THE UNIVERSITY OF MIC HIGAN
SPONSORED RESEARCH PROJECT 04650

PROGRESS REPORT 04650-3-P

THE RELATIONSHIPS BETWEEN SURFACE CHARGE AND DIFFUSION

POTENTIAL BENEATH SEMICONDUCTOR SURFACES

Vin-Tang Lee

Donald R. Mason

Under Contract With

Texas Instruments, Inc.

Dallas, Texas

Administered Through: May 1962

Office of Research Administration



THE RELATIONSHIPS BETWEEN SURFACE CHARGE AND DIFFUSION
POTENTIAL BENEATH SEMICONDUCTOR SURFACES*

V. J. Lee and Donald R. Mason

The Department of Chemical and Metallurgical Engineering
The University of Michigan
Ann Arbor, Michigan

Introduction

In this paper the potential change at the boundary between a
semiconductor or an insulator and a gas or vacuum phase is formu-
lated as a function of the concentration of ionized donor or acceptor
centers on the surface of a one-dimensional, semi-infinite plane,
for all combinations'of the types of semiéonductors and the ions on
the surface. This covers the majority of cases wherein the diameter
of the solid particle is equal to or greater than 10—4 cm. The surface
then can be considered as a plane with a thickness extending to
infinity relative to the space charge region underneath the surface of
the semiconductor. Hauffe and Engell1 héve referred to this potential
as a "diffusion potential" when it is defined in the interior of a
material but the term "surface potential" has been used by Buck2 and
others working on semiconductor surfaces to define the diffusion
potential at a surface. These relations will be used in a subsequent
publication to derive additional mathematical expressions for adsorp-

tion isotherms of gases on semiconductor surfaces, when charge trans-
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fer occurs during the adsorption.

A second objective of this paper is to clarify the previous
literature on the subject of the diffusion potential inside a semi-
conductor. Many authors have formulated relationships between the
surface ion concentration and diffusion potential for some special
cases. Aigrain and Dugas,3 Hauffe and Engell,1 Weisz,4 and Garrett
and Brat‘cain5 all have derived’relationships and discussed depletion
or inversion layers on semiconductor surfaces. Kingston and
Neustadter6 and Younq7 have used numerical integration to calculate
the space charge and diffusion potential relationships. Bohnenkamp
and Enge118 later derived an analytic expression for the space charge
variation with distance for a special case. These last authors have
tacitly assumed that the semiconductor has a semi-infinite extension,
and applied Gauss's Law to calculate the space charge. In this paper
all these derivations are placed in context as being representative of
certain special cases, and are mentioned in the appropriate sections.
The assumption has been made that the diffusion potential tends to
zero in the bulk semiconductor, and the variation of the diffusion
potential with distance from the surface is investigated.

In order to derive the appropriate relationships, Poisson's

equation for the one-dimensional case must be solved.

d°E (x 4:77'q'2 e(x)

, - - (1)
de €

where

aq Q(X)

bulk charge density, positive charges/cm3.

[Q(x) is at least a sectionally continuous
function of x. Note that this will include
the case wherein there is a surface charge.]

E(x) =  electron energy, eV.

-=E(x) = electrostatic potential at x, volts.



e = dielectric constant.
= ynit positive charge, 1.6 x 10”19 coulombs.
x = distance into the bulk region of the semiconductor, from the
surface, cm.

The total charge density inside the semiconductor (algebraic sum of
all fixed charge and all mobile charge) arises from ionized donors and
acceptors, and from holes and electrons. The net concentration of
positively charged species then is

+

Px) = (Ny - N ) + p(x) - n(x) (2)
N; = concentration of acceptor centers in thé bulk,
3
acceptors/cm”.
+
Nd = concentration of donor centers in the bulk, donors/cm3.

3
p(x)= hole concentration at x, holes/cm”.

3
n(x)= electron concentration at x, electrons/cm”.

Equations (1) and (2) must be obeyed within the semiconductor.

On the surface the net surface charge then is

q(Z‘PD")’L:- -5 2%) (3)

q 05 =
where
2

q0p = net positive surface charge, coulombs/cm".

)+ ,, 2
D = ionized donors with valence state'])E donors/cm”.

&6- . 2
A = ionized acceptors of valence state §, acceptors/cm .

(The summation is carried out for all possible 7) and §).
By the principle of conservation of charge (electro-neutrality)

the following equation must be obeyed:

D
GEJ + f e(x) dx = 0 (4)
(o]

@ ,
- fﬁ (%) dx=03 = (Z"‘)Dﬁi_ —Zﬁ Aa_) (5)
[/,
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Equations (1), (2), and (4) are required to express the surface
potential as a function of the concentration of surface centers. In
Equation (5) it is assumed that the effects of charges on the surface
extend to infinity into the interior of the semiconductor.

In order to investigate all possible interrelationships between
the charge on the surface and the electrical nature of the semiconduc-
tor, it is necessary to consider three groups of cases which increase
in mathematical complexity. The first group of two cases can be de-
fined for surface donors or acceptors on an intrinsic semiconductor.
The second group of two cases can be defined for surface donors on an
n-type semiconductor, and for surface acceptors on a p-type semicon-
ductor. In these cases accumulation layers are formed underneath the
semiconductor surfaces. The third group of six cases can be defined
for surface donors on a p-type semiconductor or for surface acceptors
on an n-type semiconductor. Three pairs of cases can be defined in
this group depending on whether the surface layers are depletion layers,

intrinsic, or inversion layers.

