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Abstract: We consider a make-to-order production system where two major components, one nonperishable (referred to as part
1) and one perishable (part 2), are needed to fulfill a customer order. In each period, replenishment decisions for both parts need to
be made jointly before demand is realized and a fixed ordering cost is incurred for the nonperishable part. We show that a simple
(sn, S1

n , S2
n) policy is optimal. Under this policy, S2

n along with the number of backorders at the beginning of a period if any and the
availability of the nonperishable part (part 1) determines the optimal order quantity of the perishable part (part 2), while (sn, S1

n) guide
when and how much of part 1 to order at each state. Numerical study demonstrates that the benefits of using the joint replenishment
policy can be substantial, especially when the unit costs are high and/or the profit margin is low. © 2009 Wiley Periodicals, Inc. Naval
Research Logistics 56: 127–141, 2009
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1. INTRODUCTION

In food, chemical, and pharmaceutical industries, many
products are made using both perishable and nonperishable
components (or ingredients). In a mail-order bakery company
where orders are produced and shipped in the make-to-order
fashion, a final product is made from both perishable ingre-
dients (e.g., eggs, milk, and fruits) and relatively long lasting
ingredients and components (e.g., packaging materials, sugar,
and baking powder). In chemical or pharmaceutical indus-
tries, some intermediate or final chemical compounds are pro-
duced by combining both chemically unstable (perishable)
and other non-perishable ingredients.

In this article, we consider a make-to-order production
system where the final product is comprised of two major
components, part 1 and part 2. Although a part 2 item is
perishable and lasts only one period, a part 1 item has rela-
tively long shelf life and hence is treated as nonperishable.
We assume zero replenishment lead time for both parts. Once
demand is realized, production starts and all customers are
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willing to wait. Although part 1 has an infinite lifetime and
incurs a fixed ordering cost whenever an order is placed, part 2
perishes after one period and has no fixed ordering cost asso-
ciated with it. We do not explicitly consider a fixed ordering
cost for the perishable part for the following two reasons.
First, production cannot start without either part and an order
of the perishable part is required for each production run
anyway. Second, in the case where this fixed ordering cost is
significant and it is not profitable to schedule production in
every period, one can adjust the length of the periods. How-
ever, part 1 has a long shelf life and a fixed ordering cost
needs to be considered.

At first glance, one can make inventory decisions for each
part in isolation, and coordinate the replenishment in imple-
mentation. That is, one first finds the order-up-to levels for the
perishable component (part 2) by solving a series of newsven-
dor problems and then specifies (s, S) for the nonperishable
part (part 1) using known techniques. In each period, one
makes sure that the number of part 2 items does not exceed the
number of part 1 items. Although each policy is optimal in its
corresponding single item system under general conditions,
there are two difficulties with this approach. First, because
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production can start and a demand can be fulfilled only when
both parts are available, the underage costs for calculating the
order-up-to levels for part 2 clearly depend on the availabil-
ity of part 1 items and are no longer constant. Therefore, the
ordering decision on part 2 depends on that of part 1 in each
period and the traditional newsvendor model for perishable
products does not apply directly. Second, decisions on when
to order part 1 and how much to order are also functions of
how many part 2 items one plans to order. As we show in the
article, the optimal ordering decisions for both parts need to
be made simultaneously in each period. The benefit of using
such an integrated replenishment policy as opposed to two
individual policies determined in isolation plus a coordinated
effort in implementation, is substantial. Furthermore, errors
caused by two individual policies obtained separately may
not be compensated with coordination in the implementation
phase. That is, the only way to capture all the significant cost
saving opportunities is to make ordering decisions for both
parts jointly in each period.

Two groups of literature are closely related to our
research—perishable inventory systems and assembly sys-
tems. There has been considerable work on inventory control
of perishable items and we refer readers to Nahmias [2] and
Nahmias et al. [4] for a thorough review of papers in the
area. However, the analysis of inventory systems with multi-
ple products, some of which have perishable (fixed) lifetimes,
is extremely difficult, and very few researchers have success-
fully identified the structure of the optimal policies. Nahmias
and Pierskalla [3] derive the structure of the optimal policy
for a two product system where one of the products has an
infinite lifetime and the other one has a finite lifetime of m

periods. There is a single demand source which depletes the
perishable stock first, according to the FIFO rule, and the
nonperishable stock last. They show that there are exactly
three ordering regions in each period which correspond to
the three alternatives: ordering both products, ordering only
perishable inventory, or not ordering. They characterize the
region boundaries and the optimal policies for both the single
period and the finite horizon dynamic problem. Our problem
is different from Nahmias and Pierskalla’s because, in our
model, each final product requires one unit of the perishable
item as well as one unit of the nonperishable item, whereas
in their model demands are satisfied by either one unit of a
perishable item or one unit of a nonperishable item.

There has been a body of work that focuses on the struc-
ture of the optimal policy in assembly systems. Among them,
Rosling [5] considers a periodic review infinite horizon model
of an assembly inventory system with random demands and
proportional costs of production. Under a restriction on the
initial stock levels and the absence of setup costs, he demon-
strates that the assembly system can be remodeled as a
series system. Schmidt and Nahmias [6] characterize the
optimal ordering and assembly policies for a two-component

assembly with random demand under a multiperiod horizon
of arbitrary but finite length. A vast majority of the papers
in this area assume no set up costs and none of them allows
perishable components.

We provide a dynamic programming formulation of the
problem with two state variables (on hand inventory of part
1 and backorders) and two decisions (the amount of part 1 to
order and the amount of part 2 to order). We note that, even
with two components, such a problem is quite challenging
for the following reasons: (1) It allows both backorders and
positive on hand inventory in each period as an order is ful-
filled only when both items are available. (2) There are two
decision variables representing the order-up-to levels for both
parts. Because revenue is realized only after both items are
put together, the cost of not fulfilling an order depends on the
cause of stock-out (stock out of part 1 only, or part 2 only, or
both) and decisions on quantities ordered for both parts need
to be made simultaneously. (3) There exists a fixed order-
ing cost associated with one of the components. Although
K-convexity has been a crucial ingredient for proving the
optimality of an (s, S) type policy, it is not obvious that such
a property can be established with two state and two joint
decision variables. As stated by Rosling [5], it is generally
not possible to apply the series analogy, mentioned earlier, for
assembly systems with no set-up costs to systems with setup
costs, although his approach may be “a good approximation”
for some special cases. For instance, his analysis may apply
if one is allowed to order the nonperishable part in a fixed
interval. This is the reason all research on assembly systems
assumes away fixed ordering costs and most work focuses
on performance evaluation under base-stock policies rather
than structural analysis. We characterize the structure of the
optimal policy by identifying the properties of the policy and
the value function of the dynamic programming formula-
tion. Most of the properties are proved using induction and
some of the properties need to be proved concurrently in our
induction.

We first analyze the optimal order quantity for part 2 for a
given inventory level of part 1 after ordering. We show that
the optimal order-up-to level of part 2 in a period is indeed
the smaller of the inventory level of part 1 after ordering and a
newsvendor type of solution that can be calculated in advance.
The newsvendor type of solution depends on cost parameters
associated with both part 1 and part 2, but it is independent
of the inventory level of part 1 after ordering. We incorpo-
rate this result into the dynamic program to determine the
optimal order-up-to level of part 1 and, thereby, the optimal
order-up-to level of part 2 that jointly minimize the expected
discounted cost. We prove that the optimal order quantities
for both parts in a period can be categorized as a function
of the net inventory level of part 1 before ordering. When
the net inventory level of part 1 is below a critical level, it is
optimal to order part 1 to an optimal level obtained through
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joint optimization. Otherwise, no order of part 1 is necessary.
The optimal order quantity for part 2 is either bounded by the
optimal inventory level of part 1 or given by the newsven-
dor type of solution mentioned above. Our numerical study
shows that the gain of using a joint replenishment policy is
significant.

To the best of our knowledge, this work is the only
exact characterization of an optimal policy for an assembly-
type production system that includes both a perishable and
nonperishable component, and a fixed ordering cost.

The remainder of this article is organized as follows. In
Section 2, we introduce the dynamic programming formula-
tion of the problem. In Section 3, we analyze the structure of
the optimal policy by characterizing the optimal order quan-
tities for part 1 and part 2. Having characterized the structure
of the optimal policy, we present the results of a numerical
study and demonstrate the benefits of using a joint replenish-
ment policy in Section 4. Section 5 concludes the article with
discussion on extensions.

2. PROBLEM FORMULATION

We consider a periodic review production system of two
components, part 1 and part 2. Although the lifetime of part
1 is infinite, part 2 perishes after one period. An order (if any)
for each part is placed at the beginning of each period, before
observing the demand. We assume that a fixed ordering cost
is incurred for part 1 only and replenishment orders arrive
within the same period for both parts. Furthermore, the final
product is assembed in response to demand and the capac-
ity to assemble the two components to the final product is
infinite. Demand for the final product occurs after an order
(if any) is placed for each item and unmet demand is back-
ordered. Our objective is to determine the quantity of each
part to order for any given initial inventory of part 1 and back-
order level so as to minimize the expected total discounted
cost. We first introduce the following notation.

