RSD-TR-1-86

COMMUNICATION TASK APPROACH TO THE DISTRIBUTED

REALIZATION OF AN INTEGRATED MULTI-ROBOT SYSTEM

Heung K. Lee and Kang G. Shin

Division of Computer Science and Engineering
Department of Electrical Engineering and Computer Science
- The University of Michigan

Ann Arbor, Michigan 48109

This work was reported in part by the NSF grant No. ECS-8409938 and the US Airforce Contract
Nos. F49620-82-C-0089 and F33615-85-C-5105. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of the funding
agencies.

TABLE OF CONTENTS

1. INTRODUCGTIONooiiiiiiiieieetteneniecnteseeesteeteseateseesseesseesasesnesaseesnne
2. IMRS PROCESS CLASSIFICATIONccccccciniiniiniiiiiiiinecsicniee s
3. SYNTAX OF PORT ...ooooriiiiiireteeerertie sttt s st s
4. IMPLEMENTATION OF PRIMITIVESccccoiviiiiiiiiiiniiins
4.1 Send-receive-Teplycccocoviiiriiiiiiiiiincceree e

4.2 QUETY/TESPOMSE ..covvvueurererruereerrureesersessaesenesessseessssssssesessesesessns

4.3 Waltfor ...cccceviiiiiiiiiiiiiiiiiirc e

5. THE COMMUNICATION TASKccoooviiniiiiiiiiininie et
5.1 Function of CT ..cooooiiiiiiiiiiiiie e

5.1.1 Message Handlingccooeovvieeiiiiiiiiiiiniiiicciieeecieneees

5.1.2 Intra-Node Communicationsc...cccceeveerevueeevnneercunennnnns

5.1.3 Time Handlingccccoeoriiiiiiiieiiicececeeeeee e

5.2 The Structure of CTcccceoveeeveereeieririeriereeee e eseeese e,

5.2.1 User Level ..o

5.2.2 Mapping Levelccoccvviviiiiniiiieiee e, RS

5.2.3 Route Levelc.cccoovviiiiiiiiiiiiiiiiiiiiiiiciiicecceieeeee

5.2.4 Primitive Level e

6. CONCLUSION ...ttt ettt et e ettt s e s e e e e saaees

REFERENCESc.ooiiiiiitintinntittiicnreie it sntene s s sasesseesseens

APPENDIX

...

RSD-TR-1-86

ABSTRACT

A distributed computer system is considered for realizing an Integrated Multi-
Robot System(IMRS), which is a collection qf robots, sensors, computers, and other real-
time devices used in contemporary industrial automation. Using an extended port as a
data structure, we propose the concept of a communication task as a port manipulator to
support not only inter-communications but also time handling in the IMRS. This con-

cept remedies the usual limitation of communication models based on message passing.

Implementation of IMRS communication primitives is first discussed on the basis of
the extended port. Then, we present a hierarchical structure of the communication task
which is suitable for supporting both intra-node and inter-node communications in the
system. Various port options have made one-to-many, many-to-one, and many-to-many

communication systems possible.

Indez Terms - IMRS, real-time distributed systems, communication task, port, communi-

cation primitives.

RSD-TR-1-86

1. INTRODUCTION

The concept of an Integrated Multi-Robot System (IMRS) was first introduced in
[1,2] with a specific goal of reducing the usual communication bottleneck and unreliabil-
ity of a central controller, which is most commonly used in contemporary integrated
manufacturing systems. The IMRS is a collection of robots, NC machines, transport
mechanisms, sensors, and computers which operate in real-time to accomplish industrial
processes. In the IMRS, an industrial process consists of subprocesses, each of which can

be programmed with a software module. Further, each module is decomposed into

several computational tasks.! Coupled with this natural decomposition, the availability
of inexpensive microprocessors and memories with remaricable capacity makes it attrac-
tive to realize the IMRS with a distributed computer system. Such a system can provide
a high degree of concurrency and reliability through the multiplicity of processors and
memories. The distributed system will allow cooperating IMRS tasks to execute in

parallel while communicating via message passing.

One of the basic issues in the design of a distributed computer system is inter-
communications among modules, tasks, and processors. The nature of such communica-
tions is closely related to the communication system and the interconnection network to
be used for their implementation. In this report, we consider a communication system
and their implementation for an IMRS, provided that the system uses a passive-link
interconnection network. Reconfigurable multi-stage networks are an alternative but are
excluded from consideration due to their requirement of additional switching circuits and

complexity of dynamic control.

'The term ‘‘process’’ will be used here to denote industrial output, whereas the term “module” or
“task” will be used to represent a computational entity.

RSD-TR-1-86

To maximize concurrency and provide clean interfaces between tasks in a distri-
buted systeni, port-directed communicati.ons were proposed [3,4]. Concurrent tasks make
a reliable rendezvous difficult, since a task should be ready for the concurrent message
read/write according to the other task’s status. Ports- have appeared as specialized
memories, namely buffers to separatebthe receiver of the message from the addressed
entity [5,8]. Port is always ready to accept input or deliver output and, thus, a task can
communicate with others without blocking (time delay) and risk (message loss). The
strict synchronization requirement can thus be relaxed by the use of port. Howéver, since
the use of port introduces additional overheads, e.g., scheduling delay and an extra level
of indirection, the usefulness of port was questioned in conventional computer systems

[7,8].

