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ABSTRACT

Theoretical gas adsorption isotherms of neutral and charged
particles on semiconductor surfaces have been formulated, based on a
generalized model. It is assumed in this model that the temperature is
moderately high so that the particles can be ionized with or without dis-
sociation. The combined thermal and electrostatic effects will make the

adsorbed particles mobilé-on:the:seniiconductor surfaces.
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MODEL

It is postulated in this model that the gas phase is in equilibrium
with several adsorbed phases on the surface of a semiconductor. The
various adsorbed phases can include the molecular state, the atomic
state, the singly charged ionic state, and the doubly charged state.
The relative number of particles in each phase is a function of temperature
and the properties of the semiconductor.

This model is represented by the following generalized equilibrium

equations. For a donor gas,
— — —_— + —_— ++ o
Dn (gas) Y_Dn(ads) —nD(ads) =nD (ads) ==nD (ads) (1)

For an acceptor gas,

An(gas) = An(ads): nAfads) =2nA (ads) == nA~ (ads) (2)

It is further assumed that the system is such that there is at least one
phase in the charged ionic state. As a result of the ionic state or states
a static space charge region is created beneath the surface of the semi-
conductor. The static charge in the semiconductor surface distributes
itself so that potential peaks or valleys are neutralized, and a substan-
tially equipotential surface is created. Therefore, in the absence of
potential wells on the surface which can trap individual ions, it is fur-
ther postulated that the particles in the adsorbed state are mobile and
can be treated approximately as a perfect two-dimensional gas. This
also means that these adsorbed species are not }covalently bonded to the
surface. This assumption is not a gross restriction, however, since co-
valent bonds would not create an appreciable space charge region beneath
the semiconductor surface.

These assumptions mean first that the variaticns in the surface
potential are actually less than kT, so that the kinetic energy of the
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species on the surface is large enough to surmount the variation in the
surface potential. In addition it means that the ionization energy re-
quired to transfer charge between the surface atom and the semiconduc-
tor is not excessive with respect to kT.

The periodic potential along the surface is commonly called the

1
van der Waals' potential and is represented by Hill by the relationship

V(x,y) = Voo + 1’29 (1-cos ZZX) + % (1 - cos Z—Z—Y) (3)

where Vo is the depth of the potential wells on the surface. When there
are no static charges VO is the order of 0.3 to 1.0 K cal per mole (1).

No attempt will be made to verify this postulate theoretically. It will be
considered true, if the results derived from this postulate agree with the

result of experiments.
BASIC THERMODYNAMIC RELATIONS

Let
6 U . . , . .
“j = (g‘ﬁ—) = the partial chemical potential of the jth phase, in
I8,V energy units/unit particle

the generalized partial external field potential at the jth phase,

<
i

such as gravitational potential, van der Waals' potential, or
electrostatic potential, in energy units/unit particle

= internal energy

= free energy = U-TS

= absolute temperature, in KO

U
F
T
S = entropy
W = work
N,

J = number of particles in phase j

N = total number of particles
When there is an external potential, Ws , the first law of thermodynamics
takes the following form:

dU + Nd ¥ = dQ - dw (4)
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From the second law of thermodynamics,

TdS 7/ dQ (5)
therefore,
TdS - (dU+Nd1[I"+ dw) 7/ 0 (6)

Under isothermal equilibrium conditions, and when there is no work per-
formed either on or by the system, equation (6) becomes,

d(TS - U -Y) =0 (7)
or,

dF + d{ = 0 (8)

Let us consider that there are two phases, j and k, a species,

i, which exists in both phases j and k, and transfers from the j-phase
into the k-phase, but the total number of particles of species i remains
constant. The following relationships then exist

d (Ni)j + d (Ni)k = 0 (9)
Mg dNi (10)
d\jfi = (wb‘ij - \jfik) dN, (11)

Combining equations (8), (10), and (11), one obtains,

gy + W) = gy + 0, (12)

1

dFi = Hidei -

Having established equation (12), the author. will outline a procedure
to evaluate the number of particles per unit volume or area in each
phase under equilibrium conditions.

Since in this model, the phases exchange particles among
themselves Gibbs' distribution for a variable number of particles
should be used. This distribution will lead to Fermi-Dirac as well as
Bose-Einstein statistics as has been shown by Landau—Lifshitz,,2
Under the condition that

exp (b - € ) /KT <<, (13)

both Fermi-Dirac and Bose-Einstein distributions reduce to the
3
Boltzman distribution. Fowler and Guggenheim have discussed this

problem in detail and have given it the name, Classical Distribution.
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In any phase the mean number of particles at an energy level er

is given by the relationship

n_ = 1/ {[exp (Erj g )/kT] + l} gexp(prj - erj)/kT (14)

Total number of particles in the j phase is given by,

NJ. = exp (u j/]<T) Z exp (—erj/kT) (15)
= (\1f),
( )J
where
A, = exp (u J,/kT) = the absolute activity as defined by Fowler and

Guggenheim.

fj =Zr exp (- erj/kT) = partition function of the particles in phase j.

