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Chapter 27
Spatial Analytic Approaches to Explaining
the Trends and Patterns of Drug
Overdose Deaths

Charlie DiMaggio, Angela Bucciarelli, Kenneth J. Tardiff, David Vlahov
and Sandro Galea

Abstract To effectively utilize and interpret spatial analyses, substance use re-
searchers, public health practitioners and policy makers should be familiar with
some of the available data analytic techniques, each of which comes with advan-
tages and drawbacks. In this chapter we first discuss three cluster detection tools
and their associated software applications. We then present a Bayesian hierarchical
approach, briefly reviewing its theoretical underpinnings, commonly used models,
and how inferences may be drawn from a sample-based posterior distribution. We
demonstrate the use of each approach on a set of substance abuse mortality data,
comparing the results across the four tools. Our empiric illustration considers the
role of neighborhood-level socioeconomic status (SES) in explaining opiate-related
overdose deaths in New York City. We end with a discussion of the implications of
the choice of technique and software on interpreting spatial analyses of substance
abuse and conclude that the choice of a method will be driven by the question to
be answered, data and software availability and the intended audience or context in
which the research is being conducted.

Introduction

Mapping techniques and spatial analysis have been used in a number of stud-
ies seeking to describe and analyze substance abuse. Spatial analytic studies have
demonstrated the correlation of drug use to deprivation indices (Squires, Bleeching,
Schlecht, and Ruben 1995); the role social networks play in urban adolescent
substance abuse (Mason, Cheung, and Walker 2004); the effect of ecologic level
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variables, such as legal prohibitions against alcohol sales (Schulte, Aultman-Hall,
McCourt, and Stamatiadis 2003); and whether frequency and type of drug use are
geographically located independent of neighborhood characteristics (Latkin, Glass,
and Duncan 1998).

There are a number of spatial analytic tools available to epidemiologists, each
having advantages as well as drawbacks. To effectively utilize and interpret spa-
tial analyses of substance abuse, researchers, public health practitioners, and policy
makers should be familiar with some of the available data analytic techniques.

In this chapter, we first discuss three cluster detection tools and their associ-
ated software applications: nearest neighbor index (NNI; ESRI 2005), Ripley’s
K-function (Levine 2004), and a space–time and time permutation scan statistic
(Kuldorf 2005). We briefly describe these techniques and then demonstrate their
use on a set of substance abuse mortality data, comparing the results across the
three tools. We then introduce hierarchical spatial modeling (Imperial College and
Medical Research Council 2004). We will discuss the advantages and disadvan-
tages of a Bayesian approach, some commonly used models, and how to draw
inferences from the sampled posterior distribution. We will demonstrate this ap-
proach on our data set and compare the results to those we obtained with cluster
detection tools. As an empiric illustration, we consider the role of neighborhood-
level socioeconomic status (SES) in explaining opiate-related overdose deaths in
New York City (NYC). We conclude with a discussion of the implications of the
choice of software and techniques on interpreting spatial analyses of substance
abuse.

Data and Variable Definitions

We manually reviewed medical files at the Office of the Chief Medical Examiner
(OCME) of NYC and identified all cases of fatal accidental drug overdose occur-
ring in the city between 2000 and 2004. The OCME is responsible for assessing
all deaths of persons believed to have occurred in an unnatural manner in NYC.
Therefore, all overdose deaths in NYC would have been reviewed by the OCME
and included in this chart abstraction.

The OCME medico-legal investigators use the decedent’s medical history, the
circumstances and environment of the fatality, autopsy findings, and laboratory data
in attributing the cause of death and other criteria to each case being reviewed.
The variables we abstracted for our analysis included the decedents’ gender, age,
address of residence, and location of injury. We geocoded residential and injury
locations using ArcGIS, version 9.1 (ESRI 2005). For analysis purposes, place
of injury (location of death) was used. In the analysis, only decedents who were
successfully assigned an address of injury were included. Overdose deaths may
include more than one drug being present; to increase the reliability of our mea-
sures across the different analytic techniques, we restricted our analyses to cases
in which opiates were the only (in the case of scan statistics) or primary cause of
death.
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27 Spatial Analytic Approaches 449

Table 27.1 Demographic characteristics of successfully geocoded opiate-related drug overdose
deaths, New York city 2000–2004

