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Abstract

In this paper, we consider the problem of allocating a given workload among the stations in a
multi-server product form CQN to maximize the throughput. We first investigate properties of the
throughput function and prove that it is pseudo-concave in several special cases. We then develop
two computational procedures to find the optimum workload allocation under the assumption that
the throughput function is pseudo-concave in general. The primary advantage of assuming
pseudo-concavity is that, under this assumption, satisfaction of first order necessary conditions is
sufficient for optimality. Computational experience with these algorithms provides additional
support for the validity of this assumption. We also show that the optimal workload is an interior
Brouwer's fixed point and can be found by the Eaves-Saigal fixed point algorithm which allows
quadratic convergence. Some other characteristics of the optimal workload and its physical
interpretation are also provided. We also generalize the solution procedure to accommodate
bounds on the workloads at each station.



1. INTRODUCTION

Closed queueing network (CQN) models are widely used in the modeling and analysis of
computer systems and flexible manufacturing systems. One of the performance measures of
interest is the throughput of the system, which is defined as the number of job completions by the
system per unit time. For analytic tractability, typically the Product Form (PF) assumption
(Gordon and Newell [1967]) is used. Under the PF assumption, the only system parameters
required to specify the network with a given number of stations are (Baskett et.al. [1976]) (i) the
number of customer classes and their population (ii) the mean service time demand at a station (or
workload) for each customer class, and (iii) the service rate function at each station, which is
determined by whether the station is a single-server station, a multi-server station, a delay (infinite-
server) station, or a station with an arbitrary load dependent service rate function.

Even under the PF assumption, however, the throughput is a complex, nonlinear function of
the system parameters. The study of the mathematical properties of the throughput function is of
interest both in the performance evaluation of a system given the system parameters, as well as in
the prescription of the optimal system parameters that maximize the throughput. We are interested,
here, in obtaining some characteristics of the throughput function which enables the search for an
optimal allocation of a given workload among the stations in CQNs with multiple servers at each
station (the multi-server CQN). We make the PF assumption and assume that the CQN has a
single class of customers.

The throughput function has been well studied in the case of CQNs with a single server at each
station (the single-server CQN). Price [1974] shows that the reciprocal of the throughput function
is a convex function of the workloads. This result has also been obtained by Kenevan and
Mayrhauser [1984], who show, in addition, that the throughput is a log-convex function of the
number of customers in a CQN with an arbitrary number of single-servers and delay servers.
Under the constraint that a given workload is allocated among the stations of a single-server CQN,
Secco-Suardo [1978] and Solberg [1979] conjectured that the throughput is, in fact, a concave
function of the workloads. However, Stecke [1986b] proves that it is not concave but strictly
quasiconcave for a 2 station CQN, and provides some computational evidence that it is strictly
quasiconcave for a CQN with more than 2 stations.

Based on the result of Price, several results have been reported (Trivedi and Kinicki [1978],
Trivedi and Wagner [1979], Trivedi, Wagner and Sigmon [1980], Trivedi and Sigmon [1981],
Kobayashi and Gerla [1983]) which enable an allocation of the workloads that optimize the



throughput under various constraints for the special case of a central server CQN consisting only
of single-server stations. For a given workload, in the absence of any constraints, it can be shown
(Yao [1985], Morin and Stecke [1985]) that balancing the workloads allocated to each station
maximizes the throughput in the case of a CQN with only single-server stations.

For the multi-server CQN, Yao [1985], and Stecke and Solberg [1985] prove that balancing
the workloads maximizes the throughput when each station has the same number of servers.
However, Stecke and Solberg graphically observe that when the number of servers at each station
is not the same, then the throughput is maximized by a unique unbalanced workload allocation to
each station. Based on this observation, Stecke [1986a] provides an algorithm which intends to
find an optimal allocation but its computational results have not been reported. Yao and
Shanthikumar [1986] study the server allocation problem which is to allocate a given number of
identical servers among the stations in the CQN to maximize the throughput. They find that the
optimal allocation satisfies the 'decreasing property' (more servers are allocated to a station with
larger workload) and use this to reduce the number of possible allocations searched.

In this paper, we consider the workload allocation problem which is to find the optimal
allocation of a given workload among the stations in a multi-server CQN which maximizes the
throughput. The motivation for this problem is provided in the studies of optimal machine
grouping and workload allocation in flexible manufacturing systems (Stecke [1983], Stecke and
Solberg [1985] and Stecke [1986a]).

The rest of this paper is organized as follows. In Section 2, the multi-server CQN model is
defined and the nonlinear programming formulation of the workload allocation problem is stated.
In Section 3.1, we prove pseudo-concavity of the throughput function for two special CQNs and
make a conjecture that throughput is pseudo-concave for a general multi-server CQN. Section 3.2
states the Kuhn-Tucker necessary conditions and characteristics of solutions that satisfy these
conditions. Two algorithms to find a workload allocation satisfying the necessary conditions are
presented in Section 3.3. Computational experience of these algorithms is described in Section 4
for CQNs with numerous parameter values and the physical interpretation of the optimal workload
is presented. Section 5 explains how the solution procedures can be adapted to problems with
bounds on the workloads at the various stations. Section 6 concludes with a brief summary.