K fixed ordering cost for part 1
ci purchasing cost per unit of part i

π backorder cost (lost of goodwill) per unit of demand
hi holding cost per unit of part i

P selling price per unit (P ≥ c1 + c2)

β discount factor in period n (β ≤ 1)

ξn demand in period n

xn on hand inventory of part 1 at the beginning of period
n (state variable)

wn number of backorders at the beginning of period n

(state variable)
yi

n order-up-to level for part i after order delivery but
before demand is realized and backorders are satisfied
if any (decision variable)

We assume that ξn, where n is the period index and read as
“when there are n periods to go,” are independent and iden-
tically distributed positive random variables with probability
density function f and distribution function F . Although all
cost parameters are assumed stationary, our results hold for
problems with independent demands and nonstationary cost
parameters under very general conditions.

Note that, even though part 2 is perishable, we include
a holding cost h2 for two reasons. First, holding costs may
occur for the period in which part 2 is held, e.g., some chem-
icals need to be kept in controlled environment. Second, it
can also be used to represent the cost for disposing excess
perished units at the end of a period, if any.

For brevity, we write period n instead of n periods to go
and drop the period subscript n when we refer to the state
(xn, wn), both of which can be strictly positive, the decision
variables (y1

n , y2
n), and demand ξn. At the beginning of each

period, one needs to decide the order-up-to levels for parts 1
and 2, (y1, y2), prior to demand realization and meeting back-
orders. Because any decision resulting in inventory level of
part 2 higher than the inventory level of part 1 is strictly sub-
optimal, we only need to focus on the set of decisions with
y1 ≥ y2. The objective is to determine the order-up-to levels
(y1, y2) that minimize the expected total discounted cost for
any given state (x, w). We say that order-up-to levels, (y1, y2),
are feasible in state (x, w) if y1 ≥ x and 0 ≤ y2 ≤ y1 and
define the set of feasible order-up-to levels at state (x, w) in
a period as F(x) = {(y1, y2)|y1 ≥ x and 0 ≤ y2 ≤ y1}. Let
Vn(x, w) be the optimal expected discounted cost given that
the current state is (x, w) and there are n periods to go for
n ≥ 1 and V0(·, ·) = 0. We can then formulate the n-period
problem, n ≥ 1, using the following optimality equation.

Vn(x, w) = min
(y1,y2)∈F(x)

{vn(x, w, y1, y2)}

where

vn(x, w, y1, y2) = Kδ(y1 − x)+ + c1(y1 − x) + c2y2

+
∫ ∞

max[0,y2−w]
[π(z + w − y2) + h1(y1 − y2)

− Py2 + βVn−1(y
1 − y2, w + z − y2)]f (z)dz

+
∫ max[0,y2−w]

0
[h1(y1 − w − z) + h2(y2 − w − z)

− P(z + w) + βVn−1(y
1 − z − w, 0)]f (z)dz

is the expected discounted cost in state (x, w) with n periods
to go for any feasible (y1, y2) in period n and when the opti-
mal order-up-to levels are used in subsequent periods, and
δ(y1 − x)+ = 1 if y1 > x and 0 otherwise.
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3. STRUCTURE OF THE OPTIMAL POLICY

We now present a series of theorems which completely
characterize the structure of the optimal policy. All proofs in
the article can be found in the Appendix.

THEOREM 1:
(a) For any state (x, w) and order-up-to level for part 1,

y1, the optimal order-up-to level for part 2 in period
n is y2 = min{y1, S2

n + w}, where S2
n is the solution

to

F
(
S2

n

) =

⎧⎪⎪⎨
⎪⎪⎩

π + P − c2 + h1

π + P + h1 + h2
, if n = 1,

π + P − c2 + h1 − β(P − c2)

π + P + h1 + h2 − β(P − c2)
, if n ≥ 2.

(b) (y1, y2) is optimal in state (x, w) if and only if
(y1+�, y2+�) is optimal in state (x+�, w+�) for
� ≥ 0. Furthermore, the difference of the expected
costs, Vn(x, w) − Vn(x + �, w + �), is equal to
(P − c2)�.

Theorem 1 is critical and insightful in that, although the
ordering decisions for both parts are coupled, S2

n itself is
independent of the order-up-to level for part 1, y1, and the
cost-to-go functions. One can obtain S2

n in advance by solving
two independent newsvendor problems with costs associated
with both parts 1 and 2. In each newsvendor problem, it is
easy to see that the marginal overage cost is c2 + h2. The
costs associated with ordering one unit of part 2 less than the
realized demand for n ≥ 2 include the backorder cost, π ,
the holding cost for part 1, h1, the difference of the revenue
between the current and the next period, (1 − β)P , and the
difference of the purchasing costs for part 2 between these
same periods, (β − 1)c2. That is, the marginal underage cost
is π +P −c2 +h1 −β(P −c2) for n ≥ 2 and π +P −c2 +h1

for n = 1. Note that the purchasing cost of part 1, c1, does
not affect S2

n as the cost for acquiring part 1 is a sunk cost.
Given S2

n for all n, the original dynamic programming
problem is reduced to one with a single decision y1 as y2 =
min{y1, S2

n+wn}. Therefore, the decision variable y1 is deter-
mined by (1) the cost parameters associated with both parts
and (2) the coordination constraints y2 = min{y1, S2

n + wn}
in subsequent periods. If we view y1 as the supplier capacity
for part 2, the ordering decision for part 2 is the same as that
in the capacitated stochastic inventory system with no fixed
ordering cost (see Ref. [1]), except that y2 is bounded by a
state-dependent inventory level for part 1, y1, rather than an
exogenous capacity limit.

Theorem 1, together with Lemmas 1–3 in the Appendix,
help us prove Theorem 2 which is critical for identifying the
optimal order-up-to level for part 1.

THEOREM 2: If it is optimal to order part 1 in state (x, w)

and the optimal inventory levels for that state are (y1, y2),

then it is also optimal to order part 1 in state (x, w + �) for
� ≥ 0 and the corresponding optimal inventory levels are
(y1 +�, y2 +�). Furthermore, the difference of the expected
costs, Vn(x, w) − Vn(x, w + �), is linear in � and equal to
(P − c1 − c2)�.

The proof of Theorem 2 is fairly involved. We need to
prove the following properties in each step of our induction
on the period n concurrently and the theorem follows directly
from the last two properties.

(a) If it is optimal to order part 1 in state (x, w) (i.e.,
y1 > x) and the optimal order-up-to levels are
(y1, y2), then y2 > x and y2 ≥ w.

(b) If it is optimal to order part 1 in state (x, w), then it
is also optimal to order part 1 in state (x, w + �) for
� ≥ 0.

(c) If it is optimal to order part 1 in state (x, w) and the
optimal order-up-to levels are (y1, y2), then the opti-
mal order-up-to levels for state (x, w + �), � ≥ 0,
is (y1 +�, y2 +�) and Vn(x, w)−Vn(x, w +�) =
(P − c1 − c2)�.

Theorem 2 indicates that there exists a threshold ŵx for any x

such that it is optimal to order part 1 if w ≥ ŵx and the order
quantities increase by w − ŵx . No order of part 1 should be
placed if w < ŵx . By Theorem 1(b), this threshold increases
by exactly the amount of increase in x, i.e., ŵx+� = ŵx +�.
Therefore, (x + �) − ŵx+� = x + � − (ŵx + �) = x − ŵx

and the decision on when to order at (x, w) can be completely
determined by comparing the net inventory level, x −w, to a
constant threshold value sn = x−ŵx described in Theorem 3.

THEOREM 3: In any period n and state (x, w), it is opti-
mal to order part 1 if and only if x − w is less than or equal
to a constant sn.

Although Theorem 3 ensures the existence of an optimal
inventory ordering level for part 1, the next theorem shows
that, in states where it is optimal to order part 1, one always
orders enough to bring its net inventory up to the same level.
Note that the order-up-to levels can be different in different
periods in a finite horizon problem.

THEOREM 4: In any period n and state (x, w), if it is opti-
mal to order part 1, then the amount ordered will always bring
the net inventory x − w to an optimal order-up-to level, S1

n ,
which is a constant. That is, one always raises the inventory
level for part 1 to S1

n + w.

The proof follows directly from part (b) of Theorem 1 and
Theorem 3. Combining Theorems 3 and 4, we have demon-
strated the existence of a threshold sn such that it is optimal to
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Figure 1. The structure of the optimal policy.

order part 1 whenever the net inventory x − w ≤ sn and that,
whenever it is optimal to order part 1, it is optimal to order
up to S1

n + w. Given the decision on part 1’s inventory, it is
optimal to order part 2 up to S2

n + w if the amount available
of part 1 is at least S2

n + w. Otherwise, it is optimal to order
part 2 up to the amount of part 1 available.

By Theorems 1 through 4, we now characterize the
structure of the optimal policy.

THEOREM 5: There exist values (sn, S1
n , S2

n) such that it
is optimal to order part 1 if x −w ≤ sn. When it is optimal to
order part 1, one always orders S1

n − x + w units to raise the
inventory of part 1 to y1 = S1

n + w. For part 2, it is optimal
to bring the inventory level up to y2 = min{y1, S2

n + w}.

On the basis of Theorem 5, the optimal order quantities
fall into one of the three regions at any state (x, w) shown
in Fig. 1. (i) Order part 1 up to S1

n + w and part 2 up to
min{S1

n , S2
n}+w, (ii) order only part 2 up to x, and (iii) order

only part 2 up to S2
n +w. That is, when the net inventory level

for the nonperishable part is too low (i.e., x −w ≤ sn) and an
order of part 1 is triggered, one raises the inventory level of
part 1 to a sufficiently high level, S1

n + w, and the inventory
level for part 2 to min{S1

n , S2
n} + w. On the other hand, when

the net inventory level for the nonperishable part is neither
sufficiently high nor low (i.e., sn < x−w ≤ S2

n), it is optimal
not to order part 1 and the optimal order-up-to level for the
perishable part is bounded by the available inventory level of
part 1, x. Finally, when the net inventory level for the non-
perishable part is sufficiently high (i.e., x − w > S2

n) and no
order is placed for part 1, the “non-capacitated” order-up-to
level of the perishable part, S2

n + w, is realized.