No. %

Total 2426
Sex

Male 1883 77.6
Female 543 22.4

Age
15–24 yrs 146 6.0
25–34 yrs 431 17.8
35–44 yrs 898 37.0
45–54 yrs 762 31.4
55–64 yrs 162 6.7
65–74 yrs 25 1.0
Over 74 yrs 1 0.0

Race/ethnicity
White 1069 44.1
Black/not Hispanic 560 23.1
Hispanic 776 32.0
Asian 11 0.5
Other 10 0.4

Year of death
2000 543 22.4
2001 455 18.8
2002 484 20.0
2003 506 20.9
2004 438 18.1

Descriptive Epidemiology

From 2000 through 2004, the OCME reported 3982 fatal overdose deaths within
NYC. Of these, 3777 occurred among NYC residents, in which 2516 were deter-
mined to have opiate toxicity as the primary cause of death. Together, 96.4% (2426
out of 2516) cases were successfully geocoded. These cases constituted the study
base for our subsequent analyses. Their demographic characteristics are presented
in Table 27.1.

Cluster Detection Techniques

We conducted cluster analyses for all opiate-related deaths. We first described cross-
sectional spatial distribution of all fatal opiate-related deaths in NYC that occurred
between 2000 and 2004 using an average NNI statistic. We then utilized an L
function transformation (derived from Ripley’s K-function) to produce graphs to
assess at what distance the clustering (if present) was observed to be the greatest
for each year. We then used a space–time permutation model to assess both the
spatial and temporal clustering opiate-related overdose deaths. This approach uses
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count (case) data only, and assesses not only spatial clustering characteristics but
also the role of time as a variable over the 5-year period. In this way, we determined
if any clusters were statistically significant when adjusting for the year in which the
deaths occurred. Finally, we applied a space–time scan statistic that differs from the
permutation model in that it also adjusts for the underlying population at the census
tract level.

First-order Clustering Technique: Average Nearest Neighbor Index

Description

The global presence or absence of clustered overdose incidences can be assessed
using the average NNI. This index is a measure of how similar the mean distance
of all cases is to the expected mean distance for a hypothetical random distribu-
tion (Mitchell 2005). The equation for calculating the average NNI is expressed as
(Mitchell 2005):

d =
⎛

⎝

∑
i

Ci

n

⎞

⎠ −
(

0.05√
n/A

)

where the average NNI (d) is equal to the summed distance to each feature nearest
neighbor (

∑
i

Ci) divided by the number of features (n) or the ‘observed distribution’

of mean features minus the product of 0.05 divided by the square root of the number
of features (n) divided by the study area (A) or the ‘expected mean distance for
a random distribution’ (Clark and Evans 1954). Clustering is suggested when the
observed average distance is greater than the mean random distance (d < 1). An
index value close to 1 indicates randomness, while a value greater than 1 indicates
dispersion of cases. Within ArcGIS, version 9.1, tests of significance (a z-score
and p-value) are included with the NNI output. If the z-score is negative, this sug-
gests the cases are clustered. Conversely, if the z-score is positive, this suggests
the cases are dispersed, while a value close to zero indicates the random nature of
cases.

Application

Table 27.2 displays the average NNI results of all opiate-related drug overdose
deaths. The results suggest that the greatest clustering of any overdose occurring
in NYC was in 2000 (NNI = 0.7636; z-score = −10.5474). Given the statistically
significant negative z-score values of all 5 years, individually, opiate-related drug
overdose demonstrates significant clustering for all years between 2000 and 2005.
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Table 27.2 Average nearest neighbor analysis of opiate-related drug overdose deaths, New York
city, 2000–2004∗

Year of Death Average
Nearest
Neighbor
Ratio

z-score
(Standard
Deviations)

p-value

2000–2004 0.7023 −27.8189 <0.0001
2000 0.7636 −10.5474 <0.0001
2001 0.7216 −11.2869 <0.0001
2002 0.7659 −9.9835 <0.0001
2003 0.8235 −7.1310 <0.0001

∗Based on weighted counts of injury location and direct distance measurement.

Moreover, clustering became less dense toward the later years of the study period as
displayed by the gradually increasing z-scores.