2. THE MATHEMATICAL FORMULATION

The CQN that is considered here consists of M arbitrarily connected multi-server stations, with
N customers in the system. The servers at each station are assumed to be identical in terms of their



processing capability, and we let S;, i=1,..,M, denote the number of servers at station i. There is a
total mean workload, TW, that is to be allocated among these M stations. Let the workload
assignment be denoted by W = (W1,..,Wpn), where W denotes the mean workload assigned to
station i. The mean workload, Wj, is the mean service time demanded from station i by a customer
in a typical cycle. This can be viewed as the product of the mean number of visits, v; that a
customer makes to station i in the cycle and the mean service time, T;, demanded by a customer per

visit there, namely, Wj = vj T;. When there are j customers at station i, they are processed at a rate
1i(j), where pi(j) = min(j,S;).

Let G(N,W) denote the normalizing constant for this network. This is defined as

_ M b
G(N,W) = 2 IT IT £iQ), (1)

ni+..+ny=N i=1 j=0
where n; denotes the number of customers at station i, and fj(j) is given as:

£iG) = L =0
= & j>0.
Hi()

For this CQN, the throughput is then given by

THN.W) = %\%’l @)

The performance measures of the CQN, including the throughput, can be obtained for a given set
of input parameters using computational algorithms such as the convolution algorithm (Buzen
[1973]) or the mean value analysis (MVA) algorithm (Reiser and Lavenberg [1980]), with time
complexity O(MN?2).

2.1. Problem Formulation

The goal of the workload allocation problem is to allocate the given total mean workload TW
among the M stations such that the throughput is maximized. The problem may be mathematically
stated as follows:



P1:

Maximize TH(N,W)

subject to:
M
‘ZIWi = TW, (3)
1=
w; =20, i=1,..M 4)

3. THE SOLUTION PROCEDURE

LetT'={WIZ{ W; = TW; W; 20 for all i} denote the feasible region for Problem P1 and let
I'={WIZ; W; = TW; W;> 0 for all i} denote the feasible interior region. The solution

procedure is based upon the assumption that the throughput of a multi-server CQN is a pseudo-
concave function of the workloads over I"'. We show that this conjecture holds for two special

cases: the single-server CQN, and the multi-server CQN for N=2.
3.1. Pseudo-concavity of Throughput

Stecke [1986b] shows that the throughput is not concave over I' for a single-server CQN and
conjectures that it is strictly quasiconcave. The basis for the conjecture is a proof of quasi-
concavity for a single-server CQN with two stations and empirical evidence for a single-server
CQN with three station. Stecke also provides some computational evidence that the function is
strictly quasiconcave. We make a stronger conjecture that the function is pseudo-concave over I
for a multi-server CQN. (Pseudo-concavity implies that the function is strictly quasiconcave but
the converse is not true.)

The benefit of assuming pseudo-concavity of the throughput function is that satisfaction of the
first order conditions is both necessary and sufficient for optimality in the workload allocation
problem. First we will show that the conjecture holds in some special cases.

Lemma 1. Let g:C — R! and h:C — R!, where C is a nonempty convex open set in R? and g is
concave, differentiable and nonnegative, and h is convex, differentiable and positive. Then the
function f defined by f(x) = g(X)/h(X) is pseudo-concave. (3.41 on page 116 of Bazaraa and
Shetty [1979])

Lemma 2. If function f is pseudo-concave, then X such that Vf(X) = 0 is a global maximum of f.
(page 106 of Bazaraa and Shetty [1979])



The property of Lemma 2 is not shared by differentiable strongly or strictly quasiconcave
functions. Thus, Stecke's conjecture does not provide a theoretical ground for global optimality of
a solution meeting the necessary conditions.

Lemma 3. TH(N,W) is pseudo-concave over I'" for a single-server CQN.

Proof: From the Little's Law, TH(N,W) = N/C(N,W) where C(N,W) is the cycle time for the
CQN. From Price [1974], we can easily show that C(N,W) is a convex function of nonnegative W

for a single-server CQN. Thus, it follows from Lemma 1 that TH(N,W) is pseudo-concave over
r. : n

It is also clear that a CQN with only delay stations, that is, a CQN with S; 2 N for all i is
pseudo-concave since TH(N,W) = N/TW for any W for this CQN.

Lemma 4. TH(N,W) is pseudo-concave over I'" for a multi-server CQN when N=2.

Proof: We avoid considering two following cases from the previous discussion: (i) Si=1 for all i
and (ii) $;22 for all i. Hence, without any loss of generality, we assume that Si=1 for 1<i<m and
S;>2 for m+1<i<M. Then, we can write TH(2,W) as

M
_ 2 Wi W
THQ2,W) = = = — :

Y WiWi- IW22  TW22+ X W22

isj i=m+1 =1
M —

The second equation is derived from the following substitutions: Y, Wi =TW forWe I'' and

=1

M M _ _
Y WiWj=1/2( L Wj)?2+ ¥ WiZ2. C(2,W) = 2/TH(2,W) is clearly convex over I'" since each
ij i=l =1 '

W2 is convex and the sum of convex functions is convex. From Lemma 1, we prove this lemma.
|

These lemmas lead to the following conjecture.
Conjecture 1. TH(N,W) is pseudo-concave over I for a multi-server CQN.

As stated in Lemma 1, the sufficient condition for Conjecture 1 to hold true is to show that

C(N,W) is convex for a multi-server CQN. Empirical support for this conjecture is provided in the
following sections.