FORMULATION OF ADSORPTION ISOTHERMS

For convenience, the phases in equations (1) and (2) are labelled

as follows:
j = 1, = gas phase
j =2 =D, (Ads), or A (Ads) phases
j = 3, = nD (Ads) or nA (Ads) phases
j = 4, = nD (Ads) or nA (Ads) phases
j =5, = nD++ (Ads) or nA~ (Ads) phases

I. Equilibrium Relationship Between Phase 1 and Phase 2.

From equation (12), for component i one obtains

Hl—e\vl =pz+ur2 (12a)
That is
+ +
. BtV - o [P
Py p KT

From equation (15) it follows that
N, = N exp {(WI - 'l[fz)/kT}
Let
W = 1]f1 - \IIZ = the van der Waals' energy difference between

the lowest free state and the lowest adsorbed state without
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dissociation. (It is noted that if, in the range considered, the
van der Waals' force is an attractive force, W will be positive

and heat will be evolved upon adsorption.)

Therefore
A, = A, exp £W/kT} (16)
From equation (15) by definition
N, = Ni
b

f .
N, = N _& exp { W/kT (17)
2 1{ £ !
The partition function of three dimensional and two dimensional gas
are given in any standard textbook of statistical physics. For the

partition function of particles in a volume

ZTInl\/IOkT 3/2

f, = > I.V (18)
] h ]
Correspondingly, the partition function for particles on a surface is
2 TI'n.MO kT
f, = > I.S (19)
) h J

where

M = atomic weight of D, or A

Ij = partition function of internal degree of freedom in the
particle

n = number of atoms per molecule

V = total gas volume in the system, cm3

S = total adsorbing semiconductor area in the system, cm2

To simplify the writing let

B = ————————-—-Zﬁl;/lkT (in cm™?) (20)
h
Then
3/2
f. = (np) 1.V (18a)

1



f2 = (np) IZS (19a)

Combining equations (17}, (18a) and (19a) one obtains

N N. /I 1/2
_é_Z_ = —\-/7—1—— (-%) (E%) exp EW/kT‘}
1

For ideal gas approximation

PV = Nl kT

(+H-(2)

For the sake of avoiding confusion in units it is defined

—

21)

that P is in dynes/cmz, kT in erg, and volume in cm3“ Then
(P/kT) is in [cm_319 Combining equations (21) and (22), and

writing [Dn:[, or [An] for l\T_Z , one has,
S

I 1/2
[b] = (]f,f-) (-eI-Z-) (;%) exp (W/kT) (23a)
1

I 1/2
[An'] = (E%) (“f‘?”) (;1_16) exp (W/kT) (23D)

II. Equilibrium Relationships Between Phase 1 and Phase 3.

In entering phase 3, the molecule Dn or An dissociates into n
atoms, and the total energy of the particles in phase 1 and phase 2
now is comprised of a chemical energy associated with each particle,
b s a generalized external field energy per atom, "\lf3, and an energy

of dissociation per atom, & . This can be expressed as

+ = + = + +
1 _‘Llfl by Il.rz np, n‘tﬂf3 nd (12h)
where

A = dissociation energy per atom which is also a form of poten-

tial energy.

Following the procedure as in Section I, define

nw' = ljfl - m\.ﬁfg (24)
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Now substitution of equation (24) into equations (12b) and (15) gives the

relationship
¢
_, 1L W -4
M=k nexp[ KT } (162)
Substitution for the \'s gives
Ny (Wea -
i, (£ /) n exp kT
Now, defining the partition functions for the atoms on the surface in
phase 3
_ [2TIMKT _
f3—-————'—2 )138 = 6138 (19b)
h
Substitution of equations {19b), {22) and (18a) into equation (25)
gives
-  2n 43
3 2n 1
Ny Bl P\n o w-4 (26)
= =
S np Il2/3 kT kT

w—

But since N3 /S is the surface concentration of atoms in phase 3, then

for donor atoms, equation (26) can be written as
1/n

B I W’ D
(0] = s=7— oo W;TA T (27a)
(n)™ ™1

For acceptor atoms on the surface in phase 3 the result is

p 1/n
BIZ% An
[A] = s { } T (27b)
) /

(np

Equations (27a) and (27b) relate the concentration of dissociated atoms
on the surface coming from an n-atom molecule, to the dissociation
energy, the partial pressure of the molecular gas, and other factors as

indicated.
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ITI. Equilibrium Relationship of Phases 3, 4 and 5.

With neutral atoms adsorbed on the semiconductor surface, the
possibility exists for electronic interactions between the adsorbed atoms
and the semiconductor. Furthermore, for the sake of completeness in the
development and in crder to make comparisons with actual situations, it
is assumed that there are singly charged ions as well as doubly charged
ions on the surface. The total charge on the surface is given below.

