generalized bushing force
vector can be easily derived by applying the principle of virtual work.

If we consider a bushing force vector f; acting on deformable body i and whose
components are measured with respect to the bushing coordinate system 7 - sé - ¢ at the
bushing attachment point P¢, the generalized bushing force vector associated with the
translation of the body reference frame of body i is given by

Qi = Al + Qe Apf; (19)

where Ap is the rotation transformation matrix from thehl?ushing coordinate system to the
body reference frame in the undeformed configuration, Qp is the skew-symmetric matrix
whose associated axial vector is the elastic rotation vector at the bushing attachment point.
Again, Eq. (19) is valid only for small elastic rotations. The generalized bushing force
vector associated with the rotation of the body reference frame of body i is given by

Q=G bl + Qe Apf; 20)

where up is the instantaneous position vector of the bushing attachment point measured
with respect to the body reference frame. Unlike the case of rigid bodies, up is not constant
since it now depends on the elastic deformation of the deformable body. When a finite
element discretization or an assumed mode formulation is used for the spatial interpolation
of the flexible body's deformation, position vector of the bushing attachment point can be
expressed as

up=(upk +Npqi Q1)



where the first term (u];), is the position vector of the bushing attachment point in the
undeformed configuration and second term is the elastic deformation of the bushing
attachment point, which is defined in terms of the interpolation or shape function matrix Np
evaluated at point P, and the vector of generalized elastic coordinates qi. Finally, the
generalized bushing force vector associated with the deformation coordinates of body i is
given by

Qi=Nb[I + ] Apt; 22)

The nonlinear viscoelastic bushing force vector f; is expressed as a function of the
bushing deformation history

to~
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where the local bushing deformation vector is related to the global bushing deformation
vector through the transformation relation

AEN
Ai=Ap I +Qp Aldl.l (24)

and the global bushing deformation vector is determined from the generalized coordinates
through the following equation:

dij= {(Ri+ A;[(ub) + N qi])- (Ri + A; () + Nb g (25)

Egs. (25), (24), (23), (19), (20) and (22) form the algorithmic sequence for the
computation of the generalized force vectors due to bushing forces acting on body i. A
similar procedure is needed to determine the generalized force vectors due to bushing forces
acting on body j.

6. Conclusion

In this report, we have presented the formulation of nonlinear viscoelastic bushing
forces as massless force elements between two bodies in a multibody system. The



numerical implementation of the proposed formulation into the general-purpose multibody
dynamics code ADAMS has been completed for rigid multibody systems. The validation of
the resulting rigid multibody dynamics code has been performed by comparing results
obtained from a nonlinear viscoelastic bushing model and a nonlinear elastic bushing model
to those obtained from measured test results. The code validation and comparison with
measured data revealed that the nonlinear viscoelastic bushing model gives a more accurate
prediction of dynamic loads and displacements than the nonlinear elastic bushing model.
However, the rigid multibody system models did not provide accurate predictions of the
displacements of specific points of interest. The cause of the poor displacement prediction
capabilities of the rigid multibody dynamics models was traced to the fact that component
flexibility played an important role in the prediction of displacements, and also to a lesser
degree, in the prediction of dynamic loads . In order to achieve better prediction capabilities
in the displacements and dynamic loads, the formulation of nonlinear viscoelastic bushing
forces has been extended to include deformable bodies connected by bushings in the
context of general flexible multibody systems. The proposed formulation of nonlinear
viscoelastic force elements in flexible multibody systems will be implemented in a future
release of ADAMS which includes the capability for modeling flexible components and
user-subroutines for interfacing user-defined forces that act on the flexible components.
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Appendix A: ADAMS User-Subroutine for Nonlinear Viscoelastic Force Elements

subroutine gfosub(id,time,par,npar,dflag,iflag,result)
external variable definitions
integer id

double precision time
double precision par(*)

integer npar
logical dflag
logical iflag

double precision result(6)

local variable definitions

integer brflag
brflag=nint(par(1))

if(brflag.eq.1) then
call viscol(id,time,par,npar,dflag,iflag,result)

else
call errmes(.true.,' unrecognized branch in gfosub',id,'STOP")

endif

return
end

subroutine for implementing uncoupled nonlinear viscoelasticity
with up to 5 exponential terms for each of G1,G2,G3,G4 and GS.