A. Intrinsic Semiconductors (Including Insulators).

Either donor centers or acceptor centers on the surface can be
considered under this category. In these cases the donor and acceptor
concentrations inside the crystal are small relative to the intrinsic

carrier concentrations.

<N§ - M) <<ni = b

Therefore from Equation (2)

?(X) = [(p(x) - n(x)] (6)

Case 1. Surface Donors on an Intrinsic Semiconductor.

For the case of surface donors on an intrinsic semiconductor

the surface charge density from Equation (5) can be simplified as

ot =Y (907" (7
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If it is assumed that the semiconductor is in a non-degenerate condi-
tion and the Boltzmann statistics are applicable, then the hole and

electron concentrations in the space-charge region can be written as:

P (x) = p, exp [- (Eg-E,0d/ 2)/kT] = p, exp [-Y{x)/kT]=p, exp(-u) (8a)
n (x) = n, exp [ (Ef - Eg (x)/Z)/kTI =n, expE{(x)/kIj= n, exp u (8h)
where

Y(x) = ['ECB -E_(x) | = UEVB - E (] = [EiB - )]

u = Y (x) /kT = normalized diffusion potential, (kT) units. The
sign of Y(x) then is taken as positive when the surface becomes more
n-type as shown in Figure 1. Furthermore, since the bulk material is
an intrinsic semiconductor, then ni = pi, where n],L and p:,L are the
equilibrium intrinsic electron and hole concentrations in the bulk of

the semiconductor, respectively. Furthermore, since

dzu - L dZYgxz R U dZEfxz (9)
2 kT 2 B kT 2
dx dx dx

then Equations (8) and (9) can be substituted into Equation (1) to
give an alternate expression for Poisson's Equation.

2
du

2

. = -2 Lm f(x) = 4 Lm n, sinh u (10)

where Equation (10) has been simplified by defining Lm as

2
Lm = -2:% (in cm) (11)

Now the variable on the left side of Equation (10) can be changed

from x to u, since

a%u _ _d_(du)_ du d g_g)
2 dx Vdx /- dx du dx
dx 5
_1.d. (du)
2 du dx
Therefore

1l d du _ . _ A
> 4 [dx\_}_zﬂ'mni slnhu—- Zme.\(u) (12)
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In order to integrate this equation, appropriate boundary conditions
must be established.

In the bulk semiconductor, far away from the surface where

n=mn =p =D the following boundary conditions can be estab-
lished:
lim Y (x) = 0, or u=0 at x= @ (13)
X =» QO
limm= 0,org‘g“- 0 at x= 0 (14)
dx dx
X =

The boundary condition at x = 0 can be defined as:

u=usgatx=0 (15)

By applying the boundary condition from Equations (13)

and (14) at x = oo, and integrating Equation (12), it follows that

2
du _ ‘
(dx) = 8Lmni Ecosh u 1:[_ (16)
Furthermore, Equation (16) can be simplified by using the identity

cosh u - 1 = 2 sinhz(‘u/z) (17)

Combining Equations (16) and (17) and taking the square root
gives

(—3-;1; = +4 (Lmni) /2 sinh (u/2) (18)

Since a surface donor lowers the edges of the bands, then

E
%;‘ = positive. However, Y(x) decreases (from its definition)

and the negative sign must be chosen in Equation (18). There-

fore,

du

4 /2 sinh (w/2) (19)



a. The Surface Potential, U

In order to express the surface potential, u(‘s, in terms of the sur-
face charge, g - the conservation of charge relation (Equation 4) can
be substituted into Poisson's Equation, Equation (10).

By using the boundary conditions defined in Equations (5) and
(14), this can be integrated.

X=Q0 QO

du - f
dx l\ = ZLm f (x) dx
X=0 0
The result is
duy\ _ +
- (dx) N 2'Lm O—Z.J (20)
0

From Equation (19), when u = U at x = 0, the derivative of the

diffusion potential at the surface can be found and substituted into
Equation (20).

Therefore

1/2
sinh (uS/Z) = 2'Lmo-E' = 0n Lm
a1 V2, 172 2n, /2
m i i
or L 1/2 N
. . 1 (_ m_ o)
sinh (uS/Z) = 3 <ni ) o (21)

This equation has also been derived by Bohnenkamp and Engell.,8
Under the condition that Es/kT = us7> 2
, S 1
sinh (==) = S exp (uS/Z)

Therefore
| Lm V2 +
exp (u/2) = (=) o

Taking the logarithm gives

S Lm 2
u = == = In - Ta (22)
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This result can be written alternately as

+2
Y L Jf
y === - E2 ., (23)

S kT kT .'—————-——N N
c v

The magnitude of the surface potential on an intrinsic semiconductor

then depends directly on the energy.gap-of the substrate and-loga-

rithmically on the surface charge density.

b. The Diffusion Potential, u(x).

The variation of the diffusion potential as a function of
distance from the surface inside the semiconductor can be determined

by integrating Equation (19). The identity

o {ln'l:tanh (f)] B sinhfd’cgoshf - sizncilfzf

can be substituted into Equation (19) and the variables separated for

integration.

du

1/2
sinh(u/2) 4 (Lmni) dx (24)

By using the boundary condition defined by Equation (15) the result

is
“tanh (u/4) 7 _ 1/2
In [tanh (us/4) - 2 (Lmni) X
Written in alternate form:
tanh (u/4) = tanh (us/4) exp (-2x JLmni) (25)

where ug must be evaluated by Equations (21) or (22).

if us/4 >)‘1) tanh (us/4) ~ 1.

tanh (u/4) = exp (—Zx\'Lmni) (26)
When (u/4) <<1, (i.e., deep in the bulk)
2
tanh(u/4) = w4 - AL

3
= u/4



Therefore

u(x) 2oy exp (-2x ‘fLmni) (27)

This equation indicates that the diffusion potential, u,
decreases exponentially as X increases into the interior region
of the semiconductor in a manner which is independent of the
surface potential. (Mott and Gurney9 have derived this equation
to explain the potential barrier which exists at the interface between
two solids.)