3.2. Characteristics of Optimal Workloads

The Kuhn-Tucker necessary conditions for Problem P1 are given by

KT1:
0 _
—THNW) +v+mw = 0, i=1,.. M,
Wi '
M
Wi o= TW,

i=1

720, W>0, T-W =0,

where % TH(N,W) is the ith element of the gradient vector of TH(N,W) evaluated at W, and v
i

and T are Lagrange multipliers corresponding to the total workload and workload non-negativity

0 —
constraints, respectively. The term —— TH(N,W) can be expressed as (see, for example,
i

Kobayashi and Gerla [1983]):

Sma® - -GN Qem- eevLw) )
1

where Qj(N,W) is the mean queue length at station i, including the customers in service, when
there are N customers in the CQN.

Lemma 5. If N < Sg=max;(S;), then the optimum solution of Problem P1 is given by W*, where
Wi"'=TW, and W;*=0 for j#k. In this case, TH(N,W)=N/TW.

Proof: From Little's law, the throughput is given as TH(N,W)=N/C(N,W), where C(N,W) is
the cycle time of the CQN. Clearly, C(N,W) > TW. When N < S, station k is a delay station and
no queueing takes places. Thus, the cycle time is TW when the total mean workload is assigned to
station k. This obviously maximizes the throughput, and TH(N,W) = N/TW here. |

If Conjecture 1 is true, then the solution described in Lemma 5 must satisfy the Kuhn-Tucker
necessary conditions. This is stated as Lemma 6. A proof of Lemma 6 is provided in the
Appendix.



Lemma 6. If N<Sy=max;(S;), then W* in Lemma 5 is the solution satisfying the necessary
conditions given by KT1. n

Having established that W* in Lemma 5 satisfies the Kuhn-Tucker necessary conditions, we
now show that it is a Brouwer's fixed point. This, in turn, leads to efficient solution procedures
which are described in Section 3.3.

Definition 1. Let g be a continuous function such that g:C = C, where C C R is a convex and
compact set. Then there exists an X € C such that g(x) = X by the Brouwer's Theorem (Todd

[1976]). This X is called a Brouwer's fixed point.

In the following, we derive the form of g(X). Suppose that W > 0 satisfies the above
necessary conditions for optimality. Then T = 0, and W, v are the solution to the following

equations:
lTH(N Wy+v = 0 i=1,.,M (6)
awi 9 b 9 $]
M
SWi-TW = 0. )

i=1

Multiplying both equations (5) and (6) by Wj, and summing over all i, we get

THN,W) = vTW, (®)
and so from equations (6) and (8),
0 _ _
—TH(N, = - THIN,W . 9
W (N,W) N,W)[TW )

Finally, from equations (5) and (9), we have

TW (QiN,W) - Qi(N-1,W)) = Wi. (10
Letting g{(W) = TW (Q;(N,W) - Qi(N-1,W)), we have
gW) = w (11)

where g(W) = (g:(W), .., gm(W)).
Lemma 7. The workload W satisfying equation (11) is a Brouwer's fixed point.

Proof: Let C be the feasible region I" of Problem P1. Observe that C is an (M-1) dimensional
simplex. Let the function g be defined as the mapping in equation (11). Now we will show that C
and g satisfy Definition 1. Clearly C is a convex and compact set, and g is continuous over C,



since Qj(N,W) is continuous over I for any nonnegative integer N. In order to show that g:C -
C, we will show that for any W € C, gW) e C.

From results on the monotonicity of queue lengths (with respect to N) for a multi-server CQN
(Suri [1984]), we have gi{(W) >0, for alli. Summing g; over all i, we have

M _
3 (W)

=1

M _ _
1=

TW(N-(N-1)) = TW.
Thus g(W) € C, and we have shown that W satisfying equation (11) is a Brouwer's fixed point.ll

If W > 0 is a solution of equation (11), then it is a global optimum of Problem P1 under
Conjecture 1, since it also satisfies the Kuhn-Tucker necessary conditions.

Lemma 8. Every extreme point of I" is a Brouwer's fixed point satisfying equation (11).

Proof: Without loss of generality, choose an extreme point W such that W = TW, and W =0,

for all j#i. Then for each j#i, gj(W) = 0, since Qj(N,W) = 0 for any nonnegative N when

W;j=0 and gi(W) =TW - ¥ gi(W) =TW - 0 = W;. Thus, this extreme point, W, satisfies equation
i

(11) and is a Brouwer's fixed point from Lemma 7. |

Corollary 1. There are at least M Brouwer's fixed points satisfying equation (11) over the
feasible region I'.

Proof: The proof follows directly from Lemma 8. |

However, every extreme point may not be a solution of KT1 as stated in Theorem 1. A proof
of the theorem is given in the Appendix.

Theorem 1. If N > max; (Sj), then any workload allocation W which has at least one Wy=0
cannot satisfy KT1, that is, the optimal workload allocation W* > 0. |

The results of Lemmas 5 to 8 apply to a class of product form CQNs which are more general
than the multi-server CQN. Lemmas 5 and 6 hold true for any product form CQN while Lemmas
7 and 8 hold for a CQN with N-monotonic stations (Suri [1984]). N-monotonic station i has the
property that P(n; 2 k | n) 2 P(n; 2 k | n-1) for all k and for n £ N, where nj denotes the number of



customers in the system. It is clear that an N-monotonic station also has the property that the mean
queue length is non-decreasing with n. Only the queue length monotonicity property is required to
define a Brouwer's fixed point. It has been shown (Theorem 1 in Suri [1984]) that the multi-
server CQN is a special case of the CQN with N-monotonic stations.

