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ABSTRACT

This paper presents the development of the generalized d’Alembert equations
of motion for application to robot manipulators with rotary joints. These equa-
tions, when applied to a robot arm, result in an efficient and explicit set of closed
form second order nonlinear differential equations with vector cross product
terms. They give well "structured” equations of motion suitable for state-space
control analysis. The interaction and coupling reaction forces/torques between
the neighboring joints of a manipulator can be easily identified as coming from
the translational and rotational effects of the links. With this information, either
a simplified dynamic model can be developed or an appropriate controller can be
designed to compensate the nonlinear effects. Application to obtaining simplified
dynamic model is discussed together with the computational complexities of the
dynamic coefficients in the generalized d’Alembert equations of motion. The
dynamic equations of the first three links of a PUMA robot are worked out to
illustrate the method.

This work was supported in part by the National Science Foundation Grant ECS-8106954
and the AFOSR Grant F49620-82-C-0089. Any opinions, findings, and conclusions or recommen-
dations expressed in this article are those of the authors and do not necessarily reflect the views of

the funding agencies.
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1. Introduction

A priori information needed for manipulator control analysis is a set of
closed form differential equations describing the dynamic behavior of the mani-
pulator. Various approaches are available to formulate the robot arm dynamics,
such as Lagrange-Euler (L-E) [1-5], Newton-Euler (N-E) [7-12], and recursive
Lagrangian (R-L) [13], though mainly two approaches are used by most
researchers - the Lagrange-Euler and the Newton-Euler formulations. The L-E
equations of motion maintain a well structured form, but computationally it is
very difficult to utilize for real time control purposes unless the equations of
motion are simplified. The N-E formulation results in a very efficient set of
recursive equations, but they are very difficult to use for deriving state-space
control laws. This paper presents the generalized d’Alembert (G-D) equations of
motion which give well "structured” equations suitable for control analysis. In
addition to having faster computation time for computing the dynamic coeffi-
cients than the L-E equations of motion, the G-D equations of motion explicitly
indicate the contributions of the translational and rotational effects of the links.
Such information is useful for designing a controller in state-space or in obtain-
ing an appropriate approximate model of the manipulator which simplifies the
design of the controller.

Assuming rigid body motion, the Lagrange-Euler equations of motion,
excluding the gear friction and backlash, are a set of second order coupled non-
linear differential equations. In general, the necessary generalized torque r; for
joint i to drive the i link of the robot arm can be written as [I-5],

S s oT¢ 4 *T¢ oT{ .o
v
g‘—: = T 06, Ji ] } 6 + gqgkgr 56:50; rl 5, ] } 6,81 0
n oT ]
-Z'm,g{ ag(.f }Fj=fi cfori=12 - ,n

J=

These equations can be expressed in matrix form explicitly,

n . n n ..
VCubi+ Y, Y Cumbdm+ Ci=1, ;fori=12 - ,n (2)
k=1 k=1 m=1
where
Cy= Tv{ J[ ] } s for i,k =1,2, --- ,n (3)
,_ma,(‘k) 60‘ 60
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J[ 80d] } ; for i,km =12, : (4)

Cim =

0°Td
>, 1 d
r—mu(ltm)

90590

= F:l— ; fori=12, - ,n (5)

and T is a 4x4 homogeneous link transformation matrix which relates the spa-
tial relationship between the *» and the base coordinate frames, J; is the inertial
matrix of link i about the i** coordinate frame, ¥, is the position of the center of
mass of link i with respect to the i** coordinate system, g is the gravity row vec-
tor = (g;,9y,9:,0) and |g| = 9.8062m/#, the superscript T on vectors and
matrices indicates the transpose operation, and n is the number of degrees-of-
freedom of the robot arm.

The above dynamic equations of motion are highly nonlinear and consist of
inertia loading, coupling Coriolis and centrifugal reaction forces between joints,
and gravity loading effects. Furthermore, these interaction torques/forces
depend on the manipulator's physical parameters, instantaneous joint configura-
tion, and the load it is carrying. To improve the speed of computation, simpli-
fied sets of equations have been proposed by many investigators [2-4, 6]. In gen-
eral. these "approximate” models simplify the underlying physics by neglecting
second order terms such as the Coriolis and centrifugal reaction terms. How-
ever, at high arm speeds the neglected terms become significant, making the
accurate position control of the robot arm more difficult [16].

As an alternative to deriving more efficient equations of motion, Newton-
Euler equations of motion were developed [7-12]. The derivation was based
mainly on the "moving coordinate systems™ and d'Alembert’s principle. The
resulting Newton-Euler equations of motion, excluding the gear friction and
backlash. are a set of compact forward and backward recursive equations. This
set of recursive equations can be applied to the robot links sequentially. The
forward recursion propagates kinematics information (such as angular velocities,
angular accelerations, linear accelerations, and linear acceleration about the
center of mass of each link) from the base reference frame (inertial frame) to the
end-effector. The backward recursion propagates the forces exerted on each link
from the end-effector of the manipulator to the base reference frame and the
applied joint torques are computed from these forces. Because of the nature of
the formulation and the method of systematically computing the joint torques,
computations are much simpler. The most significant of this formulation is that
the computation time of the applied torques is found linearly proportional to the
number of joints of the robot arm and independent of the robot arm

1 Generalized d’Alembert Equations
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configuration. This enables the implementation of simple real-time control algo-
rithm for a robot arm in the joint-variable space.