Since ni is an exponential function of temperature, Equation
(27) shows that the diffusion potential decreases as an exponential

function of an exponential function, as the temperature increases.

Case 2. Surface Acceptors on an Intrinsic Semiconductor.

Now consider the intrinsic semiconductor with acceptors on

the surface. The surface charge density is given as

g = To = -)(s2%) (7a)
Since acceptors on the surface tend to make the space charge region
become p-type, then the surface potential must be inherently nega-
tive in this situation. Therefore, in order to deal with positive values
of the surface potential and the diffusion potential in the equations,

primed values are defined such that

u' = -u and u' = -u
S S

The expression for the surface potential is

sinh (u_ /2) = (Lm/pi)l/z Ty (21a)

When ug is greater than 2, then
' TR
u. = In {—-ln—@’{:\ (22a)
s P,

The variation of the diffusion potential with distance below the

surface is

tan (u'/4) = tanh (u’s/4) exp (-2x 'f mei> (25a)
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Deep in the interior of the semiconductor

ul®) ' ¥ 4 exp (-2x 1mei) (27a)

The results for surface acceptors on an intrinsic substrate then
are only trivially different from the results obtained for surface

donors on an intrinsic substrate.

B. Accumulation Space Charge Regions on Extrinsic Semiconductors.

Under this title either an n-type semiconductor with donor
centers on the surface, or a p-type semiconductor with acceptor
centers on the surface, can be considered. The first situation will
be presented in detail and the results which are obtained by repeating
the derivation for surface acceptors on a p-type semiconductor will

be summarized.

Case 3. Surface Donors on an n-type Semiconductor.

In the case of an n-type semiconductor it can be assumed that
the acceptor concentration in the bulk region is negligible in compari-
son with the donor: concentration. An energy band diagram for this

situation is shown in Figure 2. Equation (2) becomes

P6) = () + p 6 - n W (28)

The surface charge density is expressed by Equation (5), and the

hole and electron concentrations can be related to the diffusion

potential
p(x) = py exp(-u), nx = n; exp u (29)
where
P, Mg = the bulk hole and electron concentrations,
respectivelyf camr.i.ers/cm..;3
Let

exp uy = \lnB/pB ; exp (-uB) = pB/nB (30)
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Note also that (anB) 1/2 = ni = pi = intrinsic concentration of
electrons or holes. The factor up then is the displacement of the
Fermi level from the mid-band position. Therefore the charge density
in the interior can be expressed by substituting these definitions

into Equation (2), and the result is

) exp (-u) - exp (uB) exp u}

° &

+
(Nd) t n, {exp (—uB

(NZ) - 2 n, sinh (uB + ) (31)

In the bulk region of the semiconductor where/O(x) = (0 then it
follows that
] o + i
sinh ug (Nd)/ 2 n, (32)

When Equation (31) is substituted into Poisson's Equation,
Equation (12), the resulting equation can be integrated using the
boundary conditions defined in Equations (13) and (14) at x = oo.

The result is
@)2
dx

through identities. In order to do this, let

+
4 Lm {2 n, cosh (uB+ u) - 2 n, cosh up - (Nd) u} (33)

The hyperbolic functions in this equation must be resolved

f=uB+u/2 and)7=u/2
Then recall
cosh(§ +)7) - cosh (§ -)Z) = Zsinhfsinh)z
Therefore

cosh (uB + u) - cosh up = 2 sinh (u/2) sinh (uB + u/2) (34)

Also

sinh (uB + u/2) = cosh u,. sinh (u/2) + cosh (u/2) sinh u

B B

This can be written alternately as
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2 exp ug * exp (—'uB) - expu
sinh (uB +u/2) = > sinh (u/2)
- - - +
+ 2 exp (-u/2)- exp (-u/2) exp (u/2) sinh U
2 B
Therefore

sinh (uB + u/2) = expu, sinh (u/2) + exp (-u/2) sinh u (35)

B B

Substitution of Equation (35) into (34) gives

cosh (u_ + u) - cosh u_ = 2 sinh (u/2) jexp u

B B

Bsinh (Q/Z) + exp (-u/2)sinh uB}

When this result is substituted into Equation (33) it follows directly that

2
(%ﬁ) =4 Lm {4 n, exp up [sinh(u/Z)] 2.0 ni[l—exp(-uB):] sinh uB—(N;-)Li} (36)

This equation now can be used as a basis for deriving the surface

potential and the diffusion potential.

a. The Surface Potential, U

In order to evaluate the surface potential, U assuming that it
2
is somewhat larger than kT, then the exponential term in the sinh™ (u/2)
dominates Equation (36). By evaluating the slope at x = o and taking

the square root with the negative sign, the result is

1/2 |
(gi—)“:‘ J4 Lm [4 n, exp uy [sinh (us/z)]zj = -4 |/LmnBSinh(us/z> (37)

X=0

By combining Equation (20) with Equation (37) the result is

1/2
| _1 [t +
sinh (uS/Z) =3 é"':_l (38)

g

If ((uS/Z) is much greater than unity so that the hyperbolic sine can be
approximated by an exponential, then

_ L +.2 _ L +
ug = In m (o& ) = -up + 1n m (O‘D )
ng n,

2 (39)
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These expressions for surface potential are very similar to those
which were derived for the intrinsic semiconductor, and differ only

by the change in reference carrier concentration from n, to n The

B’
surface potential then is reduced by an amount equal to the bulk

diffusion potential, ug-

b. The Diffusion Potential, u(x)'.