Cooperating tasks can attain a maximum concurrency by assigning concurrent
tasks to different processors. Use of a distributed computing system and the require-
ment of real-time handling of messages make the IMRS environment different from those
in [7,8]. First, some additional functions, such requirements as network communications
and time handling of messages, are necessary. We extend port with various options to
satisfy these functions. The indirection problem becomes insignificant since messages
should'be handled via port for these functions. Second, the critical section of port
becomes large as the number of its functions increases. Thus, even if the code and data
needed for port operation were located in the same processor, the scheduling problem

becomes easier.

Although some work has been done to use ports for distributed environments [9,10],
little has been done to support a real-time environment. Both of [9,10] focused on the

implementation of I/O commands in guarded regions for nondeterministic read/write [4].

RSD-TR-1-88

The nondeterminism is usually needed for the true parallelism [11]. However, such a
nondeterminism is not usually allowed in a real-time environment due mainly to possible
communication deadlocks (thereby not meeting time constraints). The real-time
environment makes the interface for inter-task communications complicated due to the
need of time constraints of messages and that of message scheduling to minimize rejec-
tion of messages caused by the promptness coﬂtrol [12]). Inter-task communications in a
real-time system are usually deadline-oriented and have time-dependent priorities. We
will use a hierarchical network model for port operation; port must have a functio;l of
network communication interfaces. Messages will be processed on the basis of priorities
which in turn depends on their timing constraints, i.e., communication nondeterminism

is disallowed.

In this report, we will consider the implementation of communication primitives in
[2] by using extended ports and propose a communication system for an IMRS. The
communicat;ion system will be based on ports which provide two distinct advantages:
programming ease and flexibility, and efficient communications interface between
cooperating tasks. The proposed communication system is particularly well-suited for a

distributed real-time implementation of the IMRS.

The report is organized as follows. In Section 2 we review briefly our previous
work for completeness. Section 3 proposes the structure of an extended port, and Sec-
tion 4 discusses the port-based implementation of the communication primitives pro-
posed in [2]. In Section 5, we will examine the software architecture of the communica-
tion system, which contains Communication Task, Port, and Timer. A hierarchical struc-
ture of the communication task is also described in the context of network communica-

tions. The report concludes with Section 6.

RSD-TR-1-86

2. IMRS PROCESS CLASSIFICATION

Before delving into extended ports and the IMRS communication system, it is

necessary to review briefly our previous work in [1,2].

As mentioned in the Introduction, the term ‘‘process’” will be used to mean an
industrial (but not computational) process, which could be decomposed into several sub-
processes. Each subprocess may be accomplished by executing a module in a computer-

ized controller. Each module can be decomposed into computational tasks.

We group IMRS processes into four classes as shown in Table 1. Each process is
broken into two or more subprocesses, whose intended work may or may not be depen-
dent. The actions taken (in both the software and hardware) to achieve each subprocess

also may or may not be dependent.

Subprocesses Actions Process Class
Independent Independent Independent
Independent Dependent Loosely-Coupled
Dependent Dependent Tightly-Coupled
Dependent Independent Serialized-Motion

Table 1. The four basic process classes.

In Table 1 we have named each of the four possible process classes appropriately. The
formal definitions of each process class conform to the different interactions between

subprocesses and their actions. Examples of each class are:

RSD-TR-1-86

Independent Processes: Two robots exist on the same plant floor, but the work for
each robot is independent of the other’s and is blind to the other’s existence; Each
robot may depend on common state variables (e.g. conveyor belt). The values of
these state variables are determined by many different tasks, and thus simultane-
ous changes must be handled reliably, e.g., by use of a proprietor or administrator
in [8].

Loosely-Coupled Processes: Tool sharing is an example of this class. If robot A is
using tool T, another robot B may be forced into either waiting for tool T, or into
performing another action not involving tool T. The work of each robot is
independent, but the individual actions taken are not. Collision avoidance between
two robots executing independent processes but sharing the same workspace is

another example of a loosely-coupled process.

Tightly-Coupled Processes: One example of a tightly-coupled process are two robots
which must grab a long steel beam off a conveyor belt. The action of one process
must be tightly-coupled to the action of the other process, otherwise the beam

could slip or damage could occur to a robot.

Sertalized Motion Processes: We have chosen the name serialized motion because
the most practical process illustrating this interaction involves serializing the action
of different robots. If subprocess A must be executed before subprocess B can com-
mence, then A and B form a serialized motion proéess. The use of one robot as a

generalized fixture for another robot is an example of this.

Work-Coupled Processes: This class is not listed in Table 1 because it is not a basic
process class. If two processes are work-coupled, then should one process fail, the

other will perform error recovery and take over the responsibilities of the failed pro-

RSD-TR-1-868

cess. It is obvious that the process will also be one of the four aforementioned
processes. Work coupling may be one-way or two-way, depending on the ability of

the equipment to be used toward either process.

In fact, the above classification reveals naturally communications needs in the

IMRS as shown in Table 2.

Process classes Communication primstives needed
Independent process send /receive and remoteb procedure call
Loosely-coupled process query [response |

Tightly-coupled process remote procedure call

Serialized process signal/wait & multi-way synchronization
Work-coupled process send /receive

Table 2. Process classes and their communications needs.