The inefficiency of the equations of motion as formulated by the L-E
method comes mainly from the 4x4 homogeneous matrices describing the
kinematic chain [14-15], while the efficiency of the N-E formulation can be seen
from the vector formulation and its recursive nature. Turney et al. [14] expli-
citly verified that one can obtain the L-E equations of motion from the N-E
equations, while Silver [15] showed the equivalence of the L-E and the N-E equa-
tions of motion through tensor analysis. To further improve the computation
time of the Lagrangian formulation, Hollerbach [13] exploited the recursive
nature of the Lagrangian formulations. However, the recursive equations des-
troy the “structure” of the dynamic model which is quite useful in providing
insight for the controller design. For state-space control analysis, one would like
to obtain an explicit set of closed form differential equations that describe the
dynamic behavior of a manipulator and the interaction and coupling reaction
forces in the equations can be easily identified so that an appropriate controller
can be designed to compensate their effects. To obtain such an efficient set of
equations of motion, Huston [12] employed Kane's dynamical equations to
develop an algorithmic approach for deriving the equations of motion suitable
for computer implementation. Another approach of obtaining an efficient set of
closed form equations of motion is based on the generalized d’Alembert princi-
ple. Chace [17] successfully used the technique for multi-freedom mechanical
parts. This paper extends Chace's work to develop the generalized d’Alembert
equations of motion (G-D) for mechanical manipulators with rotary joints and
shows the equations of motion explicitly in vector-matrix form. The method
uses Euler transformation matrices ( or rotation matrices ) and relative position
vectors between joints to increase the computational efficiency. The G-D equa-

tions of motion of a three-link PUMA! robot arm are then worked out showing
the simplicity of the method.

For a rather "loose” comparison, the computation of the applied joint
torques from the G-D equations of motion is of order O(n®), while the L-E equa-
tions of motion is of order O(n'), and the N-E equations of motion is of order
O(n), where n is the number of degrees of freedom of the robot arm.

2. The Generalized d’Alembert Equations of Motion

Computationally, the L-E equations of motion are inefficient due to the
4x4 homogeneous matrix manipulations, while the efficiency of the N-E formu-
lation can be seen from the vector formulation and its recursive nature. In
order to obtain an efficient set of closed form equations of motion, one can

PUMA'! is a trademark of Unimation Inc.
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utilize the relative position vector and rotation matrix representation to describe
each link's kinematics information, obtain the kinetic and potential energies of
the robot arm to form the Lagrangian function and apply the Lagrange-Euler
formulation to obtain the equations of motion.

With reference to Figure 1, assuming that the links of the robot arm are
rigid bodies, the angular velocity w, of link s with respect to the base coordinate
frame can be expressed as a sum of the relative angular velocities from the lower

joints,

W= z.:l;il"_l (6)
=

where s,_; is the axis of rotation of joint j with reference to the base coordinate
frame. Premultiplying the above angular velocity by the rotation matrix R?
changes its reference to the s* link coordinate frame,

8 o
R, =Y 6R0s;, (7)
1=1

Let ¥, be the position vector to the center of mass of link s from the base coordi-
nate frame. This position vector can be expressed as,

[
Fo= Y P’ + € =pp1 +&, (8)
=1

where p;* is the position vector from the origin of link f1 coordinate frame to
the origin of link j coordinate frame with respect to the base coordinate system,
P, is the position vector from the base coordinate frame to the origin of link
&1 coordinate frame, and ¢, is the position vector of the center of mass of link s
from the (s-1)* coordinate frame with reference to the base coordinate frame.

Using Egs. 6-8, the linear velocity of link s v, with respect to the base
coordinate frame can be computed as a sum of the linear velocities from the
lower links,

1 [0 FES 9
Ve = Z{ Zﬂ,tj-ll X Pk'} + 20,1,-_1] X €, (9)

The kinetic energy of link s (1 < # < n) with mass m, can be expressed as
the summation of the kinetic energies due to the translational and rotational
effects at its center of mass [18]:

6 Generalized d’Alembert Equations
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Joint i Link i

Link i+1

Link i—1

Joint i +1

Base Coordinate System

Figure 1 Vector Definition for the G-D Equations
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K,= (Kc)tru + (Ko)rol = '%’ m,(v, v, + ';- (R.ow,)rl, (R,Ow,) (10)

where 1, is the inertia tensor matrix of link s about its center of mass expressed
in the #* coordinate system.

For ease of discussion and derivation, the equations of motion due to the
translational, rotational, and gravitational effects of the links will be considered
and treated separately. Applying the Lagrange-Euler formulation to the above
translational kinetic energy of link s with respect to the generalized coordinate 4,
(s > i), we have

d [OKdiran | HKJraw _ 4 | .| OV,
dt 08, 09, adt | g, AT
(11)
dv, v, ov,
= myv, 5 + myv, at | 28, l s Va 6—9,
where
av ’ ] L) — P .
-—a-;; =z X (P'+Pii+  +PAHE) =5y X (Fo-pry) 22 (12)
1
Using the following identities,
;‘_[i":]=3‘11 ad 2t O (13)
dt | 36, 86, 86, 98,
Eq. 11 becomes
= mvéa : {'t’—l X (F,- pi—l)} (14)