To investigate the diffusion potential, u(x), within the
semiconductor consider two limiting subcases. In the first subcase
to be considered, Equation (36) is represented by a first order approx-
imation for all values of u. In the secdnd subcase, a second order

approximation is made for small values of u only.

Subcase 3a. First order approximation, for all u(x).

2
If u(x) is large then the exponential factor in the sinh term

is dominant in Equation (36). After taking the square root with the
negative sign it becomes
du

dx -4(LmnB)1/2 sinh (u/2) & -2 (LmnB)l/z eXp.(U/Z) (40)

The variables can be separated in this equation, and integration

of the exponential form using the boundary condition from Equation

(15) gives
exp (-u/2) - exp (—us/z) = x (LmnB)l/z
Therefore
u(x) € 21n 1 (41)

exp(—uS/Z) + x(Lmn-B)l/2 |

If the sinh form is retained, then a more tractable solution

is obtained, which is

tanh (u/4) = tanh (us/4) exp -2X (L‘mnB)l/2 (42)
If u > 4, so that tanh (us/4) >~ 1, then
tanh (u/4) = exp -2X (LmnB)l/2 (43)
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and the variation of the diffusion potential with distance is obtained.

Now if u is small, so that [1 - exp (—u)] “~ u, then the re-
sulting approximation from Equations (36) and (32) is also equal to
Equation (40). Therefore Equation (40) is a fair approximation through-
out the space charge region since sinh (u/2) is a monotonically in-
creasing function.

Equation (43) now can be used to define u (x) over all regions

of x. When u becomes small such that tanh (u/4) 27 u/4, then

ulx) * 4exp - 2x(L nyl/2 (44)

Equations (41) through (44) then represent the variation of the

diffusion potential with distance using the first order approximations.

Subcase 3b. Second order approximation for small u.

If u is small, then
cosh u= 1 + "'2=T
3
sinh u € u (u” and higher are neglected)
and these approximations can be inserted into Equation (33).
Since

cosh (uB-t- u) = cosh ug cosh u + sinh ug sinh u

the above second order approximations give
u2
cosh (uB+ u) = cosh ug + = cosh up + (sinh uB) u (45)
Combine Equations (32), (45) and (33). After taking the square root
and using the negative sign since u is the dimensionless electron

potential energy defined in Figure 2 which is decreasing to zero as

X approaches to infinity, the resulting equation is

(‘3‘;%) = -2 (Lmni cosh uB)l/2 u (46)

Therefore integrating Equation (46)

V25T (47)

u (x) = (constant) exp [— 2 (Lﬁni cosh ug
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Since

1
cosh u, = E(exp u

+ -
B exp uB)

B
1

= — +
2n, (py + np)

This identity can be substituted into Equation (47).
- 1/2
u (x) = (constant) exp [2 Lm (pB + nB)] X (48)

Note that Equation (48) has the same form as Equation (27) when

n ni except that the constant of integration has not yet

B Pp~
been evaluated in Equation (48). By comparing Equation (48) with
Equation (44) it appears that u (x) decreases faster in Equation

(44) for heavily or moderately doped semiconductors wherein the
minority carrier. concentration can be neglected. At the same time,
these two equations do not become identical short of infinity, and
the integration constant in Equation (47) cannot be evaluated readily.
The second order approximation, however, would probably be pre-

ferred to give the shape of the diffusion potential variation over the

region in which it is applicable.

Case 4. Surface Acceptors on a p-Type Semiconductor

In this case the energy band diagram is shown in Figure 3.
The surface charge density is given by Equation (7a). Also for a

p-type semiconductor, let

1/2

u =lni = - u
B nB B

(30a)

Therefore the bulk charge density variation can be expressed as

(o(u’) = - (Na_) + 2 n, sinh (u.' + u') = —(Na_) -n, sinh(uB+u) (31

B
An analysis similar to Case 3 shows that the surface potential
is related to the surface charge density through the relationships
L 1/2

- ") | (38a)

‘ \ _ 1
sinh (us/Z) =3 oy o
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For large us” z

L:m -\ 2 Lm -\ 2
P o = -+ 2 (&
ug In 5 (C] ) ug In " (65 ) (39a)
B i
The diffusion potential can be found from the relationships as
follows:
For large values of u(x)
u'(x)= 2 1n 1 (41a)
1/2
! +
exp (u s/ 2) + x (meB)
Also for large values of u (x)
Ay e \ 1/2
tanh (u'/4) = tanh (us/4) exp - 2Xx (meB) (42a)
For us' >> 4, so that tanh (us'/4) = 1, then
tanh (u'/4) < exp {— 2 x (meB)l/z}> (43a)
For large x and small u (x), then the first order approximation
gives
u' T 4 exp -2x (L p)l/z (443a)
m B
and the second order approximation gives
u' ~ (constant) exp -x|2L (p,+n,.) 1/2 (47a)
m B B

C. Depletion-Inversion Space Charge Regions on Extrinsic Semiconductors

Under this title the combinations of a p-type semiconductor with
donor centers on the surface, and an n-type semiconductor with acceptor
centers on the surface are included. Since the mathematical treatments
are similar for the two situations, a complete analysis will be given only
for the p~-type semiconductor, and the resulting equations of the other
combination will be tabulated without derivations.