Based on the above classification, the module archstecture -- the structure of a
module and communication channels that connect the modules in an IMRS -- was pro-
posed [1]. To support the module architecture, the following communication primitives
were also proposed [2].

° send-reéeive—reply: send and receive are blocking primitives, whereas reply has
non-blocking semantics. With these primitives, both bloéking and non-blocking

semantics can be attained.

RSD-TR-1-86

. query-response: query is similar to a remote procedure call (RPC) [13], except it
causes an interrupt to the other task. However, the execution of query depends on

whether or not the query has a higher priority than the current thread of control.

e order: This is a directive to a user programmable scheduler. This primitive allows
a task to decide whether to suspend its current thread of execution for an incoming

query or not.

e waitfor: This performs n-way rendezvous, which is necessary for the IMRS. (See
[2] for a justification of this need.) To implement waitfor, a message will have to

be sent to every task in the waitfor list of the task executing waitfor.

Although RPC is a popular form of network communications in a distributed sys-
tem, it is efficient only for the fetch-style operation and does not normally support mul-
ticast [5]. For this reason, a rather complex but more general set of primitives is needed

as given above.

Implementation of the above primitives will be discussed in Section 4 on the basis

of an extended port whose language syntax is the subject of the next section.

3. SYNTAX OF PORT

For clean interfaces between communicating IMRS tasks, we propose the concept of
communication task (CT). A communication task T, is associated with an IMRS task
T; and deals with all communication related chores for T;. More on this will be dis-

cussed later.

Using several owner and user options, we extend the functions of port to allow pro-
gramming flexibility and efficient inter-task communications. Although port was ori-

ginated from multi-clients and single server communication systems, port options can

RSD-TR-1-86

make it useful to more general systems. Fig. 1 shows the language syntax of port which

is nothing but a data structure for a communication task.

owner: port port_id param_list {owneroption}
user : use_port port_id param_list {useroption}

owneroption ::= usage = usages
| message_format = record_type
| user_list = (task_or_mod {; task_or_mod})
| filter = task_id
| time_out = numeric_const timeunit
| class = numeric_const
| bounded_buffer[numeric_const]
useroption ::= usage = usages
| time_out = integer timeunit
usages ::= send | receive | reply | query | response | waitfor
task_or_mod ::= task_id | mod_id
timeunit ::= msec | sec

Figure 1. The language expression of port (BNF form).

As shown above, port describes the characteristics of inter-task communications.
Once a port is declared in the user’s program, the compiler creates a globally unique port
identifier (PID) and a table of task locations for routing messages among tasks. The
compiler also checks whether there are duplicated port names each of which is owned by
different tasks. In the port expression of Fig. 1, usage, message_format, and user_list
are checked for their compatibility at compile time for an efficient run-time implementa-
tion, whereas the options shown in Fig. 2 are checked at run-time. (Note that these two
types are not disjoint.) CT uses port P with these run-time options not only for receiv-

ing and interpreting messages, but also for sending messages.

RSD-TR-1-86

Owner options User options
usage message_format
user_list time_out
time_out usage
message_format class

class

filter

bounded_buffer

Figure 2. Owner and user options of a port.

Bounded_buffer is used for storing messages for the owner task of P. Once CT
(say T,) receives a message, it decides whether T is the receiver or not. If T; is the

receiver, the message will be stored by T,, in bounded_buffer. Otherwise, the message

will be stored in another buffer called transit_buffer.

The usage option specifies the sender and the receiver of a message. With this
option and the declaration of another port with the corresponding usage, bidirectional
communications are accomplished. Suppose T, owns port P, and Tp and T are the
users of port P. For example, we can specify query - response communications by
user_list = {Tp, T¢ }, and usage of owner = query and usage of user = response. In
this case, port P has one sender and two receivers, and, thus, the port owner T, can
transmit a query message to either Tp or T, or both of them. If there is no receiver

specified, the message will be sent to all of the port users.

RSD-TR-1-86

In an IMRS, inter-task communications are necessary to forward data, synchronize
tasks, or request data. The one-to-many (one sender and many receivers) communica-
tion in an IMRS is different from that of conventional concurrent systems, e.g., one 1/0O
driver process and many printer processes [14]. The one-to-many communication in the
IMRS means that a sender transmits duplicated messages to many receivers. The usage
option supports convenient one-to-many, many-to-one, and many-to-many communica-

tion interfaces.

The message_format option is used for programming flexibility; message formats
between certain tasks can be different from others, and CT must be able to handle
several different types of messages. Message_format is syntactically record variants
declared by the user:

type message is

[*the user can declare typed variables which are used for parameters of
inter-task communications.*/

record
number : integer;
speed : real;

end

If the user does not declare message_format, the default length (one word) is assigned to

each parameter in a communication primitive whose syntax is similar to a procedure call.

The time_out value of Fig. 2 indicates priority for the messages in bounded_buffer;
the message with a smaller time_out will be given a higher priority. Thus, CT can
decide which message is the most urgent. Similarly, time_out is used for transit mes-
sages, i.é., the message with the smallest time_out will be routed first. Before sending a

message, CT inserts an appropriate time_out value into the message for routing.

10

RSD-TR-1-86

Messages can be lost due to contention or network failures; if an acknowledgement
from the destination task is not returned until time_out is exceeded, a time_out han-
dling routine will be activated and the source task may re-send the same message. The
message with its time_out exceeded will be discarded to avoid duplication of a message.
Time_out is also useful for the receiver of a message to determine how long it is allowed

to wait for a message to arrive.