4. NUMERICAL STUDY

As we have shown in the previous section, the optimal
decisions for both parts (y1, y2) determined by (sn, S1

n , S2
n)

are not only coupled, but also state dependent. We now com-
pare the optimal policy with a heuristic which has the same
structure as the optimal policy except that (sn, S1

n) and S2
n are

determined by solving two individual inventory problems in
isolation. That is, one determines S2

n by solving a newsven-
dor problem with underage cost π + P − c2 − β(P − c2)

for n ≥ 2 (π + P − c2 for n = 1) and overage cost
c2+h2, and obtains (sn, S1

n) by solving a single item inventory
problem with parameters π , P , K , c1, and h1 and ignor-
ing the coordination constraint. Once these parameters are
determined, one then coordinates the replenishment of the
inventory for the two parts by setting y2 = min{y1, S2

n + w}
only in the implementation phase. We label this heuristic as
Coordinated.

We constructed examples that cover a wide range of sce-
narios and used both discrete uniform and triangular demand
distributions given the programming complexity of contin-
uous demand functions. To compare different policies free
of the end-of-horizon effect, we focused on the infinite hori-
zon versions on a truncated state space and (hence) finite
action space. Thus, the solution of the infinite horizon pro-
gram exists. We fixed the discount rate at β = 0.95 and the
holding cost for part 2 at h2 = 0.25 and varied other param-
eters. We considered K = 50, 150, P = 8, 16, π = 3, 9,
c1 = 1, 2, c2 = 1, 2, h1 = 0.25, 0.5, a discrete uniform dis-
tribution U [0, 9] and a discrete triangular distribution T [0, 9]
where

(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9) = (0.025, 0.0375,

0.0625, 0.125, 0.25, 0.25, 0.125, 0.0625, 0.0375, 0.025).

For each combination of K , P , and π values, and demand
distributions, we computed both the optimal policies and
heuristic policies for the following six examples:

(c1, c2, h1) ∈ {(2, 2, .025), (2, 2, 0.5), (1, 2, 0.25), (1, 2, 0.5),

(2, 1, 0.25), (2, 1, 0.5)}.
In Table 1, we reported the average, maximum, and mini-

mum percentage suboptimality of the expected profits (rather
than the expected costs as our cost function includes the rev-
enue) for using the heuristic policy when demand follows the
uniform distribution. The results for the triangular distribu-
tion are qualitatively similar, therefore omitted. As we can
see, the heuristic policy performs poorly in most cases. In
some cases, the heuristic policy results in losses whereas the
profits under the optimal policy are strictly positive (i.e., the
percentage suboptimality is greater than 100%). In the same
table, we also reported the performance of a heuristic under
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Table 1. Comparisons of profits and policies for β = 0.95, h2 = 0.25, and ξ ∼ U [0, 9].
Independent (% Suboptimality) Coordinated (% Suboptimality)

No. K P π Average (Max, Min) Average (Max, Min)

1 50 8 3 28.7 (41.7, 12.7) 21.7 (31.1, 11)
2 50 8 9 191.8 (821.3, 21.3) 144.1 (610.4, 14.5)
3 50 16 3 8.0 (10.7, 4.6) 5.8 (7.8, 3.7)
4 50 16 9 7.3 (11.9, 4.2) 5.4 (8.7, 2.8)
5 150 8 3 140.0 (251.7, 73.5) 113.8 (209.1, 64.3)
6 150 8 9 199.2 (684, 74.6) 150.3 (508.2, 56)
7 150 16 3 18.8 (25, 11.9) 15.1 (20.1, 10.2)
8 150 16 9 15.8 (25.8, 9.1) 12.0 (19.1, 7.2)

which one further neglects to coordinate the replenishment
during implementation, labeled as the Independent heuristic.
Intuitively, coordination reduces overstock of either part and
improves the performance. The difference between the profits
under the two heuristics represents the value of coordination
in the implementation phase. It turned out that coordination
does not improve the performance significantly in most of the
examples, indicating the importance of obtaining the optimal
(s, S1, S2) in the first place.

The benefits of using an optimal policy are most significant
in cases with high costs and/or low profit margins (e.g., lower
selling prices and/or higher operating and material costs).
These can be seen in additional examples in Tables 2 and 3 in
which we compare the profits and policies as functions of K

and c2. The results for other parameters are similar and hence
are not reported here. Table 2 shows that the benefits of using
an optimal policy over a coordinated policy increase as K

increases. For the unit cost of part 2, Table 3 indicates that
the percentage increase in benefits has an increasing trend,
but it is not always monotone.

In general, the heuristic returns values of (s, S1) and S2

that are at least as high as, in most cases significantly higher
than, those in an optimal solution due to the way the profit
margin and stockout costs are used in the calculations. The
extra inventory costs cause the profit gap between the optimal

policy and the coordinated heuristic policy. It is important to
note that the heuristic leads to significantly higher (s, S1) val-
ues, even when S2 happens to be the optimal as in examples
No. 9, 10, 12, 21, and 24 in Table 3.

5. CONCLUSIONS AND FURTHER RESEARCH

In this article, we consider a periodic review make-to-order
system where one nonperishable part, part 1, and one per-
ishable part, part 2, are needed to fulfill a customer order.
Assuming that there is a fixed ordering cost associated with
part 1 and all customers are willing to wait, we show that the
optimal policy is guided by an (s, S) policy for part 1 and a
modified base stock policy for part 2. The parameters s and S

depend on the costs associated with part 2 and the coordina-
tion constraint, while the base-stock level for part 2 explicitly
depends on the inventory level of part 1, the backorder level,
and the costs associated with part 1.

Through extensive numerical study, we demonstrated that
the additional profits realized by a joint replenishment policy
for both parts can be significant relative to the policy that
considers the inventory policy for each part separately. In
general, the joint inventory policy is most valuable in systems
with high costs and/or low profit margins.

Table 2. Comparisons of profits and policies as functions of K .

Optimal policy Coordinated

No. K (s, S1, S2) Profit (s, S1) S2 Profit % Opt.

1 5 (5,12,7) 910.83 (8,15) 8 873.47 4.1
2 10 (5,14,7) 886.5 (8,16) 8 843.40 4.9
3 20 (5,18,7) 850.07 (7,22) 8 806.70 5.1
4 50 (3,28,7) 773.14 (6,31) 8 718.54 7.1
5 75 (3,28,7) 721.75 (5,36) 8 662.46 8.2
6 100 (3,31,7) 675.93 (5,40) 8 607.00 10.2
7 150 (4,36,7) 594.18 (4,47) 8 513.35 13.6
8 200 (2,39,7) 520.65 (4,47) 8 429.77 17.5
9 300 (1,44,7) 387.56 (2,61) 8 272.38 29.7

10 500 (0,47,7) 267.97 (1,74) 8 −11.95 104.5

Parameters: β = 0.95, P = 16, π = 9, c1 = c2 = 2, h1 = h2 = 0.25, and ξ ∼ U [0, 9].
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Table 3. Comparisons of profits and policies as functions of K and c2.

Optimal Coordinated

No. K c2 (s, S1, S2) Profit (s, S1) S2 Profit % Opt.

1 50 0.5 (4,27,8) 979.70 (5,34) 9 924.88 5.6
2 50 0.75 (4,26,7) 944.39 (5,34) 9 881.08 6.7
3 50 1 (4,26,7) 909.40 (5,31) 8 883.98 2.8
4 50 1.25 (4,26,7) 874.65 (6,31) 8 838.98 4.1
5 50 1.5 (4,25,7) 840.46 (6,31) 8 798.84 5.0
6 50 1.75 (4,25,7) 806.59 (6,31) 8 758.69 5.9
7 50 2 (4,24,7) 773.13 (6,31) 8 718.54 7.1
8 50 3 (3,23,6) 643.62 (6,28) 7 610.32 5.2
9 50 4 (3,22,6) 518.47 (6,25) 6 499.27 3.7

10 50 5 (3,21,6) 398.40 (6,25) 6 367.87 7.7
11 50 6 (3,20,5) 282.25 (6,25) 6 236.47 16.2
12 50 8 (2,29,5) 57.42 (7,24) 5 16.12 71.9
13 150 0.5 (3,39,8) 792.61 (3,52) 9 703.02 11.3
14 150 0.75 (3,38,7) 758.69 (3,52) 9 659.44 13.1
15 150 1 (3,38,7) 725.14 (4,47) 8 672.93 7.2
16 150 1.25 (3,37,7) 691.83 (4,47) 8 633.03 8.5
17 150 1.5 (2,37,7) 658.92 (4,47) 8 593.14 10.0
18 150 1.75 (2,36,7) 626.33 (4,47) 8 553.24 11.7
19 150 2 (2,36,7) 594.18 (4,47) 8 513.35 13.6
20 150 3 (2,34,6) 499.45 (4,42) 7 418.53 16.2
21 150 4 (2,32,6) 348.52 (5,38) 6 314.81 9.7
22 150 5 (2,30,5) 231.76 (5,38) 6 183.61 20.8
23 150 6 (1,29,5) 118.89 (5,38) 6 52.41 55.9
24 150 8 (1,27,5) −99.06 (5,34) 5 −149.67 51.1

Parameters: β = 0.95, P = 16, π = 9, c1 = 2, h1 = h2 = 0.25, and ξ ∼ U [0, 9].