Second-order Clustering Technique: Ripley K-Function
(L-Transformation) Statistic

Description

While the average NNI considers only the distance between one case and its nearest
other case, the Ripley’s K-function statistic is a second-order statistic that considers
the complete distribution of all distances in the point pattern of cases (Levine 2004).
It tests the cumulative distribution function of the entire set of inter-point distances
among the point data. When K statistics are transformed into a square root function,
the result is called a L function transformation (L(d)). The square-root transforma-
tion results in a linear function. This statistic can be very useful when exploring the
nature, in terms of distance, of the case clustering within the entire study area. L
function equation is expressed as (Levine 2004):

L(d) =
√

A
∑

i �= j

∑
Ii j di j

πn(n − 1)

The numerator is the Ripley’s K-function, where the distance (d) is measured be-
tween case (i) and every other case ( j); then each distance is multiplied by the
weight for the case paring (Ii j ), and all the values are summed (i �= j indicates
the distance between cases) are not included in the sum (Levine 2004). Finally, the
result is multiplied by the study area (A) and divided by the number of cases (n)
squared. The denominator is π multiplied by the number of possible case pairings
(represented as n−1). The square root of the product is then taken. At any given
distance (represented by the x-axis of the result graph), if the line of observed L
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values is above that of the expected values [L = 0 or complete spatial randomness
(CSR)], then the cases are more clustered than expected for a random distribution
(with the peak of the graph representing the greatest clustering detected at a speci-
fied distance) (Levine 2004). Once the curve falls below the CSR line, cases at that
point become dispersed at a given distance.

To test the null hypothesis of global spatial randomness of opiate-related over-
dose for the period of interest, we computed a 95% CI (referred to as the envelope)
of the L-function (L(d)) using a Monte Carlo method of specifying 100 simulated
random patterns (Levine 2004). At a given distance (represented on the x-axis),
a value of L(d) (represented on the y-axis) outside the confidence interval (CI)
envelope is interpreted as a significant departure from CSR toward clustering or
dispersion. When the function peaks at the largest, most positive value and remains
outside the CI envelope, this is considered to be the distance at which cases tend to
be the most clustered.

Application

Figure 27.1 presents a graph of the L-function statistic for the entire 2000–2004 time
period, and suggests that most clusters of opiate-related overdose are fairly compact
and that the greatest clustering occurs at distance of approximately 12,007.34 feet
or 2.27 miles [distance at which L(d) peaks in the output]. This suggests that most
clusters occur with a radius of approximately 2.25 miles. Thereafter, the cases be-
come more dispersed. The L(d) curve also remains outside the95% confidence enve-
lope and, therefore, remains statistically significant. Additional curves for individual

Fig. 27.1 Graph of L-function statistic. New York City opiate-related overdose deaths, 2000–2004
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years (not presented) are also clustered at approximately 2–3 miles, with the tightest
clusters observed to be in 2000 (10,775.82 feet or 2.27 miles).

Space–Time Modeling Techniques: Space–Time Permutation
Statistic and Space–Time Scan Statistic (SaTScan)

Description

Pure spatial analyses, e.g., NNI and Ripley’s K, are useful when exploring cross-
sectional health outcomes. When the variable of ‘time’ (in units of hours, days,
months, years, etc.) is of interest, we will need a model that assesses the trend of
the outcome over both space and time. We are interested in whether the same areas
experience clustering year after year, asking: Are the cases clustered and, if so, do
they continue to cluster over time given the nature of the study area?

The space–time permutation scan statistic model uses only case data. There is
no requirement for specifying the underlying population data. It makes minimal
assumptions about the time, geographic location, or size of the potential case cluster-
ing. The model adjusts for what is termed as ‘purely’ spatial and temporal variation
in the case data for a given area (Kulldorff, Heffernan, Hartman, Assuncao, and
Mostashari 2005). Using a Poisson-based probability model, a series of overlapping
scanning windows (cylindrical in form) move across the spatial plane (the base of
the cylinder) while also scanning the point data for temporal clusters (the height
of the cylinder). The circular base represents the geographical area or the study
area while the height of the cylinder scans for time (in days, months, or years)
clustering. For each location, the scanning window calculates the number of ob-
served and expected cases. The statistical significance of an observed ‘cluster’ is
then evaluated taking into account the multiple testing methods (0, 9, or 999 Monte
Carlo replications). For each center and radius of the cylinder base, the method
iterates over all possible temporal cylinder lengths. Cylinders can be geographically
large and temporally short (forming a flat disc), or can be geographically small
and temporally long (forming a pole), or any combination in between. The number
of observed cases is divided by the calculated expected number of cases for each
cylinder to the power of the observed inside the cylinder, and then multiplied by
the observed, divided by the expected to the power of the observed outside the
cylinder. The approximation, a Poisson generalized likelihood ratio, is expressed
as (Kulldorff et al. 2005):

(
CA

μA

)CA
(

C − CA

C − μA

)(C−CA)

where C is the total number of observed cases, μA represents the mean number
of expected number of cases within the cylinder, and CA represents the observed
number of cases within the cylinder.
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The space–time scan statistic is also based on Poisson modeling, just as the
space–time permutation model, but allows for scanning of purely spatial, purely
temporal, and special temporal clusters.