For donors, the surface charge density is related to the ion con-

centrations by the relationship
+ + ++ -
€ = {[D]+ZED _lj (28)
For acceptors, the relationship is

Gq = [[A_l + 2 | A ]} (29)

For a donor gas, it is assumed that the neutral adsorbed donor
atom such as a hydrogen atom has an uncompensated electron spin.

Therefore in going from phase 3 to phase 4 the fellowing reactions can

occur:
+ -
D () =— D + =
(30}
1 + -
D (‘” =D + e
Since the electrons initially are in a surface state with energy level
ED , then from the distribution function it follows that
. +
[D]=2[D ] exp I(\(EF—ED)/}{T} (31)

For the transition from phase 4 to phase 5, with the removal of another

electron from the donor atom, the following reaction can occur.
+ ++ -
D & D (1) + e (32a)

DY == D) + e (32D)

Obviously, these reactions cannct occur when hydrogen is the donor
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atom, but this case is included for completeness of the development of
the theory.

Therefore, from the distribution function, the relationship between
the singly ionized donor concentration and the doubly ionized donor con-

centration can be obtained.
[D'] = 2[D'] exo [(EF -ed') / kT} (33)
where
Ed is the donor level of the first electron Ed'/, that of the second
electron.
The factor of 1/2 arises because of the assumption that the

electrons leaving the donor atom now combine with the original

electrons and form a compensated pair.

Using the bottom of the conduction band as reference,

EF - Ec B cbrw
Ed = EC - Ys - edl
Ed1= E - Y - ¢
c S d.
2
Therefore ,
- =3 + -
E. - Ed = Y + ¢ 4, <5>n (34)
1
- = + ¢ -
Ep - Ed'= Y_ g <§>n (35)
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Substitute (34) into (31),

+ . _
[D] = 2[D'] exp [YS/kT} exp Edl ¢n (36)
kT
Substitute (35) into (33)
+ 1 ++ Ys E -
[D ] =3 [D ] exp y 7 [ exp d2 dpn (37)
kT

For the acceptor gas, it is assumed that the A atom has
all electron spins compensated. When these atoms ionize, then
ions with uncomplicated spins can be formed.
- +
A &3n (D) + e
i . (38)
A2 A () + e
+
where e is a hole in the semiconductor durface. Therefore from

the distribution function it follows that

1 -
[a] -Z[A] exp {(EP_EA)/kT} (39)
where A is the total singly charged acceptor ion concentration.

For the second ionization of the acceptor atom, the reactions are

MM a + e (40a)

- (40b)

A2 a o+ e
The total singly ionized acceptor ion concentration then is related
to the doubly ionized acceptor concentration through the distribution

function by the relationship
- = i
[A] =2 [ATexp {(E,-E) /kT} (41)

where EA and b g are the acceptor levels associated with the ions

on the surface.
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Ec
E“——-——‘-A
Ea 1 ‘
éa\'ean — —_— —_— ¥ P Er

This case can be looked upon as the transferring of a hole
from the acceptor gas atom or ion to the valence band. Choosing the
top of the valence band as the energy reference (which is arbitrary
since ultimately only energy differences enter into the final equations)
the following definition can be made.

E. = E -
4)13

EA=EV—YS_€a

A \ S a,
Therefore
- = + - 4
Ep - By = Y eal 4>p (42)
E -2 =y + ¢ - ¢ (43)
F A S a, p

Substitution of equations (42) and (43) into equations (39) and (41),

respectively, gives

Y
[A] = % [AJ exp E-’.g[‘ exp [(eal—d)p)/kT} (44)

_ Y
[A7] =2 [A7] exp ﬁ} exp {(eaz- 4>p) /ij (45)

Having formulated equations (36), (37), (44), (45), one is

ready to find the equilibrium relationships between phase 3, phase 4
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and phase 5. These relationships will be established by using the re-
lationships between Ys and dn which were previously derived. These
relationships can be regrouped into classes. The first class of cases
is associated with accumulation layers on intrinsic or doped semicon-
ductors, and with highly inverted surface layers on nearly intrinsic
semiconductors. The second class of cases is associated with deple-
tion region or slightly inversion space charge region.
The Class I cases are discussed first and the adsorption iso-

therms are derived completely before the Class Il cases are considered.

A. Class I Cases: Accumulation Space Charge Regions.

In the next section the relationships between the surface poten-
tial and the surface ion concentration which have been previously de-
rived are summarized.

A. Accumulation Layers Produced by Surface Donors.

Case 1. Surface Donors on an Intrinsic Semiconductor.

Y L N
rERRELS (o] (46)

Case 3. Surface Donors on an n-type Semiconductor.

S Lm + 2
TS In ‘n—B— [dn ] (47)

Highly Inverted Layer Produced by Surface Donors.

Case 9. Surface Donors on a Nearly Intrinsic p-type Semiconductor.