The class option is related to message characteristics. If a message loses its mean-
ing after the message was sent regardless whether it is discarded or lost due to a network
failure, no reply is needed; this is termed a class-1 message. When a message has its
meaning only until its time_out is exceeded and the sender waits for a reply, it is called
a class-2 message and has priority over class-1 messages. This implies that class-1 mes-
sages have non-blocking semantics, whereas class-2 messages have blocking semantics.
Consequently, if transit_buffer in Fig. 3 is overflowed, class-1 messages will be removed

from transit_buffer.

Filter is an I/O routine, and, if necessary, the table concerned with such an I/O

communication is stored and used.

Since it expresses the characteristics of inter-task communications, port is created
whenever a different communication primitive is required between tasks; However, only
one or two ports in each communication task is usually needed because there is high
communication locality in an IMRS, and a multi-way synchronization among many tasks

is actually realized by waitfor as can be seen in the next section.

The concept of extended ports will be applied to the implementation of the IMRS

primitives and communication systems in the discussion to follow.

11

RSD-TR-1-86

4. IMPLEMENTATION OF PRIMITIVES

In this section, we discuss the IMRS communication primitives in Section 2 on the

basis of extended ports.

4.1. Send-receive-reply

These support both blocking and nonblocking semantics as described in [8]. By
using a separate communication task, communication protocols can be implemented
easily and can thus be made more dépendable. Each communication in our system takes
only three message transfers. Silberschatz proposed that a port user always send the
port owner a signal first to allow communication statements in the guarded regions [4].
This method limits the port’s usefulness and requires unnecessary communications.
When the port user has receive usage, the user should send a signal first to enable the
port owner to send a message. It requires four message transfers per communication. In
our system, the sending task does not wait until the corresponding receiving action actu-
ally takes place. There is no need to perform handshaking before sending a message.
The message will be delivered to the destination CT regardless of the destination task’s
status if there is no network faults or contention. If either the sender or receiver does
not receive an appropriate message until time_out is exceeded, a time_out handling rou-

tine is used instead.

Consider the case when T, and T, communicate with each other by send-
receive-reply. Whenever T, wants to transmit a message (to T,), T,, relays that
message to T,.. Once T, gets the message, it determines whether T, already
requested that message or not. If it has already requested the message, the message will

be sent to T, immediately. Otherwise, the message will be saved in bounded_buffer.

12

RSD-TR-1-86

We can include timing constraints in these primitives such as how long T, could
wait for a message from T,, and how long T, is allowed to wait for the reply message
from T,. The time_out option in port is used for this purpose. Once T,. gets a mes-
sage to transfer to T,., it waits the number of time_out units specified for a receive
message from T,,. If a time_out exception occurs, T,, activates an appropriate
time_out exception procedure in T,. In case of Téc, it also waits for a send message
from T,, with the same time constraints. Therefore, when a message arrives, T,
examines the value of time_out in thé message for a correct reply in time. The remain-

ing time_out value could be used as the execution time of reply in T;.

4.2, Query/response

In general, the RPC paradigm is appropriate for the tasks with master/slave con-
trol structures. As a two-message passing statement, query is similar to a RPC state-
ment. Thus, query is viewed as a send followed by a receive. On the other hand,
response is a receive followed by a reply. However, both query and response are dif-
ferent from a RPC in that query is an asynchronous interrupt of another task [15].
Their control mechanism is more difficult than the conventional message passing, since
query is not always a more urgent operation than the thread of the task to be inter-
rupted. Thus, whenever the query message is sent to a task T;, T; decides whether
query or the current execution thread has higher priority according to the‘priority
specified by the order statement. If the current thread has higher priority, the query
request will be queued. If query has higher priority than the current thread, T;
suspends its current thread and execute query. After the query request has been ser-

viced, T; resumes the suspended thread of control.

13

RSD-TR-1-88

Since query can interrupt the current execution thread, when T;, receives a query
it should be sent to T, first. If T; rejects query, the query message will be saved in
bounded_buffer with a time_penalty added. It will then be treated just like the other
messages. With an interrupt, query is usually used to check the other task’svstatus.
When the parent wants to check the status of children, query is used with the one-to-
many communication scheme. If the destination task is specified, it will be used for one-

to-one communication.

4.3. Waitfor

An IMRS needs to have multi-way synchronizations and communications with
several other tasks, which are similar to many-to-many multicast communications. In
contrast to broadcasting, the multicasting is restricted to some tasks in the waitfor list.
Thus, complex algorithms such as the spanning tree forward [16] are not necessary. A
separately addressed packet method is used; the copies of the packet are delivered to all

destination tasks.

Consider the waitfor operation for three tasks T, T,, and T5. They have their
own waitfor statements and subsequent functions. When each task gets to the waitfor,

they can start simultaneously the execution of their functions.