_ti [a(Ka)traa ]_ a(Kc)trau

dt 09, 06,

Summing all the links from i to n gives us the reaction torques due to the trans-
lational effect of all the links,

8 Generalized d’Alembert Equations
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el K. ;i)m. ] 3(1\;;'):". _ E £l [ 3K, ),,.. ] ) auf”): ]
(15)
= Z,‘ma‘.'- : {'i—l X (F,- P.‘-l)}
where, the acceleration of link s is
g | E(Ziee) x o] | S <o)
-8 ( Sl xoi +{[ L) x || Sinn) x ,,‘.”] .

| Eom) x 3 +{[Zhen] ([ Zier) <)

B[ Eeed] x ] x o} + (L[ Edars] xi2r] x3)

k——Q{ p=2

Next, the kinetic energy due to the rotational effect of link s is:
T
(Kdrot = = (RO“’J I,(Row,] = - { veRol,_l} 1 Y‘Q)R z, 1} (1‘)

J—

where I, is the inertia matrix about the center of mass of link s with respect to
the base coordinate frame. Since

a I\" ro T LA ]
K)ot = [R,‘);H] LIY6RM i|, ;82 (18)
a6, =1
3 0.\ — m0.. 0, CiS (19)
3; (R. z,_ll == R. z,_l X R. By y 3 2 J
and

4 (RPsy) = Z R, '»1] g R/s;) X Z""inno'i-l] (20)
dt j=i 30 dt J=i

Generalized d’Alembert Equations 9
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then the time derivative of Eq. 18 is
T
a“\v)ro! 2 '. 0,
T { } = ["“ R, '.—1] "[’g,o'n' ':—1]
0. 1% I &aopo,. 0. 1% 1vs[ 9 go..

) T g

= [R,":,-_, X Eo,-n,%-ﬂ] 1,[20,-3,0.-#1]
= j=1

+ [R'O;'._l] Tl,[g?,a,o.j__,] + [R,“.,-_,] [E OR sy X E HER, 5L ]]

=1 b=j5+1

Next using Eq. 19, we can find the partial derivative of (K,),, with respect to
the generalized coordinate ¢; (s > i),

(K )rot _{ Eg,a, ;,_1] X R, :,_,} l,{jgléla'ogj_,} (22)

08, =

Subtracting Eq. 22 from Eq. 21 and summing all the links from i to n gives us
the reaction torques due to the rotational effects of all the links,

d a(K-g-)rot a(K~E-)ra¢ _ i d a(K‘v)rot a(Ka)rot
W[ 89, ]" %6 = ] 99,

=1 at 36,

=y+1

l'_l

[(R, 2:1) l, 29130 ';—1] + (R)s4) 1{2 6R 5y X ( 5'3 ‘;kR.Ou-x”}(%)

# [Rn x [ S o)) 1 IZoR:H]} =12

=1

The potential energy of the robot arm equals to the sum of the potential
energies of each link,

PE=YP, (24)

where P, is the potential energy of link s and is found to be

10 Generalized d’Alembert Equations
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P0=—8'mo?o="l'ml(Pi—l+Pi’+"""’Eo) (25)

where g = (g;,9,,9:)7 and |g| = 9.8062m/s>. Applying the Lagrange-Euler formu-
lation to the potential energy of link s with respect to the generalized coordinate

4; (¢ > i), we have

aP)) &P) _  8&P) _ Apir+pi'+ - +7)
a ag,-]'ao.- = "o, T8 ™ 29,
(26)
3[ T, - Ps ]
=g m, 88, : = S‘m.{l.'-xx (F0°Pi-l)}

where p, ; is not a function of 4, Summing all the links from i to n gives us the
reaction torques due to the gravity effects of all the links,

n P, L -
e R R

The summation of Egs. 15, 23, and 27 is equal to the generalized applied
torque exerted at joint i to drive link i,

L d a(K-l;-)lrau a(K-E-)tran a(K E )rot a(K~E-)rol a(PE)
n= {7 60,' ] - 60, ] * [dl [ 60, ] B 60‘ } M 96,

=1

_ Z:'. [m’{[,‘i ,é,’;’""‘] X p,‘] + ” i;ﬂj—l X E,]} '{.r'-l X (F,- p.'-ll}J

+y

=1

(R, .H) 1 Z"R sH ] + Z m,[ lzﬂ,lrx [ rél;qzqq] X p,,.]}

=1

+ {2:32 [[g’:‘ciﬂl X 5#:»1] X m’}}] -{m x (- pm)}]

Generalized d’Alembert Equations 11



RSD-TR-&-&2

-+

114

[l i x| o) <) &
(8] ximn) x ¥l (o x om)

N ;j._[[a,".ﬂ) Y[ x |5 e

{Riss x [ it ’I,[ ;;,R,o.ﬂl]

_,.{,.Hx[g‘,,y(;j_p.ﬂ,]}  for im 12 .