subroutine viscol(id,time,par,npar,dflag,iflag,result)
implicit double precision (a-h,0-z)
external variable definitions

integer id
double precision time
double precision par(*)

integer npar
logical dflag
logical iflag

double precision result(6)

local variable definitions

integer bushid
integer idstrn
integer mark1
integer mark?2
integer nsize
integer nstates
integer ipar(3)
integer i,j,k
integer mode
integer nchars

integer istat



double precision u(6),disp(3)
double precision atime,sig
double precision g(5),s(5)
double precision fn,fnpl,dk,h

logical errflg
character*80 string,dummy
integer n(5,6,100)

double precision timen(100),timenp1(100)

double precision lan(6,100),lanp1(6,100)

double precision kn(5,5,6,100)

double precision knp1(5,5,6,100)

double precision ¢0(5,6,100),¢(5,5,6,100),£(5,5,6,100)

save timen
save timenpl

save lan
save lanpl

save kn
save knpl

save c0
save ¢
save f
save n

assign understandable names to passed parameters

bushid=nint(par(2))
mark1=nint(par(3))
mark2=nint(par(4))
idstrn=nint(par(5))

markl=marker attached to outer cylinder of bushing
mark2=marker attached to inner cylinder of bushing

initialization
if (iflag) then

call gtstrg(idstrn,string,nchars,istat)
open(unit=96,file=string,status="old")
do k=1,6

read(96,*) dummy

read(96,*) (cO0(i,k,bushid),i=1,5)
read(96,*) dummy

do j=1,5

read(96,*) (c(i,j,k,bushid),i=1,5)
end do

read(96,*) dummy

do j=1,5

read(96,*) (f(i,j,k,bushid),i=1,5)
end do
end do
close(96)

do k=1,6
do i=1,5
n(i,k,bushid)=0
do j=1,5
if(dabs(c(i,j,k,bushid)).gt.1.0D-10) n(i,k,bushid)=j
end do



end do
end do

endif

find the relative displacement between the 2 markers

nsize=3

ipar(1)=mark2
ipar(2)=markl
ipar(3)=markl

call sysary('TDISP',ipar,nsize,disp,nstates,errflg)
call errmes(errflg,'error calling sysary for TDISP',id,'STOP")

do i=1,3
u(i)=disp(i)
end do

find the relative rotation between the 2 markers
nsize=2

ipar(1)=mark2

ipar(2)=mark1

call sysfnc('AX' ipar,nsize,u(4),errflg)
call errmes(errflg,'error calling sysfnc for AX',id,'STOP")

call sysfnc('AY',ipar,nsize,u(5),errflg)
call errmes(errflg,'error calling sysfnc for AY',id,'STOP')

call sysfnc('AZ'.ipar,nsize,u(6),errflg)
call errmes(errflg,'error calling sysfnc for AZ',id,'STOP")

call getmod(mode)
if(mode.eq.5) then
static analysis (fully relaxed state)

do k=1,6
lanpl(k,bushid)=u(k)
end do
timen(bushid)=0.0d0
timenp1(bushid)=0.0d0

do k=1,6

do i=1,5
g(i)=c0(i,k,bushid)
end do

do i=1,5
s(i)=g(i)*lanp1(k,bushid)**i
end do

sig=0.0d0
do i=1,5
sig=sig+s(i)



end do
result(k)=sig
initialize static variables

do i=1,5

do j=1,n(ik,bushid)
kn(i,j,k,bushid)=0.0d0
knp1(i,j,k,bushid)=0.0d0

end do

end do
lan(k,bushid)=lanp1(k,bushid)

end do

else

dynamic analysis

call timget(atime)
if(atime.lt.1.0E-14) then

do k=1,6
lanpl(k,bushid)=u(k)
end do
timenp1(bushid)=time

do k=1,6

do i=1,5
g(i)=c0(i,k,bushid)
if(n(i,k,bushid).gt.0) then
do j=1,n(i,k,bushid)
g(i)=g(i)+c(i,j,k,bushid)
end do

endif

end do

do i=1,5

s(i)=g(i)*lanp1(k,bushid)**i
if(n(i,k,bushid).gt.0) then

do j=1,n(i,k,bushid)
fn =exp(-timenpl(bushid)*f(i,j,k,bushid))*lan(k,bushid)**i
fnpl=lanpl(k,bushid)**i
dk = 0.5d0*timenp1(bushid)*(fn+fnp1)
knp1(i,j.k,bushid)=dk
s(i)=s(i)-c(i,j,k,bushid)*f(i,j,k,bushid)*