S Lm + :
ﬁ=ln';;[°ﬁ] (48)

B. Accumulation Lavyers Produced by Surface Acceptors.

Case 2. Surface Acceptors on an Intrinsic Semiconductor.

Y L 2
— In —151—- [o;; :[ (49)
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Case 4. Surface Acceptors on a p-type Semiconductor.

Y L 2

S m -
T = In _p;_ [o‘D] (50)

Highly Inverted Laver Produced by Surface Acceptors.

Case 10. Surface Acceptors on a Nearly Intrinsic n-type Semiconductor.

Ys Lm -— 2
— = 1In ;;- [ob :I (51)

The mathematical expressions for these cases are similar. After
a more complete development of these cases the remaining four cases

will be considered in a later section.

A. Accumulation Lavers Produced by Surface Donors.

Case 1. For Donors on an Intrinsic Semiconductor.

Substitution of equation (46) into equation (36) gives,

ed. ¢
L 1 n
m + + ++
[D:[:Zn—i—exp T [D:[ [:D+2D ]
where
+ + ++
dﬂ = [D + 2D _]
Furthermore, since
_ = 5 2T kT 3/2( )3/4 _ﬁ
B =P = 2 e A S
= (NC Nv)l/2 exp { - il_
kT
Therefore Lm Ed . . I >
l:D:[ = 2 1/ oXP 1 EDJ [D +2D J (52)
(NCNV) kT

where

o, = ¢

1 n

Substitution of equation (46) into equation (37) gives
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L ed —d) 2
[D-F-_'I =% ‘Eﬁ exp _—;]—JTI‘_H— [D-H} [D++2D+_j
i
L ed, = 2
= % (m \1/2 exp [kTZ ] [0"] [p'+20] { (3
N N
cC Vv

For simplicity, let

c. = “m ex “d) kT (54)

1T NN b
C. = Lm ex Edé / kT (55)

2 NN P

Then
2
[D] = 2¢,[D] [D +2D"] (52a)
2

[D'] = 3¢, [ [D'+2D"] (53a)

Equation (53a) can be rearranged into ‘2
++e 2 ' +4+a2”
s fi-2c,[D I}i{l—é&cz[DJ:r
[D 1= ++ |
c [D J
i riq2] V2
One must choose the negative sign before = El -4 C2 D J j s
so that when [D'] =0, then [_-_D++:[ — 0 also.

+
Since [D J must be real and positive number, one also must have

a2 7,
1-40,[D7]" £o

In order to obtain a minimum value for the singly ionized donor con-
centration consider that the radical in equation (54) is zero. That
is

++q2
1-4C,[D7]" =0

Under these circumstances, then

"] _=2¢c,V? (55)

max 2
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Substitution of this result into equation (54) gives
-+ -1/2
D = 3 5
[ Imin Cz. (56)

+F +
A relationshij 26 D D s di .
relationship between [: jmax and E jmin then follows directly

++
LD max= 2 E Jmm (57)

Now consider the situation wherein the radical in equation (54) is

«_+.
positive and |[D | is below its maximum value. Therefore
++

1-4c, D717 0

Under this condition it follows that
. =t 2
0<4c, [DT)°<1
t4m2) V2

One can expand the expression, [1 - 4 C LD ] into an

infinite power series for the situation wherein 0 € z € 1. This series

is
1/2 1 1.2 1 3
(1-2z2) -1---22«-8 T
gzm-3§ m
E m-1 *
= 1! {m-2) ! 4

Therefore, applied to this situation, the result is

¢ 211/2 b 2
Zl-zxcfr,) J =1-2¢, [D

o Y om
(2m=-3)! 4 e 2
h Z m! {m-2) ! icz o] J (58)
m=2

Substitution of equation (58) into equation (54) with the negative sign
as indicated gives the result

N\ m-2

0] =4c,[0"]° Z (2 o= 2) c, ? (59)

=

There are two more points that are needed to ponder.

W D I=y[D7,
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is it generally true that

T3

0 Sy =12

(1) If 0 & y < 1/2 how fast does the series defined in equation
(59) converge? Is it converging more rapidly as y decreases?

To investigate these questions one substitutes the definition

— +
O] = vy [D7]
into equation (54), and one obtains
o
¢, D™]? - 2r— (50
(1+2 y)
Substitute equation (60) into equation (58)

m
o2 2
1-2y _ . _ 2 (2m-3)! 4 ++
tv2y - 172% [>"] Z m! (m-2)! ECzD J (61
m=2

++
Since, when 4 Cz D ]2 <1, the right-hand side of equation (61)

is greater than zero. Therefore

That is, y < 1/2.  When this result is combined with equation (57)
and the fact that y cannot be negative is observed, then we have
the conclusion that

05y < 12 (62)

As to question (ii), an examination of equation (60), will show that
as y decreases, the series defined by equation (59) converges more
rapidly.