3.3. Algorithms for Problem P1

We coded two algorithms, the reduced gradient algorithm and the Eaves-Saigal fixed point
algorithm, to solve Problem P1. Both algorithms use as an initial feasible point a balanced
allocation (i.e., the total mean workload is allocated such that Wy/S; is equal at all stations). Both
procedures search the feasible region systematically in order to improve the throughput while
maintaining feasibility. Both terminate at a point which satisfies the necessary conditions.

Stecke [1986a] gives a sketch of an algorithm for this workload allocation problem but does
not report computational results. We expect that our algorithms are more efficient on two counts.
First, the algorithm proposed by Stecke requires a line search to be performed at each iteration,
varying only two Wj's with the remaining Wj's fixed. Second, this algorithm requires the
computation of M throughputs (to provide approximate partial derivative information) to determine
which two Wj's are to be varied. The algorithm terminates when the sensitivity information
indicates that further workload changes cannot increase the throughput.

The reduced gradient algorithms (Avriel [1976]) uses reduced gradient vectors by eliminating
the dependent variables from the equality constraint, that is, equation (3). At each iteration, a
steepest ascent direction is derived in the space of independent variables and a line search is
performed along the direction. Thus all Wj's can be changed after each iteration. Calculating a
reduced gradient vector does not require any extra computation since an entire gradient vector is
obtained with only one throughput calculation using the MV A algorithm.

In order to apply the Eaves-Saigal fixed point algorithm, Problem P1 is equivalently rewritten
as

P1":
Minimize (W)
subject to s(W) €0,

_ M- _ _ _ M-
where W = (W1,..,Wpm.1,TW - ¥ Wj), 6(W) = - TH(N,W), and s(W) = max[ ¥ W; - TW,
i=1 i=1
{max;(-Wj), i=1,..,M-1}].



Now, define the following point-to-set mapping p(W) as

VoW, if s(W) < 0
pW) = the convex hull {VO(W) andVs(W)}; if s(W) = 0 (12)
Vs(W); if s(W) > 0

where VO(W) and Vs(W) are the gradient vectors of 8(W) and s(W), respectively. It can be

shown that the point W satisfying the conditions 0 € p(W), and s(W) < 0, satisfies the necessary
conditions KT1.

Theorem 2. If N > max;(S;) and there exists W such that 0 € p(W), then the Eaves-Saigal
algorithm quadratically converges to it.

Proof: If N > max;(S;), then workload satisfying KT1, W > 0 from Theorem 1. W > 0 implies
s(W) < 0, that is, it is not a point on the boundary. Thus, 0 € p(W) is equivalently stated as
0 = VO(W). This workload W satisfies equation (11), and is a Brouwer's fixed point from
Lemma 7. Therefore, the algorithm quadratically converges to it (Saigal [1977]). |

The Eaves-Saigal algorithm appears to be the only algorithm with the property of quadratic
convergence for this problem. Since the (reduced) Hessian matrix will not be negative definite due
to the nonconcavity of the function, any Newton-type method requires a line search to be
performed, which only allows linear convergence. Also, each calculation of the Hessian requires
the computation of O(M) throughputs. This is because the mean queue lengths must be evaluated
for the CQN, ¥, with M stations, and mean queue lengths must also be evaluated for M other
CQNs, (), i=1,..,M, each one of which is identical to CQN ¥, but with station i removed.

4. EXPERIMENTAL RESULTS

We conducted a number of experiments using the two algorithms described above, for CQNs
with a range of parameter values. In these experiments, the number of stations, M, ranged from 2
to 8, and the number of customers, N was specified as 5 or 20. Arbitrary unbalanced
configurations for the server vector S were chosen. We chose each Sj to be less than N, since
otherwise a trivial optimal solution is available from Lemma 5. The workloads were scaled such

M
that TW = Z‘i Si without loss of generality (Stecke and Solberg [1985]).

We used the following measure for a termination condition:

10



DW) = maxil Wi-TW (QiN,W) - Qi(N-1L,W))L. (13)

Clearly, W > 0 satisfies the Kuhn-Tucker necessary conditions, KT1 when D(W) = 0. The
algorithms terminate when D(W) < € for some specified tolerance €. We specified five different
tolerance levels in order to compare the speed of convergence of the two algorithms. They were
5.E-1, 1.E-1,1.E-2, 1.E-3, and 1.E-4. The following statistics were collected at each termination:
throughput, the number of throughput computations, and the two-norm of the steepest ascent
direction. The last statistic was collected in order to indicate the slope of the throughput function at
the point of termination. These statistics are summarized in Tables 1 and 2 below.

Tables 1 and 2.

For every problem in our experiment, both the algorithms always converged to the same
interior point. We also tried other initial points but they still converged to the same interior point.
Further, as we decreased the tolerance value for each problem, the throughput increased (see
Tables 1 and 2) as expected. These observations lead to the following conjecture.

Conjecture 2. If N > max;(S;), then there is a unique solution, W, for KT1.