The above equation can be re-written in a more “structured” form as

(fori= 1.2, '--,n):

n e o ° 0
D8, + Hi™0,0) + H/6,0) + G, =1, (29)
= V)
]=
where, fori=12 - ,n,

” T
Dfi = Dufo‘ + Dl';'m” = E { (Roolo'—ll I, [R,Ol,'_l]}
=)

+ éj[’"-{'j-l X [gjpk"*' Eo]} '{'o’-l X ( ?a-PH]}] ; 187 (30)

= f:‘{[R.Om) TI, [R,°:,-.,)} + éj[m.{l,'-x X ['i".-p,'-x)} ‘{l.‘-l X (E-P;-:)}] ; 1<

=y

=1

1o 0,5) — Z[,,, B[] x ([ L] x o4}

12 Generalized d’Alembert Equations
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S Eher] ] o] o 1) "
[l o) < (| o] <)

8| G ] <) o (5]

b=j+1

H,-""((),l;)“ [IR 3) 1-{2 R 8 X [ E 0"30'“”}

. (32)
+[Rése x | £ i) 1 g};@,om]]
Gi= -8 [z,-_l X g,mi[ T - p.--l]] (33)

The dynamic coefficients D,j and G, are functions of both the joint variables
and inertial parameters of the manipulator, while the H/*® and H/* are func-
tions of the joint variables, the joint velocities and inertial parameters of the
manipulator. These coefficients have the following physical interpretations:

(1) The elements of the D, matrix are related to the link inertias of the mani-
pulator. Eq. 30 reveals the acceleration effects of joint ; acting on joint &
where the driving torque r,; acts. The first term of Eq. 30 indicates the iner-
tial effects of moving link ; on joint i due to the rofational motion of link j,
and vice versa. If i=j, it is the effective inertias felt at joint i due to the
rotational motion of link s; while if i # j, it is the pseudo products of inertia
of link j felt at joint i due to the rotational motion of link ;. The second
term has the same physical meaning except it is due to the translational
motion of link j acting on joint .

(2) The H,""‘(e,é) is related to the velocities of the joint variables. Eq. 31
represents the combined centrifugal and Coriolis reaction torques felt at
joint ¢ due to the velocities of joints p and ¢ resulted from the translational

Generalized d’Alembert Equations 13
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motion of links p and ¢. The first and third terms of Eq. 31 constitute the
centrifugal and Coriolis reaction forces from all the links below link ¢ and
link s respectively in the kinematic chain due to the translational motion of
the links. If p = ¢, then it represents the centrifugal reaction forces felt at
joint i. If p# ¢, then it indicates the Coriolis forces acting on joint i. The
second and fourth terms of Eq. 31 indicate the Coriolis reaction forces con-
tributed from the links below link s and link s respectively due to the trans-
lational motion of the links.

(3) The H;/(6,6) is also related to the velocities of the joint variables. Similar
to the H/™%(4,6), Eq. 32 reveals the combined centrifugal and Coriolis reac-
tion torques felt at joint i due to the velocities of joints p and ¢ resulted
from the rotational motion of links p and ¢ The first term of Eq. 32 indi-
cates purely the Coriolis reaction forces of joints p and ¢ acting on joint :
due to the rotational motion of the links. The second term is the combined
centrifugal and Coriolis reaction forces acting on joint i. If p = ¢, then it
indicates the centrifugal reaction forces felt at joint i, while if p # ¢, then it
represents the Coriolis forces acting on joint i due to the rotational motion
of the links.

(4) The coefficient G; represents the gravity effects acting on joint i from the
links above joint ¢

Since these coefficients are used quite often in designing a feedback con-
troller for the manipulator, it would be useful to evaluate the computational
complexities of these coefficients in Eqs. 30-33. An example of using these coef-
ficients in designing a feedback controller is the nonlinear decoupled control [19].
At first sight, Eqs. 30-33 seem to require a large amount of computations. How-
ever, most of the cross product terms can be computed very fast. As an indica-
tion of their computational complexities, a block diagram explicitly showing the
procedure in calculating these coefficients for every set point in the trajectory in
terms of multiplication and addition operations is shown in Figure 2. Table 1
summaries the computational complexities of the L-E, N-E, and G-D equations
of motion in terms of required mathematical operations per trajectory set point.

3. Applications to Obtaining Simplified Dynamic Model

The main objective of developing the G-D equations of motion (Eqs. 29-33)
is to facilitate the design of suitable controller for the manipulator in state-space
or in obtaining approximate dynamic model which simplifies the design of the
controller. Similar to the L-E equations of motion ( Eqs. 2-5 ), the G-D equa-
tions of motion are explicitly expressed in vector-matrix form and all the
interaction and coupling reaction forces that are present in a manipulator can be
easily identified in Eqgs. 30-33. Furthermore the elements in the D; matrix, the
H{™" the H/* and the G; vectors can be clearly identified as coming from the

14 Generalized d’Alembert Equations
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13 5. 19 a 3
- —n+33)A Zp2_ 2
(zn + 2" 33) (20n2+11n—3)A (Zn 2n)A
3 5, 27
= —n+9)S
(307 + 3 n+9) (%nz—%n+3)s

indicates multiplication opearation
indicates addition operation

indicates memory storage requirement

indicates output from block n

Figure 2 Computational Procedure for D;, H/*", H/*, and G;

Generalized d'Alembert Equations 15
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Generalized d'Alembert

Approach Lagrange-Euler Newton-Euler
| o —— —— — —
158 n4 + 5;203 1_6\?_”3 1(2)5,72
Multiplications 132n
739 > 160 268
+ ———
+ 3 n< + 3 n 3 n + 69
gé.n“ + 781 n3 §n3 + 44n?
Additions 3 6 111n - 4 116
5§59 , 245
+ + n + ——n + 45
3 " 6 3