Further research should address more complicated situa-
tions as described below.

• More than two items: Our analysis can be easily
extended to multiple perishable parts, each with a one
period life, with no fixed ordering costs. Because the
order up to levels for all perishable parts should be
the same and there is no fixed ordering cost associ-
ated with these parts, we can group these parts into a
kit as part 2 and all results hold. However, incorpo-
rating multiple nonperishable parts is more difficult,
especially with fixed ordering costs. In practice, one
may either focus on one major nonperishable com-
ponent or bundle several nonperishable parts into one
subassembly while making inventory decisions.

• Lost sales: With lost sales instead of backorders,
w = 0 in all periods and there is only one state vari-
able x, representing the net inventory level for part
1. Our preliminary research indicates that the optimal
structure is very similar, except that the net order-up-
to level of part 2, S2

n , is no longer independent of the
stock level of part 1 and the current state. That is,
y2 depends on y1 in a more complicated fashion and
Theorem 1 no longer holds.

• Make-to-stock environment: The optimal policy
under a make-to-stock system depends on the

shelf-life of the final product and the inventory hold-
ing cost of the final product which may not be the sum
of the holding costs for both components. For exam-
ple, if the final product is highly perishable and lasts
only one period, then it is not difficult to show that
our result also holds. On the other hand, if the final
product has a very long or infinite shelf-life and the
inventory holding cost of the final product is not too
high (such as canned food), then it is very likely that a
policy that orders the same quantity for both parts and
only keeps the inventory of final product is optimal. In
such case, the problem can be simplified to a single-
item inventory problem with a unit cost cn = c1 + c2

and a fixed ordering cost K , thus an (s, S) policy is
optimal. With the exception of these special cases,
the optimal policy is quite complex. That is, it can be
state dependent and depends on the shelf-life of the
final product. Therefore, the method in this paper is
not likely to work.

• Positive lead times: We expect that a positive order
lead time for part 1 would not affect the structure of
the optimal policy. However, if there is a positive lead
time for part 2, it is not clear how the optimal policy for
part 2 behaves. Ideally, we would not like to receive
more part 2 than the amount of part 1 available when
an order arrives. However, the amount of part 1 will
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be available when an order of part 2 arrives would be
unknown when part 2 items are ordered. Therefore,
the order-up-to level for part 2 depends on the current
inventory and backorder levels as well as the distrib-
ution of demand during the lead time. For instance, it
is evident that a policy that delivers fewer units of part
2 when the projected inventory level of part 1 is low
will outperform a policy that orders up to a constant
stock level. On the other hand, the optimal order-up-to
quantity could be equal to a constant level S2

n plus w

when the projected inventory level of part 1 is high.
We conjecture that the optimal policy for part 2 in this
case is the minimum of S2

n + w and E(y1(τ )), the
“expected” quantity of part 1 when the order for part
2 arrives after a positive lead time, but we are not yet
able to prove this. We are also unable to fully identify
the form of E(y1(τ )), although we know it depends
on x and w.

• A longer lifetime of part 2: With a longer lifetime, the
problem becomes much more complicated, since the
state vector must include the stock level of each possi-
ble age category. If the lifetime of part 2 were m peri-
ods, the state vector would be (x1, x2

1 , x2
2 , . . . , x2

m, w),
where x1 is the stock level of part 1 and x2

k is the stock
level of part 2 with age k. These problems can be for-
mulated and solved using dynamic programming, but
characterizing the structure of the optimal policy is
a formidable task in the presence of a fixed ordering
cost for part 1.

Although some of the above mentioned extensions are
challenging, we believe that the insight obtained from
our work will shed light on developing efficient solution
approaches to these extensions.

APPENDIX

PROOF OF THEOREM 1: We use induction on the period, n, to prove
these two properties concurrently.

For period 1:

(a) To obtain the optimal inventory level of part 2 for a given y1 large
enough, we first consider the case when y2 > w and take the
derivative of v1(x, w, y1, y2) with respect to y2:

v1(x, w, y1, y2) = Kδ(y1 − x)+ + c1(y1 − x) + c2y2

+
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − Py2]f (z)dz

+
∫ y2−w

0
[h1(y1 −w − z)+h2(y2 −w − z)−P(z+w)]f (z)dz,

∂v1(x, w, y1, y2)

∂y2
=c2−(π+h1+P)

∫ ∞

y2−w

f (z)dz+h2
∫ y2−w

0
f (z)dz

= c2 − (π + h1 + P)[1 − F(y2 − w)] + h2F(y2 − w).

The solution of the first-order condition is obtained at S2
1 , which

satisfies

F(y2 − w) = F
(
S2

1

) = π + P − c2 + h1

π + P + h1 + h2
.

The existence of solution follows immediately from the fact that
P > c2. To show this S2

1 is indeed optimal, we show the con-
vexity of the cost function by taking the second derivative of
v1(x, w, y1, y2) with respect to y2,

∂2v1(x, w, y1, y2)

∂(y2)2
= (π + P + h1 + h2)f (y2 − w) > 0.

Therefore, S2
1 minimizes the cost. Applying similar algebra, we

obtain the cost function and its derivative for y2 ≤ w:

v1(x, w, y1, y2) = Kδ(y1 − x)+ + c1(y1 − x) + c2y2

+
∫ ∞

0
[π(z + w − y2) + h1(y1 − y2) − Py2]f (z)dz,

∂v1(x, w, y1, y2)

∂y2
= c2 − (π + h1 + P) < 0.

The fact that the cost function is convex for y2 > w and the fact
that v1(x, w, y1, y2) is strictly decreasing in y2 for y2 ≤ w implies
that it is optimal to order the maximum feasible quantity, y1, when
y1 < S2

1 + w. Therefore, y2 = min{y1, S2
1 + w}.

(b) To help the reader understand this approach, we first sketch the
steps of the proof:
(i) For any feasible pair of order-up-to levels (y1, y2) in

state (x, w), we prove that for any � > 0, v1(x + �,
w +�, y1 +�, y2 +�) = V1(x, w)+ (c2 −P)� and hence,
V1(x + �, w + �) ≤ V1(x, w) + (c2 − P)�.

(ii) Similarly, we prove the inequality in the opposite direction. We
show that if (y1, y2) is optimal in state (x + �, w + �), then
v1(x, w, y1 − �, y2 − �) = V1(x + �, w + �) − (c2 − P)�

and V1(x + �, w + �) ≥ V1(x, w) + (c2 − P)�.
By (i) and (ii), V1(x + �, w + �) = V1(x, w) + (c2 − P)� =
v1(x +�, w+�, y1 +�, y2 +�) and (y1 +�, y2 +�) is optimal
in state (x + �, w + �).

Suppose that (y1, y2) is optimal in state (x, w). A simple inspec-
tion shows that raising inventories levels of both components to
(y1 +�, y2 +�) must be feasible in state (x+�, w+�). Because
� additional units of the end item are produced and sold in the same
period and the Markov chain induced by (y1 + �, y2 + �) will
result in the same state as the one induced by (y1, y2) in state (x, w)

for any realization of demand. For y2 > w, the cost associated with
raising inventory levels to (y1 +�, y2 +�) in state (x+�, w+�)

is:

v1(x + �, w + �, y1 + �, y2 + �)

= Kδ(y1 − x)+ + c1(y1 − x) + c2(y2 + �)

+
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − P(y2 + �)]f (z)dz

+
∫ y2−w

0
[h1(y1−w−z)+h2(y2−w−z)−P(z+w+�)]f (z)dz

= V1(x, w) + (c2 − P)�.
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Similarly, for y2 ≤ w, the cost associated with (y1 + �, y2 + �)

is:

v1(x + �, w + �, y1 + �, y2 + �)

= Kδ(y1 − x)+ + c1(y1 − x) + c2(y2 + �)

+
∫ ∞

0
[π(z + w − y2) + h1(y1 − y2) − P(y2 + �)]f (z)dz

= V1(x, w) + (c2 − P)�.

Therefore, V1(x + �, w + �) ≤ V1(x, w) + (c2 − P)�.
To show the inequality holds for the opposite direction, we first

note that, if (y1, y2) is optimal in state (x + �, w + �), then
(y1 − �, y2 − �) must be feasible in state (x, w). This is because
y1 ≥ x + �. Furthermore, as we already proved in the part (a) of
Theorem 1 that y2 = min{y1, S2

1 + w + �} for (x + �, w + �),
y2 − � > 0. Hence, (y1 − �, y2 − �) is feasible in state (x, w).
Implementing (y1 − �, y2 − �) in state (x, w) will yield the
following expected cost for y2 − � ≥ w:

v1(x, w, y1 − �, y2 − �) = Kδ(y1 − � − x)+ + c1(y1 − � − x)

+ c2(y2 − �) +
∫ ∞

y2−�−w

[π(z + w − y2 + �) + h1(y1 − y2)

− P(y2 − �)]f (z)dz +
∫ y2−�−w

0
[h1(y1 − � − w − z)

+ h2(y2 − � − w − z) − P(z + w)]f (z)dz

= V1(x + �, w + �) − (c2 − P)�,

and we have V1(x, w) ≤ V1(x + �, w + �) − (c2 − P)�. If
y2 − � < w, then the second integral disappears but the result
holds.