The surface donor centers introduce mobile electrons into the

conduction band of the space charge region. On a p-type semiconductor
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then the space charge region at the surface must become less p-type.
However, the hole neutralization can proceed to the point where the
surface becomes intrinsic, or even n-type. These changes, of course,
depend on the bulk carrier concentration and the ionized surface donor
concentration.

A criterion for these changes can be obtained by the fact that
at the intrinsic plane, p(x) = n(x) = n,. For a p-type semiconduc-
tor the bulk charge density variation is given by Equation (31a).

At the intrinsic plane, the sum of the mobile charge must be
equal to zero and the particular value of diffusion potential, Uy is

defined. That is

s.:mh(uB -ui) = 0

The intrinsic diffusion potential can be related to the bulk

properties of the semiconductor, since

/2

. 1
u, = up = In (pB/nB) (49)
Equation (49) can be translated into more convenient form,
since
1/2 2,\1/2
P p / p /
B B B B
uB'=ui=ln —_ =ln—-‘2 =ln°‘;’
loB 1rlB n, i
i
1/2
Recall that n, = (NVNC) exp (-Eg/2kT)
Therefore o 2 \1/2
Vo _ Eg B
ug =W = oy Toin N N_ (50)

When the surface potential is equal to the intrinsic diffusion potential,
then the outermost surface is just intrinsic.

Whether there is an inversion in the space charge region or
just a depletion of majority carriers depends on the relationship
between the bulk carrier concentration of the semiconductor and the

ionized surface donor concentration.
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In order to establish the various relationships it will be
assumed that a constant ionized surface donor concentration is
created on various p-type semiconductor substrates having widely
different electrical conductivities. Three cases will be discussed
in the following subsections. In Case 5 surface donors form a de-
pletion layer on a highly doped p-type semiconductor, and the

surface potential is small, such that
1/2

B

S ng

(51)

There is no inversion of the space charge region, although
the surface may attain an intrinsic condition. In@ase 7 surface
donors form an inversion layer on a moderately doped p-type semi-

conductor. There is an inversion in the space charge region, but at

most
1/2
pB /
uS = 2 In T
B
or in general 1/2 1/2
loB < pB
in - < u, = 21ln - (52)
B B

In Case 9 surface donors form an inversion layer on nearly
intrinsic, p-type semiconductor, and the surface potential is

large, such that 1/2

Pp
ug > 2 1n —g> (53)

There is an inversion in the space charge region. Each of these

three subcases is discussed in considerably more detail.

Case 5a. Surface Donors Form a Depletion Layer on a Highly Doped

"p-Type Semiconductor.

In this situation /2

p
sln"'—B'

S nB

u (51)
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but the surface never becomes intrinsic or n-type.

a) The Surface Potential, u,-

Substitution of Equation (31a) into Poisson's Equation,
Equation (12), and integration using the boundary conditions from

Equations (13), (14) and (15) gives

2 -
dul _ oy L ,
(dx) = 4 Lm [(Na ) ug + 2 n, [cosh(uS uB) cosh UB]} (54)
The following identities can beformed.
2 n, {cosh (us - up )} = 2 n, {cosh (uB - us)}

= 2n, 4coshu!' coshu - sinhu. sinhu
i B S B S
= -+ - - 1
(pB - nB) cosh ug (pB nB) sinh ug

= Pp l:cosh uS - sinh us‘l + nB [cosh uS + sinh uS]

= pp exp (—us) + ng exp (us)
In addition, since
/2 \ 2
n n
n. = B\ - -B = exp (-2 u.')
B PB Py Pp Py Pp €XP B

then substitution of these identities into Equation (54) gives

. -y ') = - + - '
2 n, cosh(uS uB) p.. exp( us) + pp exp (-2u us) (55)

B B

Combine (54) and (55) and note that 2 n, cosh uB' = (pB+nB).

The result is

2
dul _ - - ' - '
(dx) 0— 4Lm {(Na ) ug + Pp eXP ( us) + Py exp ( 2 ug + us) (pB+nB) (56)
Since
g > us7>13
then

exp (- 2 uB' + us)< exp (—us)<<l
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For uS = 3, then exp (—us) = 0.05 ¢«1l, which is a sufficient ap-
proximation. For an acceptor-doped semiconductor wherein

u]'B>71, then pB = (Na_) and Equation (56) becomes

du 2 -
(5?)0 = 41 (ND) {us — 1} (57)

Now Equation (57) can be combined with the square of Equation

(20) from Section A to give

2 + -
414 (o) =4Lm(Na)Iius—l}

Therefore

u =£L—m.(o'+)2 - (58)
- 16(%

and the surface potential is related to the ionized surface donor

density and the ionized bulk acceptor density.