The solution W is globally optimal under either Conjecture 1 or Conjecture 2 and it can be

found by the Eaves-Saigal algorithm with quadratic convergence from Theorem 2. For small
values of € (i.e.,, € < 1.E-2), the Eaves-Saigal algorithm requires a far smaller number of

throughput computations than the reduced gradient algorithm (see Table 1 and 2). Note that the
reduced gradient algorithm was not executed for € < 1.E-2 due to its slow convergence. Also, our

conjecture that the solution is unique is consistent with the observation made by Stecke and
Solberg [1985] and Stecke [1986a] that there is a unique unbalanced optimal allocation for Problem
P1.

Conjecture 2 and Lemma 8 lead to the following

Proposition 1. If N > max;(S;), then there are exactly 2M - 1 Brouwer's fixed points satisfying
equation (11) over the feasible region, I', when Conjecture 2 holds.

Proof: The proof is given in the Appendix. |

We mentioned earlier that W > 0 satisfying equation (11) is the optimum solution for P1. Now
we seek for an intuitive explanation of the equation. Equation (11) is rewritten as

11



QW) - QUN-LW) = i1, M. as)

When one customer is added to the system, the sum of the queue lengths among the stations in the
system increases by one, and for the networks being considered, it can be shown (Suri [1984])
that the mean queue length at each station does not decrease. Equation (15) relates allocation of
workloads among the stations to distribution of the queue length increase in the system at the Nth
customer addition among M stations. Thus the optimal workload has the property that when the
Nth customer is added to the CQN, the mean queue length at each station strictly increases (W > 0)
and the amount of the increase is the same as the ratio of workload at the corresponding station to
the total workload.

In addition to the two algorithms, we also applied the method of successive substitution to
equation (11). This method proceeds as follows: given an initial feasible point, it generates a
sequence of points, all of which are guaranteed to be feasible (because of the form of (11) and the
mean queue length monotonicity property). For all of the problems in our experiment, it always
converged quickly to one of the extreme points. With different initial points, it converged to
different extreme points. It appears that it converges to the nearest extreme point, following the
steepest descent direction. Figures 1 and 2 graphically present this phenomenon for two-station
CQNs. Both figures have only one interior point which is at the intersection of two curves, one
plotting the function W1/TW on the y-axis, and the other plotting the function Q;(N,W1)-Q;(N-
1,W1) on the y-axis. When the successive substitution method starts with a point to the left (right)
of the intersection point, it quickly converges to the left (right) extreme point. The figures also
show that the throughput is maximized at the point of intersection.

Figures 1 and 2.
5. GENERALIZATION TO INCLUDE WORKLOAD BOUNDS

In this section, we generalize the solution procedures to accommodate lower and upper bounds
on the workload at each station. These bounds might arise for a variety of different reasons. For
example, upper bounds might be specified to allow adequate time for planned maintenance and
lower bounds can ensure a minimum level of machine utilization. The problem is the same as P1,
but the non-negativity constraints for W; are replaced by constraints of the form

L; £W; <,

where L; and Uj are the lower and upper bounds, respectively, on Wj.

12



One important difference between the constrained problem and the more general one is that a
balanced workload allocation may not be feasible for the constrained problem. The following
algorithm is used to find a good initial feasible solution. We assume that the indices of the stations
are arranged so that S; 2 S7 2 ... 2 Sp. We also assume that there is a feasible workload
allocation (i.e., TW < Z; U;).

Algorithm 1.

1) Find a balanced workload allocation,W. If it is feasible, then terminate. Otherwise go to step 2.
2) LetE={i1IW;>Uj},B={ilWj <Li},Sg=Y (Wj-Uj, Sp=Y (Li. - Wj). Reset W;j
ieE ieB
to Uj forallie Eand to L; forallie B. If Sg - Sg > 0 (less than the total workload is
allocated), go to step 3. If Sg - S < 0 (more than the total workload, TW is allocated), go to
step 4. Otherwise, terminate .

3) Reallocate Sg - Sp by assigning as much additional workload as possible to stations 1,...,M in
sequence while retaining feasibility. Terminate whenever a feasible reallocation has been found.

4) Reduce the workloads at stations M,...,1 in sequence while maintaining feasibility, until a total
reduction of Sg - Sg has been achieved.

The rationale for steps 3 and 4 is a result of Yao and Shanthikumar [1986] that for the multiple-
server product-form CQN, throughput is increased by assigning more workload to a station with a
larger number of servers.

Experimental Results

We conducted a number of experiments using the two nonlinear programming algorithms and
Algorithm 1 described above, for CQNs with a range of parameter values. The value of M ranges
from 2 to 8 and N is 5 or 20. We chose arbitrary unbalanced configurations for S. Workloads

M
were scaled such that the total workload, TW = ¥ S; without loss of generality. We used two sets

i=1
of the bounds (loose and tight) for each problem. The bounds were specified so the feasible region
for the loose bounds contains the feasible region for the tight ones. Problem data used in the
experiment are presented in Table 3.

Table 3.

13



We used the two-norm of the steepest ascent direction, denoted as V2 as the criterion for

termination. Clearly, W>0 satisfies the Kuhn-Tucker necessary conditions when V2 =0. The
algorithms terminate when V2 < ¢ for some specified tolerance €. We set € = 1.E-5. Both
algorithms were initialized with the solution from Algorithm 1. The following statistics were
collected at each termination: throughput, the number of throughput computations (since
throughput calculations take most of the computation time), and the number of active bound
constraints. These statistics are summarized in Table 4.