Kinematics
Representation

4x4 Homogeneous
Matrices

Rotation Matrices

and Position Vectors

Rotation Matrices
and Position Vectors

Equations of
Motion

Closed~form
Differential Equations

Recursive
Equations

Closed~-form
Differential Equations

where n = number of degrees-of-freedom of the robot arm

Table 1 Comparison of Robot Arm Dynamics Computational Complexities
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translational and the rotational motion of the links. This greatly aids the con-
struction of simplified dynamic model for control purpose. For example, for a
PUMA or T3? robot arm, the elements of the D;; matrix come from the transla-
tional and rotational effects of the links. These effects depend on the joint vari-
ables and the inertial parameters of the manipulator. For the first three joints
(6,,8,,65), because of their usually long link length for maximum reach and long
distance traveled between the initial position and final position, the effects of
translational motion will dominate the rotational motion. In contrast to the
first three joints, the rotational effects will dominate for the last three joints.
Hence, one can simplify the computation of the D; matrix by considering only
the translational effects for the first three joints and the rotational effects for
the last three joints. Similarly, one can evaluate the contribution of H/ ** and
H/* and eliminate their computations if they are insignificant. The resulting
simplified model retains all the major interaction and coupling reaction forces at
a reduced computation time and greatly aids the design of an appropriate con-
trol law for controlling the robot arm.

Current industrial robots are designed kinematically to reach any given
point in their specific workspace without considering the efficiency of the
dynamics and control strategies. Since physical link parameters play an impor-
tant role in determinating its sphere of influence and the magnitude of the
interaction and coupling reaction forces between joints, it is important to choose
these parameter values properly so that the dynamic coefficients used in the
controller can be computed rapidly to obtain the necessary applied torques to
the joint actuators. Egs. 30-33 can be used extensively to verify the effects of
the links’ length, the link inertia, and location of the center of mass on the mag-
nitude of the interaction and coupling reaction forces between joints. Based on
Eqs. 30-33, one can design a robot arm with a simplified dynamic model for con-
trol purpose.

4. Equations of Motion for a Three-link PUMA Robot

Consider the first three links of a PUMA robot arm shown in Figure 3. We
would like to derive the generalized d’Alembert equations of motion for it.
m;, i = 1,2,3, represent its respect link mass, and the link inertia tensor matrices

are

Ieys 0 O
L=1]0 I'W 0 ; 1=1,23.
0 0 I

T3% is a trademark of Cincinnati Malcron

Generalized d’Alembert Equations 17
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PUMA Robot Link Coordinate Parameters
Jointi | a a; d; ! Range
1 |90/ -90 0 | o | -160 to +160 |
2 0 0! 431.8mm | 149.09 mm | -2251to +45
3 90 ! 90 | -20.32mm| 0 | -45 to +225
4 ol-s0i © 433.07 mm | -110 to +170
5 o| 90 0 0 | -100 to +100 |
6 0 0 0 56.25 mm | -266 to +266 |

Figure 3 Link Coordinate Frames for a PUMA Robot Arm

18 Generalized d'Alembert Equations
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13=123, are found to be

C, 0 -5 0 G, -5, 0 8,C Cs 0 Sy a5C;
. $5 0 G O , S G 0 S s $3 0 -C3 6353
Ad=1g 100  "A=]o o1 o[ " 2=|0o10 o

00 0 1 0 00 1 000 1

Various rotation matrices used in deriving the equations of motion are

GG
R = R¢ ‘R = |5

-01% -5

-5% G
¢ 0

J

-5 153
G S5
0 O

0 53
0 -Cy
1 O

where C; = cos §;, S; = sin 6, , Cy = cos (6, + 9,') , Sy = sin (6, + 6;).

The physical parameters of the manipulator such as p;*, ¢, ¥,, and p, are

0 8;Cy 6C C; P2
P'=[0 , P’ =R| S| = |65C| =
0 0 -025; p2:

05Cs a3C; Cas P3s

Ps’ = R{| 6353 | = | 35,Cos| = |3y

0 03523 P3:

Generalized d'Alembert Equations
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0 6, C; P2s
Po=pP1= 0] , po=pP1+ P =|05C| = |py
0 -5 P2z
0201 Gy + 63C, (o3 P3s
P3=p2+ps’ = |@5C+a5Cun| = |py
-65; - 63573 P3;
?l z 7"2: ?31 ?l s ?2x _53 z
Fi=|Tiy| s To=|Toy| , Fag=|Tay| , €@ = |Cy| , € = |Coy| , €3 = [Ty
-’:l z 72: .;31 ?1 2 ?’2 2z ?3 z

The following equivalences are used in the rest of the equations that follow.

] [ - —
P2=pP2 , P3=pP2+PpP3s ,P=¢ , FP=C¢C)

r,=pt+c , 1=123

The joint axes of motion with respect to the base coordinate frame are,

0 0 -5 0 -5 0 C1%3
2= [0| , 5, =RJ0| =]C| , n=R¢ 0] =]|C 53 = R¢|0] = |55
1 1 0 1 0 1 Cos
0 =52 -5
Rlsg=1|-1] , Rlsg=1|-C| , Risg=] 0
0 0 Cas
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Using the D, equation in Eq. 30, we derive the elements of the D(¢) matrix.