To confirm this operation, once a task gets to its waitfor statement, the task
sends a message to all of the tasks in its waitfor list. If T, gets to its waitfor state-
ment first, a message céntaining this fact will be sent to T, and T;, and then T, waits
for messages from T, and T ;. Once messages from T, and T ; are returned, T sends a
confirmation message to T, and T4 to make sure that all of the involved tasks have
gotten to the waitfor statements, and then executes its own function. Even if T,

received waitfor messages from T, and T, this confirmation action is necessary since

14

RSD-TR-1-88

T, does not know whether T o(T ;) received a waitfor message from T 4(T,). It is pos-
sible that one or both of them have not received a waitfor message due to network
faults or other reasons and remain indefinitely in a wait state. The confirmation message

prevents this kind of deadlock.

5. THE COMMUNICATION TASK

Ease and efficiency in handling inter-task communications are the key to the suc-
cess of an IMRS. As discussed earlier, the extended port provides clean interfaces
between cooperating IMRS tasks and power of meeting the requirements of real-time
constraints and flexible communications. In this section, we address the problem of

managing ports with the concept of communication task for a distributed system that

realizes the IMRS.

We first discuss the functions of a communication task, and then the CT’s struc-

ture for network communications.

6.1. Functions of CT

The distributed system for realizing an IMRS consists of a finite number of nodes,
each of which contains a single or multiple processors. These nodes are connected via a
passive network. As mentioned earlier, an industrial process is accomplished by a set of
cooperating tasks T = {T,, ... ,T, }. These tasks are to be executed on a set of nodes N
= {N,, ... ,N, }. Let T, be the task responsible for inter-communications at the node
N; to which the task T; is assigned. Hence, T; and T,, are executed on the same node,
N;. Both T; and T, can be located in a single processor or separated by placing T,

on a dedicated processor, called a communication processor within the same node [17).

15

RSD-TR-1-88

For real-time applications, the system should support various timing constraints,
such as time-out, delay, etc. By using another task called the Timer, the communication

task T,, functions as a port manipulator.
e Port management including intercepting, interpreting, and relaying messages.
e Various systems with one-to-many and many-to-many communications.
e Periodic message updates according to signals from Timer.
e Signaling to T; if there is a message with the time limit exceeded.
e Error-free transfer of messages to other tasks in the system.
e Failure detection with a timing exception in inter—task communications.
e Network communications including routing and congestion control.

e Message scheduling based on deadline-oriented and time-dependent priorities.

T;. handles chores associated with inter-communications in node N;. Since it is
always ready to accept or transmit messages, it supports inter-node communications via

port.

65.1.1. Message Handling

There are two types of message for T;, to handle: those in bounded_buffer, and
those in transit_buffer. While the former is for T, the latter is for routing messages; dif-

ferent operations need to be applied on them.

As shown in the Appendix, once T;, receives a signal from Timer, it updates
time_out values in the messages residing in various ports associated with T;. If a mes-
sage with time_out exceeded is found, T; signals to T;. Whenever T, requests a mes-

sage, T;. should select a message from one of the ports that T'; owns or is authorized to

16

RSD-TR-1-86

use. If T; does not specify the message source for T , time_out values are used to
determine the most urgent message. However, conflict may occur, because there could
be more than one port with the same time_out value. To solve this problem, ports are
prioritized by the primitive order. Op the other hand, if the message from the highest
priority port is always processed first, then in the worst case an urgent message from a..
task with lower priority may never be serviced, i.e., ‘‘starvation” problem. A scheduling
algorithm to solve the starvation problem is thus called for. One solution is to assign a
time penalty for each port whose message(s) is rejected because of lower priority. The
time penalty will be used to allow all messages to be processed within some specified
limit. This time penalty can also be used for other purposes. For example, when a cer-
tain query message is rejected by T; since the message has come in via a port with
lower priority than the current thread of execution, a time penalty is assigned to that
message and saved in bounded_buffer. This prevents continuous trials of a message
which cannot be processed immediately, but assures the service of the message within

some specified time.

For messages in transit_buffer, time_out is updated whenever Timer signals to T}, .
Similarly to bounded_buffer, the time_out value is used to determine which message

must be routed next.

5.1.2. Intra-Node Communications

Intra-node communications are quite different from inter-node communications,
since while the latter is symmetric, the former is inherently asymmetric, i.e., a client-
server relationship between them. Hence, we only consider the speed and efficiency for
intra-node communications. There are three tasks in a node N;: T;, T, , and Timer,

where Timer operates as a servant of both T; and T, . Since the IMRS operates in a

17

RSD-TR-1-86

real-time environment, it is important to satisfy time constraints. Successful execution
of T; depends not only on its logical correctness but also on whether all related timing

constraints are satisfied or not.

Fig. 3 shows a functional block diagram of a node N;, where the signals between
tasks represent their inter-relationship. Since T,;,, manages messages for T,, T;, can be
viewed as the master of T;. Send, receive and reply used for intra-node communica-
tions are handshaking signals, not primitives. T;, is always ready to receive signals or

messages including those from external nodes.

To other

Tit:

Figure 3. Functional block diagram of a node.

Using the administrator concept in, [8] T; and Timer always send a send signal and are
blocked until a reply signal is returned. If servants (Timer and T;) want to write to the
master (T}), they transmit a send signal with appropriate data to T;, . Otherwise, they

send a ‘“‘request’’ signal. This method makes T;, always ready to accept messages.