*  knpl(i,j,k,bushid)

end do

endif

end do

sig=0.0d0
do i=1,5
sig=sig+s(i)
end do
result(k)=sig

store static variables

timen(bushid)=time



do i=1,5

if(n(i,k,bushid).gt.0) then

do j=1,n(i,k,bushid)
kn(i,j,k,bushid)=knp1(i,j,k,bushid)
end do

endif
end do
lan(k,bushid)=lanp1(k,bushid)

end do

else
determine if previous trial converged
if(atime.ge.timen(bushid)) then

previous trial converged, so update static variables

timen(bushid)=timenp1(bushid)
do k=1,6
do i=1,5
if(n(i,k,bushid).gt.0) then
do j=1,n(i,k,bushid)
kn(i,j,k,bushid)=knp1(i,j,k,bushid)
end do
endif
end do
lan(k,bushid)=lanp1(k,bushid)
end do

endif

determine viscoelastic force for current trial

do k=1,6
lanpl(k,bushid)=u(k)
end do
timenpl(bushid)=time

h=timenp1(bushid) - timen(bushid)
do k=1,6

do i=1,5
g(i)=c0(i,k,bushid)
if(n(i,k,bushid).gt.0) then
do j=1,n(i,k,bushid)
g()=g(i)+c(i,j,k,bushid)
end do
endif
end do

do i=1,5
s(i)=g(i)*lanpl(k,bushid)**i
if(n(i,k,bushid).gt.0) then
do j=1,n(i,k,bushid)
fn =exp(-h*f(i,j,k,bushid))*lan(k,bushid)**i
fnpl=lanpl(k,bushid)**i
dk = 0.5d0*h*(fn + fnpl)
knp1(i,j,k,bushid)=exp(-h*f(i,j,k,bushid))*kn(i,j,k,bushid)+dk
s(i)=s(i)-c(i,j,k,bushid)*f(i,j k,bushid)*
knp1(i,j,k,bushid)
end do



endif
end do

sig=0.0d0

do i=1,5
sig=sig+s(i)

end do

result(k)=sig

end do

endif

endif

return
end



Maximum Peak-to-Peak Bushing Forces

Force Component

Front Bushing

Test Results

10.349 kN 9.503 kN

Fore-Aft Direction

Front Bushing 10.807 kN 12.399 kN 10.969 kN
Lateral Direction

Rear Bushing 6.384 kN 5.753 kN 4.056 kN
Fore-Aft Direction

Rear Bushing 12.077 kN 12.408 kN 12.600 kN
Lateral Direction

Table 1: Comparison between simulation and test results: maximum peak-to-peak bushing

forces

Maximum Peak-to-Peak Displacements

Displacement ADAMS-NLE ADAMS-VISCO Test Results
Component __ — : —
Front Bushing Disp. 6.796 mm 8.705 mm 11.762 mm
Fore-Aft Direction
Front Bushing Disp. 8.104 mm 10.439 mm 10.716 mm
Lateral Direction
Rear Bushing Disp. 7.460 mm 9.522 mm 5.041 mm
Fore-Aft Direction
Rear Bushing Disp. 0.790 mm 1.296 mm 1.861 mm
Lateral Direction

Table 2: Comparison between simulation and test results:

displacements

maximum peak-to-peak



List of Figures
Fig. 1. Mulibody system and reference frames.
Fig. 2. Lower control arm and prescribed forces and displacements at the ball joint.

Fig. 3. Front bushing fore-aft force: comparison between test results, nonlinear viscoelastic
bushing model, and nonlinear elastic bushing model.

Fig. 4. Rear bushing fore-aft force: comparison between test results, nonlinear viscoelastic
bushing model, and nonlinear elastic bushing model.

Fig. 5. Rear bushing fore-aft displacement: comparison between test results, nonlinear
viscoelastic bushing model, and nonlinear elastic bushing model.

Fig. 6. Front bushing fore-aft displacement: comparison between flexible lower control
arm and rigid lower control arm.

Fig. 7. Rear bushing fore-aft displacement: comparison between flexible lower control
arm and rigid lower control arm.

Fig. 8. Front bushing fore-aft force: comparison between flexible lower control arm and
rigid lower control arm.

Fig. 9. Rear bushing fore-aft force: comparison between flexible lower control arm and
rigid lower control arm.



1 am3Ly




i ;,ié -
- _

———) SRy, Sy P



!