For adsorption isotherms, we can substitute equation (53a)

into equation (52a) to give
4
= + et
D% = c,c, D] {[D T+ 2 [D *]} (53b)
Furthermore, using the definition for y and its restriction imposed by

equation (62), equation (52a) becomes
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Therefore
0] = 2¢ (1+2y LD] (63)
Similarly, equation (53b) becomes
_ 1.4 ++ 5
[D] = C,C, 2+ y )" [D ] (64)
These equations can also be written in terms of the charged species as
L \Y3 >2/3 1/3
=(2"6'1> (1+2‘Y ED] (63&)
and
4/5 1/5
e _ /1 VL [N
[p™] "(0102)5 1+2‘y) [p] (642)

+
Note that when y = 0, so that there is only [D ], one has
the relation (63a) only.

Case 3. Surface Donors on an n-type Semiconductor,

Substitution of equation (47) into equation (36) gives

D] =2 ;":“ exp [u} [[D +2 ] }

where
g¥ = [D'+20™)

Furthermore, since

- —n /
nB Nc exp 2 4’1, / kT}
then

©l=2 ; -t exp{k,ﬁ {[D] D"+ 20"")? (65)
7)

Substitute equation (47) into equation (37)

(p% =+ L exp _if_g} " ['+2 1:)"‘“""]'2 (66)
kT
Now define
;L 4,
C, ® === exp T (67)
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€

t Lm d
CZ =N P (%7 (68)
C
Then
[p]=zc¢! [0 [ +20"7° (65a)
0] = 1c], ©1 P +20"7° (66a)

By comparing equations (65a) and (66a) with equations (52a), (53a),
one sees that they differ only in constants C’; s Cg and Cl’ CZ.
Therefore the remainder of the derivations and results should be the
same.

Therefore, equations similar to equations (63a) and (64a) are

obtained. These new equations are

. % L \2/3 1/3
o= () (v ) s

4/5 1 5
44
D] = \ (sz) (66b)

Case 9. Surface Donors on a Nearly Intrinsic p-type Semiconductor.

The results for this case are exactly the same as are obtained
for case 3 since equations (47) and (48) are identical and are repre-
sented by equations (63a), (64a).

Accumulation Lavers Produced by Surface Acceptors.

Case 2. Surface Acceptors on an Intrinsic Semiconductor.

For the neutral atoms in phase 3, substitution of equation

(49) into equation (44) gives
Lm eaf¢ ' . _ 5 2
[A] '};—“‘ exp “m_E”kT [A:[ EA + 2A j

For the singly charged atoms in phase 4, substitution of equation (49)

NI»—-

into equaticn (45) gives
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_ L Eazmcbﬂ ~ .2
[A J =2 -2 exp ‘“ﬁ%ﬂh [:A”j [A +2A _[
But pi can be expressed as |

| 1/2 7
pf = (NVNC) exp Xu dpi/x,T}
and substituted into the above equations to give

[ - 200 wees]
Al = 2 exp A A +2A (67)
< 1/2 kT
(NVNC)
and
B L | e V(o . =2}
Al=2_"m expdq 2 A A +2A
(] Sl (7] een] e

For simplicity, let

L 3y
K “mmvg exp |73 (69)
Lm Eaz
K, = -5 exp [T (70)
1/ e
¢ won)YE k1
c v

Then substitution of equations (69) and (70) into equation (67) and

(68) gives
2
[a] = i— K, {[A] (a7+227] } (67a)
(27]=2x, {[A:J [A“’+ 287 Z} (68a)

The solution to equation (68a) then is
/2

) L
1-8K, [A7 o {1 - 16 K, [Az,]‘i}
4k, [a7]

(] -
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From the reasoning similar to that given in connection with

+ +4
[D J and [:D :[ following equation (54) it follows directly that

6k, (7] <1

and

{1- 16 K, [A=Jz} vz . 8 K, [a7)°

=) (m++) 2) m
‘ (2m=-3)! 4 =

- é m ! (m-2)! {Kz [Az J} (72)
m=2

By the same reasoning process as before, define y as the

ratio of [A=J / EA_]. That is

("] = v [&] (73)

and the limits on y again are

05y < 1/2

Therefore from equation (71) it follows that

- ==
K A e (74)
2 L J 2(l+2y)2

From ecjuations (67a) and (68a), one obtains
= - == 4
[2] = xx, [a7] [a7+2a (681)
From equation (67a) and the relation (73)
1 2 -3
[a] = 5k (1+29)" [27] (67D)
From equations (68b) and (73)
L 1,4 ¢ =95
[a] = k& (2 + ) (a7] (68¢)

Therefore, solving equation (67b) for [A"J gives

) 1/3 2/3
(#] (3%*;) (‘1‘%‘;) (4] V2 9

and solving equation (68c) for [Aﬁ_-f gives
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_ /5 4/5 1/5
(7] - (Ki( ) 1—”2—\» [2] 76)

172

Case 4. Surface Acceptors on a p-type Semiconductor.