Combining two inequalities, we conclude that V1(x, w) =
V1(x +�, w +�)− (c2 −P)� and the optimal order-up-to levels
for both parts in state (x + �, w + �) are (y1 + �, y2 + �).

For period n − 1: Assume

(a) y2 = min{y1, S2
n−1 + w}, where

F
(
S2

n−1

) =

⎧⎪⎪⎨
⎪⎪⎩

π + P − c2 + h1

π + P + h1 + h2
, if n = 2,

π + P − c2 + h1 − β(P − c2)

π + P + h1 + h2 − β(P − c2)
, if n ≥ 3.

(b) (y1, y2) is optimal in state (x, w), if and only if (y1 +�, y2 +�) is
optimal in state (x+�, w+�). Moreover, Vn−1(x, w)−Vn−1(x+
�, w + �) = (P − c2)�.

For period n: We present the proof for n ≥ 3 as the proof for n = 2
follows identical steps.

(a) The cost under a policy that orders (y1, y2) in period n and follows
the optimal policy afterward, vn(x, w, y1, y2) is

vn(x, w, y1, y2) = Kδ(y1 − x)+ + c1(y1 − x) + c2y2

+
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − Py2

+ βVn−1(y
1 − y2, w + z − y2)]f (z)dz

+
∫ y2−w

0
[h1(y1 − w − z) + h2(y2 − w − z)

− P(z + w) + βVn−1(y
1 − z − w, 0)]f (z)dz,

and its first-order condition with respect to y2 is

∂vn(x, w, y1, y2)

∂y2
= c2 − (π + h1 + P)

∫ ∞

y2−w

f (z)dz

+ β

∫ ∞

y2−w

∂Vn−1(y
1 − y2, w + z − y2)

∂y2
f (z)dz

+ h2
∫ y2−w

0
f (z)dz

= c2 − (π + h1 + P)[1 − F(y2 − w)]
+ h2F(y2 − w) + β(P − c2)[1 − F(y2 − w)].

Note that the induction hypothesis was used to obtain the following
result:

∂Vn−1(y
1 − y2, w + z − y2)

∂y2

= lim
ε→0

Vn−1(y
1−y2 − ε, w+z−y2−ε)−Vn−1(y

1 − y2, w + z − y2)

ε

= lim
ε→0

(P − c2)ε

ε
= P − c2.

Now, solving the first-order equation for y2, we get

F(y2 − w) = F
(
S2

n

) = π + P − c2 + h1 − β(P − c2)

π + P + h1 + h2 − β(P − c2)
.

Finally, we show that vn(x, w, y1, y2) is a convex function for
y2 ≥ w,

∂2vn(x, w, y1, y2)

∂(y2)2
= [π+P+h1+h2−β(P−c2)]f (y2−w) > 0.

A similar algebra shows that vn(x, w, y1, y2) is strictly decreasing
in y2 for y2 ≤ w. Combining two cases, it can be easily shown that
S2

n minimizes the cost when y1 ≥ S2
n +w while ordering the largest

feasible quantity, y1 achieves the minimum when y1 < S2
n + w.

Therefore, y2 = min{y1, S2
n + w}.

(b) We follow the same procedure sketched in the proof for Period
1. First note that, if (y1, y2) is optimal in state (x, w), order-up-to
levels (y1 +�, y2 +�), must be feasible in state (x+�, w+�). If
y2 > w, the cost associated with a policy that raises inventories of
both parts to (y1 +�, y2 +�) in period n and follows the optimal
policy afterward is:

vn(x + �, w + �, y1 + �, y2 + �)

= Kδ(y1 − x)+ + c1(y1 − x) + c2(y2 + �)

+
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − P(y2 + �)

+ βVn−1(y
1 − y2, w + z − y2)]f (z)dz

+
∫ y2−w

0
[h1(y1 − w − z) + h2(y2 − w − z)

− P(z + w + �) + βVn−1(y
1 − z − w, 0)]f (z)dz

= Vn(x, w) + (c2 − P)�.

If y2 ≤ w, then the second integral disappears but the result holds.
Therefore, Vn(x + �, w + �) ≤ Vn(x, w) + (c2 − P)�.

To show the inequality holds for the opposite direction, notice
that if raising inventories to (y1, y2) is optimal in state (x + �,
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w + �), then (y1 − �, y2 − �) must be feasible in state (x, w). If
y2 − � > w, then

vn(x, w, y1 − �, y2 − �)

= Kδ(y1 − � − x)+ + c1(y1 − � − x) + c2(y2 − �)

+
∫ ∞

y2−�−w

[π(z + w − y2 + �) + h1(y1 − y2)

− P(y2 − �) + βVn−1(y
1 − y2, w + z − y2 + �)]f (z)dz

+
∫ y2−�−w

0
[h1(y1 − � − w − z) + h2(y2 − � − w − z)

− P(z + w) + βVn−1(y
1 − � − z − w, 0)]f (z)dz

= Vn(x + �, w + �) − (c2 − P)�,

and we have Vn(x, w) ≤ Vn(x + �, w + �) − (c2 − P)�. If
y2 − � ≤ w, then the second integral disappears but the result
holds.

Since y1 ≥ x + � and y2 = min{y1, S2
n + w + �}, if (y1, y2)

is optimal in state (x + �, w + �), then (y1 − �, y2 − �) must
be feasible in state (x, w).

Having proved both sides of the inequality, we conclude that
Vn(x, w)−Vn(x +�, w+�) = (P − c2)� and (y1 +�, y2 +�)

is optimal in state (x + �, w + �). �

LEMMA 1: If it is optimal to order part 1 in state (x, w), then Vn(x, w)−
Vn(x, w + �) ≥ (P − c1 − c2)� for � > 0.

PROOF: First note that if (y1, y2) is optimal in state (x, w), (y1 +�, y2 +
�) must be feasible in state (x, w + �). Then, we have

vn(x, w + �, y1 + �, y2 + �) = K + c1(y1 + � − x)

+ c2(y2 + �) +
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2)

− P(y2 + �) + βVn−1(y
1 − y2, z + w − y2)]f (z)dz

+
∫ y2−w

0
[h1(y1 − w − z) + h2(y2 − w − z) − P(z + w + �)

+ βVn−1(y
1 − w − z, 0)]f (z)dz = Vn(x, w) + (c1 + c2 − P)�.

Hence, Vn(x, w + �) ≤ Vn(x, w) + (c1 + c2 − P)�. �

LEMMA 2:
(a) In a given period, if it is optimal to order part 1 and x < w, then it

is optimal to order at least up to w. In other words, if y1 > x and
x < w, then y1 ≥ w.

(b) Vn(0, w +�)−Vn(0, w) ≥ (c1 + c2 −P)� for � > 0 and n ≥ 1.

PROOF: We use induction on the period n to prove these two properties
concurrently.

For Period 1:

(a) Suppose y1 < w, then y2 = min{y1, S2
1 + w} = y1 in state (x, w)

and

V1(x, w) = v1(x, w, y1, y1) = K + c1(y1 − x) + c2y1

+
∫ ∞

0
[π(z + w − y1) − Py1]f (z)dz.

Comparing this to the cost when order-up-to levels, (w, w), are
used, we have

v1(x, w, w, w) =K+c1(w − x)+c2w+
∫ ∞

0
[πz − Pw]f (z)dz

= V1(x, w) − (P + π − c1 − c2)(w − y1)

< V1(x, w).

This is a contradiction to the optimality of (y1, y1), and hence we
conclude that ordering up to y1 < w is not optimal for period 1.

(b) CASE 1: Not ordering is optimal in state (0, w+�). In this case,
from Theorem 1, it is optimal to not order either part is optimal
in state (0, w + �) (i.e., (y1, y2) = (0, 0)). Because (0, 0) is also
feasible in state (0, w), we have

V1(0, w + �) − V1(0, w)

≥ V1(0, w + �) − v1(0, w, 0, 0)

= π� ≥ (c1 + c2 − P)�.

CASE 2: Suppose ordering up to (y1, y2) is optimal in state
(0, w + �). Since both y1 and y2 are greater than or equal to � by
Theorem 1(a) and Lemma 2(a), (y1 −�, y2 −�) must be feasible
in state (0, w). Hence,

V1(0, w + �) − V1(0, w)

≥ V1(0, w + �) − v1(0, w, y1 − �, y2 − �)

= (c1 + c2 − P)�.

For Period n − 1: Assume:

(a) In period n − 1, if y1 > x and x < w then y1 ≥ w.
(b) Vn−1(0, w + �) − Vn−1(0, w) ≥ (c1

n−1 + c2
n−1 − Pn−1)�.

For Period n:

(a) Suppose y1 < w in state (x, w). Then, y2 = min{y1, S2
1 +w} = y1

in state (x, w) and

Vn(x, w) = K + c1(y1 − x) + c2y1 +
∫ ∞

0
[π(z + w − y1)

− Py1 + βVn−1(0, z + w − y1)]f (z)dz.

Since (w, w) is feasible in this state, we have

vn(x, w, w, w) = K + c1(w − x) + c2w

+
∫ ∞

0
[πz − Pw + βVn−1(0, z)]f (z)dz

= Vn(x, w) − (P + π − c1 − c2)(w − y1)

− β

∫ ∞

0
[Vn−1(0, z + w − y1) − Vn−1(0, z)]f (z)dz

≤ Vn(x, w)−(P +π −c1 −c2)(w−y1)−β(c1 +c2 −P)(w−y1)

= Vn(x, w)−π(w−y1)−[P −c1 −c2 −β(P −c1 −c2)](w−y1)

< Vn(x, w).