Case 5b Surface Donors Form an Intrinsic Surface Layer on a

Highly-Doped p-Type Semiconductor.

a) The Surface Potential, u-

Ik

For the condition ug u.', then cosh (us -ul') = 1

B’ B
and Equation (54) becomes

2
du -
au = - + )
( dX)O 4L {(Na) uw +2n - (o nB)} (59)
Since
2 ni = 2 anB
Furthermore since
- . /2 _ 1/2 '
ng = Pg exp ZuB) and ng = By exp ( uB)
Then

2

2
Zni - (pB + nB) = — (pBl/z— nBl/Z) = —Dpg [1-—exp(——uB’)} 2= Py (60}
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The last approximation is valid if exp (-u')<< 1. Combine Equa-

B
tions (59) and (60)

du 2 -
G = e E(Na) o - pB}
Since Py = Na + ng = Na , then
du 2 . _
(d—x)o = 4 Lm {us - 1} (Na> (57)

Therefore for Cases 5a and 5b Equation (57) was obtained in each

case for u/ 4 u 4
B [

potential and surface charge density is given by Equation (58).

3 and the relationship between surface

The approximation requires only that exp (-—us) <<l1.

‘a) The Diffusion Potential, u (x).

After the formulation of the relationship between the surface
potential and the surface ion concentration, the diffusion potential
variation inside the semiconductor can be formulated. By removing
the boundary condition defined by Equation (15) then Equation (56)

can be rewritten

2
(%ﬁ“) =4 Lm {(Na—) u+ Pg 6Xp (-u) + Pp €XPp (-2 uB” + u)
- (pg+ nB)} (56a)
In the neighborhood of x = 0, where uB' Z ug s and both are
much larger than unity, then Equation (56a) reduces to
(QB)Z = 4L (N ) [u—l-[ (57a)
dx m a -

Taking the square root with the negative sign, as was done in

Equation (19) the result is

12 1/2
(%) = —2 [t _(N"]  (u-1) (61)

Since Equation (61) is applicable for the neighborhood of x = 0,
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it can be integrated for small values of x extending from the

surface.
8]
(u- 1)"]‘/2 d(u-1) = —2 [L N'):]l/2 X
u m a
s
Therefore
(w-1"2 = (u -nY% - [Lm(Na_)Jl/Z x O (62)

For u (x) in the neighborhood of unity, as x extends
into the interior of the solid, Equation (56a) has to be re-
evaluated and simplified again before performing the integra-
tion. The significant term then is Pg exp (-u). Equation (56a)
then becomes

2

du) 4L pp exp (-u) - (63)

dx
Again, taking the square root with the negative sign gives
1/2
Y

(%;f = —2 (Lm Py exp (—u/2) - (63a)

In order to determine a boundary condition at which these
two cases merge, consider that the élopes of the diffusion
potential must be equal when calculated from each set of assump-
tions. Therefore Equation (57a) must be equal to Equation (63)

at a particular value of u=u and this value can be determined,

2’

4Lm(Na—) (uz— 1') = 4Lm(Na_) exp(—uz)

Therefore u, is the root of the equation

2

u

+ —
5 1+ exp ( uz)

u, = 1.28 (64)

The value of X, corresponding to this value of u, then is ob-

tained from Equation (62) and is
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: us -1 — 0.53

2 /L (N

The integration of Equation (63a) now can be completed.

u=u | 1/2
exp (u/2) d (uW/2) = —(meB) x+)/us-1—0.53

u=l.28
That is
exp (u/2) = exp .64 — (L p )l/zx+ u -1-0.53
m B S
or
u = 21n ég1>.3»7 - (meB)l/Z X + l/ﬂs_-—-T} (66)

For values of x approaching infinity, such that u(x)

is very small and approaching zero, then the exponential factor

in Equation (56a) can be expanded in series form.

2
~— u
—u) = —ut = - ...
Py exp (—u) pB(l ut = )
and uz
= + +—F—-+ e e o
N exp u nB(l u > )

By substituting the above relationships into Equation (56a) one

obtains
du2 -
(&) - gr E(Na) u = (py-ng) u
+ (p +n)+l(p +n)u2
BT " T2 'PpT g
—(pB+nB)}
= 4L {-;- (pB+ nB) uzj (67)

Therefore, taking the square root with the negative sign, as before,

since u decreases as X increases.

(g—}%) = - [2 Lm(pB+nB)]l/Z u (68)
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The boundary condition between these last two cases can be ap-

proximated by equating Equations (63) and (67). This shows that

2
2 = u exp u

3 3

From which it follows that

u3 = 0.90
When this value for u, is substituted into Equation (66) the corre-
sponding value of X3 is found to be

? y | 150 + V9% ¢

; = (69)
V Lm 10B

Equation (68) now can be integrated, assuming that p

U X
f du = - ]/2 L pB \ﬁ dx
u, u m 3

Therefore

) s
In u/u3 = - /2 meB {x -

5”7 Pp’

or

u(x) = 0.9 exp (—X VZ meB +2.121 +V2‘ yus— l) (70)

In summary in this highly doped extrinsic semiconductor,
the diffusion potential in the semiconductor can be approximately
represented by Equations (62), (66) and (70) in increasing magni-

tude of x.

Case 6. Surface Acceptors Form Depletion-Inversion Layer on a

Highly-Doped n-Type Semiconductor.

As has already been observed in Cases 1 and 2, and Cases
3 and 4, there is a symmetrical relationship between the results
which are obtained when a.p-type semiconductor is replaced with

an n-type semiconductor, and surface donors are replaced with

7

'
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surface acceptors. The surface potential and bulk diffusion poten-
tial can be expressed with the equations already derived by chang-
ing from an electron energy reference to a hole energy reference,
and making the appropriate changes in the majority carrier and

surface ion designations.