These models are most readily applied using the SaTScan software package,
which is available for download (Kuldorf 2005) after registration and can be trans-
lated in ArcGIS for viewing of the cluster statistics.

Application

The space–time permutation scan statistic of opiate-related overdose was mapped
to give a visual display of the model output (see Fig. 27.2a). In terms of spatiotem-
poral clustering for opiate-related overdose citywide, seven clusters were detected.
The primary cluster was detected in the northwestern portion of Manhattan and
the southern region of Bronx in 2001, while the other six secondary clusters were
located in various parts of the city. It is notable that none of the clusters reached a
level of statistical significance.

The majority of opiate-related drug clusters seem to have occurred in 2000,
although the primary cluster in northern Manhattan/South Bronx was detected in
2001. It is suggested that opiate-related fatal overdose is not only changing inci-
dence pattern, but also such cases are decreasing.

In our comparison space–time scan statistic model, we attempted to see how
clusters may change when adjusting for the underlying population counts. In this
analysis, we used population counts at the census tract level for the entire NYC area
for a finer and more exact population adjustment. Using a small neighborhood unit
of population count adjustments allows for a finer resolution of cluster detection.

The space–time scan statistic detected fewer clusters, all of which were statis-
tically significant (Fig. 27.2b). What remains as the primary cluster (just as with
the space–time permutation model cluster map) is the one located in the northern
region of Manhattan and the southern region of Bronx. Compared to the space–time
permutation cluster map, the central radius point of the cluster is shifted slightly
west (encompassing more of Manhattan than Bronx), the radius of the cluster is
approximately one mile larger (radius = 3.596 miles as compared to 2.664 miles),
and the year in which cases were significantly detected was 2002–2003 as compared
to 2001 for the space–time permutation model.

There are additional differences between the two approaches. A cluster in lower
Manhattan detected by both methods is somewhat larger in the space–time scan,
which additionally detected higher than expected cases in both 2000 and 2001 as
compared to only 2000 in the space–time permutation scan.

Bayesian Hierarchical Models

Bayesian hierarchical modeling is frequently used in spatial epidemiological anal-
yses, but may be unfamiliar to some substance abuse researchers. Multilevel spa-
tial modeling, though, has been used to capture context in community studies
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Fig. 27.2 Opiate-related deaths, New York City, 200–2004. (a) Space-time permutation scan indi-
cating 7 clusters (b) Controlling for underlying population count (See also Plate 48 in the Colour
Plate Section)
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of substance abuse (Luke 2005) and in studies of drug-related crime (Law and
Bayesian 2004). In this section, we review Bayesian methods, consider how they
may address certain difficulties encountered in other spatial analytic techniques,
and present the results of their use in our sample data set.

Description

Mapping issues and the Bayesian approach

In the classical maximum likelihood approach to risk measures, such as standardized
mortality ratios, the risk estimate for each area j is given by the observed j /expected
j ∗ 100 with the standard error under an assumption of a Poisson distribution for
each area given by the square root of the observed number divided by the expected
number.

There are problems with this approach for spatial analyses. The map may be
dominated by extreme values based on a few cases in small populations (Devine,
Louis, and Halloran 1994). These rare events contribute to more heterogeneity than
is assumed by a Poisson model (where μ is expected to be close to 1 and equal to S).
A simple maximum likelihood approach also does not account for spatial correla-
tion. Influential covariates of an outcome, which may be unmeasured, are likely to be
similar in adjacent areas resulting in risk estimates that are also spatially correlated
and similar. In situations when there are a small number of correlated cases relative
to those at risk and Poisson ‘noise’ obscures the ‘signal’ of the spatial pattern in the
data, hierarchical Bayesian modeling can be useful (Richardson, Abellan, and Best
2006).