Ds3 = (R{2) TI;(Rx,) + "'3{ B X(F;3 - Pz)} : {kx(?a - Pz)}

ol” T[o -5 34 -, T3y
= (1] I311] + m3y | G4 X -53!, . Cy X ?3y
0 0 0 ?32 0 ?32

{
= lyyy + mai Ty + ($1Tay + c,za,)2}

Dy = (R 2) "L(R%) + (R{5;) TT3(RSs;) + mz{lt X (r - Pl)} : {ll X (F2-p1)
+ "'3{'1 X (Fs-Pl)} : {ll X(Fs-m)}

o]T [o] [o] [o _ S, Ts
= 0] L|o] + |1] L|1] + m{| Ci]| X ?2y
1 1 0 0 0 02

-5
%}
[0

?2:
-522
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L)

+ mg

-8 73: -5 T3s
G| X [Tagly " {1 C1]| X [Tay
0 Tas 0 73:

= lpyy + Ly + ”‘2{.522: + (ST + 01?2:)2} + '"3{732: + (5734 + 0173z)2}’

Dys = (Rsy) TI3(RYsy) + ms{le X (F3 - Pz)} . {lx X (F3 - p1 )}

olT [o -5 GY -5 T3s
= |1} 1311} + m3 Cil X 'an G| X 73!,
0l 1o 0 s 0 Faz

= 13yy + ms{?Sz—"-(iz + (51?331 + 01?31) (Sl?Sy + Cﬁ-‘iz)}

Dy3 = (R20) T Iy (Rx2) + me{ B2 X (F3 - Pz)} ' {lo X (F3 - Po)}

T - -
-5 0 Cres, ~T3y
= 0 I; [1] + mg Si¢3; | Tag
023 0 - 51?3y - Cyc3g 0

= my(- CIESZ?Sy + 51?33?38)

Dy2 = (Rx0)I(RS3;) +(R20) TI3(R's,) + '”2{ 5 X (T2 - Pl)} ' {'o X (F2 - po)
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+ ol x (Fy - pu)] - {3 x (Fs - po))

T T - - - -
-5 0 -53 0 Ci7ss ~Tay Ci73; ~Tay
G| Llo|+ ] o | K{1f +my| ST, s |t ms| ST, | s
1 C23 0 - 85\Tay - CiTas ~81T3y - C173, 0

= my(- C\T3,72y + S1T3;:T2s) + my(- C1T3, 39 + S73,73,)
Dy, = (R29) (R ’xg) + (R20) T(R30) + (R 29) TI5(R )
+ mif s x @ - pol] - {20 x (Fi - pol) + {50 x (72 - pol] - {30 X (72 - po)

+ mg{lo X (Fs-Po)} ’ {'0 X (F3~Po)}

r T T

0 0 -% -5 -5 - 523

= |-1| L|-1] + |-C| L|-C] +] 0 | I} 0
0 0 0 0 Cos Cos

+ my(Ty + T3) + moTy + ) + my(Tdy + T

= Ilyy + 5221232 + 022[2” + 52%1325 + 022313:; + m1(712, + -’-'121) + "'2(?22y + 7223) + m3(732y + —'323)

To derive the components of H/*%so, 6.7) and H/ Y6, (;), we use Egs. 31 and 32
respectively,
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Hi** = '"3[91'0 X (6130 X p1) + (613 + 628y) X{(9llo + 6,3)) X 92'}
+ (6180 X 0,3) xpz'] : {32 X (Fs—pz)}
+ "la[(exlo + 0281 + 638) X {(9130 + 028 + 633;) Xas}

+ {(9150 X 0281) + (6189 + 028y) X 93'2} X 53] '{lz

X (s - po)
r P 9 r L] L] L]
5162 -5162 . - 16,6, , _
. . P2g .o P2s Cic:
[ ] I} -—
=mg|y | C1f] X | Cif2| X |p2y| + |-$160102] X |p2y $1¢3;
. p2s po: -89 - C1c3
6, 0, 0 Y ’
o L E

r

- 5162 + 63) " - G166,
. . . . C38
+ my C1(92 + 93) X 01(02 + 03) X

Tglf + 1| - 16,6
L] L] ?3
f 0 | 0
- §0; - 5103 " _
. . cs’ 0163:
+ Cxﬂg X 0193 X -63y * 51—6.32
. E - _c- - C‘E
i 0 32 Sicsy - Ccss
o o

Q Cﬁaz
= mg|B{ - S1¢3;
7

- 51¢39 - C1C3g
24
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where
a=-(p3+ °3s)01 - (Sxoxpzy + Cipoy + chxcsy + Cxcsz)92
- (5i1Cic3y + G 033)93 - (2511’2: + 2310:3:)9192
- (25,01 T3y + 2C1 631)0293 - (25 Csz)9193

— (poy + T3g)87 - (S1C1pos + Sipoy + S1C1Tss + S7T34)07
~ (51C1T3s + ST3)08 + 2(Cipos + C1T3,)010
- (257Tsy + 25 C1C3,)8203 + (2C)C3,)6, 63

= — (p2) + Ta:)0F - Ta:05 + (Cipoy ~ C1po3)0182 — 2Cs.B205

After some simple manipulations, we obtain

H{™" = my [{ C1Tsd - Pos - Tsa) + SiTad - P2y - ?3y)} N
+ { - 5\C3:p2y - CiCapos + (S1Cay + 5'1?3:)}’2':} 6f + {( - 851T3y— C1C3,)(Cypay - Cxﬂz?)} 9192]