Case 7. Surface Donors Form an Inversion Layer on a Moderately-

Doped p-Type Semiconductor.

In this case we specify that the adsorbed ion is such that

/2 1/2
1 (i-) < 21 —p§> (52)
n T < u, = n (2

B B
The surface is inverted but the magnitude of the inversion is
moderate, and does not exceed the magnitude of the bulk diffusion
potential. The bulk diffusion potential, uB' , in this case must be
equal to or greater than 3 units of kT, since results obtained from

Case 5 are to be used in this derivation

a) The Surface Potential, ug-

+
To formulate uS as a function of D’D the following approxi-

mation can be used.

p
u = 2 u.' = 1ln (—'B)
S B n

When this substitution is made into Equation (54) it reduces imme-

diately to

2
d -
(G, =m0 (72

Combine Equation (71) with the square of Equation (20) A
' L 2
_ ) —m + (72)
s T N_ [..O.D ] }
3
This equation has been derived previously by Aigrain and Dugas,

by Hauffe and Engell,l and by Weiss4 using a different model and
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different boundary conditions.

b} The Diffusion Potential, u(x).

For u(x) as function of x, the following regions can be
differentiated. In the neighborhood of x = 0, from Equation (71},

but eliminating the boundary condition from Equation (15):

1/2 1/2
du _ -
(dx) = -2 (LmNé1 ) u (73)

Integration of Equation (73) using the boundary conditions of

Equation (15) and (72) gives

/2 _ 1/2 A Sl MR N 4
u = ug mNa x -i,/_pmNa | .- X (74)

This is the well kndwn Mottlo— Schottky11 region. Garrett and

Brattain5 have discussed Equation (74), but mistakenly state that
there is not yet an inversion in the space charge region.

This equation relating diffusion potential to position
should be valid until the diffusion potential approaches the
intrinsic plane. From the intrinsic plane on into the interior of
the semiconductor, the concepts developed in conjunction with
Case 5 should be applicable. The point at which Equation (74)
should be replaced with another expression can be estimated by

letting u = u, = u. in Equation (74). This can be solved to

i B
show that
N LA Gl
yLmNa J LmNa.
This point now can be used as a boundary condition in the inte-
gration of Equation (61). The result of this integration over

small intermediate ranges of x wherein u is close to U and

substitution shows that

Ju-1 = fu -1 + (_ V—lz;)'/‘lfs" —X/meB (76)
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This equation is similar to Equation (62), differing only in the
integration constant. Equation (76) then should be valid until

u, = 1.28. However, this will no longer occur at the same value

of Xy The new boundary condition must be evaluated from Equa-

tion (76) for u, = 1.28. The result is

i = (77)

For larger intermediate values of x, the variation of u can be

obtained by integrating Equation (63a) using Equation (77) as a

boundary condition. The result is

exp(u/2) = 3.07 - x{ meB + *Jus—-l + 0.293 ug (78)

¢

This relationship is valid until u,=¢0.90; and the new value of x

3 3
defined for this value of u, can.be found from Equation (78). The re-
sult is 150 + Yu, -1 + 0.293 Yu

X! = , (79)
3 \d Lm pB
This boundary condition now can be used to integrate Equation

(68), for large values of x. The result is
= 0. - . + -1+ 0.414
u = 0.90 exp (—xYZL o +2.121+Y2 Ju -1+ 0.4147) (80)

Equation (80) is valid for all values of x greater than that de-

fined by Equation (79) and u goes to zero as x approaches in-
finity as required by the boundary condition defined in Equation

(13).

Case 8. Surface Acceptors Form an Inversion Layer on a Moderately

Doped n-Type Semiconductor.

The equation derived under Case 7 also can be used in this

case by changing the designations as was done in Cases 2, 4 and
6.

Case 9. Surface Donors Form an Inversion Layer on a Nearly In-
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trinsic p-Type Semiconductor.

In this case the surface potential, uS , 1s greater than Zui,

That is

o> 1n(22) (53)

B
By removing the boundary condition defined by Equation (15),
then Equation (54) can be rewritten and transformed using a re-

lation similar to Equation (34). The result is

2
du, _ - . U oy o
(dx) = 4 ngNa )u+ 4 n, sinh (2 uB) sinh u/Z}
Furthermore since

sinh (u/2 -uB') = exp (uB') sinh (u/2) - exp (—%) (sinh uB')
and
2 ni sinh uB = pB - nB =(Na>
then

2
(%;1?) =4 Lm{ZNa_) [u-1+exp (-u)] +4 n, exp (-up) sinhz(u/z% (81)

Since

, _
(Cai%) = 4L ﬁ’B [u-1+exp (—u):[+nB[exp(u)—u' 1]y (82)

a) The Surface Potential, ug

Equation (82) can be evaluated at the surface using the
boundary condition defined by Equation (15) with the further re-
icti t - 1.
striction that exp (us)>> u and therefore exp ( ug )<<

By using Equation (30a) it follows directly that

2
(3—2)0 = 4L {—pB(us—l) + by exp(+zuB-+uS>} (83)
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By inspecting Equation (83) and realizing that us>>2 uB“
in this case, then the second term in the right-hand side of this

equation is dominating. This approximation is valid when

ng exp (us) = \Vz pB(us -1)

or
u, = ZuB' + 1ln f’\?(us—l)J (84)
’72 = 20, is sufficient for most experimental cases.
With the simplification then Equation (83) becomes
(d—uz = 4L n_ exp (u) (85)
dx 0 m B S
When combined with the square of Equation (20), the final
result is
L 2 L 2
u = ln n—m(UE+) =2 u+ln ;“—1(0?) (86)

B B B

Now if the two terms in Equation (83) are approximately of the

same order of magnitude the result becomes

2
du _ _ _ ;
(dx)o = 4meB exp Eln(uS 1)+uS ZuB‘J} (87)
When this result is combined with the square of Equation (20), the
result is

us+ln(us—1)-ln (")= { (@ }

Lm
ug +ln(us—1)=ln E‘; (Q'b) —ZuB+lr1 I’);(UE) (88)

Either Equation (86) or Equation (88) can be used to relate the
surface potential to the surface charge and bulk carrier concentra-

tion of the nearly intrinsic p-type semiconductor.

b) The Diffusion Potential, u(x).