Table 4.

Algorithm 1 provides a good initial feasible solution when the bounds are tight. In fact, the
initial solution is optimal for all the problems with tight bounds except for problem (7.b) with
N=20. It appears that when the balanced workload allocation violates a bound, the optimal
solution is to set the workload for the station equal to that bound. Thus, only the workloads of
stations with inactive bound constraints need to be found using the NLP algorithm.

For problems with no active bound constraint at the optimum, for example, problems with the
loose bounds and N=20, the Eaves-Saigal algorithm allows quadratic convergence and requires a
smaller number of throughput computations than the reduced gradient algorithm which has linear
convergence. However, the Eaves-Saigal algorithm converges only linearly for problems with one
or more bound constraints active at the optimum solution because of the manner in which
constraints are handled by the algorithm.

6. CONCLUSION

In this paper, we considered the problem of allocating a given workload among the stations in
a multi-server product form CQN to maximize the throughput. We first investigated the behavior
of the throughput function and proved that it is pseudo-concave in two special cases: (i) the single-
server CQN and (ii) the multi-server CQN when the number of customers is equal to 2.
Computational experience with algorithms developed to find the optimal workload allocation also
provided support for this conjecture in more general case. The advantage of having a pseudo-
concave function is that the Kuhn-Tucker necessary conditions are sufficient for global optimality.

We also showed that if the number of customers in the CQN is greater than the number of
servers in each station, the optimal workload is an interior Brouwer's fixed point and can be found
by the Eaves-Saigal fixed point algorithm which has quadratic convergence (otherwise, we showed
that it has a trivial optimum solution). Experimentally, we showed that this optimal workload is

14



always unique. This optimal workload has the property that when the Nth customer is added to the
CQN, the mean queue length at each station strictly increases (W > 0) and the amount of the
increase is the same as the ratio of workload at the corresponding station to the total workload.
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APPENDIX

Lemma 6. If N < Sg=max; (S;), then W such that Wi=TW and W;=0 for all j#k, is the solution
of the necessary conditions, KT1.

Proof: From equation (5) and lim Qx(N,W ) =N, we have

Wk—)TW

oTH(W TH N
lim '*aL—) T (- M) = - = g

Wi—

From Little's law, Qj(N,W) = vaH(N,W)Rj(N,W) where v; is the visit frequency at station j and
Rj(N,W) is mean queueing time at station j including service time, Tj. As Wj— 0 for j #k,
Rj(N,W) — 7T; since with very small workload assigned to station j, an arriving customer very

likely finds an available server among S; and stays at station j during service time only. Thus we
have

OTHW) _ . M_(VJTH(N W)R;(N,W) - v;TH(N-1,W)R;(N-1,W))

lim
wi-0 oW Wj—-)O

T
= lim - _('_)'(VJTH(N W)TJ - vjTH(N-1 W)Tj)
Wj—)o

= - TH(N,W) (TH(N,W) - THN-1,W) )  from Wj = vj T;

=-—T‘W(W-TW;) from Lemma 5

Given the derivative values at W, we now solve the necessary conditions, KT1. Wi > 0 implies
oTH(N,W TH(N,W .
( W)= N a.ndnj=-a—(—)~v =( for each j # k.
oW TW? oW;

Therefore, W, T, and v obtained above is the solution of KT1. [ |

ng=0. Thusv is givenasv =-
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Lemma 9. C(N+1,W) > C(N,W) for a multi-server CQN.

_ M _
Proof: C(N,W), cycle time of the CQN with N customers is written as C(N,W) = ¥ Ri(N,W)
i=1

where Ri(N,W) is mean queueing time at station i including service time, T;. We prove this lemma
by showing that Ry(N+1,W) = Ry(N,W) for all i. From equation. (2.19) of Reiser and Lavenberg
[1980],

N-1

— N-1
RONW) =T 1+ 5 paN-D+5 T @S)piN-D ]
1 n=§; I n=§;

where pi(nIN) is probability that n customers are present at station i for the CQN with N
customers. Since pi(NIN-1) =0, AR;(N,W) = Ry(N+1,W) - Rj(N,W) is written as

- T XN N
AR(NW) =1 3, (pialN) - pi@N-1)) + 3 (@80 (p(alN) - piaN-1))

N -
Denoting ¥, pi(nIN) as pj(n 2 Sj | N), we rewrite AR;(N,W) as

n=Si

— i N
ARi(N,W)=SEi[(Pi(n23i|N)-Pi(HZSi|N-1))+ __% 1(pi(nZklN)-pi(nZlclN-l))]

N
=% 3 (pi(n2kIN)-pi(n 2 kIN-1)),
)

where pij(n 2k | N) - pj(n 2 k I N-1) 2 0 for all k since a multi-server CQN is a special class of
CQNs which have all stations ce-monotonic (Suri [1984]). Therefore,we have shown
AR;(N,W) 2 0 for all i and we prove the lemma. |

Theorem 1. If N > max; (S;), then any workload allocation W which has at least one W=0
cannot satisfy KT1, that is, the optimal workload allocation W* > 0.