Following the same procedure as in case 3, but defining

' Lm !
K L S N &P | TT (77)
v
. Lm (€ a,
K2 = -N_V_ exp | T (78)

The results which are obtained then are
i 5\ V3 L \2/3 1/3
[27] =(”"’. > l+2‘v> [A] (79)
Kl

t2y

K1 K2

Case 10. Surface Acceptors on a Nearly Intrinsic n-type Semiconductor.

The formulation is exactly like case 4 above, and the results

can be represented by equations (79) and (80).

IV. Eqguilibrium Relationship Between Phase 1 and Phases 4 and 5.

Having established the relationship between phases 3 and 4,
3 and 5, on various semiconductor surfaces, the authors proceed to
formulate the relations between phases 1 and 4, phases 1 and 5, i.e.,
the dependence of the surface ion concentrations on the partial pressure
of the gas in phase 1.

Case 1. Surface Donors on Intrinsic Semiconductor.

The desired relationship can be found by combining equations

(63a) and (27a) for singly charged donors. The result is

1/3 2/3 81 13
I:D+J - [-L 1 3
2C, t+2y v 3/2
kT(np) I1
w -4 L
exp | ———— p 3n

3nkT



Since ]
Lm dl
Cl =( N)l/Z exp | T3
voc
Therefore
1/3 1/3
[D+_] - I/N:/‘ﬁz P 13
2 n
2L_(1+2y) \A<T(ns)3/211
W' -4 -n €4 1
s €Xp 1 P 3n (81)
3nkT

For doubly charged donors the result is obtained by combining equation

(27a) and equation (64a). The result is

vy /1 1/5 . 4/5 BI, 1/5
[D ]= c,C, 1+27

n
/kT (nﬁ)3/211

w! - A '51"
XD 15k T 1pDn’rl

However, since

1/5 € €
: ‘l )1/5 ) NVNC oo dl+ d2
CICZ Lfn 5k T
Then
4 1/5 1/5
[D++J _ NvNc‘y . P I3»
a L2 (1+2)" n 3/2
m v \/kT(np) I,
w -4 - n (edz) 1
# exp SO RT Ph 5n (82)

For case 3 and case 9, the results are
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v /30 1/3 W'-A—ne)
[D+]= e P15 ‘ 4 L

21 (1424)° o 3/2 TP 3mkT pDnsm )
m Y kT(np) I

: +4] ch v4 1/5 o1, 1/5 W'-A—n(eda i
D |=)—7/]/"" exp p~ 5 (84)
2 4 n 5nkT D
Lm(1+2y) \/kT(nﬁ)?)/ZI J n

1

Case 2. Surface Acceptors on Intrinsic Semiconductor.

For surface acceptors on an intrinsic semiconductor equations
(75) and (27b) can be combined to relate the concentration of singly

ionized acceptors to the partial pressure of the acceptor gas.

1/3 2/3 B 1 1/3 \ A
- f2 1 3 w'-4
EAJ=(?<;) (f:z,) ©xP) 35k | P "

Since
Lm Ea
K1 = — 1/2 exp T
(N N)
v
Therefore
1/3 1/3 w'-4-
N T orou R S N RN T e
= —
[A':[ L (1+2vy) n/ 32 SXP )3 Wk T pAr?n (85)
m (nB)~" "kT I

For doubly charged acceptor the result is obtained by combining equa-

tions (76) and (27b).

N N 'v4 /5 61 1/5 W'-4-ni( € te ) B
)= 2 exp L2505 %50 (86)
L2(1+2. )4 n——3/—2——— 5nkT An

m Y /(nﬁ) KTI

For case 4 and case 10, the results are
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o1, 1/3 w -A-mal N
) BT I SO

) —

2 np———
L_(1+2y) ‘/(nﬁ)3/2kﬂl

Nzy4 61 1/5 W'—A—n(ea+§a ) 1
= v 3 ‘ 1 72 o
(1=~ 4 n FPl s kT py 50 (88)
L (1+2y) ’(nﬁ) 3/2, 0 [ n

V. Adsorption Isotherms Associated with Class Il Cases.

The Class Il cases are associated with depletion regions or
slight inversion space charge regions.

A. Depletion Lavers.

Cases 5 and 6 as previously defined represent depletion layers on
non-intrinsic semiconductors. For these cases the relationships between

surface charge and surface potential are summarized.

L 2
u = ﬁ_%n__ fd+J + 1 for a p-type semiconductor
N.

s
a
, L .2
ug = *{L [dj + 1 for an n-type semiconductor
. Nd

For a donor gas the surface charge can be defined by equation
(28) and for an acceptor gas the surface charge is defined by equation
(29).
By combining equations (36) and (37) the result is
+ .
e ‘d 2 cbn

[D] = [D++} exp (2 us) exp L k'I% (89)

For a p~-type semiconductor equation (89) can be modified by using the

relationship

by = By (50
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where
Eg = energy gap of the semiconductor.
The energy <{>p is related to the bulk ho‘le concentration by the relation-

ship.