In a Bayesian approach, our two main sources of information about the risk es-
timate for an area (�) are our prior beliefs about �, called the prior distribution or
p(�), and the likelihood of observing our data given � or L(y|�). We thus specify a
probability distribution of risk estimates (�) that vary across the areas of the map in
some defined fashion, e.g., they may be normally distributed or Poisson distributed.
This prior distribution may be based on previous studies, literature reviews, or expert
opinions, and informs about � through our beliefs or assumptions. The likelihood
informs about � via the data itself. When we have lots of data, the likelihood pre-
dominates our analysis, and our results will essentially be the maximum likelihood
estimate. When we have less data, the prior has greater influence (Greenland 2006;
Lawson, Browne, and Vidal 2003). The result of combining the prior distribution
and the likelihood is called our posterior distribution.

Choice of our prior distribution is critical as it essentially indicates how we
believe the parameter would behave if we had no data from which to make our
decision. What, for example, might we expect is the probability that someone living
within 3 miles of a certain location would die from an opiate-related overdose?
Our best guess might be, for example, 1 in 20 or about 5%, and that this prob-
ability varies around this point estimate in a normal fashion with a variance of,
say, 0.01 or 1%. This estimate may be based on previous studies, law enforcement
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data, clinical experience, or a combination of sources. What if we conduct a study
that indicates the risk of an opiate overdose within 3 miles of the location is 45%?
How likely is our observed data given our postulated prior probability? Our pos-
terior distribution combines our expectation with what we actually observe. In a
very common sense way, it tells us, for example, that if the results of our study
differ markedly from our best existing information, we should perhaps be somewhat
skeptical.

The approach is hierarchical or mixed because we specify a distribution of
hyperparameters (λ) for our risk parameter, � allowing it to vary across each area.
One could, for example, say that yi is the empirical (observed) rate of substance
abuse-related deaths in zip code i , � is the true underlying rate, and � how that true
rate varies (Banerjee, Carlin, and Gelfand 2004).

As noted, the posterior distribution (Pr[�|y]) is based on our prior assumptions
and our observed data. It follows Bayes’ theorem and is proportional to the likeli-
hood times the prior: (Greenland 2006)

Pr[�|y]αPr[y|�] ∗ Pr[�],

As described by Richardson, Abellon, and Best (2006), hierarchical Bayesian
spatial models describe observed cases in an area as Poisson distributed with a mean
equal to the expected number of cases times the risk for that area:

Oi ∼ Poisson(�i Ei ).

At the second level of the model, the risk for each area (�) is transformed to a
log scale (making relationships additive rather than multiplicative) and is described
as an intercept term (a) and two random effects, one spatial (�), the other non-
spatial (�):

log �i = ai + �i + �i

The spatially structured component is described as a conditional autoregressive
(CAR) Gaussian process [� ∼ CAR normal (W , 	�)] where the conditional dis-
tribution of each �i , given all the other �i ’s, is normal with μ = the average �
of its neighbors and a precision (	�) proportional to the number of neighbors. W
represents the matrix of neighbors that defines the neighborhood structure. The
non-spatial component of the model (�i ) is defined as normally distributed with
μ = 0 and precision (	�). The model is completed by assigning hyper-priors to the
precision terms 	� and 	�.

The Poisson–gamma model

This hierarchical Bayesian approach most frequently described in the mapping liter-
ature is the Poisson–gamma model. In this formulation, the risk (�) is described as
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a set of parameters that may include any number of explanatory variables (Law-
son et al. 2003). The prior distribution of the observed outcome y is described
as y|� ∼ Po(�E), and the hyper-prior distribution of risk is �|ά, β ∼ gamma
(ά, β), with μ = ά/β and σ 2 = ά/β2 (Banerjee et al. 2004; Lawson et al.
2003). We could further specify ά and β, but we assume that beyond a cer-
tain point, further model specification will have little practical effect on our
results.

We commonly choose a non-informative (proper) or arbitrarily vague-prior that
is uniform or ‘flat’ to allow the data to predominate and lead us to a posterior
distribution that is dominated by the likelihood. A gamma (0.5, 0.0005) has been
suggested as reasonable (Law and Bayesian 2004).

For simple models for which there is a closed form (i.e., they behave as true
distributions and integrate to 1), we can estimate the posterior distribution directly
via the maximum likelihood estimate, and a Bayesian approach is unnecessary. But
for most reasonably realistic models, we will not be able to find a closed form and
will need sample-based approaches.