The first inequality follows by part (b) of the induction hypothesis.
We conclude that ordering up to y1 < w is not optimal.
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(b) CASE 1: Not ordering is optimal in state (0, w+�). In this case,
from Theorem 1, (y1, y2) = (0, 0) is optimal in state (0, w + �).
Since not ordering ((0, 0)) is also feasible in state (0, w), we have

Vn(0, w + �) − Vn(0, w) ≥ Vn(0, w + �) − vn(0, w, 0, 0)

= π� + β

∫ ∞

0
[Vn−1(0, z + w + �) − Vn−1(0, z + w)]f (z)dz

≥ π� + β(c1 + c2 − P)� ≥ (c1 + c2 − P)�.

CASE 2: Ordering is optimal in state (0, w + �). Suppose that
(y1, y2) are optimal order-up-to levels for parts 1 and 2, respec-
tively, in state (0, w + �). Since both y1 and y2 are greater than
or equal to � by Theorem 1 and Lemma 2(a), (y1 − �, y2 − �)

must be feasible in state (0, w). Therefore,

Vn(0, w+�)−Vn(0, w) ≥ Vn(0, w+�)−vn(0, w, y1−�, y2−�)

= (c1 + c2 − P)�.

�

LEMMA 3: If y > x, x − w > 0 and y − w > 0, then

(a) (x − y)[F(y − w) − F(x − w)] <
∫ y−w

x−w
(z + w − y)f (z)dz < 0,

and
(b) (x − y)[F(y − w) − F(x − w)] <

∫ y−w

x−w
(x − w − z)f (z)dz < 0.

PROOF:
1. For any z, x − w < z < y − w, we have x − y < z + w − y < 0.

Hence,

(x − y)

∫ y−w

x−w

f (z)dz <

∫ y−w

x−w

(z + w − y)f (z)dz < 0,

(x − y)[F(y −w)−F(x −w)] <

∫ y−w

x−w

(z+w − y)f (z)dz < 0.

2. For any z, x − w < z < y − w, we have x − y < x − w − z < 0.
Hence,

(x − y)

∫ y−w

x−w

f (z)dz <

∫ y−w

x−w

(x − w − z)f (z)dz < 0,

(x − y)[F(y −w)−F(x −w)] <

∫ y−w

x−w

(x −w − z)f (z)dz < 0.

�

PROOF OF THEOREM 2: We will use induction on the period, n to,
prove the following properties concurrently:

(a) If it is optimal to order part 1 in state (x, w), i.e. y1 > x, and the
optimal order-up-to levels are (y1, y2), then y2 > x and y2 ≥ w.

(b) If it is optimal to order part 1 in state (x, w), then it is also optimal
to order part 1 in state (x, w + �).

(c) If it is optimal to order part 1 in state (x, w) and the optimal order-
up-to levels are (y1, y2) for that state is (y1, y2), then the optimal
order-up-to levels for state (x, w + �) are (y1 + �, y2 + �) and
Vn(x, w) − Vn(x, w + �) = (P − c1 − c2)�.

For period 1:

(a) Suppose that it is optimal to order part 1 in state (x, w). Then, by
Theorem 1(a) and Lemma 2, y2 ≥ w. Assume y2 ≤ x. Then, we
have

v1(x, w, x, y2) = c2y2 +
∫ ∞

y2−w

[π(z + w − y2)

+ h1(x − y2) − Py2]f (z)dz +
∫ y2−w

0
[h1(x − w − z)+

h2(y2 − w − z) − P(z + w)]f (z)dz

= v1(x, w, y1, y2) − K − c1(y1 − x) − h1(y1 − x)

< v1(x, w, y1, y2) = V1(x, w).

The fact that order-up-to levels (x, y2) are strictly better than
(y1, y2) contradicts the optimality of (y1, y2), so y2 > x.

(b) In this part, we will show that if it is optimal to order part 1
in state (x, w), then it is also optimal to order part 1 in state
(x, w+�). Suppose order-up-to levels (y1, y2) are optimal in state
(x, w). Since it is optimal to order in state (x, w), we know that
v1(x, w, x, x) > v1(x, w, y1, y2) = V1(x, w). Using this relation,
we show that the following important result holds for x > w:

0 < v1(x, w, x, x) − v1(x, w, y1, y2)

= c2x − K − c1(y1 − x) − c2y2

+
∫ ∞

x−w

[π(z+w−x)−Px]f (z)dz+
∫ x−w

0
[(h1 +h2)(x−w−z)

− P(z + w)]f (z)dz

−
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − Py2]f (z)dz

−
∫ y2−w

0
[h1(y1 − w − z) + h2(y2 − w − z) − P(z + w)]f (z)dz

= −K − c1(y1 − x) − c2(y2 − x)

+
∫ y2−w

x−w

[π(z + w − x) − Px]f (z)dz

+
∫ ∞

y2−w

[π(z + w − x) − Px]f (z)dz

+
∫ x−w

0
[(h1 + h2)(x − w − z) − P(z + w)]f (z)dz

−
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − Py2]f (z)dz

−
∫ x−w

0
[h1(y1 − w − z) + h2(y2 − w − z) − P(z + w)]f (z)dz

−
∫ y2−w

x−w

[h1(y1 −w − z)+h2(y2 −w − z)−P(z+w)]f (z)dz.

After applying extensive algebra and Lemma 3(b), we have

0 < v1(x, w, x, x) − v1(x, w, y1, y2)

= −K − c1(y1 − x) − c2(y2 − x) − h2(y2 − x)

× F(x − w) − h1(y1 − y2) − h1(y2 − x)F (x − w)

+ P(y2 − x)[1 − F(x − w)] + π(y2 − x)[1 − F(x − w)]

+
∫ y2−w

x−w

[(π + P + h1 + h2)(z + w − y2)]f (z)dz

< −K − c1(y1 − x) − c2(y2 − x) + P(y2 − x) + π(y2 − x)
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− (h1 + h2 + P + π)(y2 − x)F (x − w) − h1(y1 − y2)

= −K − (c1 + h1)(y1 − x) + (π + P + h1 − c2)(y2 − x)

− (π + P + h1 + h2)(y2 − x)F (x − w).

From the last inequality, we obtain the following bound for
F(x − w):

F(x − w) < − K + (c1 + h1)(y1 − x)

(π + P + h1 + h2)(y2 − x)
+ π + P + h1 − c2

π + P + h1 + h2
.

(T2.1)

Because (y1, y2) is optimal in state (x, w) then, from result (a) of
this theorem y2 > x and by Theorem 1(a), x < y2 ≤ S2

1 + w.
On the other hand, if not ordering part 1 were optimal in state
(x, w + �), ordering x units of part 2 only (i.e., using order-up-to
levels (x, x)) must be optimal since x < S2

1 + w < S2
1 + w + �.

The cost when order-up-to levels (x, x) are used in state (x, w+�)

is:

v1(x, w+�, x, x) = c2x+
∫ ∞

x−w−�

[π(z+w+�−x)−Px]f (z)dz

+
∫ x−w−�

0
[(h1 + h2)(x − w − � − z) − P(z + w + �)]f (z)dz

= v1(x, w, x, x)+ (h1 +h2 +π +P)

∫ x−w

x−w−�

(z+w −x)f (z)dz

+ π�[1 − F(x − w − �)] − (h1 + h2 + P)�F(x − w − �)

≥ v1(x, w, x, x)−(h1 +h2 +π +P)�[F(x−w)−F(x−w−�)]
− (h1 + h2 + P + π)�F(x − w − �) + π�

= v1(x, w, x, x) + π� − (h1 + h2 + π + P)�F(x − w)

> v1(x, w, x, x)−P�−h1�+c2�+K� + (c1 + h1)(y1 − x)�

y2 − x

> V1(x, w) − P� − h1� + c2� + K� + (c1 + h1)(y1 − x)�

y2 − x

≥ V1(x, w + �) + (P − c1 − c2)� − P�

− h1� + c2� + K� + (c1 + h1)(y1 − x)�

y2 − x

= V1(x, w + �) + K� + (c1 + h1)(y1 − y2)�

y2 − x

> V1(x, w + �).

The first inequality follows from Lemma 3(a) whereas the second
inequality comes directly from (T2.1). The third inequality holds
due to the fact that v1(x, w, x, x) is not optimal and the fourth
inequality comes from Lemma 1. Therefore, not ordering part 1
cannot be optimal in state (x, w + �) for x > w.

If x ≤ w and not ordering part 1 were optimal in state (x, w+�),
then x ≤ S2

1 + w < S2
1 + w + � and the optimal order-up-to lev-

els in state (x, w + �) must be (x, x). Applying the fact that it is
optimal to order part 1 in state (x, w) is optimal and Lemma 1,
respectively, we get

v1(x, w + �, x, x) = c2x +
∫ ∞

0
[π(z + w + � − x) − Px]f (z)dz

= v1(x, w, x, x) + π�

> V1(x, w) + π�

≥ V1(x, w + �) + (π + P − c1 − c2)�.

Because P − c1 − c2 ≥ 0, v1(x, w + �, x, x) > V1(x, w + �)

for any � > 0, therefore it is also optimal to order part 1 in state
(x, w + �).