N_ exp (- ci)p/kT)

4) N
p/kT = — (91)
Pp

Equations (36), (90) and (91) can be combined to give

Pp

Therefore

o +

a7 (Bgm o)

[DJ =2 [D+J exp (us) exp L T
€ - E
d g ¢
=2 [D+_'[ exp (us) exp ——lﬁ'“"*— exp E%
; N, “d, " E g
[D:[ =2 [D T exp ug 5; exp | TR T
But since

(_’dn +JZ *

Therefore substitution of the relationship above gives

N “a.” Eg
\ 1
[D]:Z[Djexpﬁ"[d]+1;;expT
NV edl B Eg
= (2e) LDIexpr[dl E;exp*""ﬁw
This relationship can also be written as
[N 1/2 L2 /2 L 5 edl- Eg
[DJ =(2e) "5; "ﬁ;’“ T\T} ED_I exp|—" N LD +2D" _] exp | T

+
Assume as in previous sections, that [:D J= y[:D J where y7/ 0
r.y4
and also pB = Na
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The final result is

. - E
2eN (L 2)1/2 L 2 ‘4 g
+ m 2 1
[D]= v 1 [:D ] exp]— (1+2v) [:D+T exp — (92)
Vo1 [PB Pp ) kT
B m

However, this expression is still rather intractable. In order to simplify
it further, take the logarithm of both sides. This gives:
2.2 € - E

(o] =+ Ny 4, 9
In D] == ln fr=m— [ 4  moee——e—
2 PBLm kT
+ 1 In L t15+1 + (142 Y)Z m Eiﬁj (93)
2 pB pB

Substituting equation (27a) into equation (93) gives,

zen) Hwpd/? I kT
in{®D t = In p— T
t \/pBL P 3

m

i

sd +d~- W - E

] 9

KT

1 Lm *+2
+ E’ln “5;‘ ED]

L

2 +2
+ (1+2vy) — (D ]

Equation (94) is the general isotherm for a donor gas on a p-type

semiconductor. Now, if

can

L L 2

P y i -+

;ﬂ;‘ ED+,] 77/ 13 so that the term *‘% In Eﬂl’“ [D ] ,
B B

be considered as 10% or less of the total value, then equation (94)

can be simplified and written as

92 . o I < ’
1" 8 [n In D+ Hp’z} (94a)
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where
2
le = pB/Lm(l+2{y) (95a)
H o= 1n Veg by B
p, 2 ZN e V
(nﬁ IlkT
E “d

+ng+W'—-n 1 - A (96a)

nkT

For doubly charged donor gas, equation (89) is used. By similar

substitutions, one obtains

- -+
By combining the relationship [D tf =y LDJ with equation (27a) and

defining the coefficients

' (e + € )-
- \PLy pp¥ppl 2nBg+ W -n 9 9y 4
Ip 2”-5111 n e - * nkT | (98a)
V(np)3/21]kT : Nf; o’
and
2
=Y P, f_gn) (99a)
P, 2(2y +1) L

Under the condition, 2{ m) [D + 2 D J >2 In m) [:D++IZ, equation
(97) gives: Py ’

-+t 2 1 /P pB
LD :[ = jp,_l {; ('Dn)+ ]p’z} (100a)

B. Inversion Lavers on Moderately Doped Semiconductors.

For a donor gas associated with a slightly inverted space

charge region, the surface potential is defined within the limits

! 2
ui< g < 1,
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This corresponds to cases 7 and 8 as previously defined. The surface

potential is related to the surface charge through the relationship

L £
v T B {[DJ“] v 2 [D++]}
S Py

By using the procedure which is exactly the same as that outlined in

Sectioh V-A immediately above define

p,L BI P
H = 1ln B m 3 +n Eg+tW'-n d1 -4

p,3 2 N n
Y

For case 7 the result is
2

-+ 1 p
= - D +
LD J Hp, 1 [n tn n Hp, 3}
For doubly charged donors on the surface of a p-type semiconductor,

define

(

i € € )_
I =tn PI, ®B/pgl | , 20 Eg+W'-n dy+ d, -4
o 2
\"

p,3 n )
ﬂlﬁ)s/zllk,f nkT

-~

This result then is

2
+ n 1 p
ED ‘j - ]p,l {n In Dn * Ip,3}

For case 8, an acceptor gas on an n~type semiconductor, the pro-
cedure of formulating the isotherms is similar to that used above.