Empirical Bayes methods approximate the posterior distribution (Devine et al.
1994). Full Bayes methods base inferences on a sample of the full posterior distribu-
tion. The results from such a sample are not as informative as the closed form itself,
but are usually sufficient for inference. We increase the precision of our estimates
by increasing the sample size (Banerjee et al. 2004).

One way to construct a sample from the posterior distribution is through Markov
Chain Monte Carlo (MCMC) methods. Like a ‘random walk’ seen in time series
analysis, the resulting series has no ‘memory’. Subsequent values depend only on
the current value, and the series converges to a stationary distribution assumed to
be the posterior. Unlike traditional Monte Carlo methods, MCMC methods produce
correlated samples, because they base subsequent values on current values. Meth-
ods such as thinning every other value may help decrease this correlation (Imperial
College and Medical Research Council 2004).

Transition probabilities for selection into the series are typically determined
through the use of the so-called Gibb’s sampler. A special case of the Metropolis–
Hastings algorithm, the Gibb’s sampler generates conditional probability distribu-
tions of a parameter given all other parameters, and transition probabilities are
generated that result in a proposal value that accepts or rejects the value with a
probability of 1 or 0 (Lawson et al. 2003). The algorithm is useful in the context of
Markov random fields where the joint posterior distribution is complicated but the
full posterior prior distributions have simple forms.

As noted, the spatial Poisson process consists of two components: uncorre-
lated global heterogeneity (�), usually due to unmeasured confounders or effects
throughout the data, and correlated or specific heterogeneity, due to spatial correla-
tion or local effects (�) (Lawson et al. 2003; Richardson et al. 2006. To capture
both spatial variation and non-spatial random effects in an additive fashion, we
model the natural log of risk as the sum of these two components (da Silva and
Melo 2004).
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Setting the correlational structure

Since we want to model the spatial components so that geographically close areas
present similar risks, we use information from other areas in the region to reduce
random variation unrelated to the risk represented by our risk estimate. This should
take spatial correlation into account and result in smoother informative maps. Here,
we see the advantage of a Bayesian approach. Modeling � as a random variable
rather than a fixed variable allows us to set a spatial correlational structure.

We can describe this structure via Markov random fields where each �, given all
the other �’s, depends only on its neighborhood. A Markov random field is a locally
specified joint distribution that can be determined by its full conditionals. Given a
joint distribution, Pr[yi . . .yn], the set of full conditional distributions, Pr[yi |y j ], that
we can create from it are uniquely determined. Brook’s lemma tells us that we can
go in the opposite direction. If we have a set of full conditional distributions, we can
get the unique joint distribution from which they arose (Banerjee et al. 2004).

A locally determined, weighted structure can be represented by a CAR Gaussian
model where the conditional distribution of each � is given by:

�i |� j ∼ N1(�wi j � j/�wij, 1/	�wi j )

where j is not equal to i and is an element of d, the set of the neighbors of i (da
Silva and Melo 2004).

The simplest and most commonly used definition of a neighborhood is the exis-
tence of a common border between areas. In this case, the weights are specified as
wi j = 1 if j is in d, and wi j = 0 if j is not in d. In this case, the �wi j is simply the
number of neighbors of area i . So, the conditional prior mean of � is given by the
arithmetic average of the spatial effects of its neighbors, and the conditional prior
variance is proportional to the number of neighbors.

This structure has been used in a number of disease mapping studies (da Silva and
Melo 2004), but other approaches are possible. We could set up a proximity matrix
of weights, wi j ’s, based on the distance between or other relationships between the
spatial units, e.g., a set of first order wi j ’s (wi j [1]), if an areal unit is, say, less than
some predefined distance (Banerjee et al. 2004). We could also adopt more compli-
cated relationships between spatial units to represent, for example, the movement of
commuters from one area to another. The more the neighbors we include, the more
the smoothing we achieve. The limit would, of course, be averaging over all the
spatial units, which would be the overall average and would not be very informative
at the local level.

Interpreting results

An important consideration in MCMC methods is diagnosing convergence to the
stationary Markov Chain. A commonly accepted approach is to run and dynami-
cally monitor a specific number, e.g. 3, parallel chains and examine the trace plots
for when they start to overlap as an indication of convergence. We then discard the
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burn-in period samples and base inference on the stationary Markov Chain. The
Gellman Rubin statistic is useful in diagnosing convergence. It compares variation
within chains to those between chains for evidence of scale reduction. When the
scale reduction factor reaches 1, there is evidence of convergence. Other conver-
gence statistics are based on examining individual chains (Lawson et al. 2003).