18

RSD-TR-1-86

5.1.3. Time Handling

Usually, T; has to contain delay statements for the industrial process at hand, and
T,. needs a clock for passing messages with time constraints. Fig. 4 represents Timer
for these purposes, whose function is similar to a hardware programmable timer. It asks
both T; and T, periodically if they need any timing information; a reply to this must
include source identification, time_id and time_length. Time_id is similar to message_id
in network communications to identify a request and is assigned whenever both T; and

T; request timing information. Time_id is also needed whenever several requests are

received from either T; or T}, .

PROGRAM TIMER();
timer = array|] of record
src_id : integer; /*source_id*/
id: integer; /*time_id*/
length : integer; /*time_length*/
end;
begin
repeat
signal to T;(send, JOB_REQUEST);
signal to T, (send, JOB_REQUEST);
if reply is received then
begin
the source_id, time_id, and time_length
are stored in the corresponding timer array
[*at least there is one timing function request*/
timer_flag = ONE;
end; {request from T; and T, }

/*update the time_length according to the hardware
unit signal(hardware clock)*/
if timer_flag = ONE and signal from clock then
begin

decrement all time entries in timer

19

RSD-TR-1-88

if timer|).length < 0
then begin
send(timer| |.src_id, TIME_OUT, timer|].id);

removes the corresponding time entries from the timer array

if timer|] is empty
then timer_flag = ZERO;
end; {update time entries}

[*send a CLICK signal to T}, */
if one system time unit is elapsed
then send(T;, , CLICK);

until error occur
- error handling routine -
end; {timer function}

Figure 4. Timer task.

5.2. The Structure of CT

The communication task T;, acts as not only a port manipulator but also as a
message relay task for network communications. Thus, T, is also responsible for routing
and scheduling messages. We propose to use a hierarchical structure for network com-
munications, which consists of four levels: user, mapping, route, and primitive levels.
Each of these levels corresponds to the user program interface, end-node specific in, rout-
ing, and adjacent node specific [18]. However, their functions are limited only to support
message passing in a distributed computer system, since communications are a large
portion of run-time execution. The user level is concerned with intra-node communica-
tions, which was discussed earlier. The mapping level deals with address translation,
and the route level is concerned with how to route and schedule inter-node messages

between tasks. The primitive level is responsible for the physical data transfer between

20

RSD-TR-1-88

processors. Each of these levels is a procedure which communicates with one another
within T;,. When T; communicates with other tasks, a message will pass through this

hierarchical structure transparent to T; (see Fig. 5).

-l
-4
[2]
>

Tic

user user
mappin . mapping
route route route
primi- . .
prim- primi-
tive itive, tive

Figure 5. Communication path.

For practical reasons, we assume a packet to be 32 bytes long as in [19] (see Fig. 6).
Note that this fixed packet length is convenient for prioritizing messages on the basis of
time_out constraints. The syntactic form of a packet is the sarﬁe as the message_format
option of port. The header of a packet contains destination_ID, source_ID, message_ID,
etc. Time_out is inserted since it is used for not only routing, but also for the specifica-
tion of how long the destination task can take to reply to the message. In general, the
maximum execution time to be allowed for the destination task is the remaining value of

time_out when the message arrived.

21

RSD-TR-1-86

header message
destination_ID contents of message
source_ID
message_ID
time_out

class

Figure 6. The format of a packet.

5.2.1. User Level

This is the highest level in T';, which interprets messages before they are sent to
T; or to the mapping level. The following forms are the send statements in port owner
and user tasks:

send port_name({task_id}, param_list);
use_send port_name(param_list);

where task_id is optional. The port owner can have task_id as an option since it can
have many users, whereas in case of the port user there is no need to specify the task_id
of the port owner (there is only one port owner). If the user is not specified with task_id
in the port owner task, all the tasks in user_list are the destination tasks. Otherwise,

one-to-one communications are provided.

The send and use_send statements are translated by the compiler into the follow-
ing form: pid(code, {task_id}, parameter). The code indicates what T; wants, e.g., send

or request a message. The send (or use_send) statement is omitted since it is

22

RSD-TR-1-86

interpreted in the destination task by the usage option of port. The T;'s request always
has a higher priority than the current thread of T, ; whenever T; sends a signal, it will

be accepted immediately by T}, .

Fig. 7 shows one-to-many and many-to-one communications by using send and

use_send, respectively.

N
user user &/DBF'
use_se M\ use_send send

port port

4 :
receive receive \\recewe

Figure 7. IMRS communication system.

The user level is responsible for an interface with T; and the mapping level as fol-

lows.

/*response handler for T */
USER();
begin

request —> T;
begin
case signal from T; of
SEND_MSG : /*sends a message to other tasks*/
if destination = SPECIFIED

then begin

23

RSD-TR-1-86

look up ports and make a packet of message
signal to TIMER(reply, request_id, time_out);
MAPPING(port_id, {task_id}, parameter);
end; {specified}
else begin
find user tasks in the user_lists of
ports and make a packet of message
repeat
signal to TIMER(reply, request_id, time_out);
MAPPING(port_id, {task_id}, parameter);
until {the message is sent to all of users}
end; {unspecified} '
GET_MSG : /*gets a message from port+/
code = get(port_id, {task_id});
if code |= NOTHING then
send_msg_to_task(port| |.bounded_buffer[].usage);
request_msg=ZERO;
end;
else request_msg=task_id;
end; {case}
end; {T;}

|| request —> mapping level
begin

if message_format of packet is query, or if
T; already requested the message, the
message will be sent to T;. Otherwise, the
message is saved in bounded_buffer

end; {input message from other T, }
end; {user}

In the above notation, ‘“signal” is a handshaking for intra-node communications,

and the remaining procedure and variables are described in the Appendix.