The various constants are defined as follows:

"B
Hn 1 = 2
’ +
Lm(l 2y)
VnBLm }313 nkE +W'mn€al-~.é\
H = ]ln ' + 4

n, 2= 2N e nkT
¢

/()2 1k

(101a)

(102a)

(103a)

(104a)

(95b)

(96D)
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Bl -ngvngL
In Zfln n poe——
(nﬁ)3/211kT N2 eZ
C
2nEg + W' - n (Ga +€a) -4
+ 1 2 (98b)
nkT
ﬁISnBV L 2nEg+W'—n(€al+€a2)—A
n 3:ln + T (103b)
\/ﬁ) IkTN

The adsorption isotherms for an acceptor gas on an n-type semi-
conductor associated with a depletion space charge layer are then
summarized in the following equations. For singly charged acceptors

on the surface

=12 e 1 p
[a]%= Bl {nln(An>+ Hn,Z} (94b)

For doubly charged acceptors on the surface

[a7]° = - {i 1n(pAn\ ¥ In,Z} (100%)

The adsorption isotherms for an acceptor gas on an n-type semi-
conductor associated with a slight inversion layer are also sum=-

marized. For singly ionized acceptors

o G 1 P
[(a7]° = H oo, ln(An3+ Hn,3} (102b)

For doubly ionized acceptors

(7] % T iﬁ ln(pAn>+ N 3} (104b)
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In order to summarize the isotherms for the several cases, it is

convenient to define various coefficients. Let

1 ] 1 1/2 S
A= I : s exp {W/kT} (105)
1 (np) (kT)
Pl { w' -4 } :
B = exp Y ————— (106)
W) 2k T I, kT
,/ \1/3 €
- N N, W'-4-n_ "1 d
C;= 2 " 3nkT (107a)
| 2L_(1+2y) V n
N ‘d
C = £ - ];A'knT 1 (107D)
© (2L (1+2y) / /2 o
4 1/5 (e . ,e.)
F = NvNeY 3 ? W'-4 -n dl+ dZ (108a)
1—L2(1+2)4°n'/ Y SXP) T E Nk T
m' Y (np) llk’.[‘)

N2y4 . BI 1/5 A (€d+d,)
c 3 w-A-n 91 92
Fe™) 2 4 n PY s nkT (108b)
Lm(l+2y) ;/(n )3/2kT Il

B
v 1/3 €
2 NvNc ﬁ%s W'-n pl
Ki= . exp ) 3T (109a)
L (1+2v) l/( 8) 3/2 IkT
/3 V Ep
W'-&d-n "1
exp ok T (109b)
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4 1/5 (e e )
NCNVY P 13 W'-4Q -n pl+ pz
G,= 12 (1429)* n—5 exp 5nkT
m Y (np) "I kT
2 4 1/5 (e ¢
N,V Pl w'-d-n P17 P2

G = exp
e 2 4 n/w 5nkT
L (1+2vy) (nﬁ)3/lekT

m

With these defined coefficients one can write:

For a donor gas on any semiconductor substrate
P
[Dn] = A D
w
[P )

For ionized donors on an intrinsic semiconductor:
+ i
™7 = c. D yan
i n

B D
n

ER (PDn)’én

For ionized donors on an n-type or slightly p-type semiconductor

phan P %n
[D'] = c, (D)
~_++ P VSV\
[D"]=F_ (D)

e

(110a)

(110Db)

For ionized donors on a highly p-type semiconductor, a depletion space

charge region is formed, and the adsorption isotherms are

+2,, 1 P
= - H-
D] Hy {n In (D) + szg

2
++ 1 )
71 = 0, {n In (PDn> + Ipzi

For ionized donors on a moderately p-type semiconductor, a slightly in-

verted space charge region is formed. The adsorption isotherms are

+2 1 P
[D'] = H {; In (D) + Hp£3§
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iy 1 P
7] = I 1 {n In (D) + Ip,3}

For an acceptor gas on any semiconductor substrate
P
A = A (A
(A ] A )

1/n
P
[A] = B (&)

For ionized acceptors on an intrinsic semiconductor
(2]

[a7] c (fa)

1 n

i

1
k (Fa) /30
1 n

1/5n

For ionized acceptors on a p-type semiconductor or on slightly n-type
semiconductor

(7]
(]

For ionized acceptors on a highly n-type semiconductor, a depletion

1
/3n

K (PA)
e n

1
c (Fa) /5m
e n

space charge region is formed and the adsorption isotherms are
2
adiids AS 1 P
[A7] = H {n In (a) + Hnyz}
2
= ~~ 1 P
= = +
Rl =1, {n In (A) sz}

For ionized donors on a moderately p-type semiconductor a slightly in-

verted space charge region is formed. The adsorption isotherms are:
.2
k] -
.2
[27]
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Gas adsorption isotherms of ventral and charged particles based

on a generalized model have been formulated. Although the formulations
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have been based on a molecule which yields n atoms upon dissocia-
tion, they can be applied to the cases wherein the molecules, such
as Dn or An’ can be ionized without dissociation. The functional
relationship between [D:;] or [A;l] and the respective pressures
in the gas phases can be obtained by treating [Dn] or [An:! as mon-
atomic molecules. That is, by putting n equal to unity in the respec-
tive equations.

Factual confirmations as well as practical applications of the

formulations will be presented in subsequent publications.
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