The diffusion potential as function of distance can be divided
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into regions. In the neighborhood of x = 0, for large values of
ugs Equation (85) can be reformulated as

exp(-u_Jexp(u/2) (89)

(QE‘) = -2 (LmnB)l/2 exp (u/2) = -2 L by 5

dx
Integration from the surface of the semiconductor into the

interior gives

: exp (-u/2) d —-Z(Ln)l/zx——ZXL exp(-u._)
Lo v E ' = mPB &¥P+ Vg
s

or
u=-21n {exp (-uS/Z) + x (LmnB)l/i} (41)

This equation is equal to Equation (41) which was derived for
Case 3, an accumulation layer on an n-type semiconductor.
When it is realized that now the substrate is a p-type semiconduc-

tor, then this equation can be rearranged to the form

= - - + -
u 21n {exp ( uS/Z) X imeB exp ( uB)}
or
u=2 ug - 2 lnpr (uB—us/Z) + x ’meB} (90)
This relationship is valid as long as us> 2 Up - When U =2 Ug's

then a value of X, can be evaluated, which is

1 - exp (u, -u /2) :
X, = B¢ (91)

1 \{'~
Lm pB

A more precise boundary between the limits of applicability can

be found by equating Equations (89) and (73), and obtaining the
root U, at which these two slopes are equal. The result is

u, = exp(— 2 uB)exp U (92)
This boundary condition then depends directly on the bulk diffusion

potential, up - The root from Equation (92) then can be substituted
into Equation (90) in order to evaluate X, more precisely. This re-
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sult then is

exp (uB - ul/Z) - exp (uB - uS/Z)

or

(93a)

This case then can be superimposed on Case 7 and Case 5 for
the situation wherein up 7/ 1.5. The variation of u as a
function of x is expressed by Equation (90) until the value of

x1 is reached.

Case 10. Surface Acceptors Form an Inversion Layer on a Nearly

Intrinsic n-Type Semiconductor.

The relationships obtained from Case 9 can be applied
symmetrically to the reciprocal situation as was done in Cases 2,

4, 6 and 8.

Conclusion.

In this work the surface potential and the diffusion poten-
tial have been related to the bulk diffusion potential and the
surface ion concentration for all combinations of surface charge

and types of semiconductors.

References
1. Hauffe, K., H. J. Engell, "Zum Mechanismus der Chemisorption
vom Standpunkt der Fehlardnungsthearie." Z. Elektrochem.,
56, 366-373 (1952).
2. Buck, T. M., F. S. McKim, "Effects of Certain Chemical

Treatments and Ambient Armospheres on Surface Properties

of Silicon.™ ]. Electrochem. Soc., 105, 709-714 (1958).

3. Aigrain, P., C. Dugas, "Adsorption sur les Semiconducteurs. "

Z. Elektrochem., 56, 363-366 (1952).




10.
11.

-32-

Weisz, P. B., "Effects of Electronic Charge Transfer Between
Adsorbate and Solid on Chemisorption and Catalysis. "

J. Chem. Phys., 21, 1531-1538 (1953},

Garrett, C. G. B., W. H. Brattain, "Physical Theory of Semi=-
conductor Surfaces." Phys. Rev., 99, 376-387 (1955).
Kingston, R. H., S. F. Neustadters "Calculation of the Space
Charge, Electric Field, and Free Carrier Concentration
at the Surface of a Semiconductor." J. Appl. Phys., 26,

718-720 (1955).

Young, C. E., "Space Charge in Semiconductors." J. Appl.
Phys., 32, 329-332 (1961).

Bohnenkamp, K., H. J. Engell, "Messungen der Impedanz der
Phasengrenze Germanium-Elektrolyt. " Z.Elektrochem.,

61, 1184-1196 (1957).

Mott, Gurney, Electronic Processes in Ionic Crystalsﬂ 2nd Ed.,
(1948). -

Mott, N. F., Proc. Royal Soc. (London), A 171, 27 (1939).

Schottky, W., Z. Physik, 113, 367 (1939); ibid, 118, 539
(1942).




GAS PHASE SURFACE BULK SOLID PHASE

— ECB
> /
-~ E _
w c ¢Y(x)--ukT
>-
E - - - E; =E
g f y // IB f
W c s /T
T
- 2
8 / Fvg
o
w E
- v
W

O — DISTANCE INTO THE BULK, «x

Figure 1. Electron potential energy diagram for donors on the surface
of an intrinsic semiconductor. (Not to scale.)
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Figure 2. Electron potential energy diagram for donors on the surface
of an n-type semiconductor. (Not to scale.)
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for a depletion-inversion layer created by donors on the surface of
a p-type semiconductor. (Not to scale.)