(c) From Lemma 1, we have:

V1(x, w + �) ≤ V1(x, w) + (c1 + c2 − P)�. (T2.2)

Therefore, it remains to show that the inequality holds for the oppo-
site direction as well. To this end, first note that, from part (b) of
this same theorem, we know it is also optimal to order part 1 in
state (x, w +�). Suppose order-up-to levels (y1 +�, y2 +�) are
optimal in state (x, w + �). We now show that order-up-to levels
(y1, y2) are not only feasible, but also optimal in state (x, w). To
show that (y1, y2) is feasible, it suffices to show that y1 > x (later
we will show that y1 > x is always true) as y2 ≥ w from part (a)
of this theorem. Provided that (y1, y2) is feasible in state (x, w),
the result is immediate since

v1(x, w, y1, y2) = K + c1(y1 − x) + c2y2

+
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − Py2]f (z)dz

+
∫ y2−w

0
[h1(y1 − w − z) + h2(y2 − w − z) − P(z + w)]f (z)dz

= V1(x, w + �) − (c1 + c2 − P)�,

and we have

V1(x, w) ≤ V1(x, w + �) + (P − c1 − c2)�. (T2.3)

We now show that y1 > x. To do so, we need to prove that if it
is optimal to order part 1 in state (x, w + �), then ordering part
1 up to any quantity less than x + � cannot be optimal. We will
complete this proof by contradiction. Assume V1(x, w + �) =
v1(x, w + �, x + δ, y2′

) for some δ such that 0 ≤ δ ≤ �. By part
(a) of this theorem and Theorem 1(a), x + δ ≥ y2′ ≥ w + �, so
x ≥ �−δ+w ≥ �−δ. Hence, (x, w+�−δ) and (x +δ−�, w)

are valid states, and ordering up to (x + δ −�, y2′ −�) is feasible
in state (x + δ − �, w). From Lemma 1,

V1(x, w + �) ≤ V1(x, w + � − δ) + (c1 + c2 − P)δ

= V1(x + δ − �, w) − (P − c2)(� − δ) + (c1 + c2 − P)δ

≤ v1(x + δ − �, w, x + δ − �, y2′ − �) + c1δ + c2� − P�.
(T2.4)

We note that the first equality is obtained from Theorem 1(b)
whereas the second inequality comes from the fact that the opti-
mal cost V1(x + δ − �, w) is less than or equal to the cost when
order-up-to levels (x + δ − �, y2′ − �) are used. However,

V1(x, w + �) = v1(x, w + �, x + δ, y2′
)

= K + c1δ + c2y2′ +
∫ ∞

y2′ −w−�

[π(z + w + � − y2′
)

+ h1(x + δ − y2′
) − Py2′ ]f (z)dz

+
∫ y2′ −w−�

0
[h1(x + δ − w − � − z) + h2(y2′ − w − � − z)

− P(z + w + �)]f (z)dz

= v1(x + δ −�, w, x + δ −�, y2′ −�)+K + c1δ + c2�−P�.
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This identity contradicts the inequality (T2.4) as V1(x, w + �) >

v1(x + δ − �, w, x + δ − �, y2′ − �) + c1δ + c2� − P�. Hence,
it cannot be optimal to order less than x + � in state (x, w + �)

and (T2.3) is always true.
From (T2.2) and (T2.3), V1(x, w) = V1(x, w +�)+ (P − c1 −

c2)�, and (y1 + �, y2 + �) is optimal in state (x, w + �).

For period n − 1: Assume

(a) If it is optimal to order part 1 in state (x, w) and the optimal
order-up-to levels are (y1, y2), then y2 > x and y2 ≥ w.

(b) If it is optimal to order part 1 in state (x, w), then it is also optimal
to order part 1 in state (x, w + �).

(c) If it is optimal to order part 1 in state (x, w) and the opti-
mal order-up-to levels for that state is (y1, y2), then the optimal
order-up-to levels for state (x, w + �) is (y1 + �, y2 + �) and
Vn−1(x, w) − Vn−1(x, w + �) = (P − c1 − c2)�.

For period n:

(a) Under the assumption that it is optimal to order part 1 in state
(x, w), by Theorem 1(a) and Lemma 2, y2 ≥ w. Assume y2 ≤ x.
On the other hand, if we do not order part 1, but order y2 units of
part 2, we have

vn(x, w, x, y2)

= c2y2 +
∫ ∞

y2−w

[π(z + w − y2) + h1(x − y2) − Py2

+ βVn−1(x − y2, w + z − y2)]f (z)dz

+
∫ y2−w

0
[h1(x − w − z) + h2(y2 − w − z) − P(z + w)

+ βVn−1(x − w − z, 0)]f (z)dz

= vn(x, w, y1, y2) − K − c1(y1 − x) − h1(y1 − x)

−
∫ ∞

y2−w

β[Vn−1(y
1−y2, w+z−y2)−Vn−1(x−y2, w+z−y2)]f (z)dz

−
∫ y2−w

0
β[Vn−1(y

1 − w − z, 0) − Vn−1(x − w − z, 0)]f (z)dz.

Applying Theorem 1(b), we rewrite Vn−1(x − w − z, 0) and
Vn−1(x − y2, w + z − y2) as follows: Vn−1(x − w − z, 0) =
Vn−1(y

1 −w−z, y1 −x)+(P −c2)(y1 −x), and Vn−1(x−y2, w+
z−y2) = Vn−1(y

1 −y2, w+z−y2 +y1 −x)+ (P −c2)(y1 −x).
Then,

vn(x, w, x, y2) = vn(x, w, y1, y2)−K − c1(y1 − x)−h1(y1 − x)

−
∫ ∞

y2−w

β[Vn−1(y
1 −y2, w+z−y2)−Vn−1(y

1 −y2, w+z−y2

+ y1 − x) − (P − c2)(y1 − x)]f (z)dz

−
∫ y2−w

0
β[Vn−1(y

1 − w − z, 0) − Vn−1(y
1 − w − z, y1 − x)

− (P − c2)(y1 − x)]f (z)dz

= vn(x, w, y1, y2) − K − c1(y1 − x) − h1(y1 − x)

−
∫ ∞

y2−w

β[(P − c1 − c2)(y1 − x) − (P − c2)(y1 − x)]f (z)dz

−
∫ y2−w

0
β[(P − c1 − c2)(y1 − x) − (P − c2)(y1 − x)]f (z)dz

= vn(x, w, y1, y2)−K − c1(y1 −x)−h1(y1 −x)+βc1(y1 −x)

= vn(x, w, y1, y2) − K − (c1 − βc1)(y1 − x) − h1(y1 − x)

< vn(x, w, y1, y2) = Vn(x, w).

This contradicts the fact that (y1, y2) is optimal, so y2 > x.
(b) In this part, we will show that, if it is optimal to order part 1 in state

(x, w), then it is also optimal to order part 1 in state (x, w + �).
Suppose (y1, y2) are the optimal order-up-to levels for parts 1 and
2 in state (x, w). Since it is optimal to order part 1 in state (x, w),
we know that vn(x, w, x, x) > vn(x, w, y1, y2) = Vn(x, w). Using
this relation and a similar algebra used when n = 1, we develop
the following important result for x > w:

0 < vn(x, w, x, x) − vn(x, w, y1, y2)

= c2x +
∫ ∞

x−w

[π(z+w−x)−Px +βVn−1(0, z+w−x)]f (z)dz

+
∫ x−w

0
[(h1 + h2)(x − w − z) − P(z + w)

+ βVn−1(x − w − z, 0)]f (z)dz − K − c1(y1 − x) − c2y2

−
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − Py2

+ βVn−1(y
1 − y2, z + w − y2))]f (z)dz

−
∫ y2−w

0
[h1(y1 − w − z) + h2(y2 − w − z) − P(z + w)

+ βVn−1(y
1 − w − z, 0)]f (z)dz

= −K−c1(y1−x)−c2(y2−x)−h2(y2−x)F (x−w)−h1(y1−y2)

− h1(y2 − x)F (x − w) + P(y2 − x)[1 − F(x − w)]
+ π(y2 − x)[1 − F(x − w)]

+
∫ y2−w

x−w

[(π + P + h1 + h2)(z + w − y2)]f (z)dz

−
∫ y2−w

x−w

β[Vn−1(y
1 − w − z, 0) − Vn−1(0, z + w − x)]f (z)dz

−
∫ ∞

y2−w

β[Vn−1(y
1−y2, z+w−y2)−Vn−1(0, z+w−x)]f (z)dz

−
∫ x−w

0
β[Vn−1(y

1 − w − z, 0) − Vn−1(x − w − z, 0)]f (z)dz

< −K − c1(y1 − x) − c2(y2 − x) + P(y2 − x) + π(y2 − x)

− (h1 + h2 + P + π)(y2 − x)F (x − w) − h1(y1 − y2)

−
∫ y2−w

x−w

β[Vn−1(y
1 − w − z, 0) − Vn−1(y

1 − w − z, y1 − x)

+ (c2 − P)(y1 − w − z)]f (z)dz

−
∫ ∞

y2−w

β[Vn−1(y
1 − y2, z + w − y2) − Vn−1(y

1 − y2,

z+w −y2 +y1 −x)]f (z)dz−
∫ ∞

y2−w

[(c2 −P)(y1 −y2)]f (z)dz
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−
∫ x−w

0
β[Vn−1(y

1 − w − z, 0) − Vn−1(y
1 − w − z, y1 − x)

+ (c2 − P)(y1 − x)]f (z)dz

= −K − (c1 + h1)(y1 − x) + (π + P − c2 + h1)(y2 − x)

− (h1 + h2 + P + π)(y2 − x)F (x − w)

+
∫ y2−w

x−w

β[c1(y1 − x) + (P − c2)(x − w − z)]f (z)dz

+
∫ ∞

y2−w

β[c1(y1 − x) − (P − c2)(y2 − x)]f (z)dz+
∫ x−w

0
βc1(y1 − x)f (z)dz

< −K − (c1 − βc1 + h1)(y1 − x) + [π + P + h1 − c2

− β(P − c2)](y2 − x)

− [π + P + h1 + h2 − β(P − c2)](y2 − x)F (x − w).