Proof: Suppose that W which has Wy=0 for some k satisfies KT1. Let I={i | W; >0 } and
I=(k IWx =0 }. Clearly, I is not empty. From KTI, foreachiinI, mj =0 and

THN,W)( Qi(N,W) - Qi(N-1,W) )=vW; foriel

Summing the above equation over all i in I, we have
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TH(N,W) (N - (N-1) ) = THN,W)=v ¥ W;=v TW.

iel
That is, v = TH(N,W)/TW. As shown in Lemma 6, we have

. oTH(N,W)
lim ————
w0  OWk

=- TH(N,W) ( TH(N,W) - TH(N-1,W) ) foreachk e T.
Subsequently, we have from KT1 and substitution of v

Tk =-v + TH(N,W) ( TH(N,W) - TH(N-1,W) )
= TH(N,W) { ( TH(N,W) - TH(N-1,W) ) - 1/TW } foreachk € 1.

We now show that mx < 0 for each k € T, so that W does not satisfy KT1. Denote C(N,W) as the

cycle time of the CQN with N customers. When N > max (Sx), C(N,W) > TW since there is
positive probability that all customers are queued at one station and some customers have waiting
time before being served.

( TH(N,W) - TH(N-1,W)) - I/TW N/C(N,W) - (N-1)/C(N-1,W) - I/TW

1/C(N,W) - 1/TW + (N-1) ( 1/C(N,W) - 1/C(N-1,W) )

which is < 0 since 1/C(N,W) - 1/TW < 0, and 1/C(N,W) - 1/C(N-1,W) < 0 from Lemma 9.
Thus, we have shown that mtx < 0 for each k € T and we prove the lemma. |

Proposition LIf N > max; (Sy), then there are exactly 2M -1 Brouwer's fixed points satisfying

equation (11) over the feasible region of Problem P1 when Conjecture 2 holds.

Proof: Firstly, we know from Lemma 8 that there are M Brouwer's fixed points where one
station has all the workload assigned to it. Now, consider loading only the first two stations in the

CQN and fixing W;j to 0 for i=3 to M. Solve Problem P1 for this two station sub-CQN. Since
N > max (S1,57), there is only one solution (W,W,) of the KT1 for the reduced problem from

Conjecture 2, which is an interior point such that W > 0, Wy > 0 and W;+Wy = TW. Clearly, W
= (W1,W,,0,...,0) is a Brouwer's fixed point satisfying equation (11) for the original problem.

There are (1;1“) such Brouwer's fixed points by choosing two stations out of M. Applying a similar

argument, we can show that there are (1\:) Brouwer's fixed points satisfying equation (11) for the
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original problem in which there are p components having a positive value for W;. Therefore, the

total number of Brouwer's fixed points satisfying equation (11) is given as

M
5 oMo My ooMy .
p=1 P 0
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Table 1. Reduced Gradient Algorithm vs. Eaves-Saigal Algorithm at N=5

DW) = max (| Wi-TW(@Q (N W) - Q;(N-1, Wy)!
System | Terms Reduced Gradient Eaves-Saigal
Config.
1.E-4
5.E-1 1.E-1 1.E-2 1.E-1 1.E-2 1.E-3 or less
M=2 ths 8421779 | 8421582 | 8421872
S= not 9 4 8
1,3 v2y 1E4| 4E5 2.E-12
M=3 th |.6462935|.6537918|.6539210 8539216 6539243
S= no 24 38 58 10 15
(1,2,4) ve 5E4| 3E5| 4E7 1.E-8 3.E-13
M=4 th |.4760777|.4803953 | 4805868 .4805915 | 4805916
S= no 11 19 21 14 20
2224 | v sEs5| 3E8| 3E7 8.E-10| 2.E13
Ms=5 th |.3480955|.3538133 |.3541686 3541608 3541713
S= no 5 113 233 18 48
(1,3,3,3,
4) v 8E4| 5E7| 2E7 1E8 3.E-13
M=6 th |.3033259 |.3098448 | .3109342 .3109373 3109450
S= no 3 73 243 80 76
(1,2,2,3,
4,4) v sE4| 4E8| 4E7 8.E7 3.E-11
M=7 th |.2708771}.2757104 | 2760962 2760995 | 2761004
S= no 1 186 352 41 59
(1,2,2,3,
3,3.4) ve 3E+4| 1E8| 3E7 7E8| S5.E12
M=3 th |.4128372|.4154144| 4155488 4155474 | 4155482
= no 119 151 226 42 52
(1,1,1,1,
L1140 | v 6E-5| 3E8| 2E7 9E8| 4E9
§ th = throughput

t no = the number of throughput computations
t v2 = the second norm of the steepest ascent feasible direction
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Table 2. Reduced Gradient Algorithm vs. Eaves-Saigal Algorithm at N=20