5.2.2. Mapping Level

This level is responsible for address translation for which a physical address table of

logical task names is maintained.

24

RSD-TR-1-86

MAPPING(port_id, {destination}, parameter)
begin

request —> user level
/*physical address translation*
dest_id = address(destination);
ACK = ROUTE(dest_id, source_id, pid,
message_id, delivery_delay, class, message);

|| request —> network level

remove tag and call the user level

end; {mapping}

5.2.3. Route Level

A packet called the datagram is used for implementation simplicity [20]. Each mes-
sage is indepgndent of others, and this level is responsible for both routing and conges-
tion control. One can decide with which port each task communicates before running,
and communication characteristics do not change dynamically unless a network or task
failure occurs. Once a task is assigned, context switching is not allowed until its comple-
tion. This means that a processor does not embark on another task before the currently
executing task is completed and retired. Under this assumption, we can avoid the prob-
lem of run-time allocation of resources. Thus, among various known routing algorithms,
static routing, the simplest algorithm, is used at this level. A path from the owner task
to a user task can be established a priori. Once the path is established, each T, will
maintain information about routing, such as its succeeding node for a specific transit
message. However, T; and T;,, may have to be migrated to another node because of
network or processor failures. In that case, a new path for those should be found and

related tables must be updated accordingly.

For congestion control, we can indirectly estimate the amount of communications

between nodes by the time_out specified in port and can allocate tasks according to the

25

RSD-TR-1-86

characteristics of their inter-communications. Naturally, the tasks which heavily com-
municate with one another, e.g., vision sensing and processing tasks, should be located in
physical proximity. Since each task alone does not have concurrency and has only a sin-
gle execution thread, T; does not send several packets of messages to other tasks con-
currently. In general, a task accepts (or sends) and processes (or receives) messages
sequentially. Their communication characteristics are thus quite different from the gen-
eral computer network such as ARPANET. Consequently, the congestion and routing

problems are somewhat easier to deal with.

ROUTE(dest_id, src_id, msg_id, pid, delivery_delay, param);
node : succeeding node address;
packet : message containing the above parameters;
begin
request —> mapping level
/*message scheduling*/

update the time_out value in messages and select
the most urgent message for routing

[*routing* /
- find the succeeding node -
PRIMITIVE(node, packet);

|| request — primitive level

remove tag and call the mapping level

end;

5.2.4. Primitive Level

This level is the lowest level of T;,, and is responsible for message delivery,

handshaking and error detection as shown below.

28

RSD-TR-1-86

PRIMITIVE(node, packet)
t = 0: time
begin

request —> network level
repeat
data_link = packet;

wait until ACK signal is received from the succeeding node
for fault-free communication or the specified time is elapsed

until ACK signal is received from the succeeding node
if error occurs
then - exception handling routine -

|| request = other T;
data_link = ACK; /*send ACK to a neighboring node#*/

remove tag and call the network level

end;

8. CONCLUSION

Using CT, Port, and Timer, a communication system is proposed for an IMRS. The
nucleus of the communication system is the communication task which is responsible for
network and iﬁter-ta.sk communications in a node. For network communications, we pro-
posed to use a hierarchical structure of CT. Timer is used to keep track of time in a
real-time environment. The concept of an extended port plays a key role for iﬁter-task

communications.

There are several obvious advantages to use ports. One of them is that it can sup-
port one-to-one, one-to-many, and many-to-many communications. A task can send a
message to all of the port users simply by calling the port name. Another is the message
description, by which input messages can be interpreted and output messages can be
delivered. A message does not have to contain its own description, making the message

handling easier.

27

RSD-TR-1-86

Currently a simulator is being developed to investigate various issues including reli-

ability of the protocol, routing algorithms, buffer management, communication delay,

and performance. These results will be fed to the development of an éxperimental

testbed at the Real-Time Computing Laboratory, The University of Michigan.

]

[2]

8]

[4]

[5]

[6]

[7]

8]

[9]

28

REFERENCES

K.G. Shin, M.E. Epstein, and R.A. Volz, “A Module Architecture for an Integrated
Multi-Robot System’, Proc. 18-th Annual Hawass Int’'l Conf. on System Sciences,
Jan. 1985, pp. 120-129.

K.G. Shin, M.E. Epstein “Communication Primitives for a Distributed Multi-Robot
System’’, Proc. of the IEEE 1985 Int’l Conf. on Robotoics and Automation, March
25-28, 1985, St. Louis, Missouri, pp. 970-979.

R.B. Kie and A. Silberschatz, ‘“Comments on Communication Sequential
Processes,”” ACM Trans. on Programming Language and Systems, Vol. 1, No. 2,
October 1979, pp. 218-225.

A. Silberschatz, “Port Directed Communication,” The Computer Journal, Vol. 24,
No. 1, 1981, pp. 78-82.

D.R. Cheriton, ‘‘Preliminary Thoughts on Problem-Oriented Shared Memory: A
Decentralized Approach to Distributed Systems,” Operating Systems Review, Vol.
19, No. 4, October 1985, pp. 26-33.