From Eq. 32, we have

Hi = (R3032)713{ 8,R 39 X (6;Rs; + O3RSs;) + 6.Rsy X 93330'2}

T
+ {Raola X (6iR{s9 + 6,RJs; + 9333"!2)} 13{ 6,R s + 6,R3s; + 9333022}
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- $30,|

0 T
[1] L{| o
O L]

Ca36,

0
. . [o]
X |6, + 63|} +1{ 1] %
0
0

[ *
- 5236,

0, + 0,

Ca36,

o

= = L3 Ca3S03812 + I3::C23530F = C23S23(l51z - Fss)Bs

Hence,

T r o 9
- S36

I3 02 + 03
Ca36,

Hy = H{™ + H{® = { Co3S23(l32z ~ I3ss) — mgCiTsdpas + Tag) - maSiTadpoy + ?3y)} o

+ {Pz.z(sﬁsg + CyT34) - S1Caapoy - Cx?azﬁz.:} 6F + {(51?3, + C1T35)(Cip2; — Cipay)y 619,

Similarly, using Eqgs. 31 and 32, we obtain

Hiro™ = m:{ ;110 X ((.9180 X Pl')} ’{!1 X (F2 - Pl)}

+ ms[{ b120 X (6120 X Pi) + {(éxlo + ;2'1) X {(51'0 +0m) X 9‘2.}}

+ (;130 X ;211) X Pz'] '{ln X (73 -Px)}

+ mg[(élto + ;211) X {(éllo + 6211) X 52} + (éllo X ;gll) X EQ] : {l1 X (Fg -—-pl)}

26
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+ "‘3[(91'0 + 028; + 6322) X {(9150 + 023 + 6382) X 53}

+ {(;1'0 X f;z'x) + (;ﬂo + ézlx) X 5312} X 33] ‘{lx X (F3 - Px)}

- 810165 poy - C265 pos - 2518102p05 - 6% _
Y 2 . 2 . e o . 2 Cl ’3:
= mg| - SPpoyfs - S1C105 poy + 2C10,02p2; - 01°p2y | - T3s
O. . R ’ e e o o R bt 51?3'- Cl?ss
~ 5765 p2s - CL03pos + C18162p2y - Cib1bapzy
8 - 9 . 2 o S 2 9
- 85C165 Ty ~ C205Co5 — 25128182 — Ty ) _
C\%,

+ my| - §%07%,y - 5018555 + 2015016, - 675, - $1%;

2,07 - Ciipdf + Citaghty - Cipiny] L~ 120 1%
- 51°c285 - Crcp 8y + Cicafhbs - Crogsh, 2]

he

- 51Cy(6 + 63)%Tay ~ C2(B2 + 85)°Css ~ 25,C3.81(62 + 63) - T30

3 . . . . . . Y 01732
+ my ~ 78y + 03)Tsy — S1C1(0; + 65)°CTss + 2C1T3.81(8; + 63) - 6,3y : 573,
- 5173y — CiT3s

— 52C3A0; + 63)° - CLT3 b, + 038 + CiT3f1(02 + 03) - C1T3.8(6; + 63)
9 o

- - - - [ ] 2 - - - - [ ] .
=m [( ~ C1Co5Cpy ~ Slc2y°2:)01 + (5102, + C6,)(Cy5; - Cl%y)glg'.’]
+ m[(~ CuppiTss — SipiiTes — CradTos = SiToga b
+ (S1p2:7ay + Cip2iTas — Sipayraz ~ Cipasta: + Si€a;Fay + CiCa;T3s — SiTagrs; - C1C35T3,)07

- - - - - = - = a2 —
+ (81C3.T3y + C1Ta,Tas — STsyTa; — CiOsaTs )05 + (C1S1p2373y + CPPoiTas — CiSipoyTay - Cilpoyras
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+ 15,373y + CfC3,Tss - C1SiTayTay - CLeayT3s)0102 + 2(SiTasTsy + CiTsiT3s - SiTagTas - C1F

+ (CiSisToy + ClEsTss - CiSiTsyTsy - ClEsonid]

H* = (R731)I(61RI59 X 62R.sy)

+ (Rsoll)rls{ 61R 8o X (6:R{s; + 65RIsy) + 6.Rs; X 93R3032}

T
+ {Rzolx X (6;RJ50 + 9232030} L(6\R)s + 6;Rs,)

T
+ {Rsoll X (6;R{zo + 6:Rs; + 9333052)} L(6,R s + 6:R{z; + 6;Rs;)

- T p . 9

~ Co8,6, - 526, - 526,
0 LI 0 . . ® 2
= (1) L $66, | +0+ (l, X | - Goi| 1 L - Gby| + Co3Soslls,; -~ I345)0
0 8 6
2] 2

= {szceueyg ~ Lys) + CosSoalhsss - 13,,)} 8
H™*™ = 'mz[9xlo X (6139 X Pl')] '{lo X (Fz2 - Po)}

s x i ) [ x i )
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+ (;ﬂo X ;231) X Pz‘] . {lo X (Fs-Po)} + ml{;x'o X (éllo X 51)} ‘{lo X (F - Po)}
+'"‘2[(;’xlo + ézlx) X {(;llo + ;231) X 32} + (;xlo X ;231) X 32} y {lo X (rp - Po)}
+ ”'8[(;1'0 + ;231 + é3'*2) X {(;xlo + ;131 + 5352) X E3}