D(W) = max 'llwi'Tw(Q i(N'ﬁ’)'QKN’I.W»'
System | Terms Reduced Gradient Eaves-Saigal
Config.
1.E-4
5E-1 | 1E1 | 1E2 | 5E1 | 1E1 | 1E2 | 1E3 | orless
M=2 thé 9599658 | .9596465 9599665
S= not 9 6 10
(1,3) vl 5.E6| 2.E3 3.E-10
M=3 th |.9130309].9137392.9137404|.9134154 | .9138574 | .9137410] 9137411 9137412
S= no 18 22 30 4 9 19 24 29
(1,24) | 92 7E4| 9E6| 3E8| 1E3| 4E4| sEs| 5E8| 1E12
M=4 th |.8558376|.8559553 | .8559903 8559714 8559908 | .8559908
S= no 12 20 56 5 13 19
2224 | 2 3E4| 7Es| 9E7 9.E-6 3E9| LE-1
M=5 th |.7983813|.7984879|.7985132 7984711 .7985132 7985133
S= no 34 47 151 10 25 40
(1,2,3,4, 2
7 v 8Es| 3ES| 9Es 5E5| 3.E8 1LE-12
M=6 th |.7341363|.7342175|.7342763 7342627 | .7342759 734277
S= no 48 72 232 24 32 49
(1,2,2,3, 2
6,8) v 2E5| 5E5| 1Es8 9.E8| 9.E7 1.E-9
M=7 th |.7225042|.7229673|.7229980 | .7229260 .7229979 7229986
S= no 20 50 179 14 25 46
(1,2,2,3,
3,3,4) v2 sEs| 1E5| sEs| S5ES 5.E8 LE-12
M=3 th .8592568 | .6592672 8592500 | .6592676 | .6592687
S= no ” 274 50 60 81
(1,1,2,2,
3359 | v sE8| sE9 sE6| 6E8| 1E9

$ th = throughput
t no = the number of throughput computations

t V2 = the second norm of the steepest ascent feasible direction
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Figure 1. Throughput and Marginal Queue Length Increase
for the CQN with S=(1,3) and N=10
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Figure 2. Throughput and Marginal Queue Length Increase
for the CQN with S=(5,2) and N=10
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Table 3. Seven Sets of Problem P1 with Loose (a) and Tight (b) Bound Constraints

(1) M=2, S=(3,1)
a)L=(.1,.1), U=(4.,3.)
b) L=(2.,,1.), U=(4.,3.)
(2) M=3, S=(4,2,1)
a)L=(5,5,.5), U=(6.,6.,6.)
b)L=(1.,3.,1.), U=(5.,5.,5.)
(3) M=4, 5=(4,2,2,2)
a)L=(1.,1..1,.1), U=(6.,5.,5.,5.)
b)L=(2.,2,1.,1.), U=(4.,4.,4.,4.)
(4) M=5, S5=(7,4,3,2,1)
a)[=(.9,.8,.7,.6.,.5), U=(14.,13.,13,,12,,12.)
b) L=(2.,2.,2.,2..2.), U=(10.,10.,10.,10.,10.)
(5) M=6, 5=(8,6,3,2,2,1)
a)L=(1.,.9,.8,.7,.6,.5), U=(18.,18.,18.,15.,15.,15.)
b)L=(3.,.2.,3.,3.,2.,1.), U=(15.,15.,,15.,,10.,10.,10.)
(6) M=7, S=(4,3,3,3,2,2,1)
a)L=(5,5,5,5,5,5,3), U=(6.,6.,6.,6.,6.,6.,6.)
b) L=(3.,3.,3.,1,,1,,1.,2.), U=(4.,4.,4.,4.,4.,4.,4.)
(7) Ms=8, §=(9,5,3,3,2,2,1,1)
a)[=(.5,5,.5,.5,.5,.1,.1,.1), U=(21.,21.,21,,21,,21,,21,,21.,21.)
b) L=(2.,2.,2.,2,3.,1.,.5,.5), U=(20.,20.,20.,20.,20.,20.,20.,20.)
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047327526 , e 4. Reduced Gradient Algorithm vs. Eaves-Saigal Algorithm
Reduced Gradient Algorithm Evase-Saigal Algorithm
Problem| Terms N=5 N =20 N=5 N =20
(1.a)
th* .8421862 9599664 8421872 9599664
no§,act§f 31,0 6, 0 6, 0 8, 0
(1.b)
th 7954545 9497207 7954545 9497207
no, act 1, 1 1, 1 1, 1 1, 1
(2.a)
th .6509428 9137390 .6508728 9137412
no, act 28, 0 44, 0 10, O 10, 0
(2.b)
th 5457154 .6663790 5457154 .6663790
no, act 1, 2 1, 2 1, 2 1, 2
(3.a)
th 4798654 .8559814 4803098 .8559714
no, act 61, 0 18, 0 11, 0 6, 0
(3.b)
th 4661922 .8492100 4661922 .8492100
no, act 1, 3 1,3 1, 3 1, 3
(4.2)
th 2913062 7984549 2925165 7985078
no, act 8, 1 64, 0 36, 0 19, 0
(4.b)
th 2722947 4994284 2722947 4994284
no, act 1, 3 1, 3 1, 3 1, 3
(5.2)
th 2255052 7340815 2265839 7342201
no, act 2, 1 67, 0 53, 0 33, 0
(5.b)
th 2229083 .6201884 2229083 6201884
no, act 1, 4 1, 4 1, 4 1, 4
(6.2)
th 2738760 7229273 2757980 7229711
no, act 2, 1 48, 0 57, 0 16, 0
(6.b)
th 2588161 4981604 2588161 4981610
no, act 1,5 1, 5 1, 5 1,5
(7.2)
th 1913671 .6587587 .1908631 .6592500
no, act 3, 1 53, 0 4, 0 51, 0
(7.b)
th .1904921 .5984791 .1904921 5992992
no, act 1, 3 42, 1 1,3 80, 0
*th = throughput

§ no = the number of throughput computations

#act = the number of active bound constraints at the termination point
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