R. Rashid and G. Robertson, ‘‘Accent: A Communication Oriented Network
Operating System Kernel” Proc. of the 8th Symposium on Operting Systems Princi-
ples, ACM, December 1981, pp. 64-75.

E.S. Roberts et. al, “Task Management in Ada - A Critical Evaluation for Real-

Time Multiprocessors,”” Software Practice and Ezpersence, Vol. 11, 1981, pp. 1019-
1051.

W.M. Gentleman, ‘‘Message Passing between Sequential Processes: the Reply Primi-
tive and the Administrator Concept,” Software-Practice and Ezperience, Vol. 11,
1981, pp. 435-466.

T.W. Mao and R.T. Yeh, “Communication Port: A Language Concept for Con-
current Programming,” IEEE Trans. on Software Engineering, Vol. 2, No. 2, March

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

RSD-TR-1-88

1980, pp. 194-204.

J.P. Elloy and P. Molinaro, Port-Oriented Synchronszation and Communication in a
Local Network. North-Holland, Real-Time Data Handling and Process Control-II,
1984, pp. 121-129.

"

C.A.R. Hoare, “Communicating Sequential Processes,” Communications of the

ACM, Vol. 21, No. 8, 1978, pp. 666-676.

G.L. LeLann, J.F. Meyer, A. Movaghar, and S. Sedillot, “Real-Time Local Area
Networks: Some Design and Modeling Issues,” Technical Reports, INRIA, Project
SCORE, Dept. of Electrical Engineering and Computer Science, U. of Michigan.

A.D. Birrell and B.J. Nelson, “Implementing Remote Procedure Calls,” ACM
Trans. on Computer Systems, Vol. 2, No. 1, Feb. 1984 pp. 39-59.

G.R. Andrews and F.B. Schneider, “Concepts and Notations for Concurrent Pro-
gramming,” Computing Surveys, Vol. 15, No. 1, March 1983, pp. 3-43.

Y. Parker and J.P.. Verjus, Distributed Co-operating Processes and Transactions.
Academic Press, Distributed Computer Systems: Synchronization, Control and
Communication, 1983, pp. 23-50.

G. Gopal and J.W. Wong, “Delay Analysis of Broadcast Routing in Packet-
Switching Networks,” IEEE Trans. on Computers, Vol. 30, No. 12, December 1981,
pp. 915-922.

R.M. Fujimoto and C.H. Sequin, ‘“The Impact of VLSI on Communications in
Closely Coupled Multiprocessor Networks', Proc. of Compsac 82, pp. 231-238.

D.R. Kosmalski, ‘‘MAP Specification”, Technical Note, GM Technical Center, April
1984. .

D.R. Cheriton, “The V Kernel: A Software Base for Distributed Systems,” IEEE
Software, April 1984, pp. 19-42.

1

A.S. Tanenbaum, ‘“Network Protocols,
December 1981, pp. 453-488.

Computing Surveys, Vol. 13, No. 4,

29

RSD-TR-1-86

APPENDIX

[*program T;, consists of one main body and one response handler for T */

PROGRAM T, ();
port : array|]
of record
bounded_buffer : array|] of record;
msg : array| | of parameter;
time_out : integer;
source_id : integer;

end; {bounded_buffer}
port entries : integer;

end; {port}
node : succeeding node;
code, task_id : integer;
request_task : integer;

procedure get(task_id,code);
task_id : integer;
begin
if task_id is specified
then begin
- search the bounded buffer -
end;
else begin
search a message with the highest priority.
if there is no message,

then code = NOTHING.
end;
end; {procedure}

/*send a message to T; */
procedure send_msg_to_task(code);
code : integer;
begin
case code of
QUERY :

signal to T;(query,packet);
/*wait response*/
if response.code = REJECT

30

RSD-TR-1-886

then save(TIME_PENALTY);
SEND, WAITFOR :
signal to T;(send,packet);
[*wait for response* /
if reply.code = REJECT
then save(TIME_PENALTY);
end; {case}
end; {procedure}

procedure save(time);
time : integer;
begin;
if time is non-zero, the time_out option of
message is incremented with that value, and the
message is saved in a port.

end;

procedure save_transit_buffer{packet);
begin;
- save a packet in corresponding port -
end;

begin
repeat begin
order(T;, TIMER, T,);
/*wait for a message from other tasks*/
source_id = receive(packet);

case source_id of
TIMER:
if timer_code is CLICK

then begin

/*update time_out entry of message in port*/

while update all message do

begin

- port[].bounded_buffer|].time_out decrement -
if port[].bounded_buffer|].time_out < 0
[*signaling to T; that the message is aged*/
then begin

check the message to be aged and remove it.

signal to T;(port| |.bounded_buffer[]);
end;
end; {while}
end; {CLICK}

31

wornren IO

if timer_code = TIME_OUT
then begin

find corresponding message_id and
motivates the handling routine.

end;

other T;:
if destination_id = T
then PRIMITIVE(); /*my message*/
else begin /*transit message*/
save_transit_buffer(packet);
while transit_buffer |= EMPTY do
- find a packet with the smallest time_out -
ROUTE();
end; {while}
end; {transit message}
end; { T;, main body}

until error occur
response handler 1 of message from its own T, **
++ time_out in mapping level **
USER();

/*it is presented in the text of the report*/
return(); /*return to receive status*/

- exception handler for the fault -

end; {T;, }

32