S6°0 60

S8

€ am3yy
(0o8s) sy
0 80 GL0 L0 g9'0 90

.
’ .
H .
* .
. .
R i S RN Ceceacacanns
H

..... onge[e0osIA 4
— 1s3l

Onse|3 Jeaul|uoN
BOUlUON

i i i

82104 Yy-8104 Bulysng yuoi

(N¥) 82404



3

¢ a3y
(08s) awi

60 S8°0 80 SL0 L0 S9°0 90

— 1831

|..:,.........Oz..wwm_w..‘_mmc__ﬁ”cz ............... ...................... .............. LR , ..................... ...................... ................... -
||||| o_uw.m_moow_> hﬁ.mc__:OZ : :

..---\,——-

P
Seceae

-

i i i i i i

80104 Yy-8104 Buiysng seay

(N¥) 82404



¢ amSyg
(0o8s) s
80

(=)
Ty)
©
o

o)
™~
o
™~
o

Ty
©
o

m J _ T T T _

m W m A w
b ot ‘m ...................... m ..................... R R RLECEEETEREEEREEE m.......-.....hw-» ........ ”1 ..................... m ...................... ”\ ................... p—

: : : : o) o) : : :

: : : H IRY : : :

H : : ; Yo ; : :

: : : : IR : : :

e et e eens S R : el o : : :

H : AR m -------- U M i S AR Mt i PR

: : : : ¥ Voo : ; 7

: : : ; ! Vv : :

: : : : R I i : :

: : : : O B : :

N : : : ] B : :
R R L R R LT R R AR oA REERE LT ..-..u.‘a.-...n..-:.'~ ..... R ARty #ecessarecanecanraanan e ieeeiaeaa -

: : : : h L : :

: : : : N oV : :

: " Al Pl Vi ; "

I LA S LN A ] S Vi : :
: L N, O VR G prTTTmm e I

m AN, Wi ] B I m m

, AN AN A RN m

ST N e Lieinnnns bt ANt A e : : -3 :

/u 7 ..s.v 4] R, _- - .. .... "# ; v m.._~ .......... . ) e a..,.. e :.f TN TN -
sod \ K H . __ ..-\ YRS | ) ‘ ._ [N . 1 R\ R : :/I - = LAY .~

NS N \ I L ! | iy : )\ P :

NG S O 2§ BT R v N m

AR EEEEREEERED T A O AR B4 [REKAE SEITHE | IS STPCTRISPRPRROR R ERRRTE : :

: : Y} Ny T I : i :

H H 1Y W) ' H 4 H H

: : v P oy : : :

H : i LR B : : :

T el S L.y LA : : :
: FE  RRRRARRLERSEAES Jh | G AUIICED R S SEREECTSITIEEeee SRR CEIEEELRLTRTS R SO TROPRITS SARLIIEEITTATRELIRD —

: : . Ve : : :

: ; P Y : ; m

: : P S : : :
e, dreeen oo A ey L CORUOS -

: : R ol : :

: : Py Y : :

m m ¢ :

S e e deeereerenncnrana b : L
: : : i m P |

: ; : . : :

...... ollse|3 JeauluoN : ¥ : "

............. - - S : l : :
= ramea O_umw_QOOw_) ‘_QQG__COZ ..... TTTesesesnoeseeaeees R 3 S =

i i i i i i

luawaoe|dsiq Yy-2104 Buiysng seay

(ww) wewase|dsiq



9 a3y

(0oas) auny
} G6°0 60 G8'0 80 6L 0 L0 S9°0 90

T (At & EUSRES. Sa—
— oldixald :snovay | m | m
1 | | | | | 1

luswaoe|dsig Yy-o104 Buiysng juoi4

(ww) uswaoridsiq



L am3yy
(03s) aun |

S6°0 60 S8°0 80 SL0 L0 S9°0 90

H H H \ 7 1 H :
3 : . fererercccececnancaannn G reeececcttccnccscocan | R PR Fmemsemecrrancineen. -

R A T P A

..... pI6lY :SWvVaY m " m m m
— 8Iqixal4 :sSnDvav

1 i i i i i i

Juswaoe|dsiq Yv-8104 Buiysng sesy

(ww) Juswaoe|dsiq



I

S6°0 60

8 am3y

(0as) awn )
G880 80 GL0

L0

=

_ _ T

.
R R ErRr o TR T - S
1]

. .
A e e e R SR A R SR Y shR T T R T
.

......................................................

......................................................

..... pIBIE SSWYAY

— 9[gixa|d :SNDVAY

1 |

]
e amaa

R U P JE

.
...........................................

i i i

82104 Yy-8104 Buiysng juoi4

(N¥) 82104



}

S6°0 60

6 am3yy

PIBlY :SWVAY
siqixald ‘SNOVEY

{ 1

(0oas) auny

S80 80 QL0 L0 S9°0 m.om-
SESSOS SOOI SOOI Y SO 2-
-

0

1

c

£

m m | w w .

82104 Yy-8104 Buiysng Jseay

(NY) 82104