+ {(éxlo X ‘;2'1) + (éllo + ézlx) X ésl'z} X Ea] ’ {'o X (Fs - Po)}

- 810163 pay - CL65psy - 2516182p2% - 01 poy - - i) _
02 -2 o e 02 —'3_! 02 ‘cly
[ ] () L -— - —
= ms| - SPpoifs - $1Ci0zpoy + 2C10002p0s - 5 poyl - | Tas | + mu| -Tuh| - | Tis
0 0
A 0

- 8§1C164Tyy - C05 Ty — 25,2 816, - Tp o

. . o o e " 72y
+ my| - 57687 - 8018575 + 201610,y - 0753 | - | Tou
0

B

— S1Ci(8; + 03)%Tay - CH(6y + 03)°Tas — 25,3 01(02 + 83) ~ Taufy’

. . . . . o . . -?3y
+ my| - 582 + 83)%Cay - S1C1(62 + 63)7C35 + 2C1C3 1(02 + 63) - TaB| - | Tas
0

c

= m[(BaiToy - o2l + (S,Croaay + CForTag = SPEayTos - 51 CiTaiTan)éf
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+ 2(S51C2s T2y + 01?2,72,)5152] + ma[(pz's?ay - P2yTss + CasTay - ?3;"3:)512

+ ( S1Cipogsy + CipaiTay - S'pogras — SiCiposTas + 51 CiTagTay + ClCssTsy

- $CayTas - 5101'53,73,)6.)22 + (5101 T3y + CPT3T3y — SEC3yT3s - S) 01?33733);32
+ AS;poiFag + Cipoias + SiGasFag + Cﬁaisz)énéz

+ 2(51 Cl?3y?3y + 012?337“ - 512?3;;33 - Sl 02?38?38)0203 + 2(51?3273y + 01333733)9193]

where 4,B. and C need not to be computed.
H™ = (R s X 0;R5)TI; (;R50) + (RP50)T I, (0;R5o X 6,Rs))

T
+ {Rzolo X (6,R 59 + 92&081)} L (Rs + 6;R)sy)

+ (R{2)T 1, {9133010 X (6:Ry's; + 63Rs;) + 6,Rs; X 9333032}

T
+ { Rz X (6;R3g + 6,Rs;+ 0333012)} L(6iR3'sg + 6,RJ3; + ;R s;)

. r e 1. T o
r |- Cobi62 - 56, - 56,
- S? e o - s2 . .
=|-C| k| 568, | + -Gl X | - Coby L] - C6,
O 0 L] L]
L d
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. 1T r Y.

. - $36, - 8536,
- So3 - So36, . 0. - Sos .« . .«

+ 0 X 0. X |6, + &3] + 0 X |6, + by Is] 6, + 64
Cos Cashy 0 Cos . .

Ca2s0, C238, |

= 2($;Colozs - $Colag)b102 + 2(S23Coslyss — S8 Coslyss)0162 + 2(S23 Coslasy — S23Co3l3,:)0163

To derive the elements of the gravity vector G(¢), we use Eq. 33,

0 -5 mgcyy
Gy=-g" ['2 X my(Fy - Pz)] = - {(y’] : ((/;1 X "hfay
mycs,

= m39S5T3y + m3gCiCss

. 0 -5 MoTog + MaTss
Gy=-g" |5 X {"‘2(72 - P1) + m(F3 - Pt)} = 0| - || C1 | X |mroy+ my73,
‘. 0 mry, + MaTy,
= myg(T2yS1 + T2sC1) + mag(T34S) + T35C1)
mTys + maryy + mara, 0 0 mTis + My + myra,
Gl =-8'1% X mﬁu + ﬂQ?z, + "13?3’ = - |0] - 0] X m,'r'u + "lz?g, + m373, =0
mTy s+ moTy; + mars, g 1 mTy, + myfy, + mgT,

Thus the equations of motion for the first three links of a PUMA robot arm are:
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m Dy Di2 Disf | & He H™ Gy
o] = D12 D22 Dgs 02 + Hz‘"' + Hz"‘ + | G
73 Dis Doy Dss| | 64 Hf** Hy* G,

5. Conclusion

Three different formulations for robot arm dynamics have been presented
and discussed. The L-E equations of motion can be put in a well structured
form, but computationally it is very difficult to utilize for real time control pur-
poses unless the equations of motion are simplified. The N-E formulation
results in a very efficient set of recursive equations, but they are very difficult to
use for deriving advanced control laws. The G-D equations of motion give well
"structured” equations at the expense of higher computations. In addition to
having faster computation time than the L-E equations of motion, the G-D
equations of motion explicitly indicate the contributions of the translational and
rotational effects of the links. Such information is useful for control analysis in
obtaining an appropriate approximate model of the manipulator. To briefly
summarize the results, an user is able to choose between a formulation which is
highly structured but computationally inefficient ( L-E ), a formulation which
has efficient computations at the expense of the "structure” of the equations of
motion ( N-E ), and a formulation which retains the "structure” of the problem
with only a moderate computing penalty ( G-D ).
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