Once the posterior distribution has been sampled, a Bayesian CI has a straightfor-
ward interpretation. In a 95% CI, we are 95% certain that the true value lies within
it. It is most easily obtained by chopping off the ά/2 tails of the posterior probability
distribution.

Being a sample-based approach, in MCMC methods, no two analysts will end
up with exactly the same results. This makes variance assessment crucial. Recall
that MCMC produces correlated samples. This will lead to underestimates of the
variance. One may ‘thin’ the samples to decrease correlation, but this would result
in throwing out information. Variance estimates based on an effective sample size
(ESS), though, are available (Banerjee et al. 2004).

Application

We calculated standardized mortality ratios (SMR) for opiate-related deaths in NYC
for the years 2000–2004 using the expected number of overdose deaths in a zip
code tabulation area based on the mean number of such deaths in NYC throughout
the 5-year study period. We were interested, in this example, in drawing inference
about the potential role of SES as an explanatory variable for opiate-related overdose
deaths in NYC. We used zip code level median household income (MHI) as a proxy
for neighborhood-level SES throughout this example.

In the model, the likelihood of the observed values in the standardized morbidity
ratio is modeled as a Poisson distribution. The log of the observed value is a function
of the log of the expected value, an intercept, and the coefficient for a normally
transformed median household income measure. Random effects are represented
by a Gaussian intrinsic CAR model with the weights for adjacent neighbors set
at 1. Non-informative prior distributions are placed on the intercept, the coeffi-
cients, and on tau, the precision term for the CAR prior distribution for random
effects.

Our interest is in mapping the zip code level risk estimates while accounting
for the potential instability and autocorrelation of those rates and controlling for
MHI.

For this empiric illustration, we used WinBUGS (Imperial College and Medical
Research Council 2004) software to run three parallel MCMSs with over-dispersed
initial values for 120,000 iterations. The first 60,000 iterations were discarded as a
burn-in, and our inferences were based on the second 60,000 iterations. We assessed
convergence by examining trace histories for parallel chains, and we used R (20)
software to conduct the Brooks, Gelman and Rubin, and the Geweke convergence
diagnostics as well as the Heidleberger and Welch stationarity tests. We present our
results as median values for the coefficients with their associated 95% equal-tailed
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Bayesian CIs, histograms (kernel density graphs) of the sampled distributions, and
maps comparing raw and smooth risk estimates.

As indicated in Fig. 27.3a, the histogram for β1 (MHI coefficient) is smooth and
normally distributed. The Gellman Rubin statistic was calculated to be 1 for most
of the runs (Fig. 27.3b), and the trace history for β1 appears to reasonably overlap.
Taken together, this information gives us confidence that the model appropriately
converged to the posterior distribution and that our inferences based on this posterior
distribution are valid.

The median value for the MHI coefficient was −0.3782 (95% CI 0.5681,
−0.1855). The interpretation is not straightforward because the dependent variable
in the model is the natural log of the SMR, and the MHI variable itself has been
normalized to achieve appropriate convergence in WinBUGS. It does, though, indi-
cate that SES, as measured by MHI, is strongly and significantly inversely related
to the number of heroin overdose deaths in a zip code area. Essentially, the number
of opiate-related deaths increases in a linear fashion as MHI declines. That this is as
expected indicates, to a certain extent, the validity of the model. Also, and perhaps
more importantly, the subsequent fitted SMR values now control for this important
potentially confounding variable.

Fig. 27.3 Results from Markov Chain Monte Carlo run, association of median household income
with opiate overdose standardized mortality ratios, New York City zip code tabulation areas, 2000–
2004. (a) Histogram for Median Household Income beta coefficient. (b) Trace history for Median
Household Income beta coefficient
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Fig. 27.4 Opiate-related standardized mortality ratios, New York City zip code tabulation areas,
2000–2004. (a) Unadjusted (b) Smoothed estimated adjusted for median household income and
autocorrelation with Bayesian Hierarchical Modeling

Figure 27.4 presents the raw and fitted zip code level SMRs. It appears that if
we had simply mapped the raw SMRs, we would infer greater than expected rates
in such areas as South Bronx and Northern Queens. Looking at the fitted values,
these potential clusters seem to become less severe when we take the underlying
distribution of the population and its SES characteristics into account. The most
evident area of continuing concern is Harlem in northern Manhattan which, despite
controlling for MHI, continues to display much greater than expected numbers of
heroin overdose deaths.