Therefore,

F(x − w) < − K + (c1 − βc1 + h1)(y1 − x)

[π + P + h1 + h2 − β(P − c2)](y2 − x)

+ π + P + h1 − c2 − β(P − c2)

π + P + h1 + h2 − β(P − c2)
.

In the proof above mentioned, most equalities and inequalities
come directly from algebra or calculus with exceptions of a few.
The second inequality is the result of Lemma 3(a) and Theorem 1,
part 2. Then the induction hypothesis on claim (c) for period n−1 is
used to get the closed form expressions for the differences between
the cost-to-go functions and to establish the equality. Finally, in the
last inequality, Lemma 3(b) is applied.

Because (y1, y2) is optimal in state (x, w) then, from part (a) of
this theorem, y2 > x and by Theorem 1(a) x < y2 ≤ S2

n + w. If
not ordering part 1 were optimal in state (x, w + �), ordering x

units of part 2 only (i.e., order-up-to levels (x, x) are used) must
be optimal since x < S2

n + w < S2
n + w + �. The cost from state

(x, w) with n periods-to-go when order-up-to levels are (x, x) in
period n and determined optimally afterward, vn(x, w + �, x, x),
is

vn(x, w + �, x, x)

= c2x +
∫ ∞

x−w−�

[π(z + w + � − x) − Px

+ βVn−1(0, z + w + � − x)]f (z)dz

+
∫ x−w−�

0
[(h1 + h2)(x − w − � − z) − P(z + w + �)

+ βVn−1(x − w − � − z, 0)]f (z)dz

= vn(x, w, x, x)+ (h1 +h2 +π +P)

∫ x−w

x−w−�

(z+w−x)f (z)dz

+ π�[1 − F(x − w − �)] − (h1 + h2 + P)�F(x − w − �)

+β

∫ x−w

x−w−�

[Vn−1(0, z+w−x+�)−Vn−1(x−z−w, 0)]f (z)dz

+ β

∫ ∞

x−w

[Vn−1(0, z + w − x + �) − Vn−1(0, z + w − x)]f (z)dz

+β

∫ x−w−�

0
[Vn−1(x−z−w−�)−Vn−1(x−z−w, 0)]f (z)dz.

(T2.5)

Again, we make use of Theorem 1(b) and part (c) for period n − 1
of this theorem (provided by induction hypothesis) to establish the
following identities:

Vn−1(0, z + w − x + �) − Vn−1(x − w − z, 0)

= Vn−1(x−w−z, �)+(P −c2)(x−w−z)−Vn−1(x−w−z, 0)

= −(P − c2)(w + z − x) + (c1 + c2 − P)�,

=Vn−1(0, z+w−x+�)−Vn−1(0, z+w−x)=(c1+c2−P)�, and

Vn−1(x − w − z − �, 0) − Vn−1(x − w − z, 0)

= Vn−1(x − w − z, �) + (P − c2)� − Vn−1(x − w − z, 0)

= (P − c2)� + (c1 + c2 − P)� = c1�.

Substituting the corresponding expressions in equation (T2.6), we
have:

vn(x, w + �, x, x)

≥ vn(x, w, x, x)−(h1 +h2 +π +P)�[F(x−w)−F(x−w−�)]
− (h1 + h2 + π + P)�F(x − w − �) + π�

+ β[(P − c2)� + (c1 + c2 − P)�][F(x − w) − F(x − w − �)]
+ β(c1 + c2 − P)�[1 − F(x − w)] + βc1�F(x − w − �)

= vn(x, w, x, x)+π�−[h1+h2+π+P −β(P −c2)]�F(x−w)

≥ vn(x, w, x, x) − P� − h1� + c2� + β(P − c2)

+ K� + (c1 − βc1 + h1)(y1 − x)�

y2 − x

> Vn(x, w) − P� − h1� + c2� + β(P − c2)

+ K� + (c1 − βc1 + h1)(y1 − x)�

y2 − x

≥ Vn(x, w+�)+(P −c1 −c2)�−P�−h1�+c2�+β(P −c2)

+ K� + ((1 − β)c1 + h1)(y1 − x)�

y2 − x

= Vn(x, w + �) + K� + ((1 − β)c1 + h1)(y1 − y2)�

y2 − x

+ β(P − c1 − c2)(y2 − x)� > Vn(x, w + �).

The second inequality comes from (T2.5), the third one from the
fact that vn(x, w +�, x, x) is not optimal, and the fourth one from
Lemma 1. Therefore, not ordering part 1 cannot be optimal in state
(x, w + �) for x > w.

If x ≤ w and not ordering part 1 were optimal in state (x, w+�),
then x ≤ S2

n +w < S2
n +w +� and order-up-to levels (x, x) must

be optimal in (x, x).

vn(x, w + �, x, x) = c2x +
∫ ∞

0
[π(z + w + � − x) − Px

+ βVn−1(0, w + z − x)]f (z)dz

= vn(x, w, x, x) + π� > Vn(x, w) + π�

≥ Vn(x, w + �) + (π + P − c1 − c2)�,

and we have vn(x, w + �, x, x) > Vn(x, w + �). Therefore, it is
optimal to order part 1 in state (x, w + �).
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(c) From Lemma 1, we have:

Vn(x, w + �) ≤ Vn(x, w) + (c1 + c2 − P)�. (T2.6)

From part (b) of this same theorem, we know that it is also optimal
to order part 1 in state (x, w + �). Let (y1 + �, y2 + �) be the
optimal order-up-to levels in state (x, w + �). Using an argument
similar to the one used in the case n = 1, we now show that order-
ing up to (y1, y2) is not only feasible, but also optimal in state
(x, w). Assuming (y1, y2) is feasible, then,

vn(x, w, y1, y2) = K + c1(y1 − x) + c2y2

+
∫ ∞

y2−w

[π(z + w − y2) + h1(y1 − y2) − Py2

+ βVn−1(y
1 − y2, w + z − y2)]f (z)dz

+
∫ y2−w

0
[h1(y1 − w − z) + h2(y2 − w − z) − P(z + w)

+ βVn−1(y
1 − z − w, 0)]f (z)dz

= Vn(x, w + �) − (c1 + c2 − P)�,

and we have

Vn(x, w) ≤ Vn(x, w + �) + (P − c1 − c2)�. (T2.7)

To show that (y1, y2) is feasible, we first note that y2 ≥ w is a
trivial implication of part (a) of this theorem. We now show that
y1 > x. To do so, we need to prove that if it is optimal to order
part 1 in state (x, w + �) then ordering part 1 up to any quantity
less than x + � cannot be optimal. We will complete this proof by
contradiction. Assume Vn(x, w+�) = vn(x, w+�, x+δ, y2′

) for
a δ such that 0 ≤ δ ≤ �. By part (a) of this theorem and Theorem
1(a), x + δ ≥ y2′ ≥ w + �, so x ≥ � − δ + w ≥ � − δ. Hence,
(x, w+�− δ) and (x + δ −�, w) are valid states, and order-up-to
levels (x + δ − �, y2′ − �) are feasible in state (x + δ − �, w).
From Lemma 1,

Vn(x, w + �) ≤ Vn(x, w + � − δ) + (c1 + c2 − P)δ

= Vn(x + δ − �, w) − (P − c2)(� − δ) + (c1 + c2 − P)δ

≤ vn(x + δ − �, w, x + δ − �, y2′ − �) + c1δ + c2� − P�

(T2.8)

The equality is obtained from Theorem 1(b). The second inequality
comes from the fact that the optimal cost Vn(x + δ − �, w) is less
than or equal to vn(x + δ − �, w, x + δ − �, y2′ − �). However,

Vn(x, w + �) = vn(x, w + �, x + δ, y2′
) = K + c1δ + c2y2′

+
∫ ∞

y2′ −w−�

[π(z + w + � − y2′
) + h1(x + δ − y2′

) − Py2′

+ βVn−1(x + δ − y2′
, w + z + � − y2′

)]f (z)dz

+
∫ y2′ −w−�

0
[h1(x + δ − w − � − z) + h2(y2′ − w − � − z)

− P(z + w + �) + βVn−1(x + δ − w − � − z, 0)]f (z)dz

= vn(x + δ −�, w, x + δ −�, y2′ −�)+K + c1δ + c2�−P�

Vn(x, w + �) > vn(x + δ − �, w, x + δ − �, y2′ − �) + c1δ +
c2�−P� is a contradiction to (T2.9). Hence, it cannot be optimal
to order less than x + � in state (x, w + �) and (T2.8) is always
true.

From (T2.7) and (T2.8), Vn(x, w) = Vn(x, w +�)+ (P − c1 −
c2)�, and ordering up to (y1 + �, y2 + �) is optimal in state
(x, w + �). �
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