Discussion and Conclusions

The methods presented in this chapter have much to offer the substance use re-
searcher. They can be viewed as offering incrementally more information and de-
tail as one progresses from first-order cluster detection methods, such as the NNI
through scan statistics, to more explanatory analytic techniques, such as hierarchical
modeling.

While we did not spend much time on it, an essential first step in any spatial
analysis is to describe the data in terms of summary statistics and simple plots.
Not only does this provide key descriptive information, it also allows the researcher
to assess whether the data meet the assumptions underlying subsequent tests, e.g.,
Poisson distributions of the outcome of interest.

First-order clustering methods offer a relatively straightforward and easily inter-
pretable global assessment of whether clustering exists and how tight the clustering
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appears to have been. These are important considerations, but most analysts will
want to know exactly where and when the clustering occurred and whether any ap-
parent clustering was simply due to chance. Scan statistics are an important public
health tool in this regard. They are fairly straightforward in their application and
interpretation, and allow the incorporation of a time variable.

When a population denominator is not available or appropriate, the space–time
permutation model is very useful. Although none of the clusters detected through
the use of space–time permutation model (Fig. 27.2a) were statistically significant,
the results suggest that certain areas had higher counts than expected and that there
were temporal changes in opiate-related drug overdose. Having a measure to simply
detect higher than expected case counts is particularly worthwhile in public health
research. In a setting where timely results based on possibly incomplete count data
is a prime consideration, such as in syndromic surveillance (Heffernan et al. 2004),
the scan statistic may be one’s first choice.

When population estimates are available, adjusting for areas that are more highly
populated is appropriate, and the space-time scan statistic is a better, more precise
measurement of cluster points. In our example (Fig. 27.2b), we were able to more
accurately describe the location and statistical importance of clusters detected by the
space–time permutation model. Again, when public health concerns are uppermost,
this method may be particularly useful.

Bayesian methods may be most appropriate when potential explanatory variables
are available and one’s interest is in assessing the determinants of health outcomes
on a spatial level. It is important to appreciate that this is a smoothing method. When
cluster detection is of uppermost concern, caution must be exercised that potential
clusters are not smoothed away. While its appropriate utilization requires knowledge
of MCMC and sample-based methods, full Bayesian analysis, as presented in our
example, is not always necessary. Good empirical approximations are available and
obviate the need to learn and use new complex statistical software (Devine et al.
1994; Greenland 2006). But, when data are sparse and highly correlated and there
is concern over noise obscuring spatial signals, a full Bayesian approach can help
describe both the determinants and the patterns of the outcome of interest at a finer
level.

It should be noted that we do not, in this discussion, dwell extensively on the
implications of the results of the specific example we have used here to illustrate
the material being described in this chapter. However, we considered the role of
neighborhood-level SES in explaining rates of heroin-related overdose in the largest
US urban area. Conceptual frameworks that consider the complex etiology of sub-
stance use and its consequences (Galea, Rudenstine, and Vlahov 2005) have long
suggested that a full consideration of the determination of substance use requires
that we consider a range of individual- and group-level factors to understand popu-
lation patterns of substance use. The hierarchical approach introduced here, suitably
expanded, can be applied to test specific hypotheses and to pursue spatial etiologic
questions, incorporating determinants at group and individual levels as necessary.

Ultimately, we note that the limitations of available data, including, for example,
the use of zip codes as a neighborhood proxy, have been well discussed elsewhere in
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the literature about the multilevel determination of population health (Osypuk and
Galea 2007), and pertain just as much to spatial analyses as they do to all other types
of epidemiologic analyses. Future work that makes use of the methods introduced
here to address specific substance use-related etiologic hypotheses may benefit from
application of these methods at different group levels of inference.

In conclusion, an appreciation for where and when health outcomes occur adds
much to substance abuse epidemiology. A number of spatial and temporal methods
are available, each with its own advantages and disadvantages in terms of complex-
ity, data requirements, and underlying assumptions. The choice of a method will
be driven by the question to be answered, data and software availability, and the
intended audience or context in which the research is being conducted.
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